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ABSTRACT

A mathematically advanced method for improving the fidelity of cost estimation for an engineering system
is presented. In this method historical cost records can be expanded either through the use of local
metamodels or by using an engineering build-up model. In either case, the expanded data set is analyzed
using principal component analysis (PCA) in order to identify the physical parameters, and the principal
components (PCs) which demonstrate the highest correlation to the cost. A set of predictor variables,
composed of the physical parameters and of the multipliers of the principal components which demon-
strate the highest correlation to the cost, is developed. This new set of predictor variables is regressed,
using the Kriging method, thus creating a cost estimation model with a high level of predictive capability
and fidelity. The new methodology is used for analyzing a set of cost data available in the literature, and
the new cost model is compared to results from a neural network based analysis and to a cost regression
model. Further, a case study addressing the fabrication of a submarine pressure hull is developed in order
to illustrate the new method. The results from the final regression model are presented and compared to
results from other cost regression methods. The technical characteristics of the new novel general method
are presented and discussed. © 2011 Wiley Periodicals, Inc. Syst Eng 15: 28–40, 2012
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1. INTRODUCTION

The main objective of the work presented in this paper is the
development of a mathematically advanced regression type of
cost model which can associate physical parameters of a
system with the system’s cost. Principal component analysis
is employed for identifying parameters and physical charac-
teristics with strong correlation to the cost. The Kriging
method is employed either in a conventional or in an adaptive
mode for creating the cost regression model. The parameters
and the physical characteristics with a strong correlation to
the cost comprise the input parameters for the cost regression
model. The new cost model can be used within a multidisci-
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plinary design environment [Hart and Vlahopoulos, 2010] for
associating the values of the physical parameters with the
cost. Thus, as the decision-making process progresses, the
cost performance can be considered along with the other
attributes of the design. In such applications the constraints
imposed on the engineering performance characteristics will
retain the parameters used as input to the cost regression
model within the overall feasible region. Curran, Raghu-
nathan, and Price [2004] summarize alternative engineering
cost modeling methods applied to design and manufacture in
aerospace engineering. The influence of cost in a concurrent
engineering environment is addressed. The cost techniques
presented in Curran, Raghunathan, and Price [2004] are di-
vided in the classic estimating techniques (analogous costing,
parametric technique, and bottom up technique), the ad-
vanced estimating techniques (feature-based technique, fuzzy
logic, neural networks, uncertainty, and data mining), and the
genetic causal cost modeling. Among the classic estimating
techniques, the analogous costing methodology estimates the
cost of a product, based on its differences from the previous
similar products. Parametric techniques use regression equa-
tions between cost and independent variables (cost drivers)
that are developed based on the historical data. Finally, the
bottom-up approach is a very detailed estimate that requires
substantial and detailed data based on a cost breakdown
structure. Among the advanced estimating techniques, fea-
ture-based technique estimates costs are based on the design
features of the product, such as number of holes, flanges,
bends, and corner fillets, which are related to the production
time. Fuzzy logic can be used to model systems that deal
quantitatively with imprecision and uncertainty. Neural net-
work techniques are based on the concept of a system that
learns to estimate cost. After being trained with previous cost
data, the neural network can compute the input data to predict
the cost. The uncertainty method is based on statistic models
of cost, such as Monte Carlo simulations, in which the cost
estimation is linked to its probability of occurrence. The new
method presented in this paper fits in the category of mathe-
matically advanced estimating techniques that require some
historical cost data to be available. A genetic causal cost
modeling method is presented in Curran, Raghunathan, and
Price [2004] as a manufacturing cost model linked to the
structural analysis. It uses a breakdown of the overall cost into
cost elements such as material cost, fabrication cost, and
assembly cost. For each of these cost elements, the product is
submitted to a breakdown in product families (for example,
the cost of a panel is divided in the cost of riveting, stringers,
skin, etc.). Each cost element is linked to the same design
variables of the structural analysis through semiempirical
equations. Other comprehensive reviews of cost modeling
applied to the aerospace industry are presented in Meisl
[1988a, 1988b]. Methods used to estimate cost in early pro-
gram stages in space vehicle projects are presented, when
insufficient knowledge of the parameters makes it necessary
to employ previous cost experiences with new requirements.
These methods use the cost breakdown structure of the prod-
uct and compare its complexity with the complexity of pre-
vious projects in order to translate it into man-hours. A
principal component based regression model is presented in
Chan and Park [2005] and Williams [2003] for estimating the

