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The 4q deletion syndrome is a rare chromosome deletion syn-

drome with a wide range of clinical phenotypes. There is limited

clinical phenotype and molecular correlation for congenital

heart defects (CHDs) reported so far for this region primarily

because many cases are large deletions, often terminal, and

because high-resolution array has not been reported in the

evaluation of this group of patients. CHDs are reported in about

60% of patients with 4q deletion syndrome, occurring in the

presence or absence of dHAND deletion, implying the existence

of additional genes in 4q whose dosage influences cardiac

development. We report an 8-month-old patient with a large

mid-muscular to outlet ventricular septal defect (VSD),

moderate-sized secundum-type atrial septal defect (ASD), thick-

ened, dysplastic pulmonary valve with mild stenosis and mod-

erate pulmonic regurgitation, and patent ductus arteriosus

(PDA). Illumina CytoSNP array analysis disclosed a de novo,

heterozygous, interstitial deletion of 11.6Mb of genomic mate-

rial from the long arm of chromosome 4, at 4q32.3–q34.3
(Chr4:167236114–178816031; hg18). The deleted region affects

37 RefSeq genes (hg18), including two provisional microRNA

stemloops. Three genes in this region, namely TLL1 (Tolloid-

like-1), HPGD (15-hydroxyprostaglandin dehydrogenase), and

HAND2 (Heart andneural crest derivatives-expressedprotein2),

are known to be involved in cardiac morphogenesis. This report

narrows the critical region responsible for CHDs seen in 4q

deletion syndrome. � 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Since its first description [Ockey et al., 1967], the clinical phenotype

of 4q deletion syndrome has been delineated by several groups

[Mitchell et al., 1981; Yu et al., 1981; Lin et al., 1988; Strehle and

Bantock, 2003], with an incidence estimated at 1/100,000 and

overall mortality of 28% [Strehle and Bantock, 2003]. The most

common anomalies observed in patients include mental deficiency

(92%); postnatal onset of growth deficiency (83%); craniofacial

anomalies including broad nasal bridge (94%), rotated ears (56%),

cleft palate (94%), and micrognathia (94%); congenital heart

defects (CHDs) (50%) including ventricular septal defect (VSD),

patent ductus arteriosus (PDA), peripheral pulmonic stenosis,

aortic stenosis, atrial septal defect (ASD), tetralogy of Fallot, aortic

coarctation, tricuspid atresia; and digital anomalies (especially of

the fifth finger) (50–88%).Gastrointestinal and renal anomalies are

less common [Mitchell et al., 1981; Yu et al., 1981; Lin et al., 1988;

Strehle and Bantock, 2003].

The severity of malformations varies widely and depends on the

chromosomal position anddeletion size. Loss of 4q31–q34 region is
responsible formost of the clinical phenotype [Giuffr�e et al., 2004],
andKeeling et al. [2001]proposed that the 4q33 region is the critical

region for 4q deletion syndrome. However, no reports have used

contemporary high-resolution array CGH that would promote

assembly of an accurate genotype/phenotype correlation for the

CHDs.

We report an 8-month-old male patient with CHDs, growth

delay, and minor skeletal anomalies with a loss of 11.6Mb of

genomic material from the long arm of chromosome 4, at

4q32.3–q34.3 (Chr4: 167236114–178816031; hg18). This region

contains 37RefSeq genes including severalwithpotential heart and/

or vascular relevance: TLL1 (Tolloid-like-1), HPGD (15-hydroxy-
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prostaglandin dehydrogenase), and HAND2 (Heart and neural

crest derivatives-expressed protein 2). Together with other reports,

our description narrows the critical region responsible for the

CHDs in 4q deletion syndrome to Chr4:167236114–178816031.

