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Integrated Computational Engineering (ICE) is a valuable and cost effective resource
for ensuring structural integrity and damage tolerance of future aerospace vehicles that
are made with laminated fiber reinforced composite laminates. Towards that end, the
variational multiscale cohesive method (VMICM) reported by the authors in previous ATAA
SDM conferences,?> 2% is extended further to address problems of mixed mode in-plane
crack propagation in fiber reinforced laminates. A set of experimental results obtained
using a single edge notch eccentric three point bend test is used for validating the VMICM
predictions. Further the applicability of VM CM is demonstrated through simulation of
mixed mode in-plane crack propagation for different specimen geometries and different
loading conditions.

I. Introduction

A large number of tests, which can contribute to a substantial portion of the total design and manu-
facturing cost of an aerospace vehicle, are required to ensure the structural integrity and damage tolerance
of vehicle structures. These costs can be reduced by developing validated and physics based computational
models that can exploit the power of advanced simulation techniques and the increasing computational
power of digital computers. High fidelity computational models can provide valuable information regarding
the performance of a structure upto and including failure, provided the modeling is based on correct physics,
and is validated using laboratory tests that are designed to be discriminatory. The field of integrated com-
putational engineering (ICE), that encompasses this activity, and also includes, in the case of composites,
the modeling of the manufacturing process'# is a rapidly growing and indispensable field which will continue
to provide new insights into the performance of advanced composite structures.

The finite element method (FEM), is a key enabler of ICE. It has become the mainstay of problems
involving any of the broad phenomena of material deformation - elasticity, plasticity and damage. However,
its utility for problems of crack propagation has met with mixed success. The distinguishing characteristic
of crack problems, in general, is the formation and propagation of sharp boundaries, which are not part
of the original boundary value problem. This is not an obstacle, if the resulting crack path is known a
priori, and the mesh is ensured to have elemental surfaces align along possible crack surfaces; but often in
practice, neither conditions are feasible. For all but trivial crack propagation problems, the crack path is not
known beforehand and has to be determined as part of the solution process, and in structural level problems
adaptive mesh generation/realignment is prohibitively costly. The traditional Galerkin FEM implementa-
tion is not suitable for problems that encounter crack propagation and also involve strain localization, as
it leads to mesh subjective schemes, and the related limitations have been well documented in the context
of spurious mesh related length scales’®? and requirements of mesh alignment relative to the localization
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band.'”22Further in the context of cracks, the “global” non-linearity of the load response which depends on
the microstructure of the material, also requires new constitutive relations which can span across different
length scales. These additional cohesive relations between the crack face opening and its internal tractions,
referred to as traction-separation relations (Figure 1), lead to the more challenging class of cohesive cracks
and bridging cracks, where the crack surface may be a diffused zone of damage rather than a sharp boundary.

Consider the case of through-the-thickness crack propagation in fiber-reinforced composites. Because
of the different length scales associated with the microstructure of a composite material and the resulting
composite structure, a multitude of failure mechanisms can be simultaneously operative, leading to a very
complex damage progression in a composite structure. A sharp, through the thickness crack can be present
in these composites initially, but, as soon as local damage (possibly in the form of matrix micro-cracking)
accumulates, crack blunting and distributed damage occurs across the highly stressed areas around the initial
crack tip. As this initial crack starts to grow, a damaged zone of material (bridging zone) evolves in the wake
of the instantaneous crack tip. Thus, unlike in monolithic materials, such as metals, there is no well defined
“crack” that can be identified. Instead, a diffused zone of damage is seen to advance. This distributed
damage results in additional resistance to advancing damage growth, largely contributed by fiber bridging
and pullout in the crack wake . This enhanced fracture resistance is desirable and is a major contributor
to the increased toughness of these laminated composites.2 7825 But for the analytical treatment, these
microstructural mechanisms often give rise to a process zone that is considerably larger than that permitted
for the application of linear elastic fracture mechanics (LEFM) models, and the material non-linearity that
is induced by these mechanisms leads to a relief of the singular fields at the mathematically sharp crack tip,
that would otherwise persist in a strict LEFM setting of an elastic material. In this context, cohesive zone
models, which embed process zone mechanics through nonlinear traction-separation relationships across the
crack faces become an important tool for analysis.? 2127:30,33,35-37 However the numerical implementation
of cohesive zone modeling is often through surface elements which need to be placed along intended crack
paths, limiting crack growth studies to cases where a-priori information of the crack path is known. This
major limitation can be overcome by developing continuum elements that can simultaneously be used for
both continuum and non-continuum (severed by a crack or cracks, leading to a discontinuity in the displace-
ment field) modeling. Thus the primary task of this paper is presenting the variational multiscale cohesive
method (VMCM), which is a numerical framework to embed cohesive models into continuum elements, and
demonstrating its effectiveness by simulating mixed-mode failure in fiber-reinforced composites.

