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Elements based on the exact stiffness matrix method contain an embedded analytical 

solution that can capture detailed local fields, enabling more efficient mesh independent 

finite element analysis.  In the present study, this method was applied to adhesively bonded 

joints.  The adherends were modeled as Euler-Bernoulli beams, and the adhesive layer was 

modeled as a bed of linear shear and normal springs.  The field equations were derived using 

the principle of minimum potential energy, and the resulting solutions for the displacement 

fields were used to generate shape functions and a stiffness matrix for a single joint finite 

element.  Additionally, the capability to model non-linear adhesive and adherend 

constitutive behavior was developed, and progressive failure of the adhesive was modeled by 

using a strain-based failure criteria and re-meshing the joint as the adhesive fails.  Example 

joint configurations were analyzed to demonstrate element convergence and the modeling of 

functionally graded adhesives. 

I. Introduction 

ith the increasing demand for composites in lightweight aerospace structures, adhesively bonded joints are 

becoming increasingly attractive.  Bolts and rivets cause stress concentrations and premature failure in 

composite materials, while adhesive bonds spread the load more evenly over the composite, facilitating a lighter 

overall structure. 

Adhesive joints have traditionally been analyzed using analytical models or finite element analysis
1
.  Analytical 

methods have been utilized to extract efficient closed-form solutions for adhesive single lap joint stresses.  However, 

analytical methods are often limited by geometric assumptions used to obtain a closed form solution and are not as 

useful to designers for compiling vehicle-scale models that may contain multiple joints.  Finite element analyses are 

widely utilized in industry, and 

can be used to assess joints with a 

wide variety of geometries and 

loading conditions.  However, 

these methods can suffer from 

mesh dependence and a lack of 

efficiency, which is especially 

crippling for initial sizing analysis 

and full vehicle-scale models
2
.  

Therefore, a need exists to 

develop predictive tools for 

bonded joints that can be 

seamlessly coupled with large 

scale structural analyses without 
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Figure 1.  The present study replaces a complex single lap joint with 

one joint element. 
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adding major computational elements. Such tools can be used to make quick mesh-independent assessments of 

bonded composite joints.  Currently, such a capability is lacking, and joint assessment is typically performed late in 

the design cycle when structural changes that can lower the weight are much more difficult and expensive. 

The joint element is a structural finite element made specifically for adhesively bonded joints.  Motivated by the 

desire to create a computationally efficient tool for designing joints within a coarse, vehicle scale finite element 

model
3
, the joint element combines an analytical formulation with a finite element.  This concept has been often 

referred to as the exact stiffness matrix method, and has been previously applied to the beam on an elastic 

foundation problem.
3,4

  The joint element is capable of capturing the stresses in a mesh-independent, efficient 

manner.  Such amethod is pivotal to the efficient design of composite joints, allowing the parametric studies and 

design optimization to take place within a larger scale finite element model.  To construct the joint element, the 

adherends were treated as wide plates under cylindrical loading, and the adhesive was modeled as a discrete bed of 

normal and shear springs.  The current study extends the method to include the modeling of composite adherends, 

functionally graded adhesives, and allows a nonlinear constitutive model for the adhesive in conjunction with inputs 

to cohesive zone finite element modeling
5,6

 or a curve-fit for experimental test data.  Additionally, a strain-based 

failure criterion is utilized to track damage in the adhesive, and the joint element and adjacent beam elements are re-

sized to account for the failed adhesive.  The entire joint can then be replaced by a single joint finite element, while 

the remaining structure (outside the joint) is modeled using standard structural elements, for instance beam elements 

(Fig. 1).  Failure in the adhesive is then built into the joint element.  

To demonstrate the usefulness of the joint element, a few examples are provided.  First, a single lap joint is 

analyzed to show the convergence of the joint element for nonlinear adhesives.  Second, the model is used to study 

the benefits and use of adhesives with graded properties.  A baseline configuration for a single strap joint is chosen, 

and four different types of adhesives are compared: single modulus, step-graded (bi-adhesive), linearly graded, and 

exponentially graded.  These functions are defined so that the grading can be described with one single variable, 

making optimization and parametric studies clear and simple.  The effect of grading on adhesive and adherends is 

illustrated.  Since one of the main concerns with the use of functionally graded adhesives (FGAs) is that the pre-

designed grading will be altered by adhesive flow during cure, a sensitivity study is conducted to show which of the 

functions studied is most tolerable to perturbations of the grading shape.  This study demonstrates how the joint 

element can be used to improve the design of joints in a finite element framework. 

