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SUMMARY. There has been great recent interest in the medical and statistical literature in the assessment and validation
of surrogate endpoints as proxies for clinical endpoints in medical studies. More recently, authors have focused on using
metaanalytical methods for quantification of surrogacy. In this article, we extend existing procedures for analysis based on
the accelerated failure time model to this setting. An advantage of this approach relative to proportional hazards model is
that it allows for analysis in the semicompeting risks setting, where we model the region where the surrogate endpoint occurs
before the true endpoint. Several estimation methods and attendant inferential procedures are presented. In addition, between-
and within-trial methods for evaluating surrogacy are developed; a novel principal components procedure is developed for
quantifying trial-level surrogacy. The methods are illustrated by application to data from several studies in colorectal cancer.
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1. Introduction

Biomedical researchers, and particularly those in the phar-
maceutical industry, have great interest in using surrogate
markers, if they can be shown to be valid. When the true
endpoints are rare, occur later or are very expensive, the use
of valid surrogate markers can substantially reduce clinical
trial duration and size, lower the trial’s expense, and lead to
earlier decision making.

Many paradigms have been put forward for the assessment
of surrogacy; a recent account can be found in the book by
Burzykowski, Molenberghs, and Buyse (2005). Historically,
the first criterion, or rather set of criteria, for surrogacy was
proposed by Prentice (1989). Estimation-based alternatives
to the Prentice criterion have been proposed by several au-
thors (Freedman, Graubard, and Schatzkin, 1992; Buyse and
Molenberghs, 1998; Wang and Taylor, 2002). More recently,
many researchers have begun to look at surrogacy in the mul-
titrial or metaanalytical setting (e.g., Daniels and Hughes,
1997; Gail et al., 2000; Burzykowski et al., 2005, chapters 7,
9, 10).

As in Ghosh (2008, 2009), we focus on the situation where
both the surrogate and true endpoints are time to events.
Methods for assessing surrogacy based on the proportional
hazards (PH) model and the accelerated failure time (AFT)
model have been proposed by Burzykowski et al. (2001) and
Ghosh (2008). However, if the goal is to have surrogate end-
points that occur sooner than the true endpoint so that the
study duration is potentially shorter, then a conceptually ap-
pealing framework to consider is that of semicompeting risks
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Copula; Dependent censoring; Latent factor; Linear regression; Multivariate failure time data; Singular value

data (Fine, Jiang, and Chappell, 2001; Ghosh, 2006, 2009).
We define the data structure in Section 2.2; the basic idea is
that the region where the time to the surrogate endpoint is less
than the time to the true endpoint is the relevant one for mak-
ing inferences. In the setting of a single study, Ghosh (2009)
recently evaluated many existing measures of surrogacy under
the semicompeting risks data structure. Given the increasing
popularity of the metaanalytic framework described above, it
is of interest to extend the semicompeting risk framework to
this setting as well. Burzykowski et al. (2001, 2005, chap-
ter 11) describe methods for assessment of surrogate end-
points in the bivariate failure time setting, focusing primar-
ily on the PH model. They give a discussion of individual-
level surrogacy, which roughly assesses concordance of the
outcomes at the individual patient level, versus trial-level sur-
rogacy, which studies the treatment effects on both endpoints
across the trials. However, they give less attention to the
AFT model and do not account for the semicompeting risks
structure.

In this article, we consider statistical models for meta-
analysis based on the AFT model for bivariate survival data,
incorporating the semicompeting risks data structure. We
view the semicompeting risks approach very attractive for
surrogacy; this is discussed in Section 2.1. The methodology
will be illustrated using data from a colorectal meta-analysis,
where the surrogate endpoint is recurrence and the true end-
point is death. A differing set of data was previously consid-
ered by Sargent et al. (2005). Our novel contributions/insights
are the following:

© 2011, The International Biometric Society



Surrogate Endpoints in a Metaanalytical Framework

(1) Using the semicompeting risks is an appealing
paradigm when we wish to consider replacement of the
true endpoint by the surrogate endpoint;

(2) Development of metaanalytic methods for the AFT
model in the presence of semicompeting risks; and

(3) Development of a suite of R functions, combined with
dynamically loaded C objects, for implementing the
proposed methodology.

The structure of the article is as follows. In Section 2, we
will describe the motivating study and define the appropriate
data structures. We then describe the probability models and
estimation and inference procedures in Section 3. Our pro-
posed methodology is applied to the real dataset in Section 4.
Finally, we conclude with some discussion in Section 5.

2. Preliminaries and Background
2.1 Observed Data Structures and AF'T Regression Model

Let a A b denote the minimum of two numbers a and b. Define
I(A) to be the indicator function for the event A. Let S denote
time to the surrogate endpoint, 7T the time to the clinical end-
point, and C'time to independent censoring. Assume that the
joint distribution of (S, T', C) is continuous. In this article, we
focus on the situation where the true and surrogate endpoints
are both times to event. Let Z be the indicator for treatment
group (0 = control; 1 = treatment). We make the assumption
that (S, T') is independent of C given Z. The data consist
of (ija (53’7 }/,J, (5?7/7 ZU) (Z = 1,,[7 ] = 1,,”,) Note
that there are two indexes; the first indexes study, whereas
the second indexes individuals within a study. We consider
the following data structure: for a fixed i, the data are a ran-
dom sample from (X, 6%, Y, §Y, Z), where X = S AT A C,
M =IS<TAC),Y=TACand§" =I(T <C). Note that
S is censored by the minimum of 7 and C and not just by C.
By contrast, T'is only subject to independent censoring. This
type of data structure has been called semicompeting risks in
the recent statistical literature (Fine et al., 2001). We refer to
this as the “presence of semicompeting risks” paradigm. For
the semicompeting risks setting, the following quantities are
of potential interest:

e The distribution of the surrogate endpoint in the absence
of both the true endpoint and independent censoring,
potentially adjusting for covariates.

e The distribution of the true endpoint in the absence of
independent censoring, potentially adjusting for covari-
ates.

e The correlation between the surrogate and true end-
points, adjusting for covariates.

In thinking about the surrogate endpoint, (a) refers to the
pure surrogate endpoint. In the colorectal cancer example to
follow in Section 2.2., (a) refers to the distribution of time
to recurrence in the absence of death and censoring. This
requires formulation of a latent time to recurrence for all in-
dividuals, even those who die without recurrence. This issue
is one that has been subject to debate in the competing risks
literature (Prentice et al., 1978).

Finally, we note that in fact the semicompeting risks analy-
sis uses time to recurrence as the surrogate endpoint, which is
different from the disease-free survival (DFS) composite end-
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point used in Sargent et al. (2005). In particular, subjects who
die without recurrence are treated as (dependently) censored
in the semicompeting risks framework but as having an event
in the Sargent et al. analyses.

2.2 Motivating Study: Meta-analysis of Colorectal Cancer
Clinical Trials

Using several surrogacy methods, Sargent et al. (2005) as-
sessed DFS as a potential surrogate endpoint for overall
survival (OS) in colon cancer adjuvant trials. They were
interested in assessing the effects in trials that included
fluorouracil-based treatment on these outcomes and per-
formed a pooled analysis of individual-level data on 20,898
patients from 18 phase III trials. They were also interested in
determining if DF'S at earlier time points would be predictive
of OS at a later point in time (e.g., if DFS at 2 years was
predictive of OS at 4 years). There was substantial variation
in the length of follow-up of patients from the individual tri-
als, so all subjects were censored 8 years from randomization
across the individual studies.

Sargent et al. (2005) presented a comparison of a vari-
ety of surrogate endpoint methods with goal of having ro-
bust findings that were not sensitive to assumptions from
any one approach. They found a strong association between
disease-free survival assessed after a median follow-up of 3
years with OS assessed after 5 years median followup. The
strong correlation between DFS and OS was within individ-
ual patients, individual trials and between trials. The mea-
sures that they used for this assessment will be described in
Section 3. Based on the findings, Sargent et al. (2005) con-
clude that “DFS can be considered an appropriate primary
end point in the setting of clinical trials in adjuvant colon
cancer.” Most of their analyses were based on PH modeling
following the approach of Burzykowski et al. (2005).

The question that arises here is how to incorporate infor-
mation on T into S. Sargent et al. (2005) incorporated the
information by using the outcome measure DFS, which is in
fact a composite endpoint. If S denotes time to colorectal
cancer recurrence, and 7T denotes time to death, the surro-
gate endpoint proposed by Sargent et al. (2005) is S A T.
As explained in Sargent et al. (2005), for the study popula-
tion, 80% of deaths were preceded by recurrence, so the DFS
endpoint is mostly dominated by recurrence. However, when
death without recurrence is observed in a larger proportion of
individuals, DFS becomes more similar to time to death, so
that assessing it as a surrogate for time to death would not
be useful. In addition, one can also make the criticism from
a biological viewpoint that deaths without recurrence might
not be cancer-related deaths so that noncancer- and cancer-
related events are being mixed in together in the creation of
a composite endpoint.

We now explain how the semicompeting risks paradigm
would apply to this setting. The main difference is in the
treatment of the time to the surrogate endpoint. For semi-
competing risks, the time to recurrence is considered to be
dependently censored by the time to death. This approach
conceptually formulates a latent time to recurrence for all
individuals. It is appealing because it avoids the creation of
composite endpoints, focuses on modeling S while incorporat-
ing the information on time to death (i.e., the true endpoint)
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Table 1
Colorectal cancer trial descriptions
Number of patients Median followup

Study Tx Control Time (years) Survival Recurrence Disease free survival
Co1 375 349 8 0.07 0.13 0.23
C02 344 342 9.41 1.68 0.25 1.72
Co3 522 518 11.87 8.29 9.86 7.12
Co4 691 1386 11.68 2.94 2.99 2.81
C05 1069 1059 9.07 0.17 1.47 0.31
C06 770 779 8 0.04 0.07 0.01
co7 1209 1200 5.39 2.88 4.57 6.00
INT-0035 469 457 8.08 8.54 20.22 14.64
NCCTG 784852 126 121 6.08 1.03 5.24 3.29
NCCTG 874651 153 255 7.97 2.55 0.96 4.18
NCCTG 894651 225 685 7.58 0.38 0.24 0.07
NCCTG 914653 439 434 7.87 0.81 0.08 0.31

Note: The table shows two-sample unweighted log-rank statistics for

comparing the two treatment groups for each study. For the sake of

reference, under the null hypothesis, the statistic should have an approximate chi-squared distribution with one degree of freedom. For all three
endpoints (survival, recurrence, disease-free survival), censoring is defined to be the difference between the date of the end of the study and date
of patient randomization. In the recurrence endpoint analyses, it is possible for subjects to die but to be censored at a later time.

as a dependent censoring mechanism. However, semicompet-
ing risks is also a joint modeling framework in that we are
also modeling the effect of treatment on time to death. In ad-
dition, we will also estimate the association between the time
to the surrogate endpoint and time to death. Methods for
doing this are presented in Section 3. When one uses compos-
ite endpoints, the mixing of the true and surrogate endpoints
does not allow understanding the direct effect of Zon Sor the
association between S and T, conditioning on Z. All of these
quantities can be estimated using the semicompeting risks
framework; thus, we feel that the semicompeting risks frame-
work can generate insights complementary to those found by
existing methods.

In this article, we deal with a subset of the studies used
in the meta-analysis by Sargent et al. (2005). In particular,
we analyze data from 12 studies that are available; details of
the patient population of the studies are given in Table 1.
We excluded patients with stage I colorectal cancer as well
those with either zero values for time to recurrence or time
to death. There are some interesting features to notice about
the table. First, although many of the studies have roughly
a 50% breakdown in each of the treatment groups, several
studies have noticeably different proportions in the two arms.
These are studies C04 and all those from the North Cen-
tral Cancer Trials Group (NCCTG). For these studies, we
have taken multiple treatment arms from the initial study
and combined them to form one treatment arm. There is also
some heterogeneity in the followup times. The shortest and
longest median followup times across the studies differ by an
approximate factor of two. Table 1 also summarizes the study-
specific results of log-rank tests comparing the two groups for
three types of endpoints: time to recurrence, time to death,
and time to first event, which corresponds to DFS. For multi-
ple reasons (e.g., differing censoring rule, differing availability
of followup, etc.), the results in Table 1 may differ from those
in the primary clinical manuscript from each trial.