cost of construction projects. Fifty-seven variables related to
the project, the construction team and the contractor were
identified to have influence on the project cost. Data from 87
projects were used as sample data. The use of principal
component analysis reduced the analysis to seven significant
variables used to construct a regression model for the cost
estimation. A cost modeling approach based on regression
analysis is presented in Shtub and Versano [1999]. The model
is applied for estimating the cost associated with a steel pipe
bending process. It is concluded that the neural network
approach leads to a smaller average square error and variance
than other regression analysis models. The complete set of
data presented in Shtub and Versano [1999] is used in this
paper for demonstrating the validity and capabilities of the
new cost estimation methodology presented here. In the work
presented in this paper, the historical cost information may or
may not be enhanced through the use of a local meta model
or an engineering build-up model, depending if the conven-
tional or if the adaptive Kriging method is used, respectively.
The PCA is employed first for analyzing the data and identi-
fying the important PC and the important physical charac-
teristics of the system which present the highest correlation
to the cost. A Kriging method is used either in the conven-
tional or in the adaptive mode for developing the regression
model. When the conventional mode is used, only the original
historical cost data provide the information for constructing
the cost model. When the adaptive mode is selected, then
either local metamodels or an engineering build-up approach
are used for enriching the original set of historical cost data.
The important physical parameters and the participation fac-
tors of the important PC comprise the input variables to the
regression model, while the cost comprises the attribute which
is being evaluated. Figure 1 outlines the cost estimation
approach presented in this paper. The steps in Figure 1 are
discussed in depth in the next section of this paper. In the two
examples presented in this paper the performance of the new
cost estimation approach is compared to results from a neural
network approach, a regression analysis, and PLS and CART
cost predictions. Improvements are observed in the perform-

Figure 1. A graphical representation of the steps of the cost estima-
tion method presented in this paper. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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ance of the new method for the two applications presented in
this work.

Since the development of a cost model requires mathemati-
cal processing of the system’s physical characteristics and
cost data, the corresponding literature was reviewed, and the
results are summarized next. A key element in cost estimation
involves improving the accuracy of parametric models by
analyzing historical cost data in a novel way. In this vein, the
authors concentrate first on examining the literature on data
mining, and the related knowledge discovery from databases
(KDD) [Fayyad, Piatetsky-Shapiro, and Smyth, 1996]. Re-
cently-published general overviews were identified as an
introduction to the world of data mining and KDD [Wu et al.,
2008; Han and Kamber, 2006; Srikant and Agrawal, 1996;
Tan, Steinbach, and Kumar, 2005; Breiman, 1998]. The infor-
mation contained in these papers provides an excellent under-
standing of the current state of the art and a broad foundation
upon which to build. Of particular interest for potential adap-
tation and application in this problem were data mining
methods broadly identified as classification [Wu et al., 2008]
and association analysis [Tan, Steinbach, and Kumar, 2005]
methods. Specifically, the classification and regression trees
(CART) [Breiman, 1998] approach was very interesting in its
broad application in the literature [Wu et al., 2008] as well as
its fairly logical and straightforward theoretical base. Data
mining methods have been employed in general business
applications of data mining [Bingham, 2003; Apt, 2002], and
in customer relationship management [Berson, Smith, and
Thearling, 1999].

Principles of linear and matrix algebra are also used for
analyzing data held in matrix form [Gifi, 1990]. In the past
these methods have been employed by the authors in algo-
rithms for developing time-dependent regression models [Sun
et al., 2007; Sun, Vlahopoulos, and van Ast, 2007]. Methods
such as singular value decomposition (SVD), data envelope
analysis (DEA), and especially principal component analysis
(PCA) have a wide spectrum of applications such as analyzing
gene expression data in bioinformatics [Wall, Rechtsteiner,
and Rocha, 2003; Ringnér, 2008], the effects of deregulation
on the airline industry [Adler and Golany, 2001], and several
other types of relationships, including those in finance [Jack-
son, 2005; Jolliffe, 2002].

Alternative methods for creating regression models are
based on polynomials, interpolating and smoothing splines
[Craven and Wahba, 1978], neural networks [Hajela and
Burke, 1993; Rumelhart, Widrow, and Lehr, 1994; Cheng and
Titterington, 1994; Ellacott, Mason, and Anderson, 1997],
radial basis functions [Dyn, Levin, and Rippa, 1986], and
wavelets [Jansen, Maifait, and Bultheel, 1996]. Cressie
[1988] and Sacks et al. [1989] introduced the concept of the
Kriging method. The Kriging method combines a regression
model with Gaussian kernels for expressing the spatial corre-
lation correction functions. Thus, it increases the accuracy
compared to regression models due to presence of the spatial
correlation correction term. A small sample of applications of
the Kriging meta models are in variable fidelity optimization
strategies [He and Vlahopoulos, 2009]; for managing system
level uncertainty during conceptual design [He, Zhang, and
Vlahopoulos, 2008]; and for approximating deterministic
computer models [Martin and Simpson, 2005]. An adaptive

feature has been added to the Kriging capability employed in
this work. This adaptive feature will be described in the
“Adaptive Kriging Method” section below. The mathematical
method developed in this paper for cost modeling utilizes a
PCA approach for analyzing the cost data and identifying the
physical parameters and the principal components that dem-
onstrate the highest correlation to the cost. The identified
physical parameters and the participation factors of the im-
portant principal components comprise the predictor vari-
ables. An adaptive Kriging method is developed and
employed in this paper for creating a high-fidelity metamodel
for evaluating the response variables (cost parameters). The
next section of this paper will cover the steps of the new
mathematical methodology for cost modeling. This section
will be followed by three sections which provide background
and a theoretical foundation for the algorithms and methods
used by the process. Cost data available from the literature
that have been analyzed in the past by a neural network based
cost model and by a regression analysis are analyzed with the
new methodology, and the results are compared. Finally, a
case study is presented associated with the fabrication of a
submarine pressure hull, and cost prediction results are com-
puted by the new method are compared with PLS and CART
cost predictions. For the two examples analyzed in this paper,
the new cost estimation method demonstrates better perform-
ance with respect to all other methods considered in the
comparison. All methods which are compared require avail-
able historical cost data.

