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This work quantifies several sources of unsteadiness that exist within a lean premixed prevaporized gas turbine

combustor that was operated at elevated pressures using Jet-A fuel. Flame–flame interactions and shear layer vortex

shedding,which can be sources of combustion instabilities, are quantifiedwith particle image velocimetry andplanar

laser-induced fluorescence diagnostics. Flame–flame interactions occur because lean premixed prevaporized

aircraft combustors employ a premixed main flame, which is anchored by the nonpremixed pilot flame. The

measured degree of unsteadiness is the standard deviation of flame surface density, flame length, vorticity in shear

layer, and recirculation zone size. The flame surface density profile was broad, indicating that large flame motions

occur. Flame length increases nonlinearly with fuel flow rate. Intense vortices in the shear layer are more than twice

the average vorticity, indicating the need for unsteady modeling. Chamber pressure and liquid fuel flow rates were

varied. Velocity fields for the five reacting cases were similar, but they differed from the two nonreacting cases. Heat

release causes the recirculation zone shape to change from ellipsoidal (for the reacting cases) to toroidal (for the

nonreacting cases). Methods were developed to image Jet-A spray flames at 3 atm using formaldehyde fluorescence.

Introduction

T HERE have been relatively few previous studies of lean
premixed prevaporized (LPP) combustors that have provided

images of the locations of flames, shear layers and recirculation
zones [1–4]. Such measurements are needed to explain why LPP can
to lead to significant reductions in NOx emissions [5–8] and to find
ways to reduce the combustion instabilities that also can occur [5].
LPP devices operate on liquid fuel, which is a requirement for aircraft
applications. In contrast, there have been many studies of lean
premixed (LP) devices [9–16], which operate on gaseous fuels for
ground-based gas turbine power plants. One complication associated
with LPP devices is that they contain two flames which interact. For
aircraft operation most of the fuel is burned in a premixed flame
(called the main flame) that is anchored by a smaller nonpremixed
pilot flame. For certain off-design conditions the flame–flame
interaction causes unsteady anchoring of the premixed main flame,
which is a possible source of combustion instabilities [17,18]. A
serious obstacle to LPP research is that sprays and heavy hydro-
carbons create intense flame luminosity at elevated pressures that
interferes with planar laser induced fluorescence (PLIF) and particle
image velocimetry (PIV) diagnostics. Methods to overcome these
obstacles are described next. The focus of the present work is to
identify and measure several new parameters that quantify the level
of unsteadiness associated with LPP, so that these parameters can be
used to assess large eddy simulations (LES).

A combustor flame tube was selected that has a simple cylindrical
geometry, but care was taken to mount a realistic LPP fuel injector at
the upstream end in order to include the real sources of unsteadiness
that often have been omitted in previous work. The LPP fuel injector
that was selected is called CFM-TAPS [6]. It is a preliminary design
version that is similar to, but not identical to an actual production

device. It provides realistic flame–flame and flame–shear layer
interactions because it creates an outer premixed main flame that
interacts with an inner nonpremixed pilot flame. It also creates a
strong shear layer that contains shed vortices that interact with the
premixed main flame. Run conditions were chosen to lie along the
lower pressure range of an engine operating line.

Flow rates of air (up to 0:38 kg=s) were preheated to 505K and the
pressurewas varied up to 4.5 atm. The level of swirl that is introduced
by the twin annular premixing swirler (TAPS) swirl vanes is similar
to that of an actual engine, in order to accurately reproduce the
precession of the recirculation zone. Finally, the TAPS liquid fuel
injection and atomization process that was used is identical to that of
an engine. Correctly reproducing the Jet-A fuel spray of under engine
operating conditions is important to understand the unsteadiness
associated with the time lag associated with droplet atomization,
which is another potential source of combustion instability [17,18].

To quantify the degree of unsteadiness, the following parameters
were selected for measurement. Note that these parameters can be
computed with LES but not with Reynolds-averaged Navier–Stokes
(RANS) computations: 1) standard deviation of flame surface
density (i.e., flame brush thickness); 2) standard deviation of
fluctuations of the length of main and pilot flames; 3) standard
deviation of fluctuations of vorticity and location of the shear layer;
and 4) standard deviation of fluctuations in recirculation zone
location and size.

If these parameters are large, it indicates that the premixed and
unsteady nature of LPP causes large deviations in the positions of the
main flame, the pilot flame, the shear layer and the primary recircu-
lation zonewhichwould require unsteady (LES)modeling. The level
of unsteadiness was systematically varied by altering the ratio of the
fuel flow rate of the pilot flame to that of the main flame. When this
ratio is decreased far below the design value it was observed that the
base of the main flame was poorly anchored so it began to oscillate,
whichwas recorded using a high-speed digital camera and is reported
in a previous paper [1]. A strong coupling was observed between
oscillations of the flame base (in the streamwise direction) and
the acoustic pressure. The present work focuses on the sources of the
unsteadiness associated with the flame–flame interaction and the
shed vortices.

