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This paper presents a method for the computation of the static and dynamic stability derivatives of arbitrary

aircraft configurations. Three-dimensional computationalfluiddynamics are used in thismethod to simulate theflow

characteristics around the configuration, and a moving-grid formulation is included in the flow solver to handle the

rotational physics necessary for the computation of the dynamic derivatives. To obtain the stability derivatives, the

computational fluid dynamics code is differentiated using the automatic differentiation adjoint (ADjoint) approach.

This approach enables the efficient and accurate computation of derivatives for awide variety of variables, including

the dynamic model states that are typical of the stability derivatives. To demonstrate the effectiveness of this

approach, stability derivatives are computed for a NACA 0012 airfoil and an ONERA M6 wing.

Nomenclature

b = span
CD = aircraft drag coefficient
CL = aircraft lift coefficient
Cl = airfoil lift coefficient (Sec. III.B), aircraft roll

moment coefficient (Sec. IV)
Cm = airfoil pitch moment coefficient (Sec. III.B), aircraft pitch

moment coefficient (Sec. IV)
Cn = aircraft yaw moment coefficient
Cp = coefficient of pressure
CY = aircraft side force coefficient
c = chord
et = total energy
f = flux term
h = altitude
I = identity matrix (Sec. III.A), function of interest

(Sec. III.C)
k = thermal conductivity of fluid
M = Mach number
N = number of surface cells (PMARC), number of volume

cells (SUmb)
p = pressure (Sec. III.A), roll rate (Sec. III.C),

order of convergence (Sec. IV.A)
p̂ = normalized roll rate (pb=2V)
q = pitch rate
q̂ = normalized pitch rate (qc=2V)
R = flow residuals
r = yaw rate
r̂ = normalized yaw rate (rb=2V)
s = source terms
T = temperature
t = time
u = flow velocity with respect to the fixed frame

v = flow velocity with respect to the moving grid
V = aircraft speed
w = velocity of the moving grid
x = grid coordinates (Sec. III.A), design variables (Sec. III.C)
xref = center of moment and rotation with respect to wing

root/airfoil leading edge
� = angle of attack
� = sideslip angle
�i = ith control surface deflection (Sec. III.C), elements

of the identity matrix (Sec. III.A)
� = flow states
� = density
� = viscous stress tensor
� = generalized time variable
� = adjoint vector
� = rotational rate of the moving grid

I. Introduction

F LIGHT dynamic characteristics are an essential factor in aircraft
design. However, due to the unsteady nature of the flow around

the aircraft during maneuvers, it is extremely challenging to deter-
mine the aerodynamic characteristics of aircraft for flight dynamics
purposes. One common way to make this problem more tractable is
to assume that the aerodynamic forces on the aircraft react in a linear
fashion for small variations from a given steady-state flight con-
dition. This assumption allows the forces to be characterized by a
series of aerodynamic derivatives, typically called stability deriva-
tives [1]. These derivatives can be calculated using empirical
methods (e.g., DATCOM [2] and ESDU [3,4]), wind-tunnel testing,
or computational fluid dynamics (CFD). Each of these approaches
has its own advantages and disadvantages with respect to cost, range
of applicability, and computational time. In this work, we seek to use
adjoint methods and automatic differentiation to remove some of the
barriers limiting the use of high-fidelity CFD for these computations.

II. Background

The task of computing aerodynamic information for stability and
control purposes remains a difficult challenge for aircraft designers.
This difficulty is especially acute in the early stages of the design
process, when detailed information about the design is less certain.
There are several well-documented cases, even for relatively
modern aircraft such as the Boeing 777 and the Learjet 23, in which
stability and control problemswere not diagnosed until the flight-test
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stage of the design, resulting in costly late-stage modifications to the
aircraft [5].

CFD has been identified as a tool that may be able to address these
issues, since it can give a better understanding of the stability and
control characteristics of a proposed configuration at various stages
of the design. Some CFD-based methods have already made inroads
into this area of analysis. For example, according to Johnson et al. [6],
Boeing uses their A502 panel code to compute stability derivatives at
the preliminary design stage. However, while the methods currently
in use provide rapid turnaround times and provide useful results for a
wide variety of cases, they still have some significant limitations,
which have diminished their general acceptance for use in stability
and control. As demonstrated by theCOMSACworking group [5], in
order for CFD to truly be accepted in stability and control prediction,
it must be able to handle computations for the full flight envelope,
including flight conditions exhibiting massive flow separation,
which often occur at the edges of the flight envelope. In the working
group’s opinion, to accurately predict the flow for these difficult
flight conditions, higher-fidelity CFD methods are needed, such as
Reynolds-averaged Navier–Stokes (RANS), large eddy simulation,
or detached eddy simulation (DES).

Considering this outlook, we can divide the problem of computing
stability and control information fromCFD into two parts: the task of
developing CFD methods to the point where they accurately and
robustly model the flows necessary to examine the entire flight
envelope, and the task of developing computational techniques to
compute usable stability and control information from these
solutions efficiently. In this paper, we focus on the second of these
two tasks.