2. MISERLY: STEP-BY-STEP

The acronym MISERLY is short for Method of Improved
Cost Estimation from Historical data of Engineering Systems.
Figure 1 above provides a graphical representation of the steps
taken by MISERLY in the creation of a mathematically ad-
vanced cost regression model. These steps are described in
further detail in this section.

1. Original Data: The original data set is made up of
physical parameters and historical cost records that are
gathered for a given engineering system. Examples of
an engineering system include, but are not limited to,
ships, aircraft, spacecraft, advanced ground vehicles,
submarines, offshore oil and gas platforms and other
energy production facilities, and large land-based struc-
tures subjected to a diverse set of dynamic loads. Ide-
ally, several copies and/or versions of this engineering
system have already been constructed. The original
data set consists of the X (physical parameter) and Y
(cost parameter) matrices that should be arranged as
follows:
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
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   In these relationships, the X matrix consists of the p
physical parameters of the n different designs upon
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which data was gathered. Similarly, the Y matrix con-
sists of the q historical cost parameters which were
gathered for each of the n designs. Availability of
historical cost data is necessary for the first step of the
MISERLY process.

2. Enhancement of Historical Cost Data: If the Kriging
method is used in the adaptive mode for creating the
cost regression model, additional cost data points need
to be created. Either a local metamodel (i.e., a Kriging
model developed by a small number of historical data
residing in the vicinity of the region where extra data
points are needed), or an engineering build-up model
is used for creating the additional data points requested
by the adaptive Kriging method. The engineering
build-up model must be formulated from a combination
of sound engineering judgment and experience in the
particular domain of the system in question. It also must
be capable of recreating the values contained in the
original data set. It is imperative that the utmost care
and skill are employed in the creation of this cost
model.

3. Expanded Data: An expanded data set is generated by
combining the historical cost data with those created by
the local metamodel or the engineering build up model.
This step is only required if the Kriging method is used
in the adaptive mode for creating the regression cost
model. 
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









x11

�

xm1

    

�

�

�

    

x1p

�

xmp










 ;    Ye = 











y11

�

ym1

    

�

�

�

  

y1q

�

ymq










 .     (2)

    Here Xe is the expanded matrix of physical parameters
and Ye is the matrix of expanded cost parameters. The
physical parameters chosen to populate the expanded
data set should represent a uniform distribution
throughout the feasible design space. The expanded
data set should include the original data set.

4. PCA and Component-Influenced Parameters: The ex-
panded data set of physical parameters Xe is then ana-
lyzed using principal component analysis (PCA). If the
initial set of data was not expanded, then Xe = X and
Ye = Y during the remaining of the process. Two outputs
from the PCA, the C array and U matrix, are used to
identify which of the original p physical parameters,
and which of the principal components (PCs) that are
output from PCA, account for the greatest amount of
variation in the design. Each high-variation PC is com-
posed of values that are treated as weights and are
denoted by the variable w. These weights are used to
create one component-influenced parameter, or a
weighted sum of the original design variables, for each
PC. Component-influenced parameters are denoted by
the variable t. When the PCA step is finished, there will
be r physical parameters and s PCs identified as high-
variation. A more thorough discussion of the concept
of component-influenced parameters is undertaken in
the next section.

5. Improved Data: A set of predictor variables is devel-
oped using the high-variation physical parameters from
the original set and s component-influenced parameters
which were calculated using a weighted sum of the
physical parameters in the original data set. Equation
(3) shows the structure of this improved data set,X∗ .

X∗ = 
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6. Regression using the Kriging method: This new set of
predictor variables is regressed, using the Kriging
method (either in the conventional or in the adaptive
mode) for developing a mathematical relationship be-
tween the predictor variables and the cost.

The next three sections discuss the main theoretical foun-
dation upon which the MISERLY process was built.

3. PRINCIPAL COMPONENT ANALYSIS

PCA is a method for reducing the dimensionality of a set of
data while still retaining most of the variation in the data set.
This reduction in dimensionality allows a large, complex data
set which relates thousands, or even tens of thousands, of
variables, to be expressed by a new set of variables, usually
much smaller in number. In most cases, these new variables
are linear combinations of the original variables, and identify
directions in the data along which variation is the maximum
[Ringnér, 2008]. A specific relationship between these indi-
vidual components is not defined in PCA. The mechanics of
PCA are summarized in Jackson [2005], and are presented
here for completeness.

There are several methods for performing principal com-
ponent analysis, the most popular being dubbed R-, Q-, and
N-analysis. The most general method of these is N-analysis,
also known as singular value decomposition (SVD). N-analy-
sis was chosen for this work due to this generality, as well as
the method’s simplicity. Although N-analysis requires famili-
arity with a new algorithm (SVD), it is a single-stage proce-
dure that contrasts with the two-stage R- and Q-analyses. 

The fundamental identity of SVD,

X = ZL1/2U′, (4)

decomposes the centered and scaled n × p data matrix X into
the p ×  p U  and L1/2 matrices and the n ×  p Z matrix. The U
matrix represents the characteristic vectors of XX′, Z repre-
sents the characteristic vectors of XX′, and L1/2 is a diagonal
matrix that is function of their characteristic roots.

