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Advances in cell biology and biophysics revealed that cellular membranes consist of multiple microdomains with
specific sets of components such as lipid rafts and TEMs (tetraspanin-enriched microdomains). An increasing
number of enveloped viruses have been shown to utilize these microdomains during their assembly. Among them,
association of HIV-1 (HIV type 1) and other retroviruses with lipid rafts and TEMs within the PM (plasma membrane)
is well documented. In this review, I describe our current knowledge on interrelationships between PM microdomain
organization and the HIV-1 particle assembly process. Microdomain association during virus particle assembly may
also modulate subsequent virus spread. Potential roles played by microdomains will be discussed with regard to
two post-assembly events, i.e., inhibition of virus release by a raft-associated protein BST-2/tetherin and cell-to-cell
HIV-1 transmission at virological synapses.

Introduction
In most cell types, including natural hosts such as
T cells, HIV-1 (HIV type 1) assembles at the PM
(plasma membrane). HIV-1 particle formation is a
multi-step process driven by the viral structural pro-
tein Gag (Adamson and Freed, 2007) (Figure 1).
This process includes (i) targeting of Gag to the PM,
(ii) Gag binding to membrane, (iii) Gag multimer-
ization, (iv) encapsidation of viral genomic RNA,
(v) incorporation of the viral Env glycoprotein and
(vi) budding and releasing of virus particles. Al-
though the order of some of these steps remains
to be determined, regions in Gag involved in each
step are well defined. Gag is a multidomain protein
consisting of four major domains, MA (matrix), CA
(capsid), NC (nucleocapsid) and p6, as well as spacer
peptides, SP1 and SP2. MA mediates Gag target-
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ing and binding to the PM and Env incorporation,
whereas the CA-CTD (C-terminal domain) and NC
promote Gag multimerization. The CA-CTD con-
tains a dimerization interface, while NC, an RNA-
binding domain, is thought to promote higher-order
multimerization as scaffolding through NC-RNA-
NC binding. NC also contains zinc-finger motifs
that mediate specific recognition of viral RNA for
packaging of the genome. p6 recruits cellular ESCRT
(endosomal sorting complex required for transport)
complexes that facilitate fission of virions from the
PM.

Advances in cell biology and biophysics have re-
vealed that the PM is heterogeneous, consisting of
multiple microdomains that contain specific sets
of lipids and proteins. These microdomains may have
various lifetimes, sizes and dynamics and may coalesce
or dissociate from each other, thereby modulating cel-
lular functions. Among them, lipid rafts and TEMs
(tetraspanin-enriched microdomains) have been im-
plicated in various aspects of the HIV-1 life cycle.
In this review, I focus on interrelationships between
these two specific types of microdomains and HIV-1
assembly. I also discuss potential roles of these micro-
domains in two post-assembly events currently under
intense scrutiny, i.e., BST-2/tetherin-mediated virion
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Figure 1 HIV-1 Gag and virus particle assembly
(A) Structural and functional domains are shown. SP, spacer peptide. N-terminal myristylation is shown as (m–). (B) A general

outline of virus assembly process is shown. For clarity, RNA molecules associated with NC are not depicted.

release inhibition and cell-to-cell HIV-1 transmission
at VSs (virological synapses).

PM microdomains associated with the
late phase of HIV-1 replication cycle
Lipid rafts
Lipid rafts, also known as membrane rafts, are micro-
domains enriched with cholesterol, glycosphingo-
lipids and other saturated lipids, as well as specific

types of proteins. In the original concept of lipid rafts,
formation of these microdomains was thought to rely
on the propensity of participating lipids to form
a liquid-ordered state through lipid–lipid interac-
tions (Simons and Ikonen, 1997; London and Brown,
2000). According to this model, this cholesterol-
dependent liquid-ordered structure co-exists with
liquid-disordered domains in cell membranes and
membrane-associated proteins partition to either of
these domains depending on their membrane binding
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modes. Partitioning of molecules with lipid rafts in
cells has primarily been assessed based on their as-
sociation with DRM (detergent-resistant membrane)
fractions (Brown and Rose, 1992). However, it is of
note that DRM association reflects only a preference
for rafts by proteins or lipids of interest and does not
prove that raft association precedes experimental ma-
nipulation (Lichtenberg et al., 2005). Using this and
other methods, proteins anchored to the extracellu-
lar leaflet of the PM by a GPI (glycosylphosphatidyl-
inositol) moiety are identified as raft-associated pro-
teins (Brown and London, 2000; Simons and Toomre,
2000). Cytoplasmic proteins modified with saturated
acyl chains such as palmitoyl moieties constitute an-
other representative class of raft proteins. Unsatur-
ated lipid modifications such as prenylation are less
favoured in rafts (Melkonian et al., 1999; Zacharias
et al., 2002). Some transmembrane proteins such as
TfR (transferrin receptor) and CD45 are also known
to be excluded from rafts.

