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A modal solution is presented to the aeroelastic equations of very 
exible wings in in-
trinsic form, that is written using inertial velocities and strains as primary variables. After
assuming 2-D thin-airfoil aerodynamics on the wing sections, it is shown that the equations
of motion can be written in canonical state-space form on the intrinsic modal coordinates
without any matrix inversion and including only quadratic nonlinearities. Flutter charac-
teristics are readily obtained from a linearized description of the dynamics equations, and
the approach provides an e�cient way of computing the nonlinear response with large wing
displacements. Both situations are exempli�ed numerically on the Golang wing. The use
of modal coordinates will serve to highlight some of the particular characteristics of the
use of intrinsic beam solutions in aeroelastic problems with geometrical nonlinearities.

I. Introduction

The development of very-long-endurance UAVs with 
exible high-aspect-ratio wings requires e�cient
aeroelastic models that include geometrically-nonlinear structural e�ects. They are commonly built from
combining nonlinear beam models and lifting-line aerodynamics.1{3 A major complexity on the nonlinear
structural dynamics solution lies in the need of parameterize and compute time-accurate �nite rotations along
the wing. Once a parameterization has been picked (quaternions, Euler angles, Rodrigues parameters, etc.),
the resulting equations of motion are given in terms of transcendental functions, which require typically rather
involved solutions process. This problem also appears in rigid-body dynamics, for which the orientation of
the body needs to be computed. The traditional solution is to write the equations in terms of linear and
angular velocities (the Euler-Lagrange equations of motion), leaving the rotations as secondary variables
which are computed from a subsequent integration of the angular velocities.4

A similar approach is possible if the geometrically-exact beam equations are written in intrinsic form.5,6

This approach draws from Kirchho�’s analogy between the spatial and time derivatives,7 and uses a two-
�eld description of the beam dynamics on �rst-derivatives, i.e., strains (internal forces) and velocities. It
results in a formulation that closely resembles that of rigid-body dynamics, with �rst order equations of
motion in both beam strains and velocities. As in rigid-body dynamics, the solution process is closed by the
propagation equations to obtain displacement and rotations. This can be done by either the instantaneous
spatial integration of the space derivatives (strains),8 as in Frenet-Serret formulas of di�erential geometry;
or by time integration of the time derivatives (velocities), as in rigid-body dynamics. Finally, a compatibility
equation between strains and velocities is added to ensure uniqueness of the solution.6

Therefore, for structures subject to follower forces the intrinsic equations can be used to track the dynam-
ics without actually evaluating the local rotations, which only need to be computed at the post-processing
level and do not a�ect the convergence rate and robustness of the solution algorithms. A recent paper by
the �rst author9 has investigated the geometrically-nonlinear free vibrations of composite beams, showing
that an intrinsic description simpli�es quite signi�cantly the evaluation of nonlinear normal modes. This
modeling advantage can be retained in aeroelastic problems: Using lifting-line models, aerodynamic forces
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can be written as follower forces that depend on the local instantaneous induced angle of attack of the wing
airfoil. Noting that the induced angle of attack can be written as a function of the local inertia velocity
in their components in a frame linked to the airfoil, one can write the aeroelastic equations of motion with
structural nonlinearities purely in terms of velocities. This approach has been already followed by Patil,
Hodges and co-workers8,10{12 to obtain compact 
ight dynamics models of very 
exible aircraft. Those
authors used a �nite-di�erence approximation to the spatial component of the equations of motion, and also
extended the analysis to cases with closed kinematic chains (which requires the enforcement of a unique
solution along multiple load paths) using an incremental solution approach.12 In this paper, the intrinsic
form of the nonlinear aeroelastic equations of motion will be projected on the linear normal modes (also
expressed in intrinsic variables) of the 
exible wing, which will be used to obtain a reduced-order model
for nonlinear time-domain and stability analyses. Numerical examples will be �nally used to validate and
evaluate the performance of the solution procedure, that will be compared with results from conventional
displacement-based aeroelastic models.

II. Intrinsic Aeroelastic Model

A. Structural Model

Following Cosserat’s model, a beam will be de�ned as a solid determined by the rigid motion of cross sections
linked to a deformable reference line. There are no assumptions on the sectional material or geometric
properties, other than the condition of slenderness. The intrinsic beam equations used here were originally
derived by Hodges6 and will be written for this work as9

m _x1 � x02 � ex2 + L1(x1)mx1 + L2(x2)cx2 = f1;

c _x2 � x01 + eTx1 � LT1 (x1)cx2 = 0; (1)

where ( _�) and (�0) denote derivatives with time, t, and the arc length, x, respectively. The state vectors x1

and x2 and the force vector f1 are given by

x1 =

(
V




)
; x2 =

(
F

M

)
; and f1 =

(
fa

ma

)
; (2)

