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Richtmyer-Meshkov instability (RMI1) plays an important role in a broad variety of
phenomena in nature and technology and is of special interest in the fields of shock-
turbulence interaction, supersonic aerodynamic flows, and inertial and magneto-inertial
fusion. Theinstability developswhen a shock refracts an interface between two fluids with
different values of the acoustic impedance, and RMI1 dynamicsis defined primarily by the
flow Mach number and the Atwood number for the two fluids. For continuous fluid
dynamic (CFD) codes, numerical modeling of RMI is a severe task, which imposes high
requirements on the resolution, accuracy and spatio-temporal dynamic range of the
simulations. Modeling of high-Atwood and high-Mach flows, which are of interest in
practical applications, is even more challenging, as it requires shock capturing, interface
tracking and accurate accounting for the dissipation processes. We used Smooth Particle
Hydrodynamics Code (SPHC) and Center for RAdiative Shock Hydrodynamics (CRASH)
codes to mutually evaluate the codes and comparetheir results against the analytical RM|
theory. The numerical and theoretical results are in good qualitative and quantitative
agreement with one another. These results indicate that at large scales the nonlinear
dynamics of RMI is a multi-scale processes; at small scale the flow field is heterogeneous
and is characterized by appearance of local microscopic structures; the coupling between
the scales hasa complicated character.

| Introduction

Shock-turbulence interaction plays a key role ghhspeed aerodynamic flows [1-3]. Its accurate tifieation
is important for practical applications and flowntml in supersonic vehicles, scramjet combustans, film-cooled
turbine blades [3]. Shocks inevitably occur whee flow speed increases to the speed of sound. Tbeks
enhances turbulence production, substantially meslifs length scale and dissipation propertied, may lead to
flow separation and unsteadiness [1-3]. In a coapgpeoximation, the amplification of the turbulemmeduction by
a shock wave can be obtained from the Rankine-Hogawondition and from the decomposition of turinile
fluctuations into the uncoupled acoustic, vorticipd entropy modes [4-9]. To describe the shodiudience
interactions at fine scales, a better understangdimgquired of the influence of the shock on timoalent vorticity
fields, in particular on the vortex stretchingtitiy and dilatation, and on the baroclinic vorfiqiroduction [1,10].
The baroclinic vorticity is produced whenever ptessand density gradients are pointed in opposgiexiibns [11].
It couples the velocity and density fields and Hssim extensive interfacial turbulent mixing [123]. The mixing
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induces strong interplay of the acoustic, vorticityd entropy modes, and governs the fluctuationtbefressure
and temperature fields [14]. Its properties defrarh the scenario of canonical turbulence flows-152.

To capture the baroclinic vorticity production athe induced turbulent mixing, one should accuradelyount
for the evolution of the unstable interfaces, whigiproximate the regions with sharp changes ofoveantd scalar
fields of the turbulent flow, and to apply a soledlsharp boundary approximation [13, 14]. Tradiéomethods
employed in the studies of shock-turbulence int&wacconsider the flow dynamics in a ‘diffusive’ @pximation,
and for these methods to capture the baroclinitioityr production is a challenge [17-19].

A representative example of the baroclinically ab# flow is the Richtmyer-Meshkov instability (RMR0-
22]. RMI develops when a shock wave refracts theriace between two homogeneous fluids with difieralues
of the acoustic impedance [20-23]. Richtmyer-Meshk@M) turbulent mixing plays an important role many
natural and technological processes, such as ahectinfinement and magneto-inertial fusion, corbapse
supernova, impact dynamics of liquids, and supécstombustion [12,13,23-25]. For instance, to achimagneto-
inertial fusion [26-28], magnetized target plasmaaompressed by imploding plasma liner. The lisdoimed from
an array of converging high Mach number high-vaijoplasma jets, which are generated by pulsed [dagums.
During the implosion process, the plasma may bec&izhtmyer-Meshkov unstable, and RM mixing may
significantly influence the liner stability, thet@raction between the liner and the target, anduien [26-28].

