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Thrust generation and scaling parameters for flapping flexible wings are investigated 

using an integrated framework of computational fluid dynamics and structural dynamics 

solvers. To explore the influences of the density ratio and the effective stiffness on the thrust 

generation, surrogate models have been generated for a flapping thin isotropic flat 

Zimmerman wing in still air at    = 1.5×10
3
. Time averaged thrust, bending angle, and twist 

show qualitatively similar behavior and increased with higher ratio between the density 

ratio and effective stiffness. Flexibility-induced twisting in the wing promotes the thrust 

generation. To further investigate the flexibility-induced thrust enhancement, plunging 

chordwise flexible airfoils in forward flight at    = 9.0×10
3
 in water are considered. Time 

averaged thrust increases with larger airfoil thickness, however the thinnest airfoil 

responded with degradation in performance when motion frequency becomes high. Finally, 

unified scaling parameters are proposed based on properly normalized governing equations 

and give a priori order of magnitude estimation of the time averaged thrust and the degree 

of fluid-structure coupling. The results show that these scaling parameters, given as 

combinations of the wing geometry, structural properties, and the motion amplitude and 

frequency, can be applied for both cases with different motion type, Reynolds number, and 

the fluid medium. 

Nomenclature 

   = aspect ratio,       [1] 

   = lift coefficient,             
      [1] 

   = mean chord length  [m] 

   = thrust coefficient,              
      [1] 

  
    = displacement vector of the fluid-structure interface   [m] 

   
    = displacement output from the structural solver at   [m] 

  = Young’s modulus of material [Pa] 

  = motion frequency  [1/s] 

   = natural frequency of the structure [1/s] 

   = fluid force vector  [N] 

   = plunging amplitude  [m] 
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   = thickness of the wing  [m] 

  = reduced frequency,            [1] 

     = number of fluid-structure interaction subiterations [1] 

   = number of training points [1] 

  = pressure  [Pa] 

  = displacement residual at  ,          [m] 

  = semi-span  [m] 

   = Reynolds number,             [1] 

  = time  [s] 

  = wing planform area  [m
2
] 

   = Strouhal number,        [1] 

   = Strouhal number,  plunging:          [1] 

  flapping:           [1] 

  = thrust [N] 

     = reference velocity:      for hover,    for forward flight [m/s] 

     = time averaged wing tip velocity,      [m/s] 

    = free stream velocity [m/s] 

   = velocity vector [m/s] 

   = position vector [m] 

  = angle of attack [degree or radian] 

  = fluid-structure interface [1] 

  = convergence criteria for the fluid-structure coupling [1] 

  = thrust shape factor [1] 

        = corrected thrust shape factor [1] 

     = Fluid-Structure Interaction shape factor [1] 

  = Poisson’s ratio [1] 

  = dynamic viscosity of fluid  [Pa s] 

   = effective inertia,     
        [1] 

   = effective stiffness,  plate:    
                

   
    [1] 

  beam:    
          

   
    [1] 

   = density ratio,       [1] 

   = density of fluid  [kg m
-3

] 

   = density of structure  [kg m
-3

] 

  = flapping angle  [degree or radian] 

   = flapping amplitude  [degree or radian] 

  = motion angular frequency [1/s] 

   = relaxation factor for fluid-structure interface [1] 

   = natural frequency of the fluid-structure system [1/s] 

    = Elastoinertial number =        
   

     
     [1] 

     = normalized variable [1] 

    = time averaged variable:         
   

 
 [1] 

I. Introduction 

he flapping mechanisms inherent to the biological flyers, such as insects and birds, have inspired the most exotic 

dreams, ever since the history of human beings, from Daedalus and Icarus in the Greek mythology, via Leonardo 

Da Vinci’s ornithopter, to a recent successfully sustained human powered flapping flight
1
 at human scales. At 

smaller scales of 15 cm or less micro air vehicles (MAV) are of great interest in remote sensing and information 

gathering capabilities both in military as well in civilian applications. Smaller sizes and lower flight speeds lead to 

lower Reynolds numbers and higher sensitivity to wind gust effects than for the conventional airplanes. Moreover, 

wing structures have high flexibilities to promote favorable flight performance
2-5

. Consequently, design of a high 

performance and robust MAV become a highly nonlinear complex process that requires solid understanding of 

aerodynamics, structural dynamics, control, and interactions of these. 

T 
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The physics exhibited by the biological flyers have potentials to be applied in the MAV design
2-5

. Unsteady 

aerodynamic mechanisms such as the generation of leading-edge vortex (LEV), wing-wake interaction, and three-

dimensional flow features, such as tip vortex-vortex interactions, all contribute significantly to control the 

aerodynamic force generation
3
. Another remarkable mechanism that the biological flyers seem to be using is the 

wing flexibility. Combes and Daniel
6
 have shown that a variety of insects poses anisotropy in their wing structures. 

The spanwise flexural rigidity was 1 or 2 orders of magnitudes larger than the chordwise flexural rigidity. 

Experimental
7,8

, analytical
9
, and numerical studies

10-12
 have presented that the chordwise flexibility affects the 

redistribution of the resulting aerodynamic forces in the lift and the thrust directions. The airfoil shape undergoes 

deformation leading to effective geometry such as camber variation, the airfoil motion changes the effective angle of 

attack, and combined with the pitching angle the direction of the net force can be changed in favor of the thrust 

generation. For a range of spanwise flexibilities, the thrust enhancement was seen when the wing motion was in 

phase with the variation of the airfoil deformation in spanwise direction
13,14

. The fluid-structure density ratio also 

affects the thrust generation: Zhu
16

 showed numerically that the thrust and the propulsive efficiencies increased for a 

plunging chordwise flexible airfoil in water than immersed in air. Hence it is seen that the flexibility, including the 

density ratio, can be utilized to control resulting aerodynamic forces. More recently, Eldredge et al.
17

 found that a 

hovering flexible wing allows for lift generation even when the leading edge remains nearly vertical, as the wing 

passively deflects to create an effectively smaller angle of attack, similar to the wing passive pitching mechanism 

recently identified for rigid wings
10

. 

Different level of fidelity and diverse numerical algorithms, depending on the objective of the study and 

accuracy and cost of the computations, can be incorporated into a numerical framework of flexible flapping wing 

simulations. High-fidelity framework can be used to evince the rich and complex physics behind a flexible flapping 

wing aerodynamics, while a low-fidelity model can be used for quick yet reliable design optimization of a complex 

and multi-dimensional design space. The aeroelastic coupling can be based on a time-domain partitioned process 

where the interaction between the fluid and the solid fields occurs at a shared boundary iteratively at a given time 

step. An advantage is that for the solutions of both fields, which are described by different nonlinear partial 

differential equations, well-established solvers can be used. Tang et al.
18

, Chimakurti et al.
14, 19

, and Aono et al.
20, 21

 

have coupled an in-house structured finite volume Navier-Stokes solver to a beam model
18

, a commercial nonlinear 

finite-element solver, MSC.Marc
14, 22

, a geometrically nonlinear active beam solver
14

, and a co-rotational shell finite 

element solver
3,19-21

 , respectively. More recently, Gordnier et al.
23

 coupled an in-house high-order Navier-Stokes 

solver to a geometrically nonlinear active beam solver, McClung et al.
24

 developed the OVERFLOW Navier-Stokes 

solver to a modal representation of two-dimensional beam, Stanford et al.
25

 showed a two-dimensional quasi-steady 

blade element model to a nonlinear co-rotational beam model, and Gogulapati et al.
26

 presented an approximate 

aerodynamic model to a commercial nonlinear finite-element solver, MSC.Marc. Another interest regarding the 

Fluid-Structure-Interaction (FSI)-coupling using the partitioned methods is the stability and the acceleration of the 

synchronization of the coupled solutions. Light structure (ex. parachute) in air, or wing made of aluminum in water 

lead to a system with comparable densities and can cause numerical instabilities
27

. If the density ratio between the 

fluid and the structure approaches unity the added mass effects become important and either monolithic solver or 

strongly, or tightly coupled implicit scheme with sub-iterations is necessary
28-30

. Coupling strategies for tightly 

coupled system have been investigated for parachute aeroelasticity and hemodynamics, however the FSI-coupling 

stability needs yet to be addressed. 

