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Consistency Properties of Species Tree Inference by

Minimizing Deep Coalescences
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ABSTRACT

Methods for inferring species trees from sets of gene trees need to account for the possibility
of discordance among the gene trees. Assuming that discordance is caused by incomplete
lineage sorting, species tree estimates can be obtained by finding those species trees that
minimize the number of ‘‘deep’’ coalescence events required for a given collection of gene
trees. Efficient algorithms now exist for applying the minimizing-deep-coalescence (MDC)
criterion, and simulation experiments have demonstrated its promising performance.
However, it has also been noted from simulation results that the MDC criterion is not always
guaranteed to infer the correct species tree estimate. In this article, we investigate the
consistency of the MDC criterion. Using the multipscies coalescent model, we show that
there are indeed anomaly zones for the MDC criterion for asymmetric four-taxon species
tree topologies, and for all species tree topologies with five or more taxa.

Key words: algorithms, combinatorial optimization, combinatorics, computational molecular

biology, phylogenetic trees.

1. INTRODUCTION

It is well known that, for a variety of reasons such as horizontal gene transfer, gene duplication and

loss, and incomplete lineage sorting, gene trees can differ from each other and from the species tree along

whose branches they have evolved (Degnan and Rosenberg, 2009; Maddison, 1997; Nichols, 2001). Con-

sequently, methods for inferring species trees from sets of gene trees need to consider gene tree discordance

in order to obtain reliable estimates.

Approaches to resolving the species tree/gene tree discordance problem in phylogenetic inference can

be classified as either nonparametric (e.g., democratic vote, consensus, and parsimony-based) or para-

metric (e.g., likelihood and Bayesian). In general, nonparametric methods are faster than parametric

methods, and hence they are computationally preferable for analyzing large datasets. One of the main

concerns about these methods, however, is their potential for inconsistency. Under a specific model for

the evolution of gene trees along the branches of species trees, a method is consistent if for each

collection of values of the model parameters—the species tree topology and its branch lengths—the

method produces a correct estimate of the species tree in the limit as the number of sampled gene trees

goes to infinity. Recently, inconsistency results have been reported for several nonparametric methods,
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including democratic vote and several consensus methods. For example, Degnan and Rosenberg (2006)

have shown that for asymmeric species trees with four leaves and for any species tree with at least five

leaves, there exist species tree branch lengths such that the most likely gene tree topology under the

multispecies coalescent model (Degnan and Rosenberg, 2009), the ‘‘democratic vote’’ topology, differs

from the species tree topology. The greedy consensus method, which reconstructs the species tree by

sequentially adding the most frequent clade compatible with all previously included clades, and which is

not based specifically on coalescent principles, has also been proven to be inconsistent (Degnan et al.,

2009). In contrast, several methods for inferring species trees from gene trees that make use of elements of

the coalescent model, such as STAR (Liu et al., 2009), STEAC (Liu et al., 2009), and GLASS (Liu et al.,

2010; Mossel and Roch, 2010), have been shown to be consistent under the multispecies coalescent model.

Maddison (1997) introduced a parsimony criterion for inferring species trees from gene trees by

minimizing deep coalescences (MDC), and several exact algorithms and heuristics for implementing this

criterion have recently been developed (Bansal et al., 2010; Than and Nakhleh, 2009). Unlike the

democratic vote or greedy consensus methods, which provide algorithms for inferring species trees from

collections of gene trees without taking into account the process by which the gene trees have been

produced, the MDC criterion relies on an understanding of the specific nature of the way in which

incomplete lineage sorting occurs. Thus, it is a natural candidate for species tree inference when dis-

cordance among gene trees is caused by incomplete lineage sorting. Simulation studies have suggested a

high degree of accuracy of species tree estimates obtained by this criterion (Maddison and Knowles,

2006; Than and Nakhleh, 2009).

As noted by Than and Nakhleh (2009), however, it has been observed that in some cases, the MDC

criterion does not reconstruct the correct species tree. As no theoretical results concerning consistency

properties of the criterion have yet been reported, in this paper we investigate whether it is consistent under

the multispecies coalescent model. We show that if gene lineages have evolved according to the multi-

species coalescent model, then the MDC criterion is inconsistent. In other words, for certain combinations

of species tree topologies and branch lengths, the MDC criterion infers an incorrect species tree topology in

the limit as the number of sampled genes increases without bound.

2. THE MINIMIZING-DEEP-COALESCENCE CRITERION

Although a variety of reasons can explain why gene trees can disagree with the species tree that contains

them, we assume throughout this article that incomplete lineage sorting, or deep coalescence, is the only

source for the discordance. Looking backward in time, the discordance between a gene tree and a species

tree occurs because gene lineages can persist deeper than speciation events, providing opportunities for

them to coalesce in an order different from the order of speciation events.

2.1. The deep coalescence cost

To measure the severity of the topological disagreement between a gene tree and a species tree, we use

the deep coalescence cost, first introduced by Maddison (1997). Given a binary, rooted gene tree T and

species tree S on a taxon set X, the deep coalescence cost for reconciling T within S is computed as

follows. Each node v of T is mapped to its most recent common ancestor (MRCA) node in S, that is,

the most recent node in S whose descendant leaf set (in S) contains all of the descendant leaves of v in

T (Fig. 1). For each internal branch e of S, let xlS(T, e) be the number of gene lineages at the ‘‘top’’ of

branch e minus 1; xlS(T, e) is also called the number of ‘‘extra’’ lineages in e. The deep coalescence cost

for reconciling T within S is defined as

a(T , S)¼
X

e2E̊(S)

xlS(T , e), (2:1)

where E
�
(S) is the set of internal branches in S.

It is possible to compute the number of extra lineages in an internal branch e of S without using an

MRCA mapping between the nodes of T and the nodes of S (Theorem 2 of Than and Nakhleh, 2009). For

an internal branch e of the species tree S, let CS(e) be the label set of the leaves under e (i.e., CS(e) is the

set of leaf labels for the cluster induced by e). A subtree t of T whose leaf set is contained in CS(e) is
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maximal with respect to e if it is not a proper subtree of another subtree t0 of T whose leaf set is also

contained in CS(e). If k is the number of maximal subtrees of T with respect to e, then the number of extra

lineages in e is

xlS(T , e)¼ k� 1: (2:2)

For example, Figure 1 illustrates that there is one extra lineage in the branch (u0, v0) of the species tree

topology S. We can also obtain this result by noting that (u0, v0) induces the cluster of leaf labels C¼ {a, b,

c, d}. There are two subtrees of T whose leaf sets are subsets of C, and that are maximal with respect to the

branch (u0, v0): t1¼ (a, (b, c)) and t2¼ (d). Consequently, from Eq. (2.2) we obtain that the number of extra

lineages in (u0, v0) is 1.