Since the aim is to present and validate a physically consistent and numerically objective cohesive crack
propagation framework which involves elemental enrichment to capture the discontinuous modes associated
with crack propagation, it is worthwhile to note that a comparable, but significantly different development,
involving nodal enrichment by partition of unity functions, like the extended finite element (XFEM)!!:18:19
and?* also results in objective and physically consistent simulations of crack problems, and the differences
and merits of the elemental enrichment over nodal enrichment are highlighted in the concluding section.

This paper is organized as follows: In Section II, the variational multiscale concept of subgrid scale
phenomena like cracks is introduced. Then the concept is extended to cracks represented as discontinuous
displacement modes and the relevant weak formulation of the problem is derived. This formulation is then
cast in a finite element framework in Section III, which presents the multiscale element construction and
the resulting discretized equations. The analytical and numerical framework developed until this point is
demonstrated through simulation of crack propagation in laminated fiber reinforced composites in Section IV,
and by comparison with experimental observations in Section V. Lastly, concluding remarks about the
numerical framework and its applicability are provided in Section VI.

II. Variational Multiscale Formulation

Physically, crack propagation is a process of configurational change by which new surfaces are created.
The creation of new surfaces is governed by surface laws, different from the constitutive laws of the continuum.
Classically, this process of surface creation is handled by effecting changes in the numerical discretization,
involving incremental grid refinement and remeshing. However, changing the grid to reflect the evolving
domain boundaries is computationally very expensive. Instead, an alternative view of cracks as displace-
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ment discontinuities in the continuum domain is considered here. The concept of discontinuous displacement
fields and the resulting singular strains finds its mathematical treatment in the work of*? on BD(f2), the
space of bounded deformations for which all components of the strain are bounded measures. This idea was
used to develop a numerical framework for the problem of strong discontinuities due to strain localization
by.1:28:29 The physical process of strain localization involves localized changes in the continuum constitutive
response and no new boundaries and surface laws appear, but its numerical treatment introduced the use
of the distributional framework and discontinuous basis functions, which was adopted in'? for embedding
micromechanical surface laws into a macroscopic continuum formulation, albeit in a multiscale setting. The
presentation in this work follows and extends these multiscale arguments specifically for numerical represen-
tation and evolution of cohesive cracks.

As shown in Figure (3), a crack opening can be mathematically represented by a discontinuous displace-
ment field over an uncracked body. It is not difficult to see that this is rigorous and general enough to
represent all possible crack geometries in both two and three dimensional solids. However, the following
numerical challenges persist:

e Numerical representation of displacement discontinuities using smooth basis approximations introduce
an artificial numerical length scale and thus lead to a mesh subjective scheme. On the other hand,
usage of discontinuous basis leads to singular strains.

e Topologically, crack surfaces are zero measure sets in the domain volume. Thus stand alone represen-
tations of them would require zero volume mesh elements.

In this work, a discontinuous basis is adopted and the necessary distributional arguments will follow. The
use of zero volume elements (interface elements, standard cohesive zone elements, etc.) renders the scheme
subjective to the numerical discretization, hence is not considered. Instead a variational multiscale setting
is introduced where the crack, represented by a displacement discontinuity, is seen as a subgrid fine scale
discontinuous field superposed on a coarse scale field.