Scaling parameters resulting from dimensional analysis and by non-dimensionalizing the governing equations by 

relevant physical variables, often give qualitative characteristics of the model as well as the requirement for dynamic 

similarity of the flow
31

. Depending on the type of the model and the governing equations the resulting set of scaling 

parameters may vary. For example, Shyy et al.
10

 have considered the Navier-Stokes equation with out-of-plane 

motion of isotropic plate, Ishihara et al.
11

, the Navier-Stokes equation and the wing structure as a linear isotropic 

elastic body to study the flexibility effect on wing pitch changes in dipteran flapping flight, and Lentink and 

Dickinson
32

 transformed the Navier-Stokes equation in the wing-fitted frame of reference and focused on the 

rotational motion of the wing. Thiria and Godoy-Diana
33

 have measured the thrust and the propulsive efficiency of a 

self-propelled flapping flyer in air. Since the density ratio is high the elastic deformation of the wing is only 

balanced by the wing inertia. They introduce the elastoinertial number to define the ratio between the inertial forces 

and the elastic restoring forces and show that the measured thrust scales with the elastoinertial number. Still, the 

parameter-space involving the scaling parameters for the fluid-structure interaction needs to be mapped out in a 

systematic fashion to understand the role of flexibility on the aerodynamic force generations and the stability of 

coupled system. 

The objective of the current study is twofold. Firstly, a surrogate model will be constructed using the structural 

properties the effective stiffness and the density ratios as design variables to assess the parametric dependence on the 
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thrust generation for a homogeneous isotropic flapping wing at Reynolds number (  ) of 1.5×10
3
 and reduced 

frequency (   of 0.56. Secondly, scaling parameters that estimate the thrust and the degree of FSI-coupling for a 

flapping flexible wing will be identified. Identifying these scaling parameters can lead to a priori order of magnitude 

estimation of the thrust and the required computational resources to simulate often expensive computations.  

The numerical framework to simulate a moving flexible wing is developed based on coupled two standalone 

solvers. The fluid solver is a parallelized finite-volume pressure-based Navier-Stokes equation solver and the 

structural dynamics solver uses the finite element method with either a combination of an optimal membrane 

element and a discrete Kirchhoff triangle bending plate element in co-rotational formulation
19, 21

 or a linear beam 

element. In the tightly coupled fluid-structure interaction interface the equilibrium condition on the wing surface are 

communicated to each solver using either the radial basis function
33

 interpolation or the bilinear interpolation. The 

radial basis function interpolation
21, 33

 is also applied to remesh the grid used in the fluid solver to update for the 

wing movement and deformations. To efficiently organize the obtained numerical solutions and to accurately 

interpolate the nonlinear objective functions in the design space the surrogate model approach will be used. A 

surrogate model offers a versatile and efficient way of parametrizing and categorizing the results of expensive 

computations. After the optimally choosing the training points, surrogate model are constructed minimizing the 

errors at off design points. This approach has shown to be valuable for wide range of applications involved with 

plasma actuators
35

, Lithium-Ion battery limitations
36

, and rigid wing flapping aerodynamics
37

. 

The outline of this paper is as follows. Firstly, the numerical framework for flexible flapping wings will be 

described. Secondly, dimensional analysis will be performed based on the governing equations for the fluid and the 

solid, given the wing kinematics and the structural properties, in order to identify the key non-dimensional 

parameters representing the flexible flapping wing aerodynamics. Thirdly, surrogate models for a flapping wing 

model in air made of homogeneous isotropic materials will be constructed based on the variations of effective 

stiffness and density ratio to relate the thrust generation to the wing deformations. Fourthly, chordwise flexible 

airfoil in forward flight in water will be considered for different thickness ratios and motion frequencies. Finally, 

unified scaling parameters are presented that estimate the time averaged thrust and the degree of fluid-structure 

coupling for all cases considered. 

II. Methodology 

A. Numerical Models 

1. Computational Fluid Dynamics 

The governing equations for the fluids are the three-dimensional Navier-Stokes equations with constant density 

and viscosity shown in Eqs. (1) and (2), 

 

   

   
    (1) 

   

  
 
     

   
   

 

  

  

   
  

 

   
  
   

    
   (2) 

 

where    is the velocity vector,    is the position vector,   is the time,   is the pressure,    is the fluid density, and   

the viscosity of the fluid. Eqs (1) and (2) are solved with an in-house code
38,

 
39

, which is a three-dimensional, 

unstructured, pressure-based finite volume solver written in the LOCI-framework
40

. It employs implicit first or 

second order time stepping and treats the convection terms using the second order upwind-type scheme
41, 42

, and the 

pressure and viscous terms using second order schemes
41, 42

. The system of equations resulting from the linearized 

momentum equations are handled with the symmetric Gauss-Seidel solver. The pressure correction equation
43

 is 

solved with either the GMRES linear solver with Jacobi preconditions provided by PETSc
44

 or the BoomerAMG 

linear solver provided by HYPRE
45

. The LOCI is by design rule-based highly parallelizable framework for finite 

volume methods, see Luke and George
40

 for a more detailed discussion on rule-based software. The geometric 

conservation law
46

, a necessary consideration in domains with moving boundaries, is satisfied
47

. The mesh 

deformations are realized using radial basis function (RBF) interpolations
34

.  

 

2. Structural Dynamics 

Two structural dynamics solvers of two-level fidelities have been incorporated. For linear analysis of a beamlike 

flat plate an Euler-Bernoulli beam model has been incorporated to solve Eq. (3), 
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     (3) 

 

where    is the displacement in the    direction,    the density of the plate,    the thickness of the plate,   the 

Young’s modulus of the material,    the Poisson’s ratio of the material, and   the distributed transverse load on the 

beam per unit span. 

The nonlinear structural dynamics are solved using a flexible multi-body type finite element analysis of a 

flapping wing using triangular shell elements. The rigid-body motions are prescribed in the global frame of 

reference in addition to a co-rotational framework to account for the geometric nonlinearities. By applying the co-

rotational frame transformations the motion of an element is decomposed into the rigid-body motion part and the 

pure deformation part. By using the linear elasticity theory for the latter part, the co-rotational formulation can 

efficiently solve for the structural dynamics with small strains, yet large rotations. A linear combination of an 

optimal membrane element and a discrete Kirchhoff triangle plate bending element is employed for the elastic 

stiffness of a shell element
48

. Full details of this algorithm are described in Refs. [19] and [48]. The out-of-plane 

displacement of a linear isotropic plate is given by Eq (4), 

 

    
    

   
 

   
 

        
 
    

   
   

    

   
    

  
    

   
      

 

(4) 

 

where   is the Poisson’s ratio of the material, and   the distributed transverse load on the plate. 

 

3. Fluid-structure Interaction Interface 

The fluid-structure interaction is based on a time-domain partitioned solution process in which the nonlinear 

partial differential equation governing the fluid and the structure are solved independently and spatially coupled 

through the interface between the fluid and the structure. An interface module has been added to the fluid solver to 

communicate the parallelized flow solutions on the three-dimensional wetted surface to and from the serial structural 

solver. At each time step the fluid and the structural solvers are called one after the other until sufficient 

convergence on the displacements on the shared boundary surface are reached in an inner-iteration before advancing 

to the next time step. Full details of this algorithm are described in Refs. [19] and [20]. 

In the current study, in order to accelerate and ensure the convergence of the FSI the Aitken relaxation method
28

 

has been incorporated. The Aitken relaxation method is a fixed-point FSI-coupling method with dynamic relaxation. 