CLINICAL REPORT

The proband was born at a gestational age of 35 2/7 weeks by

cesarean to a healthy 24-year-old gravida 5, para 2–3 mother. A

prenatal diagnosis of aCHDwasmade.His birthweightwas 3.16 kg

(78th centile), length was 50 cm (85th centile), and head circum-

ference (OFC) was 34 cm (85th centile). The baby was cyanotic at

delivery, intubated for poor respiratory effort at birth, and received

one dose of surfactant. Initial echocardiogram showed large mid-

muscular to outlet VSD with bidirectional shunt, moderate-sized

secundum-type ASD, thickened, dysplastic pulmonary valve with

mild stenosis, and moderate pulmonic regurgitation. He under-

went PDA ligation and VSD repair at age 3 months. His postnatal

course was complicated by milk protein intolerance, failure to

thrive, and gastroesophageal reflux. There was mild developmental

delay at age 7 months, since he was not sitting independently, but

was otherwise age-appropriate. On physical exam at 7 months, his

weight was 5.9 kg (less than 5th centile), lengthwas 60 cm (less than

5th centile), and OFC was 43.6 cm (23rd centile). He had poste-

riorly rotated ears with simplified helices, pointed on the right. No

other significant dysmorphic facial features were noted (parents

declined facial photographs). Therewas overlap of toes 4–5 on both
feet. Nails of fifth fingers were normal bilaterally (Fig. 1). Physical

examination was otherwise unremarkable. Renal ultrasound noted

bilateral extrarenal pelvis.

METHODS

Postnatal Array CGH Analysis
Array CGH analyses were performed using the custom-designed

EMArray Cyto6000 array platform [Baldwin et al., 2008], a sex-

mismatched, pooled, normal DNA control for comparison, and

standard protocols implemented in theMichiganMedical Genetics

Laboratory at the University of Michigan.

Array CGH Data Analysis
The array data were imported into, analyzed and plotted by the

Agilent CGHAnalytics version 3.5 or DNA analytics version 4.0.81

software (Agilent Technologies, Santa Clara, CA). For reporting of

copy number changes detected by CMA, nucleotides are numbered

according to Genome Build UCSC hg18 (March 2006) assembly,

and results are reported as per the International System for Human

Cytogenetic Nomenclature (ISCN) 2009 recommendations.

Illumina Array
To refine the deletion endpoints, an Illumina Human CytoSNP-

12v2.1 BeadChip Kit (Illumina, INC., San Diego, CA) with average

probe spacing of 10 kb, was used for the analysis. DNA was

quantified with the Quant-iT� PicoGreen� dsDNA Kit

(Invitrogen Corporation, Carlsbad, CA). 200 ng DNA was utilized

in an Illumina Infinium� HD Ultra Assay according to the

manufacturer’s instructions. HumanCytoSNP BeadChips were

scanned with an Illumina iScan Reader. Image data were analyzed

using the Illumina GenomeStudio (v2010.2) Genotyping Analysis

Module (v1.7.4) Software. SNPcluster positionsweredefinedbased

on the HumanCytoSNP cluster file provided by Illumina, Inc.

Genome positions were determined using Build 36.1 (hg18).

Fluorescence In Situ Hybridization (FISH)
Metaphase FISHanalysis was performed at EmoryGenetics Labs on

samples from the proband and the biological parents of the pro-

band, using a custom-labeled Bacterial Artificial Chromosome

(BAC) probe, RP11-119J20, located within the region of interest

at 4q. A 4q subtelomere-specific probe (Abbott Molecular Inc.,

Des Plaines, IL) was used as a control.

RESULTS

Array CGH analysis using the EmArray detected a male chromo-

some profile, with a 11.6Mb loss of genomic material from

the long arm of chromosome 4, at 4q32.3–q34.3. To further

define the deletion breakpoints, we used higher density Illumina

CytoSNP analysis and this revealed heterozygous loss for

FIG. 1. A: Proband’s hands; note normal nails of the fifth fingers

bilaterally, illustrating that the deletion does not involve the 4q34

region. B: Proband’s feet showing overlapping digits 4 and 5.
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Chr4:167236114–178816031. The minimal aberrant region con-

tains 37 RefSeq genes (Table I), including TLL1 (; NM_012464.3),

HPGD (NM_000860.3) and HAND2 (also known as dHAND;

NM_021973.2). To confirm the results as well as to clarify the

origin of this microdeletion, we performed FISH analysis on

samples from the patient and both parents. FISH utilized BAC

probe RP11-119J20 and detected an interstitial deletion in the

proband, consistent with the array results (see Fig. 2). A 4q

subtelomere-specific probe (Abbott Molecular Inc) was used as a

control and it showed a normal hybridization pattern. The 4q

deletion is presumed to be de novo since it was not detected in either

of the biological parents.

DISCUSSION

Chromosome4qdeletion syndrome comprises both interstitial and

terminal deletions in the long arm of chromosome 4. Both the

reported size and region deleted in 4q deletion syndrome vary

greatly among patients, so does the scope of clinicalmalformations.