Mitigation and control of RMI is a long-standingoptem [20-22]. The fundamental issues to be undedsare
the evolution and coupling of the large-scale cehestructures and the small-scale structures cteaizng RM
turbulent mixing [12,13]. Our work studies nonline@MI for high Mach number flows and for fluids Wit
contrasting fluid densities, when the effect of theroclinic vorticity production by the shock waigethe most
pronounced [22-24,29-31]. In our simulations thecklanumber ranges from 3 to 10, the Atwood number

A=(p,-p)/(p, +p) ranges from 0.6 to 0.95, whef,, is the density of the heavy (light) gas, and theora

between the initial amplitude and period of thgéascale coherent structure ranges from 0.06 & 0.2

Our research is driven by the theoretical analpsts13,30] and employs the Smoothed Particle Hygnachics
(SPHC code) and Continuous Fluid Dynamics (CRASHeymumerical methods. By the authors’ knowledgs, t
is one of the first explorations of the extremeagpaeter regime, in which we attempt to effectivejpergize the
advantages of the continuous dynamics and thei&idghamic approximations with the rigor of thedrat studies
[32]. The theoretical analysis serves to suggeastie numerical modeling the reliable metrics of flow, and to
identify new properties of the dynamics as observethe simulations [12,13]. The advantages of pheticle
method is that it enables accurate capturing tfecebf microscopic processes on the large-scatehcs, and
self-consistently accounts for the heterogeneousctsires of the flow field as well as the non-eipuilm
transports. The advantages of the continuous appation are that it can model the nonlinear dynansipanning
significant range of scales and approach the ticades of interest to the experiments and practipplications.

Our results indicate that: (i) The nonlinear eviolut of the large-scale coherent dynamics in Riclemy
Meshkov mixing is an essentially non-local and irsdele processes. (ii) At late stages of flow atioh, the
dynamics at small-scale is heterogeneous, andasacterized by the appearance of local microscepicctures,
such as reverse jets. (iii) The coupling betweenléinge and small scales has a complicated characteé departs
from the consideration proposed by simple heurisiidels [33].

[l Outline of evolution of the Richtmyer-M eshkov instability and theor etical analysis

According to the decades-long history of studid® Richtmyer-Meshkov instability evolves as follows
[12,13,20-22,29-40]. RMI develops when a shock wafeacts through a perturbed interface, whethprapagates
from the light fluid to the heavy gas or in the opjte direction [20,21]. The interaction of the skhavave with the
interface results in a complicated dynamics, whiah be presented as a superposition of two motfonghe one
hand, the interface moves as a whole with a velpeit which it would move if it would be ideallygrar. The
velocity of this motion can be derived from one-dimsional calculations and it is an order of magtatless than
the speed of sound [20,21,30]. On the other hammllsperturbations of the velocity and density dielat the
interface start to grow [20,21,29-40]. The grovgtdue to the ‘impulsive’ acceleration of the hegag by the light
gas, and the growth-rate value is determined bypéneclinic vorticity, which is induced by the skd0,21,29].

For small amplitude initial perturbation, an adeguanalytical description of the linear regime d¥iRwas
found recently in Ref.[29]. This theory punctuatlgrives the growth-rate of RMI in cases of stromgl aveak
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shocks for gases with similar and contrasting dissiFor small but finite amplitude of the initipérturbation,
corrections for the growth-rate value can be fowithin the frames of the weakly nonlinear analyfd6-38].
Overall, in the linear regime of RMI the value bétgrowth-rate is two orders of magnitude less thenspeed of
sound [30].

