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Abstract

Recovery-based discontinuous Galerkin (RDG) is presented as a new
generation of discontinuous Galerkin (DG) methods for di�usion. The re-
covery concept is easily understood and integrated; in particular, RDG does
not require additional data structures for surrogate variables and lifting op-
erators, nor intricate manipulation of the partial di�erential equations, as
is the case with Local Discontinuous Galerkin. In our previous papers we
have illustrated RDG’s remarkable accuracy and stability for scalar di�u-
sion problems via numerical experiment and Fourier analysis. This paper
demonstrates RDG’s ability to solve the 2-D Navier-Stokes equations. We
extend the original recovery concept for the di�usion 
ux; recovery is now
used for solution enhancement. Solution enhancement via recovery is at-
tractive because the subroutines can be used repetitively until a desired
level of enhancement is achieved. We then present numerical results for a
2-D nonlinear equation and the Navier-Stokes equations. Lastly, we com-
pare the various RDG schemes by Fourier analysis.

I. Brief history of Recovery-based discontinuous Galerkin

Reed and Hill1 introduced discontinuous Galerkin (DG) for neutron mass-transport equa-
tions in 1973. The discontinuous basis functions in DG worked well for advection equations
where discontinuities such as shocks, contact discontinuities and slip occur. Using a discon-
tinuous solution representation to emulate discontinuous 
ow seems logical; however, using
a discontinuous solution to represent the smooth di�usion process is completely unnatural.
This dilemma stems from the di�usion 
ux being proportional to the solution gradient at the
cell interface, where neither the solution nor its derivatives are well de�ned. Discontinuous
basis functions became a double-edged sword that has plagued the DG community for a long
time.
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Arnold2 �rst attempted to alleviate the issue by penalizing the discontinuity in the in-
terior penalty method (IPM) in 1982. Many years later, Baumann showed that the interior
penalty was unnecessary if the coe�cient of another penalty term in the scheme was given
the opposite sign. Eventually, Van Leer3 recognized all penalty-like schemes belong to a two-
parameter family and explored the entire family for K = 1 (piecewise-linear) with regard to
stability, consistency and accuracy. His search revealed there exists only one set of coe�-
cients that yields a formally high-order and stable scheme; in contrast, RDG automatically
determines such coe�cients for high-order accuracy.

Bassi and Rebay4 (1997) as well as Cockburn and Shu5 (1998) introduced a di�erent
approach to di�usion by writing the 2nd-order di�usion equation as a system of two 1st-
order equations for the solution and its �rst derivative. Their methods are better known
as Bassi-Rebay (BR1) and local discontinuous Galerkin (LDG), respectively. The addition
of a surrogate derivative variable and lifting operators increases the memory requirement.
Furthermore, stability contants must be handpicked by the user for maximum accuracy,
which hints at the lack of a physical motivation besides enabling mathematical proofs.

The original RDG6 was designed to improve upon the di�usion 
ux for the scalar Laplace
equation by a quantum leap. We applied integration by parts twice (hence the name RDG-
2x) to the weak equation and used the recovered function, f , as the interface value for the
surface integrals. Further numerical analyses and experiments for RDG are found in our
previous papers.7,8

In this paper we extend the recovery concept to include solution enhancement: a method
to increase the order of the solution polynomial. Park at el.9 experimented in 2008 with solu-
tion enhancement using the recovery concept over a large stencil. We di�erentiate ourselves
by focusing on recovery between two cells only (binary recovery). Binary recovery involves
far fewer cells, signi�cantly reducing the size of matrix operations and allowing for e�ective
parallelization. Solution enhancement increases the accuracy of interior volume integrals and
overcomes the face-normal bias of binary recovery (further explained in Section 3).

In order to tackle the nonlinear viscous terms found in the Navier-Stokes equations, the
new generation of RDG schemes is based on di�erent weak forms of the governing equations,
and uses solution enhancement. We depart from RDG-2x because for nonlinear PDE’s twice
integrating by parts is not practical; instead, we focus on single integration by parts (1x)
and no integration by parts at all (0x) when forming the weak equation. The schemes to be
considered in this paper are RDG-1x+, RDG-0x+, RDG-1x++, and RDG-1x++CO, where
the \+" and \CO" stand for solution enhancement and Cartesian optimization, respectively.

This paper �rst reviews the original recovery concept for the di�usion 
ux in Section
2. We then extend the recovery concept to include solution enhancement in Section 3 and
di�erentiate between interior-solution enhancement and recovered-function enhancement.
Next, we present numerical results for both 2-D nonlinear di�usion and 2-D Navier-Stokes
viscous terms. Finally, we include Fourier analysis to compare various RDG schemes on the
basis of the di�usion-shear equation.