 

II. Analytical Formulation 

A flow chart of the joint element 

implementation is shown in Fig. 2.  The 

basic layout consists of solving the 

linear problem first to obtain shape 

functions, defining a non-linear 

stress/strain relation for the adhesive 

and linearizing this relation at each load 

increment, calculating the joint stiffness 

matrix and force vector using the linear 

shape functions and strain energy for 

the non-linear case, and incrementally 

solving the equations.  Furthermore, the 

adhesive is checked for failure, and in 

the case of adhesive failure, re-meshing 

occurs to account for portions of the 

failed adhesive.   

A. Obtain Linear Shape Functions 

In order to model a nonlinear 

adhesive in a joint element, the shape 

functions are obtained from the case of 

a joint with a linear adhesive.  This 

joint finite element uses an analytical 

formulation to get the exact stiffness 
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Figure 2.  Flow chart of the joint element with adhesive progressive 

failure. 
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matrix for N number of adherends held together by N-1 adhesive layers.  The adhesives and adherends were 

assumed to be linearly elastic, but not necessarily isotropic.  The adherends were modeled as wide plates under 

cylindrical bending, using Euler-Bernoulli wide beam theory and Classical Lamination Theory (CLT).  The adhesive 

response is captured through a continuous bed of shear and normal springs.  This assumption ignores the traction 

free boundary condition which is present for an adhesive modeled as a continuum.  However, most joints in 

application have some sort of adhesive spew coming out of the joint, which makes the imposition of a traction free 

boundary condition unrealistic.  The material and geometric parameters are shown in Fig. 3.  The subscript i refers 

to adherend i, and ai refers to adhesive layer i.  The width of the joint in the y-direction is b. The strain energy of the 

joint, Ujoint, is written as: 

 

 1

1 1
2 2

1 1 1

( )
i

j i i i i
i ai

MN N
j

joint i i a a a a
V V

i j i

U dV dV     


  

    
 

(1) 

 

Where j
i  is the axial stress in the j

th
 layer of 

the i
th

 adherend, and i  represents the axial 

strain in adherend i in the x–direction.  
ia  and 

ia  are the normal stress/strain in the i
th

 

adhesive in the z-direction, 
ia  and 

ia  

represent the shear stress/strain in the i
th

 

adhesive on the xz-plane, and all integrals are 

taken over the volume, j
iV  or 

iaV of adherend i, 

layer j or adhesive i respectively.  Using CLT, 

and the assumptions of cylidrical bending, the stress can be written in terms of the strain and the 1,1 component of 

the transformed lamina stiffness matrix, 
j

Q : 

 

 11
jj

i iQ 
 

(2) 

 

and the strain can be written in terms of the adherend centerline displacements of adherend i, ui and wi: 

 

 , ,i i x i xxu zw  
. (3) 

 

It is assumed that the displacements in the adhesive layers vary linearly in the z-direction and that the adhesive and 

adherends are perfectly bonded at the interface.  The normal and shear stress in adhesive ai can be written in terms 

of the adherend displacement above and below the adhesive layer:  

 

1
2 2

1

1
( )t ti i

ia i iz z
i

w w


 
 

 

(4a) 

and 

1
2 2

1

1
( )t ti i

ia i iz z
i

u u


 
 

. 
(4b) 

 

In order to be able to analyze joints with functionally graded adhesives, the Young’s and shear modulus of the 

adhesive is kept as a general function of x.  The stresses in the adhesive are then written as  

 

 ( )
i i ia a aE x 

 
(5a) 

and 

 ( )
i i ia a aG x 

. 
(5b) 
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Figure 3.  Geometric and material parameters for overlap 

region of an adhesively bonded joint. 
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When using bulk adhesive specimens to characterize the adhesive, the modulus must be altered to reflect a triaxial 

state of  stess, which will be discussed in detail later.   

Using the principle of stationarity of potential energy, 2N fully coupled governing equilibrium differential 

equations are obtained from the energy expression in Eq. (1). Of the 2N governing equations, N equations 

correspond to the axial equilibrium, while N equations correspond to the transverse equilibrium.  The axial 

displacement equilibrium equations contain second order derivatives, while the transverse displacement equations 

have fourth order derivatives.  The order of these equations can be reduced and assembled into a system of first 

order non-constant coefficient homogeneous ordinary differential equations of the form: 

 

, ( )x xu A u
 

(6) 

where 

1

T
T T T

i N
 
 

u u u u
 

(7a) 

and 

, , , ,

T

i i i x i i x i xx i xxxu u w w w w   u
. 

(7b) 

 

In order to solve the system of equations found in Eq. (6), a semi-numerical method of solution was adopted.  

Traditional differential equation solving techniques employing numerical boundary conditions could not be 

employed because the boundaries (nodes) contain unknown, symbolic conditions.  Therefore, the domain was 

broken up into segments in which the coefficient matrix, A(x), is considered constant and solved using the matrix 

exponential.  First, consider segment n+1, with a local x-direction coordinate system x’ which originates at the left 

side of the segment, x=xn.  The other end of the segment is at x’=Δx and x=xn+1.   