In the nonlinear regime of RMI the growth-rate ésmes and a large-scale coherent structure of dxulaiold
spikes appears: Thaght (heavy) fluid penetrates the heavy (light)idl in bubbles (spikes) [12,13]. The spatial
period of the structure is set by the initial pdsation or by the mode of fastest growth, and theldude is defined
by the bubble and spike positions [12,13]. Shearedr Kelvin-Helmholtz instabilities produce smadiade
structures on the sides of evolving spikes [29-&gll-up of vortices causes a mushroom-typed sludiibe spike
[29-40]. Singular and non-local aspects of therfate evolution make the nonlinear dynamics of RiMVery
complicated theoretical problem [12,13].

An adequate analytical description of the nonlinBatl was found recently in Refs. [12,13,30,39,40he
nonlinear analysis [12,30] employed group theory &ohd that the late-time dynamics of RMI is a masttale
process, which is governed by two independent kesgales: the spatial period and the amplitudéeffitont. For
the bubble front the nonlinear theory suggests dftaer a short stage of the shock-interface intevacthe bubble
curvature and velocity change linearly with timeen, in the weakly non-linear regime, the curvatw&ches an
extreme value, dependent on the initial conditiand the Atwood number; asymptotically, the bubldéténs and
decelerates [12,13,39,40]. The flattening of thblbe front is a distinct feature of RMI universal fall values of
the Atwood number, and it is a qualitative indicatbthe multi-scale character of the dynamics 182,

Eventually a mixing zone develops, and in the dbam@gime the bubbles and spikes decelerate, teeggn
which is induced by the initial shock, graduallysglpates in small-scale structures, and the diseddgirbulent
fluctuations decays with time [29-40]. At this stagiscosity may start to play a dominant role. Riking is a
non-local, inhomogeneous and statistically unsteéadyulent process, and its properties depart fteenscenario of
canonical turbulent flows [13-16].

Theoretical analysis [12,13,30,40] emphasizes tbeessity to characterize the front dynamics witghhi
accuracy and precision enabling the derivation ighdér order spatial and temporal derivatives, taduzt the
observations of the robust macroscopic parametees significant dynamic range, and to tightly coitthe
experimental parameters, such as Mach and Atwoadbars (see Ref.[41] for more details). The analysis
[12,13,30] also indicates that the microscopic psses in RM mixing flow may significantly influendbe
macroscopic dynamics, and that the coupling betwéenlarge and small scales has a complicated cieara
[32,42].

To adequately describe the mixing process and twige an insight for the problem of shock-turbulenc
interactions, we perform a comparative numericaldefiog study, which synergizes the advantages ef th
continuous dynamics and the kinetic dynamic appnaxions. We will explore the parameter regime, hick the
extreme properties of the material mixing are npenhounced, and which include strong shock, stigraglients of
density and pressure, inherently non-equilibriumadyics, and non-local interactions among the maaies.

I Code principlesand test cases

A. SPHC theoretical basis

Smoothed Particle Hydrodynamics (SPH) is a Lageangnethod in computational fluid dynamics [43]ttha
allows relatively easy treatment of the governirguaions of the fluid motion. Finite difference meds
approximate partial differential equations by apmating gradients of field variables located dinite number of
points in space using differencing methods. SiryiJ&8PH makes the kernel and particle approximatimnreduce
the governing equations to a set of ordinary déiféial equations. In particular, any field variabbn be expressed
as

f(%) = [ f(X)a(x - X)X L)

wherex’s are the position vectors of the particled,the integral volume that containsand o as Dirac delta
function. In the kernel approximation, the Diradtddunction is then replaced by a so-called kefapttion W with
following properties:
3
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1y [W(x-%,hd=1
Q
2) lImW(X-x',h)=3(x-X)
3) W(x-X',h)=0,when|X~X]|=kh

whereh is referred to as the smoothing length, ksl a coefficient which determines the support dorb@undary
(see [43-48] for details). Substitution of then@rfunction for the Dirac delta function, we olotai

< f(X)>= j f(R)W(X - X', h)d¥’ @)

Q

The brackets arounf@x) represent the Kernel Approximation Operator (KA®)hen the spatial derivative operator
O is applied to KAO, the kernel function multiplien the right hand side becomes a gradient of theekéunction,
leaving the initial functiorf(x) intact.

