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Introduction

Group A Streptococcus (GAS) is an historically impor-

tant cause of puerperal infections and sepsis. Despite

preventive measures, including antibiotic use and

hospital sanitation efforts, GAS infections are re-

emerging worldwide and remain the most common

cause of severe puerperal infections.1–5 The ability of

GAS to establish infection in postpartum patients is

influenced by numerous factors, including disrupted

mucosal barriers, altered immune status of the

mother, antibiotic administration during labor and

delivery, delayed diagnosis, environmental exposures

of the mother, and specific virulence factors utilized

by GAS. The complex interactions among these

potential risk determinants complicate our under-

standing of how and why postpartum GAS sepsis

occurs. This review will discuss the complicated fac-

tors that contribute to the increased susceptibility to

postpartum GAS and highlight topics in need of fur-

ther study.

Methods

Manuscripts cited in this review were identified by

searching the available English-language literature

using PubMed (U.S. National Library of Medicine,

National Institutes of Health, Bethesda MD) for all

years available for the following terms or combina-

tion of terms: ‘GAS’, ‘Streptococcus’, ‘Streptococcus pyog-

enes’, ‘GAS virulence factors’, ‘streptococcal toxic

shock syndrome (STSS)’, ‘Bacterial susceptibility’,

‘Maternal immunology’, ‘Maternal innate immuno-

logy’, ‘Vagina ⁄ Vaginal immunology’, ‘Uterine ⁄ Uterus
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Group A Streptococcus (GAS) is an historically important agent of puer-

peral infections and sepsis. The inception of hand-washing and

improved hospital hygiene drastically reduced the incidence of puerperal

sepsis, but recently the incidence and severity of postpartum GAS infec-

tions has been rising for uncertain reasons. Several epidemiological,

host, and microbial factors contribute to the risk for GAS infection and

mortality in postpartum women. These include the mode of delivery

(vaginal versus cesarean section), the location where labor and delivery

occurred, exposure to GAS carriers, the altered immune status associated

with pregnancy, the genetic background of the host, the virulence of

the infecting GAS strain, and highly specialized immune responses asso-

ciated with female reproductive tract tissues and organs. This review will

discuss the complicated factors that contribute to the increased suscepti-

bility to GAS after delivery and potential reasons for the recent increase

observed in morbidity and mortality.
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immunology’, ‘Female reproductive tract (FRT)

immunology’, ‘Pregnant ⁄ Pregnancy immunology’,

‘Prostaglandin E2’, ‘PGE2’, ‘Antimicrobial peptides’,

‘Neutrophils’, ‘Macrophages’, ‘Dendritic cells (DC)’,

‘Postpartum sepsis’, and ‘Puerperal sepsis’. Additional

references were identified within bibliographies pro-

vided by PubMed-cited studies. The literature was

reviewed through August 31, 2011.

Postpartum sepsis

An Overview

Globally, puerperal infections cause morbidity in

5–10% of all pregnant women with over 75,000

deaths each year.6,7 Despite efforts to meet the Uni-

ted Nations Millennium Development Goal 5

(improve maternal health), the maternal mortality

ratio has not improved and infections are an impor-

tant reason.8 Several bacterial pathogens can cause

postpartum sepsis. While not the scope of this

review, Group B Streptococcus is more prevalent than

GAS, but typically causes less severe maternal dis-

ease.9 Other causal organisms include staphylococci,

Mycoplasma, Chlamydia, Clostridium sordellii, coliform

bacteria, and bacteria associated with polymicrobial

vaginosis.10 However, GAS postpartum infections

remain the most common cause of severe maternal

postpartum infections and death worldwide.11,12

Following efforts by Semmelweis and others to

popularize hand hygiene and raise the standards of

hospital cleanliness, maternal postpartum infections

decreased drastically (reviewed in Ref. 13). Despite

the dramatic and sustained decreases in postpartum

GAS infections and sepsis experienced in the 20th

century, the past two decades have witnessed an

unexplained increase in severe postpartum GAS

infections, resulting in greater numbers of maternal

deaths worldwide.3,8,14 This re-emergence has placed

a new urgency to better understand the host–micro-

bial determinants of disease that might be targeted

for improving preventive and therapeutic measures.