It is assumed that Δx is significantly small so that A(x), can be considered constant within each such segment.  

The linearized coefficient matrix An+1, is taken to be the coefficient matrix evaluated at the midpoint of the segment: 

 

1 2
( )x

n nx 
  A A

. (8) 

 

Within segment n+1, the system can now be expressed as a system of ordinary constant coefficient differential 

equations in the local coordinate system, x’, of the form: 

 

, ' 1x nu A u
. (9) 

 

Inspecting the matrix An+1 can be helpful in determining the nature of the solution and determining the solution 

method.  There are 6N eigenvalues of An+1: N real eigenvalues, 2N complex eigenvalues, and 3N repeating 

eigenvalues.  Therefore, the solution is made up of N exponential terms, 2N exponential terms multiplied by a sine 

or cosine, and the 3N repeating eigenvalues correspond to a third order polynomial found in a standard beam 

solution.  Such a complex solution shows that merely employing standard beam shape functions to the joint problem 

would be inadequate in capturing the nature of the complete solution. 

The solution of the system in Eq. (8) can be written in terms of the matrix exponential, 1 'n xA
e , and a vector of 

unknown constants, Cn+1, as 

 
1 '

1( ') n x
nx 


A
u e C

. (10) 

 

The matrix exponential can be expressed as the infinite series
7
  

 

1 '

0
!

n

k
x k

k

x

k






A
e A

. 

(11) 
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In order to get faster convergence, a method of scaling and squaring
8
 is employed, and the series is calculated up to a 

value of k which yields an acceptable error,  .  The error can be defined many ways, but the current study defined 

the error as the difference between the 1-norms of 1 'n xA
e  for k-1 and k.  The value of the acceptable error was set at 

0.0001  .  In the local coordinate system, the solution un at x’=0 can be expressed as 

 

10
1 1

n
n n n


  

A
u e C C

,
 (12) 

 

and the solution, un+1, at the end of the segment (x’=Δx) can be written in terms of the solution at the beginning of 

the segment, 

 

1
1

n x
n n

 
 

A
u e u

,
 (13) 

 

to eliminate the vector of constants, Cn+1.  Similarly, the solution at the end of the previous segment can be 

expressed as  

 

1
n x

n n



A

u e u  (14) 

 

and so on, down to the first segment, which has the solution: 

 
0

0 0
x


A

u e C
.
 (15) 

 

Therefore, the solution at any segment, n+1, can be expressed in terms of the vector of constants from the first 

segment, C0, by the equation: 

 

1( )
1 0

nx x
n


 

A
u e C  (16) 

where 

1

1
( )

0

n m

n
x x x

m








A A
e e

. 

(17) 

 

The next step is to solve for the vector of 

constants, C0, using the boundary conditions.  

This is where the analytical formulation is 

discretized and the displacements are obtained in 

terms of the nodal displacements as defined in 

Fig. 4.  For adherend i, the boundary conditions 

on the left side of the joint (x=0) can be expressed 

in the following equation: 

 

0 (0)i c iq b u
 

(18) 

 

where ui(0) is ui evaluated at x=0, qi0 is a vector containing the prescribed nodal degrees of freedom of adherend i at 

x=0, and 

 

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

c

 
 


 
  

b

 

(19) 

 

Eq. (18) for all N adherends can be assembled together, and a relation between the nodal degrees of freedom at x=0 

and the vector of constants can be found using Equation (16): 

adherendi

qi2

qi1

qi3

qi5

qi4qi6

 
Figure 4.  Boundary conditions for adherend i: prescribed 

nodal displacements and rotations at x=0 and x=l. 
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( )0

0 0
x

N A
q B e C

 

(20) 

where 

0 10 0 0

T
T T T

i N
 
 

q q q q

 

(21) 

and 

c

N

c

 
 

  
  

b

B

b
 

(22) 

 

where the subscript N denotes the number of matrices on the diagonal.  After performing the same operations at x=l, 

all of the boundary conditions can be gathered together in the form 

 

0
0

l

 
  
 

q
zC q

q
 

(23) 

where 

( )0

2 ( )

x

N x l

  
  

  

A

A

e
z B

e .
 

