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Air{breathing hypersonic vehicles are based on airframe{integrated SCRAMjet engine.
The elongated forebody which serves as the inlet of the engine is subject to harsh aerother-
modynamic loading which causes it to deform. Unpredicted deformations may produce un-
start, combustor chocking or structural failure due to increased loads. This study presents
a framework allowing one to assess the impact of aerothermoelastic deformations on the
engine performance prediction. Aerothermoelastic deformations are calculated for trajec-
tories and angle of attack and transferred to a SCRAMjet engine analysis. Uncertainty
associated with deformation prediction is propagated to the engine performance analysis.
The importance of modeling the aerodynamic heating and aerothermoelastic deformations
at the cowl of the inlet is noted. The cowl deformation is the main contributor to uncer-
tainty and sensitivity of the propulsion system analysis.

Nomenclature

Cp Speci c heat of air

c Speci ¢ heat of material

E Young’s modulus

ER = mT;gz = mTLZ X Equivalence ratio
() Output of interest

Fx Force acting in the x direction

H Altitude

h Coordinate across the thickness of the skin
hq;hy Thickness of the TPS layers

hs Thickness of the structural layer

k Thermal conductivity

M Mach number

Mair Air mass ow rate

Mm¢ Fuel mass ow rate

me Expected value of f

P Pressure

Graduate Research Assistant, Student Member, AIAA
YFrancois-Xavier Bagnoud Professor, Fellow, AIAA
ZGraduate Research Assistant, Student Member, AIAA
XGraduate Research Assistant, Student Member, AIAA
{Professor of Aerospace Engineering, Fellow, AIAA.

1 of 24

Copyright © 2011 by the American Institute of Aeronautics arﬁ%‘j&%ﬂti@,smwml H&H&e(&é‘?\}éﬂcs and Astronautics



Gaero Aerodynamic heat ux

q Dynamic pressure

Re Reynolds number based on a length of 1 m

t Flight time

T Temperature

Ty Recovery temperature

u Axial displacement at elastic axis

w Transverse displacement

Wi weight in numerical integration

(x%y%z%)  Coordinate system for the corrugated panel

X Coordinate along vehicle, from leading edge, positive aft

y Coordinate in the spanwise direction, from centerline of the vehicle
z Coordinate normal to vehicle, from leading edge point, positive up

Greek Symbols
Angle of attack

f Angle of attack of the trajectory
T Thermal expansion coe cient
=g Speci ¢ heat ratio
Emissivity
Poisson ratio
1, 2 Uncertain variables
Density of air
M Density of material
f Standard deviation of
i Interpolation function
Subscripts
1 Freestream condition
0 Total condition
4 Condition at the exit of the combustor
i Initial value
st Stoichiometric condition
wall At the wall

l. Introduction

Research on hypersonic vehicles is motivated by military and civilian applications such as unmanned
rapid response to threats and reusable launch vehicles for a ordable access to space.”{” Such vehicles
are based on lifting body designs with a tightly integrated airframe and propulsion system. For sustained
hypersonic cruise speeds, air{breathing engines are needed. Accurate modeling of propulsion system is critical
to hypersonic vehicle performance, stability, and reliability analyses. Flight at hypersonic speeds within
the atmosphere produces severe aerodynamic heating which may cause vehicle failure. Aerothermoelastic
deformations can interact with the propulsion system.”{*° Furthermore, hypersonic ight conditions produce
high levels of aerodynamic heat ux, shock interactions, viscous interactions, dissociations and chemically
reacting ow. = Validation of a fully coupled aerothermoelastic{propulsive system is not feasible due to
scaling e ects and lack of suitable wind tunnels.”® Therefore development of hypersonic vehicles requires
a degree of con dence in computational results which cannot be fully validated in ground test facilities.

The structure of the ow in the inlet is experimentally studied only for short durations for a given ight
condition.~* > Aerothermoelastic deformations are neglected. Shocks, expansion fans, boundary layers,
detachment and reattachment regions and their interactions at the inlet are complex and computationally
expensive to predict. Therefore, comprehensive analysis codes must employ computationally e cient models
based on simplifying assumptions of the physics and/or reduced-order modeling of full order computations.
Due to the critical role of simulation codes in hypersonic vehicle analysis, the importance of quantifying the
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risk/reliability in such computational simulations is particularly important.

Modeling the aero{thermoq{elastic{propulsion interactions, even for a simple geometry of a typical hy-
personic vehicle, requires several simplifying assumptions in each component of the analysis.”"*° Simpli ed
models are computationally e cient and enable comprehensive analysis of a hypersonic vehicle in a control{
oriented or optimization{oriented framework. To compensate for unmodeled physics and simpli cations, an
uncertainty propagation approach is used to quantify sensitivity, robustness and reliability of a given con g-
uration with respect to identi ed uncertainties.”” -’ The simplifying assumptions, such as xed geometry or
the neglect of real gas e ects introduce uncertainty which a ects the reliability of the analysis. For this class
of problems the uncertainty due to both unmodeled physics and the need to use approximate or reduced
order models (ROM) for several components, must be propagated through the analysis.

The most e ective approaches for propagating uncertainty in aeroelastic problems are direct Monte Carlo
simulations (MCS) and response surface based methods such as stochastic collocation (SC) or polynomial
chaos expansion (PCE). In this study, SC is considered as an e ective alternative to direct MCS which has
prohibitive computational costs for complex problems. The SC approach was shown to outperform PCE
in a recent study° and was successfully used to propagate uncertainty in aeroelastic and aerothermoelastic
analyses of hypersonic vehicle.”” In Ref. 16, the e ect of uncertainty associated with the use of approximate
models in the analysis of the propulsion system of a hypersonic vehicle is propagated to the net thrust as a
function of fuel in ow rate for two xed con gurations using MCS. Error associated with the approximate
models have a signi cant impact on the prediction of the thrust. Previous studies showed that aeroelastic
deformation of the inlet have a signi cant impact on the performance of the engine.

