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The Ras-related C3 botulinum toxin substrate 1 (Racl) gene encodes a 21-kDa GTP-
binding protein belonging to the RAS superfamily. RAS members play important
roles in controlling focal adhesion complex formation and cytoskeleton contraction,
activities with consequences for cell growth, adhesion, migration, and differentiation.
To examine the role(s) played by RACI protein in cell-matrix interactions and enamel
matrix biomineralization, we used the Cre/loxP binary recombination system to
characterize the expression of enamel matrix proteins and enamel formation in Racl
knockout mice (Rac/™'7). Mating between mice bearing the floxed Rac! allele and
mice bearing a cytokeratin 14-Cre transgene generated mice in which Racl was absent
from epithelial organs. Enamel of the Racl conditional knockout mouse was char-
acterized by light microscopy, backscattered electron imaging in the scanning electron
microscope, microcomputed tomography, and histochemistry. Enamel matrix protein
expression was analyzed by western blotting. Major findings showed that the Tomes’
processes of Racl™'~ ameloblasts lose contact with the forming enamel matrix in
unerupted teeth, the amounts of amelogenin and ameloblastin are reduced in Racl™'~
ameloblasts, and after eruption, the enamel from Rac/™'~ mice displays severe struc-
tural defects with a complete loss of enamel. These results support an essential role for
RACT in the dental epithelium involving cell-matrix interactions and matrix bio-
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Enamel, the hardest and most mineralized tissue in the
vertebrate body, is formed by ameloblasts through the
coordinated processes of morphogenesis and cytodiffer-
entiation, which are signaled by sequential and reciprocal
epithelial-mesenchymal interactions (1-3).

Ras-related C3 botulinum toxin substrate 1 (RAC1), a
21-kDa small GTP-binding protein, belongs to the RAS
superfamily whose members play important roles in
controlling cell growth, migration, and differentiation.
RACI proteins are required for assembly of the actin
cytoskeleton and their associated focal complexes, and
are essential for the formation of three germ layers
during early mouse embryogenesis (4, 5).

Deletion of Racl in murine neural crest cells results in
abnormal craniofacial development with clefting at
embryonic day 12 (E12), evidenced by disrupted integrity
of the craniofacial and pharyngeal mesenchyme. Animals
with the binary deletion (Racl/Wntl-Cre) die at an early
embryonic stage (6). Racl-null mouse embryonic fibro-
blasts are contracted in morphology and defective in
lamellipodia formation, cell spreading, cell-fibronectin
adhesion, and focal contact formation in response to
platelet-derived growth factor or serum (7). Animals
with the binary deletion (Racl/cytokeratin 14) exhibit a
clearly delayed closure and healing of cutaneous and oral
wounds (8). Whether RACI is required for enamel
development is not fully understood. To investigate the

role played by RACI in cell-matrix interactions and in
subsequent matrix biomineralization during enamel for-
mation, we used the Cre/loxP recombination system to
characterize enamel matrix protein expression in Racl
conditional knockout mice in which the cytokeratin 14
(keratin 14) promoter drives Cre expression in epithelial
organs.

Integrin cell receptors on the ameloblast surface have
been shown to participate in amelogenesis by mediating
cell adhesion with the enamel extracellular matrix proteins
through several ligands and specific signals that result
from these interactions (9-11). Integrin 064 interacts
with the laminin o5 chain and regulates the cell polarity of
inner dental epithelium via the RAC/CDC42 pathway,
thus participating in determining the start of ameloblast
differentiation (12). On the other hand, attachment of cells
to the extracellular matrix results in the clustering of in-
tegrins and the formation of focal complexes, which are
associated with a variety of dynamic changes in cyto-
plasmic proteins and the organization of the actin cyto-
skeleton for maintaining cell growth, survival, and
directing cell migration (13). It has been suggested that the
cytoskeletal organization in ameloblasts may determine
the formation of distal terminal junction complexes and
the cyclic activity of ameloblast secretory end-pieces
known as Tomes’ processes and be involved in pattern
formation of the enamel matrix (14-17).