(24) 

 

Using this relation, one can obtain an expression for the vector of unknown constants: 

 
1

0
C z q .

 
(25) 

 

This relation can be inserted into Eq. (16) to get the adherend centerline displacements in terms of the nodal degrees 

of freedom, 

 

u Nq ,
 (26) 

where the exact shape functions, N are defined as: 

 
( ) 1x x  A

N e z .
 (27) 

B.   Define Adhesive Stress/Strain Relation 

With the shape functions determined for a joint with a linear adhesive, the nonlinear constitutive stress/strain 

relations of the adhesive need to be defined.  This can be based on measured stress-strain relations, or inferred 

stress-strain relations from fracture properties.  A stress/strain relationship based on a measured tensile stress/strain 

curve can be fitted with a fitting function.  An inferred stress-strain relation that uses fracture properties would use a 

function which has its maximum stress at the Mode I critical stress (   ) and the area under the curve would 

correspond to the critical strain energy release rate of the adhesive (GIC).  Regardless of the method used to define 

the relation, the adhesive stress, az , can be written as a function of the adhesive strain, az : 

 

( )az azg  . (28) 
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Although this paper refers to the normal stress and strain 

in the adhesive only, the same derivation holds for the shear 

strain/stress relation.  Similarly, a nonlinear relation can be 

used for the adherends, which is particularly appropriate for 

many metals which display a significant amount of ductility 

before fracture.  It should also be noted that this stress/strain 

relation assumes no permanent plasticity but resembles 

nonlinear elasticity.  Since the failing adhesive domain is 

eliminated in the iteration process (to be described later), the 

assumption of a nonlinear elastic type stress-strain law 

suffices for this modeling process since regions of 

“unloading” are minimal. 

Often, the function from Eq. (28) is defined based on bulk 

adhesive experimental data.  However, the tensile loading of 

a thin adhesive layer with relatively large in-plane dimensions differs greatly to that of a bulk adhesive specimen 

because the adhesive layer is extremely thin in one direction, and constrained from lateral displacement by the top 

and bottom adherends.  Because of these conditions, the adhesive is effectively a body in plane strain in the two 

directions perpendicular to the adhesive thickness (Fig. 5).  The adhesive is constrained from contracting (Poisson’s 

effect) in the x and y-directions while being loaded in the z-direction, which induces a stress in all three directions, 

commonly called a state of triaxial stress
9
.  To find the stress/strain relation for a material under triaxial stress, 

consider first an isotropic, linearly elastic material.  The normal stress in the z-direction is: 

 

 
1 1 2

a a
az az az ax ay

a a

E 
    

 

 
    

  
. (29) 

 

The adhesive can be assumed to be in a state of plane stress in the xy-plane, and the strains εax and εay can be set to 

zero.  Then, the normal stress in the z-direction reduces to: 

 

  
1

1 1 2

a
az a az

a a

E


 
 




 
. 

(30) 

 

This shows that the effective “resistance” to deformation in the z-direction is amplified by a factor that depends on 

Poisson’s ratio.  Although this relation is intended for linear elasticity, the relation was assumed to hold for the 

nonlinear stress/strain relation as well.  Therefore, the stress/strain relation was redefined as: 

 

  
1

( )
1 1 2

a
az az

a a

g


 
 




 
,  

(31) 

 
which effectively increases the adhesive modulus.   

C.   Linearize Stress/Strain Relation 

To simplify calculations and avoid the need for a nonlinear solver, the loading is broken up into increments and 

the stress/strain relation of the adhesive is linearized about the previous strain increment.  The Taylor series 

expansion of the stress at the (n+1)
th

 increment, can be written in terms of the strain at load step n, ε
n 

 as: 

 

1 ( )
( ) ( )

n
n n dg

g HOT
d


   



      (32) 

 

where HOT represents higher order terms, 1n n     , and the subscript az has been dropped from the stress 

and strain symbols.  To linearize, the higher order terms are ignored.  

z

y
x

σz

σz

Figure 5. A thin adhesive layer with an applied 

stress is in a state of triaxial stress. 
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D.   Calculate the Adhesive Strain Energy 

The adhesive normal strain energy      at the next load step, n + 1, is found as the strain energy from the 

previous increment plus the integral of the stress as a function of strain from the previous increments to the current 

increment:  

  
1

1 ( )

n

n
a

n n

V
U d dV U




  



    . (33) 

 

Carrying out the inner integral gives: 

 

1 1 2 1 21 ( ) ( ) 1 ( )
( ) ( ) ( ) ( )

2 2a

n n n
n n n n n n n n n

V

dg dg dg
U g g dV U

d d d

  
      

  

  
  

          
  

 . (34) 

E.   Perform Rayleigh/Ritz Using Linear Adhesive Shape Functions 

To obtain the stiffness and force matrices for the joint, the shape functions derived for the linear adhesive case 

(Eq. 5) are used.  Using Eq. (2) and (4) and the shape functions derived for the linear adhesive case (Eq. (22)), the 

strain in the adhesive is found in terms of the nodal displacements, q1-12.  The strain in the adhesive at the current, n 