The fluid-structure coupling for partitioned domain can be summarized for the FSI-interface   as, 

 

    
      

        
       (5) 

 

where    denotes the fluid solver,    is the structural solver,   
    is the displacement of the interface   at the next 

time level    , and    
    is the displacement output from the structural solver.  

For weakly coupled systems    
      

    and the so-called explicit coupling can be used where the information 

between the fluid solver and the structural solver is communicated only once. If the structure is very light and 

flexible, the fluid forces will impact the structural deformations dominantly. Then the added mass effects become 

important and either monolithic solver or strongly coupled implicit scheme with sub-iterations is necessary
28

. In 

such an iterative coupling the Eq. (5) becomes 

 

        
      

          
       (6) 

 

where now   is the iterator over the FSI-coupling.  

In order to ensure and accelerate convergence of the iteration, a relaxation step is needed after each FSI-

subiteration in Eq. (6), 

 

       
             

              
     (7) 
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There are a number of methods to dynamically determine the relaxation factor   : 

 Prefixed: the relaxation factor should be sufficiently small to prevent the divergence of the FSI coupling, 

but large enough to reduce unnecessary FSI-iterations. It can be hard to find an optimum value. 

 Aitken’s relaxation
28

: By using secant like method for the unknown displacements, a recursive expression 

for the relaxation parameter can be estimated. This method has been implemented and will be explained 

below. 

 Vector Extrapolation: This methods predicts the approximate solutions based on the first elements of a 

converging vector series, see Ref. [29] 

 Jacobian-free Newton-Krylov Methods, Broyden methods, see Ref. [30] for descriptions and performance 

evaluations. 

The Aitken’s relaxation parameter for Eq. (7) is given by 

 

 
        

        
 
               

               
  

(8) 

 

where the residual is given as                    . The idea is to use the residuals from the previous two iterations 

to predict the solution using the secant method. In the vector extrapolation methods
29

 larger number of residuals 

from the previous iterations are used, however Kütter and Wall
28, 29

 showed that the Aitken method is simpler to 

implement and often provides faster convergence. The fluid and the structural solutions are considered to be 

synchronized for given tolerance   if             for       .      gives the number of FSI-subiterations. In the 

present study the convergence tolerance of   = 1.0×10
-6

 is used.  

B. Dimensional Analysis and Non-dimensional Governing Equations 

The relevant physical quantities are the density,    and the viscosity,  , of the fluid; the reference velocity,      , 

of the fluid flow; the half span,  , the mean chord,   , and the thickness,   , of the wing geometry; the structural 

density,   , the Young’s modulus,  , and the Poisson’s ratio,  , of the wing structure; the flapping (plunging) 

amplitude,    (   ), the flapping frequency,   the geometric angle of attack,  ; and finally the resulting 

aerodynamic force,  . The wing kinematics are given by 

 

flapping:            , plunging:            . (9) 

 

There are 13 variables and 3 dimensions leading to 10 non-dimensional parameters. With   ,     , and    as the 

basis variables the dimensional analysis leads to the non-dimensional parameters shown in Table 1. 

If the reference velocity,     , is chosen as the velocity scale, inverse of the motion frequency,     , as the time 

scale, and the mean chord,   , as the length scale, the governing equations Eqs (1), (2), (3) and (4) and the motion 

kinematics Eq. (9) are non-dimensionalized as 
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flapping:   
  

    
         , plunging: 

 

  
   

 

 
           (14) 

  
Table 1. Non-dimensional parameters for the FSI system with their physical relevance. 

Non-dimensional parameter Definition Description 

Reynolds number    
        

 
 Ratio between the inertial and the viscous forces in the fluids 

Aspect ratio    
  

  
 Wing span normalized with the chord 

Normalized thickness   
        Thickness normalized with the chord 

Density ratio          Ratio between the structural density and the fluid density 

Poisson’s ratio   Ratio between the transverse and the axial strain 

Effective stiffness   
**  

   
  

              
  

Ratio between the elastic bending forces and the 

aerodynamic force 

Reduced frequency   
   
     

 Measure of unsteadiness by comparing the spatial 

wavelength of the flow disturbance with the chord 

Strouhal number (flapping)            

Ratio between the flapping speed and the reference velocity 
Strouhal number (plunging)    

 

 

  
  

 

Angle of attack   
Curvature of the streamlines leading to pressure changes on 

the wing surface  

Force coefficient    
 

         
     

    
 

Aerodynamic force normalized with the dynamic pressure 

and the wing surface area 

III. Results and Discussions 

A. Isotropic Elliptic Flapping Wing in Still Air at    = 1.5×10
3
 

1. Case Setup 

 The wing is a flat plate wing with Zimmerman planform
20

, see Figure 1, flapping in still air at    = 

1.5×10
3
. The motion is excited at the rigid triangle at the leading edge at the wing root with a sinusoidal motion, see 

Eq. (15), as 

 

                (15) 

 

where      is the instantaneous flapping angle,    the flapping amplitude, and   the motion angular frequency. The 

flapping axis is parallel to the wing root, see Figure 1. The relevant parameters for the baseline case reported in Ref. 

[20] are repeated in Table 2. 

 

 
Figure 1. Geometry of the Zimmerman planform used in the current study. 

                                                           
**

 For the Euler-Bernoulli beam model the effective stiffness is defined as        
          

   . 
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Table 2. Dimensional and non-dimensional parameters for the baseline case. 

Parameter Value Non-dimensional Parameter Value 

  [m] 7.5×10
-2

    1.5×10
3
 

   [m] 1.96×10
-2

    0.25 

   [m] 4.0×10
-4

   0.56 

     [m/s] 1.10 (tip speed)
    7.65 

   [kg/m
3
] 1.23   

  2.0×10
-2

 

  [kg/ms
2
] 70×10

9
    3.8×10

4
 

  [1] 0.3
    2.2×10

3
 

   [kg/m
3
] 2.7×10

3
   

   [deg] 21
 

  

       [1/s] 10   

  

 The computational grid to solve the Navier-Stokes equations Eq. (1) and (2) consists of mixed brick and 

tetrahedral cells around the Zimmerman wing, see Figure 2a). The analyses of the spatial and the temporal 

sensitivities can be found in the Appendix A. A triangular region near the root at the leading edge undergoes 

prescribed motion and is constrained in all degrees of freedom in the structural solver, since the flapping mechanism 

in the experiment
20 

is actuated at this region on the wing. A total of 767 shell elements (437 nodes) are used in the 

finite element discretization in co-rotational framework. The CFD (computational fluid dynamics) and CSD 

(computational structural dynamics) grid configurations are shown in Figure 2. 

 

  

 

 

 

 

 

 

 

 

(a) Computational grid for the CFD simulations (b) Computational grid for the CSD simulations 

Figure 2. Computational grids for the isotropic Zimmerman wing in flap motion.  

 

2. Design of Experiments and Surrogate Models 

The baseline case
20

 and the previous studies
10, 21

 showed that the flexibility-induced pitching angle promotes the 

thrust generation and the increase of wing velocities due to large bending motion enhance aerodynamic force by 

increasing pressure differences. To assess the applicability of this observation for different wing properties, the 

effective stiffness    and the density ratio    have been chosen as the design variables to construct surrogate models 

to qualitatively explore their implications on the resulting thrust generation. The range for these variables in the 

design space is chosen to cover wide range of applications as shown in Table 3. To effectively assess the order of 

magnitude of the design variables a logarithmic scaled design space will be populated. 
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Table 3. Minimum and maximum values of the effective stiffness and the density ratio. 

