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Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields,

enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element,

referred to as a bonded joint element, that is capable of modeling an array of joint types is developed. The joint field

equations are derived using the principle of minimum potential energy, and the resulting solutions for the

displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This

single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function

within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be

avoided,while still obtaining a detailed solution for the joint. Additionally, the capability tomodel nonlinear adhesive

constitutive behavior has been includedwithin themethod, andprogressive failure of the adhesive can bemodeled by

using a strain-based failure criteria and resizing the joint as the adhesive fails. Results of the model compare

favorably with available experimental and finite element results.

I. Introduction

I N THE aerospace industry, fiber reinforced polymer matrix
composites (FRPCs) are gaining increasing use and attention,

because of their high strength-to-weight ratios, among other factors.
FRPC joints perform much better with adhesive bonding rather than
bolting or riveting, because of their quasi-brittle nature [1] and the
ability of the bond to spread the load over a larger area, leading to a
lessening of the stress concentration [2]. Therefore, accurate analysis
of adhesively bonded joints is becoming more critical than ever.

Adhesive joints have traditionally been analyzed using two
methods: analytical models and finite element analysis [3]. Ana-
lytical methods have been used to extract efficient closed-form
solutions for adhesive single lap joint stresses. Classical formulas
have been introduced by Volkerson [4], Goland and Reissner [5],
Ojalvo and Eidinoff [6], and Hart-Smith [7]. More recently, refined
analytical studies, carried out byMortensen and Thomsen [8], Zhang
et al. [9], and Delale et al. [10], have proven to be quite accurate in
predicting stresses within adhesive joints. However, analytical
methods are often limited by geometric assumptions used to obtain a
closed-form solution and are not as useful to designers for compiling
vehicle-scalemodels that may contain multiple joints. Finite element
analyses are widely used in industry and can be used to assess joints
with a wide variety of geometries and loading conditions. However,
these methods can suffer from mesh dependence and a lack of
efficiency, which is especially crippling for initial sizing analysis and
full vehicle-scale models [11]. Therefore, a need exists to develop

predictive tools for bonded joints that can be seamlessly coupledwith
large-scale structural analyses without adding major computational
costs. Such tools can be used to make quick mesh-independent
assessments of bonded composite joints. Currently, such a capability
is lacking, and joint assessment is typically performed late in the
design cycle when structural changes that can reduce weight are
difficult and expensive to implement.

Gustafson andWaas [3] have merged analytical and finite element
methods, in order to perform efficient, mesh-independent finite
element analysis of double lap joints to use for initial design and
macroscopic vehicle modeling. Analytical models were embedded
into a single finite element with minimal analyst input. Stapleton and
Waas [12] extended this method to single lap joints (Fig. 1), which
are more complex due to the eccentricity of the axial load path. This
eccentricity requires a careful consideration of the inclusion of
nonlinear geometric effects if the joint rotations are sufficiently large,
although these effects were not considered in the current model
because rotations of the joints considered were small. The current
study extends the method to include a nonlinear constitutive model
for the adhesive in conjunction with inputs to cohesive zone finite
element modeling [13,14] or a curve-fit to experimental test data.
Additionally, a strain-based failure criterion is used to track damage
in the adhesive and the joint element, and adjacent beam elements are
resized to account for the failed adhesive. The entire joint can then be
replaced by a single joint finite element, whereas the remaining
structure (outside the joint) is modeled using standard structural
elements, for instance beam elements (Fig. 1). As a result, failure in
the adhesive is built into the joint element.

II. Analytical Formulation

The joint element with adhesive failure capabilities is an extension
of the linear elastic joint element derived elsewhere (Stapleton and
Waas [12]). The main difference is that this model now has the
capability of handling adhesiveswith nonlinear constitutive behavior
and has a failure criterion implemented within the model. A flow
chart of the joint element implementation is shown in Fig. 2.

The individual steps will be expanded upon in the following
sections, but the basic layout consists of first solving the linear
problem to obtain shape functions, then defining a nonlinear stress–
strain relation for the adhesive and linearizing this relation at each
load increment. Following these steps, the joint stiffness matrix and
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force vector are calculated using the linear shape functions and strain
energy for the nonlinear case. Finally, the global system is assem-
bled, and the resulting equations are solved. Furthermore, the
adhesive is checked for failure, and, in the case of adhesive failure,
the length of the joint element decreases to account for failed
adhesive.