Material and methods
Mouse preparation

The Keratin 14 promoter (K/4)-Cre transgenic line, and the
RacI™ (fl, flanked by loxP sites) mouse stain have been
described previously (4, 6, 18). Mating K14-Cre ™/~ with fi/fl
(RacI™) mice generated wild-type/fl and KI4-Cre mice.
Subsequent mating between wild-type/fl; K/4-Cre mice
generated fl/fl and K74-Cre homozygous conditional Racl
knockout mice. For ease of identification, we refer to the
wild-type animal as RacI*/™ (WT), the wild-type/fl; KI4-
Cre animal as Racl™/~, and the fi/fl; KI4-Cre animal as
Racl™". The Institutional Animal Care and Use Committee
(IACUC) approved this study. Animals at selected stages of
development were examined, and this study focused on
newborn, postnatal day-2 (PN2), postnatal day-12 (PN12),
and postnatal day-61 (PN61) mice.

Genotyping of Rac1 alleles

Genomic DNA was isolated by digestion in a buffer con-
taining 0.6 mg ml™" of proteinase K, 50 mM Tris—HCI, pH
8.0, 100 mM EDTA, and 0.5% SDS (Sigma, St Louis, MO,
USA) at 55°C overnight. The solution was subjected to
extraction with phenol, phenol/chloroform, and chloro-
form. DNA in the aqueous phase was precipitated by the
addition of two volumes of ethanol. An additional wash
step in 70% ethanol was essential to remove traces of SDS
and phenol before biochemical manipulation. The PCR
primers PO33 (TCCAATCTGTGCTGCCCATC), PO45
(CAGAGCTCGAATCCAGAAACTAGTA), and PO9I
(GATGCTTCTAGGGGTGAGCC) were used in multiplex
PCR reactions to differentiate the various wild-type, floxed
Racl, or knockout Racl alleles. The PO33/PO45 primer
pair was used to detect the 115-bp wild-type allele, the
PO33/PO91 primer pair was used to detect the 242-bp floxed
Racl allele, and the PO45/PO91 primer pair was used to
detect the 140-bp knockout allele. The primer pair used to
identify the 700-bp Cre allele was: forward primer,
5-TGCTGTTTCACTGGTTATGCGG-3’, and reverse
primer, 5-CCATTGCCCCTGTTTCACTATCC-3".

Backscattered electron imaging in the scanning
electron microscope

Hemimandibles of PN 12 and PN61 wild-type or RacI™'~ mice
were dissected, fixed in 4% paraformaldehyde overnight,
dehydrated in graded concentrations of acetone, and
embedded in epoxy resin. Embedded blocks were sectioned in
the coronal plane between the first and second molars, effec-
tively sampling the mandibular incisor deep within the jaw at
the same relative location for all specimens. One surface of
each block was polished, made electrically conductive with a
carbon coating, and examined in a Zeiss EVO-50 scanning
electron microscope by backscattered electron imaging at
high vacuum with an accelerating voltage of 50 kV, 50 pA
specimen current, and a 9 mm working distance.

Microcomputed tomography

Mandibles from wild-type or RacI~/~ PN12 or PN61 mice
were dissected, fixed, and preserved in 70% alcohol. The
samples were analyzed using the MicroCAT II (Siemens
Medical Solutions, Knoxville, TN, USA). The microcom-
puted tomography images were acquired with an X-ray
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source operating at 80 kV and 250 uA. The data were col-
lected at 10 um resolution per voxel.