Lipid rafts are thought to serve as delivery or con-
centration platforms in various cellular functions,
including signalling, protein sorting and cell po-
larity. However, the involvement of rafts in these
cell functions, and even the very existence of rafts
in intact cells, have been matters of debate because
of their submicroscopic size and because of con-
cerns over methods for studying rafts, in particular,
the use of detergent-resistance-based isolation meth-
ods (Edidin, 2003; Munro, 2003; Hancock, 2006).
Nonetheless, advanced biophysical and cell biolo-
gical techniques have provided strong support to
the presence of cholesterol-dependent microdomains
in the PM (Kusumi et al., 2004; Mayor and Rao,
2004; Hancock, 2006; Jacobson et al., 2007; Day and
Kenworthy, 2009). The definition of rafts put forth
in the 2006 Keystone Symposium of Lipid Rafts
and Cell Function summarizes the current consensus
as following: “Lipid rafts are small, heterogeneous,
highly dynamic, sterol- and sphingolipid-enriched
domains that compartmentalize cellular processes.
Small rafts can sometimes be stabilized to form larger
platforms through protein–protein and protein–lipid
interactions” (Pike, 2006).

As noted in this consensus definition of lipid
rafts, in addition to lipid–lipid interactions, protein–
protein and protein–lipid interactions have been
gaining recognition as important factors in the dy-
namics of these microdomains (Douglass and Vale,

2005; Gaus et al., 2005; Larson et al., 2005;
Hancock, 2006). In particular, oligomeric proteins
that bind rafts (e.g. caveolins and flotillins) modulate
stability, size and/or structure of membrane domains,
creating specific subsets of microdomains (Langhorst
et al., 2005; Morrow and Parton, 2005; Parton and
Simons, 2007).

TEMs
TEMs are another type of membrane microdomains
primarily organized by tetraspanins, a family of pro-
teins with four transmembrane domains (Hemler,
2005; Levy and Shoham, 2005; Berditchevski and
Odintsova, 2007; Charrin et al., 2009; Yanez-Mo
et al., 2009). The importance of protein–protein
interactions has been well recognized for forma-
tion of TEMs. These interactions include homo- and
hetero-oligomerization of tetraspanins and interac-
tions of tetraspanins with other proteins (e.g. in-
tegrins) (Hemler, 2005; Levy and Shoham, 2005;
Berditchevski and Odintsova, 2007; Charrin et al.,
2009; Yanez-Mo et al., 2009). Because of these in-
teractions with other proteins, TEMs are involved
in a wide variety of cellular functions, including
intra- and intercellular signalling and cell–cell ad-
hesion (Hemler, 2005; Levy and Shoham, 2005; Ber-
ditchevski and Odintsova, 2007; Charrin et al., 2009;
Yanez-Mo et al., 2009).

TEMs are detected as microscopically visible
patches using antibodies recognizing specific tetra-
spanins (Claas et al., 2001; Nydegger et al., 2006;
Espenel et al., 2008). Live cell microscopy showed
that these patches are stable in shape and localiz-
ation (Espenel et al., 2008). In addition to these
patches, single-molecule tracking of the tetraspanin
CD9 demonstrated that there is another population
of tetraspanins not associated with TEMs and that
this population of molecules is in a dynamic ex-
change with those associated with TEMs (Espenel
et al., 2008). Somewhat analogous to lipid rafts, at
least a portion of the non-TEM-associated CD9 ap-
pears to form small, dynamic clusters (Espenel et al.,
2008). Notably, formation of these clusters is de-
pendent on PM cholesterol and CD9 palmitoylation
(Espenel et al., 2008). Furthermore, under some ex-
perimental conditions, tetraspanins were observed to
associate with DRM fractions (Claas et al., 2001;
Charrin et al., 2002, 2003). However, lipid rafts
and TEMs (or related clusters) are generally regarded
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as distinct types of microdomains because detergent
resistance and sensitivity to cholesterol depletion dis-
played by tetraspanins are qualitatively different from
those of raft proteins (Claas et al., 2001; Charrin
et al., 2002, 2009; Hemler, 2005; Le Naour et al.,
2006; Yanez-Mo et al., 2009). As described later, this
view is also supported by recent microscopy-based
experiments that demonstrated clear segregation of
tetraspanins from raft-associated proteins (Nydegger
et al., 2006; Barreiro et al., 2008; Espenel et al.,
2008).