Parameter Minimum Baseline
20

 Maximum 

   1.0×10
2
 (HDPE, polyethylene in air)  3.8×10

4
 1.0×10

5
 (steel, aluminum in air) 

   1.0×10
1
 (water to steel, aluminum)  2.2×10

3
 1.0×10

4
 (air to steel, aluminum)  

 

The objective functions are the time-averaged thrust, the bending angle, the twist, and time-averaged number of 

FSI-subiterations,     , where the instantaneous coefficients are defined as 

 

   
 

 
 
      

      
    

  (16) 

 

with    the aspect ratio of the wing and   thrust, so that for the resulting force,   , we have      . For simplicity 

thrust will be referred as the time averaged thrust coefficient from now on. The bending angle is defined as the 

maximum tip displacement angle relative to the instantaneous prescribed flap angle, 

 

                                  (17) 

 

with    the wing tip displacement in the vertical direction. Similarly, the twist angle is defined as the maximum 

projection angle along the chord at the section 3, see Figure 2b),  

 

                        (18) 

 

where    is the unit vector in the direction from the leading edge to the trailing edge at the section 3 of the wing and 

  is the unit vector in the thrust direction. So the twist angle gives the degree of the thrust favorable projectional area 

of the wing due to deformation. 

The design of experiments use a face centered cubic design (FCCD) and then the remainder of the design space 

is appropriately filled. In total 10 training points are selected. A tabulation of the training points are found in Table 5 

in the Appendix B. The design space with logarithmic bias towards the softer (  ) and lighter (  ) structures are 

shown in Figure 3. The region where       
            is out of the scope of the current study as this region 

showed largely unstable behavior of the wing motion because the imposed frequency of 10 Hz is close to the natural 

frequencies, see Figure 16and Table 6 in the Appendix 0 for the natural frequencies and modes for each cases. 

 

 
Figure 3. Design of experiment in logarithmic scale for the design variables    and   . All vertices, center of edges, and 

the center of the domain are occupied with a training point (○) using the FCCD and the resting three points are properly 

filled. Two testing points (□) are placed in the regions of interest. 

 

Different weighting strategies are employed to minimize the risk of generating surrogates that fit the training 

data well but perform less in other regions. The weighted average surrogates (WAS) use constant weights, meaning 
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that a certain surrogate will have the same importance throughout the design space. The Polynomial Response 

Surface, Kriging, and Support Vector Regression are used for the individual surrogates, see Table 7 in the Appendix 

D, after which each surrogates are weighted in correlation to the RMS PRESS values, defined as  

 

           
 

  

        
    

 

  

   

  (19) 

 

where    
    

 is the prediction at      using a surrogate model constructed with all training point except     , and 

   is the number of training points. Table 4 shows the RMS PRESS values as predicted by the individual surrogate 

models for the thrust, twist, bending, and time averaged number of FSI-subiterations. The cells with bold fonts 

indicate the lowest RMS PRESS values and the surrogates that are weighted in the WAS. The error measured at the 

independent testing points defined as the relative difference between the constructed WAS and the actual values 

from the simulations with respect to the range of the objective functions show, see Table 8 in the Appendix E, that 

for the case 11 where the high gradients in the surrogates are located has larger error than for the more stiffer case 

12.  

 
Table 4. PRESS values as predicted by the individual surrogate models for the thrust, bending angle, twist, and time 

averaged number of FSI-subiterations. Surrogate models indicated by the bold fonts are used for the WAS construction. 

 
KRG PRS SVR1 SVR2 SVR3 SVR4 SVR5 SVR6 

     3.7×10
-1

 5.6×10
-1

 5.8×10
-1

 3.9×10
-1

 3.3×10
-1

 3.2×10
-1

 5.3×10
-1

 3.9×10
-1

 

twist 4.2×10
-1

 6.1×10
-1

 6.5×10
-1

 4.5×10
-1

 3.7×10
-1

 3.5×10
-1

 6.1×10
-1

 4.8×10
-1

 

bending 3.9×10
-1

 5.3×10
-1

 5.6×10
-1

 3.7×10
-1

 3.3×10
-1

 3.1×10
-1

 5.2×10
-1

 3.7×10
-1

 

       3.9×10
-1

 3.0×10
-1

 4.0×10
-1

 4.7×10
-1

 2.6×10
-1

 2.9×10
-1

 3.0×10
-1

 3.0×10
-1

 

 

The resulting surrogates are shown in Figure 4 for the thrust, twist, bending angle, and time averaged number of 

FSI-subiterations. The thrust, twist, and bending have maximum at the case 4 (   1.0×10
3
 and    1.0×10

3
) and 

these three objective functions have qualitatively similar trend in the design space. It is not only the effective 

stiffness (  ), or the density ratio (  ), but the balance between these two parameters that determine the resulting 

deformation and the thrust generation. The number of FSI-subiterations increases for lower    and smaller   . This 

is consistent with the previous findings
28, 29

 that light material (low   ) and softer material (small   ) leads to tighter 

FSI-coupling, hence more FSI-subiterations are required to synchronize the partitioned coupling. Scaling parameters 

related to the thrust and the degree of FSI-coupling will be discussed further in Section III.C and III.D.  

As the sinusoidal rigid-body motion is imposed at the triangular rigid part near the wing root (see Figure 1), the 

wing inertia and the resulting aerodynamic load is balanced out by the elastic force. Since the wing is made of 

isotropic material the structure will response in both spanwise bending as well as chordwise twisting. Two thrust 

enhancement mechanisms due to flexibility were found previously: i) the twist redistributes the resulting 

aerodynamic force in thrust favorable direction
10, 33

, ii) the spanwise bending enhances the thrust if the phase angle 

is acute
10

. The interplay between the resulting thrust, and the wing twist and bending will be highlighted for the 

Maximum Thrust (case 4) and the Medium Thrust (case 1) cases. 

Figure 5 shows the time history of thrust coefficient as function of time for the Maximum Thrust, Medium 

Thrust, and Minimum Thrust (rigid) cases. The time histories of    of all other cases lie between the Maximum 

Thrust and the Minimum Thrust cases, which indicate that instantaneous thrust is always positive for all cases. 

Furthermore, one thrust peak per stroke is seen between the beginning of the stroke and the middle of stroke. 
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(a) thrust (c) bending angle (deg) 

  
(b) twist (deg) (d)        

Figure 4. Surrogate models for (a) thrust, (b) twist, (c), bending angle, and (d) time averaged number of the FSI-

subiterations for a flapping isotropic Zimmerman wing at    = 1.5×103 and   = 0.56. 

 
Figure 5. Time history of thrust coefficient as function of time for a flapping isotropic Zimmerman wing at    = 1.5×103 

and   = 0.56 for the Medium Thrust (red, dot), Maximum Thrust (black, solid), and Minimum Thrust (blue, dashed) cases.  

Figure 6 shows the phase diagrams of the bending angle at the wing tip and the twist angles at five different 

spanwise sections, i.e. section 1: 0% (root), section 2: 12.5%, section 3: 37.5% (max), section 4: 62.5%, and section 

5: 87.5% (near tip), see also Figure 2b), as functions of the flap angle for the Maximum Thrust and the Medium 

Thrust cases. As indicated by the surrogate model results, both the tip bending angle and the twist are larger for the 

Maximum Thrust case than the Medium Thrust case. Furthermore, the phase angle
49

, which indicates the degree of 
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how much the deformed wing motion is in phase with the prescribed rigid-body motion at the root, shows that again 

the Maximum Thrust has smaller phase angle, hence less phase lag, than the Medium Thrust. Both observations are 

consistent with the obtained thrust computation and further studies are planned to quantify the individual 

contributions from the twist and bending. 

 
Medium Thrust (case 1) Maximum Thrust (case 4) 

  
(a-1) Bending angle at the tip (b-1) Bending angle at the tip 

  

 

  
(a-2) Twist angle at five wing sections (b-2) Twist angle at five wing sections 

Figure 6. Tip bending angles and twist angles at five spanwise sections for a flapping isotropic Zimmerman wing at    = 

1.5×103 and   = 0.56 for the (a) Medium Thrust (case 1) and (b) Maximum Thrust (case 4) cases. Note that the phase loops 

go in counter clockwise direction for the bending angles (a-1) and (b-1), and in clockwise direction for the twisting angles 

(a-2) and (b-2). 