Concept of Lean Premixed Prevaporized Combustion

A schematic of LPP combustion is seen in Fig. 1; a premixed,
prevaporized main flame surrounds a central nonpremixed pilot
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flame. The liquid main fuel (Jet-A) is injected as a jet in a crossflow
[6]. Because of the high velocities associated with the main air, most
of the main flame is lifted downstream, which provides time for the
main fuel to vaporize and mix with the main air before combustion.
To vaporize the fuel it was necessary to preheat the air to 505K and to
run at realistic air mass flow rates and equivalence ratios associated
with the lower pressure region of the engine operating line. This
provides the correct momentum ratio of the main fuel jet to the main
airstream, to achieve realistic spray properties and vaporization.

Because the pilot is not lifted, little air can premix into it, so it is a
nonpremixed flame that surrounds a fuel-rich region. A stoichio-
metric contour is expected to occur at the pilot fuel–air boundary,

which is best for flame stability but not desirable from a NOx
standpoint. Our results will show that the pilot flame overlaps the
inner edge of the main flame. Because the pilot is needed or else the
main flamewill blow out, it follows that this flame–flame interaction
is important.

The flow pattern in Fig. 1a may seem to be complicated, however,
the physics of most interest can be simplified to that of the shear layer
shown in Fig. 1b. This shear layer lies between the high-speed main
fuel and air mixture on the top side, and hot products and radicals
from the pilot that enter on the bottom side. The location of the main
flame with respect to this shear layer is of fundamental importance.
Vortices are shed in the shear layer and it is useful to know if these
vortices impinge on the main flame and if they cause unsteadiness.
The degree of unsteady oscillations of the main flame properties also
are of interest. It is noted that the realistic LPP device shown in Fig. 1
is designed to provide nearly “ideal” conditions in the shear layer
(where there is LPP combustion), yet the rest of the flowfield,
including the pilot flame, is “nonideal” from aNOx standpoint, but is
necessary to insure that the main flame does not flash back, blow out,
ormove too close to thewalls. Figure 2 is a photograph of the reaction

a)

b)
Fig. 1 General features of LPP combustion deduced from the

measurements given next: a) flow and flame patterns, which appear to

be complicated, but the relevant physics reduce to that of (b) and b) the

shear layer that contains the premixed main flame, in which most of the
fuel burns.

Fig. 2 Photograph the Jet-A flame in theMichigan combustor, which is

described in the next section.

Table 1 Previous LPP (liquid fuel) and LP (gaseous fuel) gas turbine combustor studies and some related

nonpremixed cases for which velocity and/or flame properties are reported

Author Velocity data? Flame data? Comments

LPP (i.e., liquid fuel) flowfield measurements

Present work Yes Yes PLIF, PIV, 4.5 atm, Jet-A
Dhanuka et al. [1,2] Yes No PLIF, PIV, 4.5 atm, Jet-A
Seyfried et al. [3] No Yes PLIF, 3.2 atm, kerosene, pilot only
Meier et al. [4] No Yes PLIF, 6 atm, kerosene

LPP liquid fuel computations

—— —— —— ——

LP (i.e., gaseous fuel) flowfield measurements

Stopper et al. [9] Yes Yes PLIF, PIV, 6.0 atm, preheated
Cheng et al. [10], Johnson et al. [11],
and Littlejohn and Cheng [12]

Yes No PIV, 8 atm, preheated

Nogenmyr et al. [13] Yes Yes PLIF, PIV, 1 atm, no preheat, unconfined
Roux et al. [14] —— —— LDV, 1 atm, no preheat, confined
Ji and Gore [15] Yes No PIV, 1 atm, no preheat
Lee et al. [16] No Yes PLIF, 2.6 atm, preheat

LP (i.e., gaseous fuel) computations

Eggenspieler and Menon [25] Yes Yes LES G-Eqn� flamelet chemistry
Kim et al. [26] Yes Yes LES G-Eqn� flamelet chemistry
Huang and Yang [27,28], Huang et al. [29],
and Wang et al. [30]

Yes Yes LES G-Eqn� flamelet chemistry

Roux et al. [14] Yes Yes LES� Flame surface density eq:
Selle et al. [31] Yes Yes LES� Flame surface density eq:
Nogenmyr [13] and Fureby et al. [32] Yes Yes LES G Eq.

Related nonpremixed gas turbine flowfields (not LPP)

Menon and Patel [23] and Patel and Menon [24] Yes Yes LES of nonpremixed spray
Weigand et al. [19], Meier et al. [20],
and Giezendanner-Thoben et al. [21]

Yes Yes PLIF, PIV, 1 atm, nonpremixed

Janus et al. [22] Yes Yes PLIF, LDV, 2 atm, nonpremixed
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zone generated by the LPP injector in our facility, which is described
in the next section.