For this work, the matrices of interest from SVD are the U
and L1/2 matrices. The diagonal elements of the L1/2

 matrix
were converted into an array and then modified in order to
facilitate interpretation using the following relationship:

where m >> n
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Ci = 




Li
1/2

√n − 1





2

,  where i = 1, 2, …, p. (5)

By performing this modification, the C array, like its source
L1/2 matrix, contains a ranking of the amount of variance
accounted for by each of the p PCs. The benefit of the
modification is that the sum of the values in the C array now
equals p. This is powerful because it relates each of the PCs
to the physical parameters. If one of the PCs has a value in the
C array that is greater than one, it accounts for greater vari-
ation than any of the design variables.

The U matrix is not modified in this work. The columns of
the U matrix correspond to each PC while its rows correspond
to each of the original physical parameters. Therefore, each
PC contains weights for each of the original predictor vari-
ables. These weights can also be interpreted as an indication
of the importance of each of these predictor variables in each
of the PCs.

When the high-variability PCs are engaged in creating the
component-influenced parameters, each of their values is
treated as a weight for the corresponding physical parameter.
The component-influenced parameters are then a sum of these
weighted physical parameters:

tjk = 











w1k

�

wpk










 × {xj1 � xjp}, (6)

where j = 1, 2, …, n   and   k = 1, 2, …, s.
In this relationship, j refers to the number of designs in the

original data set, and k to the number of principal components
determined to be high variation PCs.

4. KRIGING REGRESSION MODELS

The Kriging model is based on treating Z(x~), the difference
between the actual performance variable y(x~) and a regression
model prediction F̂(x~), as a stochastic process:

 y(x~) = F̂(x~) + Z(x~), (7)

where x~ is the d-dimensional vector of the variables that
defines the point where the performance variable is evaluated,
and d is the number of variables. A regression model which
is a linear combination of m selected functions f (x~) is used
here:

F̂(x~) = β1 f1(x
~) + � + βmfm(x~) = f T(x~), (8)

where βT = {β1, β1, . . . , βm} are regression parameters. Z(x~)
is considered as a normal process with zero mean and a
covariance that can be expressed as

cov(Z(x~i), Z(x~j),) = σ2R(x~i, x
~

j), (9)

where σ2 is the process variance and R(x~i, x
~

j) is the spatial
correlation function. The equation used for the spatial corre-
lation function is a Gaussian spatial correlation function:

R(x~i, x
~

j) = ∏ 
k=1

d

exp(−θk(x
~

i,k − x~j,k)
2), (10)

and it indicates a process with infinitely differentiable paths
in the mean square sense. θk is the correlation parameter that
corresponds to the kth component of the d-dimensional vector
of the random variables x~, i.e., k = 1, 2, …, d; and θ represents
the vector of the θk parameters. For a set x~s comprised of n
number of sample points,

x~si

x~s
T = {x~s1, x

~
s1, . . . , x

~
sn} (11)

where i = 1, 2, …, n.
The corresponding performance variable y~s is considered

known and its values are defined as

y~s
T = {y(x~ s1), y(x~s2), . . . , y(x~ sn)}. (12)

The vector of correlations between the sample points x~s and
the evaluation point x~ can be expressed as

r~T(x~) = {R(x~, x~s1), R(x~, x~s2), . . . , R(x~, x~sn)}. (13)

The correlation matrix [R] is also defined among all the
sample points:

[R] = [R(x~ si, x
~

sj)]n×n. (14)

The spatial correlation function in Eqs. (13) and (14) has been
defined by Eq. (10). In the Kriging method the value of the
performance function evaluated by the metamodel at the
evaluation point x~  is treated as a random variable. The com-
putation of β and Z(x~) in Eq. (7) is based on minimizing the
mean square error (MSE) in the response

MSE[ŷ(x~ )] = E[ŷ(x~) − y(x~)]2, (15)

subject to the unbiased constraint

E[ŷ(x~ )] = E[y(x~ )]. (16)

The matrix R and the parameters β and σ2 depend on θ. Once
θ is determined, the regression parameter β and the variance
σ2 can be computed as

β̂ = (F
~TR−1F

~)−1F
~TR−1y~s

(17)

σ̂2 = 
1
n

 (y~s − F
~β̂)TR−1(y~s − F

~
β̂), (18)

where the matrix F
~

 is defined as F
~

 = [fj(x~si)]n×m. The value for
the response of interest is computed as

ŷ(x~ ) = f (x~)Tβ̂ + r~T(x~)R−1(y~s − F
~β̂). (19)
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In the traditional Kriging method, the optimal value of θ is
computed as the maximum likelihood estimator of the likeli-
hood function:

L(θ, β, σ2|y~s) = p(y~s|θ, β, σ2),

p(y~s|θ, β, σ2) = 
1

√2πσ2(det(R))
exp




− 

(y~s − F
~β̂)TR−1(y~s − F

~β̂)
2σ2




 .

(20)

where p(y~s|θ, β, σ2) is the multivariate normal distribution for
the n observations y~s  given the model parameters θ, β, and
σ2. In the ordinary Kriging method this is accomplished by
minimizing the product [(det(R))1/n(σ2)] while neglecting the
variations in the model parameters θ, β, and σ2. 