+ 1, increment is written as a function of x and q1-12:  

 
1

1 12( )n f q 
  (35) 

 

while the displacements from the previous increment are used to define the adhesive strain at the previous 

increment, ε
n 

, as a function of x only.  The energy is then minimized, which yields the i
th

, j
th

 component, kij, of the 

contribution to local joint stiffness matrix from the adhesive normal strain: 

 

 
2 2

1
,

1 ( )

2a

n
n

i j
v

i j

dg
k dV

q q d








    (36) 

 

and the i
th

 component contribution of the adhesive normal strain to the local joint force vector, fi, to be 

 

1( )
( )

a

n
n n n

i
v

i

dg
f g dV

q d


  




 

     
 . (37) 

Using the same steps, a similar relation can be derived for the adhesive shear or the adherend normal components.  

The contribution of the adhesive normal and shear strains to the local force vector and stiffness matrix can be added 

to the contributions of the two adherends.   The local stiffness matrix and local force vector can be used to find the 

local nodal displacements, q: 

 
kq f

. (38) 

F.   Assemble Global Matrices, Apply Loading, and Solve Global Equations 

Once the joint element stiffness matrix and load vector are found, they are assembled with the rest of the 

elements in the model.  The loading increment is applied, and the system of linear equations is solved at each 

increment.  For this particular study, an in-house finite element code was used to assemble and solve the finite 

element global equations.   



 

American Institute of Aeronautics and Astronautics 
092407 

 

9 

This formulation gives 

the exact stiffness matrix 

for a simple region of 

constant thickness adherend 

overlap.  However, many 

joints in application contain 

complicated geometries, 

including ply steps and 

tapers.  To use the simple 

joint element for efficient 

modeling of complex 

joints, a building block 

approach was implemented.  

This approach involves 

combining simple, 

constant-thickness joint 

sections to create 

complicated joints with 

very few elements.  This 

concept is illustrated in Fig. 6, where single, double and triple adherend joint building blocks are combined to make 

complicated joints such as a PI joint, tapered single lap joint, and spliced sandwich joint.  Adherends joined together 

at the adherend centerlines are related to each other with the equation 

 

1 1L Rq q
, 1..3i   (39) 

 

where the subscript L is for the adherend on the left, R is for the adherend on the right, and the numerical subscripts 

1, 2, and 3 refer to axial, transverse, and rotational degrees of freedom respectively.  To model a ply step or taper, 

the transverse and rotational degrees of freedom are equal, but the axial degree of freedom of the left adherend is 

related to that of the right adherend through the following equation:  

 

1 1 3L R offset Rq q t q 

 

(40) 

 

where 
offsett is the vertical (z-direction) offset distance between the two nodes. 

G. Checking for Adhesive Failure 

Once the nodal displacements are found, Eq. (2a) and (2b) are used to find the strain in the adhesive as a function 

of horizontal position, x.  Then, a strain-based failure criterion based on the failure strain, εfail, is used to determine if 

and how much the adhesive has failed (Fig. 7a).   

If failure is detected, the joint element is shortened by the length of the failed adhesive region, and the adjacent 

beam elements are lengthened to compensate (Fig. 7b).  After this step is completed, the steps described in are 

repeated until the joint reaches equilibrium.  After equilibrium is reached and further failure no longer occurs, the 

load is increased by one increment, and the process is repeated.  Through this method, the stresses, strains, loads, 

and displacements for the joint can be found at each load increment as the joint deforms nonlinearly and fails 

progressively. 

 

 

Figure 6.  The building block approach facilitates modeling complex joints 

with simple joint element building blocks. 
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Figure 7.   Once a region of adhesive exceeds the a) failure strain, this region is considered failed and b) the 

joint element is shortened while the adjacent beam elements are lengthened (DCB geometry depicted). 

III. Results 

A.   Single Lap Joint  

An example configuration of a single lap joint was modeled with the joint element to show convergence.  

Convergence can be an issue because the shape functions used for the joint element came from the linearly elastic 

adhesive case.  Once significant softening of the adhesive occurs, the shape functions are no longer exact for the 

problem.  Since this method was created to allow a joint to be modeled with a single element, it is important to 

determine how much of an effect using the linearly elastic adhesive shape functions has on the stress and failure of a 

joint.   

 The configuration along with the loading and boundary conditions are found in Fig. 8a.  The joint overlap was 

modeled using one element, eight elements, and 32 elements in the overlap region (Fig. 8b).  The adherends were 

made of aluminum, and the material and geometric parameters are found in Table 1.  The stress/strain behavior of 

the adhesive was based on the bulk adhesive tensile data of ESP105 epoxy as reported by Harris and Adams
10

 (Fig. 

