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Sample size determination for quadratic
inference functions in longitudinal
design with dichotomous outcomes
Youna Hu and Peter X.-K. Song*†

Quadratic inference functions (QIF) methodology is an important alternative to the generalized estimating equa-
tions (GEE) method in the longitudinal marginal model, as it offers higher estimation efficiency than the GEE
when correlation structure is misspecified. The focus of this paper is on sample size determination and power
calculation for QIF based on the Wald test in a marginal logistic model with covariates of treatment, time, and
treatment–time interaction. We have made three contributions in this paper: (i) we derived formulas of sample
size and power for QIF and compared their performance with those given by the GEE; (ii) we proposed an
optimal scheme of sample size determination to overcome the difficulty of unknown true correlation matrix in
the sense of minimal average risk; and (iii) we studied properties of both QIF and GEE sample size formulas
in relation to the number of follow-up visits and found that the QIF gave more robust sample sizes than the
GEE. Using numerical examples, we illustrated that without sacrificing statistical power, the QIF design leads to
sample size saving and hence lower study cost in comparison with the GEE analysis. We conclude that the QIF
analysis is appealing for longitudinal studies. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Longitudinal clinical studies are undertaken extensively in biomedical sciences. In a longitudinal clini-
cal study, repeated measurements are recorded at prescheduled time points during a study period. One
primary objective of a clinical study is to compare effects of test treatments with those of controlled
treatments.

When outcome variables of interest are binary, the marginal logistic model is popular for assessing
the population-average effect of a test treatment. For the details regarding marginal generalized linear
models for longitudinal data, refer to [1, 2]. Researchers have widely applied the method of generalized
estimating equations (GEE), proposed by Liang and Zeger [3], to estimate and infer treatment effects
in the marginal logistic model. Accordingly, researchers have studied sample size determination in the
GEE-based design in the literature; for example, [1, Chapter 2; 4–6], among others. It is worth pointing
out that Diggle et al. [1], Pan [4], and Rochon [6] considered a very simple longitudinal model that
contains only a single treatment covariate; neither time covariate nor treatment–time interaction covari-
ate is included in the design. Jung and Ahn [5] considered all these covariates but treated the working
correlation structure as independent. Although these existing tools have addressed basic needs in the lon-
gitudinal study design, sample size and power calculation under more general scenarios, say, longitudinal
models with both covariates of time and treatment–time interaction with various working correlations
considered, are clearly of great importance in clinical research.

One objective of this paper is to establish a new scheme of sample size and power calculation on the
basis of the quadratic inference functions (QIF) approach [7]. QIF is a powerful alternative method of
estimation and inference to the popular GEE. It has been shown in the literature that QIF is superior
to the GEE with respect to efficiency gain and robustness against outliers [8]. We will base our sample

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, U.S.A.
*Correspondence to: Peter X.-K. Song, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109-2029, U.S.A.
†E-mail: pxsong@umich.edu

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 787–800

787



Y. HU AND P. X.-K. SONG

size and power calculation on the Wald test in marginal logistic models. In the literature, Demidenko
[9] and Hsieh [10], among others, have investigated the Wald-test-based design in the logistic model for
cross-sectional data. Unfortunately, these existing formulas cannot be easily modified to suit longitudi-
nal studies because of the presence of within-subject correlation. In addition, we compare QIF and GEE
in terms of their sample size and power. We also examine how the sample size is affected by varying
the cluster size (i.e., the number of repeated measurements or follow-up visits per subject). As shown in
our numerical examples, the GEE sample size may escalate substantially with an increased number of
follow-up visits, whereas the QIF sample size remains nearly unchanged.

In the longitudinal design, a fundamental obstacle is the lack of knowledge about the true correlation
matrix. Although, in practice, one correlation structure (e.g., compound symmetry (CS)) can be used to
determine the sample size, the result is then subject to risk of either overestimation or underestimation
of the needed sample size. In particular, once the data are collected, the true correlation structure can be
obtained, which is very likely to be different from the one used initially in the design. To overcome this
difficulty, we propose an optimal strategy of sample size determination from a perspective of minimal
average risk. We postulate that the true correlation matrix is an element of a class of correlation matrices
that are governed by a certain prior Wishart distribution. The hyperparameter in the prior distribution
may be a correlation matrix specified according to previously acquired knowledge from a pilot study,
from similar studies in the literature, or simply from an assumption of noninformative independent cor-
relation. Then, we obtain the optimal sample size that is derived by minimizing the average risk under
such prior distribution.

