CHEMSTRY
 A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2012

The Importance of Stereochemically Active Lone Pairs For Influencing Pb ${ }^{\text {II }}$ and $\mathrm{As}^{\text {III }}$ Protein Binding

Giuseppe Zampella, $*^{[a]}$ Kosh P. Neupane, ${ }^{[b]}$ Luca De Gioia, ${ }^{[a]}$ and Vincent L. Pecoraro ${ }^{*[b]}$

chem_201102786_sm_miscellaneous_information.pdf

Figure S1. UV/Vis titration of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ into TRIL12AL16C ($60 \mathrm{uM}, 100 \mathrm{mM}$ TrisHCl buffer, pH 8.0). The spectral change at 218 nm was plotted as a function of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ concentration and the plot showed that 1 equivalent of $\mathrm{Pb}(\mathrm{II})$ bind per peptide trimer. The solid line represents a nonlinear, least square fitting curve generated using 1:1 binding model by ORIGIN with $K_{\mathrm{a}}=5.6(\pm 1) \times 10^{8} \mathrm{M}^{-1}$. The inset depicts the UV/Vis spectral change from each addition of 0.1 equivalent of $\mathrm{Pb}(\mathrm{II})$.

Figure S2. Guanidinium hydrochloride ($\mathrm{Gdn} . \mathrm{HCl}$) denaturation curves showing the stability of apopeptide: TRIL2WL16C (black), TRIL12AL16C (red), and TRIL2WL12AL16C (green). The data were collected at $10 \mu \mathrm{M}$ peptide monomer in TrisHCl buffer at pH 8.0. [$\theta]_{222}$ is converted into $\%$ folded and plotted against $\mathrm{Gdn} . \mathrm{HCl}$ concentration.

Figure S3. Change in fluorescence intensity upon binding of $\mathrm{Pb}(\mathrm{II})$ to the peptide TRIL2WL16C (filled circle) and TRIL2WL12AL16C (open circle) (30 nM trimer). The Trp was excited at 280 nm and the fluorescence quenching was traced at 354 nm . The curves represent the best fit to Equation 1 by non linear least squares analysis using ORIGIN software. In inset fluorescence quenching spectra were shown for the addition of $\mathrm{Pb}(\mathrm{II})$ to TRIL2WL12AL16C.

Figure S4. Mapping of isoenergy surfaces associated with the appropriate s and p orbitals for A) $\mathrm{As}(\mathrm{ACA})_{3}$ and B$) \mathrm{Pb}(\mathrm{ACA})_{3}$. The eigenvalue of the displayed orbital is -0.205285 Hartree for the As system, while in the case of the Pb system the associated eigenvalue is -0.09665 Hartree.

Figure S5. Closest H atom to M ion distances given in Angstrom. A) $\mathrm{As}(\mathrm{IIII})(\mathrm{ACA})_{3}$ and B) $\mathrm{Pb}(\mathrm{II})(\mathrm{ACA})_{3}$.