Previouswork is listed in Table 1,which is separated into LPP (i.e.,
liquid fuel) and LP (i.e., gaseous fuel) studies. Only studies that
report velocity fields or flame properties are listed. The present work
is one of the first to apply both PIVand PLIF to an LPP combustor.
Seyfreid et al. [3] recorded the PLIF signal from kerosene vapor in an
LPP device to identify where the liquid fuel was vaporizing. Meier
et al. [4] imaged OH tomark the flame locations in a kerosene-fueled
staged combustor that had main and pilot flames and is similar to an
LPP device. Previous LP (gaseous fueled) experiments that have
provided velocity and/or flame data were reported in [9–16]. In these
studies no pilot flames (or flame–flame interactions) were considered
since LP devices are designed for ground-based power generation
and a pilot flame is not needed. Table 1 also lists some papers
describing nonpremixed combustors [19–22] to provide compar-
isons to LPP results.

LES computations of spray combustion were published byMenon
and Patel [23] and Patel and Menon [24]. They simulated the
n-heptane spray–turbulence interactions with a Lagrangian sto-
chastic separated flowmodel, but their nonpremixed conditions were
not LPP. LES was used to determine the residence times of fluid
elements and drops, which follow complicated spiraling flow paths
when they are entrained into recirculation zones. Their LES also
shows that flames can jump between several different recirculation
zones, each of which offers a new flame anchoring site. These
unsteady aspects cannot be simulated with RANS. Also listed in
Table 1 are theLES studies of LP (gaseous fueled) devices reported in
[25–32].

Experimental Apparatus

The experiments were conducted in the University of Michigan
High-Pressure Gas Turbine Combustor Facility. The outer cylin-
drical pressure vessel is 117 cm long and has an inside diameter of
21 cm, as seen in Fig. 3. The first 66 cm of the vessel is the flow
straightener that contains honeycomb and ceramic beads that were
optimized to reduce the flow spatial nonuniformities to less than 8%.
The second 51-cm-long section encloses the inner cylindrical
combustor, which is 14.6 cm in diameter. The cylindrical wall

contains 4000 dilution air holes; each has a diameter of 0.88mm. The
LPP fuel injector is mounted on the upstream end of this cylindrical
combustor. Liquid Jet-A was forced into the fuel injector using a
nitrogen gas pressurization system. The combustion air is pres-
surized by external compressors and is heated to 505 K by a 250 kW
electrical heater. Airflow rate is metered by a choked flow orifice,
while a downstream valve controls the operating pressure. Optical
access is provided on three sides by 5-in.-diam fused silica windows
on the outer pressure vessel and rectangular fused silica windows on
the inner cylindrical combustor. Swirl is introduced by two coannular
sets of pilot swirl vanes, and an outer annulus of main swirl vanes.
Swirl improves the flame stability for reasons that are discussed in
[33].

PLIF and PIV were used to image both the time-averaged and the
instantaneous patterns in the flame, shear layer, and vorticity
structure. The diagnostics are described in the Appendix. It was
found that formaldehyde PLIF successfully provided images of the
flame location for pressures up to 3.0 atm under these challenging
high-pressure, liquid fuel conditions. Higher-pressure application of
PLIF is believed to be possible, but requires further study. The main
challenge is properly gating the PLIF and PIV cameras to filter out
the intense luminosity associated with spray combustion at elevated
pressures. Theflame is identified as the locationwhere the gradient of
the formaldehyde PLIF signal is a maximum. That is, the formal-
dehyde PLIF signal itself is a maximumwhere the fuel concentration
is too large to support combustion, but the maximum gradient of the
PLIF signal occurs near the fuel–air boundary and marks the flame
location, as was shown in a separate calibration study in our
laboratory [34]. Before this study, accurate images of the flame
properties have not been available for a high-pressure Jet-A fuelled
LPP gas turbine combustor.

Operating conditions are listed in Table 2. The baseline condition
(case 1) was chosen because both the PLIF and PIV diagnostics
operatedwell at 2 atm.At 4.5 atm (cases 6 and 7) the PIV results were
satisfactory but the PLIF signal was of marginal quality due to flame
luminosity that leaked through the optical filters and electronic
camera gating. If additional diagnostic efforts are made, PLIF at
above 4 atm should be achievable. Cases 2 and 3 provide com-
parisons of the pilot andmain flame to that of the pilot only and to the
Nonreacting flow. The pressure and fuel flow were varied for cases 4

Fig. 3 Michigan high-pressure gas turbine combustor facility.