We organize this article as follows. Section 2 presents a brief introduction to the QIF method. We
devote Section 3 to the sample size determination for the Wald test in the marginal logistic model in
both QIF-based and GEE-based designs, in which we present an optimal strategy of sample size deter-
mination. Section 4 investigates, analytically and numerically, the relationship between sample size and
cluster size (i.e., the number of follow-up visits). Section 5 contains some concluding remarks. We
include technical details and information regarding the R package QIFSAMS in the appendices.

2. Quadratic inference functions

In a balanced longitudinal clinical trial, yij denotes the outcome of subject i at time point tj . There
are n subjects in the study and m repeated measurements planned to be collected from each of the n
subjects. Thus, the total number of observations is N D n�m. We further assume that the observations
from different subjects are independent and those of the same subject are correlated. Both GEE and QIF
methods postulate that the marginal mean, �ij , of the outcome yij , is a function of some covariates
through a link function g, namely g.�ij /D x0ijˇ, where ˇ is the regression coefficient. Here, x0 denotes
the transpose of matrix x. The variance of yij is a function of the mean var.yij / D �V.�ij /, where
� is the dispersion parameter. Vectors yi and �i , with elements yij and �ij , respectively, denote the
longitudinal measurements and their mean for subject i . To obtain an estimate of ˇ, the GEE method
solves

nX
iD1

P�i
0V�1i .yi ��i /D 0; (1)

where P�i D @�i=@ˇ is an m�p matrix and Vi D A1=2i Ri .�/A
1=2
i with Ai being the diagonal matrix of

the marginal variances, var.yij /, and Ri .�/ being the working correlation matrix.
The QIF method, proposed by Qu et al. [7], is derived from the fact that the inverse of the working

correlation matrix R.�/ can be approximated by a linear combination of several basis matrices:

R.�/�1 �
kX
lD0

al.�/Ml ; (2)

where M0 D I is the identity matrix, M1; : : : ;Mk are known basis matrices with entries 0 or 1, and
a0.�/; : : : ; ak.�/ are unknown coefficients depending on the parameter �. Expression (2) holds exactly
for some commonly used working correlation structures. For example, the CS correlation structure cor-
responds to R.�/�1 D a0.�/I C a1.�/MCS

1 , where the entries of M1 are 0 along the diagonal and 1
elsewhere. And the AR-1 correlation structure can be written as R.�/�1 D a0.�/I C a1.�/MAR1

1 C
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a2.�/MAR1
2 , where M1 has 1 on the two main off diagonals and 0 elsewhere and M2 has 1 on the two

corner components of the diagonal.
Plugging expression (2) into (1) leads to a linear combination of the elements of an extended score

vector

gn.ˇ/D
1

n

nX
iD1

gi .ˇ/�
1

n

0
B@

Pn
iD1 P�i

0A�1i .yi ��i /
:::Pn

iD1 P�i
0A�1=2i MkA�1=2i .yi ��i /

1
CA : (3)

Then, the GEE (1) is expressed as na0.�/gn.ˇ/, where a.�/ D .a0.�/; a1.�/; : : : ; ak.�//0 is the vector
of the coefficients in expansion (2). Because there are more equations than unknown parameters in (3),
the generalized method of moments proposed by Hansen [11] is then applied to minimize the following
quadratic inference function:

Qn.ˇ/D ng0n.ˇ/C
�1
n .ˇ/gn.ˇ/; (4)

where Cn.ˇ/ D n�1
Pn
iD1 gi .ˇ/g0i .ˇ/ is the sample covariance matrix of Ngn. It is noted that the objec-

tive function given in (4) only contains ˇ, and only the basis matrices from the working correlation
structure are used to formulate this function. This implies that the QIF estimator, Ǒ D arg minˇQn.ˇ/,
is obtained without estimating the nuisance parameter �. This property delivers substantial ease in the
design setting because the QIF sample size determination does not require knowledge of parameter �.

According to Qu et al. [7], the QIF estimator Ǒ has the usual large sample properties; for exam-
ple, it is

p
n-consistent and asymptotically normal. The asymptotic variance is given by the inverse of

the Godambe information matrix (or the sandwich estimator) with consistent estimate Jn. Ǒ /�1, with
Jn. Ǒ / D Pgn. Ǒ /

0C�1n . Ǒ /Pgn. Ǒ /. The asymptotic normality allows us to establish the Wald test for the
hypothesis with respect to the regression coefficients. Again, we note that this asymptotic covariance
matrix Jn is not dependent on the parameter �. Similarly, the Wald test also applies to the GEE method,
in which the asymptotic covariance matrix actually depends on the correlation parameter � explicitly.
Therefore, our following derivation and comparison of sample size and power will focus on the Wald
test that is available in both QIF and GEE.