A. Multiscale Formulation of Discontinuous Displacement

The weak formulation of the quasi-static elasticity is the point of departure for the multiscale development.
Also, the scope of the presentation is limited to the infinitesimal strain theory of elasticity. Starting with the
weak form: For § C BD(Q)and V C H'(Q) , findu € S = {v| v; = g;on Ty, }, such that Vw € V = {v| v; = 0
onT, },

/Vw:adV:/wde—l—/wTdS (1)
Q Q Th

where f is the body force, g; and T are the prescribed boundary displacement and surface traction, respec-
tively. o is the (Cauchy) stress tensor given by o = C : sym(Vu), where C is the fourth-order elasticity tensor.

Scale decompositions of v and w are now introduced. The decompositions are qualified by requiring that
the fine scales, v’ and w’, vanish outside the neighborhood of the crack path, which is contained in Q' (Figure
(4)), which is referred to as the microstructural or fine-scale subdomain

u= _u_  + (2a)
~— ~—
coarse scale fine scale
—_ /
w = w + w 2b

coarse scale fine scale

ueS={vlv,=g onl,} (2¢)
weV={v]v=0o0nTy,} (2d)
u' €8 ={v] v=0o0n Q\int()} (2e)
w' €V ={v] v=0on Q\int(')} (2f)
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where S =S @8 and V =V @ V'. Further, V and V' are chosen to be linearly independent.

In the above domain decomposition, a surface I'“ is now introduced to represent a crack, as shown
in Figure (4). As already noted, the classical jump condition on surface tractions which enforces force
equilibrium, requires that stress be a continuous field. Thus [o - n] = 0 and T = T¢ = T°. Now invoking
linear independence of V and V',

Q/Vw:advQ/wdeJr/wTdS (3a)

I'n
/Vw’:odV:/w’de (3b)
97 9%

Using integration by parts and standard variational arguments,

!Vw:adV:!wde+F[wTdS (W) (4a)
/w’a-ndSz/w’ ¢ ds (W) (4b)
fre e

(W) is the weak form of the coarse scale problem and (\E) is the weak form of the fine scale problem.
(W) will be used to eliminate the fine scale field, v/, from (W).

B. Fine-Scale Field and Micromechanics Embedding

The fine scale weak form, (W’), allows us to embed any traction based micromechanical surface-law, rep-
resented by T, into the continuum formulation. Specifically, for the problem of crack propagation, T¢ is a
cohesive surface law, which is determined either experimentally or analytically, and models the load bearing
ability of the crack wake region. Restricting our discussion to 2D, it can be expressed as

T =TSn+T5m (5)

where n and m are the unit normal and tangent vectors to the crack face, respectively. T)° and T, are the
normal and tangential tractions on the crack faces, respectively.

Before discussing the specific functional forms of 7)¢ and T, it will be helpful to briefly digress into a

discussion u’. The fine scale field, v/, is composed of a continuous field and a discontinuous field,
uw' = Mre [u] , where Mpre = N — Hpe (6)

here N is a continuous basis function defined on €, Hr. is a Heaviside function which has its discontinuity
on I'°, and [u] can be written as,

[u] = [un] n+ [um]m (7)

where [u,] and [u,,] are scalar values representing the normal and tangential components of [u], referred
to as the crack face opening displacement and crack face shear displacement, respectively. Further, in the
literature, the crack face opening mechanism is referred to as Mode-I and crack face shear mechanism is
referred to as Mode-II. This convention will be followed here onward.

Now, in this work, we consider simple micromechanical surface traction laws given by:

Ty =Ty — Halua] (8a)
Ty =Ty — Hnl[um] (8b)
where T} - and H,, are the Mode-I critical opening traction and Mode-I softening modulus, and T, and H,,

are the Mode-II critical shear traction and Mode-II softening modulus.
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C. Coarse-Scale and Fine-Scale Weak Forms

Now we turn our attention to deriving explicit expressions for (W) and (W’) in terms of the displacement
fields. Considering Equations (2a) and (6), the expression for strain and stress are:

e =vVu+ VN [u] + érc n @ [u] (9a)
oc=C:(Vu+ VN [u]) (9b)

and as explained earlier, only the regular parts of the strain tensor contribute towards the stress. Substituting

this stress expression into (W) and (W), we obtain the weak form expressions in term of the displacement
fields,

/vm:(cz(VH+VN®[[u]])dV:/ﬁdeJr/deS (10)
Q Q Ty

/w’ C:(Vu+ VN @ [u]).n dS = /w’ T¢ dS (11)
Ie Te

now substituting Equation (5) in Equation (11) and rearranging terms,

/wu@mw:/awwms (12)

FC FC
where,
L(u)) =(C: VN@n+H,n@n+ Hpm@m )u]
F(u) =T, n+1T, m—-C:vu

Using Equation (12), [u] can be eliminated from Equation (10), and the resulting coarse scale weak form
can be solved for u. Then one can recover the fine-scale variations, 1/, over the microstructural domain €',
using Equations (12) and (6).