 

Figure 6 shows that, for both cases, the shapes of the phase diagrams are qualitatively similar to each other, with 

larger maximum twist and bending angles for the Maximum Thrust case. The relation between the twist and the 

bending angles is summarized in Figure 7 showing that there is almost linear correspondence between the twist and 

the bending for both cases. Figure 8 shows the phase diagrams of the instantaneous thrust as function of the bending 

and twist angles (section 3) for the Maximum Thrust and the Medium Thrust cases. For both cases the thrust is at 

maximum slightly before the wing reaches its maximum bending angle. The maximum twist gives, on the other 

hand, the maximum thrust for both cases. Therefore, the wing deformation (i.e. large bending and twist of the wing) 

promotes thrust generation for the cases considered in current study. 

Figure 9 illustrates the normalized spanwise vorticity contours at the mid span for the Maximum Thrust and the 

Medium Thrust cases at    = 3.75, 3.95 (near maximum   ), 4.1, and 4.25, together with the time histories of the 

twist angles at section 3, see Figure 6 a-2) and b-2). The higher thrust generation for the Maximum Thrust case can 

be correlated to the flow structures as follows: 

    = 3.75: Top of the stroke. Both the leading edge vortex (LEV) and the trailing edge vortex (TEV) 

are stronger due to larger bending, hence higher wing velocities compared to the Medium Thrust. 

Phase angle 
Phase angle 
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    = 3.95: As the wing flaps down the wing velocity increased and LEV and the TEV have already 

formed. At the trailing edge two counter-rotating vortices interact with each other and result in a 

stronger induced velocity as indicated by the white arrow. At this time instant the twist and the thrust 

are also close to maximum. 

    = 4.10: As the wing decelerates the twist reduces to zero, the flow field is almost symmetric, and the 

thrust drops to minimum 

     = 4.25: Bottom of the stroke. The Maximum Thrust case shows lower wing position due to larger 

spanwise bending deformation. This will eventually lead to stronger vortices and higher thrust. Note 

also that the TEV is weaker than the TEV shown in Figure 9a) consistent with smaller peak between 

    = 4.25 and 4.5 compared to the peak near     = 4. 

Again, Figure 9 suggests that the time instant of the maximum thrust corresponds to the maximum twist. 

 

 
Figure 7. Twist (section 3) as function of the bending angle for a flapping isotropic Zimmerman wing at    = 1.5×103 and 

  = 0.56 for the Medium Thrust (black, solid) and the Maximum Thrust (red, dashed) cases. 

 

  
(a) Thrust vs bending anlge (b) Thrust vs twist anlge 

Figure 8. Phase loops of the thrust as function of bending (a) and twist (b) angles for a flapping isotropic Zimmerman 

wing at    = 1.5×103 and   = 0.56 for the Medium Thrust(black, sold) and the Maximum Thrust (red, dashed) cases. 
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Figure 9. Normalized spanwise vorticity contours at the mid-span at (a)     = 3.75 (top), (b)     = 3.95, (c)     = 4.1, and 

(d)     = 4.25 (bottom) for the Medium Thrust and the Maximum Thrust cases. Note that LE and TE indicate leading edge 

and trailing edge. 

B. Chordwise Flexible Airfoil in Forward Flight at    = 9.0×10
3
 in Water 

The isotropic flapping Zimmerman wing suggests that the thrust generation is directly related to the degree of 

chordwise deformation. To explore the flexibility induced thrust enhancement further, the thrust of a purely 

plunging chordwise flexible airfoil
7, 10

 are computed for different thickness ratios (  
  = 4.23×10

-3
, 1.41×10

-3
, and 

0.56×10
-3

) and motion frequencies. The airfoil consists of a rigid teardrop leading edge and an elastic plate that 

plunges sinusoidally in freestream. Detailed case setup can be found in Refs. [7] and [10]. An Euler-Bernoulli beam 

solver is used to solve the Eq. (12) for the deformation of the elastic flat plate. The Reynolds number    = 9.0×10
3
, 

the plunge amplitude ratio       = 0.194, and the density ratio    = 7.8 are held constant in all cases. 

Figure 10 shows the time-averaged thrust coefficient for a range of motion frequencies so that the corresponding 

Strouhal numbers and reduced frequencies vary from    = 0.085 to 0.4 and   = 1.2 to 6.5 from the current numerical 

computation and the experimental measurements
7
. The thrust coefficients correlate very well except for the 

inflexible case (  
  = 4.23×10

-3
) at higher frequencies,         > 0.7. The reason is not yet determined and will be 

reported in the future. The thrust increases with increasing motion frequency (i.e. Strouhal number).  
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Figure 10. Time averaged thrust coefficient for a plunging chordwise flexible airfoil at    = 9.0×103 and    = 7.8 for 

different flexibility and motion frequencies. The experimental data were extracted from Heathcote and Gursul [7]. The 

Strouhal number definition in this follows that of Heathcote and Gursul [7], i.e.                   
            . 

The thrust for an inflexible airfoil (  
  = 4.23×10

-3
) can be enhanced by increasing the Strouhal number, which 

influences the LEV generation and wing-wake interaction, and hence thrust generation. Introducing the flexibility by 

reducing the flat plate thickness, the thrust increases for sufficiently large Strouhal number. The thinnest airfoil (  
  

= 0.56×10
-3

) has the highest thrust at    = 0.3, however as the thrust deteriorates for larger Strouhal numbers. 

Eventually, the fluid dynamics time scale and structural responses become limiting factors. The results shown in 

Figure 10 suggest that the Strouhal number or the thickness ratios are not the correct non-dimensional parameters to 

scale the thrust for flexible flapping wings. 

 

C. Scaling Parameter for the Degree of FSI-coupling 

 Before discussing the thrust, the degree of FSI-coupling measured by the time averaged number of the FSI-

subiterations is investigated. Consider both structural dynamics equations, Eqs. (12) and (13), which have the same 

form: 

 

                                       (20) 

 

where        
  

 

 
 
 

 is the effective inertia term. The non-linearity and also the coupling to the fluid dynamics are 

introduced in the RHS of Eq. (18). The deforming wing changes the momentum of the fluid and at the same time the 

flow field will exert pressure and viscous forces on the surface of the wing that in turn will affect the displacement 

field. The fluid force term in the RHS of Eq. (20) is simplified as follows. For a harmonically plunging thin flat plate 

without pitching motion the added mass term
50

 becomes, see also Appendix G, 

 

   
   
 

  

  
 
  

      
  

 
       (21) 

 

which will dominate over the circulatory term if the reduced frequency is sufficiently large. In the current 

approximation only the added mass term is used to estimate the aerodynamic force. Then, Eq. (20) can be 

approximated as, 

 

                                      (22) 

 

Since the RHS of Eq. (22) gives the coupling to the fluid dynamics, divide both sides of Eq. (22) by     , which 

yields, 
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(23) 

 

If either        , or         (or both) are small compared to     , then the coupling algorithm explained in the 

Section II.A.3 with the relaxations for the wing displacements, hence for the resulting fluid dynamics force field on 

the structure, needs more FSI-subiterations to converge to the synchronized time accurate solution. To represent this 

idea the scaling parameter for the degree of FSI-coupling is proposed as, 

 

     
    

  

   
    

  

  
(24) 

 

which is called the FSI shape factor.      is consistent with the surrogate model result for        in Figure 4. For 

the hovering Zimmerman wing case    and   are constant and    is represented by   . Figure 11 shows        

for both isotropic Zimmerman wing cases as well as the chordwise flexible airfoil cases plotted against      in 

logarithmic scales. The number of FSI-subiterations depends monotonically on the FSI shape factor. Around 

          the time-averaged number of FSI-subiterations starts to increase, indicating fluid-structure system is 

more tightly coupled. For the FSI shape factor less than      the system can be regarded as loosely coupled and 

small number of communication between the fluid and structural solver is needed to synchronize the coupled 

solution. This scaling analysis shows that not only the density ratio or bending rigidity need to be considered to 

estimate the degree of the FSI-coupling, but also the reduced frequency, the thickness ratios, and the Strouhal 

number for a flapping flexible wing. 