Toward this end, many scholars have used a variety of techniques
to compute stability and control information usingCFD.Charlton [7]
conducted simple � and � sweeps to obtain the force and moment
information required for falling-leaf predictions for tailless aircraft.
The study concluded that, in most instances, the required stability
data could be computed accurately, but also that highly nonlinear
regions of the flow incurred a large computational cost. Godfrey and
Cliff [8] explored the use of analytic sensitivity methods (in
particular, the direct method) for the computation of static stability
derivatives. They computed the � and � derivatives for the YB-48
flying wing using a three-dimensional inviscid flow solver. They
achieved good accuracy, but no comments were made on
computational efficiency. Limache and Cliff [9] followed up this
work by examining the use of the same method for the computation
of dynamic stability derivatives. They showed the computation of the
dynamic pitching derivatives of an airfoil using a two-dimensional
Euler CFD code. This study showed the promise of analytic
sensitivity methods for the computation of stability derivatives and
demonstrated that multiple stability derivatives, including the rota-
tional derivatives, could be computed from a single steady solution.
The study also highlighted the importance of using, at a minimum,
Euler CFD to model the shock waves present in transonic flow. The
task of extending this method to a three-dimensional RANS flow
solver is not easy and would be a significant barrier to the general
adoption of this method.

Another avenue that has been pursued is the use of automatic
differentiation to compute stability derivatives. Park et al. [10,11]
applied ADIFOR [12], an automatic differentiation tool, to a three-
dimensional viscous flow solver to compute the static and dynamic
derivatives of various configurations. The results from this work
showed promise, providing accurate results across a variety of flight
conditions. However, the computational cost of running the differen-
tiated code to compute derivatives with respect to five independent
states (�,�,p, q, and r) was equivalent to eight flow solutions. Green
et al. [13,14] applied a similar technique to the PMARC panel code.
This work focused on the development of techniques, such as
uncertainty propagation and derivative separation, so the results are
of little direct relevance to the current study.

The previous two approaches to dynamic derivative computation
(those of Limache and Cliff [9] and Park et al.[10,11] ) relied on a
noninertial reference frame CFD formulation to handle the rotational
rates needed for the dynamic derivatives. Babcock and Arena [15]

handled the dynamic derivatives by modifying the boundary
conditions in a finite-element-based Euler CFD solver to separate the
velocity and position boundary conditions. With this approach, they
were able to perturb the static states ��; �� and the dynamic states
�p; q; r� independently to determine the stability derivatives using
finite differences. The results from this approach compare relatively
well with theoretical, empirical, and experimental results, confirming
the validity of themethod.However, no details on computational cost
are included in the study.

Another way of computing the dynamic derivatives, one that has
been used in the experimental community for many years, is the
forced-oscillation approach. There has been a recent resurgence in
interest in this technique, as it can be used with CFD. A number of
papers from the recent NATO RTO Task Group AVT-161 have
explored the use of forced-oscillation techniques with a variety of
CFD solvers [16], including RANS [17,18], DES [19,20], and
harmonic balance [21] solvers. The results in these papers were
shown to correlate well with experimental data.

Murman [22] also presented a method for computing stability
derivatives based on the traditional forced-oscillation approach. He
used a frequency-domain method to produce periodic data for the
forced oscillation of the configuration of interest. The data were
then analyzed with the same techniques used to produce stability
derivatives from forced-oscillation wind-tunnel data, which
allowed the method to take advantage of the large body of knowl-
edge in that field. Murman’s study demonstrated good accuracy for
a variety of configurations and flight conditions. However, because
of the time periodic nature of the solution, the computational cost
was higher than for an equivalent steady-state solution of the same
configuration.

The work presented here builds on the work of Limache and Cliff
[9] and Park et al. [10,11]. We apply the automatic differentiation
adjoint (ADjoint) approach, which we previously developed [23], to
a moving-grid CFD formulation (which is equivalent to the
noninertial formulation used by both Limache and Cliff [9] and Park
et al. [10,11]) to compute the stability derivatives. As in the previous
work of those authors, this CFD formulation allows both the static
and dynamic derivatives to be computed from a single steady flow
solution. The main advantages of this approach are that it combines
the computational efficiency of analytic sensitivity methods with the
relatively straightforward implementation of automatic differ-
entiation. This enables the rapid development of an efficient method
for the computation of stability derivatives. As we will show, we are
able to compute a complete set of static and dynamic stability
derivatives for roughly seven times the cost of a single steady flow
solution. Note that while the current method is implemented for the
Euler equations, the extension to the RANS equations does not
require significant new insights. Given the nature of our approach,
the inclusion of the RANS terms is a straightforward extension of the
presented method.

III. Theory

The stability derivative formulation described in thiswork is based
on two key components. The first is a CFD code that can compute
solutions for rotating geometries. This can be accomplished with
either a noninertial reference frame formulation or a moving-grid
formulation. The moving-grid formulation is used in this work and
will be discussed in Sec. III.A; The noninertial formulation can be
found in Limache and Cliff [9] or and Park and Green [11]. The
second key component of the stability derivative formulation is an
efficient, robust, and accurate sensitivity analysis method for the
CFD. In our case, this comes in the form of the ADjoint method. A
brief summary of this method is provided in Sec. III.C, with more
details available in previous work by the authors [23].

A. CFD for Rotating Geometries

In this research, our goal is to compute the derivatives for a given
configuration from a single flow solution. To acccomplish this for
both static ��; �; V� and dynamic �p; q; r� parameters, we need a
flow solver that can compute steady-state solutions for constant,
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nonzero values of each of the parameters. Most CFD solvers can
perform this computation for a range of static parameters, but few
CFD solvers can handle nonzero dynamic parameters.

To handle nonzero dynamic parameters we use a moving-grid
formulation. The flow solution is computed using the global
velocities as the states. These velocities are expressed in terms of the
moving-grid base vectors. This transformation introduces additional
terms into the governing equations that account for the moving
coordinates of the grid, and eliminates the need to add the centripetal
and Coriolis forces as source terms in the momentum equations, as
required in the noninertial formulation. The moving-grid formu-
lation is derived below.