Group A Streptococcus is a ubiquitous human path-

ogen that causes a wide array of disease including

cellulitis, pharyngitis, necrotizing soft-tissue infec-

tions, scarlet fever, rheumatic fever, and invasive

puerperal infections. Puerperal infections present rap-

idly, within 2- to 48-hr postpartum and can be non-

specific, delaying treatment. Primary symptoms

include myalgias, fever, confusion, euphoria, dizzi-

ness, and abdominal pain.15 Once GAS is diagnosed,

the infection is often advanced. Notably, there does

not appear to be an increase in GAS antibiotic resis-

tance,16 so other factors must underlie the re-emer-

gence of GAS postpartum infections.

Routes of Maternal Infection

Group A Streptococcus can be found in the normal

biota of the FRT, but its colonization is considered to

be relatively rare (0.03%) and its presence alone is

not sufficient to cause disease.17 However, GAS is

asymptomatically carried on the skin or in the throat

by 5–30% of the population and is easily spread by

person-to-person contact or aerosolization.18 The

host and microbial factors that influence colonization

progressing to infection remain unresolved, but it is

apparent that postpartum and pregnant women are

predisposed to bacterial infections in general

(reviewed in Ref. 19).

Women can be a source of contamination of their

own reproductive tract. Some mothers with a recent

history of sore throat succumb to GAS postpartum

sepsis,9 suggesting that some women infect them-

selves after delivery, presumably through the con-

tamination of the perineum or through bacterial

travel in the bloodstream from distal organ sites.

Another frequent source of GAS exposure in the

maternal environment is through interaction with

children in the house or at work. In a recent report,

all investigated patients who died from GAS postpar-

tum sepsis had recent contact with children (fre-

quent GAS carriers) in their home or work

environment.9 Lamagni et al.20 demonstrated that

invasive GAS infections as a whole are on the rise in

the general population, perhaps contributing to the

increase in maternal exposure in the community.

Because of the presence of asymptomatic carriers,

nosocomial infections are a significant potential

route of maternal infection. The high incidence of

healthcare-associated GAS infections in the time of

Semmelweis was due to asymptomatic healthcare-

worker carriers, resulting in sporadic postpartum

GAS outbreaks in hospitals.6,21 Cesarean section has

been called ‘the single most important risk factor’ for

postpartum maternal infection in a hospital and this

may be due to several factors, but one obvious factor

is the invasive nature of the surgery.21,22 Antibiotic

administration during or after surgery significantly

reduces the risk for postpartum infection22 but is not

100% effective at preventing infections from pro-

gressing and rapidly causing maternal death.9 It is
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easy to regard uncomplicated pregnancies with vagi-

nal deliveries as low-risk for sepsis in a hospital set-

ting, but there has been an increase in postpartum

sepsis following these seemingly unremarkable deliv-

eries.9 The non-specific symptoms at the onset of

GAS sepsis result in healthy women becoming criti-

cally ill and dying within a few hours or days.9,23

Regardless of delivery type, postpartum patients

have a 20-fold increased incidence of GAS-induced

disease compared to non-pregnant women.24 Inter-

estingly, this increased incidence is higher than that

observed in adults over the age of 65 years, and the

typical age group associated with increased incidence

of GAS infections.25 The high incidence of asymp-

tomatic carriage and multiple routes of inoculation

(Fig. 1) result in a significant risk for GAS postpar-

tum infections.

