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Richtmyer-Meshkov instability (RMI) plays an important role in a broad variety of 
phenomena in nature and technology and is of special interest in the fields of shock-
turbulence interaction, supersonic aerodynamic flows, and inertial and magneto-inertial 
fusion. The instability develops when a shock refracts an interface between two fluids with 
different values of the acoustic impedance, and RMI dynamics is defined primarily by the 
flow Mach number and the Atwood number for the two fluids. For continuous fluid 
dynamic (CFD) codes, numerical modeling of RMI is a severe task, which imposes high 
requirements on the resolution, accuracy and spatio-temporal dynamic range of the 
simulations. Modeling of high-Atwood and high-Mach flows, which are of interest in 
practical applications, is even more challenging, as it requires shock capturing, interface 
tracking and accurate accounting for the dissipation processes. We used Smooth Particle 
Hydrodynamics Code (SPHC) and Center for RAdiative Shock Hydrodynamics (CRASH) 
codes to mutually evaluate the codes and compare their results against the analytical RMI 
theory. The numerical and theoretical results are in good qualitative and quantitative 
agreement with one another. These results indicate that at large scales the nonlinear 
dynamics of RMI is a multi-scale processes; at small scale the flow field is heterogeneous 
and is characterized by appearance of local microscopic structures; the coupling between 
the scales has a complicated character. 

 
I Introduction 

 
Shock-turbulence interaction plays a key role in high speed aerodynamic flows [1-3]. Its accurate quantification 

is important for practical applications and flow control in supersonic vehicles, scramjet combustors, and film-cooled 
turbine blades [3]. Shocks inevitably occur when the flow speed increases to the speed of sound. The shock 
enhances turbulence production, substantially modifies its length scale and dissipation properties, and may lead to 
flow separation and unsteadiness [1-3]. In a coarse approximation, the amplification of the turbulence production by 
a shock wave can be obtained from the Rankine-Hugoniot condition and from the decomposition of turbulent 
fluctuations into the uncoupled acoustic, vorticity and entropy modes [4-9]. To describe the shock-turbulence 
interactions at fine scales, a better understanding is required of the influence of the shock on the turbulent vorticity 
fields, in particular on the vortex stretching, tilting and dilatation, and on the baroclinic vorticity production [1,10]. 
The baroclinic vorticity is produced whenever pressure and density gradients are pointed in opposite directions [11]. 
It couples the velocity and density fields and results in extensive interfacial turbulent mixing [12, 13]. The mixing 
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induces strong interplay of the acoustic, vorticity and entropy modes, and governs the fluctuations of the pressure 
and temperature fields [14]. Its properties depart from the scenario of canonical turbulence flows [12-16]. 

To capture the baroclinic vorticity production and the induced turbulent mixing, one should accurately account 
for the evolution of the unstable interfaces, which approximate the regions with sharp changes of vector and scalar 
fields of the turbulent flow, and to apply a so-called sharp boundary approximation [13, 14]. Traditional methods 
employed in the studies of shock-turbulence interaction consider the flow dynamics in a ‘diffusive’ approximation, 
and for these methods to capture the baroclinic vorticity production is a challenge [17-19]. 

A representative example of the baroclinically unstable flow is the Richtmyer-Meshkov instability (RMI) [20-
22]. RMI develops when a shock wave refracts the interface between two homogeneous fluids with different values 
of the acoustic impedance [20-23]. Richtmyer-Meshkov (RM) turbulent mixing plays an important role in many 
natural and technological processes, such as inertial confinement and magneto-inertial fusion, core-collapse 
supernova, impact dynamics of liquids, and supersonic combustion [12,13,23-25]. For instance, to achieve magneto-
inertial fusion [26-28], magnetized target plasma is compressed by imploding plasma liner. The liner is formed from 
an array of converging high Mach number high-velocity plasma jets, which are generated by pulsed plasma guns. 
During the implosion process, the plasma may become Richtmyer-Meshkov unstable, and RM mixing may 
significantly influence the liner stability, the interaction between the liner and the target, and the fusion [26-28]. 