Relationships between microdomain
organization and HIV-1 assembly
Roles played by lipid rafts during HIV-1 assembly
During virus particle assembly, Gag and Env asso-
ciate with DRM that presumably originates from
rafts (Nguyen and Hildreth, 2000; Lindwasser and
Resh, 2001, 2002; Ono and Freed, 2001; Ding
et al., 2003; Halwani et al., 2003; Holm et al.,
2003; Ono et al., 2005; Bhattacharya et al., 2006;
Dou et al., 2009). Immunofluorescence microscopy
studies showed that Gag co-localizes with lipid
raft markers in cells (Nguyen and Hildreth, 2000;
Holm et al., 2003; Ono and Freed, 2005). The
lipid bilayer of the viral envelope is enriched in
raft-associated lipids and proteins (Aloia et al.,
1993; Saifuddin et al., 1995; Graham et al., 2003;
Brugger et al., 2006; Chertova et al., 2006; Chan
et al., 2008; Ott, 2008) and adopts cholesterol-
dependent liquid-ordered structure (Lorizate et al.,
2009). Cellular cholesterol depletion, which dis-
rupts rafts, inhibits virus particle production (Ono
and Freed, 2001; Pickl et al., 2001) by impairing
Gag membrane binding, multimerization and/or mo-
bility at the PM (Gomez and Hope, 2006; Ono
et al., 2007). Substitution of myristate at the Gag
N-terminus with an unsaturated analogue blocks
Gag-DRM association and impairs virus particle pro-
duction (Lindwasser and Resh, 2002). Owing to tech-
nical limitations inherent to the methodologies ap-
plied in these studies, some of these data can be
explained without implicating rafts in HIV-1 as-
sembly. Collectively, however, these reports are con-
sistent with the notion that lipid rafts or cholesterol-
dependent microdomains play an important role in
HIV-1 particle assembly.

Not only other retroviruses [e.g. HTLV-1 (hu-
man T-cell lymphotropic virus 1) (Pickl et al., 2001;
Feng et al., 2003) and murine leukaemia virus (Pickl
et al., 2001; Nitta et al., 2010)], but also other
families of enveloped and non-enveloped viruses, are
thought to utilize lipid rafts during the late phase
of their life cycles (Suomalainen, 2002; Briggs et al.,
2003; Ono and Freed, 2005; Metzner et al., 2008).
These viruses include paramyxoviruses (e.g. measles
virus, Sendai virus and respiratory syncytial virus)
(Sanderson et al., 1995; Ali and Nayak, 2000; Manie
et al., 2000; Vincent et al., 2000; Henderson et al.,
2002; McCurdy and Graham, 2003), orthomyxovir-
uses (e.g. influenza A virus) (Scheiffele et al., 1999;
Ali et al., 2000; Barman and Nayak, 2000; Zhang
et al., 2000; Leser and Lamb, 2005), filoviruses (e.g.
Ebola virus) (Bavari et al., 2002; Panchal et al., 2003),
herpes viruses (e.g. herpes simplex virus and pseudo-
rabies virus) (Lee et al., 2003; Favoreel et al., 2004;
Lyman et al., 2008) and reoviruses (e.g., Bluetongue
virus) (Bhattacharya and Roy, 2008). In most cases,
lipid rafts are postulated to serve as delivery vehicles
or concentration platforms for viral structural ele-
ments, thereby facilitating assembly and release of
infectious virions. However, the exact nature of as-
sociation between lipid rafts and structural proteins
of these viruses (including HIV-1), in particular, the
impact of viral proteins on lipid raft organization, is
less well understood.

MA as the interface between Gag and lipid rafts
In the case of HIV-1 Gag, both the N-terminal
myristate and a highly basic region of MA, which
are essential for binding of MA to the PM bilayer
(Gottlinger et al., 1989; Bryant and Ratner, 1990;
Zhou et al., 1994; Hill et al., 1996), are implic-
ated in lipid raft association. The MA highly ba-
sic domain has been shown to interact with a PM-
specific phospholipids, PtdIns(4,5)P2 (Saad et al.,
2006; Shkriabai et al., 2006; Chan et al., 2008;
Chukkapalli et al., 2008, 2010; Alfadhli et al., 2009a,
2009b; reviewed in Ono, 2009). This interaction
promotes Gag-membrane binding and Gag localiza-
tion to the PM, thereby facilitating HIV-1 particle
assembly and release (Ono et al., 2004; Chan et al.,
2008; Chukkapalli et al., 2008). Gag proteins of
other retroviruses, including murine leukaemia virus,
Mason–Pfizer monkey virus and HIV-2, also require
PtdIns(4,5)P2 for efficient virus release (Stansell et al.,
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Figure 2 Association of Gag with lipid raft microdomains
NMR studies suggest that binding of PtdIns(4,5)P2 to the MA highly basic region induces exposure of the N-terminal myristate

moiety as well as sequestration of the highly unsaturated 2′-acyl chain of PtdIns(4,5)P2 (A). Two exposed saturated acyl chains,

i.e., the N-terminal myristate and the 1′ acyl chain of PtdIns(4,5)P2, are postulated to promote partitioning of the Gag molecule

to a raft domain, which may become stabilized or coalesce with other rafts upon Gag multimerization (B). Multiple saturated

acyl chains associated with a Gag cluster may also induce formation of a stable raft-like domain (C). Possibilities shown in (B)

and (C) are not mutually exclusive.