Suppose that we are given a collection G of binary, rooted gene trees on label set X. Denoting by R(X) the

set of all possible binary, rooted trees on X, then for each candidate species tree S0 in R(X), we compute the

deep coalescence cost for reconciling all gene trees in G within S0 by evaluating the sum

a(G, S0)¼
X
T2G

a(T , S0), (2:3)

where a(T, S0) is calculated using Eq. (2.1). Under the MDC criterion, a tree in R(X) whose deep coa-

lescence cost, defined by Eq. (2.3), is the smallest among those of all trees in R(X) is taken as an estimate of

the true species tree S. Note that more than one tree can be tied with the smallest deep coalescence cost, and

in this case, the MDC criterion randomly chooses one of them as an estimate of S. Efficient algorithms exist

for identifying optimal trees under the MDC criterion for a collection of gene trees (Bansal et al., 2010;

Than and Nakhleh, 2009).

2.2. An observation about collections of deep coalescence costs

Given two trees in R(X) that have the same unlabeled topology, S01 and S02, let us compare

fa(T , S01) j T 2 R(X)g and fa(T , S02) j T 2 R(X)g, the collections of deep coalescence costs for reconciling

all trees in R(X) within S01 and S02, respectively. Because S01 and S02 have the same unlabeled topology, there

exists a permutation p of the taxon set X such that the leaves of S01 can be relabeled according to p to obtain

S02. Denoting by p(T), for T 2 R(X), the tree obtained from T by applying p to its leaves (so that by our

choice of p, p(S01)¼ S02), we have the following facts:

1. If the leaves of both T and S01 are relabeled using p, then the MRCA mapping between the nodes of T

and S01 remains unchanged, and hence a(T , S01)¼ a(p(T), p(S01))¼ a(p(T), S02).

2. Because p is a permutation of X, p(T1)= p(T2) if T1= T2. Moreover, because R(X) is the set of all

rooted, binary trees on X, fp(T) j T 2 R(X)g¼R(X).

These facts imply that fa(T , S01) j T 2 R(X)g is equal to fa(p(T), S02) j T 2 R(X)g, which is in turn equal to

fa(T , S02) j T 2 R(X)g.
This observation can be further refined. Note that a tree in R(X) can never be transformed into another

tree of different unlabeled topology simply by relabeling its leaves according to a permutation p of X.

Therefore, if R(X) is partitioned into subsets R1, R2, . . . of trees having the same unlabeled topology, then

for each i¼ 1, 2, . . . , fp(T) j T 2 Rig¼Ri. Thus, fa(T , S01) j T 2 Rig¼fa(T , S02) j T 2 Rig for any two

tree topologies S01 and S02 that have the same unlabeled topology. This refined observation, that the

FIG. 1. Computing the deep coa-

lescence cost. Gene tree T is fitted

onto species tree S according to a

most recent common ancestor

(MRCA) mapping. In the figure,

mappings between leaves are omit-

ted, and for clearer illustration of

how T is reconciled within S, the

MRCAs of the internal nodes of T

are placed along the branches of S

rather than at internal nodes of S. The labels u0, v0, and w0 refer to specific nodes of S. In this example, the minimizing-

deep-coalescence (MDC) cost for T and S, a(T, S), is two, the total number of extra lineages in all the branches of S.
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collection of deep coalescence costs of all gene trees having a given unlabeled topology is dependent

only on the species tree’s unlabeled topology, is used in the next section in the proof of the inconsistency

of the MDC criterion.

3. INCONSISTENCY OF THE MDC CRITERION

Let S be a binary, rooted species tree on a taxon label set X, and let l be the vector of the lengths of

branches of S. The branch lengths are positive, and are measured in coalescent time units. We assume

that gene lineages have evolved along the branches of S following the multispecies coalescent model

(Degnan and Rosenberg, 2009). We further assume that one gene lineage is sampled in each species, so

that a gene tree and species tree have the same number of lineages, and that gene trees are independent

and known with certainty. Under the multispecies coalescent model, the probability of observing a

gene tree T 2 R(X) given the species tree S, Pr(T j S, l), can be computed using a formula of Degnan and

Salter (2005).

For a collection G of binary, rooted gene trees on X, the MDC criterion chooses as an estimate of the

species tree S a tree whose deep coalescence cost, defined by Eq. (2.3), is the smallest among those of all

trees in R(X). Because the number of gene trees in G is fixed for a given collection G, it is equivalent for the

MDC criterion to choose among all trees S0 in R(X) a tree with the smallest mean deep coalescence cost,

defined as a(G, S0)/jGj. By the strong law of large numbers, as the number of sampled gene trees in G goes

to infinity, the mean a(G, S0)/jGj approaches with probability 1 the expected value

aS, k(S0)¼
X

T2R(X)

Pr (T j S, k)a(T , S0): (3:1)

Therefore, in the limit where jGj goes to infinity, a species tree candidate S* with the smallest expected

value aS, k(S�) is chosen as an estimate of the species tree S. We call this tree the asymptotic MDC tree,

following the terminology in Degnan et al. (2009). If there is only one asymptotic MDC tree S*, and S*

differs from S, then the MDC criterion produces an incorrect estimate of S as the number of gene trees

increases without bound; that is, the MDC criterion is not statistically consistent. If there is more than one

asymptotic MDC tree, we also say that the MDC criterion is not statistically consistent, because in this case

it simply randomly picks one of these trees as an estimate of S.

3.1. Trees with three leaves

We first consider trees that have only three leaves. There are three possible labeled rooted, binary trees

with three leaves a, b, and c: S1¼ T1¼ ((a, b), c), S2¼ T2¼ ((a, c), b), and S3¼ T3¼ ((b, c), a). Here, for

convenience, we refer to these trees as T1, T2, and T3 when using them as gene trees, and as S1, S2, and S3

when using them as species trees. These trees differ only in a permutation of the leaf labels. Therefore, to

study the consistency of the MDC criterion, it is sufficient to consider the case in which the true species tree

topology is S1. That is, we can assume the species tree (with branch lengths) is (S1, l)¼ ((a, b): x, c), where

x is the positive length in coalescent time units of the only internal branch of S1.