Mitigation and control of RMI is a long-standing problem [20-22]. The fundamental issues to be understood are 
the evolution and coupling of the large-scale coherent structures and the small-scale structures characterizing RM 
turbulent mixing [12,13]. Our work studies nonlinear RMI for high Mach number flows and for fluids with 
contrasting fluid densities, when the effect of the baroclinic vorticity production by the shock wave is the most 
pronounced [22-24,29-31]. In our simulations the Mach number ranges from 3 to 10, the Atwood number 

( ) ( )lhlhA ρρρρ +−=  ranges from 0.6 to 0.95, where )( lhρ
 

is the density of the heavy (light) gas, and the ratio 

between the initial amplitude and period of the large-scale coherent structure ranges from 0.06 to 0.25. 
Our research is driven by the theoretical analysis [12,13,30] and employs the Smoothed Particle Hydrodynamics 

(SPHC code) and Continuous Fluid Dynamics (CRASH code) numerical methods. By the authors’ knowledge, this 
is one of the first explorations of the extreme parameter regime, in which we attempt to effectively synergize the 
advantages of the continuous dynamics and the kinetic dynamic approximations with the rigor of theoretical studies 
[32]. The theoretical analysis serves to suggest for the numerical modeling the reliable metrics of the flow, and to 
identify new properties of the dynamics as observed in the simulations [12,13]. The advantages of the particle 
method is that it enables accurate capturing the effect of microscopic processes on the large-scale dynamics, and 
self-consistently accounts for the heterogeneous structures of the flow field as well as the non-equilibrium 
transports. The advantages of the continuous approximation are that it can model the nonlinear dynamics spanning 
significant range of scales and approach the time-scales of interest to the experiments and practical applications. 

Our results indicate that: (i) The nonlinear evolution of the large-scale coherent dynamics in Richtmyer-
Meshkov mixing is an essentially non-local and multi-scale processes. (ii) At late stages of flow evolution, the 
dynamics at small-scale is heterogeneous, and is characterized by the appearance of local microscopic structures, 
such as reverse jets. (iii) The coupling between the large and small scales has a complicated character, and departs 
from the consideration proposed by simple heuristic models [33]. 
 

II Outline of evolution of the Richtmyer-Meshkov instability and theoretical analysis 
 
According to the decades-long history of studies, the Richtmyer-Meshkov instability evolves as follows 

[12,13,20-22,29-40]. RMI develops when a shock wave refracts through a perturbed interface, whether it propagates 
from the light fluid to the heavy gas or in the opposite direction [20,21]. The interaction of the shock wave with the 
interface results in a complicated dynamics, which can be presented as a superposition of two motions. On the one 
hand, the interface moves as a whole with a velocity, at which it would move if it would be ideally planar. The 
velocity of this motion can be derived from one-dimensional calculations and it is an order of magnitude less than 
the speed of sound [20,21,30]. On the other hand, small perturbations of the velocity and density fields at the 
interface start to grow [20,21,29-40]. The growth is due to the ‘impulsive’ acceleration of the heavy gas by the light 
gas, and the growth-rate value is determined by the baroclinic vorticity, which is induced by the shock [20,21,29]. 

For small amplitude initial perturbation, an adequate analytical description of the linear regime of RMI was 
found recently in Ref.[29]. This theory punctually derives the growth-rate of RMI in cases of strong and weak 
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shocks for gases with similar and contrasting densities. For small but finite amplitude of the initial perturbation, 
corrections for the growth-rate value can be found within the frames of the weakly nonlinear analysis [36-38]. 
Overall, in the linear regime of RMI the value of the growth-rate is two orders of magnitude less than the speed of 
sound [30]. 

In the nonlinear regime of RMI the growth-rate decreases and a large-scale coherent structure of bubbles and 
spikes appears: The light (heavy) fluid penetrates the heavy (light) fluid in bubbles (spikes) [12,13]. The spatial 
period of the structure is set by the initial perturbation or by the mode of fastest growth, and the amplitude is defined 
by the bubble and spike positions [12,13]. Shear-driven Kelvin-Helmholtz instabilities produce small-scale 
structures on the sides of evolving spikes [29-40]. Roll-up of vortices causes a mushroom-typed shape of the spike 
[29-40]. Singular and non-local aspects of the interface evolution make the nonlinear dynamics of RMI a very 
complicated theoretical problem [12,13]. 