2007; Chan et al., 2008; Saad et al., 2008; Hamard-
Peron et al., 2010). Notably, NMR studies showed
that exposure of the myristate moiety, which is oth-
erwise sequestered inside MA, is induced by bind-
ing of PtdIns(4,5)P2 to the MA highly basic domain
(Saad et al., 2006). The NMR studies further sug-
gest that, when HIV-1 MA binds PtdIns(4,5)P2, it
sequesters the highly unsaturated 2′ acyl chain of
PtdIns(4,5)P2, leaving the saturated 1′ chain avail-
able for association with membrane (Saad et al., 2006)
(Figure 2). This mode of MA-PtdIns(4,5)P2 binding
is predicted to promote Gag interaction with lipid
rafts (Saad et al., 2006). In addition, as described
earlier, substitution of myristate with unsaturated
analogues blocks Gag association with DRM, sug-
gesting that the N-terminal myristate moiety plays
a key role in Gag association with lipid rafts (Lind-
wasser and Resh, 2002). Therefore, it is likely that
MA does not simply function as a membrane-binding

domain, but also serves as a specific interface between
Gag and membrane microdomains.

Potential effects of HIV-1 assembly on the
organization of lipid rafts
Besides MA, NC may affect Gag interaction with
lipid rafts. Although NC-mediated higher-order
multimerization is not essential for initial DRM as-
sociation of Gag (Ono et al., 2005), NC increases
density of the DRM with which Gag associates
(Lindwasser and Resh, 2001). Therefore, as postu-
lated previously (Lindwasser and Resh, 2001; Ono
and Freed, 2001; Dalton et al., 2007), Gag mem-
brane binding and multimerization may alter the size
and/or structure of lipid rafts (Figure 2). In this re-
gard, it is important to note that, except for caveolae,
which constitute a unique subset of rafts organized
by caveolin, lipid rafts are generally considered to be
small, with an estimated diameter of 5–50 nm (Pralle
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et al., 2000; Prior et al., 2003; Sharma et al., 2004;
Eggeling et al., 2009). In contrast, the diameter of
an HIV-1 particle is approx. 100–150 nm. Therefore,
it is unlikely that a virus particle assembles within
and buds from a single lipid raft. Rather, it is more
likely that virus particle assembly involves recruit-
ment and coalescence of small rafts into large stable
rafts at assembly sites. When Gag forms multimers
at the PM, saturated acyl chains associated with MA
likely create a lipid environment suitable for recruit-
ing raft-associated molecules in the PM cytoplasmic
leaflet (Figure 2). Therefore, during virus assembly,
Gag may induce formation of lipid-raft-like micro-
domains de novo. As mentioned earlier, oligomeric
membrane-bound proteins such as flotillin can stabil-
ize lipid rafts to form microscopically visible struc-
tures (Langhorst et al., 2005; Morrow and Parton,
2005; Parton and Simons, 2007). It is tempting to
speculate that membrane-bound Gag multimers play
an analogous role during association with lipid rafts.

Roles played by TEMs during HIV-1 assembly
TEMs have also been shown to co-localize with
assembling Gag in T cells as well as other cell
types (Mazurov et al., 2006; Nydegger et al., 2006;
Jolly and Sattentau, 2007; Grigorov et al., 2009;
Hogue et al., 2009). Biochemical studies showed
that HIV-1 Gag can be co-immunoprecipitated with
some tetraspanins from cell lysates (Grigorov et al.,
2009). In some cases, somewhat larger membrane
domains enriched with tetraspanins, termed ELD
(endosome-like domain), are observed to be sites
of virus assembly (Booth et al., 2006). Because of
their similarity, these two domains will be here-
after referred to as TEM/ELDs in this review. In
macrophages, HIV-1 Gag has been observed to as-
semble virus particles within apparently intracellular,
tetraspanin-enriched compartments (Raposo et al.,
2002; Pelchen-Matthews et al., 2003). At least sub-
populations of these compartments were later shown
to be convoluted invaginations of the PM (Deneka
et al., 2007; Jouve et al., 2007; Welsch et al., 2007;
Bennett et al., 2009). Therefore, these compartments
may be derived from TEM/ELDs.