Our wish to adjust for the dependent censoring by the true
endpoint complicates estimation and inference procedures.

Another unique feature of the semicompeting risks problem
is that we wish to utilize information on the region S < T.
This is called the “wedge region” and seems pertinent for our
context. For surrogacy, if we deal with the goal of finding an
endpoint to replace the true endpoint, then we do wish to
make the wedge restriction. Practically speaking, if the sur-
rogate endpoint occurs, then this will trigger some type of
intervention (here, treatment for recurrence) that may alter
the association between S and T. By restricting to S < T', we
do not have to worry about the change in association between
S and T due to the intervention.
We will be fitting the following models to each study:

logT = BZ + €, (1)

and

logS =aZ + e, (2)
where « and (3 are scalar regression coefficients and €; and
€, are mean-zero error terms. These are known as AFT mod-
els, which directly model the failure times and are a useful
alternative to PH model. If we make no constraints on the
ordering and censoring of S and T, then models (1) and (2)
can be treated as marginal models and estimated separately.
However, this cannot be done when there are semicompet-
ing risks because of the constraint on the joint distribution of
(€1, €2). This reinforces the notion that we are fitting a joint
model to the data in the setting of semicompeting risks.

3. Proposed Methodology
3.1 General Algorithm for Trial-Level Surrogacy
We suggest the following two-step strategy for estimation:

(a) Estimate 3; and «; for each study using methods for
the AFT model. Call the resulting estimators 3; and
[67

(b) Based on a joint modeling approach, described in Sec-
tion 3.4, regress [3; on @;.
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We refer to steps (a) and (b) as within-trial estimation and
between-trial estimation. Measures of within-trial surrogacy
will be calculated using the output in (a). Based on the output
of (b), we will be in a position to calculate between-study
measures of surrogacy. We will describe methods of estimation
for each of these steps in turn.

3.2 Within-Trial Estimation in the Presence

of Semicompeting Risks
We first consider the treatment effect on the true endpoint.
Because T'is only subject to independent censoring by C, we

can still use the ordinary log-rank estimating function (Louis,
1981) for estimation. This is given by

. S I (9) = V92,
v =38 |z - o
. P ACIENE!

where 577(/3) =Y, exp(—03'Z;),i=1,...,n. The consistency
and asymptotic normality for f)’\, the zero-crossing of U4(8),
was given in Ghosh (2008).

However, for the estimation of a;, we must take into account
the dependent censoring of S by 7. The dependent censoring
is adjusted for through use of an artificial censoring technique
(Lin, Robins, and Wei, 1996). We artificially trim the trans-
formed surrogate endpoint time by a factor that allows for
valid comparison between the two treatment groups. Define
n = («, (). This leads to the following estimating equation
for estimation of 7n:

STHE () 2 X)),
z - =
ZI{)?J- (n) > )?1(71)}

Us(n) = 6% () . ()

where X, (1) = {S; exp(—aZ;) AT exp(—BZ; — d) A C; exp
(=82 — )}, (1) = I{S, exp(~aZ,) < T, exp(~BZ; — d) A
Ciexp(—fZ; —d)} and d = 0 if @ < 8 and § — « otherwise.
Let @ be a zero-crossing of a from setting Us(7}) = 0, where
7= (a, /ﬁ\) The role of d is to artificially censor observations
in one of the treatment arms depending on the relative mag-
nitudes of the treatment effects on the true and surrogate
endpoints. Note that although U is a function of 8 only, U,
depends on both « and g.

Ghosh (2009) proposed a resampling method for estimat-
ing the variance-covariance matrix of 7. Such a resampling is
needed because consistent estimation of the variance of the
regression coefficients requires complicated nonparametric es-
timation of the density of the errors and its derivative. We
take an alternative approach based on resampling recently
proposed by Zeng and Lin (2008). The algorithm works as
follows:

(R1) Generate observations G = (G4, G), a bivariate obser-
vation with mean zero vector and variance—covariance

N
matrix V, the estimated variance—covariance matrix of

n VHUN(B), Ua(n) }:
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(R2) Calculate nV2UL(B + nV2G), Us(7 + n~/2G)).
Note that U, depends on both « and 3, which requires
the inclusion of both G; and G5 in the resampling
algorithm.

Repeat steps (R1) and (R2) B times.

Regress n’l/zUl(B\Jr n~Y2G,) on G, across the B
datasets. Similarly, regress n="/2Uy(7 +n""%G) on G,
and G5 across the B datasets.

Estimate the variance—covariance matrix of n'/2(n — 1)
as A~'VA-!, where the first row of A is the slope es-
timate from the first regression in the previous step,
whereas the second row of A are slope estimates from
the second regression in the previous step.

Modifying the arguments in Zeng and Lin (2008), we show
in Appendix A that this algorithm provides a consistent esti-
mator of the variance—covariance matrix of n/2(7 —1,). In
our experience, we have found this algorithm to be much
faster than that of Ghosh (2009).

3.3 Between-Trial Estimation: Joint Modeling Algorithm

Buyse et al. (2000) developed measures of between- and
within-trial association using R? measures. A surrogate for
which the individual study-specific R? is one is a perfect sur-
rogate at the individual level. This says that the surrogate
and true endpoints are perfectly correlated within an indi-
vidual subject. A surrogate endpoint for which the R? be-
tween the study-specific treatment effects on the surrogate
and true outcome is one is a perfect surrogate at the trial
level. Buyse et al. (2000) and Gail et al. (2000), among others,
have argued that the between-trial association is a far more
important characteristic of the surrogate than the within-trial
measure for predicting the treatment effect in the new trial,
although this is not the case when T is partially observed
from the new trial (Li and Taylor, 2010). Given estimates
(a_,-,ﬁ_,-),j =1,...,J, we now seek to estimate the relation-
ship between the two regression coefficients. As discussed in
chapter 11 of Burzykowski et al. (2005), one can either assume
that there is no error in the estimated regression coefficients
or that there is error. The assumption made at this stage
dictates the appropriate method of analysis used. We adopt
the approach of assuming error in estimation, which is always
present in practice.

We note that there is in fact an approximate equivalence
between the models being fit in Section 11.3 of Burzykowski
et al. (2005) with principal components analysis (PCA) tech-
niques. Formally, the trial-level model of Burzykowski et al.
(2005, Section 11.3) can be formally expressed as

Bi
for j =1,...,J. where ¥ is an unknown 2 X 2 variance ma-
trix, and M is an unspecified 2 x 1 vector. This model can
be interpreted in terms of latent factor models for the covari-
ance matrix of (a;, 3;),j = 1,...,.J. We make the simplifying
assumption that ¥ = o2I. However, this model is noniden-
tifiable from the observed data. By arguing as in Tipping
and Bishop (1999), the principal components of the covari-

-~

(aj ) ~ N (1, £ + MM)), (5)

ance matrix of (@, 3) is an approximate maximum likelihood
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estimator in this model. It is approximate in the sense that
we must let 0% approach zero. Based on Tipping and Bishop’s
result, our proposal is to calculate the principal components
of the estimated variance-covariance matrix of (a;,8;),7 =
1,...,J and to use the proportion of variance explained by
the first eigenvector as our estimate of RZ,,. We then as-
sess variability based on either a nonparametric bootstrap,
which resamples subjects conditional on treatment group, or
a model-based bootstrap using the estimated coefficients in
(5). Further details are given in Appendix B. In the data ex-
ample presented here, both bootstrap approaches used gave
similar values for the 95% CI (data not shown).

3.4 Assessing Individual Level Surrogacy: General Algorithm

Let us first consider the simpler case of two survival endpoints
Sand T, where T does not censor S. Letting H(s,t) = Pr(S >
s, T > t) be the joint survival distribution of (S, T'), a copula
model (Nelsen, 1999) decomposes the joint distribution into
the marginal components:

H(s,t) = Cy{Fs(s), Fr(t)}, (6)

where C'is the copula function, 0 is a dependence parameter,
and Fg and Fp are the marginal survivor functions of S and
T. The most commonly chosen copula model for multivariate
survival data is called the Clayton—Oakes model (Clayton,
1978; Oakes, 1986) and is given by

Cy(u,v) = {ul’(9 +o = 1}1/(]’(9>

with § > 1. In our setting, where we have to deal with semi-
competing risks (T censors S), we still work with Clayton—
Oakes type of model. Fine et al. (2001) formulated the
Clayton—Oakes model only for the semicompeting risks set-
ting where the joint distribution of (S, T') is restricted to the
upper wedge. They also presented a closed-form estimator of
0 using modified weighted version of concordance estimating
function method of Oakes (1982, 1986) along with an asymp-
totic variance estimator.

We calculate dependence parameters on a study-specific
basis, so for this purpose we consider data from one study at
a time. Define e’ = e’ (3) = logT — $Z and e’ = e’(a) =
logS — aZ to be the population residuals corresponding to
(1) and (2). The following estimator is used:

Z Dijd}ij

i<j

o

ZDUU - wu)’

i<j

where ¢;; = I{(e] —el)(ef —e)) > 0} and Di; =I(SiAS; <
T, NT; <C; NCy),4,5 =1,...,n. Note that the estimator for
the dependence parameter does not require any estimation of
the marginal distribution functions. A variance estimate for
6 can be obtained using U-statistic theory (van der Vaart,
2000) and is described in Ghosh (2009). For multiple studies,
we construct a metaestimator by estimating forf assuming
a common 6 across studies using a Mantel-Haenszel type es-
timator proposed in Ghosh (2008). Note that we can convert
results to Kendall’s tau using the formula 7 = (6 —1)/(8 + 1).
This conversion presumes a Clayton-Oakes model for the en-
tire region for (S, T') over the entire positive quadrant, with
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S regarded as being defined in theory for every patient, but
subject to dependent censoring by T.

4. Application to Colorectal Cancer Data

We now apply the proposed methodologies to the colorectal
cancer data described in Section 2. The data are analyzed
using a semicompeting risks framework based on the time to
recurrence and death. The results are given in Table 2.

The estimator of § across all studies is given by § = 13.14,
corresponding to a Kendall’s tau of 0.86. The results for the
treatment effects on death are, in general, qualitatively simi-
lar to those presented in Table 1. In addition, for many of the
studies, the estimates of the two regression coefficients are ef-
fectively identical. This is because of the extremely strong cor-
relation between the two event times and because of the fact
that we are imposing the constraint S < 7T'. Table 3 summa-
rizes the within-treatment arm estimates of the dependence
between the two endpoints using the Fine et al. (2001) es-
timation procedure with the semicompeting risks copula de-
pendence parameter. R

Converting the results in Table 3 for 6 to Kendall’s tau
shows them to all be at least 0.8. If one were to calculate
Wald statistics based on the estimates in Table 3 divided by
their standard errors, their corresponding p-values (assum-
ing a standard normal distribution under the null hypothesis)
would be miniscule. However, we also find that imposing the
constraint leads to greater evidence of trial-level surrogacy.
Now we have a trial-level R? of 0.96, with an associated 95%
confidence interval of (0.93, 0.99). Figure 2 of Sargent et al.
(2005), based on a composite endpoint analysis with a some-
what different set of data, reports a trial-level R? of 0.90.
When we apply Sargent et al.’s (2005) composite endpoint
approach to the dataset we are using here, we obtain a trial-
level R? of 0.89, with an associated 95% CI of (0.86, 0.92). We
note two issues in comparing the two datasets. First, there is
the nonoverlap in the datasets used. Second, they use a differ-
ent surrogate endpoint, namely the composite endpoint time
to first event.