Table 2 Operating conditions of the LPP combustor. The inlet plane equivalence ratio is defined as

��Main fuel� pilot fuel�=�Inlet plane air flow��=0:068. Overall equivalence ratio�
��Main fuel� pilot fuel�=�Inlet plane air flow� sidewall air flow��=0:068

Case Flames Air inlet
temperature,

K

Combustor
pressure,
atm

Diagnostics Inlet plane
airflow,
kg=s

Sidewall
airflow,
kg=s

Main fuel
flow, g=s

Pilot fuel
flow g=s

Inlet plane
equivalence

ratio

Overall
equivalence

ratio

Baseline cases

1 Pilot and main 505 2.0 PIVand PLIF 0.114 0.114 2.40 0.99 0.44 0.22
2 Pilot only 505 2.0 PIVand PLIF 0.114 0.114 0 0.99 0.13 0.06
3 Nonreacting 422 2.5 PIVonly 0.108 0.108 0 0 0.00 0.00

Vary pressure, vary fuel flow rate

4 Pilot and main 505 1.0 PLIF only 0.114 0.114 2.49 1.17 0.47 0.24
5 Pilot only 505 1.0 PLIF only 0.114 0.114 0 1.2–1.9 0.16–0.25 0.08–0.13
6 Pilot only 498 4.5 PIVonly 0.188 0.188 0 2.78 0.22 0.11
7 Nonreacting 503 4.5 PIVonly 0.188 0.188 0 0 0.00 0.00
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to 7. Table 2 lists two values of the airflow rate; the “inlet plane
airflow” is that which crosses the horizontal inlet plane at the
upstream end of the cylindrical combustor; it represents 51% of the
total airflow, based on the PIV data. The “sidewall airflow” is
the remaining 49% of the air which enters through dilution holes in
the combustor side wall. The “inlet plane equivalence ratio” in
Table 1 is the sum of themain and pilot fuel flow rates, divided by the
inlet plane airflow, divided by the stoichiometric fuel–air ratio, which
is 0.068 for Jet-A fuel. The overall equivalence ratio includes the
dilution air.

Results: Locations of Main Flame, Pilot Flame,
Shear Layer, Recirculation Zones

To quantify the simple concept of LPP combustion that was shown
in Fig. 1a, the time-averaged locations of the main and pilot flames
were measured and are shown in Figs. 4a and 4c for cases 1 and 4,
respectively. The two operating conditions are nearly identical, but
case 1 was run at 2.0 atm. while case 4 was run at 1.0 atm. First, 200
raw PLIF images were averaged to yield Figs. 4b and 4c. It is seen
that the maximum formaldehyde signal occurs at the center of the
pilot spray, where conditions are so fuel-rich that combustion is not
possible. The flame is located where there is a maximum gradient of
the PLIF signal, as was shown in our calibration study [34], and this
maximumgradient occurs near the fuel–air boundary. The pilotflame
location first was imaged by running the pilot only. This resulted in
the pilot region shown in Fig. 4a. Then the main fuel was added; the
pilot flame location did not change, but an additional main flame
(shown in gray) was observed.

It is seen in Fig. 4b that the left side of themainflame has a rounded
shape and it appears that the main flame begins at x� 5 mm down-
stream of the injector plane (x� 0). The exact location of the
beginning of themainflame is difficult to determine because the laser
light sheet also begins at x� 5 mm, but the images indicate that the
mainflame begins approximately at x� 5 mm. The downstream end
of the main flame occurs at 20 mm, so the length of main flame is

15 mm. The base of the pilot is visually observed to occur at
approximately x� 0 mm, which is upstream of the PLIF field of
view (x� 5 mm). The pilot flame extends to x� 17 mm. The radial
outer edge of the pilot flame is seen to overlap the radial inner edge of
the main flame. For the lower pressure case (1.0 atm), Fig. 4c

Fig. 4 Mean flame locations of main and pilot flames: a–b) case 1, 2 atm, 505 K air preheat and c) case 4, 1 atm, 505 K air preheat. Raw formaldehyde

PLIF signal seen in (b) and (c); flame boundaries in (a) correspond to maximum gradient in the PLIF signal.

Fig. 5 Mean velocity field: a) reacting, case 1, main and pilot flames,

2 atm; b) reacting, case 6, pilot only, 4.5 atm, 498 K preheat; and

c) nonreacting case 7, 4.5 atm.
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indicates that the lengths of the main and pilot flames are similar to
that of the higher pressure case. It is noted that in Fig. 4c the main
flame has less overlap with the pilot, and its boundaries are more
easily identified, than in Fig. 4a. The main flame in Fig. 4b is
observed to exist well upstream of the location where the pilot flame
overlaps the main flame. This indicates that it is not the overlap of
pilot flame on the main fuel stream that determines the base of the
main flame; instead the main flame appears to be stabilized by hot
products from the pilot flame that are carried upstream by a re-
circulation zone to the base of the main flame.

Time-averaged velocity fields are plotted in Fig. 5 for: cases 1
(baseline, pilot andmain), 4 (lower pressure, pilot andmain), 6 (pilot
only) and 7 (nonreacting). The dotted white line in Fig. 5a encloses
the negative axial velocity region; it is a useful description of the
recirculation zone because it is unambiguous. It can be measured
exactly with PIVand can be computed with LES. This negative axial
velocity region is smaller than the entire recirculation zone, which
contains both negative and positive axial velocities. Note that in
Figs. 5a, 5b, and 6 there are positive axial velocities on the centerline,
while the nonreacting case (Fig. 5c) displays negative velocities on
the centerline. This was consistently observed; all five reacting
cases in Table 2 had positive velocities on centerline, while both

Fig. 6 Profiles of axial mean velocity for a) case 6 (reacting) and b) case 7 (nonreacting).