1. Moving-Grid Formulation

To begin, we define three velocities, u, v, and w, such that

u� v� w (1)

where u is the velocity of the fluid in the fixed frame, v is the velocity
of the fluid with respect to the moving grid, and w is the velocity of
the moving grid. Using the approach of Warsi [24], we can write a
general form of the conservation law in moving coordinates as

@A

@�
� �rA� � w�r � F� C (2)

where, for the conservation ofmass, momentum, and energy,F takes
the form F� Au� B, and A, B, C and � can represent various
quantities, depending on which quantity is being conserved. In
addition, from Warsi [24], we have the identity,

r � �Aw� � �rA� � w� A�r � w� (3)

which can be derived by applying the product rule to the left-hand
side and rearranging the components. This identity can then be
rearranged as follows:

�rA� � w�r � �Aw� � A�r � w� (4)

Using this relationship in the conservation law (2), we can write

@A

@�
� r � �Aw� � A�r � w� � r � F� C (5)

Now substituting F as defined above, we get

@A

@�
� r � �Aw� � A�r � w� � r � �Au� B� � C (6)

Rearranging the above equation, we obtain

@A

@�
�r � �Au � Aw� � A�r � w� � r � �B� � C (7)

Since �r � w� � 0, i.e., the grid is incompressible, this equation
simplifies to

@A

@�
�r � �Au � Aw� � r � �B� � C (8)

Following thework ofWarsi [24] andGhosh [25], we can then use
this conservation equation for mass, momentum, and energy as
follows:

a. Mass Conservation. For mass conservation, A� �, B� 0,
C� 0, and � � t. This yields

@�

@t
�r � ��u � �w� � r � �0� � 0 (9)

which can be simplified to

@�

@t
�r � ���u � w�� � 0 (10)

b. Momentum Conservation. In this case, A� �u,
B� pI � �, C� 0, and � � t, which yields

@�u

@t
�r � ��u� u � �u� w� � r � �pI � �� � 0 (11)

Rearranging this equation, we obtain

@�u

@t
�r � ��u� u � �u�w� pI � �� � 0 (12)

Up to this point, the derivation has been general. Nowwe cast it in
the specific moving-grid base vectors to obtain

@�ui

@t
ai � �ui

@ai
@t
�r � ��u� u � �u� w� pI � �� � 0 (13)

Since it can be shown that @ai=@t � @w=@xi � 0, we can write

@�ui

@t
ai � �ui

@w

@xi
�r � ��u� u � �u� w� pI � �� � 0 (14)

Furthermore, if we let w�� � x, it can be shown that
�ui@w=@xi � ��! � u�, and therefore in themoving-grid coordinate
system the momentum equations are

@�ui

@t
ai�r � ��u� u� �u�w�pI� ��� ��!� u�� 0 (15)

c. Energy Conservation. To obtain the energy conservation
equations, we set A� �et, B� �pI � �� � u� krT, C� 0 and
� � t, which yields

@�et
@t
�r � ��etu � �etw� � r � ��pI � �� � u� krT� � 0 (16)

Rearranging this equation, we obtain

@�et
@t
�r � ��etu � �etw� �pI � �� � u� krT� � 0 (17)

where the total energy is given by et � p=�� � 1� � 1=2�juj2.
d. Final Formulation. Combining Eqs. (10), (15), and (17)

yields the following set of governing equations:

@�

@t
�r � ���u � w�� � 0 (18)

@�u

@t
�r � 	�u� u � �u� w� pI � �
 � �	! � u
 � 0 (19)

@�et
@t
�r � 	�etu � �etw� pu � � � u� krT
 � 0 (20)

Note that we have neglected the body forces in this derivation.
Inclusion of body forces can be accomplished by setting a nonzero
value of C in each case.

e. Flux Vector Form. If we restrict ourselves to just the
inviscid portion of the equations, the flux vector form of the
governing equations is

@�

@t
� @fi
@xi
� s� 0 (21)

where xi is the coordinate in the ith direction, and the state and the
fluxes for each cell are
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��

�

�u1

�u2

�u3

�et

2
66666664

3
77777775
; fi �

�ui � �wi
�uiu1 � �wiu1 � p�i1
�uiu2 � �wiu2 � p�i2
�uiu3 � �wiu3 � p�i3
�ui�et � p� � �wiet

2
66666664

3
77777775

s�

0

�!2u3 � �!3u2

�!3u1 � �!1u3

�!1u2 � �!2u1

0

2
66666664

3
77777775

(22)

where w� w0 �� � x.
This is the formulation implemented in SUmb [26] and used in this

work. SUmb is a cell-centered multiblock solver for the Reynolds-
averaged Navier–Stokes equations (steady, unsteady, and time-

spectral), and it has options for a variety of turbulence models with
one, two, and four equations. In this work, we limit ourselves to
solving the steady Euler equations.

2. Constant-Parameter Motions

Having developed the ability to compute solutions for rotating
configurations, we now consider how to compute the required
derivatives. To accomplish this, we develop a series of motions that
allow for the variation of a single parameter while holding all other
parameters constant. Consider pitch rate,q. As described byLimache
and Cliff [9], a loop performed at constant � for a given q generates a
steady solution. The radius of the loop is inversely proportional to q.
Thus, as q reduces to zero, the radius approaches infinity and steady
level flight is recovered.

Similar ideas can be applied to roll ratep and yaw rate r. However,
in these two other cases, achieving a steady rotating flow is more
complicated.When the body axis of the configuration coincides with
the wind axis, the logic is the same as for pitching motion. However,
if we incline the body axis at an angle of attack, �, relative to the
wind, rotation about the body yaw and roll axes no longer yields a

a) Present work, q=0 b) Limache [26], q=0

c) Present work, q =0.01 d) Limache [26], q = 0.01

Fig. 1 Cp contour and streamline comparison for rotating NACA 0012 at Mach� 0:2, �� 0.