We have coded this QIF method both in SAS (SAS Institute, Cary, NC, USA) and R language. We
have made both packages available at http://www-personal.umich.edu/pxsong/.

3. Sample size determination

In this section, we derive sample size n under a fixed m. We begin by describing our model and then
present steps related to the derivation of sample size in both QIF and GEE. We discuss in detail two
examples of designs based on the CS and AR-1 working correlation structures.

3.1. Longitudinal logistic model

We consider the following logistic model with longitudinal dichotomous outcomes:

logit.�ij /D ˇ0C ˇ1di C ˇ2tj C ˇ3di tj ; (5)

where �ij D P.yij D 1jdi ; tj / is the probability of a favorable clinical outcome (yij D 1) at visit time
tj for subject i , covariate di is the indicator of treatment group, defined as

di D

�
1; if subject i is in test treatment (Rx) group,
0; if subject i is in controlled treatment group,

and covariate tj is the time of the j th visit for subject i . It follows from model (5) that the design matrix
is Xi D .1; di1; t; di t/0, where 1 is an m-element vector of all ones, t D .t1; t2; : : : ; tm/0, and the vector
of regression coefficients is ˇ D .ˇ0; ˇ1; ˇ2; ˇ3/

0. Also, in the logistic model, the variance function is
Vij D V.�ij /D �ij .1��ij / and the dispersion parameter � D 1. Note that under the balanced design
with homogeneous visit times, there are only two versions of design matrices and so are their induced
matrices, corresponding to the two respective treatment arms. In all the subsequent expressions, a sub-
index 1 (or 0) denotes terms from the test (or controlled) treatment arm. For example, the design matrix
for the test drug arm is X1 and the counterpart for the controlled drug arm is X0.
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We are interested in testing for one of these three hypotheses: total effect, H0 W ˇ1 D ˇ2 D ˇ3 D 0;
main Rx effect, H0 W ˇ1 D 0; and joint Rx effect, H0 W ˇ1 D ˇ3 D 0. In general, we may express the
three scenarios in a unified form as H0 W Hˇ D 0 versus H1 W Hˇ D h0 ¤ 0, where H is a suitable
matrix determined by the null hypothesis.

Let Jn.ˇ/ be the asymptotic covariance matrix of either the QIF estimator or the GEE estimator and
let �n be the noncentrality parameter given by �n D h00fHJn. Ǒ /�1H0g�1h0. Then, the Wald test statis-
tic is .H Ǒ /0fHJn. Ǒ /�1H0g�1.H Ǒ /, and the power is given by 1 � � D

R1
�2
rk.H/.1�˛/

f .x; rk.H/; �/dx,

where ˛ is the type I error, � is the type II error, and f .x; rk.H/; �n/ is the noncentral chi-square
density function with degrees of freedom rk.H/. Ultimately, we need to find the smallest n such that
1 � � 6

R1
�2
rk.H/.1�˛/

f .x; rk.H/; �n/dx. Numerically, it is obtained by the forward search algorithm.

Notably, the sample size calculation we provided is based on asymptotic properties of the two methods.
Teerenstra et al. [12] have considered a small sample setting for GEE sample size. Similar setting for
QIF needs separate investigation.

3.2. Quadratic inference functions sample size under known true correlation

Let us begin with an ideal scenario where the true correlation structure is known. We will remove this
rather idealized condition in the next section. We focus on two important cases of designs, respectively
under the CS and AR-1 working correlation structures, which are widely used in practice. For both work-
ing correlations, we present the details of calculating the asymptotic covariance matrix Jn for the QIF
method and leave the calculation of this matrix for the GEE to Appendix B.
Design under CS working correlation. As shown in Section 2, the CS structure leads to two basis
matrices. Under model (5), we explicitly derive the elements of the extended score vector in (3) to be

gi D .10; di10; t0i ; di t
0
i ;!
0
iA
� 12
i ; di!

0
iA
� 12
i ; Q!i

0A
� 12
i ; di Q!i

0A
� 12
i /0ei

def
D Biei ; (6)

where ei D .yi1 ��i1; yi2 ��i2; : : : ; yim ��im/0, Ai D diag.Vi1; : : : ; Vim/ and

!0i D

mX
jD1

V.�ij /
1
2 10 � ŒV.�i1/

1
2 ; : : : ;V.�im/

1
2 �;

Q!0i D

mX
jD1

tjV.�ij /
1
2 10 � Œt1V.�i1/

1
2 ; : : : ; tmV.�im/

1
2 �:

Note that there are only two versions of Ai ’s, !i ’s, Q!i ’s as explained in Section 3.1. Now, denote
Nd as the proportion of subjects assigned to the test treatment arm. Then, there are Ndn D