where V(x; t) and 
(x; t) are the translational and angular inertial velocities, F(x; t) and M(x; t) are the
sectional internal forces and moments, and fa and ma are the applied forces and moments per unit length,
respectively. All vectors are expressed in their components in the local (deformed) material frame. The
coe�cients in the equations are the sectional mass (m) and 
exibility (c) matrices, which are obtained from
a cross-sectional homogenization process.13 The constant matrix e and the matrix operators L1 and L2 are
�nally de�ned as

e =

"
0 0

~e1 0

#
; L1(x1) =

"
~
 0
~V ~


#
; and L2(x2) =

"
0 ~F
~F ~M

#
: (3)

where ~� is the skew-symmetric (or cross-product) operator and e1 = f1; 0; 0gT . The �rst equation in (1)
is the actual equation of motion, while the second is a kinematic compatibility condition. They need to
be solved with the problem boundary and initial conditions, which are also written in terms of velocities
and forces.6 In this work, we will consider cantilever wings of length L, for which the natural boundary
conditions are simply

x1(0; t) =0;

x2(L; t) =0: (4)

In an intrinsic description, displacements and rotations are dependent variables, which only appear
explicitly if the applied forces and moments in Eq. (1) depend on them and are obtained from time integration
of the inertial velocities9 (or as spatial integration of the sectional forces and moments). This is the same
post-processing done by most solution methods in rigid-body dynamics simulations.4
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B. Aerodynamic Model

The aerodynamic loads are approximated from 2-D unsteady thin-airfoil theory. The wing has constant
chord, 2b and is initially straight along the x axis, which goes from root to tip and cuts the airfoils at a
distance ab aft the aerodynamic center (located at the 1=4-chord). The airfoils are thus in the plane y � z,
with y taken along the zero-lift line and pointing towards the leading edge. This de�nition is also used to
de�ne the local material frame for the structural states de�ned in Eq. (2). The three components of the
translational and angular velocity vector will be then

V =

8><>:
Vx

Vy

Vz

9>=>; and 
 =

8><>:

x


y


z

9>=>; : (5)

If apparent mass e�ects are neglected, the aerodynamic forces and moments per unit length introduced
in the last term of Eq. (2) (given also in their components in a frame rigidly linked to the airfoil) can be
approximated by

fa(x) = �1bV
2
y

8><>:
0

�cd0 � Vz

Vy
cl

cl

9>=>; and ma(x) = �1b
2V 2
y

8><>:
acl � �

2
b
x

Vy

0

0

9>=>; : (6)

In this equation, the drag coe�cient cd0 is assumed to have a known constant value. The instantaneous
circulatory lift is obtained as

cl = � (�qs + �i) ; (7)

where �qs and �i will be referred to as the e�ective and induced angle of attack on the airfoil, respectively.
For a wing moving in still air, the e�ective angle of attack will be obtained as a function of the components
of the inertial velocity vector at the 3=4-chord point and in the plane of the airfoil, as

�qs =
b

Vy
�Tx1; (8)

with
�T =

n
0 0 � 1

b (1� a) 0 0
o
: (9)

The induced angle of attack is obtained from an indicial-response approximation to the lift due to a step
change of angle of attack.14 It will be written as

�i = 2

NaX
n=1

Anbn�n; (10)

where An and bn are the coe�cients of a rational-function approximation to Wagner’s function. For Na = 2,
it will be b1 = 0:0455, b2 = 0:3, A1 = 0:165, and A2 = 0:335. The terms �n are the aerodynamic lags at the
local airfoil, whose evolution in time will be approximated by the di�erential equations,

_�n + !an�n = �Tx1; (11)

for n = 1; :::; Na and with !an = bnV1
b . This assumes that the time-dependent contributions in Vy are

small compared to the free-stream velocity V1. If the rate of change of the aerodynamic lags is very small
compared to the aerodynamic time scale (i.e., 1

!a
n

), then it can be further assumed that _�n = 0, quasi-steady

aerodynamics. Using the fact that
P
An = 1

2 , one obtains from Eqs. (10) and (11) that, under quasi-steady
aerodynamic assumptions, it is �i = �qs. For the general unsteady case, the aerodynamic forces can be
�nally written in compact form as

f1 = ��1b [A1(x1) + �iA2(x1)] x1; (12)
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with

A1(x1) =

2666666664

0 0 0 0 0 0

0 � cd0� Vy Vz �b(1� a)Vz 0 0

0 �Vz 0 b(1� a)Vy 0 0

0 �abVz 0 (a� a2 � 1
2 )b2Vy 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3777777775
;

A2(x1) =

2666666664

0 0 0 0 0 0

0 0 �Vy 0 0 0

0 Vy 0 0 0 0

0 abVy 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3777777775
: (13)