Like raft components, tetraspanins are incorpor-
ated into retrovirus particles (Nguyen et al., 2003;
Pelchen-Matthews et al., 2003; Chertova et al.,
2006; Jolly and Sattentau, 2007; Khurana et al.,
2007; Medina et al., 2008; Sato et al., 2008).

Notably, these virion-associated tetraspanins im-
pair virus infectivity by inhibiting Env-mediated
fusion (Sato et al., 2008; Grigorov et al., 2009;
Krementsov et al., 2009; Weng et al., 2009). Consist-
ent with the effect of tetraspanins on virus–cell fusion,
tetraspanins also inhibit cell–cell fusion mediated
by cell-associated Env (Sato et al., 2008; Grigorov
et al., 2009; Krementsov et al., 2009; Weng et al.,
2009). It is of note that this inhibitory effect seems
to require Gag-dependent clustering of Env and res-
ulting localization of Env to TEMs (Weng et al.,
2009). Therefore, HIV-1 assembly in TEM/ELDs
likely prevents virus-expressing cells in contact with
uninfected cells from fusing prematurely and form-
ing syncytia (Krementsov et al., 2009; Weng et al.,
2009). In contrast to the inhibitory effect on Env-
mediated fusion, a consensus has not yet emerged on
whether TEM/ELDs or particular tetraspanins act-
ively regulate the HIV-1 particle assembly process.
RNAi (RNA interference)-mediated knockdown of
tetraspanins have produced contradictory data thus
far (Chen et al., 2008; Ruiz-Mateos et al., 2008; Grig-
orov et al., 2009; Krementsov et al., 2009). Careful
comparison of cell types, expression levels of each
of the major tetraspanins in these cells, and timing
after expression of Gag and siRNA (small interfering
RNA) molecules are likely needed for determining
the effect of TEM/ELDs on virus assembly and re-
lease.

Interestingly, it has been shown that association of
proteins with TEM/ELDs requires membrane bind-
ing and higher-order multimerization of the proteins
(Fang et al., 2007). Therefore, considering the dy-
namic nature of tetraspanin partitioning to mem-
brane domains described above (Barreiro et al., 2008;
Espenel et al., 2008), it is possible that, like lipid
rafts, TEM/ELDs are also recruited to or stabilized at
virus assembly sites due to Gag multimerization at
the PM.

Relationships between lipid rafts and TEM/ELDs
at HIV-1 assembly sites
As described earlier, biochemical data suggest that
lipid rafts and TEM/ELDs are distinct microdomains.
Microscopy studies that examined co-patching of
raft proteins and tetraspanins also support this view
(Nydegger et al., 2006; Espenel et al., 2008). Co-
patching has been frequently used for studies of mem-
brane microdomains that are submicroscopic in size
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(Harder et al., 1998; Janes et al., 1999; Shvartsman
et al., 2003; Gri et al., 2004; Meder et al., 2006;
Lingwood et al., 2008). In a co-patching assay, mem-
brane proteins are homotypically cross-linked with
specific bivalent antibodies before fixation. This in-
duces formation of microscopically visible patches. If
two proteins share affinity to the same microdomain,
and cross-linked proteins retain association with the
microdomain stably enough, they co-localize in
the same patch or co-patch. For example, a trans-
membrane raft marker, influenza HA, and another
raft marker, PLAP (placental alkaline phosphatase; a
GPI-anchored protein), co-localize at discrete patches
when each are cross-linked by specific antibodies be-
fore fixation. In contrast, when stained after fixation,
both show diffuse localization over the cell surface
(Harder et al., 1998). Such co-patching is not ob-
served between PLAP and a non-raft marker, TfR
(Harder et al., 1998). Using this method, tetraspan-
ins were observed to segregate from HA and CD55,
a GPI-anchored raft protein (Nydegger et al., 2006;
Espenel et al., 2008; I.B. Hogue and A. Ono, un-
published data). Consistent with co-patching exper-
iments, live cell microscopy coupled with advanced
techniques, including fluorescence recovery after pho-
tobleaching and single-molecule tracking, further
showed that dynamic behaviours of tetraspanins and
GPI-anchored proteins are clearly distinct (Barreiro
et al., 2008; Espenel et al., 2008).