Pn
iD1 di and

.1 � Nd/n subjects in the test and controlled treatment arms, respectively. Denoting the true correlation
matrix as RT , we obtain

Cn.ˇ/D NdB1A
1
2

1 RTA
1
2

1 B1C .1� Nd/B0A
1
2

0 RTA
1
2

0 B0; (7)

Pgn D�
˚
NdB1A1x01C .1� Nd/B0A0x00

�
; (8)

which are then used to calculate Godambe information matrix Jn.ˇ/D nPg
0

n.ˇ/C
�1
n .ˇ/

Pgn.ˇ/.
Design under AR-1 working correlation. For the AR-1 structure, there are three basis matrices, as
stated in Section 2. According to Qu et al. [7], the third matrix M2 makes little contribution to the QIF
and hence is omitted in the formulation of QIF for convenience. Consequently, we obtain

Qgi D .1; di1; ti ; di ti ;XiA
1
2

i M1A
� 12
i /0ei

def
D QBiei : (9)

The Godambe information matrix is obtained in the same manner as in the first case of CS correlation,
in which Bi is replaced by QBi in (7) and (8).

In both the aforementioned cases, we also derived the sensitivity matrix Sn.ˇ/ and the variability
matrix Wn.ˇ/ in the GEE context, and hence the Godambe information matrix of the GEE estimator is
given by Jn.ˇ/D Sn.ˇ/0Wn.ˇ/

�1Sn.ˇ/. See Appendix B for details regarding the Sn and Wn matrices.
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It is worth pointing out that for model (5) with either CS or AR-1 correlation structure, the weight
matrix Cn in the QIF method is singular. Hence, we delete linearly dependent elements in the extended
score vector. Because such elements do not present new information, it is sensible to not use them.
In fact, when model (5) only includes the treatment effect and the working correlation is CS, QIF
degenerates to QIF, exactly as obtained by reducing these dependent elements. We can find related details
in Appendix A. Also, we again emphasize that in QIF, the working correlation structure contributes the
two basis matrices, not the value of parameter �, to the calculation of matrix Jn. This is not the case for
the GEE, where the matrix Jn depends on the entire RW matrix, including the actual value of �.

3.3. Optimal sample size with unknown true correlation

Let RT denote the true correlation matrix. So, the actual sample size would be n.RT / if the RT were
known. To overcome the difficulty of an unknown true correlation structure in the sample size deter-
mination, we propose to vary the underlying correlation matrix among a class of possible candidates
according to a Wishart prior distribution, instead of fixing it to be a prechosen single correlation matrix.
This will allow us to reduce the subjectivity related to the choice of the true correlation matrix in the
design. To be precise, let correlation matrix R � Wishart.�jR0/, where R0 is a prespecified correlation
matrix. Then, for each sampled correlation matrix R, the sample size nD n.R/ is obtained by the sample
size determination procedure in Section 3.2. We aim to choose an optimal sample size that minimizes
the following average risk:

Efn.R/� n.RT /g2 D
Z

R2R
fn.R/� n.RT /g2g.R/dR;

where g.R/ is the density of Wishart distribution and R is the space of correlation matrices. It is easy
to see that the optimal sample size is n� D ERn.R/ D

R
R2R n.R/g.R/dR. Practically, this integral can

be evaluated by the Monte Carlo simulation method. In effect, the Monte Carlo simulation will bring in
variation of correlation matrices, and as a result, we can obtain not only the mean sample size n� but also
a sample size distribution, which in practice, may be more valuable as it provides more options to prac-
titioners. Moreover, this procedure gives us a venue where we can conduct a fair comparison between
QIF and GEE analysis because, in this case, the comparison will not depend on specific choices of true
correlation structures.

3.4. Numerical illustration

In this section, we provide three examples to illustrate the proposed QIF and GEE sample size formulas
and the comparison of these two methods on the basis of known and unknown true correlation structures,
respectively.

Example 1
Consider several different combinations of true (RT ) and working (RW ) correlation structures, as listed
in Table I, where we set effect size ˇ D .ˇ0; ˇ1; ˇ2; ˇ3/ as .1; 0:5; 0:4; 0:1/, � D 0:5, type I error rate
at 0:05, and visit times at 0, 2, 4, and 6. Under a design of complete randomization, we choose a 50:50
assignment of subjects into two treatment arms. In Figure 1, we see that the sample size increases as
power increases and the QIF sample size is smaller than (or equal to) that of the GEE when the working
correlation is the same as (or different than) the true one.