Microbiology and immunology of GAS sepsis

GAS Virulence Factors and STSS

Group A Streptococcus is a versatile human pathogen

that utilizes numerous virulence factors to evade

immune recognition or clearance. Several recent

reviews describe in detail the microbial factors that

contribute to GAS pathogenesis26–30 and will not be

discussed in detail. GAS virulence factors aid in

evading phagocytosis and facilitate in adherence to

host cells, leading to colonization and invasion of

the host.26,31–35 In addition, GAS has a family of

bacterial antigens that are associated with STSS.36,37

This family includes Streptococcal pyogenic exotoxin

A (SpeA), SpeC, and others that bind to the MHC

class II molecules and T-cell receptors, resulting in

an excessive release of immunomodulators that acti-

vate complement, coagulation, and fibrinolytic cas-

cades, resulting in toxic shock and death. STSS has

been reported with invasive GAS soft-tissue infec-

tions with a mortality rate of approximately 30%.3

A recent study of 11 European countries showed a

13% incidence level for STSS from GAS infections

with a mortality rate of up to 50%.38 SpeA is the

superantigen most commonly associated with GAS

infections that result in STSS in the United

States,27,39 and genome sequence comparisons of

GAS patient isolates reveal new variants of speA,

which may be contributing to the increased severity

of these clinical strains in postpartum infections.40,41

Immune Recognition of GAS

Despite diverse evasion strategies, GAS is recognized

by the innate immune response. GAS is recognized

by an unidentified MyD88-dependent receptor,

which is independent of TLR2, TLR4, and TLR9 acti-

vation,42 and in vitro studies demonstrate GAS acti-

vation of p38 MAPK, NF-jB, TNFa, IL-6, and type 1

IFN production,42 indicating host immune activation.

GAS was long considered an extracellular pathogen,

but recent research has demonstrated GAS survival

within multiple host cell types, including epithelial

cells, neutrophils, and macrophages.43–48 Biopsies

from patients with severe GAS tissue infections con-

tained viable GAS within macrophages, confirming

their intracellular survival ability.44 GAS survival in

epithelial cells may contribute to severe GAS post-

partum infections by providing a location for sys-

temic invasion or the initiation of STSS. The next

few sections detail the potential roles for the diverse

cellular components of innate immunity in defense

against reproductive tract GAS infection.

Epithelial cells and antimicrobial peptides

Epithelial cells (EC) play a pivotal role in maintain-

ing maternal health by forming tight junctions that

provide a physical barrier against potentially

Fig. 1 Potential routes of Group A Streptococcus (GAS) infection dur-

ing pregnancy and postpartum. GAS can enter the incision made dur-

ing cesarean section, leading to a quickly disseminating infection. GAS

infections can also result from distal infections (i.e., pharyngitis) where

the bacterium travels through the bloodstream, infecting the repro-

ductive tract and developing fetus. The vagina is another source of

GAS infections when maternal colonization is present or when the per-

ineum is contaminated after environmental exposures to GAS.
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pathogenic microbes, through antimicrobial mole-

cule release, and TLRs 1–9 expression.49,50 Studies of

chemokine and cytokine production by EC during

pregnancy indicate an overall immune hypo-respon-

siveness with reduced levels of IL-1b, IL-8, and IL-6

in cervical fluid.51 The altered antimicrobial peptide

production of epithelial cells in the FRT may play a

role in the ability of clinical strains of GAS to cause

more severe postpartum infections. Numerous

endogenous antimicrobials actively protect the preg-

nant uterus including a- and b-defensins, found in

healthy pregnant females (reviewed in Refs. 52,53).

SLPI and elafin are two other antimicrobials present

in the pregnant uterus54 that have anti-protease and

anti-inflammatory activities and are thought to regu-

late inflammation during pregnancy and labor.52

However, certain pathogens, including GAS, can

degrade these antimicrobials.55,56 GAS might inhibit

the innate immune response through molecules like

SpeB that can cleave host molecules like LL-37, an

antimicrobial peptide.20,27 LL-37 is found throughout

the FRT and plays an important role in preventing

infections, but LL-37 can be inhibited by PGE2,

which is up-regulated at the end of pregnancy,

which may contribute to susceptibility to GAS infec-

tions in the FRT.52,57

Macrophages

Macrophages are an important first line of defense

against invading pathogens through phagocytosis,

antigen presentation, and cytokine production.58–61

Previous mouse studies demonstrate that when mac-

rophage populations are depleted during a sublethal

systemic GAS infection, mice are significantly more

susceptible.62 Macrophages can also promote chemo-

taxis responses to GAS infections through the activa-

tion of transcription factors involved in cytokine

signaling and chemokine expression.63,64 However,

macrophages in the FRT have altered activity com-

pared to macrophages found in other organ ⁄ tissue

sites (reviewed in Ref. 65).