ITI. Finite Element Framework

With the multiscale formulation laid out, and explicit weak form expression derived, we now turn our
attention to the numerical implementation. Here, the multiscale methodology is cast into a finite element
formulation and the necessary numerical framework, referred to as the Variational Multiscale Cohesive
Method (VMCM), is developed. First, the necessary discontinuous shape functions are presented and then
the finite dimensional weak formulation and dicretized equations are developed.

A. Multiscale Element Construction

The reparametrization of the fine scale discontinuous displacement field introduced in Equation (6) is now re-
produced for linear triangular elements, and the presentation follows from the discontinuous shape function’s
discussion in.! 12

1. Shape Functions

We begin with the multiscale basis function expression,
Mre = N — Hre (13)

where N is a continuous basis function defined on €’ and Hre. is a Heaviside function which has its discon-
tinuity on I'®. Thus, M. is hereupon considered as a composite shape function constructed by superposing
a Heaviside function on a linear shape function, ensuring that Mpe = 0 on Q\int(€2’). This construction
is depicted in Figure (5) for 1D and Figure (6) for 2D. A detailed construction is now presented for the
constant strain triangle element.
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As shown in Figure (7), there are two possible constructions for triangle elements depending on the
relative orientation of the normal to the crack path, n, with respect to the outward normal of the edge not
intersected by the crack, n'. For each of these cases, N, Hp. and VMp. are given by

Case-I: n.n' < 0 (Figure (7a))

N(z)=1- * ;f n' (14)

VMre(z) = —% —dre n (16)
Case-II: n.n' > 0 (Figure (7b))
xr—a

N(x) = s (17)

0:|(z—2")m <0
L:if(z—ab)m| >0
n
VMFc(QZ‘) = E - 51"(: n (19)
As can be seen from the above description, the multiscale shape function construction is more involved
than traditional shape functions. In a numerical implementation, only VM. enters the system of equations
through the expression for Vu/, which in matrix form is given by

vu' = VMre [u] (20)
where,

[ I,
vl [My]

1| ™ 0 ng 0
VMFC = ﬁ 0 n; —5Fc 0 Ny
ny NG ny Ny
G H

G and H are the matrix representation of n* and n, respectively.

2. Numerical Quadrature

The weak form of the coarse scale and fine scale problems, given by Equations (10) and (12), respectively,
involve different domains of integration. The coarse scale weak form, taken element wise, is a volume integral
over the elemental volume and thus the quadrature rules used to evaluate the integral is the conventional
triangle quadrature scheme. However, the fine scale weak form, taken element wise, is a surface integral over
the crack path, and needs special attention.

Consider Figure (8) which depicts a constant crack opening displacement, [u], in linear triangles. For
this case, since the stress is also constant over the element, a one point quadrature rule is sufficient for the
fine scale weak form. This reduces Equation (12) to o - n = T° which can be evaluated at any point along
the crack path within the element.
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B. Finite Dimensional Weak Forms and Discretized Equations

In the finite dimensional setting, the problem domain is divided into non overlapping elements such that 2 =
?el Q" where nel is the number of elements. In this presentation linear triangle elements are considered,
and thus the integration scheme depicted in Figure (9a) will be sufficient. Introducing the approximate

interpolations to the coarse-scale displacement and variation,

3
ul(&m) =Y N4 n)d (21a)
A=1
3
wi(&m) =Y NA(En)el (21b)
A=1

where (£, 1) are the iso-parametric coordinates, d* and ¢ are the nodal values of the finite dimensional
coarse-scale displacement, %", and finite dimensional coarse-scale variation, @W", respectively. N4 (&,m) is the
Lagrangian shape function at node A with the usual compact support, N4(¢g,np) = ég. Adopting matrix
notation,
uw=Nd and w=Nc (22)

vu= Bd and Vw = Be (23)
where B is the standard matrix form of the shape function gradients. Similarly, the vector representation
of the Equations (9a), (9b) for strain and stress are

e=Bd+ (G —r-H) [u] (24a)

oc=C:(Bd+ G [u]) (24b)
Substituting the above expressions into Equations (10) and (11), the respective finite dimensional equations
are given by