The probabilities of observing the gene trees T1, T2, and T3 are Pr(T1 j S1, l)¼ 1� 2e�x/3 and Pr(T2 j S1,

l)¼ Pr(T3 j S1, l)¼ e�x/3, respectively (Hudson, 1983; Pamilo and Nei, 1988; Tajima, 1983). It is easy to

check that a(T1, S1)¼ 0 and a(T2, S1)¼ a(T3, S1)¼ 1. Using Eq. (3.1), we have aS1, k(S1)¼ 2e� x=3.

Similarly, we have aS1, k(S2)¼ aS1, k(S3)¼ 1� e� x=3. Clearly, for positive x, 2e�x/3< 1� e�x/3, implying

that S1 is the only asymptotic MDC tree. Hence, the MDC criterion is statistically consistent for trees

with three leaves.

3.2. Trees with four leaves

There are 15 labeled rooted, binary trees on four leaves. This collection of trees can be divided into a set

of symmetric trees, R1¼fT1, . . . , T3g, and a set of asymmetric trees, R2¼fT4, . . . , T15g (Table 1). For

convenience, we refer to the ith tree, i¼ 1, . . . , 15, as Ti when using it as a gene tree, and as Si when using it

as a species tree. Similarly to the case of trees with three leaves, it is sufficient for us to consider only one

labeling for each unlabeled species tree topology. We assume that the species tree is either (S1, l)¼ ((a, b):
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y, (c, d): x) or (S4, l)¼ (((a, b): y, c): x, d), where x and y are the positive lengths in coalescent time units of

the two internal branches (Fig. 2).

Our investigation of the consistency of the MDC criterion for symmetric and asymmetric species trees

(S1, l) and (S4, l) makes use of the rearrangement inequality, which states that given two sequences of real

numbers a1 � � � � � an and b1 � � � � � bn, the inequality

a1b1þ � � � þ anbn � ap(1)b1þ � � � þ ap(n)bn (3:2)

holds for any permutation p of f1, . . . , ng (Hardy et al., 1934). Note that if a1 is strictly smaller than each of

a2, . . . , an and b1 is strictly greater than each of b2, . . . , bn, then for any permutation p such that the equality

in Eq. (3.2) holds, it is necessary that p(1)¼ 1 (and so a1¼ ap(1)). For otherwise, let p(1)¼ i> 1, and let

p(j)¼ 1 for some j> 1. Because a1< ai and b1> bj, (a1b1þ aibj)� (aib1þ a1bj)¼ (a1� ai)(b1� bj)< 0. But

this leads to a contradiction because the permutation p0 in which p0(1)¼ 1, p0(j)¼ i, and p0(k)¼ p(k) for k= 1

and k= j produces a sum
Pn

k¼ 1 ap0(k)bk strictly smaller than the smallest sum
Pn

k¼ 1 akbk.

In the proof below, the rearrangement inequality is applied to the list of probabilities (considered as {bi})

and the list of deep coalescence costs (considered as {ai}) of the 15 gene trees. As observed in Section 2.2,

if two species tree candidates S and S0 have the same unlabeled topology, then fa(T , S) j T 2 R1g¼
fa(T , S0) j T 2 R1g and fa(T , S) j T 2 R2g¼fa(T , S0) j T 2 R2g. Therefore, the rearrangement inequality

can be applied separately in R1 and R2 to the probabilities and deep coalescence costs of gene trees.

Table 1. Probabilities and Deep Coalescence Costs for Reconciling Each of the 15 Rooted,

Binary Gene Trees with Leaf Labels a, b, c, and d, Given Either the Species Tree

(S1, l)¼ ((a, b): y, (c, d): x) or (S4, l)¼ (((a, b): y, c): x, d)

Gene tree Ti Pr(Ti j S1, l) a(Ti, S1) Pr(Ti j S4, l) a(Ti, S4)

T1¼ ((a, b), (c, d)) 1� 2
3

(e�xþ e�y)þ 4
9

e�(xþ y) 0 1
3

e�x � 1
6

e�(xþ y) � 1
18

e�(3xþ y) 1

T2¼ ((a, c), (b, d)) 1
9

e�(xþ y) 2 1
6

e�(xþ y) � 1
18

e�(3xþ y) 2

T3¼ ((a, d), (b, c)) 1
9

e�(xþ y) 2 1
6

e�(xþ y) � 1
18

e�(3xþ y) 2

T4¼ (((a, b), c), d) 1
3

e�x � 5
18

e�(xþ y) 1 1� 2
3

(e�xþ e�y)þ 1
3

e�(xþ y)þ 1
18

e�(3xþ y) 0

T5¼ (((a, b), d), c) 1
3

e�x � 5
18

e�(xþ y) 1 1
3

e�x � 1
6

e�(xþ y) � 1
9

e�(3xþ y) 1

T6¼ (a, (b, (c, d))) 1
3

e�y � 5
18

e�(xþ y) 1 1
18

e�(3xþ y) 3

T7¼ (b, (a, (c, d))) 1
3

e�y � 5
18

e�(xþ y) 1 1
18

e�(3xþ y) 3

T8¼ (((a, c), b), d) 1
18

e�(xþ y) 2 1
3

e�y � 1
3

e�(xþ y)þ 1
18

e�(3xþ y) 1

T9¼ (((b, c), a), d) 1
18

e�(xþ y) 2 1
3

e�y � 1
3

e�(xþ y)þ 1
18

e�(3xþ y) 1

T10¼ (((a, d), b), c) 1
18

e�(xþ y) 2 1
18

e�(3xþ y) 3

T11¼ (((b, d), a), c) 1
18

e�(xþ y) 2 1
18

e�(3xþ y) 3

T12¼ (((a, c), d), b) 1
18

e�(xþ y) 2 1
6

e�(xþ y) � 1
9

e�(3xþ y) 2

T13¼ (((b, c), d), a) 1
18

e�(xþ y) 2 1
6

e�(xþ y) � 1
9

e�(3xþ y) 2

T14¼ (((a, d), c), b) 1
18

e�(xþ y) 2 1
18

e�(3xþ y) 3

T15¼ (((b, d), c), a) 1
18

e�(xþ y) 2 1
18

e�(3xþ y) 3

a b

FIG. 2. Symmetric (a) and

asymmetric (b) rooted, binary

trees with leaf labels a, b, c, and d.
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3.2.1. Symmetric species trees. Given that the true species tree is (S1, l), the probabilities of the 15

gene trees were computed by Rosenberg (2002), and they are reproduced in the second column of Table 1.