The force vector in the nonlinear aeroelastic system de�ned by Eqs. (1) is then obtained from Eq. (12)
with the induced angle of attack given in (10). Similar expressions were obtained by Shang and Hodges15

and Patil and Hodges,10 using an approximation to the in
ow velocities using Glauert expansions.16 Some
small angle approximations were introduced here which were deemed consistent with the overall level of
approximation of this low-�delity approach. As it can be seen, under the assumption of 2-D aerodynamics,
the force vector given by Eq. (12) only depends on the sectional inertial velocities projected on the (local)
material reference frame. Phase shifts in the unsteady aerodynamics are introduced by the aerodynamic lags
given by Eq. (11), which are also a function of the time history of the local inertial velocities.

III. Nonlinear Equations in Intrinsic Modal Coordinates

The aeroelastic equations of motion for the very 
exible wing are then described by Eq. (1), with the
boundary conditions (4) and forcing terms given by Eqs. (10)-(12). These nonlinear equations will be solved
after projection on the vibration modes of the linear structure, which are obtained next.

A. Linear Normal Modes

A detailed description of a methodology for evaluation of the beam Linear Normal Modes (LNMs) from the
intrinsic equations has been presented in a previous work by the �rst author.9 They are obtained from the
unforced equations of motion linearized around x = 0. In that case Eq. (1) is written as

m _x1 � x02 � ex2 = 0;

c _x2 � x01 + eTx1 = 0: (14)

The LNMs of the problem are the nontrivial solutions to this homogeneous equation that satisfy the
spatial boundary conditions. For the particular case of a uniform beam with constant properties m and c
are constant matrices and the solution can be obtained as9(

�1j

�2j

)
= eA(!j)x

(
�1j(0)

�2j(0)

)
; (15)

with

A(!j) =

"
eT �!jc
!jm �e

#
: (16)

The values of �j(0) and !j are obtained from imposing the speci�c boundary conditions of the problem
and they uniquely determine the jth LNM. For instance, for a cantilever beam of length L, the are obtained
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from the nontrivial solutions of26664
eA(!j)L �I 0

0 �I

I 0

0 0

0 0

0 I

37775
8>>><>>>:

�1j(0)

�2j(0)

�1j(L)

�2j(L)

9>>>=>>>; =

8>>><>>>:
0

0

0

0

9>>>=>>>; (17)

Once those coe�cients (13 per mode) are obtained, Eq. (15) provides an analytical expression for
the mode shapes for straight beams of constant section. This is done without any assumption on their
sectional properties, that is, m and c can be full matrices. Moreover, both matrices will be symmetric
and the exponential matrix in Eq. (15) is easily evaluated using similarity transformations. A consistent
normalization of the modes, which will be used here, is9

Z L

0

�T
1jm�1kdx = �jk;Z L

0

�T
2jc�2kdx = �jk: (18)

In textbook cases (e.g. isotropic Euler-Bernoulli beams), Eq. (15) reduces to the derivatives (in time and
space) of well-known expressions in the beam displacements and rotations. As an example, the Appendix
includes the normalized analytical expressions for the intrinsic LNMs of a beam clamped on a base which is
free to translate in one direction. That particular solution will be later used in this work. Once the LNMs
are obtained (and normalized with the mass and compliance matrices9), the state vectors de�ned in Eq. (2)
can be �nally projected on this modal basis as

x1(x; t) =

1X
j=0

�1j(x)q1j(t);

x2(x; t) =

1X
j=0

�2j(x)q2j(t); (19)

where (q1j ; q2j) are pairs of intrinsic modal coordinates. Since this is a �rst-order theory, each natural
frequency will be associated to two generalized coordinates.

B. Nonlinear Aeroelastic Equations in the Modal Basis

The modal expansion given by Eq. (19) will be introduced now on the structural degrees of freedom in Eqs.
(1). According to Eq. (15), the aerodynamic lags at a given section will be written as

�n =

1X
j=0

�T�1j(x)qanj(t); (20)

After imposing orthogonality conditions on the mode shapes,9 the aeroelastic equations of motion (1)
can be written in intrinsic modal coordinates, as

_q1j � !jq2j +

1X
k=0

1X
l=0

�
�jkl1 � �1�jkl1

�
q1kq1l +

1X
k=0

1X
l=0

�jkl2 q2kq2l+

�
NaX
n=1

 
2Anbn

1X
k=0

1X
l=0

�1�
jkl
2 q1kq

a
nl

!
= Q1j ;

_q2j + !jq1j �
1X
k=0

1X
l=0

�kjl2 q1kq2l = 0;

_qanj + !anq
a
nj � q1j = 0; (21)
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for j = 0; 1; 2; ::: and n = 1; :::; Na, and with