Only a limited number of air{breathing hypersonic vehicles have own. Among them the X{43 and more
recently the X{51 are representative vehicles of air{breathing hypersonic aircraft concepts, depicted in Fig. 1.

- 121t >

(a) X{43 (b) X{51

Figure 1. Hypersonic vehicles

Short duration and long duration ights introduce di erent aerothermoelastic issues. The overall objective
of this study is to quantify the e ect of variations in geometry due to thermal expansion/stresses and
aerodynamic loading in an integrated airframe propulsion system analysis for a hypersonic vehicle. It is
expected that this study will serve as a guide towards understanding and quantifying uncertainty in studies
of integrated aerothermoelastic{propulsion system of air{breathing vehicle, as well as overall vehicle behavior
or design.

The speci ¢ goals of this study are:

1. Evaluate aerothermoelastic deformations of the main components of the ow path of the engine of a
typical hypersonic vehicle: inlet, cowl and nozzle.

2. Analyze the stability of the propulsion system in a probabilistic manner in order to quantify the
risk/reliability associated with uncertainty in the predicted aerothermoelastic deformations.

The following section describes the 2D aerothermoelastic analysis and engine analysis of a generic hy-
personic vehicle. The prediction of aerothermoelastic propulsive e ects on the engine requires four di er-
ent analysis capabilities: a propulsion model with deforming geometry capability, a structural model with
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temperature{dependent material properties, an aerodynamic analysis capable of predicting heat transfer of
external hypersonic ow over a surface and a heat transfer analysis.

Il. General Hypersonic Vehicle Modeling

The aerothermoelastic analysis of a typical hypersonic analysis is illustrated by the ow chart in Fig. 2.

Flight Condition (H, M_, o, ER )

Geometry
v v
Aerodynamic and Propulsion
Heat Transfer  [€ Analysis
Analysis P, T, U,| (undeformed)
P, T
Y |
Structural |
Analysis
I
vV v
Propulsion
Analysis
( deformed )

v

Engine performance

Figure 2. Modeling ow chart

A ight condition is determined by the altitude, H, the Mach number M4, the angle of attack of the
vehicle, , which determines the freestream conditions; and the equivalence ratio, ER = mmf = mmf ,
11054 11os;4 st

which corresponds to the ratio of the ow mass rate of fuel over the oxygen ow mass rate divided by the same
ratio at stoichiometric condition. An ER of 1 corresponds to stoichiometric mixture of fuel and oxygen. An
ER smaller than one means that there is more oxidizer than necessary. The engine analysis is used to compute
the average ow conditions at the exit of the combustor for the undeformed geometry. The aerodynamic
solution and heat transfer equations are solved simultaneously. This analysis is referred to as conjugate heat
transfer analysis (CHT). A conjugate heat transfer analysis is performed at a given ight condition, given
the freestream and combustor conditions to predict the aerodynamic load and temperature distribution in
the load carrying structure as function of time. Pressure and temperature are transferred to a structural

nite element model (FEM) from which thermal elastic deformation of the vehicle airframe is obtained. The
aerothermoelastic analysis is used to estimate the amplitude of maximum static deformations. The structural
modeling of the hypersonic vehicle is simpli ed. The trajectory of the vehicle is assumed to be level ight.
Because of these assumptions, the deformation are treated as uncertainties. An uncertainty propagation
analysis is performed to evaluate the sensitivity of engine performance to the deformed con guration. Further
details of each analysis is given in the following subsections.

A. Geometry

The geometry of the vehicle considered in this study is inspired by the X{43 depicted in Fig. 3. The
(x;y; z) axis are attached to the body and respectively to the longitudinal, spanwise, and vertical directions
respectively.

This generic geometry is representative of an airframe{integrated airbreathing scramjet propulsion sys-
tem. The inlet is a slender wedge which compresses the freestream before it enters the isolator and the

4 of 24

American Institute of Aeronautics and Astronautics



27.76 m
(a) isometric view (b) side and top view

Figure 3. Current vehicle geometry

combustor. The isolator prevents inlet unstart caused by the increase of pressure in the combustor. The
combustor is the part of the engine where the fuel is injected and burns. The nozzle ensures expansion of
the ow from the combustor conditions to the freestream conditions and generates thrust. The performance
of the engine of this vehicle is estimated using a reduced{order model described next.

B. Propulsion System Analysis

Michigan AFRL Scramijet in Vehicle (MASIV) is an approximate, control{oriented model of the propulsion
system of air{breathing Scramjet engines.=”»* The geometry of the mean owpath is depicted in Fig. 4.
Each section corresponds to a component of the engine. Marching along the length of the vehicle, the
propulsion system is divided into three components: the inlet and isolator, the combustor, and the nozzle.
The points indicated in Fig. 4 de ne the geometry of the mean owpath.

reference plane

|

z (m)
Llo
i(—
l}fq

0 5 10 15 20 25
x (m)