/BTC:(Bd+G[[u]])dV:/Nde+/NTdS (25a)
Q Q Ty
H'C:(Bd+G [u]) =T¢ (25b)

where the fine-scale weak form is reduced to o-n = T¢, as for linear triangles both o and [u] (and hence T¢)
are constant over the element. To suit an iterative solution procedure, the above equations are expressed as
coarse-scale and fine-scale residuals,

F:/BTC:(Bd+G[[u]])dV—/Nde—/NTdS (26a)
Q Q Ty
v =H'C: (Bd+G [u]) - T¢ (26b)

Linearizing the above residuals about d and [u] and rearranging terms, we obtain the following system of
equations in (dd, ofu]),

Pl PR EY &
Ku’ﬁ Ku’u’ (5[['&]] —r’

where,

Kaa = / BTCB av (28a)

Q
Kaw = / BTCG dv (28b)

Q
K,z =H'CB (28c¢)
Ky = H'CG+Hon@n +H,me@m (28d)
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IV. Numerical Simulations

With the multiscale formulation and the finite element implementation developed, this section presents
numerical simulations of some benchmark problems to demonstrate the effectiveness and applicability of the
multiscale framework for cohesive crack propagation. All simulations are in 2D and assume plane strain con-
ditions. Further, as indicated in earlier section, a crack tracking algorithm is required as part of the iterative
process to evolve the crack from one element to another. Such an algorithm should be based on a physically
relevant crack direction criterion, and may be material and microstructure subjective. In this work, it is
assumed that the crack propagates along a path that renders the shear stress to be zero. This amounts to
assuming that the crack is locally governed by a Mode-I criterion. However, the direction criterion places
no limitation on the multiscale formulation and depending on the material micromechanics, any relevant
direction criterion can be chosen.

It is also pointed out that apparent distortion of the elements may be seen as contradicting the small
strain assumption of linear elasticity and also potentially result in singular Jacobians for those elements.
This is not the case as:

e The regular part of the strain is always small, and the singular components which lead to this observed
element distortion do not contribute to the stress-strain constitutive relation (Section (A)).

e Since the implementation is in the reference configuration, the element distortion has no effect on the
elemental Jacobian determinant.

To remove this potential confusion, the crack path elements are removed from the plots, except in Section
(A) where the discussion is primarily on the element level.

All the simulations were carried out using an in-house, C++ based, variational multiscale cohesive method
(VMCM) finite element code developed by the author. A standard Newton-Raphson scheme was used for
solving the system of non-linear equations, based on a direct solution procedure using the SuperLU library.'°

A. Mesh Objectivity Demonstration

As stated previously, eliminating pathological mesh dependence of crack propagation simulations is one of the
primary motivations for the development of the multiscale framework, and this section seeks to demonstrate
the mesh objectivity of this implementation. The results presented in this section focus on the dependence of
the global load-displacement response and the crack path, the two most important metrics from a structural
viewpoint, on the mesh density.

1. Straight Crack Propagation

Consider the problem of a cohesive tension block under uniaxial tension, as shown in Figure (11). Shown
are the problem schematic, resulting crack paths for meshes whose density varies over two orders of mag-
nitude, and the corresponding global load-displacement response. It should be sufficiently clear from this
result that the traditional pathological mesh dependence is completely absent for the case of a straight crack
path. However, this physical problem involves no crack turning, so the sensitivity of the crack path is not
manifested here. A more complex problem involving curved crack propagation is presented in the following
subsection.

The load-displacement response in Figure (11 C) is physically relevant, as it indicates that the strain
energy release rate, GG, and the surface energy density, 7/ are mesh independent, because the area under the
curve is equal to the energy dissipated due to surface creation.