<O (%) >= = F(X)OW(X - X', ok @3)
Q
This is very convenient as it simplifies the impkmtation of the method. Once this approach is dimad (particle
approximation), very simple expressions can beioéthin form of Eq. (4) and Eq. (5):

<t®>=> M fRWE-%,h ()

=1 Mj

N )
<ODF(R) >= =Y+ £(%,)OW(X - %, h) 5)

= P

For brevity, detailed derivations of equationgvadtion will not be presented here. For further tietaee, e.g.
references [43-48].

As any other method for solving the fluid equasicaf motion, the SPH has some limitations. Foraneg,
certain efforts have to be taken in order to findefficient algorithm for “neighbor” particle seekj as well as for
overcoming of particle-penetration problems by iempénting artificial viscosity. These purely numatlissues are
mostly relying on programmers experience and oim #rapirical knowledge. In this sense SPHC is ohtéhe more
robust SPH codes, as it has been developing cantshy for more than twenty years, and therefora igood
candidate for simulations of highly non-linear dgmies of the Richtmyer-Meshkov instability.

B. CRASH code theoretical basis

For the CFD simulation we used an Eulerian codekgge, Center for Radiative Shock Hydrodynamics
(CRASH) code. Extended from BATS-R-US (Block-AdaptiTree Solar wind Roe Upwind Scheme), CRASH is
capable of 3D simulation with multi-group radiatidiiffusion model and adaptive mesh refinement. Fore
details on CRASH’s numerical method and curren@abdjies, please see [49]. For purposes of presemk we
only use its hydrodynamics simulation on a fixeld, Qartesian grid.

We employed the CRASH'’s implementation of the HL{UB] scheme, which is second order in both spade an
time. Explicit 2-stage Runge-Kutta scheme with Cilimber 0.8 is used for time integration, and the fis
calculated with the reconstructed linear slopeghef state variables within the cells using geneedliKoren's
limiter. In more detail, a flux limiter is requirddr these Riemann solvers to extrapolate the statiableU from
the left and right cell centers to the cell facé=ats as

4
American Institute of Aeronautics and Astronautics



1

Uiy =V, +EZUi (6)
1—
Uiy, =Uig _EAUiﬂ (7)

where AU, is the limited slope in cell For the generalized Koren's limiter, the limitsidpes in the left and right
extrapolations are constructed asymmetrically as

AU, = minmor{ﬁ(uiﬂ—ui)”g(ui ~U.), 2, -V, _Ui—li|

ZRUi = minmo{ﬁ(um -U,), BU; _Ui—l)uUiJrl _Ué—ZUi_l}

where 3 is an adjustable parameter which controls the amof numerical dissipation with admissible range
1.0B< 2.0.B is fixed to be 2.0 for this study, and the resoluis 64 cells per wavelength. For these CFD rthnes,
wavelength is equal to the width of the shock tugmethe physical wavelength is also 1 cm.

C. SPHC test simulation of Rayleigh-Taylor instability

In order to validate SPHC code’s ability to mod@tRmyer-Meshkov instability, a test case of RagteiTaylor
(RT) from Moylan’s work [50] has been used. Moytiveloped a numeric model of Rayleigh-Taylor insitgtfor
the purposes of simulating influence of shocks angdersonic flowfields on water droplets. The models
constructed and compared with the analytical thedr@handrasekhar [51] and Joseph [52]. Two pararaetere
used to assess the ability of the code to modeRihénstability: the wavelength of the most unséabiave, and the
growth rate of that wave. Initial parameters valuere surface tension for water (72 dyne/cm), itien$ water (1
g/cc), and drop acceleration (1.0xXfn/$). The acceleration term is near that predicteddseph [17] (6.47x10
cm/s) for a Mach 3 demise’ scenario. Joseph’s theoegdipts that with these parameters, maximum groaté r
will occur at a wavelength of 0.029 cm at a grovete of 37,873/sec.