5. Discussion

In this work, we have extended the work of Ghosh (2008, 2009)
to the multiple-study framework for assessing surrogacy. Be-
cause the semicompeting risks paradigm explicitly builds in
the constraint that S < T, the analyses from the previous sec-
tion suggest that colorectal cancer recurrence will be a very
strong surrogate endpoint for death. A major advantage of the
semicompeting risks paradigm is that it allows one to study
the time to recurrence separately from time to death. There
is no creation of composite endpoints, as in Sargent et al.
(2005). Of course, the semicompeting risks approach also re-
quires assuming a latent time to recurrence for all individuals,
including those who die without recurrence.

One of the practical issues alluded to in chapter 11 of
Burzykowski et al. (2005) regarding the assessment of trial-
level surrogacy is whether to use linear regression models ver-
sus latent variable models. Given that there is error in the
estimates of the treatment effects on the surrogate and true
endpoints, we recommend the use of latent variable models in
practice.
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Table 2
Semicompeting risks study-specific regression results for colorectal cancer meta-analysis
Surrogate True

Study Est SE Wald Est SE Wald 6
Co1 —0.03 0.30 —0.10 —0.03 0.04 —0.75 12.04
Co2 0.13 0.15 0.83 0.15 0.04 4.07 10.63
C03 0.41 0.16 2.50 0.41 0.03 11.67 7.87
Co4 0.18 0.11 1.58 0.18 0.02 7.27 10.97
C05 0.03 0.11 0.30 0.03 0.02 1.34 13.90
Co6 0.02 0.12 0.12 0.02 0.03 0.52 13.93
Co7 —0.09 0.03 —3.63 0.13 0.02 5.77 12.01
INT-0035 0.40 0.17 2.33 0.40 0.04 10.94 9.26
NCCTG 784852 0.24 0.33 0.73 0.24 0.07 3.41 5.94
NCCTG 874651 0.19 0.11 1.73 0.30 0.06 5.48 9.38
NCCTG 894651 —-0.07 0.21 —0.32 —-0.07 0.04 —1.84 11.91
NCCTG 914653 —0.12 0.22 —0.52 —0.12 0.04 —3.04 12.14

Note: These are the results from fitting AFT models to the true and surrogate endpoints. 19 estimated using Clayton-Oakes copula model on
the wedge; the resampling approach of Ghosh (2009) based on 1000 perturbations revealed the estimates 6 to be highly significant at significance
level 0.05 (data not shown). Surrogate section denotes estimates for a and attendant standard error estimators, and True section denotes estimates
for $ and attendant standard error estimators. Although the estimates and standard errors have been rounded to two significant figures, the
Wald statistics were computed based on original values before rounding. The endpoints used here are time to recurrence and time to death. The
former endpoint is subject to censoring both by time to death and independent censoring, whereas the latter endpoint is subject to dependent

censoring.

Table 3
Study-specific association between S and T in the colorectal
cancer meta-analysis

Z =0 Z =1
Study Est SE Est SE
Co1 15.05 0.11 20.94 0.18
C02 13.81 0.10 19.12 0.16
Co3 13.64 0.07 19.25 0.12
Co4 16.06 0.07 19.43 0.04
Co05 19.92 0.05 19.52 0.04
Co06 22.97 0.09 17.47 0.06
Ccor 15.16 0.02 20.45 0.04
INT-0035 10.68 0.05 21.18 0.14
NCCTG 784852 10.16 0.17 17.13 0.44
NCCTG 874651 12.19 0.22 19.07 0.22
NCCTG 894651 15.16 0.16 16.63 0.05
NCCTG 914653 15.46 0.10 18.73 0.13

Note: Est refers to treatment group-specific estimates of dependence
parameter 6 from Clayton-Oakes model for semicompeting risks data,
and SE denotes standard error estimate of estimated value for 6. The
endpoints used here are time to recurrence and time to death. The for-
mer endpoint is subject to censoring both by time to death and inde-
pendent censoring, whereas the latter endpoint is subject to dependent
censoring.

An important issue brought up by a referee was the sensi-
tivity of the estimation procedure to model misspecification.
We note that we have been dealing with a randomized trial
setting. Although the estimated treatment effects in the AFT
model are unbiased even when important variables are omit-
ted, this is not the case for the PH model. Understanding the
behavior of the regression estimators under misspecification
is needed. However, another major issue is specification of the
dependence models. We have been using Clayton-Oakes mod-
els in both the absence and presence of semicompeting risks

due to their popularity, but model assessment for copulas is
an area that remains in its infancy (Wang and Wells, 2000).

Although the PH model is the most commonly used regres-
sion method in survival analysis, we have adopted the AFT
model. This is primarily for two reasons: (a) the availabil-
ity of methods to account for dependent censoring and (b)
the availability of computationally simple procedures for de-
pendence estimation. Although methods exist for (b) with the
PH model (e.g., Shih and Louis, 1995), there are few methods
for accounting for dependent censoring with the PH model.
Further work is needed in this area.

6. Supplementary Materials

Functions for implementing the proposed methods in R,
in conjunction with dynamically compiled code, are avail-
able as Supplementary Materials. The code can run on
an Apple computer running R64 available under the Pa-
per Information link at the Biometrics website http://www.
biometrics.tibs.org.
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APPENDIX A

Validity of Proposed Resampling Scheme

Assuming that the true (a, 3) line in an interior point of a
compact subspace of R?, and that E{U,(c, By)} = 0 has a
unique solution at zero, we can extend the approach of Ying
(1993) to show that

n~?U(no) = n " *U(no) + An'?(n — no) + op (1),

where n € N,(n) = ||w : |w — no| < r || for sufficiently small
r > 0, and A is the asymptotic slope matrix of n=t U (n).
This asymptotic linear expansion of U is what is needed to
apply the method of Zeng and Lin (2008).

APPENDIX B

Application of Tipping and Bishop Results and Bootstrap
Resampling Schemes

Based on the model (5), it can be shown by applying the ar-
guments from Tipping and Bishop (1999) that the maximum
likelihood estimator of M for a fixed value of o2 is given by

M = U(T - ¢’I)'/*R,

where U is a d X 2 matrix whose columns are the eigenvectors
of the empirical variance-covariance matrix of (a;,83;),7 =
1,...,J,T' is a 2 x 2 diagonal matrix of the corresponding
eigenvalues, I is a 2 x 2 identity matrix and R is an arbitrary
orthogonal matrix. Letting o> — 0 gives the equivalence with
PCA.

In the same vein, Tipping and Bishop (1999) show that the
maximum likelihood estimator for o for a fixed dimension d
is given by the following:

A 4+X)/2, d=0
2= N, =1
0, d=2,

where A\; > Ay > 0 are the eigenvalues corresponding to the
empirical variance—covariance matrix of (a;, 3;),7 = 1,...,J.
Note that the cases d = 0 and d = 2 correspond to degener-
ate estimators for M and 2. We thus deal with the case of
d = 1. Recognizing 5% = ), as the proportion of unexplained
variation, or equivalently, 1 — R?, , leads to the use of the

first eigenvector for estimation of R2, .
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There are two bootstrap schemes that were considered. The
first was a nonparametric bootstrap, stratified by treatment
group:

(1) Resample from («;, ;) with replacement; this creates
values (&;,0;),j=1,...,J.

(2) Perform a PCA of the J X 2 matrix with jth row
(dj7,5’,;), where the columns are standardized, and
obtain the proportion of variance explained from
the first eigenvector as described in the previous
paragraph.

(3) Repeat steps 1-2 B times.

(4) Use the 2.5th and 97.5th empirical distribution of
the B bootstrapped values of the proportion of vari-
ance explained to obtain a 95% CI for the trial-level
R2.

The other scheme we tried was a bootstrap, which pro-
ceeded as follows:
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(1) Perform a PCA of the J x 2 matrix with jth row
(aj, 23\, )(j =1,...,J), where the columns are standard-
ized. Estimate p in (5) as Z'}.’Zl(aj”@-)ﬂ M by the
eigenvector corresponding to the first eigenvalue from
the PCA, and o? by the second eigenvalue.

(2) Generate new observations

(ag) ~ N(@i, 571 + M), (B1)

B
for j =1,...,J. In (A.1), 1, li\/L and o2 are the esti-
mates from the previous step.

(3) Calculate the PCA based on the matrix generated in
the previous step, and obtain the proportion of variance
explained from the first eigenvector.

(4) Repeat steps 1-2 B times.

(5) Use the 2.5th and 97.5th empirical distribution of the
B bootstrapped values of the proportion of variance
explained to obtain a 95% CI for the trial-level R”.

Discussions

Geert Molenberghs!:?*
'I-BioStat, Universiteit Hasselt, Diepenbeek, Belgium

I-BioStat, Katholieke Universiteit Leuven, Leuven, Belgium

*email: geert.molenberghs@uhasselt.be

1. Surrogate Marker Evaluation

Over the most recent couple of decades, the evaluation of sur-
rogate markers and endpoints has received considerable at-
tention. An account is given by Burzykowski, Molenberghs,
and Buyse (2005). The original impetus came from Prentice
(1989) and Freedman, Graubard, and Schatzkin (1992). Pren-
tice (1989) formally defined surrogacy and offered validation
criteria, which we now rather term evaluation criteria. His
main criterion can informally be described as the require-
ment that all effect from the treatment, Z say, on the true
endpoint, T say, is mediated through a surrogate, S say. The
criterion is hard to verify through mere hypothesis testing,
which is why Freedman et al. (1992) proposed an estimation-
based approach instead, by way of the so-called proportion
of treatment effect explained, often referred to as PTE or PE.
Molenberghs et al. (2002), among others, pointed out funda-
mental problems with the definition of PE, even though the
concept was deemed attractive. A fundamental issue with the
original proposals was that surrogate endpoint evaluation is
conducted within a single trial. This is why various authors
(Daniels and Hughes, 1997; Buyse et al., 2000; Gail et al.,
2000) have suggested switching to the so-called metaanalytic
framework. The contributions reviewed in Burzykowski et al.
(2005) fall predominantly within this framework; the same
is true of current work by Ghosh, Taylor, and Sargent. Two
types of surrogacy can be considered within a single evalu-

ation effort. First, trial-level surrogacy gauges how well the
treatment effect on 7T is predictable from the treatment ef-
fect on S. Because prediction cannot genuinely be assessed
without replication in a learning set of trials, proceeding in
the absence of replication is mission impossible. The second
type of surrogacy pertains to the patient level, considering
how well a patient’s true outcome can be predicted from the
surrogate outcome.

The single-trial and metaanalytic frameworks just de-
scribed are not the only ones. Joffe and Green (2009) identify
four frameworks. The first one is based on conditional inde-
pendence of observable variables. The second one is rooted
in so-called direct and indirect effects. Their third one is our
metaanalytic framework. The fourth and final one rests upon
principal stratification. They classify the first and second as
belonging to the causal-effects paradigm. This means that,
for a surrogate to be good, the effect of Z on S, combined
with the effect of S on T, allows for prediction of the effect of
Z on T. In contrast, Joffe and Green (2009) term the latter
two approaches as belonging to a so-called causal-association
paradigm, where the effect of Zon §'is associated with the ef-
fect of Zon T. That said, the metaanalytic framework actually
combines both; it provides machinery both for quantifying as-
sociations and for making predictions.

The latter property is one of the attractive features of the
metaanalytic framework. The price to pay is that, in its ba-
sic form, a joint hierarchical model is necessary. Indeed, the
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statistical model is for a bivariate outcome, given by S and
T, nested within a hierarchy generated by the trial. This set-
ting becomes more elaborate in a number of situations: (1)
when at least one of the outcomes is longitudinal, and/or (2)
when more than one surrogate endpoint is recorded, and/or
(3) when the hierarchy consists of more levels. This, of course,
implies complexities at the modeling and computational
levels.