2. Curved Crack Propagation

Figure (12) shows the response of a standard Single Edge Notch Three-Point Bend (SETB) specimen under
eccentric loading conditions. Due to the unsymmetrical loading, the crack deviates from its straight path
and approaches the loading point as this is the contour of the maximum normal tractions, and the load-
displacement and crack path is objectively simulated across all the mesh densities considered. However, at
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first glance, the small variation in the load-displacement response and crack path may suggest mesh sensitiv-
ity. This is expected, as even in the absence of cracks, the resolution of the high stress gradients does depend
to a small degree on the element dimension, and this naturally effects the crack direction determination and
consequently the load-displacement response. Thus, these small variations are not pathological, as can be
seen from Figure (12 C), but an artifact of the numerical discretization.

B. Mixed Mode Crack Propagation

Mixed-mode refers to the condition where the crack face is subjected to both in plane and out of plane
tractions. In 2D, this means that the crack face is under the influence of mode-II shear tractions in addition
to the Mode-I opening tractions. Crack propagation involving non-straight paths is often mixed-mode and so
their will be two cohesive traction-separation relations corresponding to normal-opening and shear-slipping
modes. This section demonstrates the mixed-mode fracture simulation capability of the multiscale imple-
mentation. As stated earlier, the crack path elements are removed and for better visualization only the field
contours are shown, without the underlying mesh.

Figure (14) shows snapshots of crack propagation in a symmetrically loaded Compact Tension (CTS)
specimen. Although the mixed-mode scheme is active, the symmetry in the specimen and loading result
in near straight crack propagation with very little crack face shear. However, the opening stress contours
provide insights into the load bearing ability of materials with large process zone sizes. As seen in the evolv-
ing contour plots, the majority of the stress concentration is in the crack wake and this provides resistance
to crack growth. This increased resistance to crack growth can also be implied from the corresponding
load-displacement response which is flat indicating the increased fracture toughness of this material. The
crack face bridging, as evident from the stress contours, gradually increases in size, then approaches a steady
state value before shortening as the crack approaches the specimen boundary where the compressive stress
is significant due to bending. More detailed analysis of the bridging zone evolution will be presented in the
next chapter.

Figure (13) shows mixed-mode curved crack propagation in an eccentrically loaded SETB specimen where
the crack approaches the loading point along the contour of the maximum normal tractions. Similarly,
Figure (16) shows crack propagation in a rectangular specimen with a fully constrained left end and a
displacement loading at the lower right corner. Also, it is experimentally observed that the crack propagation
in laminated fiber reinforced composite materials is predominantly along the fiber layup direction, so the
effect of restricting the crack propagation direction in VMCM simulations is shown in Figure (17), where
the crack path is restricted to the -45/0/445/4-90 fiber layup directions.

C. Interacting and Multiple Cracks

In this subsection, complexity due to multiple cracks, interactions between cracks and interaction with struc-
tural inclusions is addressed. It is stressed that the multiscale formulation has no restriction on the number
of possible cracks in a domain or on their interaction, but possible complexity may arise due to modifications
required to the traction-separation relations to produce physically consistent simulations.

Consider the standard Double Edge Notch Tension (DENT) specimen crack propagation simulation in
Figure (15). As expected two cracks start from notches on either side and approach each other, and the
opening stress contours show their interactions. Initially, either crack grows independently, but as they
get closer they interact through the long range terms of the asymptotic expansion of the crack tip stress.
However, due to the small offset in their crack paths, induced due to the numerical discretization, they
pass each other. But eventually the crack paths intersect and one branch of the combined crack becomes
predominant while the other branch relaxes. This problem also serves as an example of how, an otherwise
complex crack interaction, can be clearly understood through the numerical implementation.

V. Experimental Validation
The numerical implementation needs a traction-separation relation as input, in addition to the material

properties listed in Table VI, to simulate crack propagation. Here we assume a linear traction-separation
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relation which is characterized by the peak traction value T;,, and the fracture toughness Rqvg. Th, is a fixed
value for all the specimen geometries, and is obtained from standard double edge notch tension (DENT)
specimen experiments. It is noted that, traditional cohesive zone models employ a traction law that starts
with a zero traction and zero opening, whereas, in the VMCM, the transition from a continuum to a non-
continuum (cracking) takes place at a finite traction (Figure 2). The ramifications of this aspect have been
discussed in the literature.® 3!