The deep coalescence costs for reconciling each of the 15 gene trees within S1 are also given in Table 1. It

can be observed from the table that Pr(T2 j S1, l)¼ Pr(T3 j S1, l), Pr(T4 j S1, l)¼ Pr(T5 j S1, l), Pr(T6 j S1,

l)¼ Pr(T7 j S1, l), and Pr (T8 j S1, k)¼ � � � ¼ Pr (T15 j S1, k). Plugging the probability values and deep

coalescence costs into Eq. (3.1), we have

aS1, k(S1)¼
X15

i¼1

Pr (Ti j S1, k)a(Ti, S1)

¼
X3

i¼1

Pr (Ti j S1, k)a(Ti, S1)þ
X15

i¼4

Pr (Ti j S1, k)a(Ti, S1) (3:3)

¼ 4 Pr (T2 j S1, k)þ 2 Pr (T4 j S1, k)þ 2 Pr (T6 j S1, k)þ 16 Pr (T8 j S1, k) (3:4)

Let S0 be a species tree candidate different from S1. We aim to prove that aS1, k(S1)5 aS1, k(S0). There are

two subcases to consider: S0 is symmetric, and S0 is asymmetric.

Tree S0 is symmetric. For gene trees in R1, it can be seen seen from Table 1 that Pr(T1 j S1,

l)> Pr(T2 j S1, l)¼ Pr(T3 j S1, l). In fact, Pr(T1 j S1, l) is the largest probability among the 15 probability

values Pr (T1 j S1, k), . . . , Pr (T15 j S1, k), so that the democratic vote method is consistent for symmetric

species trees with four leaves (Degnan and Rosenberg, 2006). We also have a(T1, S1)¼ 0< a(T2,

S1)¼ a(T3, S1)¼ 2. Moreover, because S1 and S0 have the same unlabeled topology, the list {a(Ti, S0), i¼ 1,

2, 3} is a permutation of {a(Ti, S1), i¼ 1, 2, 3}. Applying the rearrangement inequality to the lists {a(Ti, S1),

i¼ 1, 2, 3} and {Pr(Ti j S1, l), i¼ 1, 2, 3}, we have

X3

i¼1

Pr (Ti j S1, k)a(Ti, S1) �
X3

i¼1

Pr (Ti j S1, k)a(Ti, S0): (3:5)

For gene trees in R2, one can check from Table 1 that T4, . . . , T7 all have probabilities greater than those

of T8, . . . , T15, while their deep coalescence costs (for reconciling within S1) are smaller. Trees S1 and S0

have the same unlabeled topology, and hence the list fa(Ti, S0), i¼ 4, . . . , 15g is a permutation of

fa(Ti, S), i¼ 4, . . . , 15g. We again apply the rearrangement inequality to the lists fa(Ti, S1), i¼ 4, . . . , 15g
and fPr (Ti j S1, k), i¼ 4, . . . , 15g, obtaining

X15

i¼4

Pr (Ti j S1, k)a(Ti, S1) �
X15

i¼4

Pr (Ti j S1, k)a(Ti, S0): (3:6)

From Eqs. (3.3), (3.5), and (3.6), we have aS1, k(S1) � aS1, k(S0). Further, if aS1, k(S1)¼ aS1, k(S0), then it is

necessary that the equality in Eq. (3.5) holds. However, Pr(T1 j S1, l) is strictly greater than Pr(T2 j S1, l)

and Pr(T3 j S1, l), while a(T1, S1) is strictly smaller than a(T2, S1) and a(T3, S1). Using the equality

condition in the rearrangement inequality, the equality in Eq. (3.5) holds only when a(T1, S0)¼ a(T1,

S1)¼ 0, which is true only if S0 ¼ S1. Therefore, aS1, k(S1)5 aS1, k(S0) for any symmetric species tree

candidate S0= S1.

Tree S0 is asymmetric. In this case, S0 and S4 have the same unlabeled topology, and so the lists {a(Ti, S0),
i¼ 1, 2, 3} and fa(Ti, S0), i¼ 4, . . . , 15g are permutations of {a(Ti, S4), i¼ 1, 2, 3} and fa(Ti, S4),

i¼ 4, . . . , 15g, respectively. From Table 1, notice that a(T1, S4)¼ 1< a(T2, S4)¼ a(T3, S4)¼ 2. Applying the

rearrangement inequality to the lists {a(Ti, S4), i¼ 1, 2, 3} and {Pr(Ti j S1, l), i¼ 1, 2, 3}, we have

X3

i¼ 1

Pr (Ti j S1, k)a(Ti, S0) � Pr (T1 j S1, k)þ 4 Pr (T2 j S1, k): (3:7)

For gene trees in R2, the four smallest values among a(T4, S4), . . . , a(T15, S4) are smaller than or equal to

1, while the remaining eight values are at least 2. We have also noticed above that T4, . . . , T7 all have

probabilities greater than the probabilities of T8, . . . , T15. However, the relative order between Pr(T4 j S1,

l)¼ Pr(T5 j S1, l) and Pr(T6 j S1, l)¼ Pr(T7 j S1, l) depends on the branch lengths x and y. Assuming that

Pr(T4 j S1, l)� Pr(T6 j S1, l), then
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X15

i¼ 4

Pr (Ti j S1, k)a(Ti, S0) � Pr (T4 j S1, k)þ 2 Pr (T6 j S1, k)þ 22 Pr (T8 j S1, k), (3:8)

by applying the rearrangement inequality to the lists fa(Ti, S4), i¼ 4, . . . , 15g and fPr (Ti j S1, k),

i¼ 4, . . . , 15g.
From Eqs. (3.4), (3.7), and (3.8), we have

aS1, k(S0)� aS1, k(S1) � Pr (T1 j S1, k)� Pr (T4 j S1, k)þ 6 Pr (T8 j S1, k)

¼ 1� e� x� 2

3
e� yþ 19

18
e� (xþ y):

(3:9)

If we instead assume that Pr(T6 j S1, l)> Pr(T4 j S1, l), then we obtain

aS1, k(S0)� aS1, k(S1) � Pr (T1 j S1, k)� Pr (T6 j S1, k)þ 6 Pr (T8 j S1, k)

¼ 1� e� y� 2

3
e� xþ 19

18
e� (xþ y):

(3:10)

It is straightforward to check that Eq. (3.9) and (3.10) are always greater than zero for all positive x and y.

Consequently, aS1, k(S1)5 aS1, k(S0) for all asymmetric S0.
Whether the species tree candidate S0 is asymmetric or symmetric, if S0= S1, then aS1, k(S1)5 aS1, k(S0).