There are fewer than 200 cases with 4q deletion reported in the

literature and ours is the first to use high-resolution array to define

the molecular deletion boundaries in relation to the phenotype.

FIG. 2. FISH results of the proband. Bacterial Artificial Chromosome

(BAC) probe (RP11-119J20) located within the region of interest

(red) detects a 4q32.3–34.3 deletion on one homolog of

chromosome 4. A 4q subtelomere-specific probe (Abbott Molecular

Inc.) used as a control (green) showed a normal hybridization

pattern.

TABLE I. Phenotype Comparison Between Our Case and Published Cases With 4q Deletion Syndrome [Adapted From

Strehle and Bantock, 2003]

Characteristic Percentage This report
Male/female ratio 0.91 Male
Abnormal parental chromosomes 14% (13/90) �
Prematurity 14% (12/85) þ, 35 wks GA
Developmental delay 94% (77/82) þ, Mild
Growth failure 60% (56/94) þ, Failure to thrive
Mortality 28% (28/101) �
Dysmorphic craniofacial features 99% (100/101) þ
Pierre-robin sequence/cleft lip and palate 37% (37/101) �
Central nervous system 34% (34/101) No known abn
Ocular system 44% (44/101) No known abn
Hearing 37% (16/43) �
Digital anomaly 88% (89/101) �
Muscular System 45% (45/101) �
Cardiovascular system 50% (50/101) þ

VSD muscular-outlet;
ASD secundum;

Pulmonic stenosis
Respiratory tract 32% (32/101) No known abn
Dentition 18% (18/101) No known abn
Gastrointestinal tract 40% (40/101) þ, GERD
Hepatobiliary system and pancreas 17% (17/101) No known abn
Lymphatic system and spleen 8% (8/101) No known abn
Endocrine system 6% (6/101) No known abn
Renal and urinary tract 19% (19/101) þ, Extrarenal pelvis
Genitalia 28% (28/101) �
Skin/hair 43% (43/101) �
‘‘No known abn’’ indicates that a comprehensive evaluation of this organ system was not performed, however there are no clinical concerns regarding this system at the last clinical evaluation.
�, no observed clinical problem; þ, feature is present.
ASD, atrial septal defect; GA, gestational age; GERD, gastrointestinal reflux disease; VSD, ventricular septal defect.
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We compared the clinical findings in our patient with the

summary of the clinical characteristics in 101 patients with 4q

deletion syndrome [Strehle and Bantock, 2003] (Table I). The sole

major malformation in our patient included the CHDs consisting

of a large mid-muscular to outlet VSD, ASD secundum,

thickened, and dysplastic pulmonary valve with mild stenosis.

Minor anomalies consisted of posteriorly rotated, simplified

helices and overlapping of toes 4–5. However, he had small

stature and mild developmental delay.

It has been suggested that the 4q32.3–q34.3 region plays a role in
cardiac development. One study of five patients reported three

patients with terminal deletions involving the dHAND (HAND2)

gene, andonly twoof these individuals hadCHD.Oneother patient

with a terminal deletion had an ASD, but dHAND was not deleted

[Huang et al., 2002]. Another study described BAC array compa-

rative genomic hybridization (CGH) evaluation of a patient with

mild aortic stenosis and dysplasia of the pulmonary valve showing a

de novo 4q terminal deletion of 18.9–22.9Mb [Kitxiou-Tzeli et al.,

2008].Kaalund et al. [2008] also reported aboywith aVSDwhohad

a 21Mb interstitial deletion of 4q (roughly delineated to position

160,717,000–181,668,000) using a BAC array. However, none of

those reports accurately identified the deletion breakpoints so it is

impossible to develop clinical correlations with regard to CHDs.