The simulations are conducted with the experimentally measured R,  values given in Table 2, and the
results are plotted in Figure 18 for a symmetrically loaded specimen, and Figure 19 for eccentrically loaded
specimen which has mixed mode curved crack growth. Further details of the experiments are provided in.?’

As seen from Figure 18, the multiscale simulations accurately reproduce the macroscopic response of
the SETB specimens when appropriate Rg,, values are used as input.* This demonstrates that: (1) The
multiscale methodology has the ability to numerically simulate progressive damage propagation, and the
mechanics of bridged crack evolution. (2) In spite of a multitude of failure mechanisms operating simulta-
neously, leading to a very complex evolution of fracture resistance, the single valued estimate, Rq.g4, of the
fracture resistance is appropriate for numerical simulations, at least in this class of materials.”

VI. Conclusions

In this paper, the variational multiscale cohesive method (VMCM),?326 has been extended to simulate
mixed-mode, in-plane crack propagation in laminated fiber reinforced composite laminates, as a part of ICE.
Experimental results that correspond to single edge notch three point-bend (SETB) specimens have been used
as the basis for validating the proposed methodology. Numerical simulations corresponding to several other
configurations of crack growth, where the crack path is not known a-priori have been presented. The subtle,
but nevertheless important, distinction between the elemental enrichment based multiscale interpolation
(adopted in VMCM) and other nodal enrichment based discontinuity interpolation schemes has been depicted
in Figure (20). Though both methods represent the displacement discontinuity as a Heaviside function, the
advantage of the VMCM approach is the local-to-element nature of the fine scale field. From a numerical
standpoint this implies that the additional degrees of freedom needed to represent [u] can be separated
locally through static condensation, and thereby does not contribute to the global solution vector. This also
ensures that the sparsity pattern of the global stiffness matrix is unaltered. In contrast, nodal enrichment
methods add extra nodal degrees of freedom to represent the enhanced displacement discontinuity modes,
thereby altering the global solution vector and stiffness matrix structure with crack propagation. While a
more detailed comparative study of the computational complexity, numerical stability and consistency are a
topic for future work, interested readers are pointed to a related study?® between the elemental enrichment
method, from which the VMCM method inherits its interpolation characteristics, and the nodal enrichment
based extended finite element (X-FEM) method.
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Figure 1. Schematics of possible bridging traction-separation and cohesive traction-separation relations.
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Figure 2. Schematic of possible mixed cohesive-bridging traction-separation relations (A) Physically consistent
as cohesive relation begins at finite traction, (B) Physically inconsistent as cohesive relation begins at zero
traction.
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Figure 3. Representation of crack as a displacement discontinuity. [u] is the magnitude of the displacement
discontinuity which physically represents the magnitude of the crack opening and I'¢ is the crack surface.

Figure 4. The microstructural domain, 2/, and the crack surface, I'°’. Shown in the inset are the crack orientation
vectors and the crack surface tractions. I'{, I'C are the top and bottom crack surfaces and T, T¢ are tractions
on these surfaces.

Figure 5. Construction of the discontinuous multiscale shape function in 1D.

Table 1. Lamina and laminate properties of carbon fiber/epoxy [—45/0/ + 45/90]6s laminated fiber reinforced
composite.

Laminate Lamina

E..: 51.5 GPa | Ei1: 141 GPa

Eyyt 51.5 GPa EQQI 6.7 GPa

Gyt 19.4 GPa | Gia: 3.2 GPa
Vgy: 0.32 v12: 0.33
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Figure 6. Possible constructions of the discontinuous multiscale shape function in 2D. n is the normal to the
crack path, in the direction of the desired jump in displacement.

Table 2. Scaling observed in the SETB specimen experiments.

Size | Geometry scaling | Peak load Load point displacement | Fracture resistance
(Figure 10) P/P* AJA* Ravg/R;vg
1 1 0.27 0.1 1.08
2 1.5 0.4 0.15 1.23
3 2 0.6 0.2 1.84
4 3 0.81 0.28 2.46
5 4 1.0 0.37 2.58
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Figure 7. Possible constructions for triangle elements depending on the relative orientation of the normal to
the crack path, n, with respect to the outward normal of the edge not intersected by the crack, n'.