Example 2
We fix the power to be 80% and use the following true unstructured (UN) correlation matrix:

RT D

0
B@
1 0:4 0:3 0:2

1 0:5 0:4

1 0:6

1

1
CA : (10)

The 1-dependence structure means that only the measurements at two nearby time points are
correlated. Mathematically, it is characterized by a width-three-banded matrix—with elements 1’s along

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 787–800
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Table I. A comparison of the sample size requirements by
GEE and QIF analysis with QIF-calculated sample size and
percentage of reduction in parenthesis.

Working correlation

True Null CS AR-1

Independent ˇ1 D 0 665 .642; 3:5/ 690 .642; 7:0/

ˇ1 D ˇ3 D 0 321 .281; 12:5/ 285 .281; 1:4/

CS ˇ1 D 0 634 .634; 0/ 702 .635; 9:5/

ˇ1 D ˇ3 D 0 643 .643; 0/ 682.644; 5:6/

AR-1 ˇ1 D 0 811 .739; 8:9/ 736 .736; 0/
ˇ1 D ˇ3 D 0 603 .565; 6:3/ 565 .565; 0/

1-dep ˇ1 D 0 899 .773; 14:0/ 757 .749; 1:1/

ˇ1 D ˇ3 D 0 557 .479; 14:0/ 483 .479; 0:8/

UN ˇ1 D 0 605 .600; 0:8/ 693 .616; 11:1//

ˇ1 D ˇ3 D 0 527 .520; 1:3/ 601 .535; 11:0/
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Figure 1. Comparison of sample sizes for testing joint treatment effect between QIF and GEE by power. Effect
size, .1; 0:5; 0:4; 0:1/; correlation, 0:5; type I error rate, 0:05; and time points, 0; 2; 4; 6.

the main diagonal and � at the first upper and lower diagonals. When the correlation matrix is correctly
specified (RT D RW ), the GEE and QIF analysis require the same sample size, as indicated by the
bolded numbers in Table I. This table also clearly indicates the sample size saving of the QIF analysis in
all cases with misspecified correlation structures, and the amount of saving by the QIF varies from 1:9%
to 10:1%, depending on how severely the working correlation matrix deviates from the true correlation
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structure. Clearly, the QIF-based design is advantageous over the GEE-based design in terms of study
cost saving, when the working correlation structure used in the design is different from the true one.
Misspecification is indeed the case in practice.

Example 3
Arguably, knowing the true correlation matrix of the data that are not yet collected is not possible.
Figure 2 displays several examples in which the minimal average risk strategy is applied to the optimal
sample size. All the panels on the left column are the sample size distributions when the working CS
structure is used in the design, whereas those on the right column are based on the use of the working
AR-1 structure in the design. As seen in all the cases, the mean sample size from the QIF study design
appears consistently smaller than that of the GEE study design. The top two panels are the sample size
distributions when the matrix parameter R0 in the Wishart distribution is specified as the chosen working
correlation. The middle and bottom panels are based on unstructured R0 given in (10) and 1-dependence,
respectively. Clearly, at the same type I error and power level, the QIF sample size is on average smaller
than the GEE sample size, even if the correlation matrices are sampled from a Wishart distribution cen-
tered at the working correlation matrix (as in the top panels). When the correlation matrix is simulated
from a Wishart distribution with the R0 being a 1-dependence matrix, the percentage of QIF sample size
saving relative to the GEE is about 6%. When the prior correlation matrix R0 is unstructured, the two
designs require very similar sample sizes.

To demonstrate the relation of n and m, in Figure 3, we set power as 0:8, type I error as 0:05, and
�D 0:5. When mD 2, it is easy to show that the sample size for the two designs is effectively the same.
We can find an analytic explanation for this equivalency in Appendix A. Again, as shown by the top
two panels, the QIF sample size requirement is identical to that of the GEE when no misspecification
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Figure 2. Distributions of the sample size required by the GEE and QIF analysis. R0 denotes the prior correla-
tion structure in the Wishart distribution. The top two panels correspond to using the working correlation as the

matrix parameter for the Wishart distribution.
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Figure 3. Sample size comparison between QIF and GEE for testing joint treatment effect with varying number
of repeated measurements for each individual when misspecification occurs. The top panels consider cases with
no misspecification; the middle panels use CS working correlation; and the bottom panels take AR-1 working

correlation for both designs.

is present. With misspecification, all the other four panels indicate in Figure 3 that QIF requires smaller
sample sizes. To be specific, the percent of sample size saving by QIF is up to 47:6%, 54:2%, 42:7% and
3:9%, respectively. Also, under misspecification, the GEE analysis tends to require a larger sample size
with a greater m. As we illustrate in Section 4, this is probably because the degree of misspecification
increases as m grows and thus more subjects are needed to fight against the difference between work-
ing and true correlation matrices. This phenomenon is also obvious in Figure 4, where we test for the
total and main Rx effect. We should notice that this trend is substantially reduced for the QIF method,
possibly because QIF uses only basis matrices and hence is more robust to misspecification.