Fig. 7 Main shear layer (upper region) that is identified from the

measured contours ofmean vorticity. The shear layer has large clockwise

fluid element rotation. Case 1 (main and pilot flames, 2 atm, 506 K
preheat air temperature). Pilot flame also is seen to exist in a shear layer,

but it is the main shear layer that is of importance since most of the fuel

burns in the main flame.
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nonreacting had negative velocities on centerline. This indicates that
the heat release greatly distorts the shape of the recirculation zone and
the velocity field. Properly modeling this effect of heat release
remains a challenge to the modeling community.

Figure 7 shows that a strong shear layer exists in this LPP device at
the lower (radially inward) boundary of the main airflow. The shear
layer is the upper region where the time-averaged vorticity
component (!z) is large. Contours of the aerodynamics strain rate
alsoweremeasured and they look similar to Fig. 7. Themain flame is
seen to overlap this shear layer. Figure 7 confirms that the simplified
view of LPP that appeared in Fig. 1b is correct. The premixed main
flame exists in the shear layer that is fed by premixed reactants on the
top side and by hot products from the pilot on the lower side. The
shear layer contains large velocity gradients that exert aerodynamic
strain and force the flame base to lift downstream to a location that
has a sufficiently small value of strain rate. Premixing is almost
certain to occur in this lifted region. Thus the shear layer plays an

important role in controlling combustion instabilities and NOx
formation in themain flame, wheremost of the fuel is consumed. The
typical value of vorticity in the red region of Fig. 7 is 5000 s�1, which
can be explained by the fact that the velocity of the main airstream is

Fig. 8 Unsteady deviations of the main and pilot flames. Main flame is radially outermost region: a) broad flame brush is observed by plotting 15

instantaneous flame boundaries and b–d) flames (black lines) extend farther downstream on one side than on the other at various times, based on

instantaneous formaldehyde PLIF images. Case 1 (main and pilot flames, 2 atm, 505 K air preheat temp).

Fig. 9 Fluctuations in length of the pilot flame (no main fueling),
indicating the pilot is steadier than the main (diamond symbols equal

time-averaged length, and square symbols equal standard deviation of

flame length). Case 5.

Fig. 10 Flame surface density for case 1 (pilot andmain): a) contours of

FSD and b) profiles of FSD.
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about 40 m=s (as was seen in Fig. 6), and a typical width of the shear
layer is 8 mm. The ratio of these two numbers is 5000 s�1. In Fig. 7
another shear layer (red region) is observed that surrounds the pilot
flame. However, this shear layer is less important that the one
surrounding themain flame because the pilot is nonpremixed, stable,
and consumes only a small fraction of the fuel.

Results: Unsteady Parameters: Flame Surface Density
and Standard Deviation of Flame Length

Onegoalwas to quantifywhether the locations of theflame and the
shear layer experience small deviations from somemean location, or
if violent and large deviations are detected, which could be a source
of instabilities. The other issue is whether more of the unsteadiness is
caused by the premixedmain flame, rather than the pilot. A premixed

flame is free to propagate in space, unlike nonpremixed flames. To
the naked eye, both the pilot and main flames appear to be well
anchored, excessive noise is not detected, and the conditions in
Table 2 are far away from those that are found to trigger a combustion
instability [1]. However, even in this stable mode of operation, large
unsteady deviations were measured which indicate that sources of
unsteadiness always are present. Figure 8a is the superposition of 15
instantaneous flame boundaries for case 1. Figures 8b–8d contain
instantaneous PLIF data; the black lines identify the maximum PLIF
signal gradient. The uppermost contours in Fig. 8a are boundaries of
the main flame; they oscillate over a large radial distance to create a
broad flame brush. Large oscillations in the length of the main flame
also can be identified.

It was determined that there was a 22% fluctuation in the length of
the main flame. This value is the r.m.s. deviation of 3.29 mm divided
by the time-averaged value of 15.2 mm, based on contours such as
those in Fig. 8. To determine thefluctuations in the pilotflame length,
the same process was repeated with only the pilot fuel on. Figure 9
shows that the fluctuations in the pilotflame length are only 5.2, 4.85,
and 6.4% for the three fuel flow rates considered. Therefore it is
concluded that the fluctuations associated with the length of the
(premixed) main flame are three times larger than that of the (non-
premixed) pilot flame. There are several possible reasons why the
main is a larger contributor to unsteadiness than the pilot. A premixed
flame is more difficult to anchor, the main flame is subjected to larger
gas velocities, and it is farther from the stabilizing hot products in the
central recirculation zone. This increased unsteadiness introduced by
the premixed combustion represents a new modeling challenge
associated with LPP devices.