Macrophages account for approximately 10% of

the total leukocytes in the FRT66 and display pheno-

typic changes and up-regulated intracellular reactive

oxygen species during pregnancy.67–70 Estrogen and

progesterone levels alter the migration of macro-

phages in the FRT, and there is cyclic variation in

macrophage movement because of the hormonal

regulation of cytokine and chemokine expres-

sion.71,72 The mechanism behind these cellular alter-

ations remains unknown and controversial in the

field and further work must be performed to eluci-

date the role of hormone alterations, prostaglandins,

stage of pregnancy, the indigenous microbiota of the

reproductive tract, and other factors that may alter

macrophage response to GAS infections in pregnant

and postpartum women.

Dendritic cells

Dendritic cells (DC) are present throughout the FRT

and within the epithelial layer73,74 and are the most

potent antigen-presenting cells.75 DC play a vital role

in maintaining Th1 ⁄ Th2 balance76–78 and secrete sol-

uble immune modulators that alter DC cytokine pro-

duction.79 The ability of estradiol and progesterone

to alter DC differentiation remains controversial, but

GAS can inhibit DC maturation80 and may be a

potential mechanism of GAS colonization and dis-

ease in the FRT.

Neutrophils

Neutrophils are an essential part of the innate

immune response to invading bacterial pathogens.

Neutrophils efficiently, phagocytose bacteria, activate

the production of reactive oxygen species and neu-

trophil degranulation and result in bacterial killing

(reviewed in Ref. 81). GAS utilizes several virulence

factors to evade ingestion and cellular recruitment

by neutrophils in soft-tissue infections.26,82,83 Upon

neutrophil phagocytosis, GAS up-regulates genes

involved in tempering oxidative stress, in cell enve-

lope components, and virulence factors,81,84,85 sug-

gesting that GAS can effectively respond to different

host environments to promote persistence. The rapid

response to bacterial infections in soft tissue makes it

likely that neutrophils will play a role in susceptibil-

ity to GAS postpartum sepsis.

GAS and Host Genetic Susceptibility

Emerging data suggest that host genetics play a sig-

nificant role in the outcome of GAS infections.86,87

Hypervirulent strains of GAS emerged globally in the

1980s and have persisted since, but despite the

increase in virulence, there is a wide spectrum of

clinical manifestations associated with these strains

of GAS,88,89 suggesting that host genetics are a fac-

tor.90–93 The severity of the response to GAS varies

by patient,93–95 and the level of host cytokine pro-

duction is correlated with the severity of dis-

ease.93,96–100 Of patients with previous postpartum

infections, there were significant changes in allele
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frequencies compared to control patients for TLR9,

hsp70, and IL-1b, suggesting that innate immune

response gene polymorphisms are associated with

susceptibility to severe GAS puerperal sepsis.101

These studies have helped to clarify some of the host

immune factors that influence infection risk, but fur-

ther research is needed to clarify genetic predisposi-

tions of pregnant and postpartum women to GAS

infection (or its complications).

Postpartum Physiology and Immunology

The gravid FRT environment is unique in its

immunology (reviewed in Ref. 19). The maternal

immune system must be tolerant to the indigenous

bacteria in the reproductive tract, to paternal anti-

gens in sperm, and to the immunologically distinct

fetus. Despite this immunological tolerance, the FRT

must be able to detect and respond to potentially

pathogenic organisms. Pregnancy takes place in a

physiologically and immunologically distinct organ

with its own mucosal barrier (uterus and decidua)

and accommodates an allogeneic fetus.102 In addi-

tion, hormonal products in the FRT alter the

immune response, and the fetus progressively chal-

lenges the maternal immune system as its size and

complexity increases. Prostaglandin (PG)E2, IL-4,

and IL-10 are induced by pregnancy and suppress

the maternal Th1 immune response (reviewed in

Ref. 103), and the systemic down-regulation of the

Th1 response results in immune alterations that

promote maternal susceptibility to infection.70 Preg-

nancy has often been referred to as a Th2-type

immune state, but pregnancy is a modulated

immune state that is not simply anti-inflammatory,

but is continually changing during fetal develop-

ment.104–106 Although much is known about immuno-

modulatory aspects of gestation, these findings have

not been studied in the context of invasive GAS

infections.

Prostaglandin E2

The lipid mediator PGE2 deserves special mention

because it has emerged as an important modulator

of host immunity, especially during pregnancy and

the postpartum period.107–112 PGE2 is an arachidonic

acid–derived mediator that modulates cell behavior

via the ligation of four distinct G protein–coupled

receptors called E prostanoid (EP) receptors, which

are numbered EP1-4 (reviewed in Ref. 113).