�jkl1 =

Z L

0

�T
1jL1 (�1k) m�1ldx;

�jkl2 =

Z L

0

�T
1jL2 (�2k) c�2ldx;

�jkl1 =

Z L

0

�T
1jA1 (�1k)�b�1ldx;

�jkl2 =

Z L

0

(�T
1jA2 (x1(x; 0))�b�1k)(�T�1l)dx: (22)

The last equation was built on the assumption that the horizontal velocity can be approximated by the
initial velocity (the free-stream velocity) in the evaluation of A2 in Eq. (13). This is consistent with the
approximation done in the di�erential equation for the aerodynamic lags, Eq. (11). The generalized forces

on the �rst equation in (21) are computed as Q1j =
R L

0
�T

1jf1dx. After truncation of the expansions (19)
to Ns modes, the system dynamics are described by 2Ns structural states and Na �Ns aerodynamic states.
Note that for constant properties along the wing span, the mode shapes needed to evaluate these integrals,
are known analytically from Eq. (15). Finally, if quasi-steady aerodynamic assumptions can be made, it will
be _q2

nj = 0 in the last equation of Eq. (21) and the aerodynamic states are obtained as qanj =
q1j
!a

n
.

C. Kinematic Constraints

The intrinsic model describes the wing dynamics using the local inertial velocities in the material frame. In
many cases, the problem needs to be solved with kinematic constraints, such as in the case of wings with
constant forward-
ight velocity (or mounted in a wind tunnel). Those constraints can be imposed in at
least two ways: 1) by modifying the boundary conditions of Eq. (1) at x=0; or 2) by introducing Lagrange
multipliers on the modal Eqs. (21) obtained using free-end boundary conditions. In this last case, the �rst
of the equations (21) is rewritten as

_q1j = F1j(q1;q2;q
a; �1) +Q1j + �T�1j(0); (23)

where � is the vector of Lagrange multipliers introduced to enforce the kinematic constraints at the wing
root, which are imposed as x1(0; t) = x10(t). In modal coordinates, that is

1X
k=0

�1k(0)q1k � x10(t) = 0: (24)

The problem is the well posed by solving together Eqs. (23) and (24). This de�nes in set of di�erential-
algebraic equations, that it can be easily transformed into a di�erential form by taking derivatives in the
last equation and substituting _q1j from Eq. (23) into the resulting expression. This gives an expression to
evaluate the Lagrange multipliers, as

1X
k=0

�
�T�1k(0)

�
�1k(0) = _x10(t)�

1X
k=0

(F1k +Q1k) �1k(0): (25)

Eq. (25) de�nes a linear system of equation that from which the Lagrange multipliers can be directly
solved. The constraints can then be �nally enforced on Eq. (23) without increasing the number of states of
the problem.

IV. Numerical Studies

As mentioned in the introduction, the intrinsic equations are particularly advantageous for problems
with open kinematic chains and without dead loads. This section will investigate two such scenarios: forced
vibrations induced by the beam support, and aeroelastic stability of cantilever wings. The objective is �rst
to assess the validity of the approach, by comparing its results with published ones, and second to explore
the speci�c characteristics of the intrinsic formulation in modal coordinates.
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A. Forced vibrations in vacuum of a cantilever beam on a moving base

The con�guration experimentally studied by Pai17 will be �rst considered. It is a prismatic cantilever
beam made of Titanium (i.e., mass density 4430 kg/m3, Young modulus 127 GPa, Poisson ratio 0.36) with
dimensions 479:0 � 0:45 � 50:8 mm (along axis x, y, and z, respectively). This beam is clamped onto a
moving base with a prescribed translational velocity along the y axis. This test case will therefore serve to
exercise the nonlinear structural equations in intrinsic modal coordinates with constraints for the moving
support. The boundary conditions to the problem will therefore be

x1(0) = x10;

x2(L) = 0: (26)

In particular, for this problem it will be xT10 = f0; V0sin(
0t); 0; 0; 0; 0g. It is a plane problem and the beam
kinematics can be captured by a combination of axial modes with clamped-free boundary conditions and
in-plane bending modes with slide-free boundary conditions. Closed-form analytical expressions for these
mode shapes exist and can be found in the Appendix. Finally, condition (26) will be applied as a kinematic
constraint as described in section III.C. Figure 1 shows the instantaneous velocities along the beam on 50
consecutive steps during one period of base oscillation for 
0 = 9 Hz, V0 = 0.1399 m/s and �1 = 0. It
compares three sets of results: 1) the present solution in intrinsic modal coordinates using 5 axial and 5
in-plane bending modes; 2) results of a �nite-element solution based on displacements and the Cartesian
rotation vector as independent variables18 (using 25 spanwise elements); 3) the laser-vibrometer experimental
results of Pai.17 A total of 100 time steps per cycle of excitation are taken in the numerical solutions. Figure
1 shows the local in-plane components of the translational velocity in the instantaneous material frame and
the spanwise distribution of angular velocity. Note that the nonlinear e�ects are small and were not recorded
in the experimental setup. They have been included for both numerical solutions. Excellent agreement is
obtained between all three results.