An adequate analytical description of the nonlinear RMI was found recently in Refs. [12,13,30,39,40]. The 
nonlinear analysis [12,30] employed group theory and found that the late-time dynamics of RMI is a multi-scale 
process, which is governed by two independent length scales: the spatial period and the amplitude of the front. For 
the bubble front the nonlinear theory suggests that after a short stage of the shock-interface interaction, the bubble 
curvature and velocity change linearly with time; then, in the weakly non-linear regime, the curvature reaches an 
extreme value, dependent on the initial conditions and the Atwood number; asymptotically, the bubble flattens and 
decelerates [12,13,39,40]. The flattening of the bubble front is a distinct feature of RMI universal for all values of 
the Atwood number, and it is a qualitative indicator of the multi-scale character of the dynamics [12,13]. 

Eventually a mixing zone develops, and in the chaotic regime the bubbles and spikes decelerate, the energy, 
which is induced by the initial shock, gradually dissipates in small-scale structures, and the disordered turbulent 
fluctuations decays with time [29-40]. At this stage, viscosity may start to play a dominant role. RM mixing is a 
non-local, inhomogeneous and statistically unsteady turbulent process, and its properties depart from the scenario of 
canonical turbulent flows [13-16]. 

Theoretical analysis [12,13,30,40] emphasizes the necessity to characterize the front dynamics with high 
accuracy and precision enabling the derivation of higher order spatial and temporal derivatives, to conduct the 
observations of the robust macroscopic parameters over significant dynamic range, and to tightly control the 
experimental parameters, such as Mach and Atwood numbers (see Ref.[41] for more details). The analysis 
[12,13,30] also indicates that the microscopic processes in RM mixing flow may significantly influence the 
macroscopic dynamics, and that the coupling between the large and small scales has a complicated character 
[32,42]. 

To adequately describe the mixing process and to provide an insight for the problem of shock-turbulence 
interactions, we perform a comparative numerical modeling study, which synergizes the advantages of the 
continuous dynamics and the kinetic dynamic approximations. We will explore the parameter regime, in which the 
extreme properties of the material mixing are most pronounced, and which include strong shock, strong gradients of 
density and pressure, inherently non-equilibrium dynamics, and non-local interactions among the many scales. 

 

II Code principles and test cases 
 

A.  SPHC theoretical basis 
 
 Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method in computational fluid dynamics [43] that 
allows relatively easy treatment of the governing equations of the fluid motion. Finite difference methods 
approximate partial differential equations by approximating gradients of field variables located at a finite number of 
points in space using differencing methods. Similarly, SPH makes the kernel and particle approximations to reduce 
the governing equations to a set of ordinary differential equations. In particular, any field variable can be expressed 
as 

   ')'()'()( xdxxxfxf
rrrrr −= ∫

Ω

δ  (1) 

where x’s are the position vectors of the particles, Ω the integral volume that contains x and δ as Dirac delta 
function. In the kernel approximation, the Dirac delta function is then replaced by a so-called kernel function W with 
following properties: 
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where h is referred to as the smoothing length, and k is a coefficient which determines the support domain boundary 
(see [43-48] for details).  Substitution of the kernel function for the Dirac delta function, we obtain 
 

   '),'()'()( xdhxxWxfxf
rrrrr −>=< ∫

Ω

 (2) 

 
The brackets around f(x) represent the Kernel Approximation Operator (KAO). When the spatial derivative operator 
∇ is applied to KAO, the kernel function multiplier on the right hand side becomes a gradient of the kernel function, 
leaving the initial function f(x) intact. 
 

   '),'()'()( xdhxxWxfxf
rrrrr −∇−>=⋅∇< ∫

Ω

 (3) 

This is very convenient as it simplifies the implementation of the method. Once this approach is discretized (particle 
approximation), very simple expressions can be obtained in form of Eq. (4) and Eq. (5): 
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 For brevity, detailed derivations of equations of motion will not be presented here. For further details, see, e.g. 
references [43-48].  
 As any other method for solving the fluid equations of motion, the SPH has some limitations. For instance, 
certain efforts have to be taken in order to find an efficient algorithm for “neighbor” particle seeking as well as for 
overcoming of particle-penetration problems by implementing artificial viscosity. These purely numerical issues are 
mostly relying on programmers experience and on their empirical knowledge. In this sense SPHC is one of the more 
robust SPH codes, as it has been developing continuously for more than twenty years, and therefore is a good 
candidate for simulations of highly non-linear dynamics of the Richtmyer-Meshkov instability. 
 