Therefore, in the case of four-taxon, symmetric species trees, the unique asymptotic MDC tree matches the

species tree topology. The MDC criterion is statistically consistent in this case.

3.2.2. Asymmetric species trees. Our treatment for the case of the asymmetric species tree (S4,

l)¼ (((a, b): y, c): x, d) is similar to the treatment for the symmetric species tree S1 in Section 3.2.1. The

probabilities of the 15 gene trees T1, . . . , T15 given the species tree S4, computed by Rosenberg (2002), are

reproduced in the fourth column of Table 1. Again, there are two subcases to consider, depending on

whether the species tree candidate S0 is asymmetric or symmetric.

Tree S0 is asymmetric. For gene trees in R1, Pr(T1 j S4, l)> Pr(T2 j S4, l)¼ Pr(T3 j S4, l), while a(T1,

S4)¼ 1< a(T2, S4)¼ a(T3, S4)¼ 2. Also, because S0 and S4 have the same unlabeled tree topology, the list {a(Ti,

S0), i¼ 1, 2, 3} is a permutation of {a(Ti, S4), i¼ 1, 2, 3}. By using the rearrangement inequality, we have

X3

i¼ 1

Pr (Ti j S4, k)a(Ti, S4) �
X3

i¼ 1

Pr (Ti j S4, k)a(Ti, S0): (3:11)

For gene trees in R2, we make three observations about their probabilities:

1. Pr(T4 j S4, l)> Pr(T5 j S4, l)> Pr(T12 j S4, l)¼ Pr(T13 j S4, l)> e�(3xþy)/18;

2. Pr(T4 j S4, l)> Pr(T8 j S4, l)¼ Pr(T9 j S4, l)> Pr(T12 j S4, l); and

3. The remaining six trees in R2—T6, T7, T10, T11, T14 and T15—all have the smallest probability,

e�(3xþy)/18.

These observations can be easily verified from Table 1. For example, Pr(T4 j S4, l)> Pr(T5 j S4, l) when

1� e� x� 2

3
e� yþ 1

2
e� (xþ y)þ 1

6
e� (3xþ y) 4 0,

which is equivalent to

2=3� e� x=2� e� 3x=6

1� e� x
5 ey:

However, ey> 1 for positive y, while the left hand side is always smaller than 1 because

2

3
� 1

2
e� x� 1

6
e� 3x� (1� e� x)¼ � (e� x� 1)2(e� xþ 2)

6
,

which is smaller than zero for all positive x. We note that although the relative order of Pr(T5 j S4, l) and

Pr(T8 j S4, l) depends on x and y, this is not important as the deep coalescence costs for reconciling either T5

or T8 within S4 have the same value, 1.
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As for the deep coalescence costs of gene trees in R2, a(T4, S4)¼ 0< a(T5, S4)¼ a(T8, S4)¼ a(T9,

S4)¼ 1< a(T12, S4)¼ a(T13, S4)¼ 2, while for each of the remaining six trees, the cost is 3. Based on the

relative orders of the probabilities Pr(Ti j S4, l) and deep coalescence costs a(Ti, S4), by using the re-

arrangement inequality, we have

X15

i¼4

Pr (Ti j S4, k)a(Ti, S4) �
X15

i¼4

Pr (Ti j S4, k)a(Ti, S0): (3:12)

Equations (3.11) and (3.12) imply that aS4, k(S4) � aS4, k(S0) for any asymmetric species tree candidate S0.
If aS4, k(S4)¼ aS4, k(S0), then equality must hold in Eq. (3.12). Because Pr(T4 j S4, l) is strictly greater than

the probabilities of other gene trees in R2, while a(T4, S4) is strictly smaller than their deep coalescence

costs, the equality in Eq. (3.12) holds only when a(T4, S0)¼ a(T4, S4)¼ 0, which in turn holds only when

S0 ¼ S4. Therefore, for any asymmetric species tree candidate S0 6¼ S4, aS4, k(S4)5 aS4, k(S0).
Tree S0 is symmetric. There are three symmetric species tree candidates—S1, S2, and S3—and we

consider each one of them in turn:

1. If S0 ¼ S1, plugging the values of a(Ti, S1) and Pr(Ti j S4) into Eq. (3.1), we have

aS4, k(S1)¼ 1� 1

3
e� xþ 2

3
e� yþ 1

6
e� (xþ y)þ 1

18
e� (3xþ y):

The expected deep coalescence cost of S4, on the other hand, is

aS4, k(S4)¼ 2

3
(e� xþ e� y)þ 1

3
e� (xþ y)þ 5

18
e� (3xþ y):

Therefore, aS4, k(S1) is smaller than aS4, k(S4) when

1� e� x� 1

6
e� (xþ y)� 2

9
e� (3xþ y) 5 0,

or equivalently, when

y5 f (x)¼ ln

 
3e2xþ 4

18(e3x� e2x)

!
: (3:13)

2. If S0 ¼ S2 or S0 ¼ S3, then the expected deep coalescence cost of S0 is

aS4, k(S2)¼ aS4, k(S3)¼ 2� 1

3
e� y� 1

6
e� (xþ y)þ 1

18
e� (3xþ y),

which is smaller than aS4, k(S4) if

2� e� y� 2

3
e� x� 1

2
e� (xþ y)� 2

9
e� (3xþ y) 5 0,

or, equivalently, if

y5 g(x)¼ ln

 
1

2
þ 15e2xþ 4

12(3e3x� e2x)

!
: (3:14)

Because we assume species tree branch lengths are positive, in order for a positive value of y to satisfy Eq.

(3.13) or Eq. (3.14), the right hand sides of Eq. (3.13) and Eq. (3.14) must be positive. Both of these

requirements yield the same condition:
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18e3x� 21e2x� 45 0: (3:15)

In addition, it is straightforward to verify that when Eq. (3.15) holds, f (x)> g(x).

Figure 3 shows the plots of f (x) and g(x). To the right of the curve f (x) in the figure, neither Eq. (3.13)

nor Eq. (3.14) is satisfied, and the species tree S4 is the asymptotic MDC tree. To the left of this curve, Eq.

(3.13) holds, implying that aS4
,l(S4) is not the smallest, and therefore, S4 cannot be the asymptotic MDC

tree. More precisely,

1. If 0� f (x)< y or if x is greater than or equal to the root xm� 0.2612 of Eq. (3.15), then the asymptotic

MDC tree is the species tree S4;

2. If 0� g(x)< y< f (x), then S1 is the only species tree candidate that has expected deep coalescence

cost smaller than that of S4;

3. If 0< y� g(x), then the trees S1, S2, and S3 all have expected deep coalescence cost smaller than that

of S4.