II. Review of the Original Recovery Concept: Di�usion Flux

We consider a time-dependent system of conservation laws with viscous terms only,

Ut = r � F (U;rU) ; (1)
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in a domain 
, with conserved variables U , and viscous 
ux F . Let v be a test function and
u be the discretized solution of interest. In a DG formulation both v and u share the same
�nite-element space, e.g. v 2 V and u 2 V , where V is the space of polynomial functions
of degree at most K � 0. Next, we discretize the domain into cells 
i. The solution U is
replaced by ui, and the governing equations are tested with vi to obtain the DG formulation:Z


i

(vk)i ui;t d
 =

Z

i

(vk)ir � F (ui;rui) d
; k = 1; ::; (K + 1)d;

=

I
@
i

(vk)i F (ui;rui) � n̂ d@


�
Z

i

r (vk)i � F (ui;rui) d
; k = 1; ::; (K + 1)d: (2)

Here, @
 represents the cell boundary of 
, and n̂ is the outward normal. (K+1)d stands for
the number of tensor-product basis functions involved for physical dimension d. The solution
along @
 is unde�ned and we proceed with the recovery method to obtain an unique function
along @
.

The original recovery concept is simple in terms of physical interpretation and elegant in
terms of mathematical formulation. Our objective is to \recover" a smooth function from
the discontinuous solutions between two cells. Similar to �tting a function through points,
recovery �ts a function through the solution spaces of two abutting cells. We de�ne f(L;R)

to be the smooth continuous recovered function spanning the union of the two cells, 
L and

R, with shared interface, SL;R. Here the subscripts L and R denote the left and right side of
an interface respectively. We introduce the recovery concept in mathematical pretext. The
recovered function is uniquely determined by making it indistinguishable from the discretized
solution in the weak sense,Z


L

(vk)L uLd
 =

Z

L

(vk)L f(L;R)d
; k = 1; ::; (K + 1)d;

Z

R

(vk)R uRd
 =

Z

R

(vk)R f(L;R)d
; k = 1; ::; (K + 1)d: (3)

>From here on all equations with vk are applied to the complete V space and we drop the
notation \k = 1:::(K + 1)d" for simplicity, unless stated otherwise. The set of recovery
equations provides 2(K + 1)d equations to solve for the unknown coe�cients, bk:

f(L;R) =

2(K+1)dX
k=0

bk!k; ! 2 W: (4)

where !k is the recovery basis in W , a polynomial space of degree at most 2(K + 1)d � 0;
for more information see.10 We perform binary recovery at every interface and insert these
recovery functions into the surface integrals of the viscous terms of the governing PDE’sZ


i

(vk)i ui;t d
 =

I
@
i

(vk)i F (fj;rfj) � n̂ d@
�
Z

i

r (vk)i � F (ui;rui) d
: (5)
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The recovery concept provides an intuitive way to uniquely determine the di�usion 
ux; in
the next section we introduce another usage of the recovered functions.

III. Extension of recovery concept: solution enhancement

Recovery was �rst conceptualized for DG di�usion; however, there is a much broader
application of the recovered function. Solution enhancement is the operation to increase the
polynomial order of a solution based on information from the surrounding cells. Very often
we need to enhance the polynomial order of the solution to compensate for the reduction of
polynomial order when a derivative of the solution is taken. The reduction of polynomial
order leads to negative e�ects on accuracy and stability of a scheme as seen in the RDG-1x.

Park at el.9 �rst experimented with solution enhancement over a large stencil in the
cell-centered RDG (cRDG) scheme. When dealing with a large multi-scale system, the
most resource-consuming part of the scheme is the implicit time-marching algorithm. The
number of equations to solve increases rapidly with the polynomial order of the scheme;
hence, cRDG seeks to increase the order of the scheme without increasing the number of
solution coe�cients. cRDG recovers a new interior solution that satis�es all weak equations
of all neighboring cells. This is very similar to the reconstruction process in a �nite-volume
code, except cRDG works for K � 0.