In their original papers on the metaanalytic framework,
Buyse et al. (2000) and Gail et al. (2000) considered normally
distributed outcomes. For this, a linear model can be consid-
ered. In subsequent work, various homogeneous and hetero-
geneous cases have been studied. Homogeneity here refers to
settings where the surrogate and true endpoints are of the
same type. Attention was given to binary and time-to-event
outcomes, in particular. In heterogeneous settings, the sur-
rogate and true endpoint are of a different nature, such as
binary/continuous, ordinal/time to event, etc. For example,
when tumor response is considered as a potential surrogate
for survival in cancer, the latter heterogeneous case is on the
table.

A drawback arising from the metaanalytic framework when
the outcomes are non-Gaussian, is that surrogacy at the in-
dividual level is not necessarily captured by a correlation
coefficient.

Further challenges, computational and in terms of the val-
idation measures, arise when the outcomes are longitudinal.
Not only do the hierarchies involved become deeper, but also
the definition of evaluation measures is not without ambiguity.
By construction, a longitudinal surrogate provides a vector of
surrogates. If also the true endpoint is longitudinal, then the
surrogacy problem becomes congruent to the canonical corre-
lation problem (Alonso et al., 2004; Burzykowski et al., 2005).
Various measures have been proposed, several bearing resem-
blance with the root statistics used in multivariate analysis.
Incidentally, this machinery is also present in the authors’ ap-
proach, explaining the presence of principal components and,
more broadly, factor analysis ideas.

To address at the same time the increasing complexity
of the modeling involved and the disparity of the evalua-
tion measures, Alonso and Molenberghs (2007) proposed an
information-theoretic approach, applicable to a wide variety
of settings (normal, binary, categorical, and longitudinal out-
comes) and reduces, in the various particular settings, to the
quantities previously introduced in the literature. In this way,
the set of scattered proposals made earlier are placed within
a uniform framework.

2. Proposal of Ghosh, Taylor, and Sargent

The method proposed in this article by a top team of fine
researchers is appealing for a variety of reasons, in particular
because it brings out a number of novel and important ideas.

First, it is placed within the tradition of metaanalytic eval-
uation. This is important, because the data hierarchy offers
replication both at the patient as well as at the trial level.
Arguably, approaches based on a single trial can assess surro-
gacy only through making strong but untestable assumptions,
even though they may be sensible from a substantive point of
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view or may be driven by the design. The method by Ghosh
et al. does not suffer from such drawbacks.

Second, the use of the accelerated failure time model
allows for a fully parametric approach to surrogate end-
point evaluation, leading to feasible and straightforward alge-
braic manipulation and interpretable and intuitive validation
measures.

The next three features that will be discussed are related
to each other.

Third, the use of semicompeting risks data makes is very
natural for the type of data considered and is more in line
with the genesis of the data than is otherwise possible in a
purely descriptive, pragmatic approach based on bivariate, or
multivariate, survival data, for example. Indeed, the fact that
S is censored by the minimum of T and C'is otherwise not or,
at best, implicitly taken into account.

Fourth, the composite nature of the endpoint is taken into
account by decoupling actual surrogate from its possibly cen-
sored observation. Precisely, S is taken to be time to progres-
sion, possibly censored by T. From this, a natural composite
is derived: S A T. Starting from the couple (S, T') defined
in this way ensures that S = T only with probability zero,
unlike S AT = T, which is true whenever death occurs prior
to progression.

Fifth, as a consequence of the above, the wedge region
S < T can be considered without any problem, which is
very elegant. The methods for time-to-event data proposed
in Burzykowski et al. (2005) neglect this aspect and therefore
attribute nonzero probability mass to the region S > T'. For
most realistic settings (e.g., with S progression-free survival
and T overall survival), this is not in agreement with what is
substantively possible. Although the classical methods could
be forced to conform to the wedge, for example, by modeling
the pair (S, T — ) instead, such action would render difficult
the derivation of surrogacy measures. In contrast, the current
approach reconciles natural modeling with elegant derivation
of evaluation measures.

It would be of interest to explore whether these modeling
ideas can be phrased within the other frameworks, such as the
direct/indirect effects and principal stratification paradigms.

Evidently, a number of important issues remain. This is
not to be viewed as criticism toward the current approach.
Not only are they shared with other proposals, but they also
should predominantly be viewed as suggestions for the follow-
up research agenda. Models may have issues of identifiability
and sensitivity, because of their general complexity and, in
particular, the fact that unobservables are included. In the
current framework, unobservables take two forms. First, there
is the censored nature of the outcomes. Given that S can be
censored by both C and T deepens the issues. Second, the
concept of latent time to recurrence fits in with this issue.
Such unobservables are identifiable only through strong, un-
verifiable model assumptions and may impact, therefore, on
the measures derived and the predictions carried out. This
phenomenon has been reported in the context of missing
data (Molenberghs et al., 2008) and random-effects models
(Verbeke and Molenberghs, 2010).

In this regard, it is entirely reasonable, as the authors point
out, to evaluate a potential surrogate with a variety of meth-
ods, by way of sensitivity analysis, as was done by Sargent
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et al. (2005). In the same vein, the Clayton—Oakes model
could be supplemented with alternative copula models, such
as Hougaard’s copula (Hougaard, 1986).

It remains true that, in spite of the most sophisticated
statistical technology available, judgment by a multidisci-
plinary team cannot be replaced by an automated “decision-
theoretic” rule. The quality of a surrogate is a function of
statistical evaluation, life years gained, risk analysis, and
cost analysis. It is possible, to some extent, to incorpo-
rate some of these aspects into the evaluation, formally
or informally. The authors discuss the issue of life years
gained; Assam et al. (2010) considered a broadly defined cost
function.

Sensitivity analysis and exploring the impact of the as-
sumptions and other choices made in the analysis should be a
key part of a standard evaluation exercise. For example, the
authors’ decision to combine various arms into a single one
might be subjected to sensitivity assessment. Of course, the
decision to combine the treatment arms was taken for illus-
trative purposes only.

It seems relevant to explore whether the model developed
by the authors could be cast into the information theory
paradigm, because of the elegance of this paradigm, its broad
basis, and the possibility that it might also lead to simplified
computations.

It would be of interest to examine further the homogeneity,
or lack thereof, of the study-specific measures, as laid out in
Tables 2 and 3. Overall though, it emanates from the analysis
that the qualitative evidence is strong and that the results
can be viewed with a certain amount of comfort.

3. Concluding Reflections

One could organize the surrogate-marker-evaluation endeavor
into four major steps: (1) conceptualization; (2) modeling; (3)
software; and (4) data. Conceptualization pertains to defin-
ing the concepts, selecting one of the frameworks, etc. For
specific situations, specific models are chosen, such as the one
proposed by the authors—the second step. The third step has
been neglected for a long time, at least to some extent. It is
therefore great to see that these authors, among a number of
others, are making R functions available. The availability of
broadly useful software is, arguably, the only way to ensure
that new methodology is actually used. Finally, data need to
be available and this has for a long time been the Achilles heel
of surrogate marker evaluation. Surrogate marker evaluation
requires large amounts of data, like most other metaanalytic
efforts. Oftentimes, data are proprietary to the biopharmaceu-
tical industry and other sponsors. It is in their own interest,
though, as well as that of public health, to ensure broad access
to data, evidently with due caution regarding privacy.
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1. Introduction

Ghosh, Taylor, and Sargent (2011) (GTS) are to be con-
gratulated for exploring new approaches for assessing trial-
and individual-level surrogacy using accelerated failure time
(AFT) models and a deconstruction of time-to-event compos-
ite endpoints. It has been recognized that an endpoint may be
a good individual-level surrogate and a poor trial-level surro-
gate, and vice versa; for example, see Figure 1 of Korn, Albert,
and McShane (2005a). I will focus here on some issues raised
by the GTS methodology for trial-level surrogacy. In addition,
because the use of composite endpoints is so subject-matter
dependent, I will restrict attention to oncology trials as their
illustrative application is in oncology.

2. Choice of the Time-to-Event Outcome

GTS recommend not using composite time-to-event end-
points. However, in addition to overall survival (time to death
from any cause), the use of composite outcomes is common
in oncology trials of experimental drugs and typically pre-
ferred over an endpoint that censors a patient’s data at death.
For trials involving metastatic disease, progression-free sur-
vival (time to the tumor progression or death) is preferred to
time to progression (time to tumor progression with deaths
without progression censored). One of the reasons for this is
that tumor progression does not account for all the effects
of the experimental treatment on patient survival, including
early and late deaths due to toxicity of the treatment (Green,
Benedetti, and Crowley, 2003, pp 44-45). In addition, as pro-
gression is defined as a certain amount of tumor growth on an
imaging scan, it is possible to have a patient with progressive
disease die before their progression is documented or to have
a patient die from their disease but not have a progression.
Finally, in terms of measuring patient benefit, an estimated
progression-free survival curve tells one what the probabil-
ity is that patients will be alive and not progressed at time
points after randomization. What does an estimated time-to-
progression curve tell one—what is the probability that a pa-
tient will not have progressed at time points if they have not
died before then? In the adjuvant treatment setting where
patients have had their tumors eliminated through surgery
or radiation, disease-free survival (time to disease recurrence
or death) is generally preferred to time to disease recurrence
(deaths censored) for similar reasons.

In some settings where the proportion of deaths unrelated
to the cancer or treatment is expected to be large, it may
make sense to censor unrelated deaths. However, in these sit-
uations, it is important to acquire any additional information
to help decide if the death is actually unrelated. For example,
in the National Lung Screening Trial, a randomized trial of
lung cancer screening modalities for older current and former
heavy smokers, a panel of independent experts (blinded to
the randomization arm) followed a detailed algorithm involv-
ing additional records to ascertain whether a death was due
to lung cancer (or indirectly from the screening) (National
Lung Screening Trial Research Team, 2011).

All of the above is irrelevant if one is using the surrogate
endpoint only as surrogate for the definitive endpoint and not
to directly measure the treatment benefit. This presumes that
the proposed surrogate endpoint is indeed a better surrogate
than the usual composite endpoint. The argument by GTS
that disease-free survival is not useful as a surrogate for over-
all survival because it includes deaths needs further explana-
tion; one would think that having something in common with
the definitive endpoint would make a better surrogate than
not having something in common. Regardless of this argu-
ment, metaanalyses involving real applications should settle
the issue. However, when used as a definitive primary end-
point assessing clinical benefit (rather than the surrogate end-
point), the usual composite endpoint is more appropriate than
censoring deaths. For example, part of the National Surgical
Breast and Bowel Project B-27 Trial evaluated preoperative
chemotherapy for operable breast cancer (Bear et al., 2006).
In this trial, disease-free survival was one of the primary end-
points (and is thought to represent direct clinical benefit to
the patient in this setting) and pathological complete response
(at the time of surgery) was considered as a possible surro-
gate. I assume that GTS would agree with the use of the
composite endpoint in this application.

Part of a time-to-event outcome is the censoring indicator.
With two endpoints there would typically be two censoring
indicators. For example, a patient’s time-to-progression value
would be censored at their last clinic visit but their survival
time may be censored at a later time if they continue to be
followed for survival. It is not clear how the GTS method-
ology, which involves artificial censoring of the observations,
accommodates this practical consideration.
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Figure 1. OS trial-level treatment effect versus TTR trial-level treatment effect (coordinates for plotted points are from

Table 2 of GTS).

3. Choice of Treatment-Effect Parameter and
Across-Trial Modeling of These Parameters

Use of the proportional hazards (PH) model and its associ-
ated log-rank statistic is the most popular analysis strategy
for analyzing oncology clinical trials. The AFT model has not
been used much because historically only a parametric ver-
sion of the model was readily available. With software avail-
able for the semi-parametric version of the model ((1) and (2)
of GTS), this constraint is gone. (With intercepts left off the
models, the statement that the error terms have mean zero
appears incorrect.) One would think that the choice between
the models would be based on whichever model fit the data
better. However, GTS state their reason for using AFT mod-
els rather than PH models is the availability of methods with
AFT modeling to account for dependent censoring. This ra-
tionale does not apply to the treatment-arm comparison for
a definitive endpoint like overall survival. For the choice AFT
versus PH models for defining the surrogate treatment-effect
parameter, one should choose the model that empirically
leads to the best surrogate treatment-effect parameter; there
is no a priori reason the same modeling approach need be
used for the surrogate and definitive-variable treatment-effect
parameters.