T T T T

e o |

0.1

0.0

|
-0.2 -0.1 0.0 0.1 0.2
Figure 1. SPHC R-T Instability Model, psec (a), 35usec (b)[50]

The results of the SPHC simulations gave a modalifference compared to theory of 5%, which repnés a
good correlation to the theory. The resulting nuostrprediction appears a function of the numbepaitticles in
the model. If particle count would be decreased®%, the predicted most unstable wave would iner¢a$.37
cm or 27% error. It is therefore important to aaaofor the impact of particle resolution when dissing RT
instability in SPHC. The results of the test case@esented in Table 1. The wave height and raggowth were
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recorded in intervals of 1@sec, with first 30usec being skipped because no sufficient w-geometry was
developed.

Table 1: SHPC RT Growth Rate Resis, [50]
Therefore, he conclusion of the numeric Wave

comparisons to the R-planer RT theory is that tt Time Height Growth The,:ry SPHC % Diff
SPHC code does in fact producsufficient sec (cm) (cm) | € (x2/x1)
accuracy. Due to physicalsimilarity and 30 0.0093

resemblance of Richtmyéfteshkov and Raylei¢- 40 0.0198 | 00105 | 146 | 2213 | 0.69
Taylor instabilities, one may expetttat SPHCis 50 0.028 00082 | 146 | 141 | 103
capable of  capturing  RichtmyMeshkov 60 0.0384 | 0.0104 | 1.46 | 1.37 | 1.06
instability and poviding reasonable data f 20 00523 | 00139 | 126 | 136 | 107

further theoretical studies.

D. CRASH test simulation of Rayleigh-Taylor instability

Similarly, a resolution study of-D planer RayleighFaylor instability was developed for CRASH. Sir
CRASH lacks physical model of surface tension andosity, we focused on ea-time behavior and compared t
growth rate to theprediction of th simple linear theory where the mixing zone widih the RTI grows
exponentially as

width O exp(t./2TAg/A)

whereg is the gravitdabnal acceleratioranda is the spatial periodVith CRASH, we nominally se A= 1/3,9 =
9806.65 m/5 andA = 0.0002 mand initialized with a small velocity perturbatianound the interface. Since t
behavior of the system without viscosity doesnpete on the length scale, wusel as the lengl-scale and

JA/21Ag for the time-scale.

a5 HLLE beta=2

=gt

BA\

log(Width)
L
\§L

o 1 2 3 4 5 6
Time

Figure 2: Mixing zone width vs. time. Dark Figure 3: Levelset plot of the HLLE simulatic
color indicates higher resolution as number of & with 1024 cells per wavelength at t = 6 natural ei
per wavelength, which ranges from ® 2°. The unit.

black line marks the linearized analytical res
with slope = 1.

As is seen from Figures 2 andadter the instabilityovercomes the numerical dissipation, its growtk fatiows
the linearized analytical result. It deviates adater in tim¢ for high-resolution runsrThis is due to the spontanec
growth of the smallewavelength instabilities, whose presence is urdablein the inviscid simulatior.
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Il Results& Discussion

A. SPHC results

Total of 18 simulations have been carried outaReters that have been varied are Mach numbergBd3.0),
Atwood number (0.6, 0.8 and 0.95) and initial 9£¢he amplitude (0.06 and 0.25 of the wavelength).

Data has been extracted from 31 moving probes;iwdnie essentially designated particles that retteeid state
(flow parameters) at certain time frames and exgf@in to the data history file. Initially all thegbes are evenly
distributed along the two-fluid interface. As simtibns progress, due to appearance of vorticiest mbes are
perturbed from their original position in the pretoev, causing mixing of the probes and destroyhmgdpportunity
to get useful data out of them. However, at plagisre little or no vortexing occurs (e.g. the dipthe bubble and
the tip of the spike), the probes remain unperuried follow the flow fields. These probes wheredus obtain
the data throughout simulations.