To evaluate the known contribution of genes in the deleted

region to clinical phenotype as well as the potential impact of

haploinsufficiency to disease or risk, we examined the deleted

chromosomal region in our patient for genes and large copy

number variants (CNVs). There are 37 documented RefSeq genes

(hg18) (Table II) in the deleted region. There aremany small CNVs

of a few thousand base pairs, but only one reaching 425 kb. CNVs

TABLE II. 37 RefSeq Genes in the 4q32.3-34.3 Deleted Region of the Probanda

Gene Description Chromosomal location
TLL1 Metalloprotease 4q32.3
SPOCK3 Proteoglycans 4q32.3
ANXA10 Ca2þ-dependent phospholipid-binding protein 4q32.3
DDX60 DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 4q32.3
DDX60L DEAD box polypeptide 60-like 4q32.3
PALLD Actin-containing microfilaments 4q32.3
CBR4 Carbonyl reductase 4 4q32.3
SH3RF1 SH3 domain containing ring finger 1 4q32.3–4q33
NEK1 Never in mitosis gene A-related kinase 1 4q33
CLCN3 Chloride channel 3 4q33
C4orf27 Chromosome 4 open reading frame 27 4q33
MFAP3L Microfibrillar-associated protein 3-like 4q33
AADAT a-aminoadipate amino transferase 4q33
HSP90AA6P Heat shock protein 90kDa alpha 4q33
GALNTL6 GalNac Transferase-like 6 4q34.1
GALNT7 GalNac Transferase 7 4q34.1
HMGB2 High mobility group protein 2 4q34.1
SAP30 SIN3-associated polypeptide, 30KD 4q34.1
SCRG1 Scrapie-responsive gene 1 4q34.1
HAND2 Basic helix-loop-helix transcription factor 4q34.1
NBLA00301 Nbla00301 (non-coding RNA) 4q34.1
MORF4 Mortality factor 4 4q34.1
FBXO8 F-box only protein 8 4q34.1
KIAA1712 HBV PreS1-transactivated protein 3 4q34.1
MIR4276 microRNA 4276 4q34.1
HPGD 15-@hydroxyprostaglandin dehydrogenase 4q34.1
GLRA3 Glycine receptor, alpha-3 subunit 4q34.1
ADAM29 A disintegrin and metalloproteinase domain 29 4q34.1
GPM6A Neuronal membrane glycoprotein M6A 4q34.2
MIR1267 microRNA 1267 4q34.2
WDR17 WD repeat-containing protein 17 4q34.2
SPATA4 Spermatogenesis-associated protein 4 4q34.2
ASB5 Ankyrin repeat and SOCS box containing 5 4q34.2
SPCS3 Signal peptidase complex subunit 3 homolog 4q34.2
VEGFC Vascular endothelial growth factor C 4q34.3
NEIL3 Endonuclease VIII-like 3 4q34.3
AGA Aspartylglucosaminidase 4q34.3

aPredicted ORFs and predicted microRNA genes are included. Two terminal coding exons of the TLL1 gene were deleted in the patient.
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are discussed below in the context of specific CHD candidate genes.

Several genes in this region possess functions that may correlate

with aspects of the patient’s clinical, in particular cardiac, pheno-

type. TLL1, HPGD, and HAND2 are involved in cardiovascular

development and/or pathology as we summarize below.

The TLL1 gene encodes an astacin-like metalloprotease that

shares structural similarity to the morphogenetically important

proteases bone morphogenetic protein-1 (BMP1; MIM:112264)

and Drosophila Tolloid (TLD). Homozygous (Tll1�/�) is embry-

onic lethal inmice from cardiac failure and a constellation of CHDs

at midgestation. The major pathological features included incom-

plete formation of the muscular interventricular septum and an

abnormal and novel positioning of the heart and aorta. TLL1 plays

multiple roles in the formation of the interventricular septum and

otherparts of theheart [Clark et al., 1999].Heterozygous (Tll1þ/�)

mutant mice appear grossly normal, survive to adulthood, and are

fertile [Clark et al., 1999]. We are not aware of a pathological CHD

in the Tll1þ/� mouse. In humans, in 19 unrelated patients with

ASD (MIM# 613087) with or without other CHDs, three hetero-

zygous missense mutations were identified in TLL1 in three

patients [Stanczak et al., 2009]. Two mutations (Met182Leu, and

Ala238Val) were identified in two patients with ASD only, and

another (Leu627Val), was detected in a patient with ASD with an

interatrial septum aneurysm [Stanczak et al., 2009]. These data

support the hypothesis that heterozygous deletion of TLL1 may

contribute to the development of ASD in our patient. We did not

sequence the TLL1 gene of the non-deleted chromosome. Exami-

nationof theTLL1 gene region in theDatabase ofGenomicVariants

(DGV) revealed the presence of five CNVs. One of the CNVs is a

425 kb deletion (Chr4:167057083-167482075) [Sebat et al., 2004];

the other four CNVs are around or less than 1 kb. The 425 kb

deletion truncates theTLL1 gene in the 50-UTR andwas observed in

1 out of 20 control samples [Sebat et al., 2004]. Examination of the

EMArray and Illumina CytoSNP data revealed only heterozygous

TLL1 loss in this region.