5. ADAPTIVE KRIGING

This section presents an adaptive Kriging approach for meta-
model development. The adaptive algorithm determines a
specified number of adaptive sample points that are generated
from an initial metamodel in regions of the variable domain
defined according to the specified target result of the modeled
function.

As mentioned above, a metamodel is a technique used to
predict the response of a process and intends to reduce the
number of expensive numerical simulations, and hence re-
duce the computational cost. In this work, it has been applied
as a sophisticated interpolation function with the purpose of
increasing the predictive capability of a parametric cost esti-
mation model. The metamodel predictor of a process defined
by a relation Y(X),  where X = {X1, X2, . . . , Xm} and
Y = {Y1(X), Y2(X), . . . , Yn(X)} is constructed based on ex-
periments, which consist of a series of sample points X and
their correspondent response Y.

The adaptive metamodel intends to generate more accurate
responses Y of the modeled function Y(X) when the responses
Y are inside or in the vicinity of a desired target response T.
The target T can be defined either as a single value or as a
response region with minimum and maximum values,
Tmin, Tmax, as shown in Figure 2. Hence, the adaptive meta-
model generated in these regions with response inside or in
the vicinity of T will be more accurate due to the presence of
a larger number of SPs conveniently distributed than the
metamodel created by sampling all SPs with random gener-
ators.

The adaptive metamodel is generated from a previous
conventional metamodel. The criteria for determining the new
adaptive SPs is to reduce the mean square error (MSE) of the
metamodel for responses Y inside the target response region
T. It is also desirable to consider regions in the vicinity of T,
such that responses Y that are outside T due to errors in the
initial metamodel evaluation can also be improved.

From the initial conventional metamodel, the mean square
error (MSE) is estimated inside the domain of the input
variable X. By defining the target region T, a weight function
W is calculated, such that W is higher when the modeled
function result approaches or is inside T. The new adaptive
SPs are attracted to the target region based on the values of W

× MSE. Hence, if in the variable domain a position has a high
value of MSE and is inside T (high value of W), it is a potential
candidate to receive a sample point there. Regions with very
small MSE inside T or regions with high MSE with results
out of T have a smaller probability of attracting adaptive SPs.
Regions outside and far from T (small value of W) and with
small MSE will have virtually zero probability of receiving a
SP.

The weight function W must be flexible in order to attract
adaptive SPs to positions where the MSE is large enough to
provoke an error in the estimated function value such that it
can take this value out of the target region. Several types of
weight functions can be used. These functions are similar to
probability density functions, with a higher probability of
sampling an SP inside the target region and a smaller prob-
ability outside it. A suitable weight function is based on an
exponential decay and considers both the MSE and a user-de-
fined decay parameter σε

2 for selecting the size of the domain
of interest. This function is shown in

W(X) = e







− 

(m
k
(X) − T)2

2σε
2
 + s

K

2(X)







 ,

(21)

where

W(X) = weight function at X coordinates,
X = coordinates of the variables (example: for a two

dimensional metamodel:X = x1, x2),
T = target value,
mk(X) = metamodel prediction of Y(X)  at X coordinates,
σε

2  = parameter that defines the size of the domain of
interest (works like a variance, which increases or
decreases the length of decay of the exponential),

sk
2(X) = MSE of the Kriging metamodel at  coordinates.

If the response target value T is defined as a region delimitated
by values {Tmin,Tmax} as shown in Figure 2, Eq. (18) is used
to determine the weight function in the following way:

Figure 2. Metamodel response Y(X) and target regions of response
T. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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W(X) = 










1

e







− 

(m
k
(X) − T)2

2σε
2
 + s

K

2 (X)








    
if mk(X) is inside T,

if mk(X) is outside T.

(22)

If the target value T is defined as a single value (not a region),
Eq. (21) is used directly, presenting a maximum value of W(X)
equal to 1 if the metamodel prediction of function Y(X), mk(X)
is equal to the target T. The value of the weight function W(X)
decays exponentially as the value of mk(X) goes away from
the target T.

The relative maxima of the product W × MSE  define the
coordinates X where the adaptive SPs must be positioned.

A summary of steps to be performed in the adaptive
Kriging model follow.

a. Create an initial metamodel with a specified number of
SPs.

b. Create the grid coordinates for determination of
W × MSE, according to the domain.

c. Determine the MSE (Mean Square Error) of the original
metamodel at the grid coordinates.

d. Determine W at the grid coordinates, according to the
target value, for the Adaptive Metamodel.

e. Calculate W × MSE at the grid coordinates.
f. The peak values of the product of W and MSE indicate

the positions that are close or inside the target region
and that have a large MSE. These positions are the
candidates to receive a new adaptive SP.

g. Generate the new adaptive SPs .The regions where the
peaks of the function W × MSE occurred are identified
and the adaptive SPs are generated in these regions. In
order to eliminate very small peaks, a filter is used,
which considers only the positions where the values of
W × MSE are larger than the average value of
W × MSE calculated over the grid. If more adaptive
sample points than peaks are needed, the remaining SPs
are generated at positions defined according to a prob-
ability determined as

Probability = 
W√MSE

∑ 
i=1

G

(W√MSE)i

, where G = size of the grid,

(23)

   which considers only the filtered regions. Positions with
higher value of W√MSE have more chance to receive
an adaptive SP.

h. The results (new adaptive SPs) are passed to the solver.