Figure 4. Engine ow path

This study focuses on the performance of the engine. The resultant of the pressure forces in the
X direction on the engine owpath, F, is representative of the engine performance in generating trust
which is the quantity of interest in this study. The number of points de ning the compression ramp repre-
sents the number of compression shocks which compress the freestream before it enters the cowl. There are
three compression shocks in the inlet ramp as illustrated in Fig. 4. The steady ow solution is calculated us-
ing the shock/expansion approach. Expansion fans are discretized into a nite number of ‘expansion shocks’.
Marching downstream, shock{shock and shock{discrete expansion fans interactions are solved by the solution
of the local Riemann problem for perfect gas. Given a ight condition (altitude, H, Mach number, M4, and
angle of attack, ), the mean ow properties at the entry of the engine in the isolator are predicted: density,
static pressure, temperature and velocity. Mean ow properties at the entrance of the engine are computed
and fed to the engine model. Enthalpy tables of a calori cally imperfect gas are used to account for high
temperature e ect at the entrance of the engine. In a calorically imperfect gas model, the speci ¢ heat ¢,
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and c, of the uid vary with temperature due to the excitation of vibrational energy of the molecules of
gas.~ Consequently, = =2 is also a function of temperature. A more accurate prediction of the combustor
in ow properties is achleved with this correction. The same model as for the inlet is used for the nozzle.
The engine model is described in Ref. 22. The combustor model is a one dimensional (1D) model that solves
for conservation of mass, momentum, and energy using equation of state and additional algebraic equations
marching axially through the combustion duct. An algebraic spreading model allows transverse jet mixing
which is required to model engines which are mixing{limited. Steady Laminar Flamelet Model (SLFM) is
an approximate combustion model which considers nite{rate chemistry. The chemistry model is expect to
be valid for an equivalence ratio, ER, between 0.1 and 2. The MASIV code was recently used in a control
study of a rigid hypersonic vehicle.~> The e ect of angle of attack and in ow rate on the forces acting on a
full vehicle (lift, drag, net thrust and pitching moment) were evaluated and used in a trim analysis.
The mass ow of the fuel is assumed to be independent of the deformation and corresponds to the mass
ow at the prescribed equivalence ratio for the undeformed engine. An alternative approach assumes that
the amount of fuel depends on the oxidizer mass ow at the entrance of the engine to keep the ER constant
at all time. In this case, the fuel mass ow is a ected by the deformation. The e ect of the deformation on
engine performance is then ampli ed. If the capture area decreases due to deformation, the air mass ow
rate decreases in the combustor, the engine generates less thrust. If the equivalence ratio is kept constant
when the vehicle deforms, less fuel is injected and thrust decreases accordingly. The plane corresponding to
the top wall of the combustor is the plane of reference for the deformation of the vehicle, indicated in back
in Fig. 4. The points, indicated with markers in Fig. 4, allows the analysis of a deformed engine. These
points are used to transfer the deformation from the aerothermostructural model to the engine analysis.

C. Structural Model

The structure of an air{breathing hypersonic vehicle is subjected to signi cant non-uniform aerodynamic
heating and pressure loading. In the development of hypersonic vehicles, structural components and design
has played a important role.” 'Y The structure experiences high temperature gradients and intense
pressure and heat loading which can cause local buckling or utter. These challenges require innovative
solutions: new high temperature materials, thermal protection system (TPS), and possibly coated leading
edges with active cooling. The maximum operating temperature of titanium-based alloys varies between 800
to 1300 K.=”°Y Those materials were studied for potential application in the NASP program. In Ref. 31,
materials for structural components are titanium{aluminides and titanium matrix composites. The structural
model is developed to estimate the longitudinal aerothermoelastic deformation of the airframe and cowl and
identifying the main contributors to aerothermoelastic de ections. The problem of local buckling of the
leading edges is not considered. Similarly issues related with aerothermoelasticity of the wings and control
surfaces are not included in this model.

The MSC.NASTRAN structural model of the body is illustrated in Fig. 5. MSC.NASTRAN is a nite
element solver widely used in the aerospace industry. The model of the vehicle contains 540 nodes, 3240
degrees of freedom , with 208 CQUAD4 shell elements which represent the skin of the vehicle and the
primary load carrying structure. The interior of the vehicle is lled with 534 CHEXA solid elements to
prevent breathing modes{type deformation of the structure.

(a) top view (b) isometric

Figure 5. Structural Mesh

The skin is the load carrying structure represented by corrugated panels made of high temperature
titanium alloy illustrated in Fig. 6 and presented in Ref. as a potential load carrying structure for
hypersonic vehicles. The model of the corrugated panel is used as a guideline for the longitudinal Young
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modulus of the skin of the vehicle. The material properties assigned to the solid elements correspond to an
orthotropic material with high sti ness in the (y; z) plane and low sti ness in the x{direction. This approach
prevents unrealistic breathing modes and longitudinal deformations of the vehicle depend only on the skin
properties. The vehicle behave similarly to a sandwich beam where cross sections remains planar. Material
properties are functions of temperature.

Figure 6. Truss{core sandwich panel

The rigid body degrees of freedom are suppressed using the inertia relief option in MSC.Nastran. It
allows one to compute the deformation of the structure with respect to a given point in its reference frame.
The forces which result from a rigid body acceleration of the degrees of freedom at a prescribed node in the
speci ed directions, referred to as "SUPORT™, are calculated. Accelerations are applied to the structure in
the "SUPORT" directions to balance the arti cially applied loads. Free ight deformation can be computed.
The computed solution is relative to any rigid body motion that is occurring. It was veri ed that deformation
are independent of the choice of the support point where all degrees of freedom are constrained. The point
at the center of the top wall of the combustor, in Fig. 4, is chosen as the reference point.

The nodal temperature and pressure are computed using a conjugate heat transfer analysis described
next. There is no feedback mechanism to account for deformation in the aeroheating and heat transfer
analysis.