B. CRASH code theoretical basis 
 

For the CFD simulation we used an Eulerian code package, Center for Radiative Shock Hydrodynamics 
(CRASH) code. Extended from BATS-R-US (Block-Adaptive Tree Solar wind Roe Upwind Scheme), CRASH is 
capable of 3D simulation with multi-group radiation diffusion model and adaptive mesh refinement. For more 
details on CRASH’s numerical method and current capabilities, please see [49]. For purposes of present work we 
only use its hydrodynamics simulation on a fixed, 2D Cartesian grid. 

We employed the CRASH’s implementation of the HLLE [49] scheme, which is second order in both space and 
time. Explicit 2-stage Runge-Kutta scheme with CFL number 0.8 is used for time integration, and the flux is 
calculated with the reconstructed linear slopes of the state variables within the cells using generalized Koren’s 
limiter. In more detail, a flux limiter is required for these Riemann solvers to extrapolate the state variable U from 
the left and right cell centers to the cell face at i = ½ as 
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where 
iU∆ is the limited slope in cell i. For the generalized Koren’s limiter, the limited slopes in the left and right 

extrapolations are constructed asymmetrically as 
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where β is an adjustable parameter which controls the amount of numerical dissipation with admissible range 
1.0≤β≤ 2.0. β is fixed to be 2.0 for this study, and the resolution is 64 cells per wavelength. For these CFD runs, the 
wavelength is equal to the width of the shock tube, so the physical wavelength is also 1 cm. 
 
C. SPHC test simulation of Rayleigh-Taylor instability 
 

In order to validate SPHC code’s ability to model Richtmyer-Meshkov instability, a test case of Rayleigh-Taylor 
(RT) from Moylan’s work [50] has been used. Moylan developed a numeric model of Rayleigh-Taylor instability for 
the purposes of simulating influence of shocks and supersonic flowfields on water droplets. The model was 
constructed and compared with the analytical theory of Chandrasekhar [51] and Joseph [52]. Two parameters were 
used to assess the ability of the code to model the RT instability: the wavelength of the most unstable wave, and the 
growth rate of that wave.  Initial parameters values were surface tension for water (72 dyne/cm), density of water (1 
g/cc), and drop acceleration (1.0x107 cm/s2). The acceleration term is near that predicted by Joseph [17] (6.47x107 
cm/s2) for a Mach 3 demise` scenario. Joseph’s theory predicts that with these parameters, maximum growth rate 
will occur at a wavelength of 0.029 cm at a growth rate of 37,873/sec.   

 
 The results of the SPHC simulations gave a modeling difference compared to theory of 5%, which represents a 
good correlation to the theory. The resulting numerical prediction appears a function of the number of particles in 
the model. If particle count would be decreased by 50%, the predicted most unstable wave would increase to 0.37 
cm or 27% error. It is therefore important to account for the impact of particle resolution when discussing RT 
instability in SPHC. The results of the test case are presented in Table 1. The wave height and rate of growth were 

 
Figure 1: SPHC R-T Instability Model, 0 µsec (a), 35 µsec (b), [50] 

a

b
c

d
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recorded in intervals of 10 µsec, with first 30 µ
developed. 
 
  
 Therefore, the conclusion of the numerical 
comparisons to the 2-D planer RT theory is that the 
SPHC code does in fact produce 
accuracy. Due to physical similarity and 
resemblance of Richtmyer-Meshkov and Rayleigh
Taylor instabilities, one may expect that SPHC 
capable of capturing Richtmyer
instability and providing reasonable data for 
further theoretical studies. 
 
D. CRASH test simulation of Rayleigh
 
 Similarly, a resolution study of 2
CRASH lacks physical model of surface tension and viscosity, we focused on early
growth rate to the prediction of the
exponentially as 
 

  

where g is the gravitational acceleration, 
9806.65 m/s2, and λ = 0.0002 m and initialized with a small velocity perturbation around the interface. Since the 
behavior of the system without viscosity doesn't depend on the length scale, we 

Agπλ 2
 

for the time-scale.

 

Figure 2: Mixing zone width vs. time. Darker 
color indicates higher resolution as number of cells 
per wavelength, which ranges from 25

black line marks the linearized analytical result 
with slope = 1. 