Western blotting

Protein recovery, resolution to size, and detection by a
specific antibody was performed as previously described
(19). Mandibular first molars from PN2 wild-type or Racl™
~ mice were dissected and washed in ice-cold PBS, and then
in 100 ul of ice-cold RIPA buffer (1 x PBS, 1% Nonidet
P-40, 0.1 mgml™" of phenylmethanesulfonyl fluoride,
30 ul ml™! of aprotinin, and 1 mM sodium orthovanadate)
(Sigma). The lysate was cleared by centrifugation at
21,800 g for 15 min at 4°C, and the protein concentration of
the supernatant was measured using a Bio-Rad protein as-
say kit (Bio-Rad, Hercules, CA, USA) with serial dilutions
of BSA as a standard. Experimental samples were electro-
phoretically resolved to size on a 4-12% SDS-polyacryl-
amide gradient gel (Invitrogen, Carlsbad, CA, USA) and
transferred to Immobilon-P membrane (Millipore, Teme-
cula, CA, USA). The membranes were incubated in block-
ing buffer overnight at 4°C, then incubated with primary
antibody (chicken anti-recombinant mouse amelogenin
polyclonal IgY (1:3,000 dilution) (20) or rabbit
anti-recombinant rat ameloblastin polyclonal IgG (1:2,000
dilution) as previously described (21)] for 1 h and detected
by incubation with a secondary antibody (horseradish per-
oxidase-conjugated anti-chicken or anti-rabbit IgG) for 1 h
at room temperature. Proteins were visualized by enhanced
chemiluminescence (GE Healthcare, Pittsburgh, PA, USA).

Immunohistochemistry

Immunostaining was performed as described previously
(22). Briefly, hemimandibles from newborn or PN2 wild-
type and Racl™~ mice were dissected and fixed overnight in
freshly prepared 4% paraformaldehyde in PBS, pH 7.4, at
4°C. Tissue sections of 6 um thickness were prepared and
blocked to prevent non-specific absorption. After incuba-
tion with the selected primary antibody, the localization of
the antibody—antigen complex was visualized with a suitable
chromogen. Polyclonal anti-mouse amelogenin IgY (1:1,000
dilution) was raised in chicken and recovered from the egg
yolk, an anti-chicken horseradish peroxidase-conjugated
secondary antibody IgG (1:1,500 dilution), (Invitrogen),
and a peroxidase substrate (AEC) was used for detection by
local precipitation of the visible chromogen.

Unless stated otherwise all chemicals and reagents were
from Sigma.

Results

General phenotypes of Rac1 conditional knockout
mice

Approximately 60% of Racl-deficient mice were born
dead, and pups alive at birth were indistinguishable from
wild-type mice. However, within the first week of birth it
became obvious that mice with the Rac/ deletion had a
smaller body size, grew less hair, and displayed pro-
gressive hair loss, as reported previously (23). At PNI12,
the gross appearance of wild-type and Racl ™/~ animals
was similar, while RacI™'~ lost almost all of their body
hair (Fig. 1A). Genotyping results are shown in Fig. 1
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Fig. 1. Gross appearance and genotyping results of wild-type
(WT) and Racl™~ mice. (A) Gross appearance of postnatal
day-12 (PN12) Racl™~, WT, and RacI*'~ animals. (B, C)
Genotyping results of loxP-targeted (F), wild-type (+), and
Cre-mediated recombination (—) for Racl alleles. The Product
sizes of the amplified alleles were: 242 bp for the Racl" floxed
allele, 140 bp for the Raci™ knockout allele, 115 bp for the
Racl™ wild-type allele, and 700 bp for the Cre allele.

B,C. The size of the amplified product for the Racl”
floxed allele was 242 bp, that of the Racl™ wild-type
allele was 115 bp, and that of the Racl™ null allele was
140 bp, as shown in Fig. 1B. The internal control of the
Cre gene is shown in Fig. 1C. RacI™/~ mice had a shorter
life expectancy compared with their wild-type siblings,
and died at around 2-6 months of age from digestive
tract defects (24).

Dental defects in Rac1 conditional knockout mice

Racl™'~ mice were fully dentate, as observed grossly or in
histological sectioning, or by image analysis. The
appearance of PN12 mandibular incisors from wild-type
(Fig. 2A) and Racl™~ (Fig. 2B) mice or of PN61
mandibular incisors from wild-type (Fig. 2C) and
Racl™~ (Fig. 2D) mice is shown. Dental enamel in
Racl™'~ mouse molars and incisors was abnormal, with a
white or chalky appearance that lacked the iron pigment
normally seen in wild-type mouse teeth. After tooth
eruption, the enamel on the surfaces of incisors (Fig. 2)
and molars (data not shown) was lost to abrasion or
attrition through mastication.