D. Conjugate Heat Transfer Analysis

The solution of a structure heated by a uid ow at one of its boundary is called conjugate heat transfer
(CHT) problem. In this work, it is used to estimate the temperature distribution inside the undeformed
load carrying structure of the vehicle as function of time and ight condition. Temperature distribution in
the structure is calculated using CFD++, a commercial nite volume code capable of solving heat transfer
problems in solid and conjugate heat transfer problems.* Using CFD++, the Navier{Stokes equations and
the heat equation are solved simultaneously for the uid and structure domain respectively. Heat ux is
conserved through the uid{TPS and TPS{structure interfaces. The gas model corresponds to calori cally
imperfect gas: speci ¢ heat, cp, is function of temperature, is not a constant. Turbulence is modeled
using Goldberg turbulence model which is a single equation model for the undamped eddy viscosity, R,
recommended for external turbulent hypersonics ows.

To protect the load carrying structure from intense aerodynamic heating, a thermal protection system
(TPS) barrier is placed between the air ow and the structure as depicted in Fig. 7. The TPS is composed of
an upper layer of radiation shield made of PM2000 Honeycomb and a lower internal multiscreen insulation
(IMI) barrier which is a simpli ed layout used in Refs. 34 and 27, which is shown to be a light and e cient
TPS system.”>°° IMI is also used in Ref. 26 as the main heat barrier for a long range hypersonic vehicle.
The thicknesses of the TPS layers are uniform. An optimization analysis is often required in order to design
the TPS distribution, such as performed in Ref. 26, and it was not performed in the present study.

The mesh for the uid domain is depicted in Fig. 8. The thin skin structural layout is represented in
Fig. 8(b). The leading edge of the vehicle experiences high aerodynamic heating. It is a critical component of
the vehicle. However the emphasis of this study is on the body deformation. For this reason the leading edge
is treated as an adiabatic wall in the CHT analysis. This assumption is also used for the cowl boundary. The
combustor is the only part of the engine that is not represented. The MASIV model is used to estimate the

ow conditions at the exit of the combustor. The entrance of the combustor is modeled by an out ow{only
boundary condition. There is no back{pressure boundary condition in the analysis because the engine is
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Figure 7. TPS layout

operating in SCRAM mode similarly to the assumption of MASIV analysis.

Pressure and temperature are linearly interpolated from the entrance of the combustor to the exit of the
combustor and then transferred to the structural model. This approximation alleviates the high thermal
and pressure loading that occurs in the combustor, a region that has the highest temperature and pressure
on the vehicle. Further re nement of both aerodynamic and structural models are required so as to capture
precisely the aerothermoelastic e ects that occurs in the combustor. However, the modeling of these e ects
is outside the scope of the present study.
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Figure 8. CHT mesh

Transient temperature distributions in the structure are computed given by a ight trajectory character-
ized by a constant angle of attack, ¢. Pressure loading is calculated based on the angle of attack, which
maybe di erent of ¢, in the case of manoeuver for instance.

The deformation of the engine geometry in MASIV is given by Eq. 1, where Wegm:1 and Wegm:2 refer
to the interpolated displacements from the FEM model for the vehicle and the cowl respectively at the (x; z)
coordinates of the points which de ne the geometry of the owpath shown in Fig. 4.

Wmasivi(X;z) = iwrem:i (Xt ¢) 1=1;2 €))

The deformed shapes of the body of the vehicle, weem:1 (X;Z;t; ¢) and the cowl, Weem:2 (X;Z;t; £)

8 of 24

American Institute of Aeronautics and Astronautics



given by a ight history characterized by ¢ and after a ight time t, are treated as maximum possible
deformations of the vehicle. The amplitudes of the deformations of the vehicle and the cowl, ; and »
respectively, are treated as variables in an uncertainty propagation analysis for engine performance. The
axial displacement, u, is treated the same way.

I1l. Uncertainty Propagation Analysis

Once the sources of uncertainty have been identi ed and quanti ed by appropriate probability distribu-
tions, the e ect of uncertainty can be studied using two methods: intrusive and non-intrusive approaches.”’{
The hypersonic propulsion problems require the use of non-intrusive methods due to their complexity. Based
on a previous study on uncertainty propagation in aeroelastic and aerothermoelastic analyses, ” stochastic
collocation has been identi ed as the most cost e ective alternative to direct Monte Carlo simulation and
was selected for this study.

Direct Monte Carlo Simulations (MCS) requires numerous evaluations of the function of interest (e.g.
Fx), at di erent values of the uncertain inputs, determined from their probability distribution. This method
is guaranteed to converge to the correct probability distribution for the output of interest when the number
of analysis runs is increased. Direct MCS can be applied to any output of interest, even when discontinuities
are present.

The SC approach-° is a computationally e cient polynomial response surfaces capable of approximating
the relation between uncertain inputs and the output of interest f( ) when f is a continuous function
of . The expensive analysis, f, is evaluated at a given set of inputs ( j), called collocation points. The
polynomial response surface, given by Eqg. 2, is generated using Lagrange polynomials associated with the
collocation points, ( ), to interpolate the output of interest over the entire domain.

XX
()~ f()= f(5) 50) )

j=l;N|
For the one dimensional case, the polynomial response surface, given by Eq. 2, is generated using Lagrange
polynomials ( j)j=1.p+1, associated with the collocations points ( k)k=1:n,, EQ. 3.

Nr
i()=

- j=1LP+1 ®3)
k=1;k&j J
Lagrange polynomial are equal to 1 at their particular collocation point and 0 at all other points, Eq 4.
This property ensures that the value of the response surface is exact at the collocation points.