As requested by a reviewer, we have used the setting of Example 1 to perform a sanity check on our
sample size formulas. For simplicity, we consideredmD 3 (i.e., visits at 0; 2, and 4) and simulated 1000
sets of correlated binary outcomes under ˇ1 D 0 and 0:5. With model (5), we calculated empirical type
I error (ˇ1 D 0) and power (ˇ D 0:5) in the scenarios with and without correlation misspecification.
We summarize the results for two cases of no correlation misspecification as follows: (i) the true and
working correlation are both CS, the power for both GEE and QIF is 0:8 and both type I error rates are
0:048; and (ii) the true and working correlation are AR-1, both power maintains as 0:8 and both type
I errors are 0:052. Moreover, we summarize the results for two cases of misspecified correlations as
follows: (i) under a case of the true as CS and the working as AR-1, the power is 0:81 for both methods
and the type I errors are 0:052 and 0:054, respectively, for GEE and QIF; and (ii) when the true is AR-1
and the working is CS, the power is 0:8 for GEE and 0:83 for QIF, whereas the corresponding type I
errors are 0:058 for GEE and 0:053 for QIF. All these cases have confirmed the desirable control of type
I error and power using the given sample sizes obtained from our formulas.
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Figure 4. Sample size comparison between QIF and GEE for testing total effect and main Rx effect with varying
number of repeated measurements for each individual when RT is CS.

4. Relation to number of repeated measurements

A special operating characteristic of a longitudinal study is the number of repeated measurements (m).
Under the ideal and simple scenarios [1,4], increasingm results in smaller n. Many clinical practitioners
take this property for granted and use it as an effective remedy to the insufficiency in n for their studies.
In fact, the relationship between n andm is far more complex than the monotonic inverse proportionality
in the simple GEE settings.

When there is no misspecification, increasingm inherently produces more data, which is equivalent to
increasing sample size. This means that if we can elongate the study period, we can recruit less patients.
The top panels in Figure 2 verifies this statement. However, if there is misspecification and we are using
a working correlation to approximate the true one, we then are introducing error in our modeling process.
As Overall and Tonidandel [13] demonstrated, the degree of misspecification would affect the power of
GEE analysis. If the gained information from increasing m is not sufficient to account for the error, we
certainly will need to increase our sample size to maintain the power of the study.

To facilitate the discussion, let us first look at some numerical evidence shown in Figure 3 where
the null hypothesis is H0 W ˇ1 D ˇ3 D 0 (joint treatment effect). Using the setup of Example 1 in
Section 3.4, we take a snapshot fixed at power 0:8, type I error 0:05, and � D 0:5. It is easy to visualize
that (i) when m D 2, the sample size for the two designs is the same; (ii) when the working correlation
is specified the same as the true correlation, as indicated by the plots in the top two panels, the QIF
sample size requirement is identical to that of the GEE and the sample size decreases as the number
of follow-up visits increases; (iii) three of the remaining plots in the middle and bottom panels, corre-
sponding to the mismatched working correlation structures to the true ones, clearly indicate opposite
behaviors: not only does the QIF method require smaller sample sizes but it also appears rather robust
to the increased number of follow-up visits. However, the GEE design is sensitive to varying num-
bers of follow-up visits. Figure 3 confirms the evidence drawn from Figure 2 under the other two null
hypotheses: H0 W ˇ1 D ˇ2 D ˇ3 (total effect) and H0 W ˇ1 D 0 (main treatment effect).

We have attempted to provide some analytic insights as how the sample size n and the cluster size
m would behave. However, it is difficult to provide a general theory. In Section 4.1, we can analytically
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prove that when the RW used in the design is the same as the true RT , the monotonic inverse proportion-
ality between n and m still holds. For the case of misspecification, we provide in Section 4.2 analytic
arguments in an example to disprove the relationship.

4.1. Correctly specified correlation structure

When there is no correlation misspecification, the sensitivity matrix Sn.ˇ/ is the same as the variability
matrix Wn.ˇ/ for GEE. Hence, the Godambe information matrix reduces to the sensitivity matrix Sn.ˇ/,
given by (14) in Appendix B. Further, we partition two treatment-arm specific sensitivity matrices,
S1;n.ˇ/ and S0;n.ˇ/, into 4� 4 matrices, with elements denoted as Q.1/

ij and Q.0/
ij ; i; j D 1; : : : ; 4.