6. COMPARATIVE STUDY

In order to demonstrate the application of the MISERLY
process for creating a cost estimation model using an existing
set of cost data, and for comparing MISERLY’s performance
with another advanced cost estimation approach based on
neural networks, information from Shtub and Versano [1999]
is used. This work presents the cost estimation of a steel pipe

bending study case. The costs of 36 pipe bending configura-
tions were estimated using neural networks and regression
analysis and compared with their actual cost measurements
(Table I; the information originates from Shtub and Versano
[1999] and is presented here for completeness).

The input parameters of each pipe bending configuration
are: the external diameter of the pipe (d1), the internal diame-
ter (d2), the number of bends (Kf), the number of axes in space
in which the pipe is bent (Zr), and the distance between the
bending location and the end of the pipe (Lg). The cost of
bending is influenced by these parameters as follows: for
pipes with external diameter smaller than 5 mm and difference
between external and internal diameters less than 3 mm, a
special treatment is required, as the pipes tend to deform
during bending operations. The cost increases with the num-
ber of bends as additional time is required for each bend. The
number of axes, which is always smaller or equal to the
number of bends, affects the cost as it complicates the required
operations. Finally, the distance between the bending location
and the end of the pipe increases the number of special
operations to bend the pipe when the pipe is chopped less than
100 mm from a bend. This last variable is expressed as the
number of required special operations (can take value 0, 1, or
2).

The cost data shown in Table I are for the bending of hollow
and chopped pipes. They were obtained from the measure-
ments of at least twenty repetitions of the bending of each pipe
configuration.

The estimated results are compared to the actual costs
measured in experiments. The neural network process was
employed in Shtub and Versano [1999] for creating a regres-
sion model for the cost. The following process was followed
for training the neural network. From the n pipe configura-
tions in the database, one is selected to be left out and the
others, n – 1, are used to train the neural network. Then, the
neural network is used to estimate the cost of the configuration
that is left out. The square error between the estimated cost
and the actual cost is determined. This process is repeated n
times and the average square error and its standard deviation
are determined and used as comparison parameters.

The same procedure is repeated using the MISERLY proc-
ess in this paper. First the original data are expanded by
developing local metamodels in regions identified by the
adaptive method to contain limited data points. The local
metamodels are created from the limited actual data residing
in these regions. In this particular application, the PCA part
of the MISERLY process identified the multipliers of three
principal components as suitable predictor variables. In order
to compare the performance of MISERLY to the one pre-
sented in Shtub and Versano [1999], for each original pipe
bending configuration (or sample point) left out, a metamodel
is created and the square error determined. After generating
the 36 metamodels, the average square error and its standard
deviation are computed. The results are then compared with
the neural network results and also with the regression analy-
sis results included in Shtub and Versano [1999].

The results obtained by the MISERLY process along with
results from neural network analysis, and results from a
regression cost model are summarized in Table II. The last
two sets of results originate from Shtub and Versano [1999].
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The results are expressed as the average square error of the 36
metamodels and the associated standard deviation. The cost
results obtained by the MISERLY process offer an improve-
ment compared to the neural network based cost model, and
they are far more accurate from the conventional regression
analysis results.

7. CASE STUDY ASSOCIATED WITH
CONCEPTUAL SUBMARINE APPLICATION

A conceptual submarine manufacturing cost was chosen as a
generic and representative case study since it highlights the
nature of many manufacturing processes. This case study is

       Table I. Cost Estimation of the Neural Network and Regression Models Compared to the Actual Cost 
       (from Shtub and Versano [1999])

           Table II. Comparison between the MISERLY Results and the Results Obtained by Neural Network 
           and Regression Analysis [Shtub and Versano, 1999]
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adapted from previous work by the authors [Hart and Vla-
hopoulos, 2010]. Since no real cost data are available for this
application, a commercially available engineering build-up
cost software package was utilized to create the “historical”
cost data. The same package was also used for creating extra
data points in the regions requiring more data points when the
Kriging method was used in the adaptive mode. The MIS-
ERLY process does require an initial set of historical data to
be available. However, it also provides the flexibility to aug-
ment the historical data with information created by an engi-
neering build-up model. In this case study the engineering
build-up model is employed for creating even the “historical”
data. The purpose of the case study is to demonstrate how the
overall MISERLY process operates when a set of historical
cost data is available, and how its cost assessment capability
compares to the PLS and CART methods. Table III summa-
rizes the data used in the development of the bottom-up cost
model. The column on the left contains the parameters which
are considered constant, while the column on the right con-
tains the parameters which vary. In all discussions throughout
this paper, the varying parameters are normalized between
values of 0.5 and 1.5.

The work breakdown structure (WBS) is summarized in
Figure 3. The WBS is used by SEER (a commercially avail-
able engineering build-up cost software package) for assess-
ing the cost of fabricating a particular product. The version
used in this work is SEER-DFM, taking its name from the
popular industry concept of “design for manufacturing.”
SEER-DFM allows for the modeling of the manufacturing
costs of a product, in this case, a submarine pressure hull. In
order to use SEER, the following steps are necessary: 

a. Develop the Work Breakdown Structure (WBS) of the
product to be developed.

b. Define all the types of production operations that are
needed.

c. Define the geometry of each component.
d. Gather data about the production operations.
e. Input the data in the code (can be accomplished re-

motely).