We also note that in the boundary case where y¼ f (x)> 0, both S1 and S4 have the same expected deep

coalescence cost. In the limit in which the number of gene trees goes to infinity, the MDC criterion

considers S1 and S4 equally good, and so we also say that the MDC criterion is not statistically consistent in

this case.

Because f (x) approaches infinity as x approaches zero, for any given y, we can always make x small

enough so that Eq. (3.13) holds. In other words, we can set x sufficiently small so that the species tree S4 is

not the asymptotic MDC tree. In addition, when y< g(0)� 0.2559, we can always choose sufficiently small

x so that Eq. (3.14) holds, giving all three species tree candidates S1, S2, and S3 smaller expected deep

coalescence cost than the species tree S4. Thus, for very small x, the MDC criterion is very likely to infer an

incorrect estimate of the true species tree. The effects of x and y on the MDC criterion are similar to their

effects on the democratic vote method (Degnan and Rosenberg, 2006).

Figure 3 also plots the anomaly zones of the democratic vote method, defined by functions

a(x)¼ ln
�

2
3
þ 3e2x � 2

18(e3x � e2x)

�
and b(x)¼ ln

�
2
3
þ 5e2x � 2

6(3e3x � 2e2x)

�
(Degnan and Rosenberg, 2006). Similar to the

MDC criterion, the space of branch lengths x and y is also divided into three regions. To the right of the

curve a(x) in the figure, the democratic vote method is statistically consistent, that is, the most frequent

gene tree has the same labeled topology as the species tree. In the region bounded by a(x) and b(x), there is

exactly one labeled topology different from the species tree with higher probability than a matching gene

tree. In the region below b(x), there are three anomalous gene tree topologies.

xm xd

FIG. 3. Anomaly zones of

the minimizing-deep-coalescence

(MDC) criterion for asymmetric

species trees with four leaves. In

the region bounded by y¼ g(x) and

the two axes, there are three can-

didate species trees with lower ex-

pected deep coalescence costs than

the true species tree, while in the

region bounded by the y-axis,

y¼ g(x) and y¼ f(x), there is one

such anomalous candidate species

tree. In this figure, the anomaly

zones of the democratic vote

method, defined by a(x) and b(x),

are shown in dashed lines. The

definitions of branch lengths x and y

appear in Figure 2b.
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It is interesting to see that the anomaly zones of the MDC criterion are larger than those of the

democratic vote method. The largest value such that the MDC criterion is inconsistent when both branch

lengths have the same value is x¼ y� 0.2215, whereas the corresponding length for the democratic vote is

x¼ y� 0.1569 (Degnan and Rosenberg, 2006). However, it is not the case that a(x) and b(x) are always

smaller than f (x) and g(x) (Fig. 3). The functions a(x) and b(x) intersect with the x-axis at xd� 0.2654,

while f (x)¼ g(x)¼ 0 at xm� 0.2612. In the region bounded by the x-axis and the curves f (x) and a(x), the

MDC criterion is consistent, whereas the democratic vote method is not consistent.

Remarks. It is possible to obtain the consistency properties of the MDC criterion on trees with four

leaves by an exhaustive approach, that is, by directly computing the expected deep coalescence cost

for every species tree candidate and comparing it with the corresponding cost of the parametric species

tree. However, our approach using the rearrangement inequality provides a more concise proof

that gives us some insight into the anomaly zones of the MDC criterion. As we have shown, only

asymmetric species trees can produce anomalous candidate trees, which are symmetric. Intuitively, both

for true species trees that are symmetric and for those that are asymmetric, the probabilities and deep

coalescence costs of gene trees in each of the sets R1 and R2 are monotonic, but in opposite order.

Therefore, by the rearrangement inequality, a candidate species tree that has the same unlabeled to-

pology as the true species tree cannot have a smaller expected deep coalescence cost. This reasoning

explains why the true species tree and anomalous candidate species trees must have different unlabeled

topologies.

3.3. Trees with five or more leaves

We prove in this section that for any species tree topology with at least five leaves, there always exists

a set of branch lengths that makes the MDC criterion infer the incorrect species tree topology in the limit

as the number of sampled gene trees goes to infinity. Our approach is to make certain branches long

enough to force the species tree to behave like an asymmetric four-leaf tree. For a rooted, binary

(species) tree with at least five leaves, the longest path from its root to one of its leaves must have length

at least three, for otherwise it cannot have more than four leaves. Call this path the ‘‘main’’ path in the

tree, and consider the remaining parts of the tree as four subtrees A1, . . . , A4 attached to this path (Fig. 4).

None of these subtrees can be empty, although one or more of these subtrees (but not all) can each be a

single leaf. If all internal branches of these subtrees, along with the four branches labeled e1, . . . , e4, are

arbitrarily long, then these subtrees can be ‘‘collapsed’’ into single leaves, resulting in an asymmetric

four-leaf tree. Because we have already shown in Section 3.2.2 that such a species tree can mislead the

MDC criterion, this reduction implies that the MDC criterion is also statistically inconsistent for trees

with at least five leaves.

This argument can be made more rigorous as follows. If S has five or more leaves, then S has the same

structure as the tree on the left in Figure 4, that is, S is obtained from S4¼ (((a, b), c), d) by substituting

leaves a, b, c, and d with nonempty subtrees A1, . . . , A4, respectively. For each i¼ 1, . . . , 15, let S0i¼ T 0i be

the tree obtained from the corresponding Si¼ Ti in Table 1 using the same substitutions. Let hi be a valid

coalescent history for reconciling the four-leaf gene tree Ti within S4. The coalescent history is a list of

coalescence events along with a list of species tree internal branches (including the branch prior to the root

of the species tree) on which they occur (Degnan and Salter, 2005; Rosenberg, 2007; Than et al., 2007).

FIG. 4. A tree with at least five

leaves (left), illustrating the em-

bedded structure of an asym-

metric four-leaf tree (right). The

path with length at least three

between the root and some leaf is

shown with a thick line. Each of

the triangles, representing taxon

groups, contains at least one leaf.
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From hi, we create a coalescent history h0i for reconciling the gene tree T 0i within S. We require that h0i
satisfy the following two conditions:

1. In each internal branch of subtrees A1, . . . , A4, as well as in each of the branches labeled e1, . . . , e4 in

Figure 4, there is exactly one coalescence event. This implies that in each internal branch of A1, . . . , A4

and in each branch e1, . . . , e4, exactly two gene lineages enter, and they coalesce into one lineage.