(k= jk k=LNy j=1P+1 4)

The degree of the polynomial approximation P, in Egs. 3 and 4 is equal to N, 1. For a multidimensional
random input space, = ( “)i,=1.n,, IN Which Ny is the number of uncertain inputs, the multi-variate
extension of Eq. 3 is given by Eq. 5.

N N, iy
i0)= .vil,(v J=1LP+1 (5)

iv=1k=1;k&j J k
For uniform probability distribution, the numerical integration evaluation is computed using Gaussian
quadrature.”” For a single random variable, the numerical integrations points are the roots of the Legendre
polynomial function of degree N;. The numerical integration scheme is exact for polynomial functions of
order less than 2N, 1. The collocation points are chosen such that mean, mg, and variance, % are
numerically estimated using a numerical integration scheme de ned by N, points, j, and their respective

weights, w;j, Egs. 6 and 7 .

z >
me= f()p()d ~ wiF( j) (6)
J=1LNy
A <
2= (f() me)’p()d wif()2 m2 @)
i=1;N,
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There is strong evidence that SC approach has outperforms polynomial chaos expansion, ® another widely
used technique. Therefore SC is selected for this study. Note however that this method su ers from the
curse of dimensionality which implies that increasing the number of random inputs increases exponentially
the number of analysis runs and the computational cost of the method. The number of analyses required
for the implementation of the SC approach is (P + 1)Nv. Furthermore, the collocation points associated
with most integration schemes are located strictly within the domain of the input variable: extrapolation is
required for response surface evaluations close to the domain boundaries which may adversely a ect accuracy.
Therefore, the set of collocation points is extended with the boundary of the interval of each variable as
illustrated in Fig 9(a). When those additional points at the boundary are used, the method is referred
to as SC extended (SCE). Other e cient interpolation techniques can be employed to create the response
surface such as adaptive sparse grid interpolation,” < Kriging surrogates™ or multi-variable splines™ > if
discontinuities are present.

Collocation Points e LHS Sampling
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(a) Collocation points for uniform PDF for 1 and » (b) Sampling points for uniform PDF for 1 and »
Figure 9. lllustration of di erent sampling approaches for two random variables 1 and » in [0;1]?,

Once constructed, MCS can be applied on the computationally inexpensive polynomial response surfaces
to obtain the probability distributions associated with the output of interest, this process is referred to as
indirect MCS (IMCS). Latin hypercube sampling (LHS) method is used to perform the statistical analysis.
The LHS is usually employed for space Iling sampling which is equivalent of uniform probability density
function (PDF). In Fig. 9(b), each cell of the grid has the same probability of 1/100. The LHS explores the
uncertain variables space more e ciently than a cartesian grid (UNIF) and sampling points do not cluster
as much as for random number generator (RAND) as illustrated in Fig. 9(b).

The e cient uncertainty analysis accounts for approximations in the calculation of the displacement.
Transferring the deformation as random variables is e ective for mitigating the e ect of approximations and
facilitates the introduction of uncertainty at an early stage in the design.

1VV. Results

The vehicle is assumed to be 27.8 meters long, this length has been chosen based on the work done on
NASP and Hyper{X programs as well as previous concepts.””“>“" In Ref. 21, the performance of two
di erent owpath geometries of the system inlet{combustor{nozzle are compared. The rst con guration is
optimized for a single ight condition being M4 =8, H =26014:5 m and = 0°. The second con guration
is designed to be less sensitive to changes in freestream Mach number and angle of attack.”* Both geometries
yield three compression shocks in the inlet ramp and two compression turns in the cowl. The more robust
geometry contains an additional turn at the shoulder of the inlet which de nes the entrance of the internal
inlet. This geometry is the one used in this study, as observed in Fig. 4.

The ight condition used in this study corresponds to Mach 8 at an altitude of 26 km ( 80 000 ft ) with
0° angle of attack (AoA) which corresponds to the average design condition of the inlet.”” The freestream
condition is given in Table. 1. Using the MASIV code, the average ow condition at the exit of the combustor,
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given in Table. 2 are obtained. The conditions are employed at the exit of the combustor in the CHT analysis.

Table 1. Freestream conditions

Parameter Value Unit
Angle of attack rad 0
Altitude H m 26000
Mach number M1 - 8
Static pressure P Pa 2183.8
Temperature T4 K 222.5588
Stagnation temperature  To.q K 3071.3
Density 1 kgm 3 0.0342
Reynolds number Req m1? 5:6245 108
Dynamic pressure qa Pa 98000 ( 2000 psf )

Table 2. Combustor conditions

Parameter Value Unit
Mach number Mgy 1.95 -
Static pressure ps  3.5742 10° Pa
Temperature Ty 2039.0 K
Stagnation temperature To.4 3584.7 K
Density 4 0.47 kg:m 3

A. Conjugate Heat Transfer

The thermal properties and thicknesses of the TPS layers are given in Table. 3.