 

 
Figure 11. Time averaged number of FSI-subiterations as function of the FSI shape factor for the flapping isotropic 

Zimmerman wing and the purely plunging chordwise flexible airfoil cases. 

 

D. Scaling Parameter for the Thrust 

The surrogate model results in Figure 4 suggest that not only the effective stiffness plays a role in the thrust 

generation, but also the density ratio. The ratio between the density ratio and the effective stiffness has dominant 

role in the qualitative trend in thrust, which will be discussed in this section as            . The current study 

and previous works
10, 33

 have shown that one of the mechanisms to enhance thrust is to enlarge the thrust promoting 

projected area by deformations: deformations lead to passive pitching motion of the flexible wings and the resulting 

aerodynamic force on the deformed wing is distributed in the thrust favorable direction
10

. To capture the essence of 

the scaling involved in the thrust enhancement due to flexibility, first, dimensional arguments will be used establish 

scaling in the limiting situations to predict qualitative trends. This will be followed by a correction term for the 

natural frequencies for the wing which follows from the analysis of the Eq. (12).  
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Eq. (22) contains three non-dimensional parameters. To scale the thrust enhancement due to elastic deformation, 

dividing Eq. (22) by    yields 

 
  

  

                       
    

  

  
(25) 

 

where the elasticity term is of the order of unity. The other two terms       and           represent the 

importance of the inertia and the aerodynamic force with respect to the elasticity term. The ratio between the 

effective inertia (    and the effective stiffness (    can be related to a parameter introduced as the elastoinertial 

number,            
   

     
    , in Ref. [33] as it will be shown later:       gives the balance between the 

inertia force and the elastic force under the application of coupled force by the fluid. Two parameters can be 

adjusted to obtain deformations that increase the thrust favorable projection area: larger force via        , or 

relatively lower stiffness compared to the inertia via      . Based on this argument, the scaling parameter for the 

thrust is proposed as the thrust shape factor: 

 

  
  

  

 
    

  

  
(26) 

 

Figure 12 shows the time averaged thrust coefficient for the flapping isotropic Zimmerman wing computations as 

defined in Figure 3 and Table 5 as function of   in logarithmic scales. Furthermore, numerical results from the 

purely plunging chordwise flexible airfoil cases in forward flight in water, see Section III.B, are added. The 

Zimmerman wing cases are parametrized by (  ,   ) and the chordwise flexible airfoil cases by ( ,   
 ). For both 

cases the time-averaged thrust coefficients, see Table 9 in the Appendix F for the tabulated values, normalized by    

show almost a linear dependency on   in logarithmic scale. 

. 

 
Figure 12. Normalized time averaged thrust coefficient as function of the thrust shape factor (dimensional argument) for 

the flapping isotropic Zimmerman wings in still air at    = 1.5×103 and the purely plunging chordwise flexible airfoils in 

forward flight in water at    = 9.0×103. 

 

Different physical interpretation can be given to the       ratio. Consider again Eq. (12) with the effective 

inertia as the coefficient for the inertia term,  

 

  

    
 

    
   

    
 

   
       

 

(12) 
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Eq. (12) is a beam equation where the square of the natural frequency of the system,   , is given by a multiple of 

     , i.e., 

 

  
  

  
 

  
  

  

  
    
 

 
 

  
(27) 

 

where             is a constant and    the natural frequency of the wing modeled as a beam. Hence       is 

also proportional to the square of the ratio between the natural frequency of the wing and the excitation frequency. 

Comparing the thrust shape factor,  , with the maximum tip deformation that follows from the analytic solution of 

Eq. (12) under the assumption of fluid forces contributed only by the added mass effects
50

, see Appendix G for the 

solution, shows that   needs to be corrected for the natural frequencies of the wing,    to account for the multiple 

time scales involved in the system: natural structural time scale      and the motion time scale     as follows: 

 

        
    

    
  
 
 
 

   

  
(28) 

 

which motivates to plot the normalized thrust against         yielding Figure 13. Note that the inertial force term 

arising from the plunging boundary condition has been neglected because for the plunging chordwise flexible 

airfoils     
    and for the flapping isotropic Zimmerman wing the motion type is different: A further study is 

planned to investigate the inertial term for the flapping motion. 

 

 
Figure 13. Normalized time averaged thrust coefficient as function of the corrected thrust shape factor (physical 

argument) for the flapping isotropic Zimmerman wing in still air at    = 1.5×103 and the purely plunging chordwise 

flexible airfoil cases in water in freestream at    = 9.0×103. The coefficient of determination for the linear fit in least 

square sense is 0.96. 

Compared to the scaling shown in Figure 12         scales the time averaged thrust almost linearly in the logarithmic 

scale with less scatter than  . The thrust shape factor,         is also an extended scaling parameter of the 

elastoinertial number
33

 defined by Thiria and Godoy-Diana
33

. It can be shown that under the assumptions of the 

excitation frequency much smaller than the natural frequency of the wing         can be approximated by      as 

follows. Assume that     , then         defined in Eq. (28) simplifies to 
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(29) 

 

where the operator   indicate proportionality. For a given wing with fixed density   , thickness   , and length,     
in a given medium, the density ratio    and the thickness ratio   

  are constant. Then the approximated         in Eq. 

(29) further reduces to 

 

          
    
       

  

  

    

    
  

 
 
 
  

  

  

    

  
 

  

  

  

 
 

       
   

 

   
 

      
(30) 

 

In the discussion of     Thiria and Godoy-Diana
33

 only considers the inertial term arising from the motion of the 

wing for the forces, which is proportional to           
 , see also Appendix G. In that case the term appearing in 

the denominator in Eq. (30) would cancel out directly. Either way         is consistent with    . 

 Figure 13 shows that         is able to scale for the plunging chordwise flexible airfoils in water under freestream 

at    = 9.0×10
3
 as well as for the flapping isotropic Zimmerman wing in still air at    = 1.5×10

3
 with different 

motion type and Reynolds number. The time averaged thrust coefficient in the  -axis is normalized with the 

effective stiffness,    and   , where the factor   , which for small values is proportional to the effective angle of 

attack, gives the projection of the resulting force in the vertical direction, i.e. the direction along the displacement 

  .               can be considered as the static tip deflection: in steady case the tip deflection would be 

proportional to             . Figure 13 suggests that a correlation exists between the static tip deflection and 

the maximum tip deformation in the dynamic motion of the wing. A linear fit in least square sense through all data 

points gives an a priori approximation for the time averaged thrust coefficient as 

 

                           
      (31) 

 

where the coefficient of determination is 0.97. Eq. (31) can also be used to predict parametric dependence of the 

thrust on a particular variable. The resonance behavior is not regarded in this study and is part of the on-going 

studies. For simplicity assume that     , then Eq. (31) simplifies to  

 

                   
    

  

 
    

                
       

(32) 

 

or, in terms of dimensional variables, the thrust will depend as  

 

          
       

       
       

                 
    (33) 

 

So for a given system the thrust will enhance due to the flexibility, with increasing motion frequency, plunging 

amplitude, wing length, and fluid density, and with decreasing thickness and Young’s modulus of the wing, 

assuming the motion frequency is sufficiently smaller than the natural frequency of the wing. In forward flight, 

        and the thrust will decrease with increasing forward speed, while in hovering,           . 