In the following discussion, we focus on two cases where the CS and AR-1 structures are used in the
design. We show that at a given power, the monotonicity relationship between n and m remains. Our
argument shows that as m increases, all of Q.1/

11 , Q.1/
33 , Q.0/

11 , and Q.0/
33 increase, and hence the resulting

standard errors decrease, which leads to smaller sample sizes.
It is easy to show that for the CS working correlation,

Q
.1/
11 D�

.m� 2/�C 1

.�� 1/Œ.m� 1/�C 1�

X
j

V1j C
�

.�� 1/Œ.m� 1/�C 1�

X
j¤k

V
1
2

0jV
1
2

1k
:

When
P
j¤k V

1
2

0jV
1
2

1k
DO.m/‡, we have

Q
.1/
11 D

�

1� �

mX
jD1

V1j C o.1/; as m!1:

Because V1j > 0, then
Pm
jD1 V1j increases as m increases.

Similarly, for the case of AR-1 correlation, we have

Q
.1/
11 .m/D

1C �2

1� �2

mX
jD1

V1j �
2�

1� �2

m�1X
jD1

V
1
2

1j V
1
2

1;jC1 �
�2

1� �2
V11 �

�2

1� �2
V1m

which leads to the observation

Q
.1/
11 .mC 1/�Q

.1/
11 .m/ D

1

1� �2
.V

1
2

1;mC1 � �V
1
2

1m/
2 > 0;

indicating that Q.1/
11 .m/ increases as m increases.

4.2. Misspecified correlation structure

When the correlation structure is misspecified, the inverse monotonicity relationship between m and
n no longer holds. It is interesting to note that the magnitude of deviation between variability matrix
W.ˇ/ and sensitivity matrix S.ˇ/ affects the properties of this relationship. Similar to the measure-
ment of goodness of fit by Pan [14] and White [15], we adopt the following notation dR to quantify the
deviation:

dR D kR�1W RTW�1S �R�1W k2 D kR
�1
W .RT �RW /R�1W k2; (11)

with kAk2 denoting the L2-norm kAk2 Dmaxi
qP

j a
2
ij .

The discrepancy measure dR in (11) does not have a closed analytical form except in some simple
cases but can be easily obtained numerically. In Figure 3, we have seen in the middle left panel that the
sample size required by GEE increases as m increases. This panel corresponds to the combination of
CS as working and AR-1 as true correlation. To further explore this panel in terms of the relationship of
sample size to the deviation dR, we provide four additional plots in Figure 5 with � D 0:1 and � D 0:9,
respectively. This figure indicates clearly that the inverse monotonicity relationship between n and m is

‡o.x/ means increase in a smaller rate than x.
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Figure 5. A graphic demonstration of the trend of GEE requiring more sample sizes as the number of repeated
measurements and the deviation of true and working correlation matrices increase.

distorted in the GEE analysis, but interestingly, the QIF analysis is barely affected. What is also striking
is that the severity of such distortion worsens for larger dR (and �). We have tried other pairs of RT and
RW scenarios and found very similar properties. One possible explanation is that the GEE sample size
is critically dependent on the chosen working correlation matrix and how severely it deviates from the
true correlation matrix.

5. Concluding remarks

In this paper, we have developed the sample size and power calculation for both QIF and GEE analysis
for dichotomous outcomes and made detailed comparisons between these two designs. We showed that
the QIF approach enjoys a sample size saving over the GEE approach; on some occasions, the saving is
substantial. We anticipate that such a benefit of sample size saving remains in other types of outcome
variables when correlation structure is misspecified.

We proposed an optimal sample size determination in terms of minimal average risk in the scenario
where the true correlation structure is unknown. Our strategy is to vary the sample size among possible
correlation structures simulated from a prior Wishart distribution and then take the averaged sample size
to be used in an actual design. We argue that this strategy is optimal in terms of minimal average risk.

In addition, we demonstrate the robust behavior of the QIF sample size in response to an increased
number of follow-up visits, in contrast to GEE, which requires more subjects to follow-up patients over
more visits. We regard this as an important property and a clear advantage of the QIF analysis over the
GEE analysis as it can reduce the burden of subject recruitment and hence cost of study.

We detail an R package used to determine GEE and QIF sample sizes in Appendix C and make it
available at http://www-personal.umich.edu/pxsong.

Appendices

In Appendix A, we provide the details concerning the Cn.ˇ/ matrix. Appendix B presents the detail of
the GEE sample size calculation for the logistic model (5), and Appendix C includes some examples of
the R package QIFSAMS.
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APPENDIX A. Cn matrix in quadratic inference functions

It is easy to see that exchanges between rows or column on gn will not change the matrix Cn.ˇ/. We use
symbol MX to denote the post-exchange variable X and hence have

Mg0i D .1
0; t0i ;!