HPGD, (also called PGDH) is themain enzyme of prostaglandin

degradation. By catalyzing the conversion of the 15-hydroxyl

group of prostaglandins into a keto group, this ubiquitous enzyme

strongly reduces the biologic activity of these molecules. Pgdh�/�
mice die between 12 and 48 hr of postnatal life because of PDA

leading to congestive heart failure [Coggins et al., 2002]. Treatment

with indomethacin rescued the mice. Coggins et al. [2002] con-

cluded that alterations in prostaglandin E2 (PGE2) metabolism by

PGDH during the perinatal period are essential for permanent

closure of the ductus arteriosus. PGDH mutations are also

reported to be associated with autosomal recessive primary

hypertrophic osteoarthropathy (PHO; MIM:259100). Four of

13 PGDH homozygous deficient (c.175_176delCT/p. L59VfsX8,

c.232_241delinsCA/p.V78QfsX11, c. 418G>C/p.A140P) patients

had a persistent PDA that may have resulted from increased PGE2
[Uppal et al., 2008]. Though Coggins et al. concluded that alter-

ations in PGE2metabolism by PGDHduring the perinatal period is

essential for the permanent closure of the ductus arteriosus, most

patients did not have PDA, suggesting that loss of PGDH activity is

not sufficient to cause failure of ductal closure in humans. Support-

ing this idea, both dominant and recessive inheritance of PHOhave

been reported, suggesting a complicated role for PGDH in the

course of disease [Uppal et al., 2008]. In our patient, heterozygous

deletion of the PGDH gene could contribute to the occurrence of

PDA. We did not sequence the PGDH gene of the non-deleted

chromosome. Examination of the PGDH gene region in DGV

revealed no CNVs.

The HAND2 (MIM # 602407) gene encodes a basic helix–
loop–helix transcription factor that, along with the closely related

HAND1 protein, plays an essential role in cardiac morphogenesis.

Hand2 is particularly important for the formation of the right

ventricle and the aortic arch arteries [Srivastava et al., 1997].Hand2

is expressed in the developing vascular mesenchyme and its deriv-

ative, vascular smooth muscle cells. Hand2�/� mice die at embry-

onic day 10.5 from heart failure [Srivastava et al., 1997], and have

severe defects of embryonic and yolk sac vascular development by

embryonic day 9.5 [Yamagishi et al., 2000]. In a group of 131

patients diagnosed with CHDs of the right ventricle, outflow tract,

aortic artery, or cardiac cushion, Shen et al. [2010] found seven

HAND2 mutations in 12 patients: Three missense mutations

(Pro11Arg, Ser36Asn, and Val83Leu), one synonymous mutation

(His14His) and three mutations in the 50 and 30 untranslated
regions (241A>G, 604C>T, and 3237T>A). In patients with

terminal 4q deletions and CHDs, loss ofHAND2 is associated with

pulmonary valve stenosis or partial anomalous pulmonary venous

return, however, some patients do not have CHDs whenHAND2 is

deleted, andothers haveCHDswhenHAND2 is not deleted [Huang

et al., 2002]. Therefore, other genes in the region or elsewhere are

likely involved in producing CHDs in these patients. We did not

sequence the HAND2 gene of the non-deleted chromosome.

Examination of the HAND2 gene region in the DGV revealed no

CNVs.

Using high resolution array studies we have narrowed the critical

region for CHDs in 4q deletion syndrome to an 11.6Mb interval.

The contribution of other genes in the deleted region to CHDs is

unknown, and it is certainly possible that other genes proximal or

distal to this deletion are also critical for heart development.

However, based on the clinical phenotype of our patient and

knowledge of gene function from human and animal models, it

is attractive to speculate that in our patient TLL1 loss of function

correlateswithASD; thatPGDH loss of function is implicated in the

PDA; and thatHAND2 loss of function was critical in the CHDs of

the right side of the heart. Our patient’s CHDs could also result

from interactions among the TLL1, PGDH, HAND2 and other

genes in this deleted region or downstream targets. Ongoing

identification of patients with smaller deletions in this region of

chromosome 4 will help to further narrow the critical region for

CHDs in 4q deletion syndrome.
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