2740 MADER AND MARTINS



steady-state solution. In this case, rotation about the wind axis is
required to generate a steady solution. This requirement is not of
great importance for small values of angle of attack, but should be
considered for large values.

The results presented in Sec. IV.D show the effect of the two
different reference frames. The results presented below are all com-
puted for small angles of attack, so we use the wind-axis reference
frame for the computation of the derivatives.

3. Grid-Motion Considerations

We selected the moving-grid formulation for this implementation
of the stability derivatives, since it was already implemented in
SUmb. However, the methods discussed in this paper would apply
equally well to a noninertial reference frame formulation. One key
observation is that regardless of the chosen formulation, the grid
motion must be such that the magnitude of the grid velocity is
independent of the rotational rate. More specifically, the grid motion
must be specified such that the velocity of the flow at the center of
rotation is that of the desired freestream velocity. This condition falls
out naturally from the noninertial reference frame formulation,
because the velocity is specified in terms of the local grid. For the
moving-grid formulation, the correct way to implement this con-
dition is not so obvious. To do so, one needs to specify a grid velocity
that is linked to the rotational velocity, such that the velocity of grid’s
center of rotation is independent of the rotational speed.

B. Verification of Moving-Grid Formulation

To verify the implementation of the moving-grid formulation, we
compare results for a NACA0012 airfoil rotating at a finite q̂ to those
produced by Limache [27]. In this comparison, we simulate inviscid
flow around a NACA 0012 airfoil at Mach� 0:2 for q̂� 0, 0.01,
0.03, and 0.05.

TheCp distributions around the airfoil are shown in Fig. 1 for both
the present and reference results. This figure provides visual
verification that the moving-grid formulation implemented in SUmb
is consistentwith the noninertial reference frame formulation used by
Limache [27]. For q̂ values of both 0.0 and 0.05, theCp distributions
and streamlines of relative velocity match those presented by
Limache.

In Fig. 2we show the pressure coefficient contours and streamlines
of relative velocity in the whole computational domain for q̂� 0:05.
Note that in both the presentwork and the referencework, the point of
zero relative velocity occurs at the expected coordinates, (0, �20).

Finally, in Table 1 we compare the values of Cl and Cm from our
implementation to the references results. The two implementations
match very well over a range of q̂ values. The largest discrepancy is
0.011 in Cl at Mach� 0:8 and q̂� 0:05. This close correlation is
further confirmation that the formulation is correct.

C. ADjoint Approach

Having modified the CFD code to handle rotating geometries, we
can now differentiate the code to obtain stability derivatives. To do
this efficiently, we use the ADjoint method, which we have devel-
oped in previous work [23]. In this approach, automatic differen-
tiation techniques are combined with the adjoint method to generate
the sensitivities for the CFD equations. The application of this
method to the computation of stability derivatives is described in this
section.

We start by considering the functions of interest, I, which may be
either the forces �CL; CD; CY� ormoments �Cl; Cm; Cn� acting on the
aircraft. These are functions of both the states of the system (�) and
the values of the independent variables (x). In this case, the
independent variables are the states of the dynamicmodel (�,�,V,p,
q, r, h, �i, etc.). The function of interest can be expressed as

Fig. 2 Cp contour and streamline comparison between present work (left) and Limache [27] (right) for rotating NACA 0012 atMach� 0:2, �� 0, and

q̂� 0:05.

Table 1 Comparison of lift andmoment coefficients for the NACA 0012 at �� 0 for various values of q̂a

Mach Coefficient q̂� 0:00 q̂� 0:01 q̂� 0:03 q̂� 0:05

0.2 Cl �0:001 (0.000) �0:053 (�0:053) �0:156 (�0:157) �0:260 (�0:262)
Cm 0.000 (0.000) �0:018 (�0:018) �0:053 (�0.053) �0.088 (�0.088)

0.5 Cl 0.000 (0.000) �0:060 (�0:060) �0:179 (�0.180) �0.298 (�0.299)
Cm 0.000 (0.000) �0.020 (�0.020) �0.060 (�0:060) �0:100 (�0:100)

0.8 Cl 0.000 (0.000) �0:107 (�0:108) �0:310 (�0:316) �0:487 (�0:498)
Cm 0.000 (0.000) �0:041 (�0:042) �0:121 (�0:124) �0:195 (�0:201)

aResults from Limache [27] are in parentheses.
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I � I�x; ��x�� (23)

We can also represent the solution of the CFD equations as a set of
governing equations that are functions of the states and the indepen-
dent variables. The residuals of these equations can be written as

R �x; ��x�� � 0 (24)

To derive the adjoint equations for this system, we first write the
total derivative for both the function of interest (23) and the residuals
(24), which yields

dI

dx
� @I
@x
� @I
@�

d�

dx
(25)

and

dR
dx
� @R
@x
� @R
@�

d�

dx
� 0 (26)

because R� 0, regardless of x, when the governing equations
are satisfied. Therefore, we can rewrite the total derivative from
Eq. (26) as

d�

dx
��

�
@R
@�

��1 @R
@x

(27)

Combining Eqs. (25) and (27), we obtain

dI

dx
� @I
@x
� @I
@�

�
@R
@�

��1 @R
@x

(28)

We now have the total derivative dI=dx expressed in terms of four
partial derivatives that do not require a solution of the residual
equations in their computation. Instead, to compute the total
derivative dI=dx, we must perform a series of linear solutions. In our
case, we solve the adjoint system,