GTS’s modeling across trials of the treatment-effect param-
eters could use further explanation. First, randomized trials
frequently have more than one experimental arm along with
the control arm and pooling all the experimental arms to-
gether in a trial as GTS have done can result in a large loss

of information. In a standard metaanalysis, the induced cor-
relation between experimental-versus-control treatment com-
parisons that share a common control arm is easily ac-
commodated. Is there some difficulty with multiarm trials
using the proposed methodology? Furthermore, restricting
consideration to two-armed trials, I would have expected
the covariance matrix of (d;,3;) (equation (5) of GTS)
to be D +%;, where X, is the standard estimated covari-
ance matrix of (a;,;) conditional on (a;, ;) estimated
using individual-level data from each trial at a time, and
D is the unknown covariance matrix of the («;, ;). Typi-
cally, the estimated X; are assumed to be known parame-
ters for the purposes of estimating D; we discuss elsewhere
setting the off-diagonal terms of X; to zero to improve the
mean square error of the estimated D (Korn et al., 2005a).
When some or all of the trials involve two-sided questions
(A versus B) rather than one-sided questions (experimental
versus standard), then some additional care is required in
the modeling (Freedman, 2005; Korn, Albert, and McShane,
2005b).

GTS describe an innovative resampling scheme, but for es-
timating standard errors of trial-level surrogacy parameters,
why not just bootstrap the trials (not the individuals and not
the trial arms)? If the concern is that there are too few trials
for a bootstrap to be reliable, then any more complex method
that apparently gives more reliable estimators must be rely-
ing heavily on parametric assumptions for the distribution of
trial-level effects.
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4. The Purpose of a Trial-Level
Surrogacy Metaanalysis

One wants to know whether one can use the surrogate variable
in place of the definitive outcome in evaluating the results of
a randomized trial. In particular, for a new trial where the
surrogate results are available, how well can we estimate the
treatment effect for the definitive variable? Note that this is
not a forecast of the definitive endpoint results for the trial at
hand, but is instead an estimate of the true definitive treat-
ment effect with a confidence interval. (Forecasts of trial re-
sults with their prediction intervals can be useful in model
checking, e.g., leave-one-out crossvalidation prediction of re-
sults for trials included in the metaanalysis; see Sargent et al.,
2005, for an example.)

Even in this framework, there are two general issues in
performing a metaanalysis with this goal. First, the follow-
up in the trials in the metaanalysis will typically be much
longer than follow-up in the new trial. In fact, if one had
the length of follow-up in the new trial as one had in the
trials used in the metaanalysis, one would probably not be
interested in the surrogate but would just use the definitive
endpoint for the new trial. If you really believe your modeling,
this is not a problem. A more cautious approach, and the one
used by Sargent et al. (2005), is to additionally censor the
surrogate variable data used in the metaanalysis so that they
have follow-up similar to what one would see in a new trial. I
would not censor the definitive endpoint data, unless it goes
beyond where the treatment effect is expected to be seen.

The second issue concerns therapies that are given to the
patient after the surrogate endpoint is observed. If the same
effective second-line treatments are used in both treatment
arms, then the treatment effect as measured by the defini-
tive outcome will tend to be attenuated as compared to if
ineffective or no second-line treatments were used (e.g., the
hazard ratio for survival will be closer to one). However, this
attenuated effect is the correct one to consider for measuring
benefit of the experimental treatment to the patients (Korn
and Freidlin, 2010; Korn, Freidlin and Abrams, 2011). On the
other hand, if patients crossover from the control treatment
arm to the experimental treatment arm at (so that the treat-
ment arms are receiving different second-line treatments),
then what the definitive-outcome treatment effect would have
been without the crossovers is the one of interest. This sug-
gests that the trials included in the metaanalysis should not
have allowed crossovers (although the new trial may have
them), and any effective second-line treatments that are be-
ing used in the new trial were also used in the trials in the
metaanalysis.

5. Application Revisited

Sargent et al. (2005) performed a comprehensive metaanaly-
sis of 18 trials. GT'S use a subset of 10 of these trials, added
2 more (including C06 that apparently had a noninferiority
design), and combined experimental trial arms for trials that
had more than one experimental arm. In addition, GTS ex-
cluded patients with zero event times, suggesting a more gen-
eral problem with AFT modeling—should a prolongation of
an event from 1 to 3 days be considered as effective as a pro-
longation of an event from 1 to 3 years? Because of these con-
siderations, I consider the GTS analyses as a demonstration
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Table 1
Study-specific log hazard ratios with their standard errors

Disease-free

Study TTR (O survival

Co1 0.04+0.12 —-0.024+0.09 —-0.05£0.10
C02 0.074+0.14 0.14+0.10 0.14£0.11
C03 0.33+0.11 0.26 +£0.09 0.25+0.09
C04 0.154+0.08 0.12+0.07 0.09 £0.08
C05 0.10+0.08 0.03+0.07 0.06 £0.07
C06 —0.03+0.10 0.02+0.10 0.01+0.09
Co7 0.174+0.08 0.15+0.09 0.19£0.08
INT-0035 0.47+0.10 0.28 £0.10 0.36 +£0.09
NCCTG 784852 0.4240.18 0.17+0.17 0.30+0.17
NCCTG 874651 0.174+0.17 0.244+0.15 0.30£0.15
NCCTG 894651 —0.06+0.12 —0.07+0.11 —0.03+£0.11
NCCTG 914653 —0.034+0.12 —0.10£0.11 —0.06+0.10

Note: Hazard ratios are for control over experimental treatment so
that log hazard ratios >1 represent the experimental treatment doing
better.

of statistical methodology and do not make any comments
about the clinical relevance of their results to cancer trials.

The GTS analyses have some strange properties that could
use some clarification. First, the standard errors for the overall
survival (OS) treatment effects (“True” in Table 2 of GTS) are
remarkably small. In particular, they are very much smaller
than the standard errors for the time-to-recurrence (TTR)
treatment effects (“Surrogate” in Table 2 of GTS). This is
surprising given that 80% of the deaths were preceded by
recurrence. In addition, what can explain a 10-fold difference
in the TTR standard errors for CO7 and C01 when there is
only a 2-fold difference in the OS standard errors? Secondly,
as noted by GTS, many of the OS and TTR estimates are
essentially identical. Figure 1 is a plot of the estimates. It
is hard to understand how the stated reasons (correlation of
event times, constraint on the event times) can explain how
this plot can be consistent with the given standard errors.

To better understand these data, we consider standard PH
modeling as was used by Sargent et al. (2005) for OS and
disease-free survival (DFS) and TTR composite endpoints.
GTS have kindly supplied me with the estimated log hazard
ratios and their standard errors (Table 1). The estimates and
their standard errors appear nonanomalous. The correlation
across the 12 trials between the OS log hazard ratio and the
OS AFT treatment effect is 0.981, again suggesting a problem
with the standard errors in Table 2 of GTS.

Unlike Sargent et al. (2005), GTS provide no indication of
how a TTR treatment effect for a new trial would translate
into an estimated OS effect.

6. Discussion

The biggest issue concerning trial-level surrogacy has noth-
ing to do with statistical methodology, but is whether it is
reasonable to extrapolate from the trials in the metaanalysis
to the new trial at hand. If the new trial has treatments with
a mechanism of action different than the trials in the meta-
analysis, or if new second-line treatments have become avail-
able, the results of the metaanalysis may not apply. When
possible, it would seem advisable for definitive randomized
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clinical trials to follow patients for survival even if a surrogate
endpoint is going to be used to report preliminarily the trial
results.

ADDITIONAL REFERENCES (NOT IN GTS)

Bear, H. D., Anderson, S., Smith, R. E., Geyer Jr., C. E., Mamounas,
E. P., Fisher, B., Brown, A. M., Robidoux, A., Margolese, R.,
Kahlenberg, M. S., Paik, S., Soran, A., Wickerham, D. L., and
Wolmark, N. (2006). Sequential preoperative or postoperative do-
cetaxel added to preoperative doxorubicin plus cyclophosphamide
for operable breast cancer: National Surgical Adjuvant Breast and
Bowel Project Protocol B-27. Journal of Clinical Oncology 13,
2019-2027.

Freedman, L. (2005). Commentary on assessing surrogates as trial end-
points using mixed models. Statistics in Medicine 24, 183—185.

Ghosh, D., Taylor, J. M. G., and Sargent, D. J. (2011). Meta-
analysis for surrogacy: Accelerated failure time models and
semi-competing risks modeling. Biometrics, doi: 10.1111/j.1541-
0420.2011.01633.x.

239

Green, S., Benedetti, J., and Crowley, J. (2003). Clinical Trials in On-
cology, 2nd edition. Boca Raton, Florida: Chapman & Hall.
Korn, E. L. and Freidlin, B. (2010). Causal inference for definitive
clinical end points in a randomized clinical trial with interven-
ing nonrandomized treatments. Journal of Clinical Oncology 28,

3800-3802.

Korn, E. L., Albert, P. S., and McShane, L. M. (2005a). Assessing
surrogates as trial endpoints using mixed models. Statistics in
Medicine 24, 163-182.

Korn, E. L., Albert, P. S., and McShane, L. M. (2005b). Rejoinder
to commentary by Dr Freedman of ‘Assessing surrogates as trial
endpoints using mixed models’. Statistics in Medicine 24, 187—
190.

Korn, E. L., Freidlin, B., and Abrams, J. S. (2011). Overall survival as
the outcome of randomized clinical trials with effective subsequent
therapies. Journal of Clinical Oncology (published online before
print May 9, 2011). doi:10.1200/JC0O.2011.34.6056.

National Lung Screening Trial Research Team (2011). The National
Lung Screening Trial: Overview and study design. Radiology 258,
243-253.

Vance W. Berger, Grant Izmirlian," and Diana Knoll

National Cancer Institute, Biometry Research Group
Executive Plaza North, Suite 3131, 6130 Executive
Boulevard, MSC 7354, Bethesda

Maryland 20892-7354, U.S.A.

“email: izmirlig@Qmail.nih.gov

In an interesting analysis of currently applied methods and
new developments in the field of surrogacy, Ghosh, Taylor,
and Sargent (2011), emphasize the importance of additional
work and better observations in the research field of surro-
gate marker validation. Considering time-to-event endpoints,
they look at common validation methods, reveal drawbacks,
and try to give possible solutions. Given the popularity of
surrogate endpoints for decreasing trial costs and duration
(Molenberghs, Geys, and Buyse 2001; Berger, 2004), it is im-
portant to analyze all aspects of these potential replacements
of the clinical endpoint. We note that we agree with much
of what was said, but in our brief communication, we will
limit ourselves to our few points of disagreement with the
authors.

For full disclosure, we note our general predisposition to-
ward straightforward analyses that allow the data to stand
on their own, without the need for unverifiable assumptions,
at least if we confine our attention to the evaluation of treat-
ments, as we intend to do. Matters such as the association
between the surrogate and the true endpoint are certainly in-
teresting academically speaking, and, moreover, the authors
did note that the insights generated are complementary to
those found by existing methods. This is fair, but still, we
find that even the simpler question of whether a treatment
works or not is sufficiently complicated that valid approaches
to address it are quite elusive. At least this is the case if by
“valid” we mean truly valid, and not merely accepted as such.

So we set our sights lower, and confine ourselves to the issue of
the role surrogate endpoints can or should play in the (valid)
evaluation of treatments.