The findings described above indicate that, in nor-
mal cells, TEM/ELDs and lipid rafts are distinct
microdomains. As described earlier, however, HIV-
1 particle assembly associates with both lipid rafts
and TEM/ELDs. This raises a question whether HIV-
1 induces coalescence of these two types of micro-
domains at virus assembly sites. One study com-
pared distributions of HA and tetraspanins in the
presence of other influenza proteins and HIV-1 Gag
(Khurana et al., 2007). In this study, Gag co-patched
well with TEM/ELD markers but HA remained se-
gregated (Khurana et al., 2007). However, because
other influenza proteins such as M1 likely restricted
free movement of HA or HA-containing lipid rafts, it
remains unknown whether lipid rafts and TEM/ELDs
can be co-recruited to the HIV-1 assembly sites or
whether they form separate assembly sites. In this
regard, it is notable that a recent report suggests that
two viral glycoproteins (HIV-1 Env and Ebola GP)
are incorporated into distinct populations of progeny

virions even when both glycoproteins are expressed in
the same cells (Leung et al., 2008). Incorporation of
viral glycoproteins into retrovirus particles has been
suggested to involve lipid rafts or other membrane
microdomains (Pickl et al., 2001; Briggs et al., 2003;
Bhattacharya et al., 2004, 2006; Metzner et al., 2008;
Jorgenson et al., 2009; but see Yang et al., 2010).
Therefore, the observation of bimodal incorporation
of HIV-1 Env and Ebola GP was interpreted as in-
dicating that a single Gag particle quantally asso-
ciates with a microdomain containing single species
of viral glycoprotein (Leung et al., 2008). Thus, it
is possible that qualitatively different microdomains
undergo homotypic but not heterotypic coalescence
and independently constitute or become recruited to
different assembly sites. Clearly, further investiga-
tion is needed for a better understanding of dynamic
reorganization of PM microdomains during HIV-1
assembly.

Potential roles played by microdomains
in steps following virus particle assembly
Involvement of PM microdomains in a cellular
defence mechanism
PM microdomains may be involved not only in
particle assembly and viral glycoprotein incorpora-
tion but also in a recently discovered cellular defence
mechanism that inhibits a post-assembly process. The
HIV-1 protein Vpu has been known to enhance virus
release in a cell-type-specific manner (Klimkait et al.,
1990; Varthakavi et al., 2003; Neil et al., 2006). In
the absence of Vpu, virus particles are tethered to the
surface of non-permissive virus-producing cells and
are eventually endocytosed (Klimkait et al., 1990;
Neil et al., 2006; Harila et al., 2007). These tethered
virions can be released after treatment with a pro-
tease, subtilisin (Neil et al., 2006). Recent stud-
ies demonstrated that a cellular protein known as
HM1.24, CD317, BST-2 or tetherin (hereafter re-
ferred to as BST-2/tetherin) is a subtilisin-sensitive,
Vpu-responsive inhibitor of virion release (Neil et al.,
2008; Van Damme et al., 2008). Expression of this
protein, which can be augmented by IFN (inter-
feron) (Neil et al., 2007), renders permissive cells
non-permissive to HIV-1 lacking Vpu (Neil et al.,
2008; Van Damme et al., 2008). Depletion of BST-
2/tetherin rescues virion release from non-permissive
cells in the absence of Vpu (Neil et al., 2008; Van
Damme et al., 2008). Vpu antagonizes this protein
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Figure 3 Structure and function of BST-2/tetherin
(A) Key structural features and a possible mode of microdomain partitioning are shown. Cysteine residues that form disulfide

bonds in BST-2/tetherin dimers are depicted. Glycosylation sites are not shown. (B) Proposed modes for BST-2/tetherin-mediated

physical linkage between virions and the PM are illustrated.

at least partly through down-regulation from the cell
surface by ubiquitin-dependent mechanisms and/or
through retention in the trans-Golgi network (Bartee
et al., 2006; Van Damme et al., 2008; Douglas et al.,
2009; Dube et al., 2009; Goffinet et al., 2009; Gupta
et al., 2009; McNatt et al., 2009; Mitchell et al.,
2009; Miyagi et al., 2009; Rong et al., 2009; Sato
et al., 2009).

BST-2/tetherin is a type II transmembrane protein
that consists of a short N-terminal cytoplasmic do-
main, a transmembrane domain, a dimerizing extra-
cellular region containing a coiled-coil structure and
a C-terminal GPI anchor (Kupzig et al., 2003) (Fig-
ure 3). Based on detergent resistance, this protein
was identified as a raft-associated protein (Kupzig
et al., 2003; Rollason et al., 2007). The GPI an-
chor, but not the transmembrane domain, mediates
this raft association (Kupzig et al., 2003). Based
on these findings, this protein was speculated to
reside at the boundary between raft and non-raft
regions (Kupzig et al., 2003). Because of its topo-
logy and dimerization ability, BST-2/tetherin is pro-
posed to tether virus particles to the surface of pro-
ducer cells by physically linking viral membrane and
PM (Neil et al., 2008) (Figure 3), although an al-
ternative or additional mechanisms may be possible