8c).  The tensile response was modeled by fitting a tanh function to the aforementioned data.  This function was 

chosen because it resembled the form of the response and it gives the same response for compression and tension.  

The shear response was not obtained experimentally, but rather assumed based on the tensile response.  First, the 

Poisson’s ratio was taken to be 0.34, and the shear modulus was obtained based on the initial slope of the tensile 

curve and Hooke’s law. The maximum stress of the shear response was found by assuming that the adhesive 

behaves according to J2 flow theory, and that this holds true after initial yield.  The shear failure strain was 

calculated by assuming that the strain energy at failure was the same for shear and tensile loading.  The shear and 

tensile responses of the adhesive were kept uncoupled, and adhesive failure was initiated when either the shear or 

normal strain reached the corresponding failure value.  

    

Table 1.   Material properties and geometric parameters for the single lap joint example
10

. 

Adherend Geometric Parameters 

E (GPa) υ l (mm) L (mm) b (mm) t (mm) η (mm) 

70 0.33 12.7 63.5 24.1 1.6 0.125 
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Figure 8.   Single lap joint: a) geometric parameters, b) joint element representations with one, eight, and 32 

joint elements across the overlap region, and c) curve fit of bulk tensile stress/strain response for ESP105 

adhesive
10

 along with an approximated shear response. 

The difference in joint strength predictions between models with different numbers of joint elements is 

illustrated in Fig. 9.  Using one element still gives a reasonable answer, and more than two elements are needed to 

get within 5% of the converged strength. The shear and peel stress in the adhesive layer at a load of 5.2 kN for one, 

eight, and 32 elements is shown in Fig. 10.  The peel 

stresses are almost identical for all cases, mainly due to the 

fact that less softening has occurred in the z direction.  

There is a larger difference in shear stress between the 

models with one, eight, and 32 elements because the 

adhesive has softened more in shear.  This descrepancy can 

be explained by looking at the tangential modulus shown in 

Fig. 11.  The adhesive has softened significantly at the ends, 

making the tangential modulus a function of x.  The shape 

functions were found for a constant modulus adhesive, 

which no longer represents the softened adhesive.  

Therefore, the shape functions do not represent the exact 

solution after softening has occurred.  To improve the 

solution, the shape functions would have to be calculated at 

each load increment based on the tangential modulus at the 

previous increment.  In this way, the joint could be modeled 

with one element without a loss in accuracy. 
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Figure 10.  Convergence study for the joint element modeling a single lap joint with ESP105 adhesive: a) 

adhesive peel stress and b) adhesive shear stress using one, eight, and 32 elements to model the joint overlap. 
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A major source of error for this type of joint is the fact 

that large displacements and rotations were not taken into 

account in the joint element formulation.  The joint already 

had rotations in excess of 1º at 13% of the maximum load, 

making this problem highly nonlinear with respect to 

geometry.  Harris and Adams
10

 reported this joint to have a 

strength of 9.9±0.65 kN, while the joint element model 

predicted a joint strength of 5.8 kN.  This illustrates the need 

to include large rotations when modeling single lap joints, 

making it imperative that geometric nonlinearities be 

included to model the strength of single lap joints. This 

capability will be included in future versions of the model.   

As a side note, it has been observed that adhesive 

softening is responsible for the spreading of the stress in the 

joint in a more even manner.
10,11

  The adhesive properties 

become naturally graded along the joint to minimize the 

stress concentration (Fig. 11).  The same effect can be achieved by artificially grading the adhesive along the length 

of the adhesive.  Such a grading can decrease the maximum stress of the joint without incurring any damage of the 

adhesive. 

B.   Single Strap Joint with Functionally Graded Adhesive  

In order to demonstrate the usefulness of the joint element, functionally graded adhesives (FGAs) are studied.  

A single strap joint (or butt end joint) was chosen as the baseline configuration because there is a single dominant 

stress concentration in the middle of the joint, which lends itself to single variable optimization and parametric 

studies.  The geometric and material properties are defined in Fig. 12a, and the finite element representation is 

shown in Fig. 12b.  Half of the joint was modeled due to symmetry, and the overlap section was modeled by one or 

several joint elements (depending on the number of discrete regions of continuous adhesive modulus) while the non-

joint adherend section is modeled with one beam element.  The loaded end is constrained from rotation and vertical 

translation, while the symmetric face of the doubler is constrained from horizontal translation and rotation.  The 

values of the material and geometric parameters used for the analytical modeling are found in Table 2. The FGAs 

were compared with two different single adhesive systems Fig. 13a.  These two adhesives provided upper and lower 

bounds for the grading functions, and will be referred to as Eu and El respectively.  The grading functions chosen for 

investigation included a step (bi-adhesive), linear, and exponential function.  These functions were all reduced to 

one single grading variable, l, as defined in Fig. 13b, c, and d.  For the step function, l is the length of the more 

compliant adhesive.  For the linear function adhesive, l is the length of the section in which the modulus decays 

linearly, and for the exponential function it is the length of adhesive which has a modulus less than 99% of Eu.  