Table 3. TPS material properties

PM 2000 IMI Structure

Thickness hi (m) 0.0074 .01 0.03
Density m (kg=m 3) 7196.567 72.864 4306
Emissivity 0.75 { {
Thermal Conductivity k (W=m=K) 18.25 0.0582 21.9
Speci ¢ Heat ¢ (J=kg=K) 770 107 540

The CHT results are depicted in Figs. 10(a), 10(b), 10(c), and 10(d) which shows respectively tem-
perature, pressure, Mach and contours around the vehicle. At the upper surface, the ow experiences a
compressive shock at the leading edge followed by an expansion after the second edge downstream as observed
in Figs. 10(a), 10(b), and 10(c). At the lower surface, the freestream experiences three compression shocks
due to the lower surface of the inlet before it reaches the leading edge of the cowl and enters the internal
inlet and isolator where a series of shock occurs. At the nozzle, the ow expands creating propulsive force
for the vehicle. In the internal inlet and expansion fan as well as boundary layers, the static temperature of
the uid is much higher and is reduced to 1.3 as observed in Fig. 10(d). This illustrates the importance of
high temperature modeling for such regions.
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Figure 10. CHT results
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The temperature at the lower surface of the skin as function of time is shown in Fig. 11. During ight,
the load carrying structure heats up through the TPS. The aerodynamic heating rate is higher at the lower
surface of the vehicle. Consequently the temperature rise is more important at the lower surface. Note that
most of the vehicle remains at a temperature lower than 800 K for the rst hour of ight. The central part of
the engine: internal inlet, isolator, and internal nozzle experience the highest temperatures and may require
additional thermal protection system or active cooling. The exact structural layout or cooling technology
for those components is currently not well de ned.
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Figure 11. Temperature in the skin as a function of time, ¢ =0° ER=1:0

The temperature distribution across the thickness of the vehicle is depicted in Fig. 12 and it corresponds to
four di erent stations of the vehicle skin. These stations corresponds to the location of the rst compression
turn in the inlet ramp, Fig. 12(c), and the last compression turn in the nozzle, Fig. 12(d), and their equivalent
on the upper surface of the vehicle, Figs 12(a) and 12(b) respectively. The temperature in the thin structure
is considered uniform across the thickness compared to the variation in the longitudinal direction.

Temperature is linearly interpolated from the CHT results to the structural model as illustrated in
Fig. 13(a) where the squares represent information pertaining to the FEM model and the lines results given
by the CHT model for both upper and lower surface of the vehicle body. The two dimensional (2D) CHT
model is used to compute the 2D loads on the three dimensional (3D) FEM model. The nodal pressures
applied at each node are calculated based on their longitudinal coordinate, X, such that the total pressure
applied along the center line of the vehicle is conserved. In Fig. 13(b), the nodal pressure is represented with
square{shaped markers. In order to conserve pressure loading, the pressure at the nodes may be di erent
than the linearly interpolated value. As a rst approximation, the pressure on the side of the vehicle is
interpolated from the upper surface to the lower surface. The leading edges and trailing edges of the vehicle
are assumed to be rigid and are not modelled in the FEM model. However, the resultant aerodynamic forces
and moments on the leading edges and trailing edges computed in the CHT model are applied as distributed
forces at the respective leading edge and trailing edge of the vehicle FEM to conserve total force from the
CHT model to the FEM model.

B. Aerothermoelastic De ections

The skin of the vehicle is represented by an equivalent panel with homogenized properties® given in Table 4.
Comparing the speci ¢ modulus i.e. the ratio % the panel represents a lighter structure for comparable
sti ness requirements. The thickness of top and bottom sheets is 1.5 mm. The corrugated sheet, in Fig. 6,
obtained from superplastical forming and di usion binding process, is 0:75 mm. The total thickness of the
panel, hs, is 0.03 m. The leading edges are assumed to be perfectly rigid. The upper surface of the internal
inlet, isolator, combustor and internal nozzle is assumed to be made of titanium alloys. The high sti ness
associated with this structural component of the airframe where the engine is mounted coincides with the
highest thermal and pressure loads.

The total mass of the vehicle is 43 tons. For comparison purposes, the SR{71 was 32:74 meters long and
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Table 4. Panel Properties

Density M kg:m 3 4306
Titanium alloy Young Modulus E Pa 112 10°
Thermal expansion T K1 774 10 ¢
Poisson ratio 0:3
Speci ¢ modulus £ 2:6 107
Longitudinal exural sti ness Dy Nm 6:2 10*
Thickness hs m 0.03
Titanium alloy panel Density M kg=m?3 737.2
Young modulus E= 12D><°h7(312) Pa 32 10°
Speci ¢ modulus £ 4:3 107

its empty weight and maximum takeo weight were 30 and 78 tons respectively. The natural modes shape of
the vehicle are shown in Fig. 14. The rst two and fourth elastic modes correspond to the rst longitudinal
bending modes having a natural frequency of 12.3, 19.2 and 26.7 Hz respectively. The third mode at 25.9
Hz is a lateral bending mode. The fth mode is the rst torsional mode at natural frequency of 28.2 Hz.

(c) f =259 Hz

(d) f = 26:7 Hz “ (o) F=282Hz

Figure 14. First 5 natural mode shapes

The young modulus of the titanium alloy varies linearly with temperature from 100% to 70% at 288 and
810 K respectively. The coe cient of thermal expansion varies from to 7:74 10 ® K 't09:54 10 ® K !
at 288 and 810 K respectively. These values are representative of a high temperature titanium alloy such as
Ti{6AI{2Sn{4Zr{2Mo.*® The initial temperature for the thermal expansion of the structure is set to 288 K
which is the sea level temperature in a standard atmosphere model.

The temperature contours on the lower surface of the FE model of the vehicle are shown in Fig. 15 and
corresponds to the temperature shown in Fig. 13(a). The highest temperature, 950 K, corresponds to the
exit of the combustor. The lowest temperature at the upper surface is less than 600 K.

Similarly, pressure contours on the lower surface of the FEM are shown in Fig. 16 and correspond to the
pressure shown in Fig. 13(b). As expected, temperature and pressure are dependent only on the x coordinate
on the lower surface. The variation along the spanwise direction is due to the interpolation from the elements
of the lateral skin comprising the sides of the vehicle.