Figure 8. Elemental values of the displacement discontinuity, [u], which physically represents the crack opening.
(a) Constant [u] in each element, (b) Linearly varying [u] with [u]; on the left edge and [u], on the right
edge, leading to inter-element continuity along I'.
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Figure 9. Schematic of quadrature points for coarse-scale and fine-scale problem over a linear triangle element

*P,A

A

i Size 1: X (as shown)

! Size 2: 1.5X
7.6 cm A Size 3: 2X

E ! Size 4: 3X

' ! 3.8 cm Size 5: 4X

\/ Y

@ 17.7 cm @
B L L L L PP e T >
B L E T T T >
20.3 cm

Figure 10. Single Edge Notch Bending(SETB) specimen configuration used for validating VMICM simulation
results. Size 1 has the dimensions shown in figure, other sizes are scaled versions of this base size. All specimens
have a nominal thickness of 6.35mm.
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Figure 11. Mesh objectivity for straight crack propagation. (A) Rectangular cohesive material under uni-
axial tension, (B) Displacement magnitude contours for different mesh densities, (C) Corresponding load-
displacement response. The P and A values have been normalized with fixed reference values.
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Figure 12. Mesh objectivity for curved crack propagation. (A) Eccentrically loaded SETB specimen, (B)
Displacement magnitude contours for different mesh densities, (C) Corresponding load-displacement response.
The P and A values have been normalized with fixed reference values.
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Figure 13. Mixed-mode crack propagation in an eccentrically loaded SETB specimen. (A) Eccentrically loaded
SETB specimen, (B) Corresponding load-displacement response, (C) Evolving displacement magnitude with

crack growth. The P and A values have been normalized with fixed reference values.
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Figure 14. Mixed-mode crack propagation in an symmetrically loaded CTS specimen(A) CTS specimen, (B)
Corresponding load-displacement response., (C) Evolving opening stress oy, magnitude with crack growth.
The P and A values have been normalized with fixed reference values.

21 of 26

American Institute of Aeronautics and Astronautics



/77777777

(A)

- - 3.000+08
" ' -
2.25¢408

— 1.50e+08

— 0.75e+08

0.00e4-08

(B)

Figure 15. Cohesive crack propagation in DENT specimen. (A) DENT specimen, (B) Evolving opening stress
oyy magnitude with crack growth
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Figure 16. Mixed-mode crack propagation in a rectangular specimen with the left end fully constrained and a
displacement loading at the lower right corner. Shown are the crack path and the opening stress contours.
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Figure 17. Mixed-mode crack propagation with restricted crack growth directions in a rectangular specimen
with the left end fully constrained and a displacement loading at the lower right corner. Shown are the crack
path and the opening stress contours.
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Figure 18. Load-Displacement (PA) response obtained from multiscale (VMCM) simulations of symmetrically
loaded Size 1-5 SETB specimens with experimentally determined %,., values (Table 2), compared to their
respective experimental curves. For a particular specimen size, R; and Ry are the least and highest values
of fracture resistance obtained from the multiple experimental PA curves, R); is the average of the fracture
resistance of each of the multiple experimental PA curves. Rj; corresponds to the curve exhibiting least
toughness and Ry corresponds to the curve exhibiting the highest toughness. The P and A values have been
normalized with fixed reference values.
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Figure 19. Load-Displacement (PA) response obtained from multiscale (VMCM) simulations of eccentrically
loaded Size 1,3 SETB specimens with experimentally determined %,,, values (Table 2), compared to their
respective experimental curves. For a particular specimen size, R;, and Ry are the least and highest values of
fracture resistance obtained from the multiple experimental PA curves. Rj corresponds to the curve exhibiting
least toughness and Ry corresponds to the curve exhibiting the highest toughness. The P and A values have
been normalized with fixed reference values.
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Figure 20. Comparison of the interpolation schemes used to represent the crack surface in the multiscale

approach presented here and the other nodal enrichment based approaches.
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