�
@R
@�

�
T

��� @I
@�

(29)

which requires a separate linear solution for each component of I.
The other option, the direct method, involves solving

�
@R
@�

�
d�

dx
�� @R

@x
(30)

which requires a separate linear solution for each component of x.
The relative efficiency of the two approaches depends on the relative
sizes of I and x. In this case, the size of I is six and the size of x is six or
more, depending on the number of control derivatives required.
Therefore, it is slightly more favorable to use the adjoint method, but
the relative numbers are close enough that there is no significant
advantage. In our case, the adjoint approach is used because it has

Table 2 Verification of derivatives against the complex-step

method for NACA 0012 airfoil at Mach� 0:5

Derivative ADjoint Complex step

Cl� 7:961756758205 7:961756758114
Cm� 2:068623684859 2:068623684834
Clq 11:921373826019 11:921373823280

Cmq �3:999949643166 �3:999949642440

Table 3 ADjoint stability derivatives for a NACA 0012

airfoil at �� 0:0 deg

Mach Derivative ADjoint Limache and Cliff. [9] % Difference

0.1 Clq 10.385 10.377 0.08%

0.1 Cmq �3:498 �3:489 0.26%

0.5 Clq 11.921 11.847 0.62%

0.5 Cmq �4:000 �3:968 0.81%

0.8 Clq 21.782 21.889 0.49%

0.8 Cmq �8:438 �8:884 5.02%

Table 4 ONERA M6 geometry parameters

Parameter Value

Half-span, m 1.1963
Half-wing area, m2 0.753
Leading-edge sweep, deg 30
Taper 0.562
Twist, deg 0
Airfoil ONERA D, normal to

40% chord line

XY
Z

X

Y

Z

a) PMARC b) SUmb
Fig. 3 Meshes for the ONERA M6 case.
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already been implemented to compute the derivatives for design
optimization [28]. In design optimization, the number of design
variables generally exceeds the number of functions of interest, and
the adjoint approach is decidedly advantageous.

The other consideration associated with Eq. (28) is how to
calculate the four partial derivatives that make up the expression.
This is where automatic differentiation is used. One of the most

significant drawbacks of the adjointmethod outlined above is that the
calculation of the partial derivativesmaking up the expression can be
extremely complex. In many cases, such as those involved in
complex CFD schemes, the effort required to differentiate the code
used to compute the residuals is tremendous. By using automatic
differentiation to compute these derivatives, the amount of effort
required to complete the differentiation is significantly reduced. In
addition, no approximations are made in the differentiation, and as a
result, the derivatives computed with the ADjoint method are
extremely accurate.

D. Verification of the ADjoint for Stability Derivatives

To verify the ADjoint implementation for the computation of
stability derivatives, we reproduce the NACA 0012 airfoil case of
Limache and Cliff [9]. We use a pseudo-two-dimensional mesh,
which is two cells in the spanwise direction, with symmetry planes at
the ends of the wing segment to reproduce two-dimensional flow.
Each slice of the mesh contains 65,536 cells for a total mesh size of
131,072 cells. The flow is simulated at �� 0 and Mach� 0:1, 0.5
and 0.8, with the flow solutions converged to a relative convergence
tolerance of 10�12. We make two comparisons: one to verify
consistency within our implementation, and another to verify our
results against those of Limache and Cliff.

To verify the consistency within our implementation, we compare
the ADjoint derivatives against derivatives computed using the
complex-step derivative approximation [29]. The purpose of this
verification is to show that the ADjoint implementation accurately
computes the derivative of the code in the SUmb solver. Using the
complex-step approach, the derivatives are computed by

dI�x�
dx
� Im	I�x� ih�


h
�O�h2� (31)

where i�
�������
�1
p

. This approximation is not subject to the subtractive
cancellation errors inherent in finite differences. Therefore, with a
sufficiently small step size (in this case, 10�20), the method is able to
produce derivatives with the same accuracy as the flow solution,
making it a solid benchmark for our results.

The ADjoint derivatives are compared with the complex-step
results in Table 2, where we can see that the results match by 9 to 11
digits. This is an extremely accurate match, far beyond the accuracy
of the underlying physical model used. Furthermore, given the
iterative nature of the solvers used, the accuracy is consistent with the
10�12 relative convergence tolerance that was achieved.

The verification against the results of Limache and Cliff [9] is
shown in Table 3. This comparison is done to show that our method
accurately captures the dependencies of the coefficients on q. As can
be seen in Table 3, the code from this work is accurate relative to the

Fig. 4 PMARC mesh convergence study, Mach� 0:1 and �� 3 deg.

Fig. 5 SUmb mesh convergence study, Mach� 0:8395 and ��
3:06 deg.

Fig. 6 ONERA M6: Coefficients vs �, Mach� 0:1 and xref � 0.
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reference implementation of Limache and Cliff [9]. For the Mach�
0:1 and 0.5 cases, the differences relative to the reference results are
less than 1%. In the Mach� 0:8 case, Clq is within 1% of the

reference results, whileCmq differs by approximately 5%. This larger

discrepancy can be attributed to the fact that there is a shock wave in
the solution for Mach� 0:8. The precise location of the shock has a
significant impact on the value of the moment coefficient and hence
on the moment coefficient derivatives as well. Given that SUmb is a
structured multiblock code and that the reference results were com-
puted with an unstructured code, slight variations in the prediction of

the shock location are expected. Based on these results, we conclude
that the stability derivatives predicted by the code are correct for the
NACA 0012 airfoil case.

IV. ONERA M6 Stability Derivatives

To verify the derivative computation in three dimensions, we
analyze the ONERA M6 wing, which is a common test case in the
CFD community [30]. The configuration is a simple swept wing; the
geometry parameters for the wing are listed in Table 4.