(Goffinet et al., 2009; Miyagi et al., 2009). Support-
ing the physical tethering model, BST-2/tetherin has
been observed to co-localize with Gag puncta on the
cell surface (Neil et al., 2008; Van Damme et al.,
2008; Goffinet et al., 2009; Jouvenet et al., 2009a;
Mitchell et al., 2009) and associate with budding
virus particles (Perez-Caballero et al., 2009). Interest-
ingly, BST-2/tetherin can inhibit the release of a wide
variety of enveloped viruses including retroviruses,
filoviruses and arenaviruses (Jouvenet et al., 2009a;
Kaletsky et al., 2009; Sakuma et al., 2009) and in-
hibit HIV-1 release in cells derived from various spe-
cies (Sato et al., 2009). Notably, a completely artificial
protein designed to contain key structural features of
BST-2/tetherin inhibits virus release like native BST-
2/tetherin, despite the lack of sequence homology
(Perez-Caballero et al., 2009). Therefore, if physical
association between BST-2/tetherin and assembling
virus particles is needed for its antiviral activity, such
association is likely dependent on a common cellular
structure rather than specific viral or cellular co-factor
proteins. Together with the notion that many envel-
oped viruses associate with lipid rafts or other mi-
crodomains (Suomalainen, 2002; Briggs et al., 2003;
Ono and Freed, 2005; Metzner et al., 2008), it was
suggested that microdomain association of BST-2/
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tetherin may promote incorporation of this protein
into assembling particles (Jouvenet et al., 2009b).
Consistent with a potential role for microdomains in
BST-2/tetherin function, a cholesterol-binding com-
pound amphotericin B methyl ester blocks the antag-
onistic activity of Vpu against BST-2/tetherin (Wa-
heed et al., 2008). Furthermore, a BST-2/tetherin
derivative lacking the GPI anchor, which is unable
to associate with DRMs (Kupzig et al., 2003), fails to
inhibit virus release despite proper transport to the
PM (Neil et al., 2008; Perez-Caballero et al., 2009).
However, further investigation is needed to determ-
ine whether association of BST-2/tetherin with micro-
domains is essential for inhibition of virus release by
this protein.

Involvement of PM microdomains in cell-to-cell
virus transmission
Another post-assembly process that may involve PM
microdomains is cell-to-cell virus transmission. Virus
transmission from infected cells to adjacent uninfec-
ted cells at cell–cell contacts has been shown to allow
more efficient virus spread than infection by cell-
free virions (Sato et al., 1992; Chen et al., 2007;
Sourisseau et al., 2007; Sattentau, 2008; Sherer and
Mothes, 2008). Recent microscopy-based studies re-
vealed that retrovirus-producing cells form several
different types of contact structures with target cells
through which nascent virions can be transferred
(Haller and Fackler, 2008; Sattentau, 2008; Sherer
and Mothes, 2008). These structures include filo-
podial bridges, tunnelling or membrane nanotubes
and VSs (Haller and Fackler, 2008; Sattentau, 2008;
Sherer and Mothes, 2008). Attachment of tips of filo-
podia extended from one cell to another initiates
filopodial bridges (Sherer et al., 2007), whereas nano-
tubes are likely formed after two conjugated cells de-
tach from each other, at least in the case of T-cell
nanotubes (Sowinski et al., 2008). Live cell imaging
demonstrated that nascent virus particles move along
the surface of these thin membranous structures from
infected cells to uninfected cells (Sherer et al., 2007;
Sowinski et al., 2008; Jin et al., 2009; Rudnicka
et al., 2009). In contrast to filopodial bridges and
nanotubes, the VS facilitates massive virus transfer at
a short distance. The VS is a zone of contact formed
between HIV- or HTLV-infected T cells and target
T cells. This contact zone is enriched in viral Env
and Gag proteins, cell adhesion and signalling mo-

Figure 4 VS and potential involvement of uropods in its
formation
(A) Key features of the VS formed between a virus-producing

T cell and a target T cell are shown. Major components of the

VS are listed. MTOC, microtubule-organizing centre. (B) Ac-

cumulation of assembling and assembled viruses to uropods

enriched in cell adhesion molecules may facilitate formation

of VSs upon contact of uropods with a new target cell. Altern-

atively, virus-laden platforms may be formed at uropods and

laterally move over the PM to cell–cell contacts at other areas

of virus-producing cells.

lecules and cytoskeletal proteins (Igakura et al., 2003;
Jolly et al., 2004, 2007a, 2007b; Sol-Foulon et al.,
2007; Arthos et al., 2008; Vasiliver-Shamis et al.,
2009). A large number of assembled or assembling
virus particles are observed in this junction (Figure 4)
(Jolly et al., 2004; Hubner et al., 2009; Rudnicka
et al., 2009). Notably, markers for lipid rafts and
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TEM/ELDs are also enriched at the VS (Jolly and
Sattentau, 2005; Jolly and Sattentau, 2007; Rud-
nicka et al., 2009). Furthermore, cholesterol deple-
tion and treatment with anti-tetraspanin antibod-
ies reduce formation of the VS (Jolly and Sattentau,
2005, 2007). However, it is currently unknown what
roles lipid rafts and/or TEM/ELDs play in VS forma-
tion.