Although these may not be the optimal grading functions, these functions were chosen because of their ability to be 

reduced to one variable, allowing for simplistic and clear sensitivity studies.  It was assumed that no matter what the 

grading, the relationship between the Young’s modulus and shear modulus remained constant, or in other words that 

the Poisson’s ratio remained constant.  A similar assumption was made by Apetre et al.
12

 for functionally graded 

sandwich beam cores. 

 

 
Figure 12.  Single strap joint (a) geometric and material parameters and (b) joint finite element 

representation assuming symmetry. 
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Table 1:  Parameters of the baseline single strap joint configuration used for the theoretical study.   

P 

(kN) 

la 

(mm) 

lo 

(mm) 

t 

(mm) 

b 

(mm) 

η 

(mm) 

E 

(GPa) 

Eu 

(GPa) 

El 

(GPa) 

 

ν 
τnet 

(MPa) 

4000 82.6 38.1 1.1 25.4 0.4 108.5 2.5 1.1 0.34 8.3 

 

Most stress values reported in the theoretical study were normalized by the net shear stress, τnet, defined by: 

 

net
o

P

l b
 

 

(41) 

 

To show the benefits of using 

FGAs, the grading parameter, l, was 

optimized to reduce the maximum peel 

stress in the adhesive for the three 

FGAs, and the resulting moduli are 

plotted in Fig. 15a.  As shown, the 

region of gradation is very small, 

about 2% of the overlap length for the 

step and linear function adhesives, and 

around 5% for the exponential.  The 

peel stress in the adhesive for half of 

the symmetric joint is plotted in Fig. 

15b for each adhesive.  The single 

adhesive joints are in blue, and the 

FGAs are in black.  The step FGA has 

two stress peaks; one at the end of the 

adhesive and one at the interface 

between the two adhesives.  The linear 

and exponential FGAs have a rounded 

stress peak, and appear to result in 

very similar stress distributions.   

The maximum stress in the 

adherend, doubler, and adhesive for the single adhesive joints and the optimized FGA joints is found in Fig. 16.  All 

stress values are normalized by the maximum stress found in the stiffer single adhesive joint in order to plot all 

stresses in the same plot.  The stress reported for the adherend and the doubler is the normal stress in the x-direction, 

and the maximum value of the stress is found at the upper and lower surfaces of the adherend and doubler 

respectively.  With composite laminate adherends, the most important stress in the adherend is usually the peel stress 

(z-direction) between the plies because failure often initiates there.  However, the current configuration contains 

only one ply, so this stress cannot be captured.     

Some important aspects of using FGAs are illustrated in Fig. 9.  First, the FGAs in this study outperformed the 

stiffer single adhesive joint, El.  Adhesive stresses were considerably lower and adherend and doubler stresses were 

not significantly impacted.  This is important because the more compliant single adhesive joint had lower adhesive 

stresses, but higher adherend stress.  The FGAs were able to lower the adhesive stress without affecting the 

adherend stress.  Second, when compared with the El adhesive, the FGAs reduced the adhesive peel stress but did 

not necessarily reduce the shear stress. It will be shown later that the optimum value of the grading variable l is not 

the same for minimizing peel as it is for minimizing shear stress.  Therefore, the relative levels of peel and shear 

must be considered when designing FGAs so that the dominant stress can be minimized.  However, typical 

adhesives are more ductile under shear loading, so peel stresses will normally be the minimized variable. 
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Figure 13.  Single strap joints with (a) constant modulus adhesives 

were compared with joints with functionally graded adhesives, 

including (b) step-wise graded, (c) linearly graded, and (d) 

exponentially graded. 
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Figure 14.  Optimized configurations for the single strap joints for different functions of graded adhesive 

compared: (a) modulus across the adhesive and (b) centerline peel stress across the adhesive. 

 

Another aim of this study was to address the concern that during manufacturing, the adhesive is pressurized and 

heated, often causing the adhesive to flow and even squeeze out of the joint.  If a functionally graded adhesive 

(FGA) is specifically designed for a certain joint, this could either change the shape of the grading, the lower bound 

modulus, or both.  This could result 

in an FGA which has higher stress 

than using the more compliant 

adhesive alone.  This section seeks to 

address this concern by presenting a 

grading sensitivity study.  For the 

purposes of this study, sensitivity 

will refer to the narrowness of the 

range of l values which results in 

lower maximum stresses than those 

obtained using the lower bound 

adhesive, El.  The effects of 

changing the grading parameter l on 

the maximum adhesive stress are 

quantified Fig. 16.  Through this 

study, insight is gained into how 

sensitive the grading is and which 

functions are more tolerant to 

changes in the grading. 
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Figure 16.  Observing the maximum adhesive (a) peel and (b) shear stress as a function of the grading 

parameter l shows how sensitive the maximum stress is to the shape of the grading. 