A. Obtain Linear Shape Functions

To model nonlinear adhesive in a joint element, the shape
functions are obtained from the case of a joint with a linear adhesive.
To do this, the adhesive and adherends were assumed to be linearly
elastic. Figure 3 illustrates the required geometric parameters and
material properties of a single lap joint. Thewidth of the joint in the y-
direction is b. The subscripts 1, 2, and a denote variables associated
with adherends 1, 2, and the adhesive, respectively.

Assuming the adherends behave like Euler–Bernoulli beams, the
strain energy of the joint U is written as

Ujoint �
1

2

Z
V1

�1x"1x dV �
1

2

Z
V2

�2x"2x dV

� 1

2

Z
Va

��az"az � �axz�axz� dV (1)

inwhich �ix and "ix represent the normal stress and strain inmaterial i
(1 or 2 for the adherends) in the x-direction, �az and "az are the normal
stresses/strains in the adhesive in the z-direction, �azx and �azx
represent the shear stress–strain in the adhesive on the xz-plane, and
all integrals are taken over the volume Vi of material i.

The two adherends are assumed to behave as beams, and the strain
energyof the adherends can be found using standard Euler–Bernoulli
beam theory. The derivation is not shown here, but the details are
contained in Stapleton and Waas [12].

It should be noted that many adhesive joints involving bonded
FRPCs aremade upof thin adherends,which are relatively long in the
y-direction, causing them to behave more like plates in cylindrical
bending rather than beams. Though not done here, to model the
adherends as wide plates in cylindrical bending, it is only a simple
matter of replacing the modulus of elasticity Ei with Ei=�1 � �2i �,
i� 1, 2 and modeling the adhesive using plane strain, rather than
plane stress assumptions. For joints that cannot accurately be
modeled as beams or wide plates in cylindrical bending, it is
important to also capture the displacements and stresses as a function
of y (along thewidth of the joint). Futureworkwill attempt to capture
these effects, by making a plate type element.

A diagram of the notation scheme for the adhesive is shown in
Fig. 4. It is assumed that the displacement varies linearly in the za-
direction and that the adhesive and adherend are perfectly bonded at
the interface. The displacements at the interface will be denoted by
the subscripts in1 and in2.

The adhesive is modeled as a bed of linear normal and shear
springs. In terms of the interface displacements, the strains in the
adhesive are

"az �
1

�
�win1
�x� � win2

�x�� (2a)

and

�axz �
1

�
�uin1�x� � uin2�x�� (2b)

and the stresses are

�az � Ea"az (3a)

and

�axz �Ga�axz (3b)

The interface displacements are defined in terms of adherend
centerline displacements, using Euler–Bernoulli beam theory:

uin1�x� � u1�x� �
t1
2

dw1�x�
dx

; uin2�x� � u2�x� �
t2
2

dw2�x�
dx

win1
�x� �w1�x�; and win2

�x� � w2�x� (4)

Using the principle of stationarity of potential energy, four fully
coupled governing equilibrium differential equations are obtained
from the energy expression in Eq. (1). Of the four governing
equations, two correspond to the axial equilibrium, whereas two
equations correspond to the transverse equilibrium. The axial
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Fig. 1 The present study replaces a complex single lap jointmeshwith a
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displacement equilibrium equations contain second-order deriva-
tives, whereas the transverse displacement equations have fourth-
order derivatives. The order of these equations can be reduced and
assembled into a system of first-order constant coefficient homo-
geneous ordinary differential equations of the form

fug;x � �A�fug (5)

in which

fug � � u1 u1;x w1 w1;x w1;xx w1;xxx u2 u2;x w2 w2;x w2;xx w2;xxx � (6)

and

�A� �

0 1 0 0 0 0 0 0 0 0 0 0

�1 0 0 1
2
t1�1 0 0 ��1 0 0 1

2
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0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 1
2
t1�1 ��1 0 1