 
 

 
As is seen from Figures 2 and 3, after the instability 

the linearized analytical result. It deviates again later in time
growth of the smaller-wavelength instabilities, whose presence is unavoi
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µsec, with first 30 µsec being skipped because no sufficient wave

he conclusion of the numerical 
D planer RT theory is that the 

SPHC code does in fact produce sufficient 
similarity and 

Meshkov and Rayleigh-
that SPHC is 

capable of capturing Richtmyer-Meshkov 
roviding reasonable data for 

test simulation of Rayleigh-Taylor instability 

Similarly, a resolution study of 2-D planer Rayleigh-Taylor instability was developed for CRASH. Since 
CRASH lacks physical model of surface tension and viscosity, we focused on early-time behavior and compared the 

prediction of the simple linear theory where the mixing zone width 

)2exp( λπ∝ Agtwidth  

 
ional acceleration, and λ is the spatial period. With CRASH, we nominally set 

and initialized with a small velocity perturbation around the interface. Since the 
behavior of the system without viscosity doesn't depend on the length scale, we use λ as the length

 
zone width vs. time. Darker 

color indicates higher resolution as number of cells 
5 to 210. The 

black line marks the linearized analytical result 

 

 
Figure 3: Level-set plot of the HLLE simulation 

with 1024 cells per wavelength at t = 6 natural time 
unit. 

after the instability overcomes the numerical dissipation, its growth rate follows 
the linearized analytical result. It deviates again later in time for high-resolution runs. This is due to the spontaneous 

wavelength instabilities, whose presence is unavoidable in the inviscid simulations

  

Table 1: SHPC R-T Growth Rate Result

Time 
Wave 

Height
Growth

µµµµsec (cm) (cm)

30 0.0093

40 0.0198 0.0105 1.46

50 0.028 0.0082 1.46

60 0.0384 0.0104 1.46

70 0.0523 0.0139 1.46

Theory

(e
nt

being skipped because no sufficient wave-geometry was 

Taylor instability was developed for CRASH. Since 
time behavior and compared the 

 of the RTI grows 

With CRASH, we nominally set  A = 1/3, g = 
and initialized with a small velocity perturbation around the interface. Since the 

as the length-scale and 

 

set plot of the HLLE simulation 
with 1024 cells per wavelength at t = 6 natural time 

overcomes the numerical dissipation, its growth rate follows 
. This is due to the spontaneous 

in the inviscid simulations. 

 

T Growth Rate Results, [50] 

 

1.46 2.13 0.69

1.46 1.41 1.03

1.46 1.37 1.06

1.46 1.36 1.07

Theory
nt

)

SPHC 

(x2/x1)
% Diff
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III Results& Discussion 

A. SPHC results 
 Total of 18 simulations have been carried out. Parameters that have been varied are Mach number (3, 5 and 10), 
Atwood number (0.6, 0.8 and 0.95) and initial size of the amplitude (0.06 and 0.25 of the wavelength). 
 Data has been extracted from 31 moving probes, which are essentially designated particles that record their state 
(flow parameters) at certain time frames and export them to the data history file. Initially all the probes are evenly 
distributed along the two-fluid interface. As simulations progress, due to appearance of vorticies, most probes are 
perturbed from their original position in the probe-row, causing mixing of the probes and destroying the opportunity 
to get useful data out of them. However, at places where little or no vortexing occurs (e.g. the  tip of the bubble and 
the tip of the spike), the probes remain unperturbed and follow the flow fields. These probes where used to obtain 
the data throughout simulations. 
 Diagnostic parameters that have been obtained in the simulations include the amplitude growth, the rate of the 
amplitude growth, the acceleration of amplitude growth and curvature of the bubble front [12,13,30]. All of the 
results were analyzed using appropriate scaling factors based on the initial perturbation wavelength λ and post-shock 
speed of sound in the low-density region c. First four parameters have been obtained by direct reading of the data 
from the appropriate probes that resided in the vicinity of the bubble/spike tip throughout the simulations. For the 
sake of avoiding excess number of figures and as the trends are similar among the simulations (with primary 
difference being in the length of simulation), only the amplitude growth and rate of amplitude growth for M = 10 
and M = 3 are presented in Figures 4 through 7, respectively. 
 