Fig. 7 ONERA M6: longitudinal derivatives vs �, Mach� 0:1 and xref � 0.

Fig. 8 ONERA M6: Coefficients vs xref, Mach� 0:1 and �� 5 deg.
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In this study, we compare the derivatives for the ONERAM6wing
at Mach� 0:1 against those calculated with PMARC, a well-
established panel code used for low-speed flow prediction [31]. The
comparisons show the values of various coefficients and derivatives
for a variety of flight conditions (i.e., various values of � and �) and
rotational center locations (xref). The purpose of these comparisons is
to show that the proposed method accurately captures the various
dependencies in the stability derivative computation.

Finally, we present derivative values for the ONERA M6 wing at
Mach� 0:8395 and �� 3:06 deg, one of the flight conditions
tested by AGARD [30]. These transonic derivatives are intended to
become reference values for future work. Note that the rotational
derivatives are expressed in terms of normalized rotational rates p̂, q̂,
and r̂. The derivatives are expressed in a typical body-axis reference
frame with the x axis pointing forward and the z axis pointing down.
SUmb computations are conducted in a reference frame with the x

Fig. 9 ONERA M6: longitudinal derivatives vs xref, Mach� 0:1 and �� 5 deg.

a) CY vs. Mach = 0.1,     = 5 degαβ,

c) CYp vs. Mach = 0.1,    = 0.0α,

b) CYβ vs. Mach =, 0.1,    = 0.0ββ,

d) CYr vs. Mach =, 0.1,    = 0.0α, ββ
Fig. 10 ONERA M6: CY and derivatives.
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axis pointing in the downstream direction and the z axis pointing out
toward the left half of the wing.

A. Mesh Convergence

To verify the stability derivative formulation discussed in the
present work, solutions from PMARC are compared against solu-
tions from SUmb.

The PMARC mesh is shown in Fig. 3a. Each wing half is
composed of three patches: one that wraps around the leading edge
forming thewing surface, another for thewing tip, and a third one for
the wake, which is attached to the trailing edge. The wake patch is
rigid and aligned with the freestream direction.

To demonstrate the numerical accuracy of the PMARCsolutions, a
convergence study was performed by increasing the number of cells
per side in each patch from 5 to 20 in increments of 5. The wake
patches and wing tip patches have the same number of cells in each
direction, while the main wing patches have twice as many cells in
the chordwise direction as in the spanwise direction. The conver-
gence of the CL and CL� values for this series of meshes is shown in
Fig. 4. This plot shows that CL and CL� converge as the meshes are
refined. For the PMARC results, the error between the two finest
meshes is 1.5% for CL and 1.6% for CL�.

A sample of the SUmbmesh is shown in Fig. 3b. It is an H-Hmesh
for which the wing tip is closed with a rounded tip, and the trailing
edge of the wing has zero thickness. The far-field boundary is
approximately 30mean aerodynamic chords away from thewing. To
quantify the numerical accuracy of the solution, a series of four

meshes have been generated. Eachmesh is exactly 8 times larger than
the previousmesh, which is the result of doubling themesh points for
each edge. The meshes have a total of 28,000, 228,000, 1.8 million,
and 14.7 million cells, respectively. The offwall spacing for the
14.7-million-cell mesh is 1 � 10�3 m. The leading-edge spacing is
also 1 � 10�3 m and the trailing-edge spacing is 5 � 10�3 m. The
mesh shown in Fig. 3b is the 228,000 cell mesh. CL and CL�
convergence results for this series of meshes are shown in Fig. 5.
These plots show that the difference between the finest twomeshes is
0.7% forCL and 1.1% forCL�. The fact that the error for the PMARC
results is on the order of 2% and the error for the SUmb results is on
the order of 1% gives confidence in the quality of the results
presented. The plots shown in Secs. IV.B–IV.D are generated using
the 20-cell-per-side PMARC meshes and the 1.8-million-cell SUmb
mesh. The benchmark derivative results presented in Sec. IV.E are
calculated with the 14.7-million-cell SUmb mesh.

B. Low-Speed Verification: Longitudinal Derivatives

The first verification we show is the variation of the longitudinal
coefficients �CL; Cm� and their derivatives with respect to �. Figure 6
shows the variation the coefficients and Fig. 7 shows the variation of
the various derivatives, both with respect to �. We then compare the
performance of these same coefficients and derivatives for a variety
of longitudinal reference points, xref . This reference point location
acts as both the center of moment and the center of rotation. Figure 8
shows the variation of the coefficients with respect to xref and Fig. 9
shows the variation of the derivatives with respect to the same point.

a) Cl vs. Mach = 0.1,     = 5.0 degαβ,

c) Clp vs. Mach = 0.1,     = 0.0βα,

b) Cl   vs.
β

Mach = 0.1,     = 5.0 degαβ,

d) Clr vs. Mach = 0.1,     = 0.0βα,

Fig. 11 ONERA M6: Cl and derivatives.
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As we can see from these figures, the longitudinal characteristics
of the wing are well captured by our computations. There is
essentially no variation between the slopes predicted by SUmb and
PMARC for the coefficients shown in Figs. 6a and 6b. The
comparisons in Fig. 7 show consistent performance over the full
range of �’s tested. The derivative values predicted by PMARC and
SUmb are slightly different, but the trends for both methods match,
leading to a consistent difference between the two values. We see

similar trends over the range of xref values considered in Figs. 8 and 9.
In each case, the trend of the PMARC results closely matches the
trend in the SUmb result. This even holds for the more complex
curved trend shown in Fig. 9b.