4
t21�1 0 0 � 1

2
t1�1 �1 0 1

4
t1�1t2 0

0 0 0 0 0 0 0 1 0 0 0 0

��2 0 0 � 1
2
t1�2 0 0 �2 0 0 � 1

2
t2�2 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 1
2
t2�2 �2 0 1

4
t2�2t1 0 0 � 1

2
t2�2 ��2 0 1

4
t22�2 0

2
6666666666666666664

3
7777777777777777775

(7)

with

�i �
Gab

�EAi
; i� 1; 2 (8)

�i �
Gab

�EIi
; i� 1; 2 (9)

�i �
Eab

�EIi
; i� 1; 2 (10)

Inspecting the matrix [A] can be helpful in determining the nature
of the solution and determining the solution method. There are 12
eigenvalues of [A]: two real eigenvalues, four complex eigenvalues,
and six repeating eigenvalues. Therefore, the solution is made up of
two exponential terms, four exponential termsmultiplied by a sine or
cosine, and the six repeating eigenvalues correspond to a third-order
polynomial found in a standard beam solution. Such a complex
solution shows that merely employing standard beam shape
functions to the joint problem would be inadequate in capturing the
nature of the whole solution.

The system in Eq. (5) can be solved using various methods, but
calculating the matrix exponential [15] was the chosen method
because numerical boundary conditions are not required to obtain a
solution. The solution of the system in Eq. (5) can bewritten in terms
of the matrix exponential �eAx� as

fug � �eAx�fCg (11)

The matrix exponential can be expressed as the infinite series [15]

�eAx� �
X1
k�0

xk

k!
�A�k (12)

To get faster convergence, amethod of scaling and squaring [16] is
employed, and the series is calculated up to a value of k, which yields

an acceptable error ". The error can be defined many ways, but the
current study defined the error as the difference between the one-
norms of �eAx� for k � 1 and k. The value of the acceptable error was
set at "� 0:0001. The next step is to solve for the vector of constants
fCg, using the boundary conditions. This is where the analytical
formulation is discretized and the displacements are obtained in
terms of the nodal displacements, as defined in Fig. 5. Applying
prescribed displacements to the joined nodes on the left gives the
following system of equations:

�BC�fu�0�g � fqx�0g (13)

in which fu�0�g is fug from Eq. (6) evaluated at x� 0, fqx�0g is a
vector containing nodal displacementsq1–q6 as defined in Fig. 5, and
the diagonal block matrix

�BC� � �bc� 0

0 �bc�

� �
(14)

with

�bc� �
1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

2
4

3
5 (15)

Using the solution for the centerline displacements found in
Eq. (11), the boundary conditions at the left side of the element
[Eq. (13)] can be rewritten as

�BC��eA0�fCg � fqx�0g (16)

in which �eA0� is �eAx� evaluated at x� 0. Performing the same
operation at x� 0 gives the second set of boundary conditions:

�BC��eAl�fCg � fqx�lg (17)

By combining these two equations, one can find the vector of
constants fCg in terms of the nodal displacements fqg in the
following equation:

q2

q5

q6

q1

q4

q8

q9

q11
q12

q7

q10

Fig. 5 Boundary conditions for a joint element: prescribed nodal

displacements at x� 0 and x� l.
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fCg � �z��1fqg (18)

in which

�z� � �BC� 0

0 �BC�

� �
�eA0�
�eAl�

� �
(19)

and fqg is a vector containing nodal displacements q1–q12 as defined
in Fig. 5. This relation can be inserted into Eq. (11) to get the
adherend centerline displacements in terms of the nodal degrees of
freedom, q1–12:

fug � �N�fqg (20)

in which the shape functions �N� are defined as

�N� � �eAx��z��1 (21)

B. Define Adhesive Stress/Strain Relation

With the shape functions determined for a joint with a linear
adhesive, the nonlinear constitutive stress–strain relations of the
adhesive need to be defined. This can be based on measured stress–
strain relations or inferred stress–strain relations from fracture
properties. A stress–strain relationship based on a measured tensile
stress–strain curve can be fitted with a fitting function. An inferred
stress–strain relation that uses fracture properties would use a
function that has itsmaximum stress at themode 1 critical stress (�Ic),
and the area under the curve would correspond to the critical strain
energy release rate of the adhesive (GIC). Regardless of the method
used to define the relation, the adhesive stress �az can be written as a
function of the adhesive strain "az:

�az � g�"az� (22)

Although this paper refers to the normal stress and strain in the
adhesive only, the same derivation holds for the shear strain–stress
relation. It should also be noted that this stress–strain relation
assumes no permanent plasticity but resembles nonlinear elasticity.
Because the failing adhesive domain is eliminated in the iteration
process (to be described later), the assumption of a nonlinear elastic
type stress–strain law suffices for this modeling process because
regions of “unloading” are minimal.

Often, the function fromEq. (22) is defined based on bulk adhesive
experimental data. However, the tensile loading of a thin adhesive
layer with relatively large in-plane dimensions differs greatly than
that of a solid cylindrical specimen, because the adhesive layer is
extremely thin in one direction and constrained from lateral dis-
placement by the top and bottom adherends. Because of these
conditions, the adhesive is effectively a body in-plane strain in the
two directions perpendicular to the adhesive thickness (Fig. 6). The
adhesive is constrained from contracting (Poisson’s effect) in the x
and y-directions while being loaded in the z-direction, which induces
a stress in all three directions, commonly called a state of triaxial
stress [17]. To find the stress–strain relation for a material under
triaxial stress, considerfirst an isotropic, linearly elasticmaterial. The
normal stress in the z-direction is

�az �
Ea

1� �a

�
"az �

�a
1 � 2�a

�"az � "ax � "ay�
�

(23)

The adhesive can be assumed to be in a state of plane stress in the
xy-plane, and the strains "ax and "ay can be set to zero. Then, the
normal stress in the z-direction reduces to

�az �
1 � �a

�1� �a��1 � 2�a�
Ea"az (24)

This shows that the effective “resistance” to deformation in the z-
direction is amplified by a factor that depends on Poisson’s ratio.
Although this relation is intended for linear elasticity, the relationwas
assumed to hold for the nonlinear stress–strain relation as well.
Therefore, the stress–strain relation was redefined as

�az �
1 � �a

�1� �a��1 � 2�a�
g�"az� (25)

which effectively increases the adhesive modulus.

C. Linearize Stress/Strain Relation

To simplify calculations and avoid the need for a nonlinear solver,
the loading is broken up into increments, and the stress–strain
relation of the adhesive is linearized about the previous strain
increment. The Taylor series expansion of the stress at the (n� 1)th
increment, can be written in terms of the strain at load step n, "n as

��"n�1� � g�"n� � dg�"n�
d"

�"� HOT (26)

in which HOT represents higher-order terms, �"� "n�1 � "n, and
the subscript az has been dropped from the stress and strain symbols.
To linearize, the higher-order terms are ignored.

D. Calculate Adhesive Strain Energy

The adhesive normal strain energy Un�1 at the next load step,
n� 1, is found as the strain energy from the previous increment plus
the integral of the stress as a function of strain from the previous
increments to the current increment:

Un�1 �
Z
Va

Z
"n�1

"n
��"� d" dV �Un (27)

Carrying out the inner integral gives

Un�1 �
Z
Va

�
1

2

dg�"n�
d"
�"n�1�2 �

�
g�"n� � dg�"n�

d"
"n
�
"n�1

� g�"n�"n � 1

2

dg�"n�
d"
�"n�2

�
dV �Un (28)

E. Perform Rayleigh–Ritz Using Linear Adhesive Shape Functions

To obtain the stiffness and force matrices for the joint, the shape
functions derived for the linear adhesive case [Eq. (5)] are used.
Using Eqs. (2) and (4) and the shape functions derived for the linear
adhesive case [Eq. (21)], the strain in the adhesive is found in terms of
the nodal displacements, q1�12. The strain in the adhesive at the
current, n� 1, increment is written as a function of x and q1–12:

"n�1 � f�q1–12� (29)

whereas the displacements from the previous increment are used to
define the adhesive strain at the previous increment "n, as a function
of x only. The energy is then minimized, which yields the ith, jth
component kij of the contribution to local joint stiffness matrix from
the adhesive normal strain:

Fig. 6 A thin adhesive layerwith an applied stress is in a state of triaxial

stress.
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ki;j �
@2

@qi@qj

Z
va

1

2

dg�"n�
d"
�"n�1�2 dV (30)

and the ith component contribution of the adhesive normal strain to
the local joint force vector fi to be

fi �
@

@qi

Z
va

�
dg�"n�
d"

"n � g�"n�
�
"n�1 dV (31)

Using the same steps, a similar relation can be derived for the
adhesive shear strain. The contribution of the adhesive normal and
shear strains to the local force vector and stiffness matrix can be
added to the contributions of the two adherends. Because only the
adhesive is modeled as nonlinear, the contributions of the adherends
to the stiffness matrix are the same as in the linear case. The local
stiffness matrix and local force vector can be used to find the local
nodal displacements fqg:

�k�fqg � ffg (32)

F. Assemble Global Matrices, Apply Loading, and Solve

Global Equations

Once the joint element stiffness matrix and load vector are found,
they are assembled with the rest of the elements in the model. The
loading increment is applied, and the system of linear equations is
solved at each increment. For this particular study, an in-house finite
element code was used to assemble and solve the finite element
global equations. Future work will implement the method into an
Abaqus [13] user element to be integrated in global, vehicle-scale
models.

G. Check for Adhesive Failure

Once the nodal displacements are found, Eqs. (2a) and (2b) are
used to find the strain in the adhesive as a function of horizontal
position x. Then, a strain-based failure criterion based on the failure
strain f"failg is used to determine if and how much the adhesive has
failed (Fig. 7a).

If failure is detected, the joint element is shortened by the length of
the failed adhesive region, and the adjacent beam elements are
lengthened to compensate (Fig. 7b) with no continuity of dis-
placements imposed between them. After this step is completed, the
steps described in Secs. II.A–II.G are repeated until the joint reaches
equilibrium. After equilibrium is reached and further failure no
longer occurs, the load is increased by one increment, and the process
is repeated. Through this method, the stresses, strains, loads, and
displacements for the joint can be found at each load increment as the
joint deforms nonlinearly and fails progressively.

III. Results

Two different joint types were modeled with the joint element, to
show some of its the capabilities and compare it withmore traditional
finite element models and experiments. First, a single lap joint was
modeled to show the convergence of the joint element. Second,
double cantilever beam (DCB) specimens, tested by Song and Waas
[18], were modeled with the joint element to validate the element
with another finite element model and experimental data. The
specimenswere loaded and unloaded several times,which is the ideal
situation to see the effects of assuming nonlinear elastic adhesive,
rather than elastic–plastic. Third, two additional DCB configurations
were compared; onewith a brittle adhesive and the other amuchmore
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ductile adhesive. These tests showed how bulk adhesive properties
could be used to predict the failure in a bonded joint.

A. Single Lap Joint Example

An example configuration of a single lap joint was modeled with
the joint element, to show convergence with the joint element.
Convergence can be an issue, because the shape functions used for
the joint element came from the linearly elastic adhesive case. Once
significant softening of the adhesive occurs, the shape functions are
no longer exact for the problem. Because this method was created to
allow a joint to be modeled with a single element, it is important to
determine how much of an effect using the linearly elastic adhesive
shape functions has on the stress and failure of a joint.

The configuration, along with the loading and boundary
conditions, is found in Fig. 8a. The joint overlap was modeled using
one element, eight elements, and 32 elements in the overlap region
(Fig. 8b). The adherends were made of aluminum, and the material
and geometric parameters defined in Fig. 8a are as follows:
1) adherend: E� 70 GPa and �� 0:33; and 2) geometric param-
eters: l� 12:7 mm, L� 63:5 mm, b� 24:1 mm, t� 1:6 mm, and
�� 0:125 mm. The stress–strain behavior of the adhesivewas based
on the bulk adhesive tensile data of ESP105 epoxy, as reported by
Harris and Adams [19] (Fig. 8c). The tensile response was modeled
by fitting a tanh function to the aforementioned data. This function
was chosen because it resembled the form of the response, and it
gives the same response for compression and tension.