0 0.2 0.4 0.6 0.8 1
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0

0.05

V
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0

0 0.2 0.4 0.6 0.8 1
−5

0

5

V
2/V

0

0 0.2 0.4 0.6 0.8 1
−20

0

20

Ω
3L/

V
0

x/L

(a) Intrinsic Modal Solution (dotted line for available17 experi-
mental data)
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0
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0

0 0.2 0.4 0.6 0.8 1
−5

0

5

V
2/V

0

0 0.2 0.4 0.6 0.8 1
−20

0
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x/L

Ω
3L/

V
0

(b) Finite-Element Solution

Figure 1: Velocity pro�les (components in material frame) at 50 consecutive steps during one period of
oscillation [
0 = 9 Hz, V0 = 0.1399 m/s].

A fundamental characteristic of the present approach is that the primary variables in the problem are the
velocities and internal forces/moments, expressed in their components in a body-attached reference frame.
As it was also discussed above, this su�ces to compute the 2-D unsteady aerodynamics of the wing airfoils.
This means, in particular, that the e�ect of the local geometric angle of attack is not captured through the
torsional vibration modes, but rather appears as the induced angle of attack created by out-of-plane bending
modes. To exemplify this, the previous con�guration is now subject to a constant velocity of the moving
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base (V0=10 m/s, 
0=0) and to distributed applied moments. To simplify the solution, the moments are
chosen such that the generalized forces Q1 in Eq. (21) are zero for all modes except for the �rst torsional
one. They are applied as harmonic functions of frequency 0.25 Hz and unit amplitude of the generalized
force. The input was linearly ramped through two cycles of excitations to remove transient e�ects and the
solutions were obtained with 100 time steps per cycle. Results are shown in Figure 2.
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Ω
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b
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b
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Figure 2: Non-zero tip velocities for the cantilever beam on a moving base with constant velocity (V0 =
10 m/s), under applied distributed moments on the �rst torsion mode (Q1 = sin�t2 ), and for an increasing
number, nb, of out-of-plane bending modes.

Figure 2 compares the non-zero velocities at the beam tip (x=L) obtained from the nonlinear equations
(21) in vacuum. The solution includes only one torsional and one in-plane bending mode and an increasing
number (nb) of out-of-plane bending modes. The excitation is a constant velocity (captured by the in-plane
bending mode, which is a rigid body mode) and the distributed twist moment described above. The nonlin-
ear terms in the equation evaluate the induced out-of-plane velocity on the beam due to the local geometric
angle of attack. As the distribution of angles of attack in this example has the shape of the �rst torsional
mode but it is captured by the out-of-plane bending modes, one needs several bending modes to reproduce
that shape. In particular, four bending modes were needed in Figure 2 to obtain an accurate distribution of
out-of-plane velocities on the beam. Integrating the angular velocity in time, one obtains the instantaneous
geometric twist and the free end. The maximum value is �1;max=6.8 deg, which corresponds to the maximum
value of the out-of-plane velocity V0sin(�1;max)=1.18 m/s in Figure 2.

Note �nally in Figure 2 that for a (small) even number of nodes, a large bending angular velocity (
3)
is obtained. This component is due exclusively to the numerical approximation and it converges relatively
slowly to zero when increasing the number of modes. These results indicate that the wing aeroelasticity
in intrinsic modal coordinates will show di�erent modal interactions than those seen in more conventional
displacement-based descriptions. Particular care, through convergence studies, must be taken to ensure that
the selected modal basis provides an appropriate approximation for the wing kinematics.

B. Aeroelastic response of a cantilever wing

The Goland wing19 is a numerical test case that has been extensively used as a benchmark for aeroelastic
solutions with structural dynamic models based on beam elements.2,11,20{22 Its relevant properties are
included in Table 1. It should be noted that this de�nition corresponds to the original description due to
Goland,19 instead of the heavy version (often referred to as Goland+) of Eastep and Olsen.23 To compute
the aeroelastic equations of motion in intrinsic coordinates, Eq. (21), motions in the plane of the wing are
expressed in terms of slide-free in-plane bending LNMs. The free-stream velocity can then be introduced
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through kinematic constraints on those modes at the root. Due to the o�set between the elastic axis and the
cross-sectional center of gravity, the out-of-plane bending and the torsional degrees of freedom are coupled.
The non-zero components �rst four modes bending/torsion modes are given in Figure 3. Both the velocity
and force components of the modes, which have been normalized as in Eq. (18), have been included in the
�gure. Note that all mode shapes have both out-of-plane bending and torsional components and they match
a the results obtained with di�erent formulations.21
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Figure 3: Non-zero components of the �rst four twist/out-of-plane bending modes of the Goland wing
[!1=7.66 Hz, !2=15.24 Hz, !3=38.80 Hz, !4=55.33 Hz].