The costs for the components of the product are determined
in the lower levels of the WBS and are basically divided into

a. Labor costs/unit—calculated according to the time
needed to do the work and the hourly labor cost. In-
cludes the setup costs for the machines needed to do the
work.

b. Material costs/unit—calculated according to the mate-
rial selected for the components.

c. Tooling costs/unit—calculated according to the ma-
chines and tools needed for the components.

Based on these costs, the SEER-DFM code determines the
total cost/unit, using a bottom-up strategy, adding all the costs
until the top level of the WBS is reached. In the absence of
any historical cost data, an engineering build-up cost compu-
tational method is the only viable approach for creating a cost
estimate.

As is illustrated in the WBS for the submarine pressure hull
in Figure 3 of this paper, the first step in the process is to
fabricate the hull itself. Industrial knowledge indicates that
submarines are constructed in a series of modules or hoops,
which are joined together. These hoops must then be formed
and populated with decks and a limited outfit before they are
joined together to form the pressure hull itself.

The process of breaking the hull down further into hoops
is accomplished in two steps. First, the pressure hull is seg-
mented using bulkheads. The remaining length of the hull is
considered to be a uniform cylinder interrupted only peri-
odically by kingposts for stiffness. These three sections are
then split up further into actual hoops in the following manner.

In the case study manufacturing cost code, the dimensions
of each hoop are determined automatically. The standard hoop
width is set to four times the frame spacing. This hoop width
is then used to divide the three lengths of the pressure hull into
the number of hoops that will make up each of these sections.
The result of this breakdown is a certain number of standard
hoops, and one “leftover” hoop of some nonstandard width,
for each section. The diameter of the pressure hull is then used
to determine the length of the piece of material that will be
formed into these hoops. The thickness of the plate is a
varying parameter. Finally, since the hoop widths are not
uniform along the length of the hull, an array of all possible
hoop widths is generated.

Creating values that define the dimensions of the endcaps
is not as involved as creating the dimensions of the hoops.

           Table III. Definitions of Constant and Varying Parameters for Submarine Case Study
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Since each endcap is modeled as a hemisphere, the radii of
these hemispheres serve as the main dimension necessary to
define their construction. The fabrication process for the
endcaps is assumed to include the dual-axis bending of four
plates into the shape of 1⁄4 of each hemispherical endcap. The
dimensions of these plates are easily obtained from the ge-
ometry of a hemisphere, and therefore the input dimensions
are also readily available. The thickness of the endcap was
calculated in the structures discipline and is passed to the
affordability discipline accordingly. Once the dimensions for
the hoops and endcaps have been created and stored, the next
step is to populate the matrix which contains the dimensions
for the decks of the vessel. During this stage the bulkheads
are also manufactured.

The dimensions of the material that makes up each section
of the pressure hull are not the only inputs into the SEER-
DFM program which must be entered. There are also several
additional inputs, most of which are hardcoded into the case
study manufacturing cost code, that provide specifics to the
program concerning the manufacturing process being mod-
eled. These additional inputs include such things as material
used (low carbon steel), the material yield for each part
(varies), the type of procedure being performed (plate roll
bending on several), and specific information about the details
of the procedure (the form diameter and number of passes for
the plate roll bending procedure).

After every major piece of the pressure hull has been
fabricated, it must then be assembled into the complete hull.
In order to accomplish this task, the case study manufacturing
cost code counts the total number of parts that must be
assembled and measures the total length of the weld that must
be run in order to complete the pressure hull. A general weight
category is assigned to each part type, i.e., hoops, decks,

endcaps, bulkheads, structure for each of them, etc., along
with a general distance traveled.

All of this manufacturing data comprises the input to
SEER-DFM package to take the data and process it as a
command file input. Once SEER-DFM has completed its
simulation, it provides per unit cost information for each level
of the WBS, as well as a summary for each type of cost, i.e.,
labor, material, and tooling, and total cost for the entire
manufacturing process. 

For this particular case study, the manufacturing code is
used to generate the “historical” total cost information and the
total labor hours for a given set of varying parameters. These
varying parameters and the “historical” cost information are
combined to form the original data set. During the MISERLY
process, SEER is also engaged in order to provide granularity
in the regions identified by the adaptive Kriging method. The
results of the case study are presented in a manner which
matches closely the step-by-step discussion of how the MIS-
ERLY process operates.

7.1. Original Data

The MISERLY process does require an initial set of actual
cost data to be available. The original data set for the case
study consists of physical parameters and historical cost in-
formation for a hypothetical set of 50 designs. As has been
discussed, it is assumed that this data set would originate from
actual cost data in a practical application of this method. For
this case study, the SEER-DFM model described in the pre-
vious section was used to generate the “historical” submarine
cost data. The case study is intended to demonstrate how the
MISERLY process operates when at least an initial set of
historical cost data is available, and how the resulting cost
predictions compare to results from a PLS and a CART
approach.

7.2. Engineering Build-Up Model

The same SEER-DFM model that created the “historical” data
set for this case study can be used as a proxy for the engineer-
ing build-up model. In a “real-world” application of this
process, the engineering build-up model would have been
created using the actual design data from the manufacturing
of a class, or several classes, of submarines.

7.3. Expanded Data

The engineering build-up model creates the expanded data
set. The varying physical parameters in the right column of
Table III and the total cost and the total labor hours are used.
The columns of the case study expanded data set are summa-
rized in Table IV.