The shear response was not obtained experimentally but rather
assumed based on the tensile response. First, Poisson’s ratio was
taken to be 0.34, and the shear modulus was obtained based on the
initial slope of the tensile curve and Hooke’s law. The maximum
stress of the shear response was found by assuming that the adhesive
behaves according to J2 flow theory and that this holds true after
initial yield. The shear failure strain was calculated by assuming that
the strain energy at failurewas the same for shear and tensile loading.
The shear and tensile responses of the adhesivewere kept uncoupled,
and adhesive failure was initiated when either the shear or normal
strain reached the corresponding failure value.

The difference in joint strength predictions between models with
one, eight, and 32 joint elements is illustrated in Fig. 9. Using one
element still gives a reasonable answer, and more than two elements
are needed to get within 5% of the converged strength. The shear and
peel stress in the adhesive layer at a load of 5.2 kN for one, eight, and
32 elements are shown in Fig. 10. The peel stresses are almost
identical for all cases, mainly due to the fact that less softening has
occurred in the z-direction. There is a larger difference in shear stress
between the models with one, eight, and 32 elements, because the
adhesive has softened more in shear. This discrepancy can be
explained by looking at the tangential modulus shown in Fig. 11. The
adhesive has softened significantly at the ends, making the tangential
modulus a function of x. The shape functions were found for a
constant modulus adhesive, which no longer represents the softened
adhesive. Therefore, the shape functions do not represent the exact
solution after softening has occurred. To improve the solution, the
shape functions would have to be calculated at each load increment
based on the tangential modulus at the previous increment. In this
way, the joint could be modeled with one element without a loss in
accuracy.

A major source of error for this type of joint is the fact that large
displacements and rotations were not taken into account in the joint
element formulation. The joint already had rotations in excess of 1� at
13% of the maximum load, making this problem highly nonlinear
with respect to geometry. Harris andAdams [19] reported this joint to
have a strength of 9:9	 0:65 kN, whereas the joint element model
predicted a joint strength of 5.8 kN. This illustrates the need to
include large rotations when modeling single lap joints, making it
imperative that geometric nonlinearities be included to model the
strength of single lap joints. This capability will be included in future
versions of the model.

As a side note, it has been observed that adhesive softening is
responsible for the spreading of the stress in the joint in a more even
manner [8,19]. The adhesive properties become naturally graded

Table 1 Material properties and geometric parameters for Song andWaas [18] DCB specimens

Adhesive Adherend Geometric parameters

Specimen Ea, GPa GIc, N=m E, GPa l, mm a, mm b, mm t, mm �, �m

E7T1/G40 4.1 335 116 200 52.6 15.5 4.65 35
E719/IM7 3.3 1130 135 200 35.5 15.1 3.23 6
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along the joint to minimize the stress concentration. The same effect
could be achieved by artificially grading the adhesive along the
length of the adhesive. Such a grading could decrease the maximum
stress of the joint without incurring any damage of the adhesive.

B. Comparison with Published Double Cantilever Beam Results

The ability of the joint element to predict the force vs displacement
behavior was assessed through comparison with experimental and
finite element results published by Song and Waas [18]. The DCB

test is more suited for experimental validation rather than a single lap
joint, for several reasons. First, the effects of geometric nonlinearity
are often much smaller. Second, the stable progressive failure
exhibited in DCB specimens shows the capability of the joint
element to fail progressively. Most single lap joints exhibit no stable
crack growth; the crack grows almost instantaneously after crack
initiation. Therefore, the DCB example illustrates the full capability
of the joint element to grow a crack progressively. This particular
dataset was chosen because the authors stated that the failure was
fully interlaminar and cohesive, which is the type of failure currently
modeled by the joint element.

Figure 12 shows a DCB specimen and the geometric parameters.
The DCB specimens were constructed from two different 48-ply
unidirectional composite laminates, E719/IM7 and E7T1/G40. The
adhesive was one of the interlaminar matrix layers. The nonlinear
stress–strain relation of the adhesive was based on GIC and Ea
(Fig. 13), as was done by Song andWaas [18]. Normally, the mode 1
critical stress is preferred rather than the modulus, but this value was
not provided by the authors. The geometric andmaterial properties of
the specimens are shown in Table 1. During the test, the loading was
halted and the specimen was unloaded several times to measure the
crack length within the specimen. The DCB specimen was modeled
using one joint finite element accompanied by two beam elements on
the top and bottom of the joint, as shown in Fig. 12b.