Our first point of contention concerns the treatment of
death as a censoring time for recurrence, as if there is some
true, unobserved, latent recurrence time that would have oc-
curred at some point after death, if only death had not made
things so inconvenient for the researchers. However, now, with
the miracle of modern statistics, the patient need not worry.
Though still just as dead, at least now the patient can find
some consolation in the fact that we can detect that this hy-
pothetical recurrence time has been pushed back in to the
more distant future. Admittedly, our caricature may not be
fair, as this may be a reasonable approach for academic inter-
est. However, as noted, we limit ourselves to the perspective
of the patient who wants to know only if the new treatment
is better than the old one. And how shall we define “better”
for this patient? Do we really want to ask the patient to trust
us that there is a better afterlife if we can just push back
that posthumous recurrence time? An argument was made
(Fisher, 1999) in the context of a carvedilol trial that death
trumps all other considerations. Though we did not find this
argument convincing in the context in which it was initially
offered (it does not justify changing the primary endpoint af-
ter the data are in), we do find it convincing in the context we
now discuss, namely, that recurrence has no meaning once the
patient has died. Hence, we find ourselves more in agreement
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with Sargent et al. (2005) that the proper formulation of the
problem is in terms of disease-free survival.

What, then, are we to make of the allegation and criticism
that the disease-free survival time is actually a composite end-
point? The characterization of the disease-free survival time
as a composite endpoint is not dissimilar to the characteriza-
tion (Berger, 2000, p. 1321) of an approximate p-value, p(4),
as the sum of two components, the exact p-value, p(E) and
the error (so to speak), p(A) — p(E). One who perversely
clings to the indefensible notion that an approximation is to
be preferred to the very quantity it is trying to approximate
might just as easily call the difference D = p(E) — p(A) the
error, and then proceed to express p(E) as the sum p(A) +
D. Does this characterization of either p-value as a sum of
two quantities mean that any p-value we might ever present
is a composite endpoint by virtue of being expressible as a
sum of two components? This seems to be a highly suspect
allegation. And at least here the usual rules of arithmetic
apply, as we observe (or can directly compute) both p(A)
and p(E).

The same cannot be said for the two component endpoints
(survival time and recurrence time). When death comes first,
we do not observe the recurrence time, so the minimum of
these two certainly is not computed as the minimum of the
two; it cannot be. Rather, it is directly observed as the time
to the first event, which in some cases (when death comes
first) will turn out to be the only event of interest. So it
is not clear that the time to first event, min(S, T'), is any
more of a composite endpoint than is the survival time (7)
itself, which may be expressed as the sum of two components,
T =min(S, T) + I(S < T)(T — S). However, even if we do
concede that min(S, T') is a composite endpoint, how much
of an indictment is this of the endpoint? Are composite end-
points really to be avoided? Although it has been shown that
relying solely on composite endpoints could lead to flawed
conclusions and could tempt researchers to influence their
findings in a favorable direction (Montori et al., 2005), it is
also clear that composite endpoints are highly desirable in
some contexts (Berger, 2002); therefore, if an argument is to
be compelling that they are undesirable in this case, then a
much stronger argument will be needed.

Beyond our disagreement with (1) the treatment of the re-
currence time as censored when death comes first, and (2)
criticizing composite endpoints with a broad brush, we pon-
dered over the insinuation that a cross-trial coefficient of cor-
relation in excess of 0.90 should be a high enough aggregate
correlation to ensure validity of a surrogate endpoint. We then
began to wonder how validity in terms of hypothesis testing
holds for a particular coefficient of correlation. Let Ag, A7 be
the normalized test statistics based upon data on the surro-
gate and upon the clinical endpoints, respectively. Under the
global null hypothesis, the vector (Ag, A7) is asymptotically
distributed as a bivariate normal with components of mean
zero, variance one and correlation, pag a. . Suppose that we
are benchmarking a potential surrogate endpoint by conduct-
ing a metaanalysis of trials of a given “family” of agents in
which both the surrogate and clinical endpoints are measured.
Suppose that it is our intention to use the resulting infor-
mation, namely, our estimate of pag ., to ensure that in a
future trial of an agent from the same family in which only
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Table 1
Correlation coefficient between surrogate and clinical endpoint
test statistics, pag A, , that is required given stipulated level of
significance in surrogate endpoint test of null hypothesis,
ET‘T'é, and stipulated conditional probability, under the global
null hypothesis, that clinical endpoint test of null hypothesis is
rejected given that the surrogate endpoint test of null
hypothesis is rejected, 1, when the level of significance in
clinical endpoint test of null hypothesis is fixed at 0.05. All
hypothesis tests are two sided.

¢ ET'Tgv CT'itS pAS Ao
0.95 0.0025 3.0233 0.8633
0.95 0.0050 2.8070 0.8941
0.95 0.0100 2.5758 0.9268
0.95 0.0200 2.3263 0.9604
0.95 0.0300 2.1701 0.9792
0.95 0.0400 2.0537 0.9912
0.95 0.0500 1.9600 0.9986
0.99 0.0025 3.0233 0.9116
0.99 0.0050 2.8070 0.9350
0.99 0.0100 2.0758 0.9584
0.99 0.0200 2.3263 0.9803
0.99 0.0300 2.1701 0.9912
0.99 0.0400 2.0537 0.9972
0.99 0.0500 1.9600 0.9999

the surrogate endpoint is measured, that a surrogate endpoint
based test of the null hypothesis at level Errl will correspond
to a hypothetical clinical endpoint based test of the null hy-
pothesis at level Errh. Certainly if pa, A, = 1 then the test
statistics either reject or accept their corresponding null hy-
potheses together and the probabilities of type I error, Errf
and Erré, are identical. Of course this is never the case. When
the correlation coefficient, pay A, , is less than one, then we
have suddenly an additional error probability that must be
controlled, but is seldom talked about as far as we are aware.
This is the complement of:

P = IPH((];' {Ac > z¢ | As > 25}, (1)

where H§ in the above is the global null hypothesis. This is
the conditional probability, under H§, that the clinical end-
point based test of the null hypothesis at level Err’ is rejected
given that the surrogate endpoint based test of null hypothe-
sis at level Err} is rejected. Having introduced this concept,
the first question that arises is: what value of ¥ should be con-
sidered reasonable? Naturally our first instinct is to consider
what is already considered reasonable and attempt to extrap-
olate upon that. We wish that there were no false positives
in all clinical research, but in order not to throw the baby
out with the bathwater, we should be content with garbage a
proportion Errl, of the time. Applying this logic recursively
to the setting of tolerable false clinical positives among sur-
rogate positives, the value v = 1 — Errl or better should
be used. We list in Table 1 below, values of pag ., which
correspond to stipulated values of 1 (0.95 or 0.99) and Errl
(0.0025, 0.001, 0.01, 0.02, 0.03, 0.04, 0.05), when ErrL is fixed
at 0.05. Note that, for example, if we want a surrogate end-
point based test of the null hypothesis at level Errl = 0.05
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to “guarantee,” at least 1» = 95% of the time, a correspond-
ing level Errl, = 0.05 clinical endpoint based test of the null
hypothesis, then we require the test statistics to have corre-
lation pag a, = 0.9986. Of course this is too tall of an order!
If, as indicated by the comments on the example in Ghosh
et al. (2011), a correlation of pag, A, = 0.90 is more realistic,
then to ensure that the level of the clinical endpoint based
test of the null hypothesis is valid at Errl, = 0.05 then we
must set the level of the surrogate endpoint based test of the
null hypothesis to Errl = 0.005 (that is one tenth of the
usual 0.05, not a typo). We can only guess what goes on in
practice.

In summary, we have reservations regarding (1) the prefer-
ence for disease recurrence, censored by death being prefer-
able to disease-free survival and (2) the criticism of compos-
ite endpoints in general. These more substantive limitations
aside, however, we applaud the author’s work introducing a
methodology for the survival analytic setting whereby an as-
sociation parameter between the surrogate and clinical time
to event can be tied to the correlation parameter between
the associated Wald statistics in a log-rank type test. Beyond
that, we are grateful to have this opportunity to comment
in a larger context on the validation of surrogate endpoints.
Specifically we have highlighted the need to attach the con-
cept of validity to the relationship between surrogate endpoint
and clinical endpoint based tests of the null hypothesis. We
hope that our discussion of the conditional probability that
a clinical endpoint based test rejects the null hypothesis at
a determined level given that the surrogate endpoint based
test rejects the null hypothesis at a fixed level and its relation
to the intertest-statistic correlation coefficient provides some
insight. Certainly its implications in terms of meaningful ef-
fect sizes for the clinical endpoint and surrogate endpoints are
areas that we intend to explore in the future.

Beyond our commentary on what we consider to be quite
elegant methodology for validating candidate surrogate end-
points in the setting of a metaanalysis of trials in which both
surrogate and clinical endpoints are measured, we take one
more opportunity to comment on the use of surrogate end-
points in general. By the principle of minimum energy, which
predicts the path connecting mice with their ultimate des-
tination, the “cheese” as it were—and keep in mind we are
not insinuating that any entity involved would intentionally
“cheat,” the existence of such a path of least resistance pre-
cludes its omission from a discussion such as this one. Con-
sider the possibility that an agent, £, failed in a test of efficacy
on clinical endpoint, C, but is known to have strong efficacy
for surrogate endpoint, S. Is it not possible to find agents 7,
M9,...,n; in the same chemical family (creative synthetic or-
ganic chemistry should allow one to stick a familial ligand on
somewhere), which all show strong efficacy for both the clini-
cal and for the surrogate endpoint. For this reason, should not
there always be a calibration sample on which both surrogate
and clinical endpoints are measured?

Surrogate endpoints serve a useful purpose, in that they
can greatly reduce the cost and duration of a trial, thereby
allowing these resources to be diverted to other useful ac-
tivities. However, there is a fundamental problem, or impos-
sibility theorem, that governs their use. If a treatment has
already been studied with trials using the clinical endpoint,
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then it is unclear what added benefit accrues from studying
it again with a surrogate endpoint. So let us confine our at-
tention to the framework of validating surrogate endpoints so
that they can be used in future studies of future treatments
that have not, and will not, be studied with the clinical end-
points. Moreover, let us consider also the usual paradigm of
validating (or attempting to validate) surrogate endpoints so
that they can be used in future studies, in lieu of clinical end-
points. In this context, we recognize the need to test the new
treatment; that is, we do not rely on prior information re-
garding other treatments, even if in the same class, to state
that we do not need to study this treatment at all. And yet
we seem to lose sight of this enlightened and cautious real-
ization that each treatment is unique when we assume that
structural relations among variables that have been observed
in the studies of some treatments will continue to hold true
when this new treatment is studied.

As Hume (1896) noted, “probability is founded on the pre-
sumption of a resemblance betwixt those objects, of which we
have had experience, and those, of which he have had none;
and therefore it is impossible that this presumption can arise
from probability. The same principle cannot be both the cause
and effect of another.” What, then, can justify the assumption
that structural relations among variables will remain intact?
It seems difficult to find a convincing answer to this vexing
problem, and burying it under the carpet represents nothing
more than the shell game of hiding the uncertainty, or parlay-
ing pseudocertainty in an arena less likely to be scrutinized
(the structural relation of the variables) into pseudocertainty
(with the appearance of true certainty) in an area that is scru-
tinized routinely (the effectiveness of treatments). However,
the foundation of the argument is no Archimedes fixed point,
and conclusions that follow from premises can be no more
certain than the premises on which they are based. So if the
assumption (of stable structural relations among variables) is
needed to establish that a treatment is effective, then one has
to wonder just how effective the treatment really is. Hence,
our primary contention is that surrogate endpoints should be
used in conjunction with clinical endpoints, and not as re-
placements for them. That said, the models proposed by the
authors are a useful tool that may well have a far reaching
impact in the future of clinical research.
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1. Introduction

The contribution of Ghosh, Taylor, and Sargent (GTS) adds
a new angle to the surrogate endpoint literature by moving
slightly away from the established paradigm put in place by
Buyse and Molenberghs (1998) and Buyse et al. (2000), and
built on substantially since by themselves and coworkers. This
established paradigm is based essentially on the use of mul-
tivariate linear models and two endpoints, one of which is
the main endpoint of interest, usually survival time, and the
other an alternative endpoint, which may potentially serve as
a surrogate endpoint in place of survival time. GTS appeal to
a semicompeting risk framework that allows them to model
the region where the (potential) surrogate endpoint occurs
before survival time itself. Some of the tools developed within
the joint endpoint literature, for example, methods for evalu-
ating trial level surrogacy, both between and within, are given
analogues in the semicompeting risks setting.