The vehicle is ying in a straight and level trajectory at constant altitude and Mach number. The angle
of attack is constant and assumed to be ¢ = 0°. The temperature increases in the structure as function of
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Figure 16. Pressure contours at ¢ =0° t=1h, ER=1:0

time. As the structure heats up, material degradation and thermal stresses decrease the natural frequencies,
shown in Fig. 17. The di erent bars in the gure correspond to di erent thermal loads. The variation
in modal frequencies is of the order of 10% after an hour of ight at 0° angle of attack. For a uniform
temperature of 800 K, the variation in frequencies is of the order of -16% which corresponds primarily to
material degradation.

The static deformations are computed at di erent times. The aerothermoelastic deformation of the
vehicle along its plane of symmetry, (y = 0), is shown in Fig. 18. The leading edge and trailing edge of the
body de ects upward due to increasing temperature di erence between the upper and lower surface at the
inlet and nozzle respectively. After one hour of ight, the amplitude of the de ections is of the order of 8 cm
which corresponds to 0.6% of the length of the inlet from the leading of the vehicle to the leading edge of
the cowl. The de ections varies signi cantly with time: the aeroelastic deformation may be limited initially,
but as the vehicle ies and heats up, material degradation and thermal stresses plays a signi cant role in
deforming the vehicle. At the center line , the cowl de ects downwards due to high pressure loading at its
upper surface. It is important to note that the cowl is modeled using a single shell element through the
thickness. For this reason the temperature gradients which may occur between the upper and lower surface
of the cowl are not accounted for. The temperature is assumed to be uniform across the thickness of the
cowl. In an actual vehicle, similar to the inlet, the temperature at the upper surface of the cowl is higher
than the temperature at the bottom of the cowl. However some active cooling design may alleviate part of
the temperature di erence through the thickness. In the model, the cowl structure has been assumed to be
su ciently exible to account for potential deformations as a result of high pressure and thermal loading.
De ections of the order of 1.5 to 2 cm are obtained. It corresponds to approximately 0.9 % of the width of
the engine. At the edge of the engine, the cowl is attached to the vehicle and its deformation follows the
shape of the vehicle. The leading edge of the cowl de ects upwards. The amplitude of the de ection is of
the order of -0.4 times the de ection at the center line at 0° angle of attack. It dictates the range of the
uncertain variable, », in the uncertainty propagation analysis.

In Fig 19(a), the vehicle deformations are computed for di erent angles of attack from -1 ° to 5 © at times
t =720 s and t = 3600 s. The temperature distribution in the structure is due to the ight time elapsed,
while the pressure loading corresponds to the attitude of the vehicle at a particular time. In Fig 19(a), each
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deformation is due to a ight time of t = 720 s and t = 3600 s at ¢ = 0° angle of attack followed by a
change of angle of attack which creates a di erent pressure loading on the heated vehicle. The results shows
that the variation of the deformation with change in angle of attack is less than the one with change in ight
time. It con rms the fact that aerothermoelastic e ects have a greater e ect on the deformation than the
aeroelastic e ects for the vehicle. In Fig. 19(b), for clarity, the results are shown for only t = 3600 s. The
deformations of the cowl do not depends signi cantly of the ight history. Its deformation depends primarily
on aerodynamic loading since the cowl is not subject to temperature gradients across its thickness in this
model.

Body deformation Cowl deformation, y =0m *  Engine, AoA = -1°
0.1 T T T T T 1 0 _ 0
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Figure 19. FEM deformation as function of angle of attack, ¢ =0°

In Table 5, the displacements at two di erent ight times and two di erent angles of attack are given.
The axial deformation of the cowl leading edge are relatively small. The di erence between the vertical
displacements between the two trajectories is 16% at t = 720 s and 25% at t = 3600 s. The history of the

ight as an increasing e ect on the deformation of the vehicle.

Table 5. Displacements at the leading edges of the cowl and of the vehicle, y =0

Flight history u(m) w((m)
t=720s
£ =0 Vehicle -0.0073 0.0156

Cowl  -0.0039 -0.0142
Vehicle -0.0073 0.0181

:lo

f Cowl -0.0039 -0.0142
t = 3600s

_g  Vehicle 00114 0.0640

.=

Cowl  -0.0038 -0.0142
— 10 Vehicle  0.010  0.0803
Cowl  -0.0044 -0.0142

Once the aerothermoelastic de ections have been studied, the uncertainty propagation analysis is per-
formed for the two uncertain variables corresponding to the amplitude of the deformations.
C. Uncertainty Propagation Analysis

The uncertainties associated with thermal de ections of the vehicle and cowl were propagated through the
analysis and their impact on the axial force, Fx are quanti ed. The 2D MASIV code predicts a force per
unit length which is multiplied by the width of the cowl, 2.1 m, to give a force Fx in N. In Table 6, the
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amplitude, i, of the deformation of the vehicle is assumed to vary between 0 and 1 and it corresponds to
the deformation observed during the rst hour of the ight. The amplitude of the deformation of the cowl,

2, varies between 0:4 and 1 to cover the range of variation encountered during the rst hour of ight and
encompass the deformation shape which varies signi cantly from the centerline to the sides of the cowl where
it is bonded to the vehicle.