2. Denoting the single gene lineages in e1, . . . , e4 respectively as g1, . . . , g4, we can think of them as

gene lineages a, b, c, and d in S4. We now require that the lineages g1, . . . , g4 coalesce on the

branches e0y, e0x, and e0r of the species tree S in the same pattern as a, b, c, and d coalesce on the

branches ey, ex, and er of S4. Here, we attach the branches e0r and er of infinite length to the roots of

S and S4 to accommodate coalescence events that occur prior to these root nodes.

It is easy to see that h0i formed in this way is indeed a valid coalescent history for reconciling the gene tree

T 0i within the species tree S. Let l and l0 be the vectors of the lengths of branches of S4 and S, repsectively.

We give the branches ex of S4 and e0x of S length x, and the branches ey of S4 and e0y of S length y. We next

claim that for any given �4 0, we can always make the internal branches of A1, . . . , A4 and the branches

e1, . . . , e4 long enough so that

q Pr (hi) � Pr (h0i) � Pr (hi), (3:16)

where q¼ (1� �)4, and Pr(h0i) and Pr(hi) are the probabilities of coalescent histories h0i and hi, respectively.

The probability Pr(h0i) is the product of the probability for each internal branch of S and the branch e0r that

the coalescence events occur consistently with the gene tree T 0i (Degnan and Salter, 2005). In other words,

if we denote by p(e) the probability for the branch e that the coalescence events occurring along e are

consistent with the gene tree T, then we can express Pr(h0i) as

Pr (h0i)¼
 Y4

k¼1

p(ek)
Y

e2E
�
(Ak)

p(e)

!
p(e0y)p(e0x)p(e0r),

where E
�
(Ak) is the set of the internal branches of the subtree Ak, k¼ 1, . . . , 4; if Ak is a single-leaf

subtree, then E
�
(Ak) is empty and we use the convention that

Q
e2E
�
(Ak)

p(e)¼ 1. Because the probability

for two lineages to coalesce on a branch e of length le is 1� exp(�le) (Hudson, 1983; Tajima, 1983),

we have

p(ek)
Y

e2E
�
(Ak)

p(e)¼ (1� exp (� kek
))
Y

e2E
�
(Ak)

(1� exp (� ke)),

which approaches 1 as kek
and le, e 2 E

�
(Ak), all approach infinity. Hence, for a given �4 0, we can always

choose kek
and le, e 2 E

�
(Ak), large enough so that

p(ek)
Y

e2E
�
(Ak)

p(e) � 1� �:

We also have p(ek)
Q

e2E
�
(Ak)

p(e) � 1 because all of its terms are probability values. Therefore,

(1� �)4p(e0y)p(e0x)p(e0r) � Pr (h0i) � p(e0y)p(e0x)p(e0r):

Moreover, because our construction of h0i requires that the gene lineages g1, . . . , g4 coalesce on the

branches e0y, e0x, and e0r of S in the same pattern that lineages a, b, c, and d coalesce on the branches ey, ex,

and er of S4, we have

p(e0y)p(e0x)p(e0r)¼ Pr (hi),

and therefore,

q Pr (hi)¼ (1� �)4 Pr (hi) � Pr (h0i) � Pr (hi):

Our next step is to use Eq. (3.16) to derive the lower and upper bounds of the probability of observing the

gene tree T 0i given the species tree (S, l0). Let Hi be the set of all valid coalescent histories hi for reconciling
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the four-leaf gene tree Ti in the four-leaf species tree S4, and let H0i be the set of coalescent histories h0i
constructed from the corresponding hi as described above. Because the probability of a gene tree is the sum

of the probabilities of all valid coalescent histories for reconciling the gene tree within the species tree

(Degnan and Salter, 2005), we have

Pr (T 0i j S, k0) �
X
h0

i
2H0

i

Pr (h0i) �
X
hi2Hi

q Pr (hi)¼ q Pr (Ti j S4, k), (3:17)

On the other hand, the total probability of all coalescent histories for reconciling all gene trees in R(X),

discounting those in H01, . . . , H015, satisfies

1�
X15

i¼1

X
h0

i
2H0

i

Pr (h0i) � 1�
X15

i¼1

X
hi2Hi

q Pr (hi) � 1� q
X15

i¼1

Pr (Ti j S4, k)¼ 1� q:

Consequently, the probability of observing the gene tree T 0i given the species tree (S, l0) is bounded

above by X
h0

i
2H0

i

Pr (h0i)þ (1� q) �
X
hi2Hi

Pr (hi)þ (1� q)¼ Pr (Ti j S4, k)þ (1� q), (3:18)

and the total probability of the jR(X)j � 15 gene trees in R(X) other than T 01, . . . , T 015 is bounded above by

1� r.

The deep coalescence cost a(T 0i , S) can be derived directly from a(Ti, S4). Recall that S and T 0i are

obtained from S4 and Ti by replacing a, b, c, and d with subtrees A1, . . . , A4. From Eq. (2.2), it is easy to see

that the numbers of extra lineages in each internal branch of A1, . . . , A4 as well as in e1, . . . , e4 are all zero.

Hence, the deep coalescence cost a(T 0i , S) is the sum of the numbers of extra lineages in the remaining two

internal branches of S, e0x and e0y. If t is a maximal subtree of Ti with respect to, say, the branch ex of S4, then

the subtree t0 obtained from t by substituting each of the leaves a, b, c and d present in t with A1, . . . , A4 is a

maximal subtree of T 0i with respect to the branch e0x of the species tree S. The converse is also true, that is, if

t0 is a maximal subtree of T 0i with respect to e0x, then t is a maximal subtree of Ti with respect to ex. By using

Eq. (2.2), we have xlS(T 0i , e0x)¼ xlS4
(Ti, ex) and xlS(T 0i , e0y)¼ xlS4

(Ti, ey), and therefore,

a(T 0i , S)¼ xlS(T 0i , e0x)þ xlS(T 0i , e0y)

¼ xlS4
(Ti, ex)þ xlS4

(Ti, ey)

¼ a(Ti, S4): (3:19)

The expected deep coalescence cost for the candidate species tree that has the same labeled topology as

S satisfies

aS, k0(S) �
X15

i¼1

Pr (T 0i j S)a(T 0i , S)

¼
X15

i¼1

Pr (T 0i j S)a(Ti, S4) (by Eq. (3.19))

�
X15

i¼1

q Pr (Ti j S4)a(Ti, S4) (by Eq. (3.17))

¼ qaS4, k(S4):

A loose upper bound on the deep coalescence cost for reconciling two arbitrary trees in R(X) is jXj2.