Backscattered electron images, viewed by scanning
electron microscopy, of the sectioned mandibular inci-
sors from wild-type and Racl/™~ mice are shown in
Fig. 3. Enamel from Racl™~ mandibular incisors at
PNI12 (Fig. 3B,D) or PN61 (Fig. 3F,H) generated a

WT Rac1--
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Fig. 2. Physical appearance of wild-type and Racl™~ mouse
mandibular teeth. Mandibular incisors of wild-type (WT)
postnatal day-12 (PN12) (A) and postnatal day-61 (PN61) (C)
mice are compared with those of Rac/™/~ PN12 (B) and PN61
(D) littermates, respectively. The appearance of the dental en-
amel in RacI™™ incisors was abnormal, with a white chalky
color. The enamel layer on the surface of incisors was almost
entirely lost in PN61 Rac! null mice (D).

reduced backscattered electron signal compared with
enamel from wild-type littermates at PN12 (Fig. 3A,C)
or PN61 (Fig. 3E,G), indicating that the enamel in the
Racl-deleted mice is hypomineralized compared with
wild-type controls. In addition, enamel from the Racl-
deleted mouse revealed modest disruption of the enamel
rod architecture (Fig. 3D). Part of the enamel surface in
PNI12 Racl”’~ mouse incisor appeared collapsed, as
shown in Fig. 3B,D.

Micro-computed tomography images showed the
presence of mandibular incisors and molars from PN12
and PN61 wild-type and Rac/ ™/~ littermates, respectively
(Fig. 4). For both developmental periods, the images
demonstrated a lower density of the enamel layer in the
Racl™~ mice (Fig. 4B,D) compared with that of wild-
type mice (Fig. 4A,C). Notably, at PN61 the majority of
the enamel layer from the incisor of the Racl™/~ mice was
lost from the incisal edge to the mid-length of the erupted
incisor (Fig. 4D).

Morphological characteristics of enamel-secreting
ameloblasts

Mouse mandibular incisors were chosen for this study
because they display a gradient of ameloblast differenti-
ation along their rostral-caudal longitudinal axis, with a
stem cell population at their growing end that continues
through to fully mature enamel at the most incisal end.
Surprisingly, the microanatomy of the incisor tooth or-
gan, including the ameloblasts, at the presecretory phase,
reveals very few gross disturbances for the Racl™/~
(Fig. SH) vs. wild-type (Fig. 5G) incisor teeth at PN2. It
is not until the later stages of secretion that the major
findings from the hematoxylin and eosin staining of these
samples are revealed. Here, we found that the apical
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Fig. 3. Backscattered scanning electron microscopy images of mandibular incisors from wild-type (WT) and Racl™~ mice are shown
in cross-section. Mandibular enamel from postnatal day-12 (PN12) Rac/™~ (B, D) and postnatal day-61 (PN61) (F, H) mouse
incisors generated a reduced backscattered electron signal compared with enamel from mandibular incisors of WT PN12 (A, C) and

PN61 (E, G) littermates, respectively. de, dentin; en, enamel.

surface of enamel-secreting ameloblasts, known as
Tomes’ processes, at both early-secretory (Fig. SF,L)
and late-secretory (Fig. 5D,J) stages, became shortened
and disoriented in Racl-deleted animals compared with
wild-type secretory ameloblasts (Fig. SE,K vs. Fig. 5C,I)
at these same developmental stages, respectively.
Although ameloblast cell polarity and columnar shape
does not appear to be altered, the normal cell—cell and
cell-enamel matrix contacts are lost in the unerupted
mandibular incisor from the RacI~~ mouse along the
entirety of the developmental gradient of palisading
ameloblasts (Fig. 5D,F,H), compared with similar fea-
tures from Racl wild-type mouse incisors (Fig. 5C.E,G).

Enamel matrix proteins in Rac1 conditional knockout
mice

The expression of the two most abundant enamel matrix
proteins secreted by ameloblast cells — amelogenin and
ameloblastin — were examined by western blotting in
mouse molars recovered from PN2 animals (Fig. 6). We
found that the abundance of the major enamel matrix
proteins, amelogenin (Fig. 6A) and ameloblastin (Fig. 6
B) were remarkably reduced.