Although intact cytoskeletons (microtubules and
actin filaments) (Jolly et al., 2007b; Sol-Foulon et al.,
2007) and cell adhesion molecules (Jolly et al., 2007a;
Arthos et al., 2008; but see also Puigdomenech et al.,
2008) have been shown to facilitate VS formation,
little is understood about cellular events leading to
establishment of the VS. In particular, whether pre-
cursors of the VS exist or whether the VS is formed
de novo upon cell–cell contact remain to be determ-
ined. In recent live cell microscopy experiments, pre-
existing Gag-containing patches were observed to
laterally move towards contact sites (Hubner et al.,
2009; Rudnicka et al., 2009). Therefore, it is possible
that Gag multimers and assembling particles first ac-
cumulate at a specific membrane region and form
Gag-laden patches, which eventually constitute the
VS upon cell–cell contact. In this regard, it is of note
that, in T cells, viral proteins often accumulate at one
cellular pole (Fais et al., 1995; Deschambeault et al.,
1999; Nguyen and Hildreth, 2000; Chen et al., 2007;
Fang et al., 2007; Grigorov et al., 2009). In some
cases, Gag was observed to localize to a protrusion
resembling a uropod (Nguyen and Hildreth, 2000;
Chen et al., 2007), a rear-end structure formed in mi-
grating T cells (Sanchez-Madrid and Serrador, 2009).
Indeed, we have observed that Gag highly co-localizes
with several uropod markers including PSGL-1 (P-
selectin glycoprotein ligand 1) and CD43 in polar-
ized primary CD4+ T cells (G.N. Llewellyn and A.
Ono, unpublished data). Such specific localization
of Gag to uropods may be particularly relevant for
cell-to-cell spread, because T cells are known to ad-
opt a polarized morphology while migrating within
lymphoid organs where cell-to-cell HIV-1 transmis-
sion likely occurs frequently (Germain et al., 2006;
Krummel and Macara, 2006; Cahalan and Parker,
2008; Sanchez-Madrid and Serrador, 2009). The uro-
pod is enriched in adhesion molecules and observed to
mediate T cell–T cell contacts (Sanchez-Madrid and
Serrador, 2009). Thus, polarized localization of viral
components to a uropod may form a putative pre-

cursor for the VS. Notably, markers for lipid rafts and
TEM/ELDs are known to accumulate to uropods in
polarized T cells (Gomez-Mouton et al., 2001; Sala-
Valdes et al., 2006). Lipid rafts containing flotillin are
implicated in trafficking of PSGL-1 to uropods (Rossy
et al., 2009). We observed that the tetraspanin CD81
co-patches substantially with Gag at uropods (G.N.
Llewellyn and A. Ono, unpublished data). Notably,
siRNA-mediated depletion of CD81, but not other
tetraspanins, was observed to disperse polarized loc-
alization of Gag in T cells (Grigorov et al., 2009).
Therefore, it is conceivable that PM microdomains as-
sociated with Gag multimers mediate polarized loc-
alization and assembly of Gag at a uropod, which
eventually serves as a preformed platform for the
VS. Filopodial contacts were found to induce polari-
zed virus assembly in infected cells during cell-to-cell
virus transmission between adherent cells (Jin et al.,
2009). In the case of VS formation between migrating
T cells, however, such polarity may already be estab-
lished before cells initiate contact. In future studies
on the cell-to-cell HIV-1 transmission, elucidating
mechanisms promoting polarized localization of Gag
and associated microdomains will likely be an im-
portant part of efforts towards a better understanding
of this mode of virus spread.

Concluding remarks
Biochemical and microscopy-based studies showed
that two types of PM microdomains, lipid rafts and
TEMs, are associated with the process of HIV-1
particle assembly. This association may depend on
intrinsic affinity of HIV-1 Gag for pre-existing mi-
crodomains, but it is also likely that Gag multimer-
ization on the cytoplasmic leaflet creates a membrane
environment suitable for recruiting microdomain
components. Interactions of Gag with these micro-
domains likely facilitate particle assembly, Env in-
corporation into nascent virions and/or efficient virus
spread through cell–cell contacts. On the other hand,
these interactions may also set the stage for host cells
to impose restrictions on virus particle release by BST-
2/tetherin or restrictions on Env-mediated virus–cell
fusion by tetraspanins. With advances in our un-
derstanding of dynamic aspects of PM organization,
future studies will no doubt elucidate molecular
mechanisms underlying relationships between mi-
crodomains and assembling particles.
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