This bound follows because there can be at most jXj � 1 extra lineages in a tree branch and there are

exactly jXj � 2 internal branches in a tree in R(X). Consider the species tree candidate

S01¼ ((A1, A2), (A3, A4)). Using the same argument employed for proving a(T 0i , S)¼ a(Ti, S4), we also have

a(T 0i , S01)¼ a(Ti, S1) for i¼ 1, . . . , 15. Further, because 1� r is the upper bound on the total probability of

the jR(X)j � 15 gene trees in R(X) other than T 01, . . . , T 015, the expected deep coalescence cost for S01
satisfies
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aS, k0(S
0
1) �

X15

i¼ 1

Pr (T 0i j S, k0)a(T 0i , S01)þ (1� q)jXj2

¼
X15

i¼ 1

Pr (T 0i j S, k0)a(Ti, S1)þ (1� q)jXj2

�
X15

i¼ 1

( Pr (Ti j S4, k)þ (1� q))a(Ti, S1)þ (1� q)jXj2 (by Eq. (3.18))

� aS4, k(S1)þ (1� q)(jXj2þ 30),

where in the last step the term 30(1� r) arises because a(Ti, S1)� 2 (Table 1). Therefore, if

aS4, k(S1)þ (1� q)(jXj2þ 30)5 qaS4, k(S4),

which is equivalent to

q4
aS4, k(S1)þ (jXj2þ 30)

aS4, k(S4)þ (jXj2þ 30)
, (3:20)

then aS, k0(S
0
1)5 aS, k0 (S). As we have already shown in Section 3.2.2, when y< f (x), as given in Eq. (3.13),

aS4
(S4) exceeds aS4

(S1), making the right-hand side of Eq. (3.20) smaller than 1. Therefore, for r suffi-

ciently close to 1 (i.e., for sufficiently small �4 0), the inequality in Eq. (3.20) is satisfied. This means that

we can always assign appropriate lengths to the branches of S so that the species tree candidate with the

smallest expected deep coalescence cost has a labeled topology different from the true species tree. Thus, in

the limit as the number of genes tends to infinity, the MDC criterion will infer an incorrect species tree

estimate.

Remarks. The techniques in this proof can also be used to simplify the proof of the inconsistency of the

democratic vote method for trees with at least five leaves (Degnan and Rosenberg, 2006). Note that T 04 has

the same labeled topology as the species tree S, and so in order to prove the inconsistency of the democratic

vote method, we need to prove that Pr (T 04 j S, k0) is not the highest among the probabilities of all gene trees

in R(X). From Eq. (3.18), Pr (T 04 j S, k0) � Pr (T4 j S4, k)þ (1� q), while from Eq. (3.17), Pr (T 01 j S, k0) �
q Pr (T1 j S4, k). Therefore, if

q Pr (T1 j S4, k)4 Pr (T4 j S4, k)þ (1� q)

or, equivalently, if

q4
1þ Pr (T4 j S4, k)

1þ Pr (T1 j S4, k)
, (3:21)

then Pr (T 01 j S, k0)4 Pr (T 04 j S, k0). Because in the anomaly zone of the democratic vote method for

asymmetric four-leaf trees (Eq. (4) in Degnan and Rosenberg, 2006), Pr(T1 j S4, l)> Pr(T4 j S4, l), for r
sufficiently close to 1, Eq. (3.21) holds. The inconsistency of the democratic vote method for species trees

with at least five leaves immediately follows.

4. DISCUSSION

Although consistency properties of several methods for inferring species trees from gene trees have been

investigated in a number of articles (Degnan and Rosenberg, 2006; Degnan et al., 2009; Liu et al., 2009,

2010; Mossel and Roch, 2010), no such results have been presented for species tree/gene tree reconciliation

methods such as the MDC criterion. In this article, we have shown that the MDC criterion is inconsistent

for asymmetric four-leaf species trees, and for species trees with at least five leaves. This result is inter-

esting in that unlike other methods such as democratic vote or typical consensus methods, the MDC

criterion is based on a perspective that specifically considers the mechanism of incomplete lineage sorting.

However, it does not exploit all the elements of the multipsecies coalescent model, nor does it use all the

information available in gene trees. In particular, the deep coalescence cost for reconciling a gene tree
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within a species tree is used as an optimization criterion for finding an estimate of a species tree, and the

probability of a gene tree given a species tree in the multispecies coalescent model is not used at all.

Moreover, the lengths of the branches of gene trees are also not used. These facts might help to explain why

the MDC criterion is not statistically consistent.

For species trees with three leaves or for symmetric species trees with four leaves, we have shown that

the MDC criterion is statistically consistent. However, it is not statistically consistent for asymmetric four-

leaf species trees, and we have obtained a complete characterization of the anomaly zones for the MDC

criterion. There are three anomalous candidate species trees in the region below the curve g(x) in Figure 3,

and there is one such tree in the region bounded by g(x) and f (x). As for species trees with more than four

leaves, we have provided an existence result that demonstrates the inconsistency of the MDC criterion.

Future work will be required for characterizing the properties of the anomaly zones of the MDC criterion in

full generality.

Simulation results demonstrate that it is more difficult for the MDC criterion to infer the correct estimate

of the species tree topology in the case of recently diverged species than in the case of distantly diverged

species (Maddison and Knowles, 2006; Than and Nakhleh, 2009). Our inconsistency result in this article

provides a theoretical explanation for this phenomenon. In the case of asymmetric species trees with four

leaves, we can see from Figure 3 that anomalous candidate species trees arise only when the branch x is

quite short, less than approximately 0.2612 coalescent time units. In this case, the shapes of the anomaly

zones for the MDC criterion are similar to those of the democratic vote method, although somewhat larger.

Finally, we have studied the consistency of the MDC criterion under the assumption that gene trees are

known with certainty. This is an ideal case, and clearly, the accuracy of gene tree inference methods has an

effect on the performance of the MDC criterion in practice. McCormack et al. (2009) have recently shown,

through simulation studies, that the MDC criterion outperforms the maximum-likelihood method STEM

(Kubatko et al., 2009) in certain cases for recently diverged species, while its performance is poorer than

that of STEM for distantly diverged species. This result, along with the favorable performance of the MDC

criterion on most examples considered by Than and Nakhleh (2009), suggests that despite its inconsistency,

the MDC criterion might continue to be among the more desirable methods over large portions of the

parameter space.
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