GTS focus interest on the “wedge region” where the sur-
rogate endpoint is less than or equal to the survival end-
point, something which is not always made explicit in other
approaches, but which is natural in that, to play a useful
role as a surrogate, we need the event to occur earlier. The
classical illness—death model where illness does not censor for
death but death censors for illness (Fix and Neyman, 1951)
has the same structure as the semicompeting risk model of
Fine, Jiang, and Chappell (2001) and it would be helpful to
underline any perceived essential differences between these
models. Xu, Kalbfleisch, and Tai (2010) note that, apart from
references to latent times (an abstract and not an opera-
tional consideration), the illness—death model and the semi-
competing risk model describe the same probabilistic struc-
ture. Just as it seems preferable not to pay attention to the
idea of becoming ill once you have died, by focusing on the
wedge region, GTS make the same argument, in a less direct
way, that, once the subject has died, it may make sense to

give no consideration to the latent occurrence of surrogate
events.

In the following section, we contrast some recent techniques
for assessing surrogate endpoints in the survival setting, as
they relate to the composite endpoint approach and the semi-
competing risks approach. In Section 3, we make the case that
an analysis of surrogacy can be carried out using a propor-
tional hazards model with time-dependent effects. This is not
the current view and, in their response, the authors may take
the opportunity to spell out more clearly why they do not
favor such an approach.

2. Composite Endpoints versus Semicompeting Risks

The joint endpoint approach will typically take the surro-
gate outcome, S, and the survival outcome, T, and consider
some joint model for these. Taking the minimum of S and
T has been suggested as a composite endpoint although this
reduces to a single endpoint under a different definition, the
most obvious example being disease-free survival. The mod-
els that have seen most success are the multivariate normal
model for which many useful features become available to us,
including partial and multiple correlation coefficients. Having
fit such a model, then certain aspects of the parameterization
are of immediate interest, notably the degree of association
between T and S and, in particular, the way in which this
association manifests itself in terms of the conditional distri-
bution of T given some realized value of S. The accelerated
failure time model proposed by GTS cannot, of itself, be con-
sidered essentially a different model from the one of Buyse
et al. (2000). We know that S and T are necessarily positive
variables, the multinormal model then necessarily an approxi-
mation assigning probabilities close to zero for negative values
of S and T. By taking the logarithm of 7, which is linearly
regressed on the treatment indicator as well as other poten-
tial covariates, GTS are not doing anything fundamentally
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different from Buyse et al. (2000) apart from opening up the
possibility of working with different error distributions.

However, the question of different error distributions is not
studied by GTS and their equation (3) is a familiar score type
estimating equation that is valid when the censoring variable
is independent of survival. The investigation of the surrogate
endpoint itself differs from that of Buyse and colleagues in
that they use a technique developed by Lin, Robins, and Wei
(1996). This technique allows for the comparison of two sur-
vival curves in the presence of dependent censoring. Obvi-
ously, restrictions are needed and, as pointed out by GTS,
they will often be satisfied in studies on surrogate endpoints.
Nonetheless, the procedure of Lin et al. (1996) is itself oner-
ous and inference requires much more work. In particular, we
need some consistent estimate of the variance of the regres-
sion coefficients, which requires estimation of the density of
the errors as well as their derivatives. This is a notoriously dif-
ficult problem. In any statistical context, such estimation is a
very real challenge, and GTS choose as an operational solu-
tion to the problem a resampling technique recently developed
by Zeng and Lin (2008). The work of Zeng and Lin (2008) is
promising, and their simulations encouraging, but certain of
their conjectures seem quite optimistic, especially that the
general approach would work in cases where the convergence
rate is slower than n? or where some nuisance parameters can
be infinite dimensional. It would be reassuring to have some
further theoretical backing.

Apart from the very much more involved estimating ap-
proach of GTS, the differences are not great and we would
anticipate that the inferences obtained in one approach would
be confirmed by an analysis based on the other. However, al-
though broad inferences would be the same, the quantification
of the impact of the surrogate, as measured by some coefficient
of association, may differ. The set-up of Buyse et al. (2000)
is a more comfortable one in that all the required summary
statistics flow from a single unifying model. GTS, while us-
ing the same basic model (aside from taking logarithms) and
appealing to different estimating equations (which, if consis-
tency can be assumed) means we end up ultimately converg-
ing to the same quantities, prefer to lean on other measures
for trial and individual level surrogacy. Burzykowski, Molen-
berghs, and Buyse (2005), also considered these alternative
measures, based on a suitable model for the marginal distri-
butions of S and T, structured together via a copula function
with dependence parameter 6. These have been studied in the
semicompeting risks framework (Fine et al., 2001) and an es-
timator of 6 is available. A variance estimator for this has
been described in Ghosh (2009).

The nature of the dependence between T or log T and S or
log S for the two approaches is not essentially different and,
again, the novelty presented by GTS is an inferential one, in
particular making use of the work of Lin et al. (1996) and Zeng
and Lin (2008), to obtain the correct estimates in the presence
of a particular kind of dependency. Malani (1995) proposed a
method for dealing with dependent censoring and, at least in
spirit, it appears to be very similar to that of Lin et al., al-
though with a potential advantage in being very much simpler
to implement. Her ideas were developed further in the context
on improving efficiency based on auxiliary survival endpoints
(Flandre and O’Quigley, 1995; Cook and Lawless, 2001). In

243

the semicompeting risk setting we can frame the surrogate
endpoint problem in terms of making use of an auxiliary sur-
vival endpoint so that the Malani algorithm may be a simpler
computational alternative to Lin et al. and may be worthy
of further investigation. The use made of copula models by
GTS is not entirely satisfactory in that it does not fit in, in
any natural way, with the chosen approach to basic model-
ing. It would seem preferable to obtain association measures
of trial level surrogacy or individual level surrogacy within
the framework of the same model, as was the case with the
approach of Buyse and Molenberghs (1998) and Buyse et al.
(2000). An alternative way to dealing with these questions is
through the illness—death model of Fix and Neyman (1951)
and, leaning on a proportional hazards formulation, this is
fairly straightforward.

3. Proportional Hazards Analysis

The illness—death model of Fix and Neyman (1951) can be
precisely formulated within the context of a proportional haz-
ards model that includes a time-dependent indicator covariate
taking the value zero until illness (occurrence of the surro-
gate endpoint) and, thereafter, the value one. Treatment is
then simply another binary indicator variable in the propor-
tional hazards model. Note that proportional hazards models
are readily broadened to deal with nonproportional hazards
as well as allowing for the estimate of average effects that
arise under nonproportionality (O’Quigley, 2008, chapters 6,
7). These models represent an alternative approach to lin-
ear and log-linear models. In Prentice (1989), the idea of a
pathway is fundamental and this is mirrored precisely by the
illness—death model.

3.1 Nesting of Models

Many authors, including GTS, underline the fact that, outside
of the multinormal model, it is generally not possible to nest
restricted models within broader models from the same fam-
ily. For example, if we can assume that a proportional hazards
model holds for the combined effects of treatment and a time-
dependent covariate representing the surrogate endpoint, then
the restricted model, in which only treatment is considered,
no longer belongs to the proportional hazards class. More im-
portantly, if the treatment effect is orthogonal to the effect
of the surrogate endpoint, then the coefficient for treatment
will be the same, whether or not the surrogate variable is in-
cluded, only in the case of multinormal models. As a result
of this many authors talk of bias caused by modeling for all
models other than the multinormal one. This advantage, how-
ever, is a very relative one and is lost entirely once we view
our models as working approximations to some more complex
reality rather than being exact. We can use proportional haz-
ards models to estimate average effect when the true hazards
are nonproportional (Xu and O’Quigley, 2000), and this seems
to be more useful. Briefly, when comparing models, the issue
of model bias has almost certainly been overstated.

3.2 Prentice Criteria

For the proportional hazards regression model (Cox, 1972) we
specify the intensity function as;

Mt [Z(t)} =Y () o(t) exp{BZ(1)}, (1)
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where \(t) is a fixed but unknown “baseline” hazard func-
tion, and 3 is a p X 1 regression parameter to be estimated.
The first surrogacy criterion proposed by Prentice (1989) re-
quires the failure rate for T be independent of treatment,
conditional on the surrogate variable. This notion is defined
by the relation (Prentice, 1989, p. 433)

Mt | 2:(1), Z2(8)} = Mt | Z:1()}, (2)

where Z,(¢) is a binary surrogate variable and Z(t) is the
treatment indicator, in general, not depending upon t, al-
though it can be allowed to and would enable us to analyze
crossover designs, for example. This criterion ensures that a
surrogate for T should be able to capture the dependence of
T on treatment. The second criterion considers a model with
only the surrogate variable and requires that the surrogate re-
sponse have some prognostic implication for the true endpoint
(Prentice, 1989, p. 434); that is,

Mt Zu(1)} # A1) (3)

for all t. Conditions (2) and (3) were proposed as operational
criteria for surrogate endpoints in clinical trials (Prentice,
1989).

3.3 Proportion of Treatment Effect (PTE) Explained

Freedman, Graubard, and Schatzkin (1992) indicated that it
would be quite possible to fail to reject the hypothesis, ex-
pressed by equation (2), for instance due to a lack of power,
and—as in any testing situation—such a failure to reject can-
not be taken as confirmation of the hypothesis. In other words,
if we carry out the test, a nonsignificant finding does not re-
ally allow us to make any useful statement about the value
of the variable Z;(t) in terms of its potential as a surrogate.
Again, as in the usual testing situation, a significant result
means something more concrete, in this particular context
that there is information left in the treatment variable once
the surrogate has been accounted for as far as survival dif-
ferences are concerned. All of the operational difficulty arises
because a null hypothesis cannot be “proven,” it can only be
rejected.

Freedman et al. (1992) saw that testing whether or not
any information remains concerning treatment effect, once
the surrogate has been accounted for, was not enough. Some
quantification of the strength of effects was needed and, as
a suggestion, they proposed a measure PTE. The purpose of
PTE was to gauge the amount of treatment effect on survival
captured by the surrogate endpoint alone. Although making
intuitive sense, the coefficient PTE is difficult to interpret
precisely and although work has been done on the statisti-
cal properties of the measure, and large sample theory (Lin,
Fleming, and DeGruttola, 1997), the nature of the popula-
tion equivalent of PTE is still not clear. It is not always in-
terpretable as a proportion. Flandre and Saidi (1999) give
some examples of use of PTE in practice and these suggest
that further theoretical investigation is required. Specifically,
they found that for the Delta trial which compares AZT alone
to AZT plus ddI or AZT plus ddC, the index proportion of
treatment explained by RNA levels to week 16 on time to
AIDS/death was estimated as 183%. In the case of AZT+ddI
and AZT+ddC, the index was higher at 249%.
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Perceived difficulties with PTE has prompted other sugges-
tions for addressing the questions raised by Freedman et al.
One of the authors of the current article proposed an index
called the F-measure (Wang and Taylor, 2002). This measure
is not restricted to the interval (0,1) (or 0% to 100% when
dealing in percentages) and, in fact reduces to the PTE (see
Ghosh, 2008) in particular cases, thereby inheriting the diffi-
culties associated with PTE. Buyse et al. (2000) argued that
two measures—rather than the single PTE measure—were
needed, the first called the relative effect (the ratio of the
overall treatment effect on survival over that on the surrogate
endpoint) and a measure of association between survival and
the surrogate having accounted for the effect of treatment.