From all these comparisons, we conclude that the longitudinal
stability derivatives computed by SUmb are correct, as long as the
physics captured by the Euler equations accurately model the
problem of interest.

a) Cn vs. Mach = 0.1,     = 5.0 αβ, b) Cn   vs.
β

Mach = 0.1,     = 5.0 αβ,

d) Cnr vs. Mach = 0.1,     = 0.0βα,c) Cnp vs. Mach = 0.1,     = 0.0 βα,

Fig. 12 ONERA M6: Cn and derivatives.

Fig. 13 ONERA M6: Comparison of wind-axis versus body-axis computations.
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C. Low-Speed Verification: Lateral Derivatives

Next, we examine the lateral coefficients �CY; Cl; Cn� and their
derivatives. The lateral coefficients are all zero for the symmetric
flight condition at�� 0, and thereforewe show thevariation of these
coefficients for a variety of sideslip angles �. The variations for CY,
Cl, and Cn are plotted in Figs. 10a, 11a, and 12a, respectively.

While the values of the coefficients themselves are zero at the
symmetric flight condition, the values of their derivatives are not.
Therefore, to evaluate the derivatives of the lateral coefficients, we
examine the derivatives for a range of � values. In this section, the
figures are split into groups by coefficient. Each group shows the
variation of the coefficient for a variety of values of � at ��
5 degrees, as well as the variation of the coefficient derivatives with
respect to �, p, and r for a range of � values. Figure 10 shows the
values forCY, Fig. 11 shows the values forCl, and Fig. 12 shows the
values for Cn.

The variation in the slopes between the SUmb computed
coefficients and the PMARC computed coefficients is larger for the
lateral derivatives than for the longitudinal derivatives. However, the
dominant trends are the same for both sets of results. CY� is

essentially constant with � for both cases.CYp decreases with �, and

CYr has a nonlinear dependence on �. Similar trends are exhibited by
the Cl derivatives. Cl� is constant with �, Clp is constant with �, and

Clr increaseswith increasing�. Finally, for theCn derivatives,we see

that for both cases Cn� is essentially constant with �, Cnp decreases

with �, and Cnr has a curved shape.
In this particular case, the discrepancies between the PMARC

derivatives and the SUmb derivatives are largest for the Cn and CY
derivatives. This is due to the fact that both the coefficients and the
derivatives are very small, on the order of 10�3, making it difficult to
compute them accurately. Furthermore, the lateral forces are more
difficult to predict due to the fact that the ONERA M6 wing has no
dihedral. In this case, the lateral forces in inviscid flow are dominated
by theflow at thewing tips, which is complicated in asymmetricflow.
However, as noted above, even though there are differences in the
value predicted by the methods, the trends in the two methods
match, indicating that the formulation is capturing the necessary
dependencies.

D. Wind-Axis Versus Body-Axis Derivatives

Asmentioned in Sec. III.A.2, it is not possible to physically isolate
the lateral body-axis derivatives of the aircraft for nonzero angles of
attack. However, because the ADjoint method calculates the
derivatives from a single reference flow solution, we are able to
compute derivatives about either thewind axis or the body axis at that
reference solution. As long as the computation of the reference
solution is possible, the ADjoint approach can linearize about that
point, even if the lateral rotation about the body axiswould not yield a
steady flow solution.

In this section, we compare the wind-axis derivatives to the body-
axis derivatives. From this comparison, we can assess the validity of
using wind-axis derivatives in place of body-axis derivatives for
small angles of attack. In Figs. 13a and 13b, we plot the variation of
Clp and Cnr versus � for both the wind-axis case and the body-axis

case. Tables 5 and 6 show the values of the same two derivatives for �
values from 0 to 5 deg for both the body- andwind-axis derivatives at
Mach� 0:8395.

From these results, we can see a clear divergence of the two
predicted values as the value of � increases. However, for the low
values of � seen here, the variation is relatively small, staying under
5% for the Clp derivatives. Based on these results, we conclude that

the values of the wind-axis derivatives are accurate enough to be
useful. However, for larger angles of attack, a correctionwould likely
be needed to produce useful results.

E. High-Speed Derivative Values

To provide a benchmark for futurework, we compute the values of
thewind-axis and body-axis stability derivatives for a transonic flight
condition. Figures 14a and 14b show the chordwise pressure profiles
for the 20 and 90% span positions on the wing, both from
experimental data [30] and from the 14.7-million-cell mesh used in

Table 5 Comparison for Clp
for wind-axis and

body-axis computations

� Wind Body Error % error

0 �1:4926016 �1:4926016 0.0000 0.00%
1 �1:4908012 �1:4929310 0.0021 �0:14%
2 �1:5116103 �1:5204085 0.0088 �0:58%
3 �1:5326331 �1:5531822 0.0205 �1:32%
4 �1:5674002 �1:6063816 0.0390 �2:43%
5 �1:6402228 �1:7041819 0.0640 �3:75%

Table 6 Comparison of Cnr
for wind-axis and

body-axis computations

� Wind Body Error % error

0 2:9516551 � 10�2 2:9516551 � 10�2 0.0000 0.00%
1 2:8696904 � 10�2 2:7199394 � 10�2 0.0015 5.51%
2 2:8677435 � 10�2 2:3128088 � 10�2 0.0055 23.99%
3 2:2586010 � 10�2 1:2211285 � 10�2 0.0104 84.96%
4 5:8047916 � 10�3 �8:7061377 � 10�3 0.0145 �166:67%
5 �4:2725415 � 10�2 �5:6996461 � 10�2 0.0143 �25:04%

a) Chordwise Cp distribution at 20% span b) Chordwise Cp distribution at 90% span

Fig. 14 ONERA M6: Mach� 0:8395 test case validation.
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this study.While there are slight errors in the predicted location of the
shock wave in the solution, on the whole, the solutions match well.
This comparison shows that the Euler model used in this work is
representative of the flow in this case. Furthermore, based on the
comparisons shown in the previous section, we conclude that the
stability derivative formulation presented in this work is correct and
applicable to any flows for which the flow solver produces valid
results.