The flame surface density � is a parameter that quantifies the
unsteady motions of the flame front, and therefore it is useful for the
assessment of LES models. Surface density can be computed by two
types of LES combustion submodels that incorporate either the G
equation [25–30] or the flame surface density equation [14,31].

Fig. 11 Brush thicknesses ofmain and pilot flames; it is the width of the

surface density profiles. Case 1 (main and pilot flames, 2 atm, 506 K

preheat air temperature).

Fig. 12 Contours of turbulence intensity q and Reynolds stress parameter hu0v0i for cases 1 (main and pilot), 6 (pilot only), and 7 (nonreacting).
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Surface density was measured for case 1 and it is plotted in Fig. 10.
It is the time-averaged flame perimeter that exists within a small
(2 � 2 mm) interrogation box within the measurement plane,
divided by the box area. This two-dimensional value of � differs
from the three-dimensional value, which is the averageflame area per
unit volume. However, the two-dimensional value is more useful
since it can be determined both from experiment and from LES. �
indicates the probability that an instantaneous flame boundary lies
within a given interrogation box. The contours of � in Fig. 10a are
seen to have two branches; the upper branch indicates the probability
of finding the main flame, while the lower branch indicates the
probability of finding the pilot. Surface density is seen to be largest
(red) at the radially outward region of each brush region. This
indicates that the flame slows down and spends more time at these
radially outward locations during its oscillations in the radial
direction.

The brush thickness also is useful for the assessment of LES
predictions, since the brush thickness depends on unsteady motions
that LES may be able to resolve but RANS cannot. It is an
unambiguous measure of how much the flame deviates in the radial
direction from itsmean position.Brush thickness is defined as the full
width (at half maximum) of the surface density profiles. The profiles
appear in Fig. 10b, and the measured brush thickness of the main and
the pilot are plotted in Fig. 11 for case 1. Themainflame extends from
x� 5 to 20 mm on average. The flame length of the pilot also was
measured as the pilot fuel was systematically increased; results are
shown in Fig. 9. As expected, the flame length increased as more fuel
was injected. The length of the pilot is seen to not increase linearly
with fuelflow rate, perhaps because a long pilot extends into themain
airstream, which forces more air into the pilot.

Results: Turbulence Intensity and Reynolds Stresses

Turbulence intensity (q) and Reynolds stresses stress parameter
(are plotted in Fig. 12 for cases 1, 6 and 7; q is defined as������������������������

1
2
�u02 � v02�

q
. There are two thin regions in space where both

quantities are large. The first region is in the upper left of each image
and is inclined with respect to the horizontal. This region is the shear
layer associated with the main airstream. The other region where
turbulence intensity is large is near the centerline. This finding is
unexpected and is explained in the next section.

Results: Comparison of Nonreacting Lean Premixed
Prevaporized Flowfield with Reacting Case

The recirculation zone is greatly altered by the presence of the
flame, as was seen in Figs. 5b and 5c. With no reaction the central
recirculation zone is ellipsoidal in shape and the flow moves in the
negative x direction along the centerline in Fig. 5c.With reaction, the
time-averaged recirculation zone is toroidal in shape and the flow
moves in the positive x direction along the centerline in Fig. 5b. The
size of the primary recirculation zone is considerably reduced in the
reacting case. The flow issuing from the pilot annulus appears to
issue at a higher velocity than in the nonreacting case while the main
flow is largely unaffected.

The explanation for the flowfield changes due to heat release is
believed to be the following. The positive axial velocity on centerline
is due to the geometry of the LPP fuel injector, because previous
studies that have employed a central bluff body do not observe
positive axial velocities on centerline. With the present injector the
sum of the air through the pilot and the main is a fixed number, but
the blockage of theflame causes the amount of airflowing through the
main to decrease, which increases the airflow through the pilot.
Measurements confirm that the air through the pilot was larger in the
reacting case. That is, note that in Fig. 5b all the axial velocity vectors
at the upstream boundary of the field of view (x� 5 mm) are
positive, whereas many of the vectors in Fig. 5c (nonreacting) are
negative. If the central region of this injector insteadwas a bluff body,
the increased airflow could not enter near the centerline, and it is
believed that the axial velocities on centerline would be negative.

Fureby et al. [32] also studied an injectorwhich allowed air to enter
near the centerline as well as at an off-centerline annular location.
Their triple annular swirler has similarities to the present pilot air/
main air geometry. They reported that their flame affected their
recirculation zone in a manner that is similar to that observed in
Fig. 5. They found that the velocity profiles with the flame were
markedly different from the nonreacting case; with the flame the
axial velocity was positive on the centerline but with no flame the
centerline velocity was negative. They noted that LESwas not able to
predict the positive velocities on centerline close to the injection
plane, but was satisfactory at downstream locations. The differences
between their LES and measurements were likely due to uncer-
tainties in the upstream boundary conditions, which can differ for
reacting and nonreacting cases, and is not due to shortcomings in the
LES model. Weber and Dugue [35] also report that heat release
causes a reduction of the strength and size of the recirculation zone in
a confined geometry. They argue that heat release increases the axial
component of momentum, while it does not alter the azimuthal
(swirl) momentum. Thus it has the effect of reducing the swirl
number, and this reduces the pressure gradient and the strength of the
recirculation zone.