IV. Conclusion and Summary 

Using a time-domain partitioned fluid-structure interaction solver and surrogate modeling approaches the thrust 

generation and the degree of the FSI coupling has been investigated for flexible flapping wings under hover and 

freestream condition. For a flapping isotropic Zimmerman wing in still air at    = 1.5×10
3
 the surrogate models for 

the time averaged thrust show qualitative similar trends as the twist and the bending angles of the wing. It is not only 

the effective stiffness, or the density ratio, but the balance between these two parameters that determine the resulting 

deformation and the thrust generation. Instantaneous thrust peaks are correlated to the flexible-induced bending and 

twist angles. The twisting of the wing redistributes the resulting force favorable of the mean and instantaneous thrust 

generation in the direction of the flapping axis. 
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To further investigate the flexibility induced thrust enhancement a plunging chordwise flexible airfoil in forward 

flight in water at     = 9.0×10
3
 is considered. Time averaged thrust increases with thinner plate and higher Strouhal 

number, however the thinnest structure responded with degradation in performance for higher Strouhal numbers.  

A unified scaling parameter (FSI shape factor,  F I) for the degree of FSI-coupling for the abovementioned cases 

is proposed based on the properly non-dimensionalized structural dynamic equations. The number of FSI-

subiterations is monotonically dependent on  F I and it is found that when  F I increases, more FSI-subiterations are 

required, i.e. the system becomes tightly-coupled. This scaling analysis shows that not only the density ratio or the 

effective stiffness need to be considered to estimate the degree of the FSI-coupling, but also the reduced frequency, 

the thickness ratios, and the Strouhal number.  

Furthermore, a different unified scaling parameter (thrust shape factor,  thrust) for the time averaged thrust is 

proposed. The thrust shape factor is related to the maximum tip deformation of the wing and determines the increase 

of thrust favorable projected area due to the wing flexibility: The thrust normalized by the effective stiffness for both 

cases scales with the maximum tip deformation. Hence, this scaling analysis suggests that there is a correlation 

between the static tip deflection and the dynamic tip deformation. The two scaling parameters proposed are 

consistent with the two cases considered regardless of the precise motion kinematics: flapping/plunging, 

hover/forward flight; Reynolds number: 1.5×10
3
/9.0×10

3
; medium of the fluid: air/water. 

 

Appendix 

A. Spatial and Temporal Sensitivity Analysis of the Isotropic Flapping Zimmerman wing Study in Still Air 

For the rigid Zimmerman wing with the baseline reduced frequency   = 0.56 the spatial sensitivity has been 

investigated by comparing the lift and the thrust coefficients on three different grids at    = 1.5×10
3
: Coarse with 

3.4×10
5
, Baseline with 5.1×10

5
, and Fine with 7.4×10

5
 cells respectively, see Figure 14. The resulting aerodynamic 

forces indicate that the baseline grid has grid independent solution. The first grid spacing from the airfoil surface is 

set to 2.5×10
-3

    to sufficiently capture the boundary layer and the outer boundary of the computational grid is 

located at 30 chords from the wing. The time step sensitivity is assessed by varying the time step as = 250, 500, and 

1000 on the baseline grid. The resulting forces in Figure 15 show that     = 500 is sufficient. For all computations 

the baseline grid is used with 500 time steps per motion cycle. The flow is assumed to be laminar. Non-slip 

boundary condition is assigned to the wing surface and incompressible inlet condition is set to outer boundaries. 

 

  
(a) Lift (b) Thrust 

Figure 14. (a) Lift and (b) thrust coefficients of a flapping Zimmerman wing at    = 1.5×103 and   = 0.56 on the 

Coarse (3.4×105 cells), Baseline (5.1×105 cells), and Fine (7.4×105 cells) grids using 500 time steps per motion cycle.  

 

  
(a) Lift (b) Thrust 

Figure 15. (a) Lift and (b) thrust coefficients of a flapping Zimmerman wing at    = 1.5×103 and   = 0.56 the 

baseline grid using 250, 500, and 1000 time steps per motion cycle. 
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B. Design Space for Surrogate Modeling 

Table 5 shows the list of training points in the design space for the flapping isotropic Zimmerman wing at   = 

1.5×10
3
,   = 0.56 in still air.    and    are the design variables. The Young’s moduli and the wing material density 

are shown for reference. 

 
Table 5. List of training points in the design space for the flapping isotropic Zimmerman wing at   =1.5×103 and   = 0.56 

in still air.    and    are the design variables.  

Case Number            

1 1.04×10
2
 1.00×10

1
 2.00×10

8
 1.23×10

1
 

2 1.04×10
5
 1.00×10

1
 2.00×10

11
 1.23×10

1
 

3 1.04×10
5
 1.00×10

4
 2.00×10

11
 1.23×10

4
 

4 1.00×10
3
 1.00×10

3
 1.92×10

9
 1.23×10

3
 

5 3.29×10
3
 3.16×10

2
 6.32×10

9
 3.89×10

2
 

6 1.04×10
5
 3.16×10

2
 2.00×10

11
 3.89×10

2
 

7 3.29×10
3
 1.00×10

1
 6.32×10

9
 1.23×10

1
 

8 4.38×10
4
 2.19×10

3
 8.41×10

10
 2.69×10

3
 

9 1.00×10
4
 1.00×10

2
 1.92×10

10
 1.23×10

2
 

10 3.16×10
2
 3.16×10

1
 6.07×10

8
 3.89×10

1
 

11 5.86×10
2
 3.06×10

2
 1.13×10

9
 3.77×10

2
 

12 3.78×10
3
 5.72×10

1
 7.26×10

9
 7.04×10

1
 

 

C. Modal Analysis of Flapping Isotropic Zimmerman Wing Studies 

Natural frequencies are computed using MSC.Marc
22

 and shown in Table 6. Moreover, the mode shapes of the wing 

for each natural frequency are illustrated in Figure 16.  

 
Table 6. First four natural frequencies based on a modal analysis for the training and testing points in the design space 

for flapping isotropic Zimmerman wings at   =1.5×103 and   = 0.56 in still air. 

Case Mode 1 Mode 2 Mode 3 Mode 4 

1 7.46×10
1
 3.04×10

2
 5.27×10

2
 7.63×10

2
 

2 2.36×10
3
 9.61×10

3
 1.67×10

4
 2.41×10

4
 

3 7.46×10
1
 3.04×10

2
 5.27×10

2
 7.63×10

2
 

4 2.31×10
1
 9.41×10

1
 1.63×10

2
 2.36×10

2
 

5 7.46×10
1
 3.04×10

2
 5.27×10

2
 7.63×10

2
 

6 4.19×10
2
 1.71×10

3
 2.96×10

3
 4.29×10

3
 

7 4.19×10
2
 1.71×10

3
 2.96×10

3
 4.29×10

3
 

8 1.03×10
2
 4.21×10

2
 7.30×10

2
 1.06×10

3
 

9 2.31×10
2
 9.41×10

2
 1.63×10

3
 2.36×10

3
 

10 7.31×10
1
 2.98×10

2
 5.16×10

2
 7.47×10

2
 

11 3.20×10
1
 1.31×10

2
 2.26×10

2
 3.27×10

2
 

12 1.88×10
2
 7.65×10

2
 1.33×10

3
 1.92×10

3
 

 

 

    
Mode 1 Mode 2 Mode 3 Mode 4 

Figure 16. Snapshots of the wing shapes for the first four modes based on a modal analysis for the training and testing 

points in the design space for the flapping isotropic Zimmerman wing at   =1.5×103 and   = 0.56 in still air. 
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D. Surrogate Model Characteristics 
Table 7. Acronyms and descriptions of the surrogate models used to construct the WAS. 