0
iA
� 12
i ; Q!0iA

� 12
i ; di1; di t0i ; di!

0
iA
� 12
i ; di Q!

0
iA
� 12
i /0ei

def
D .Zi ; diZi /0ei

def
D MBiei ; (12)

where Zi D .10; t0i ;!
0
iA
� 12
i ; Q!0iA

� 12
i /0. We then have

MC.ˇ/D Nd MB1A
1
2

1 RTA
1
2

1
MB1C .1� Nd/ MB0A

1
2

0 RTA
1
2

0
MB0

D

�
G F
F F

�
;

where

GD NdZ1A
1
2

1 RTA
1
2

1 Z01C .1� Nd/Z0A
1
2

0 RTA
1
2

0 Z00;

FD NdZ1A
1
2

1 RTA
1
2

1 Z01:

For m > 2, matrix F is singular because the fourth row in Zi is a linear combination of the other three.
This leads to the singularity of matrix MCn.ˇ/, which can be overcome by removing the fourth row. Then,
an inference function is given by

Ogi D .10ei ; t0iei ;!
0
iA
� 12
i ei ; di1ei ; di t0iei ; di!

0
iA
� 12
i ei /0;

which was used throughout this paper under the CS correlation when m > 3. We also removed !0iA
� 12
i

when mD 2. It should be aware that for this case, the inference functions of QIF and GEE are the same,
and hence, their calculated sample sizes are the same.

We took a similar procedure for the case of AR-1 working correlation.

APPENDIX B. Godambe information matrix for generalized estimating equations

To obtain the GEE Godambe information matrix for the logistic model (5), we find that the sensitivity
matrix is

Sn.ˇ/D�
nX
iD1

D0iAi†
�1
i AiDi (13)

D� NdnX1A
1
2

1 R�1W A
1
2

1 X01 � .1� Nd/nX0A
1
2

0 R�1W A
1
2

0 X00: (14)

The variability matrix is

Wn.ˇ/D

nX
iD1

D0iAi˙
�1
i Var.ri /˙�1i AiDi

D NdnX1A
1
2

1 R�1W RTR�1W A
1
2

1 X01C .1� Nd/nX0A
1
2

0 R�1W RTR�1W A
1
2

0 X00:

Then, the Godambe information matrix is calculated by Jn.ˇ/D Sn.ˇ/0Wn.ˇ/
�1Sn.ˇ/. The aforemen-

tioned sensitivity can be partitioned in the following fashion. When there is no model misspecification,
denoting R�1W D .Rjk/mm, we find
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where
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APPENDIX C. R package: QIFSAMS

The R package QIFSAMS includes two functions that calculate sample size for the QIF and GEE
analysis, respectively. We can download this package and the user’s manual from webpage http:
//www.umich.edu/~pxsong.

To obtain the sample size, the user needs to specify effect sizes and correlation matrices. QIFSAMS
takes effect sizes of zero time and/or interaction effect as well. QIFSAMS requires m > 2 to reflect a
longitudinal study design. For example, we used the following commands to produce Table I.

GEE.n <-GEE_Size(typeIerror=0.05, power=0.8, coeff=c(1,0.5,0.4,0.1),
num_repeated = 4, ratioTRT = 0.5,timeUnit = 2, visits = c(0,2,4),
corr_T = 0.5, corr_W = 0.5, R_wk_ID = 1, R_true_ID = 1,R_un =
corr.matrix.un, test.ID = 1)
QIF.n <-QIF_Size(typeIerror=0.05, power=0.8, coeff=c(1,0.5,0.4,0.1),
num_repeated = 4, ratioTRT = 0.5,timeUnit = 2, visits = c(0,2,4),
corr=0.5 ,R_wk_ID=1, R_true_ID=1, R_un=corr.matrix.un, test.ID=1).

The arguments type I error, power, effect size, number of repeated measurements, proportion of subjects
in the test treatment group, time points, and correlation parameters need to be specified in the functions.
Note that in GEE, we need to specify both true and working correlation parameters, but in QIF, we only
need the true correlation parameters. For example, when both true and working correlation are CS, as
shown previously, we set both R_wk_ID and R_true_ID to be 1 and obtain the corresponding two
sample sizes. For other cases in Table I, we vary these two parameters.

Both functions combines R_true_ID = 4 and R_un to specify a UN correlation, which can be
sampled from a Wischart distribution. In Figure 2, we generated 1000 such samples, choose a working
correlation, and then obtain the sample size distributions.

We can find more details from the help file from the package.
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