A second conclusion that is deduced from Fig. 12 is that the flame
greatly increases the turbulence intensity near the centerline. Note
that in Fig. 12e there is almost no turbulence near the centerline in the
nonreacting case. This is because there are only very small negative
axial velocities inside the recirculation zone, which overlaps the

Fig. 13 One instantaneous PIV image showing that the recirculation

zone oscillates in the radial direction, which leads to large velocities and

large turbulence intensities near the centerline, and PDF of the area of
the instantaneous recirculation zone. The width of the Gaussian curve

indicates the root-mean-square variations in recirculation zone area.

Case 1.
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centerline (Fig. 5c). However, Figs. 12a and 12b show that with the
flame present, intense turbulence occurs near the centerline. This is
explained by looking at the instantaneous velocity pattern shown in
Fig. 13. At this instant in time, the recirculation pattern is not
symmetric, so the axial velocity on centerline is positive. The
recirculation zone has moved downward, and at a later time it may
move upward and be located primarily above the centerline. This
radial motion of the recirculation zone is observed to cause two
things: it forces positive axial velocity region to move to the
centerline for a significant fraction of time, and thismotion causes the
velocity variations (and thus the turbulence level) on centerline to be
greatly increased. This pronounced radial movement of the
recirculation zone is not observed in the nonreacting case, so it likely
is caused by the motions of the flame, which were documented
previously.

Results: Unsteady Shear Layer Properties

Since combustion instabilities can be triggered by vortices that are
shed in a shear layer [36,37], images were obtained of the mean
vorticity and the instantaneous vortex structures. Figure 14 illustrates
the instantaneous vorticity field. The mean vorticity field was shown
previously in Fig. 7. The typical value of the mean vorticity
(5000 s�1) is the 40 m=s main airstream velocity divided by the
8-mm-thick shear layer. However, the instantaneous vorticity values
in Fig. 14 exceed 10; 000 s�1, thus are more than twice the mean
value. The individual vortices often have a rotational velocity of
40 m=s and a diameter of only 4 mm, which leads to a vorticity of
10; 000 s�1.

The vortices are known to affect the main flame in several ways;
they transport hot products and fresh reactants to help to anchor the
reaction zones; they also increase the flame surface area due to their
ability to stretch and wrinkle the flame surface. If they are too strong,
they can extinguish the reactions. Their vorticity is an indicator of
their aerodynamic strain rate. The observed vortices are sufficiently
strong to locally extinguish themain flame. Such events would cause
the reactants to reignite at locations away from the strong vortices,
which has the effect of rapidly displacing the reactions in the radial
direction. Therefore vortex–flame interactions could be responsible
for the broad radial movement of the main flame that was seen in
Figs. 4, 8, and 10. Ametric that quantifies the variation of vorticity in
the shear layer is the PDF of vorticity. This was measured and is
plotted in Fig. 15. These values can be predicted by LES, unlike
RANS, which only computes the mean vorticity field.

Conclusions

Flame and flow properties were measured in an LPP combustor
that has a simple cylindrical geometry but contains a real LPP fuel
injector that includes several realistic sources of unsteadiness. These
sources include flame–flame interactions (by generating both main
and pilotflames),flame–shear layer interactions, and the time lag due
to evaporation of liquid Jet-A fuel. Flame boundaries were recorded
using formaldehyde PLIF, while velocities were recorded with PIV.
The following were systematically varied: pilot fuel flow rate, main
fuel flow rate, inlet air velocity and gas pressure.

The premixed nature of the main flame in an LPP combustor was
determined to be one of the primary causes of unsteadiness that
caused large r.m.s fluctuations in flow and flame properties. With
pilot only, flame length varied by only 5%, but when main flamewas
added the variations increased to 22%. This unsteadiness was found
to increase for off-design conditions when a larger fraction of the fuel
was burned in the premixed mode.

Unsteady parameters were identified that are useful for assessing
the ability of LES to simulate the unsteady motions. These param-
eters were measured; they are the standard deviations in the
fluctuations of the 1) flame surface density (brush thickness);
2) length of the main flame; 3) length of the pilot flame; 4) centroid
and diameter of the recirculation zone, which changes due to the
precessing vortex core; and 5) strength of vortices shed in the shear
layer. In addition, profiles of mean velocity, turbulence levels,
Reynolds stresses and mean vorticity were recorded.