Diagnostic parameters that have been obtainetdersimulations include the amplitude growth, thie & the
amplitude growth, the acceleration of amplitudevgtoand curvature of the bubble front [12,13,30]l & the
results were analyzed using appropriate scalingfadased on the initial perturbation wavelergémd post-shock
speed of sound in the low-density regiorirst four parameters have been obtained by diesdling of the data
from the appropriate probes that resided in thaniicof the bubble/spike tip throughout the sintidas. For the
sake of avoiding excess number of figures and astibnds are similar among the simulations (wittmary
difference being in the length of simulation), otihe amplitude growth and rate of amplitude grofathM = 10
andM = 3 are presented in Figures 4 through 7, respdyti
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Figure 4: Scaled amplitude growth for M = 10 cases. Solid
lines represent runs with initial amplitudes of ®.0and
dashed lines stand for runs with initial amplitudgs).25.
, red and blue colors are A = 0.6, A = 0.8 and A0:95,
respectively.
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Figure 6: Scaled amplitude growth for M = 3 cases. Solid
lines represent runs with initial amplitudes of ®.0and
dashed lines stand for runs with initial amplitudgs).25.

, red and blue colors are A = 0.6, A = 0.8 and A0:95,
respectively.
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tc/n
Figure 5. Scaled rate of amplitude growth for M = 10
cases. Solid lines represent runs with initial aitoples of
0.060 and dashed lines stand for runs with initial
amplitudes of 0.25 , red and blue colors are A = 0.6, A =
0.8 and A = 0.95, respectively.
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Figure 7: Scaled rate of amplitude growth for M = 3
cases. Solid lines represent runs with initial aitoples of
0.060 and dashed lines stand for runs with initial
amplitudes of 0.2b Black, red and blue colors are A =
0.6, A=0.8 and A = 0.95, respectively.
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In Figures 4, 5, 6 and 7 one can clearly seelibdt the amplitude growth and the initial rateghef amplitude
growth depend strongly on the initial amplitude. tha other hand, the amplitude growth doesn’t skigmificant
dependence on the Atwood number, whereas thealake of rate of amplitude growth does seem tothengly
influenced by it.

Curvature( was calculated via the use of three probes atapef the bubble, e.g. via recording their positio
and employing simple analytic geometry to calculdie radius of the circle whose arc passes thrahghhree
points. From there data curvatufés calculated as the inverse of the radius. Thathod of estimation curvature is
not considered as an ideal [30], because the pogiti a single probe may significantly influence twerall result.
However, our SPHC simulations did show fairly goadreement with the theoretical predictions at least
qualitatively [12,30,39,40] and did find that cutwa of the bubbles front decreases with time. Téslt holds for
all the simulations, as one may see in Figure 8.

-2
10 1

Ch

-4
10

te/a
Figure 8: Logarithmic plot of scaled curvature for
A = 0.6, initial amplitude 0.06 M = 10 runs (solid
lines), M = 5 (dashed lines) and M = 3 (dash-dot
lines). Black and red stand for initial amplitude$
0.06. and 0.25.

Acceleration was directly recorded from the prohed has fairly uniform results across the paranmeigime.
Strong acceleration is experienced by the fluidéhasnitial shock refracts across the interfaag,ai later times the
acceleration settles down to around zero, as sliwWwigure 9.

arc?