Throughout gestation, PGE2 dampens maternal

immune responses against fetal tissues107–110,114 and

regulates cervical softening and uterine contractions

during labor, where it is found at increased lev-

els.111,112,115 It is also a critical negative regulator of

the host immune response, with the ability to down-

regulate lymphocyte and neutrophil activity,116 to

inhibit production of Th1 cytokines (IL-12 and

IFNc), and to enhance production of Th2 cytokines

(IL-5 and IL-10).117–119 Elevation in PGE2 levels has

previously been shown to play a role in host suscep-

tibility to infections in many patient populations

including pregnant women.114,120–129

The capacity for PGE2 to regulate host–microbial

interactions is increasingly evident in the context of

streptococcal infections.130–136 In 1982, Short

et al.137 demonstrated increased survival in animals

when PGE2 synthesis was inhibited during Group B

Streptococcus sepsis. Prostaglandin endoperoxide syn-

thase 2 (COX-2) is the enzyme that converts arachi-

donic acid into prostaglandin endoperoxide H2

(PGH2) before PGH2 is converted into other prosta-

glandins. In 2010, Goldman et al. demonstrated that

COX-2 is up-regulated in human and mouse tissues

infected by GAS.130,138 Using a mouse model of GAS

bacteremia and in vitro studies of bone marrow–

derived macrophages, they established that PGE2 sig-

naling via EP2 receptors and cAMP elevation sup-

pressed host defenses against GAS.130 An unbiased

systems genetics approach later identified two PGE2

synthase enzymes (mPGES-1 and -2) as key

participants mediating susceptibility to GAS.86 How-

ever, little is known about PGE2 and GAS in the

FRT.139–141

FRT Mucus, pH, and the Indigenous Microbiota

Vaginal colonization by GAS appears to be an impor-

tant preceding event in some cases of puerperal sepsis

(following vaginal delivery), yet host–microbial inter-

actions that determine the capacity for GAS to colo-

nize and invade the mucosal surfaces of the FRT need

further study. In addition, the innate immune mecha-

nisms that prevent GAS from ascending through the

cervical canal into the postpartum uterus remain

incompletely understood. Mucus within the FRT pro-

tects epithelial cells from bacterial infections through

several mechanisms. Mucus can physically trap

potential pathogens and inhibit pathogen survival

because of the low pH, immunoglobulins, and anti-

microbial peptides.142,143 The changes in mucus in
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the postpartum FRT and its effect on GAS coloniza-

tion and dissemination remain unknown.

The indigenous bacteria in the reproductive tract

also provide pathogen resistance through several

means, including competitive exclusion of patho-

genic microbes and contributing to the acidic vaginal

environment through lactic acid production. Lacto-

bacillus spp. are the most common bacteria present

across all ethnic groups and produce lactic acid in

the FRT.142,144 Few studies have been performed to

investigate individual variation between women

over time, but these preliminary studies suggest that

the bacterial diversity is dynamic even among indi-

viduals and the vagina is implicated as a significant

source of infectious organisms resulting in preterm

labor.142,145–149 Membranes collected from healthy

women following at term cesarean sections demon-

strate bacterial DNA in up to 70% of samples, indi-

cating a dynamic host control of individual bacterial

diversity in healthy pregnancies.150 The role of the

indigenous microbiota in the reproductive tract and

its interactions with the host immune response dur-

ing GAS postpartum infections remain unknown,

and whether probiotic approaches would be success-

ful at preventing puerperal GAS infections depends

upon more research into how the microbiota creates

a colonization and infection resistance against this

pathogen.

Conclusions

Pregnancy is a highly immunomodulated state

that permits implantation and development of the

immunologically distinct fetus. This may result in an

immunologically vulnerable FRT that is more easily

infected after delivery. The immune changes that

progress during pregnancy are complex and remain

largely uncharacterized, but recent research suggests

GAS infections are re-emerging and postpartum

patients are particularly prone to severe GAS infec-

tions that result in death.1–4 The mechanisms behind

GAS bacterial virulence, postpartum susceptibility,

and the immune response to FRT infections remain

poorly understood, and future work must be per-

formed to address the increase in maternal mortality

from postpartum GAS infections.
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