Surrogate model Model/kernel Comment 

KRG: Kriging Linear Regression Model Gaussian correlation model 

PRS: Polynomial Response Surface 2
nd

 order polynomial  

SVR1: Support Vector Regression Linear spline kernel Full: infinity as upper bound 

SVR2: Support Vector Regression Linear spline kernel Short: finite upper bound 

SVR3: Support Vector Regression Exponential kernel Full 

SVR4: Support Vector Regression Exponential kernel Short 

SVR5: Support Vector Regression Gaussian kernel Full 

SVR6: Support Vector Regression Gaussian kernel Short 

 

E. Independent Testing Point Error Measures 
Table 8 Relative error of the constructed weighted averaged surrogate at independent testing points for the objective 

functions considered. 

Objective function relative error at testing point 11 (%) relative error at testing point 12 (%) 

     41 9.9 

twist 36 12 

bending 36 9.0 

       12 19 

 

F. Tabulation of Results for the Chordwise Flexible Airfoil and Isotropic Wing cases 

 
Table 9. Tabulation of the time averaged number of FSI-subiterations, time averaged thrust coefficient, density ratio, 

thickness ratio, Strouhal number, effective stiffness, and effective inertia for all cases. 

                   
  St       

Chordwise inflexible  2.9 -0.0087 0.78×10
1
 4.23×10

-3
 0.075 4.90×10

-3
 1.3×10

2
 

Chordwise inflexible 3.0 0.25 0.78×10
1
 4.23×10

-3
 0.15 1.97×10

-2
 1.3×10

2
 

Chordwise inflexible 3.4 1.51 0.78×10
1
 4.23×10

-3
 0.25 5.48×10

-2
 1.3×10

2
 

Chordwise inflexible 3.9 4.59 0.78×10
1
 4.23×10

-3
 0.4 1.40×10

-1
 1.3×10

2
 

Chordwise flexible 4.8 -0.0048 0.78×10
1
 1.41×10

-3
 0.075 1.60×10

-3
 4.8×10

0
 

Chordwise flexible 5.0 0.32 0.78×10
1
 1.41×10

-3
 0.15 6.60×10

-3
 4.8×10

0
 

Chordwise flexible 6.2 2.33 0.78×10
1
 1.41×10

-3
 0.25 1.83×10

-2
 4.8×10

0
 

Chordwise flexible 6.8 9.38 0.78×10
1
 1.41×10

-3
 0.4 4.68×10

-2
 4.8×10

0
 

Chordwise very flexible 7.7 0.039 0.78×10
1
 0.56×10

-3
 0.075 6.53×10

-4
 3.0×10

-1
 

Chordwise very flexible 10.9 0.80 0.78×10
1
 0.56×10

-3
 0.15 2.60×10

-3
 3.0×10

-1
 

Chordwise very flexible 11.5 1.81 0.78×10
1
 0.56×10

-3
 0.25 7.30×10

-3
 3.0×10

-1
 

Chordwise very flexible 12.4 3.67 0.78×10
1
 0.56×10

-3
 0.4 1.86×10

-3
 3.0×10

-1
 

Isotropic wing: case 1 5.0 0.058 1.00×10
1
 2.00×10

-2
 0.25 6.49×10

-3
 1.04×10

2
 

Isotropic wing: case 2 2.0 0.0067 1.00×10
1
 2.00×10

-2
 0.25 6.49×10

-3
 1.04×10

5
 

Isotropic wing: case 3 2.0 0.014 1.00×10
4
 2.00×10

-2
 0.25 6.49×10

0
 1.04×10

5
 

Isotropic wing: case 4 2.0 0.12 1.00×10
3
 2.00×10

-2
 0.25 6.49×10

-1
 1.0×10

3
 

Isotropic wing: case 5 2.0 0.01 3.16×10
2
 2.00×10

-2
 0.25 2.05×10

-1
 3.29×10

3
 

Isotropic wing: case 6 2.0 0.0069 3.16×10
2
 2.00×10

-2
 0.25 2.05×10

-1
 1.04×10

5
 

Isotropic wing: case 7 3.0 0.0083 1.00×10
1
 2.00×10

-2
 0.25 6.49×10

-3
 3.29×10

3
 

Isotropic wing: case 8 2.0 0.0080 2.19×10
3
 2.00×10

-2
 0.25 1.42×10

1
 4.38×10

4
 

Isotropic wing: case 9 2.0 0.0079 1.00×10
2
 2.00×10

-2
 0.25 6.49×10

-2
 1.0×10

4
 

Isotropic wing: case 10 4.0 0.029 3.16×10
1
 2.00×10

-2
 0.25 2.05×10

-2
 3.16×10

2
 

Isotropic wing: case 11 2.0 0.027 3.06×10
2
 2.00×10

-2
 0.25 1.99×10

-1
 5.86×10

2
 

Isotropic wing: case 12 2.0 0.0091 5.72×10
1
 2.00×10

-2
 0.25 3.71×10

-2
 3.78×10

3
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G. Solution of the Normalized Beam Equation 

Imposing a plunging motion for the root displacement of a beam leads to a partial differential equation (PDE) 

with time-dependent boundary conditions. Mindlin and Goodman
51

 suggested a procedure to solve a class of beam-

vibration problems with time-dependent boundary conditions by extending the method of separation of variables. 

The governing equation, Eq. (12), for a plunging beam with its boundary condition where the plunging motion given 

by Eq. (14), and initial condition are, simplifying the fluid force as the lift due to added mass effect for a 

sinusoidally plunging thin flat plate
50

, 

 

GE:   
    

 

    
   

    
 

   
                         

 

BC:   
              

    

 
              

   
       

   
    

    
       

   
      

    
       

   
      

 

IC:   
    

     
    

 
 

   
    

    

   
    

 

where the spatial variable is defined between the root and the tip, i.e.     
   , and the time     , and the 

effective inertia, again,        
  

 

 
 
 

. For the force term For simplicity the      notation to denote non-

dimensionalized variables and the indices will be omitted:     
 ,     , and     

 . 

Following the procedure described by Mindlin and Goodman
51

, a PDE with homogeneous boundary conditions 

can be found by looking for the solutions in the form of: 

 

                       
 

where      needs to be chosen to make the governing equation for        homogeneous. For a sinusoidal plunging 

motion the unit help function suffices, i.e.       , so that the governing equation and the corresponding boundary 

and initial conditions become 

 

  

   

   
   

   

   
                     

      

   
 

 

 

         
       

  
   

        

   
    

        

   
    

 

         
       

  
    

 

The consequence of having a sinusoidal displacement at the root is that the vibrational response of the beam is 

equivalent as having a sinusoidal excitation force. Combined with the force due to fluid force the RHS of Eq. (22), 

let’s say     , simplifies to 

 

                           

      

   
             

                  

 

This PDE can be solved using the method of separation, i.e.                , resulting in 

 

   

   
   

      

 

   

   
   

           

 

where       is a Fourier coefficient of a unit function in the spatial modes   . So, 
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where we have used the orthogonality of   . 

The equation and the boundary conditions for      is the same as for a free vibrating cantilever beam, of which 

the solution is given numerous textbooks, ex. by Timoshenko et al.
52

. The natural frequency is given by 

 

  
  

  
 

  
  

  

  
    
 

 
 

  

 

where    is the natural frequency of the beam, i.e., 

 

      
  

     
 

  
   

 

  
  

 

where   is the length of the beam, ex. the chord of a chordwise flexible airfoil, or the half span of a wing,   is the 

imposed motion frequency at the root, and    is the eigenvalue belonging to the spatial mode    that satisfies 

 

                      
 

and can be approximated the formula 

 

       
 

 
    

 

and finally the spatial modes are given by 

 

      
 

 
                      

                

                
                       

 

 The initial position of the beam is consistent with the imposed boundary condition. The solution for the temporal 

equation in      is 

     
           

          

     
       

                     

 

which means that there is an amplification factor of     
                 

         depending on the ratio 

between the natural frequency    of the beam and the excitation frequency    A caution should be made that this 

analysis assumes a simple uncoupled linearized estimation for the fluid force on the structure accounting for the 

added mass effects only. 

The full solution is 
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