Within the framework of proportional hazards models,
rather than using the estimated regression coefficients to ob-
tain a value of PTE, it is possible to work with R?> measures of
explained variation. These allow us to quantify the strength
of the effect of the surrogate endpoint alone, as it affects sur-
vival, as well as allowing us to quantify the strength of the
effect of treatment on survival after having taken into account
the impact of the surrogate endpoint. Indeed the Prentice cri-
teria can be reformulated in an equivalent way in terms of R%.
Specifically, we can reexpress equation (2) as; R? (Z5()|Z1(t))
= 0, where we use the notation R?(A|B) to indicate the par-
tial explained variation of survival with A after having ac-
counted for the effect of B. The second Prentice criterion
(equation (3)) can be reexpressed as R*(Z,(t)) > 0, i.e., the
surrogate endpoint has some impact on survival. The the-
ory of explained variation for survival models, in particular
the proportional hazards model, has only recently been fully
worked out (O’Quigley, 2008). The theory allows us to give a
very concrete interpretation to the values of R’ as estimates
of equivalent population quantities which, in the case of the
Prentice criteria, directly translate two things: first, the per-
centage of variation in survival which can be attributed to
the surrogate endpoint and, second, the percentage of vari-
ation in survival that can be attributed to the treatment
after having accounted for any effect of the surrogate end-
point. These are the very quantities we need in an analysis
of surrogacy. A parallel theory in terms of explained random-
ness is also available (O’Quigley, 2008). In practice, numerical
results will be close and, indeed, when dealing with normal
variates then explained variation and explained randomness
coincide.

As an illustration we looked at a study of 219 patients with
resected lung carcinoma randomized 3 weeks after surgery
(Decroix, Chastang, and Fichet, 1984). The likelihood ratio
test for the first Prentice’s criterion leads to a p-value of 0.68,
which indicates that the effect of stage (playing the role of
treatment here) on survival appears to be largely captured by
the surrogate endpoint relapse. The evaluation of the second
Prentice’s criterion leads to a p-value <0.001, which confirms
the strong prognostic effect of relapse on the risk of death.
In the light of the Prentice criteria, it seems plausible that
relapse be a valid surrogate endpoint for the effect of the
grouping variable stage on survival. The R* measures allow
us to say more. Indeed, we have R*(Z, |Z,(t)) = 0.00024,
where Z;(t) is the time-dependent indicator for relapse and
Z 5 plays the role of the treatment variable, in this case stage.
The very small value, 0.00024, in good agreement with the
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likelihood ratio test, implies that when the surrogate variable
is already in the model, inclusion of the staging variable does
not increase, significantly, the predictive ability of the model.
The predictive capability of the surrogate endpoint itself is
given by R?(Z(t)) = 0.696, a quantity which, while differ-
ing significantly from zero and thereby addressing Prentice’s
second criterion, is sufficiently large to suggest itself as a po-
tentially powerful surrogate. Almost 70% of the variability in
survival can be explained by the factor relapse.

3.4 Metaanalysis

GTS pay particular attention to metaanalysis as a tool to
evaluate surrogacy, especially by appealing to the accelerated
failure time model and semicompeting risks. In the context
of a proportional hazards model, and an illness—death struc-
ture, all of these questions can be dealt with in a relatively
straightforward way. In the model, alongside the covariate
treatment, the time-dependent covariate surrogate endpoint,
we would include a group of J — 1 indicator variables to des-
ignate the J different trials. This set up easily fits in with
the ideas of Buyse et al. (2000) on between- and within-trial
surrogacy. Also, we can readily test, and quantify via R? mea-
sures, center effects alongside treatment and surrogacy effects.
Furthermore, questions such as homogeneity of treatment ef-
fect across centers, homogeneity of surrogacy across centers
and homogeneity of treatment effect given the surrogate end-
point across centers are all readily tested using widely avail-
able techniques for nested and stratified proportional hazards
models, as well as models with time-dependent covariates.
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Rejoinder

Debashis Ghosh,
Jeremy M. G. Taylor,
and Daniel J. Sargent

1. Introduction

We would first like to express our appreciation to coeditor
David Zucker and the Associate Editor for organizing this
discussion. We also thank the discussants for their comments
on our article. They have raised many excellent points, and
in our response, we only deal with a subset of them.

Geert Molenberghs (M) and John O’Quigley and Philippe
Flandre (OF) accurately describe the methodology in our ar-
ticle as joint regression and association modeling of the sur-
rogate and true endpoints in which a constraint is placed on
the type of data that are used (the “wedge” region). As OF
noted, this constraint leads to the multistate model of Fix and
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Neyman (1951). This data structure complicates the standard
estimation procedures that were developed by Burzykowski,
Molenberghs, and Buyse (2005, Ch. 11). However, much of the
model formulation is very similar to what was described there.
The constraints in our approach can be viewed as a different
model for the error distribution. Our focus is not on predic-
tions, as advocated by Edward Korn (K), partly because it is
very hard with censored data to estimate the intercept param-
eter in a linear model well without making strong assumptions
(Ying, Jung, and Wei, 1995). K is suspicious of the standard
errors in our semicompeting risks analysis, but our applica-
tion of the methodology to data from Ghosh (2009) yielded
essentially identical answers to those reported there (data not
shown). An implication of the artificial censoring strategy we
propose here is that we are throwing away information on
recurrences. Consequently, the standard errors for the treat-
ment effects on the surrogate endpoint will increase in our
approach relative to approaches that do not throw away that
information (e.g., the analyses in Table 1 of K’s discussion).
An implication of the semicompeting risks approach will be
that the magnitude of the treatment effect on the surrogate
endpoint will be less than or equal to that on the true end-
point because of the wedge contstraint.

Vance Berger, Grant Izmirlian, and Diana Knoll (BIK) and
K criticize us with respect to composite endpoints. There are
two issues here. The first is whether or not composite end-
points should be used for assessing treatment effects in clinical
trials. BIK and K strongly advocate for composite endpoints
such as disease-free survival in oncology trials. Since disease-
free survival is arguably a meaningful clinical endpoint, we
agree with BIK and K’s point if the goal is simply to un-
derstand the treatment effect. However, a second goal is at-
tempting to understand the association between the surrogate
endpoint with the true endpoint. As we discussed in the arti-
cle, this is problematic if the surrogate endpoint is a compos-
ite endpoint that uses information on the true endpoint. In
the context of the motivating colorectal cancer example, we
are arguing that recurrence and death are separate processes.
One can interpret our modeling strategy as a model for the
process that gave rise to the data, rather than a model for
the observed data. In modeling the biology, in this context,
it is useful to recognize that recurrence is not a spontaneous
event. It occurs because the cancer is regrowing and reaches a
size where it is detected. From this perspective, there is some
rationale for considering when the cancer would have grown
to such a size to be detected had not the patient died from
something else. K says patients might die from their disease
without having progression or having it observed. That is con-
text dependent and pretty rare in the cancer clinical trials we
analyze.

OF and K advocate the use of proportional hazards (PH)
models in their discussions. Since we were focusing on estima-
tion using the wedge constraint, PH models were not available
to us. The recent work of Xu, Kalbfleisch, and Tai (2010),
discussed by OF, allows for proportional hazards models for
S and T in the semicompeting risks setting. The type of R”
that OF describe comes from a comparison of models for T' | Z
and T'| S, Z. It is not at all straightforward to calculate this
quantity here because of two reasons. The first is that includ-
ing S as a covariate, in conjuction with the constraint that
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Table 1
R? walues for recurrence in the colorectal cancer data
Study R?
Co1 0.51
co2 0.38
Co3 0.55
Co4 0.52
C05 0.48
Co06 0.42
Cco7 0.38
INT-0035 0.52
NCCTG 784852 0.57
NCCTG 874651 0.54
NCCTG 894651 0.56
NCCTG 914653 0.53

Note: The method of Nagelkerke (1991) was used to calculate R2.
In particular, two PH models were compared. Both had age (log trans-
formed), stage, and treatment as covariates; one included recurrence
as a time-dependent covariate, the other did not. The baseline hazard
function was modeled using a Weibull distribution.

S < T, will complicate estimation. Second, provided one could
develop a valid method for estimation in the model for T'| S,
Z with S < T, calculating an R>-type measure poses its own
issues. Guidance for constructing such measures would come
from previous proposals to create likelihood ratio-type statis-
tics from estimating equations (e.g., Li, 1993).

OF were interested in the R? values for our example. We
show them in Table 1 for the colorectal cancer data in which
parametric Weibull PH models are fit, along with adjustment
for stage, age (log transformed), and treatment. The method
of Nagelkerke (1991) for calculating R? was used. The values
range between 0.38 and 0.56, compared with the R? value of
0.69 that OF obtained in their example. The question remains
of how to set guidelines for using the R? value in deciding
whether to use the surrogate marker.

M makes a push for performing sensitivity analyses in our
modeling procedures. We agree this is an important task and
area for future research. He also asks about the potential
for causal interpretations of the parameters that we have es-
timated. Using the structural modeling framework of Pearl
(2001), we (Ghosh, Elliott, and Taylor, 2010) have recently
shown that the relative effect (i.e., ratio of the two regression
coefficients) can be interpreted as a causal parameter in the
linear case. There has been recent work on framing the surro-
gacy problem in the potential outcomes framework (Gilbert
and Hudgens, 2008; Li, Taylor, and Elliott, 2010). Attempt-
ing to incorporate the semicompeting risks data structure into
the potential outcomes framework is more challenging. Sup-
pose we define the potential outcomes {S7(1), S7(0), T5(1),
T:(0)},7i=1,..., n, where {S3(Z), T:(Z)} denotes the joint
potential outcome for time to the surrogate and true end-
points, respectively, for the ith individual if assigned treat-
ment Z, Z = 0/1. Then causal estimands are defined to be
within-individual contrasts in 7 and S*. Frangakis and Rubin
(2002) defined the concept of principal stratification, in which
within-individual contrasts for 7" are considered conditional
on S*. The problem with the semicompeting risks approach
is that S* might not be well defined if the person experiences
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the true endpoint but not the surrogate endpoint. This has
been referred to by Zhang and Rubin (2003) as “truncation
by death.” While the potential outcomes framework might
not allow for well-conceptualized causal estimands with semi-
competing risks data, this is not the only model for causality
that exists in the literature. In particular, econometricians
work with so-called structural selection models (Abbing and
van den Berg, 2003), and such a modeling framework might
allow for better incorporation of semicompeting risks data.
Of course, “causal estimand” has a different meaning using
these models relative to the potential outcomes framework.
This research is currently under investigation.

We broadly agree with much of what the discussants pro-
posed regarding trial-level meta-analysis. K advocates pre-
diction, but as noted before, that is not straightforward in
our modeling scheme with censoring present. In our example,
we combined treatment arms despite well-documented evi-
dence of heterogeneity in the different groups. We note that of
14,246 initial subjects, there are 56 and 48 subjects with time
to recurrence and time to death equaling zero, all of which
are censored, so this represents a very small percentage of
observations.

The lively discussion of our article has led us to consider a
compromise between the association framework proposed here
with another view of surrogates, termed auxiliary variables,
that might lead to greater consensus. If T is missing, auxiliary
variable methods would impute the value of T based on the
value of S. In this way, the composite endpoint of disease-free
survival (DFS) can be viewed as an imputation strategy by
replacing missing values of T with S. From the perspective of
auxiliary variables this is clearly biased, but in this setting
this might be reasonable for two reasons. First, S and T are
highly correlated so we might expect S to be a good prediction
of T. Second, DFS as an endpoint has a clinically meaning-
ful interpretation. Thinking of surrogate markers as auxiliary
information would seem to be a strategy that could keep the
discussants such as K and BIK happy because we still use the
real endpoint if it is available but would allow for information
in Sto be utilized. If S was only weakly related to T then there
would be little gain in efficiency. By contrast, if S was strongly
related to T then there are potential gains in efficiency.

In closing, we would like to stress that if the goal is to iden-
tify surrogate endpoints that occur before the true endpoint
so that trials can be done more quickly, then this will neces-
sitate accepting a greater level of uncertainty. There are as-
pects based on the semicompeting risks framework that allow
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for this, but by no means is this the only type of methodol-
ogy available. The question then becomes how much are you
willing to lean on the knowledge from biology and data from
other trials to help control this uncertainty. How to do this is
where the role of statistics is crucial.
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