7.4. PCA and Component-Influenced
Parameters

In this paper PCA is used for determining which physical
parameters, and which PCs, account for the majority of the
variation in the data. The C array and U matrix from these
calculations are included in Tables V and VI.

Figure 3. The WBS associated with the submarine case study.
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The C array and U matrix contain a significant amount of
information regarding the data set in question. The C array
indicates how much of the variation in the model is accounted
for by each of the PCs. As was indicated earlier, the numbers
in the matrix shown in Table IV have added value—their
importance can be compared directly to the original predictor
variables due to a modification procedure followed in this
work. For this example, the 1st, 2nd, 3rd, and 4th PCs account
for more variation than any single of the original predictor
variables. This fact is noted, and the four PCs will be used in
the creation of the component-influenced parameters that will
make up part of the improved data set.

In addition to identifying which of the PCs account for
more variability than any of the physical parameters, the raw
numbers contained in the C array show not only that the first
PC accounts for the largest amount of the variation, but also
by looking at the change in the amount of variation accounted
for by each PC, that there is a much larger drop in importance
between the first and second PCs. In fact, the relative impor-
tance of the 2nd, 3rd, 4th, and 5th PCs are very close indeed,
and they are much lower than the importance of the 1st PC. It
isn’t until the last PC that there is another significant drop in
importance. This relationship between the PCs aids in the next
step of the method—looking at the original predictor vari-
ables in an effort to select the most influential.

Like the C array, the U matrix also carries a tremendous
amount of information. Most importantly for this application,
it relates each of the principal components to the original
predictor variables. For this particular example it was deter-
mined that the first PC accounts for a large amount of the
variation of the data set and that the second, and subsequent,
PCs account for a significantly lesser amount of the variation.
With this in mind, the first PC will be used to determine the
most influential of the original values. It is very obvious, when

examining the absolute values in the first column of the U
matrix, that the first two variables, the length of the parallel
midbody and the diameter, have by far the largest impact on
the data. In fact, their influence is so strong that the first PC
can be assigned a general physical interpretation as the “Large
Dimension Component.”

In addition to their absolute values, there is significance in
their opposite sign. After careful evaluation of the application
of PCA to several instances, the authors determined that the
absolute signs of the weights do not matter, as has been
observed in other applications of PCA as well, but the relative
signs of the weights do. The opposite sign of the two weights
in a PC indicates an inverse relationship. In this particular
instance, this inverse relationship has an important physical
interpretation: There is a strong correlation between large
values of the parallel midbody length and small values of the
diameter and vice versa.

7.5. Improved Data

In this case study, the improved data set was composed of the
first two original physical parameters, and multiplier for the
first four PC. The matrix for the improved data is identical to
that shown in Eq. (3) with n = 50, r = 2, and s = 4.

7.6. Creating the Cost Regression Model Using
Kriging

At the final step of the MISERLY process a cost model was
created from the 50 “historical” points using the Kriging
method. Ten different configurations of the submarine which
were not part of the “historical” data were used as evaluation
points. In order to assess the MISERLY performance in this
application, two other cost regression approaches, PLS and
CART, were also used to create cost models model from the
50 “historical” points and they were also tested against the 10
evaluation points. Table VII summarizes these results. For this
particular application the MISERLY performance provides a
significant improvement compared to PLS and CART mod-
els. In the absence of any historical data, only an engineering
build-up approach can be employed for cost estimation. How-
ever, this example demonstrates that when historical data are
available, the MISERLY process offers increased accuracy
compared to PLS and CART cost predictions.

In order to demonstrate the operation of adaptive mode of
operation of the Kriging method for creating the cost model,

       Table IV. Data Variable Definition

Table V. C Matrix for Conceptual Submarine Design Case
Study

Table VI. U Matrix for Conceptual Submarine Design Case
Study
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25 additional sample points (i.e., different combinations of
the varying parameters) were identified for creating addi-
tional cost data. The original set of the 50 “historical” points
was expanded to include the additional 25 sample points, and
a new cost metamodel was created. The inclusion of the
additional 25 sample points reduced the mean error further
from 4.1% to 3.6%.

8. Closure

A general and mathematically advanced method for cost
estimation is proposed, and existing cost data from the litera-
ture are used for demonstrating its performance. Further, a
case study addressing the fabrication of a submarine pressure
hull is developed in order to illustrate the new method. Tech-
nical elements from PCA and the Kriging method for creating
metamodels comprise the foundation of the MISERLY proc-
ess. In the two applications presented in this paper, the MIS-
ERLY approach demonstrated better cost predictive
capabilities compared to a neural network method, a regres-
sion analysis, and also with respect to PLS and CART models.
The MISERLY approach does have similar limitations with
all other cost modeling methods that require historical cost
data to be available. Thus, MISERLY will not be useful in
situations where completely new technologies or designs are
considered. It does provide a mathematically advanced frame-
work for conducting the cost estimation, and it does provide
the flexibility to combine historical cost data with information
created by engineering build-up cost models. In the future the
new cost modeling capability can be used within a design
decision making environment for assessing the implications
of design changes to the cost. This information can be used in
parallel with other performance assessments of an engineer-
ing system for guiding the overall decision making process.
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