We also examined amelogenin protein expression
using immunohistochemistry techniques to determine if
changes in expression levels had occurred in ameloblasts
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Fig. 4. Computed tomography of the heads from wild-type (WT) and RacI™/~ mice. Mandibular incisors from WT postnatal day-12
(PN12) (A) and postnatal day-61 (PN61) (C) mice were compared with those from RacI™'~ PN12 (B) and PN61 (D) littermates. PN61
Racl™~ mandibular molars and incisors (D) demonstrated abnormal, flat, and worn enamel. The enamel layer from the incisal edge
to the mid-length of the erupted incisor in PN61 RacI™'~ mice was lost (D). de, dentin; en, enamel.

globally or regionally with the elimination of the Racl
gene. To accomplish this, we examined newborn incisors
at a developmental site where amelogenin is initially
secreted by newly differentiated ameloblasts (Fig. 7A,B).
Immunostaining showed that while amelogenin was
detectable, its abundance in newborn Racl~/~ mouse
mandibular incisor (Fig. 7D,F) was reduced compared
with the corresponding features in wild-type ameloblasts
(Fig. 7C,E).

Discussion

Tooth enamel formation, also known as amelogenesis, is
coordinated with the formation of dentin by odonto-
blasts when the inner enamel epithelial cells proliferate
and form the contours of the dentino—enamel junction.
The inner enamel epithelial cells continue their exchange
of signals with dentinoblasts, resulting in the elongation,
polarization, and differentiation of pre-ameloblasts,
which differentiate into secretory ameloblasts and form
an enamel matrix. Initially, the ameloblasts make contact
with the proteins within the basement membrane that
separates the inner enamel epithelial cells from the pre-
sumptive dentinoblasts. With the synthesis and secretion
of the enamel extracellular matrix, the Tomes’ processes
of the secretory ameloblasts remain in contact with the
mineralizing enamel ceramic composite. Disturbances in
either the process of ameloblast differentiation, or in the
secretion or maturation of the enamel matrix can lead to
defects in the enamel bioceramic (20, 25, 26). Mutations
in human genes such as amelogenin, X-linked (A M ELX),
enamelin (ENAM), kallikrein-related peptidase 4

(KLK4), and matrix metalloproteinase 20 (MM P20)
form the molecular basis for a series of defects in enamel
formation known as amelogenesis imperfecta (Al). In
Al, a defective protein structure encoded by the mutated
gene can result in specific defects in enamel formation
(27-30). Enamel from Al sources or teeth with enamel
hypoplasia or hypomaturation accumulate mechanical
defects that result in weak and easily damaged enamel.
The Rho family of small guanine nucleotide (GTP)-
binding proteins consists of RHO, RAC, and CDC42
subfamilies, among which RHOA, RACI, and CDC42
are expressed and differently distributed at selected
stages of tooth development and may play essential roles
during amelogenesis. Recent studies showed that the
abolishment of amelogenin mRNA expression and the
loss of regular palisade-like organization of ameloblasts
present in tooth germs cultured with Clostridium difficile
toxin A inhibited all Rho-GTPase activity, while specific
inhibition of Rock, an effector of the RhoA pathway,
partially reduced the expression of amelogenin but pre-
dominately affected odontoblasts (31). The expression of
a dominant negative RhoA in ameloblasts led to enamel
hypoplasia with surface defects (32). However, the role(s)
and function(s) of RACI during the formation and
development of enamel have not been further elucidated.
Experimentally, this can be accomplished by a gain-of-
function approach, as in transgenic animals, or through
loss of function in null animals. To avoid embryonic
lethality, we used a loss of function approach restricted
to a specific germ layer compartment by using a binary
ablation technique. K/4-Cre transgene-mediated DNA
recombination occurs uniformly and consistently in
enamel organ epithelia, as previously reported (19).
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Fig. 5. Morphological characteristics of enamel-secreting ameloblasts from mandibular incisors of postnatal day-2 (PN2) wild-type
(WT) and Racl™'~ mice. Specific regions along the rostral-to-caudal developmental gradient of dental epithelia were chosen in order
to study the cell microanatomy indicative of morphological differentiation in late secretory (C, D), early secretory (E, F), and late
presecretory stage (G, H) ameloblasts in PN2 WT (A) and the Rac/™/~ mouse (B) mandibular incisor using standard hematoxylin and
eosin staining. The Tomes’ processes, specialized regions found at the apical end of ameloblasts, in early- (L), and late- (J) secretory
stages of development, were shortened and lost contact with the forming enamel matrix in PN2 Rac/~/~ mouse when compared with
early- (K) and late- (I) secretory ameloblasts in wild-type animal. am, ameloblast; de, dentin; en, enamel; od, odontoblasts.