The dynamic stability characteristics are obtained with a linearized model around the solution for constant
forward 
ight velocity, that is, with a constant value on the �rst in-plane mode (it will be identi�ed as mode
0). From Eq. (36) in the appendix, it is q10 = V1

p
�AL and q20 = 0. The linear dynamic model will only

need to include the �rst torsion/out-of-plane bending modes (modes 1 to nb). The resulting linear equations
of motion are

_q1j = !jq2j � q10

nbX
k=1

h
�jk0

1 + �j0k1 � �1
�
�jk0

1 + �j0k1

�i
q1k + q10

nbX
k=1

NaX
n=1

2�1Anbn

h
�j0k2 qank +

�jk0
2

!a
n
q1k

i
;

_q2j = �!jq1j + q10

nbX
k=1

�0jk
2 q2k;

_qanj = �!anqanj + q1j ; (27)

for j = 1; : : : ; nb. For the parameters of Goland’s test case, it is �jk0
2 = 0, which further simpli�es the

description. For a given air density, the eigenvalues of this linear system determine the dynamic stability
of the wing as a function of q10 = V1

p
�AL. As it was discussed in the test case in section IV.A, several

bending modes may be needed to capture the changes of local angle of attack due to the twisting of the
wing. Table 2 includes the results for increasing number of modes and air density �1 = 1:02 kg/m3 as in
Ref. 19. Figure 4 shows the eigenvalues of Eq. (27) obtained with eight modes (nb = 8) for increasing
values of the free-stream velocity. In particular, the velocity part (q1j) of the eigenvector of the unstable
root at V1 = 141 m/s with nb = 8 has amplitudes (1.00, 0.23, 0.22, 0.20, 0.09, 0.00, 0.01, 0.04) on the
di�erent linear modes. From this and from Table 2, it can be seen that one needs a minimum of between

aAs already mentioned, the mode shapes in intrinsic variables are the time and spatial derivatives of those obtained in a
formulation in displacements. The natural frequencies are the same.
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six to eight modes to obtain a good estimation of the 
utter onset point with the intrinsic description. As
a comparison, four modes have been found to be enough to estimate the 
utter speed of the Goland wing
with displacement-based theories.21 As a general rule, the intrinsic formulation trades a larger size of the
linear problem by a simpler description of the nonlinear dynamics.

Table 1: Relevant properties of the Goland wing

Chord, 2b 1.8288 m Mass per unit length, �A 35.71 kg/m

Semi-span, L 6.096 m Moment of inertia around e.a., �I1 8.64 kg�m
Elastic axis (from l.e.) 33% chord Torsional sti�ness, GJ 0.99�106 N�m2

Center of gravity (from l.e.) 43% chord Bending sti�ness, EI2 9.77�106 N�m2

Table 2: Flutter velocity and frequency for the Goland wing [�1 = 1:02 kg/m3]