 
Figure 4: Scaled amplitude growth for M = 10 cases. Solid 
lines represent runs with initial amplitudes of 0.06λ and 
dashed lines stand for runs with initial amplitudes of 0.25λ. 
, red and blue colors are A = 0.6, A = 0.8 and A = 0.95, 
respectively. 

 
Figure 6: Scaled amplitude growth for M = 3 cases. Solid 
lines represent runs with initial amplitudes of 0.06λ and 
dashed lines stand for runs with initial amplitudes of 0.25λ. 
, red and blue colors are A = 0.6, A = 0.8 and A = 0.95, 
respectively. 

 
Figure 5: Scaled rate of amplitude growth for M = 10 
cases. Solid lines represent runs with initial amplitudes of 
0.06λ and dashed lines stand for runs with initial 
amplitudes of 0.25λ. , red and blue colors are A = 0.6, A = 
0.8 and A = 0.95, respectively. 

 
Figure 7: Scaled rate of amplitude growth for M = 3 
cases. Solid lines represent runs with initial amplitudes of 
0.06λ and dashed lines stand for runs with initial 
amplitudes of 0.25λ. Black, red and blue colors are A = 
0.6, A = 0.8 and A = 0.95, respectively. 



 
American Institute of Aeronautics and Astronautics 

 

 

8

  
 
 
 In Figures 4, 5, 6 and 7 one can clearly see that both the amplitude growth and the initial rates of the amplitude 
growth depend strongly on the initial amplitude. On the other hand, the amplitude growth doesn’t show significant 
dependence on the Atwood number, whereas the final value of rate of amplitude growth does seem to be strongly 
influenced by it. 
 Curvature ζ was calculated via the use of three probes at the top of the bubble, e.g. via recording their position 
and employing simple analytic geometry to calculate the radius of the circle whose arc passes through the three 
points. From there data curvature ζ is calculated as the inverse of the radius. This method of estimation curvature is 
not considered as an ideal [30], because the position of a single probe may significantly influence the overall result. 
However, our SPHC simulations did show fairly good agreement with the theoretical predictions at least 
qualitatively [12,30,39,40] and did find that curvature of the bubbles front decreases with time. This result holds for 
all the simulations, as one may see in Figure 8. 

 
Figure 8: Logarithmic plot of scaled curvature for  
A = 0.6, initial amplitude 0.06λ, M = 10 runs (solid 
lines), M = 5 (dashed lines) and M = 3 (dash-dot 
lines). Black and red stand for initial amplitudes of 
0.06λ and 0.25λ. 

 
 Acceleration was directly recorded from the probes and has fairly uniform results across the parameter regime. 
Strong acceleration is experienced by the fluids as the initial shock refracts across the interface, but at later times the 
acceleration settles down to around zero, as shown in Figure 9. 
 

 
Figure 9: Plot of scaled acceleration for A = 0.6, 
initial amplitude 0.06λ, M = 10 runs (black), M = 5 
(blue) and M = 3 (red). 
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 An important qualitative result is the development
interface, see Figure 10. The other important 
‘reverse jets’ (‘cumulative jets’) [53]. 
propagating in the direction of the initial shock (therefore being reversed with respect to the propagation of the 
spike). The jets can be clearly seen when 
phenomenon indicates that in the nonlinear re
coupling between the large and small scales has a complicated character.
 

 
Figure 10: Kelvin-Helmholtz instability developing 
at the surface of the bubble. 

 
 
B. CRASH Results 

CRASH results qualitatively agree with SPHC results, providing mutual support 
and 13 provide CRASH plots for amplitude growth and rate of amplitude growth for the case 
initial amplitude a = 0.06λ, which are in agreement with 
agreement it is important to have in min
minimum y value on the graphs is zero, while same has not been done for CRASH results.

Figure 12: CRASH scaled amplitude growth for the 
case M = 3, A = 0.6 and initial amplitude 

 Runs with A = 0.95 and with small initial perturbation (0.06
amplitude growth. The periods of the oscillations 
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is the development of the shear-driven Kelvin-Helmholtz instability at the 
The other important qualitative result that has been recorded is the appearance of the 

. These jets occur at late times of simulations at roots of the spikes and are 
ion of the initial shock (therefore being reversed with respect to the propagation of the 

can be clearly seen when the particular plots are made, e.g. the temperature plot 
phenomenon indicates that in the nonlinear regime the dynamics at small scales is heterogeneous and that the 
coupling between the large and small scales has a complicated character. 