0 1 2 3 4 5

to/A
Figure 9: Plot of scaled acceleration for A = 0.6,
initial amplitude 0.08, M = 10 runs (black), M =5
(blue) and M = 3 (red).
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An important qualitative resulis the developme of the shear-driven Kelviktelmholtz instability at thi
interface, see Figure 1@he other importanqualitative result that has been recordedhis appearance of tl
‘reverse jets’ (‘cumulative jets’) [53]Thesejets occur at late times of simulations at rootghaf spikes and a
propagating in the dirdioin of the initial shock (therefore being reverseith respect to the propagation of 1
spike). The jetgan be clearly seen whthe particular plots are made, eltge temperature plas in Figure 11. This
phenomenon indicates that in the nonlineggime the dynamics at small scales is heterogenaadsthat the
coupling between the large and small scales hasnplicated characte

Figure 10: Kelvin-Helmholtz |nstab|||ty developir Figure 11: Temperature p|0t in range betwee
at the surface of the bubble. 4000K and 8000K, clearly showing “reversed je
in the kase of spikes (between bubbl

B. CRASH Results
CRASH results qualitatively agree with SPHC resyit®viding mutual suppobetweenthe codesFigures 12
and 13provide CRASH plots for amplitude growth and ratewmplitude growth for the caM = 3,A = 0.6 and
initial amplitudea = 0.06!, which are in agreement wiFigures 6 and of the SPHC results. In order to see
agreement it is important to have in id that all SPHC data has been scaled and made lt#discso the
minimumy value on the graphs is zero, while same has nat 8eee for CRASH resul

i

agn,
v/c

O'D%.o 0.5 1.0 15 2.0 2.5 3.0 _0'%.0 0.5 1.0 15 2.0 2.5 3.0

tc/h te/h
Figure 12 CRASHscaled amplitude growth for tt Figure 13: CRASHSscaled rate of amplitude grow
case M = 3, A = 0.6 and initial amplituca = 0.06.. for the case M = 3, A = 0.6 and initial amplitua =
0.061.

Runs withA = 0.95 and withsmall initial perturbation (0.(1) exhibit apparent oscillations in the ratethe
amplitude growth. The periods the oscillation<are estimated from the plots to beu®(Mach ?), 1.25us (Mach
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4), and 0.67us (Mach 10). These periods are within 33% agreeméhtthe time required for the sound wave to
travel across the wavelength/tube widifg, calculated from the post-shock density and presas 2.561s (Mach
3), 1.66us (Mach 5), and 0.8jis (Mach 10) respectively. Further examination @ $pike and bubble velocities

indicates that they oscillate with phases oppdsiteach other. Qualitatively the CRASH runs shovandard
features of RMI evolution [29-40].

nx= 182, 64 = E75, ime= 4.0900c—06

Figure 14: CRASHdensity plot at final time in run M =5, At = Othd
initial amplitude Amp =0.258

IV Conclusions

Both SPHC and CRASH codes handled the Richtmyemktasinstability, managing to run all 18 simulation
and the results obtained show good agreement athengodes over the entire parameter regime andpitunsde
some reassurance of the quality of the numeriglli® The numerical results agree qualitativelg quantitatively
with the theoretical analysis, including the rofi-of vortces, development of the shear-driven Kekielmholtz
instability, the oscillations of the velocity figeldnduced by reverberations of sound waves, depmedef the
growth-rate on the amplitude of the initial pertatibn, and flattening of the bubble front.

Fairly high particle resolution used in the SPH@udations (approx. 1e5 particles) and the partiistribution
optimization techniques, both allowed for the newgight in RMI dynamics. One interesting insight the
development of the Kelvin-Helmholtz instability early stages of RMI in case of large amplitude tedf initial
perturbation. The other important insight, whicl,tbe authors’ knowledge, has never been repostéei ‘reverse
jets’. These jets are created in the roots of flikes. They propagate in the direction opposittheospike motion
and enhance the fluid mixing. It would be intenegtio conduct a study in order to experimentallgaththe SPHC
results with the use of advanced experimental telcigies [41,42].

To conclude, we found that: The nonlinear evolutminthe large-scale coherent dynamics in Richtmyer-
Meshkov mixing is an essentially non-local and irsdale processes. At late stages of flow evolytibe dynamics
at small-scale is heterogeneous, and is charaeteby the appearance of local microscopic strusturbe coupling
between the large and small scales has a comglicdtaracter, and appears to depart from the coasioe
proposed by simple heuristic models.
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