Author Model Vf , m/s !f , rad/s

Present (nb = 4) Intrinsic beam + 2-D aero (modal) 130 69.1

Present (nb = 6) Intrinsic beam + 2-D aero (modal) 140 69.9

Present (nb = 8) Intrinsic beam + 2-D aero (modal) 141 69.8

Sotoudeh et al.11 Intrinsic beam + 2-D aero (�nite di�erences) 137 70.1

Wang et al20 Intrinsic beam + UVLM 164 -

Murua et al.21 Displacement beam + UVLM 165 69

Flutter results in Table 2 are compared to those of Sotoudeh et al.,11 who have also used an implicit
beam model together with the 2-D unsteady aerodynamic model of Peters.16 The solution of these authors
is based on a �nite-di�erence approximation to Eqs. (1), while the present one uses linear normal modes. As
it can be seen both solutions compare very well. Table 2 also includes 
utter results obtained using full 3-D
aerodynamics coupled with beam models, in particular, using the unsteady vortex lattice method (UVLM).
It is clear that the assumption of 2-D aerodynamics introduces a signi�cant error for such a short wing span,
yet this test case still serves to verify the current solution approach.
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Figure 4: Root locus of the linear Goland wing with nb = 8 and Na = 2. Air speed from zero to V1 = 150
m/s in increments of 5 m/s. Instability occurs at 141 m/s.
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It should be �nally noted that the linearized aeroelastic equations, Eqs. (27), were obtained around
the forward 
ight conditions. This is not because of the trimming of the aircraft in steady 
ight (although
this could be also the case) but because the modal projection was done in Eq. (19) using the modes about
the zero reference state x = 0, and those include the beam inertial velocities. This is a direct consequence
of the fact that the air speed is not included explicitly in the intrinsic equations. To exemplify this, the
full solution to the linearized equations (about x = 0) and the nonlinear equations (21) is obtained in time
domain for zero external forces and non-zero initial velocities on the second bending mode. These results
would be relevant in the design of gust alleviation mechanisms for very 
exible wings, which is one of the
main potential applications of this model and may required a linearized description of the dynamics. For the
nonlinear response, an axial sti�ness EA =109 N has been added to the original wing parameters de�ned
by Goland.19 The numerical results are obtained using an expansion with 13 linear normal modes: 4 axial,
8 out-of-plane bending/torsion modes, and the rigid-body in-plane bending mode. Note however that the
absence of 
exible in-plane bending modes will prevent the analysis to capture the \cosine" e�ect in the ro-
tation of the blades, which was not considered important here. The solution is obtained with a fourth-order
explicit Runge-Kutta solver with time step �t = 0:01
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Figure 5: E�ect of linearization around x = 0 on the transient response of the Goland wing [V0 =100 m/s
and initial conditions on second bending mode with initial tip vertical velocity 10 m/s].

Figure 5a shows the free vibration in vacuum for V1 = 100 m/s and initial tip velocity of 10% of this value
(this determines the amplitude of the initial conditions on the second bending mode). From the comparison
between the linear and the nonlinear response, it is clear that the linearization of the modal equations about
x=0 (i.e., static undeformed conditions) misses the contribution of the forward-
ight velocity into the local
out-of-plane axis as the wing twists. The presence of air is illustrated in Figure 5b, which corresponds to the
same conditions but with �1 = 1.02 kg/m3. As it can be seen, the aerodynamic damping has a very similar
e�ect on both the linear and the nonlinear models, despite the larger initial oscillations in the nonlinear case.
This could mean that a controller for gust alleviation designed on the linearized dynamics may perform well
on di�erent equilibrium points.

V. Conclusions

This work has presented a modal solution of the dynamic aeroelasticity of wings in intrinsic variables.
The appeal of this approach is in its ability to deal with geometrically-nonlinear e�ects using a rather
simple description: The equations of motion in the modal coordinates have only quadratic nonlinearities
and their constant coe�cients are obtained from integral expressions involving only the sectional (structural
and aerodynamic) properties and the mode shapes. The assumptions are those commonly used in the
literature: thin strip unsteady aerodynamics and geometrically-nonlinear beam structural models. The
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modal formulation has been presented for a straight wing with constant properties, including anisotropic
elastic behavior, but it can be easily expanded to more complex geometries (e.g. a full aircraft). In that case,
the analytical equations to obtain the mode shapes would need to be replaced by numerical solutions. Note
however that the kinematic relations between forces/moments and velocities, on one side, and displacements
and linear rotations, on the other, ensure that the linear normal modes in intrinsic coordinates will be the
time and spatial (along the reference line) derivatives of the mode shapes in a displacement formulation
with beam elements. It should be therefore possible to obtain the mode shapes for the intrinsic formulation
directly from the results of standard �nite-element packages. This should be evident from the closed-form
expressions including in the appendix to this paper, but still needs to be investigated for more complex
geometries.

In intrinsic variables, the only necessary information for each wing airfoil is its inertial velocity (linear
and angular) and the resulting of the forces and moments created on it by the local external actions (2-D
aero loads) and the rest of the structure. Although it can still be computed, there is no need to know
its actual position and orientation in space. This characteristic has been retained in the projection of the
equation of motion into modal coordinates, which has simpli�ed the solution. Direct application of this
procedure however, would not allow for kinematic constraints on the wing, which could be as simple as
a constant translational velocity (i.e., forward 
ight case). To overcome this, the paper has introduced a
simple mechanism to enforce root motions, based on free-free modes and Lagrange multipliers, that keeps
the solution structure of the problem. Numerical results have shown the validity of the approach.