Figure 14a compares the experimental force/displacement
responses for the E719/IM7 DCB specimen acquired by Song and
Waas [18], along with the response predicted by the present joint
element model. As can be seen, the present model was quite accurate
at predicting the progressive failure of the joint based on the given
material properties and parameters. The behavior of the E7T1/G40
DCB specimens, shown in Fig. 14b, was not predicted as accurately
by the joint element model. The joint element model predicted a
stiffer elastic response and higher peak load, but the subsequent
response is captured quite well. This comparison shows that the joint
element can be used with fracture properties similar to discrete
cohesive zone models in predicting the behavior of DCB joints.

Although these two DCB specimens were both loaded and
unloaded several times, the nonlinear elastic material model used for
the joint element adhesive was still sufficient to capture the overall
behavior. This is because the stress concentration at the end of the
joint causes the plastic zone in the adhesive to remain small.
Therefore, the advantage of modeling the adhesive as elastic–plastic
over nonlinear elastic is not great enough to justify the extra effort
and complication. As long as the failure incurred due to crack growth
is accounted for, the global response will be reasonably represented.

C. Comparison with Experimental Results for Aluminum Double

Cantilever Beam Specimens

DCB specimens were manufactured and tested to compare two
paste adhesives, EA 9394 and EA 9309.3NA. The results of these
tests were used to assess the ability of the joint finite element to
predict the difference in performance of two adhesives with very
different stress–strain relations, based on material properties
obtained from tensile tests. Solid cylindrical specimens with a
3.175 mm diameter and 3.175-mm-long test section were machined
out of cast adhesive cylinders. The specimens were tested at NASA
John H. Glenn Research Center at Lewis Field, and digital image
correlation (DIC) techniques (Fig. 15a) were used to obtain the axial
strain of the specimen at different loads. The strains for several points
in the gauge section were averaged, and the stress was found by
assuming constant stress in the cross section. Figure 15b shows
characteristic stress–strain data for the two adhesives and the
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Table 2 Material properties and geometric parameters of DCB specimens

Adhesive Adherend Geometric parameters

Specimen Ea, GPa �u, MPa "fail � E, GPa l, mm a, mm b, mm t, mm �, mm

EA 9394 4.2 49.6 0.016 0.4 69 152.4 63.5 25.4 12.7 0.6
EA 9309.3NA 2.7 41.3 0.068 0.42 69 152.4 63.5 25.4 12.7 0.55
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equations used to fit the data with a curve. The material parameters
used in the equations are found in Table 2. The functionswere chosen
because they result in the same curve in compression and tension and
seem to fit the data adequately.

Because the joint element considers only failure in the adhesive
(cohesive failure), carewas taken to ensure that the interface between
the adherends and adhesive of the DCB specimens would not fail.
The adherends were 7071 T6 aluminum, and the surfaces to be
bonded were sanded, etched in lye, and anodized in a sulfuric acid
solution before bonding [20]. This treatment was sufficient to
produce failures in the adhesive layer, as can be seen on the failure
surfaces of a postmortem specimen in Fig. 16. The failed specimen
has adhesive covering both adherends, which means that the inter-
facewas not the plane of failure. Glass beads were used to maintain a
consistent bond line thickness throughout the specimen, and pressure

was applied to the specimen during curing. The specimens were
allowed to cure for seven days at room temperature.