Flame–flame interactions (between the main and pilot) were
observed. The premixed main flame cannot be stabilized without the
nonpremixed pilot flame. The degree of unsteadiness increases for
off-design conditions when the pilot fuel flow rate is made insuf-
ficiently small. The main flame is observed to exist well upstream of
the location where the pilot flame overlaps the main flame. This
indicates that it is not the overlap of pilot flame on the main fuel
stream that determines the base of the main flame; instead the main
flame appears to be stabilized by hot products from the pilot flame
that are carried upstream by a recirculation zone to the base of the
main flame.

The strength of the most intense vortices that are shed in the shear
layer was 10; 000 s�1, which ismore than twice the averagevorticity.
It was observed that these intense vortices did impinge on the
premixed main flame. It follows that since a RANS simulation can
predict only mean vorticity, it must underpredict the strength of the
relevant (instantaneous) vorticity that can lead to combustion
instabilities, which is a motivation for using LES.

Flame–flow interactions are large; heat release caused a drastic
reduction in the size and shape of the primary recirculation zone. The

Fig. 14 Shed vortices in the shear layer (vortices between dotted lines),

with vorticity of 10; 000 s�1 (clockwise rotation). Case 6, reacting,

4.5 atm.

(ω −− ω)
σ

1
s

Fig. 15 PDF of vorticity in the shear layer; width of PDF is indicator of
the standard deviation of fluctuations of vorticity.
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recirculation zone changes from an ellipsoidal shape (for two
nonreacting cases) to a toroidal shape (for all five reacting cases).
With heat release, the axial velocity on the centerline is positive,
which is opposite to the nonreacting cases.

It was demonstrated that the flame boundaries could be imaged
using formaldehyde PLIF for Jet-A fuel at pressures up to 3 atm in
this challenging environment, which has not been done before.
Further diagnostic development is needed to extend PLIF imaging to
pressures above 3 atm by removing interferences from the intense
luminosity of Jet-A spray flame.

For this LPP combustor an intense instability was observed at off-
design conditions, which is described in separate papers [1,2].
Movies indicate that flashback oscillations occur if the ratio of the
pilot to main fuel flow rate is made sufficiently small.

Appendix: PIV and PLIF for Elevated-Pressure
Spray Combustion Conditions

For the PIV measurements, the air was seeded with 0.5-�m-diam
alumina particles which adequately tracked the flow, since the
particle relaxation time is 2:85 � sec and the relevant flow time scale
is 60 �s. The Stokes number of the particles is 0.005 which is much
less than theminimumvalue of 0.5 that insures that the particles track
the flow [38]. The PIV system consists of two Nd:YAG lasers, each
providing 60 mJ=pulse, a LaVision Imager Pro PIV camera, a 60mm
macro lens (Micro Nikkon) operated at f=11, a programmable
timing unit and DaVis data analysis software. The PIV spatial
resolution was 2.34 mm, which was the size of the 64 � 64 pixel
interrogation box. Each velocity image contains 4096 vectors. Mean
values typically were the ensemble averages of 200 images.

The flame location was determined from the PLIF of formal-
dehyde (CH2O). Formaldehyde is an important combustion inter-
mediate that is formed on the fuel side of a flame but is quickly
destroyed at the flame front due to rapid reaction with OH. Therefore
the contour of the maximum gradient of the CH2O signal is a good
marker of the instantaneous flame front. This was shown to be true in
calibration experiments that were conducted in our laboratory for
premixed, nonpremixed and partially premixed cases [34].
Fluorescence was imaged with an Andor ICCD (iStar 734) which
was fitted with filters (Schott GG-385 and BG-3) and a mechanical
shutter to block the flame luminosity. The camera gate time was
100 ns and the 1 � 1 kCCD array was binned 2 � 2 to yield a spatial
resolution of 0.15 mm.

Figure A1 indicates that the luminosity of the Jet-A flame
increases significantly as the pressure increases from 1 to 3 atm. At
high pressures there are more radiating molecules per unit volume
and heavy hydrocarbons such as PAH and soot precursors are known
to be more prevalent. Excessive flame luminosity required that the
PIV camera be fitted with an interference filter at 532 nm having a
bandpass of 2 nm, and with a mechanical shutter (Uniblintz VS-25)
having a 1 ms exposure time. The LaVision camera electronically
gated the first laser pulse, but not the second, requiring the use of a
mechanical shutter. Formaldehyde offers advantages that make it the
best choice for imaging the flame location in the harsh environment
of gas turbine operated with Jet-A fuel at elevated pressures.
Fortunately, the CH2O PLIF signal is stronger than that from other

species because of the relatively large amount of CH2O present, and
the fact that CH2O can be excited by the strong 355 nm line of a Nd:
YAG laser. Laser energy was 150 mJ=pulse. Fluorescence from soot
and PAH can cause an interference, but this was minimized by using
large laser energies. Fluorescence from soot and PAH saturates (and
remains relatively small) but fluorescence from CH2O did not
saturate.
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