A �nal aspect that must be remarked is that the solution to the intrinsic equations may not be always
intuitive for the aeroelastician. First, angle of attack e�ects are split between torsional (angular rate e�ect)
and bending (induced velocity e�ect) degrees of freedom. This also alters the description of the modal in-
teractions occurring in linear stability (
utter) analysis. Second, by solving the equations of motion in the
local material frame, any forcing that depends on an external reference (from the forward 
ight velocity,
discussed above, to gust loads or gravity forces) requires attention. Only root constraints were studied here,
but methods are already available for more general situations.12 Third, the linearization of the equations
is carried out on the intrinsic variables, and it can in principle be independent of any linearization of the
kinematic relations that link the velocities or internal strains with the actual displacement �eld in the beam
elements. This could complicate the interpretation of linearized results given in velocities, but a linear
velocity-displacement relation can always be assumed in such cases. As we have shown in this paper, results
from the intrinsic formulation match those of displacement-based theories with a much simpler description.
The modal solution in particular is expected to be a good basis for the design of 
ight control systems for
vehicles with large wing displacements.
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Appendix

Using the solution process of section III.A, closed-form expressions can be easily obtained for the LNMs
in the intrinsic description of a constant section Euler-Bernoulli beam with sectional constants

m = diag f�A; �A; �A; �I1; 0; 0g ;
c�1 = diag fEA; 0; 0; GJ;EI2; EI3g : (28)

They are shown next for the case of a cantilever beam on a moving base along the y axis.

1. Axial modes.

The corresponding non-zero degrees of freedom in Eqs. (15) are then(
�V1

�F1

)
= exp

 "
0 � !

EA

�A! 0

#
x

!(
�V1(0)

�F1
(0)

)
: (29)

This equation is solved with clamped-free conditions, that is, �V1(0) = 0 and �F1(L) = 0. The eigenvalues

of this problem are !j =
q

E
� �j , with �j = 2j�1

2
�
L and j = 0; 1; 2; :::;1. The corresponding eigenvectors,

after normalization, are

�V1j =

r
2

�AL
sin (�jx) ;

�F1j = �
r

2EA

L
cos (�jx) : (30)

2. Torsional modes.

Eqs. (15) reduce in this case to(
�
1

�M1

)
= exp

 "
0 � !

GJ

�I1! 0

#
s

!(
�
1(0)

�M1
(0)

)
; (31)
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with �
1(0) = 0 and �M1(L) = 0. These equations are identical to those of the axial modes but with
di�erent coe�cients. Frequencies and modes can be obtained directly from the previous results.

3. Bending modes in the (x,y) plane (slide-free)

In this case, it is 8>>><>>>:
�V2

�
3

�F2

�M3

9>>>=>>>; = exp

0BBB@
26664

0 1 0 0

0 0 0 � !
EI3

�A! 0 0 0

0 0 �1 0

37775x
1CCCA
8>>><>>>:

��V2

��
3

��F2

��M3

9>>>=>>>; ; (32)

The slide-free conditions are �F2(0) = 0, �
3(0) = 0, �F2(L) = 0 and �M3(L) = 0). De�ning !j =

(�j)
2
q

EI3
�A , the eigenvalues for this problem are the roots of the characteristic equation,

cos(�jL) sinh(�jL) + sin(�jL) cosh(�jL) = 0; (33)

and the corresponding mode shapes are

�V2j =
kjp
�AL

[cos(�jx) + cosh(�jx)� �j(cos(�jx)� cosh(�jx))] ;

�
3j =
kj�jp
�AL

[� sin(�jx) + sinh(�jx) + �j(sin(�jx) + sinh(�jx))] ;

�F2j = kj�j

r
EI3
L

[sin(�jx) + sinh(�jx)� �j(sin(�jx)� sinh(�jx))] ;

�M3j = kj

r
EI3
L

[cos(�jx)� cosh(�jx)� �j(cos(�jx) + cosh(�jx))] ; (34)

with j = 1; 2; :::;1 corresponding to the positive roots of Eq. (33), and with

�j =
cos(�jL)� cosh(�jL)

cos(�jL) + cosh(�jL)
;

k2
j =

(cos(�jL) + cosh(�jL))
2

2
�
cos2(�jL) + cosh2(�jL)

� (35)

This problem also has a rigid-body mode (!0 = 0) as a solution. The only non-zero component of the
normalized mode shape is

�V20(s) =
1p
�AL

: (36)

4. Bending modes in the (x,z) plane (clamped-free)

Finally, bending modes for clamped-free case are obtained in a similar way as above. They are included here

for completeness. The natural frequecies are !j = (�j)
2
q

EI2
�A , where �j are the solutions to

cos(�jL) cosh(�jL) + 1 = 0: (37)

The corresponding eigenvectors are

�V3j =
1p
�AL

[cos(�jx)� cosh(�jx)� �j(sin(�jx)� sinh(�jx))] ;

�
2j =
�jp
�AL

[sin(�jx) + sinh(�jx) + �j(cos(�jx)� cosh(�jx))] ;

�F3j = �j

r
EI2
L

[sin(�jx)� sinh(�jx)� �j(cos(�jx) + cosh(�jx))] ;

�M2j =

r
EI2
L

[� cos(�jx)� cosh(�jx) + �j(sin(�jx) + sinh(�jx))] ; (38)
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with

�j =
cos(�jL) + cosh(�jL)

sin(�jL) + sinh(�jL)
: (39)
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