Three DCB specimens for each adhesivewere tested on an Instron
machine at 0:5 mm=min. All specimens failed cohesively, like the
specimen in Fig. 16. The force/displacement curves for all six
specimens are shown in Fig. 17. The high strain-to-failure of EA
9309.3NA caused these specimens to hold over two times the load of
EA 9394 specimens. The EA 9309.3NA specimens held so much
load that the aluminum adherends deformed plastically before the
adhesive failed. This can be seen in the plot as a gradual rounding
before a drop in load. The EA 9394 specimens exhibited a load
plateau rather than dropping in load after adhesive failure was
initiated. It is possible that air bubbles in the adhesive caused the
adhesive to fail prematurely, allowing the joint to not drop in load
carrying capacity after failure initiated.
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Fig. 16 Two adherends of an EA 9394 DCB specimen after complete failure. Adhesive found on both adherends indicates that failure occurred within

the adhesive layer as desired.
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The joint element model was able to capture the behavior of the
joints rather well. It was found that compliance in the experimental
load train caused the models to overpredict even the initial linear
portion of the loading. To compensate for this system compliance,
the length of the adherends was increased by 7.5% for both DCB
specimen types. This number was determined by fitting a linearly
elastic model to the initial portion of the experimental force/
displacement plot. Although not exactly matching the experimental
data, the model was rather accurate, considering the aforementioned
adherend plasticity and air bubbles in the end of the adhesive. These
experiments were very effective in displaying the ability of the joint
element to predict failure, along with showing how constitutive
relations can be applied to get progressive failure of a thin adhesive
layer.

IV. Conclusions

This study showed how a bonded jointfinite element could be used
to capture the behavior of an entire joint, by using an analytical
method to solve for the appropriate shape functions rather than
prescribe the shape functions using a polynomial interpolation. This
joint element is intended for use as a design tool that canmodel a joint
in a mesh-independent manner and still couple with global vehicle-
scale finite element models. As a design tool, it is not intended to
replace high-fidelity detailed models, but enable fast, efficient sizing
and design of bonded joints. Some of the limitations of thismodel are
contained in the assumptions used to generate the shape functions.
First, the adhesive is modeled as a bed of springs rather than a
continuum, and so the traction-free surface of the adhesive is not
represented in the joint element. Additionally, the adherends are
assumed to behave like beams or wide plates under cylindrical
bending. Thus, variations in fields through the width of the joint are
not captured. Future work will include constructing a three-
dimensional plate or shell element that can be used when effects
through the width need to be captured.

Additionally, progressive failure was included in the model by
defining the stress as a nonlinear function of the strain and enforcing
an uncoupled strain-based failure criterion. Progressive failure of the
adhesive was approximated, by shortening the joint element by the
length of the failed adhesive and lengthening the adjoining beam
elements. The shape functions obtained for a joint with a linearly
elastic adhesivewere used for the nonlinear adhesive case. Softening
of the adhesive as the stress increases causes the shape functions to no
longer be exact. However, a mesh convergence study conducted for a
single lap joint configuration showed that the difference in strength
predictions between using one joint element and 32 were only
approximately 6%. The predicted strength for a single lap joint did
not match well with an experimental result from the literature, most
likely because of a lack of large rotation inclusion in the joint
element, which will be added in future versions of the element.
Additionally, it was shown how softening of the adhesive layerwhere
the stress is the highest causes the adhesive to spread the stress more
evenly across the joint. Such an effect could be replicated without

adhesive softening by artificially grading themodulus of the adhesive
across the joint.

The accuracy of the joint element model was assessed through
comparison with experimental DCB test results published by Song
and Waas [18]. Results showed that the joint element model could
capture the force/displacement behavior of the joint quitewell, with a
significant computational efficiency advantage compared with a
traditional finite element analysis. Two of the DCB specimens were
repeatedly loaded and unloaded. Although the joint element contains
a nonlinear elastic adhesive, the concentrated plastic zone often
found in joints caused the effect to be minimal. A further comparison
was made with DCB specimens created and tested by the authors.
The adhesivewas characterized with a bulk adhesive tensile test, and
results showed good correlation.

These DCB comparisons also demonstrated how the stress–strain
relation of the adhesive could be obtained from bulk tensile tests or
inferred from fracture parameters (fracture toughness and cohesive
strength). When using tensile test results for the adhesive stress–
strain relation, stress triaxiality was used to modify the effective one-
dimensional stress–strain relation. With proper implementation of
this method, a single finite element can be used in a broader, global-
scalemodel to capture the approximate behavior and failure of joints.
The joint element allows efficient parametric studies to take place
within the framework of a global-scale structural finite element
model, allowing more efficient and thorough design of adhesively
bonded joints.
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