 

 

Helmholtz instability developing 
 

Figure 11: Temperature plot in range between 
4000K and 8000K, clearly showing “reversed jets” 
in the base of spikes (between bubbles).

CRASH results qualitatively agree with SPHC results, providing mutual support between the codes. 
provide CRASH plots for amplitude growth and rate of amplitude growth for the case 

, which are in agreement with Figures 6 and 7 of the SPHC results. In order to see the 
agreement it is important to have in mind that all SPHC data has been scaled and made “absolute”, so the 

value on the graphs is zero, while same has not been done for CRASH results. 

 
scaled amplitude growth for the 

case M = 3, A = 0.6 and initial amplitude a = 0.06λ. 
Figure 13: CRASH scaled rate of amplitude growth 
for the case M = 3, A = 0.6 and initial amplitude 
0.06λ. 
 

small initial perturbation (0.06λ) exhibit apparent oscillations in the rate of 
of the oscillations are estimated from the plots to be: 2 µs (Mach 3

Helmholtz instability at the 
the appearance of the 

jets occur at late times of simulations at roots of the spikes and are 
ion of the initial shock (therefore being reversed with respect to the propagation of the 

the temperature plot as in Figure 11. This 
gime the dynamics at small scales is heterogeneous and that the 

 

plot in range between 
4000K and 8000K, clearly showing “reversed jets” 

ase of spikes (between bubbles). 

the codes. Figures 12 
provide CRASH plots for amplitude growth and rate of amplitude growth for the case M = 3, A = 0.6 and 

of the SPHC results. In order to see the 
d that all SPHC data has been scaled and made “absolute”, so the 

 
scaled rate of amplitude growth 

for the case M = 3, A = 0.6 and initial amplitude a = 

) exhibit apparent oscillations in the rate of the 
(Mach 3), 1.25 µs (Mach 
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4), and 0.67 µs (Mach 10). These periods are within 33% agreement with the time required for the sound wave to 
travel across the wavelength/tube width, λ/c, calculated from the post-shock density and pressure as 2.56 µs (Mach 
3), 1.66 µs (Mach 5), and 0.87 µs (Mach 10) respectively. Further examination of the spike and bubble velocities 
indicates that they oscillate with phases opposite to each other. Qualitatively the CRASH runs show standard 
features of RMI evolution [29-40]. 

 

 
 

Figure 14: CRASH density plot at final time in run M = 5,  At = 0.8 and 
initial amplitude Amp = 0.25λ. 

 

IV Conclusions 
 

Both SPHC and CRASH codes handled the Richtmyer-Meshkov instability, managing to run all 18 simulations, 
and the results obtained show good agreement among the codes over the entire parameter regime and thus provide 
some reassurance of the quality of the numerical results. The numerical results agree qualitatively and quantitatively 
with the theoretical analysis, including the roll-up of vortces, development of the shear-driven Kelvin-Helmholtz 
instability, the oscillations of the velocity field, induced by reverberations of sound waves, dependence of the 
growth-rate on the amplitude of the initial perturbation, and flattening of the bubble front. 

Fairly high particle resolution used in the SPHC simulations (approx. 1e5 particles) and the particle distribution 
optimization techniques, both allowed for the new insight in RMI dynamics. One interesting insight is the 
development of the Kelvin-Helmholtz instability at early stages of RMI in case of large amplitude of the initial 
perturbation. The other important insight, which, by the authors’ knowledge, has never been reported is the ‘reverse 
jets’. These jets are created in the roots of the spikes. They propagate in the direction opposite to the spike motion 
and enhance the fluid mixing. It would be interesting to conduct a study in order to experimentally check the SPHC 
results with the use of advanced experimental technologies [41,42]. 

To conclude, we found that: The nonlinear evolution of the large-scale coherent dynamics in Richtmyer-
Meshkov mixing is an essentially non-local and multi-scale processes. At late stages of flow evolution, the dynamics 
at small-scale is heterogeneous, and is characterized by the appearance of local microscopic structures. The coupling 
between the large and small scales has a complicated character, and appears to depart from the consideration 
proposed by simple heuristic models. 
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