 

The effects of changing the grading parameter l on the maximum adhesive peel and shear stresses for the three 

FGAs are found in Fig. 16a and 16b respectively.  For all three FGAs, the maximum shear stress is less sensitive to 

the grading parameter than the peel stress.  Also, the optimum value of l is always greater for minimizing the shear 

stress than the peel stress.  This is most likely because the peel stress peak is much more concentrated than the shear 

stress peak, so a steeper gradation is needed to minimize the peak.  Also, if l becomes too short, the stress goes 

above the stress which would be found in a joint with just the more compliant adhesive.  Unfortunately, with the 

addition of pressure, a decreasing l is more likely.  The step function adhesive was the most sensitive: only a very 

small range of values of l results in lower stresses than just using the more compliant adhesive, El.  The linear 

function adhesive was not as sensitive, and it converges to a stress less than that of El when l is large.  Finally, the 

exponential function adhesive had a broad range of l values resulting in low maximum stress, making it the most 

tolerant to changing the grading parameter. 

IV. Conclusions 

Bonded joint elements that use the exact stiffness matrix method, based on an analytical solution, have been used 

to study two types of adhesively bonded joints.  Such elements can approximately capture the behavior of an entire 

joint by using an analytical method to solve for the appropriate shape functions rather than prescribe the shape 

functions using a polynomial interpolation.  This joint element is intended for use as a design tool which can model 

a joint in a mesh-independent manner and still couple with global vehicle-scale finite element models.  As a design 

tool, it is not intended to replace high-fidelity detailed models, but enable fast, efficient sizing and design of bonded 

joints. 

Progressive failure was included in the model by defining the stress as a nonlinear function of the strain and 

enforcing an uncoupled strain-based failure criterion.  Progressive failure of the adhesive was approximated by 

shortening the joint element by the length of the failed adhesive and lengthening the adjoining beam elements.  The 

shape functions obtained for a joint with a linearly elastic adhesive were utilized for the nonlinear adhesive case.  

Softening of the adhesive as the stress increases causes the shape functions to no longer be exact.  However, a mesh 

convergence study conducted for a single lap joint configuration showed that the difference in strength predictions 

between using one joint element and 32 were only approximately 6%.  The predicted strength for a single lap joint 

did not match well with an experimental result from the literature, most likely because of a lack of large rotation 

inclusion in the joint element, which will be added in future versions of the element.  Additionally, it was shown 

how softening of the adhesive layer where the stress is the highest causes the adhesive to spread the stress more 

evenly across the joint.  Such an effect could be replicated without adhesive softening by artificially grading the 

modulus of the adhesive across the joint.  

Bonded joints with functionally graded adhesives (FGAs) were also studied to show the usefulness of the joint 

element in parametric studies and joint design.  A single strap joint with four joint systems (single adhesive, bi-

adhesive, linear, and exponential functionally graded adhesives) were analyzed.  It was shown that for the single 

strap joint configuration investigated, FGAs could reduce the maximum peel stress in the adhesive by up to 17% 

over the more compliant single adhesive joint without having an adverse effect on the adherend stress.  Since the 

optimum grading for shear stress was not the same as that for peel stress, there was a slight increase in shear stress 
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when peel stress was minimized.  However, all grading functions resulted in a significant reduction (> 45%) in peel 

stress over the stiffer single adhesive joint without adversely affecting the load carrying capability or the stress in the 

adherends.  

The study also addressed a practical concern about using FGAs, which is that the flow of adhesive during 

manufacturing would change the shape of the grading and cause the grading to be ineffective.  Therefore, a 

sensitivity study was conducted on the three FGAs to see the effect of changing the shape of the grading (l) to reflect 

what might occur when adhesive is squeezed out of the joint.  The exponential FGA proved to be quite tolerant to 

changes in grading shape.  This could be the basis for a justification for using the more complicated exponential 

FGA over the bi-adhesive.  Although the peel stress reductions were all very similar, the tolerability of the 

exponential grading to perturbation of grading shape, which can occur due to adhesive flow, might make it worth the 

extra complications.   

As was demonstrated in the study, the joint element can be a very useful tool for efficiently exploring a wide 

variety of joint concepts early on in the design phase.  Additionally, such studies can be part of a global-scale 

structural FE model where the design of the joint can be coupled with the overall design of the entire vehicle. 
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