The body-axis derivatives for the transonic test case are listed in
Table 7, and the wind-axis derivatives for the same case are listed in
Table 8.

V. Computational Performance

In addition to demonstrating the accuracy of the code, it is
important to show its computational efficiency. To this end, we
examined the time required to compute the various derivatives
required in the generation of a simple linear flight dynamic model.
The results in Table 9 show the computational time needed to
evaluate the six consecutive adjoint problems (CL, CD, CY , Cl, Cm,
andCn) required to generate all of the static and dynamic derivatives
for a given configuration. The linear system solutions required for the
adjoint system are computed using the PETSc package‡ developed at
Argonne National Labs [32]. This is a broadly applicable scientific
computing package that contains a variety of linear and nonlinear
solution methods, as well as a variety of preconditioning options. In
this work, we are using the restarted GMRES solver with an additive
Schwartz parallel preconditioner. Local preconditioning is accom-
plished with incomplete lower/upper factorization and a reverse
Cuthill–McKee reordering. The computations for this work were
performed on the SciNet general-purpose cluster, which uses

2.5 GHz Intel Nehalem Processors with eight cores and 16 GBRAM
per node. The timings shown in Table 9 are run on four nodes
connected by Infiniband for a total of 32 processors.

As we see from the table, the flow solution takes approximately
5 min, while a single ADjoint solution takes only 8 min. The total
time for computing all six ADjoint solutions required to evaluate the
necessary stability derivatives is only 31 min. At this level of
efficiency, the computational cost of computing the derivatives is low
enough to be used for design.

VI. Conclusions

In this paper, a method for the computation of static and dynamic
stability derivatives of arbitrary configurations was presented. The
method combines the ADjoint sensitivity analysis technique with a
moving-grid CFD solver to allow for the efficient computation of
static and dynamic derivatives. For the longitudinal derivatives, the
method was shown to match existing methods to within 1% for
subsonic cases and to within 1–5% for transonic cases.

For a more general three-dimensional case, the method compared
well with an existing panel code method, PMARC. Both lateral and
longitudinal derivatives were examined at Mach� 0:1 and the
results showed similar trends for both methods.

Finally, the cost of computing a full set of stability derivatives
using this newmethodwasmeasured. For a 1.8-million-cell case, the
flow solution and the six ADjoint solutions required about 30min on
32 processors (2.5 GHz Intel Nehalem). At this level of
computational cost, it is certainly possible to consider using stability
derivative data in the design process.
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Table 7 Body-axis derivatives at Mach� 0:8395, �� 3:06, and xref � 0:0 m

Parameter CL CD CY Cl Cm Cn

� 5:5772 4:5422 � 10�01 �0 �0 �4:0932 �0
� �1:5168 � 10�05 4:0961 � 10�06 �6:8243 � 10�03 �1:2667 � 10�01 1:4722 � 10�05 1:4088 � 10�02

Mach 7:7872 � 10�01 1:3225 � 10�01 �0 �0 �8:3126 � 10�01 �0
p̂ �2:3528 � 10�06 3:5867 � 10�07 2:4044 � 10�01 �1:5185 2:2824 � 10�06 �2:1186 � 10�01

q̂ 1:3474 � 1001 6:0271 � 10�01 �0 �0 �1:1437 � 1001 �0
r̂ 1:3981 � 10�06 �4:2876 � 10�07 �3:3960 � 10�02 3:6030 � 10�01 �1:3639 � 10�06 1:2700 � 10�02

Table 8 Wind-axis derivatives at Mach� 0:8395, �� 3:06, and xref � 0:00 m

Parameter CL CD CY Cl Cm Cn

� 5.5772 4:5422 � 10�01 �0 �0 �4:0932 �0
� �1:5168 � 10�05 4:0961 � 10�06 �6:8243 � 10�03 �1:2667 � 10�01 1:4722 � 10�05 1:4088 � 10�02

Mach 7:7872 � 10�01 1:3225 � 10�01 �0 �0 �8:3126 � 10�01 �0
p̂ �2:2748 � 10�06 3:3527 � 10�07 2:3829 � 10�01 �1:4971 2:2063 � 10�06 �2:1088 � 10�01

q̂ 1:3474 � 1001 6:0271 � 10�01 �0 �0 �1:1437 � 1001 �0
r̂ 1:5217 � 10�06 �4:4730 � 10�07 �4:6747 � 10�02 4:4085 � 10�01 �1:4838 � 10�06 2:3991 � 10�02

Table 9 ADjoint timing for the ONERA M6 case at Mach� 0:8395 and �� 3:06 dega

CL CD CY Cl Cm Cn Total time

Number of processors 32
Flow solution 267 —— —— —— —— —— 267
ADjoint solution 466 279 272 258 276 308 1859
Breakdown:
Computation of residual matrices 117 —— —— —— —— —— 117
Computation of preconditioning matrix 26 —— —— —— —— —— 26
Computation of right-hand side 1 1 1 1 1 1 6
Solution of the adjoint equations 321 277 270 256 274 306 1704
Computation of the total sensitivities 1 1 1 1 1 1 6

aWith �1:8 million cells and 10�10 relative convergence; all times are in seconds.

‡Data available online at http://www.mcs.anl.gov/petsc [retrieved
24 June 2011].
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