In PN2 mouse molars from the Cre-mediated deletion
of Racl, expression of both amelogenin and amelobla-
stin was significantly reduced; at PN12 and PN61, Racl
conditional knockout mice exhibited disturbances to
enamel formation, including the presence of hypoplasia
and subsurface hypomineralization at various depths

and to different extents, resulting in a phenotype similar
to some forms of Al in humans. The dominant protein of
mammalian enamel is amelogenin, while the second most
abundant enamel structural protein of the forming
enamel matrix is ameloblastin, also known as sheathelin
(20, 33). Amelogenin and ameloblastin double-knockout
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Fig. 6. Expression of enamel matrix proteins in postnatal day-2
(PN2) wild-type (WT) and Racl™~ mice. The expression of the
dominant and second most abundant enamel matrix proteins
secreted by ameloblast cells, amelogenin (A) and ameloblastin
(B), were examined by western blotting of mouse molars ex-
tracted from WT or RacI™~ PN2 animals. GAPDH, glyceral-
dehyde-3-phosphate dehydrogenase.

mice showed additional enamel defects in comparison
with amelogenin or ameloblastin single null mice, sug-
gesting the synergistic roles of the dominant matrix
proteins during enamel formation and mineralization

WT

B0 pm

(34-36). Previous investigators have suggested that
amelogenins are required for the organization and ori-
entation of hydroxyapatite crystallites during enamel
development, while ameloblastin is essential for main-
taining ameloblast cyto-differentiation and cell attach-
ment (26, 33, 35, 37, 38). The decreased expression of
amelogenin and ameloblastin in RACI1 conditional
deleted mouse incisors supports a central role for Racl in
acquiring and maintaining the state of ameloblast dif-
ferentiation. Disruption between the integrins and other
potential enamel matrix protein receptors are opera-
tionalized by the absence of the RACI protein in the null
animals. The absence of RACI may also be responsible
for the altered cell-matrix interaction observed in the
Tomes’ processes of the Racl™/~ animals in this study.
Rho-GTPases mediate a variety of essential biological
functions by triggering signaling pathways related to cell
morphology and motility. The RHOA pathway is in-
volved in cell cycle or gene transcription regulation
during ameloblast differentiation (39). The RACI sig-
naling pathway is known to regulate the formation of
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Fig. 7. Immunostaining of amelogenin in the sagittal sectioned mandibular incisors of newborn wild-type (WT) and RacI™'~ mice.
Amelogenin expression was detected along the developmental gradient of ameloblasts in newborn mandibular incisors from WT (A,
C and E) or RacI™”~ (B, D and F) mice. Specific regions from Rac/ ™/~ mice at an early secretory stage (box D) or a presecretory stage
(box F) of development were compared with similar regions from WT animals (boxes C and E). Am, ameloblast; Od, odontoblast.



fibroblast F-actin and the organization of actin cyto-
skeleton (40). RAC1 and CDC42 are suggested to affect
cell polarity, cell spreading, and filopodia formation of
the dental epithelium mediated by laminin-10/11 (41). In
our study, disruption of Racl in dental epithelium has
been shown to interfere with cytoskeleton organization
of ameloblasts and cell-cell and cell-matrix contacts, as
evidenced by the disorganized secretory ameloblasts,
resulting in the loss of function for ameloblasts to reg-
ulate enamel matrix synthesis and mineralization.

In summary, RACI protein plays a crucial role in
tooth enamel formation. The mechanism involved in
RACI signaling in the dental epithelium needs to be
further explored so that its role in modulating cell-ma-
trix interaction during enamel formation can be better
understood.
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