Table 6. Displacement bounds and PDF for uncertainty propagation

Variable Lower Bound Upper Bound PDF

Vehicle deformation 1 0 1 uniform
Cowl deformation 2 -0.4 1 uniform

A convergence study is performed to determine the degree of the polynomial for the response surface which
yields to an accurate approximate the analysis. A 5th order polynomial response surface was constructed
based on (5 + 1) = 36 analysis runs; i.e. 6 collocation points for the 2 random variables. Using this
information, 50000 IMCS were performed on the polynomials response surface generated by SCE. The
accuracy of the polynomial response surface is evaluated by comparing its prediction with the analysis at
77 uniformly{distributed reference points di erent from the collocation points. For this case, the maximum
error is less than 0.8% of the deterministic value for all equivalence ratios and angles of attack for the 81
test points. Therefore the polynomial response surface is considered as a good approximation of the true
function. Mean and standard deviation predicted by IMCS and numerical quadrature were identical within
0.7%.

The results of the uncertainty propagation study are shown in Fig. 20(a). The black line corresponds
to the predicted axial force as a function of angle attack for two di erent equivalence ratios, ER = 0:5 and
ER = 1:0. Examining the deformed con guration ( 1 =1 and , = 1) indicates that the performance of the
engine is a ected by the deformation. The vehicle deforming upwards and the cowl deforming downwards
increase the magnitude of the axial force. This is due to the additional compression that occurs in the
deformed inlet as well as an increased mass ow rate in the engine. In Fig. 20(a), the grey areas represent
the full range of the axial force given the uncertainty in the deformation of the geometry. The change of
performance is relatively small in magnitude and varies with the angle of attack from 4% to 28% of the
value predicted for the undeformed con guration at ER = 0:5. The mean values are indicated with the
dotted line. Error bars indicate the value of the mean plus or minus the standard deviation. The same
deformation shapes obtained for Mach 8 are used to perform the same analysis of the engine performance
but at a Mach number of 9. It indicates whether the same level of deformation have a di erent e ect on the
engine performance at another ight condition. The results are shown in Fig.20(b). This level of deformation
have a comparable impact on the engine performance at Mach 9. This information can be useful in a design
process to estimate the level of acceptable deformation.

In Fig. 21, the results of the uncertainty propagation analysis are normalized with respect to the value for
the undeformed con guration and compared for two di erent trajectories. The rst trajectory corresponds
to a ight with one hour at ¢ = 0° angle of attack at Mach 8, and an altitude of 26 km. The second one
corresponds to a ight angle of attack of ¢ = 1°. The vertical deformation at the leading of the vehicle is
25% higher in the second case because of the additional increase of temperature due to the variation in this
speci ¢ ight condition. The di erence between both cases is relatively minor. The cowl deformations are
almost equal in both cases, therefore it appears that the cowl is the main principal contributor to the e ect
on propulsion performance.

The output probability distribution extracted from IMCS results are shown in Figs. 22, which indicates
that there is a signi cant probability that the magnitude of the axial force increases due to the deformation.
In each gure, the horizontal axis shows the range of the axial force. The probability density function of
the output (PDF), as represented by the bars, indicates the regions with higher probability. The cumulative
density function, CDF(f), depicted with the curve, gives the probability that the output is smaller than the
given value of the output f( ): for instance, the probability that kF«k is less than the deterministic value is
indicated by the markers in each gure.

The probability of failure, pge is de ned as the probability that the magnitude of the axial force is less
than the deterministic value. Its value is calculated based on the IMCS results the CDF. It varies from a
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few percent to 34% at 5° angle of attack as illustrated in Fig. 23. These results clearly demonstrate the
additional information which can be obtained by incorporating uncertainty in propulsion analysis problems.
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Figure 23. Probability of failure

To show the e ect of keeping a constant equivalence ratio, ER, in the undeformed con guration, the
same study is performed without prescribing constant fuel ow mass rate. Results shown in Figs. 24(a)
and 24(b) indicate that there is a signi cant increase of the e ect of deformation on the change in axial force
for both Mach 8 and Mach 9. The variation range increases to up to 50% at an angle of attack of =5° and
ER = 0:5. In addition more fuel is injected in the combustor as illustrated in Fig 24(c). The range of the
vehicle may decrease. In Fig. 24(d), the change in maximum pressure is depicted. The e ect of deformation
increases maximum pressure in the combustor which may a ect signi cantly the chemistry of the combustion
process. It is important to note that the reaction rates are interpolated from a database based on the local
temperature. Currently the database is limited and its extension to a wider range of temperature is planned
for the future.

V. Concluding Remarks

The results indicate that aerothermal deformations can be a source of uncertainty in airbreathing propul-
sion system modeling for hypersonic vehicles. Reduced{order models used in hypersonic aeroelastic and
aerothermoelastic analyses based on insu cient knowledge associated with this class of problems require an
uncertainty quanti cation approach.

1. The complexity of aerothermoelastic analyses requires expensive computations which are not suitable
for control oriented models. However estimating aerothermoelastic de ections at an early stage of the
analysis and propagating them through the propulsion analysis can alleviate the computational cost of
the fully coupled analysis and provides a rst step towards an improved understanding of this factor
in airframe{integrated scramjet engine.

2. While the deformation due to the aerothermoelastic e ects are relatively small deformation, these shed
useful light on the understanding and quanti cation of the performance of the airframe{integrated
engine for airbreathing hypersonic vehicles.

3. The cowl is identi ed as one of the most important contributors to both uncertainty and sensitivity of
the propulsion system analysis. Accurate modeling of the thermal gradient through the main compo-
nents of the structure is required. The structural model has to account for thermal gradient through
the thickness of the main components as the vehicle airframe and cowl.
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4. Accurate modeling of the aerodynamic heating, ight history and control laws are required to fully
understand the consequences of aerothermoelastic deformation on the overall performance of the vehicle
throughout its mission.
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