The new RDG schemes make use of binary recovery for solution enhancement. Our ap-
proach results in a smaller systems of equations and e�ciently recycles the recovered function:
the recovered function is used for both di�usion 
ux and solution enhancement. Consider a
rough comparison of the numerical work required for solution enhancement between RDG
and cRDG on a Cartesian grid. cRDG solves a system of NcRDG;d (K + 1)d equations, where
NcRDG is the number of cells in the cRDG stencil and d is the physical dimension. RDG
solves 2 (K + 1)d equations per binary recovery for NRDG;d interfaces per cell, followed by

a solution enhancement step with (K + 1)d + NRDG;d(K + 1)d�1 equations. Assuming n+n2

2


oating point operations (
ops) to invert an (n � n) matrix via LU-decomposition, Table
1 shows the approximate amount of computational work required for solution enhancement
by RDG and cRDG. Clearly, cRDG becomes increasingly expensive for higher polynomial
order and physical dimension.

1-D 2-D 3-D

K RDG cRDG K RDG cRDG K RDG cRDG

1 30 21 1 222 666 1 1344 23436

2 57 45 2 915 3321 2 12231 266085

3 93 78 3 2640 10440 3 62416 1:49� 106

4 138 120 4 6135 25425 4 226200 5:69� 106

Table 1. Flops comparison between RDG and cRDG for solution enhancement on a Cartesian grid, where
(NRDG; NcRDG) is (2; 3), (4; 9), and (6; 27) for 1-D, 2-D, and 3-D, respectively. RDG in 2-D and 3-D is more than
an order of magnitude cheaper than cRDG.

Although the di�erence in computational work required between RDG and cRDG is
signi�cant, cRDG’s enhanced solution contains the complete set of cross-derivatives which
are useful if the PDE requires them. RDG’s enhanced solution does not span a complete
higher-order polynomial space (see Figure 2); however, the Navier-Stokes equations after
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integration by parts once no longer contain cross-derivatives. Ideally, the level of solution
enhancement should be optimized for the PDE being solved.

The recovery function proves to be a valuable tool; it is used for both di�usion 
ux and
solution enhancement. One could say the recovery concept represents a new green movement
in CFD, in which both subroutines and results are reused to obtain a high order of accuracy.
Starting o� with the basic information of u in each cell, a binary recovery code is �rst applied
to produce all f ’s along the cell interfaces. A unifying code is then applied to acquire an
enhanced solution, û, in each cell (see Figure 1). We can apply the same binary recovery
code again to get an enhanced recovery function, f̂ , and follow it up with the same solution
enhancement code to get a doubly enhanced solution, ^̂u. Furthermore, f̂ can be used in an
enhanced di�usion 
ux. Solution enhancement comes at the expense of a growing stencil;
therefore, the optimal level of enhancement must be chosen for each PDE. The process
can be repeated until the desired level of enhancement dictated by the PDE’s is achieved.
The following sections detail two types of solution enhancement necessary for approximating
the Navier-Stokes viscous terms: the enhancement of the discretized solution and then the
enhancement of the recovered function.

u u

uu

u u

uu

^ ^

^ ^

f f f

f f f

f f

f f

f f

f = BR(u) u = SE(u,f)
^

Figure 1. Recovery concept is used for both di�usion 
ux and solution enhancement. BR stands for binary
recovery; SE stands for solution enhancement. The cycle of BR followed by SE can be repeated over and over
again until the desired level of enhancement is achieved.

III.A. Interior-solution enhancement

We skip the procedure to acquire f via binary recovery (see previous papers) and focus on
the solution-enhancement step. The enhanced solution, û, replaces the original solution u in
the volume integral,

Z

i

(vk)i ui;t d
 =

I
@
i

(vk)i F (fj;rfj) � n̂ d@
�
Z

i

r (vk)i � F (ûi;rûi) d
: (6)

We require û to share all original moments with u, and in addition, to share all moments
with f along the cell boundaries. The equations for solution enhancement in a general case
are as follows: Z


i

(vk)i ui d
 =

Z

i

(vk)i ûi d
; (7)

I
@
i

(vm)i ûi;t d@
 =

I
@
i

(vm)i fj d@
; m = 1:::(K + 1)d�1; (8)
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where m is the index to a (d� 1)-dimensional test function. The second equation uses the
test functions from a reduced space because certain coordinate variables are �xed at the
cell boundary. The only task left is to de�ne the basis functions of û, which lies in a larger
function space V̂ . The following sections show 1-D and 2-D examples on a Cartesian grid.

III.A.1. 1-D solution-enhancement basis functions

In 1-D, Eqn. 8 becomes a strong interpretation; û is required to equal f in the two points
at the left and right end of the cell. Let P (K) be the function space with polynomials of
degree of at most K � 0. If u 2 P (K), then û 2 P (K + 2).

III.A.2. 2-D solution-enhancement basis functions

In 2-D, û is required to satisfy K + 1 moments of f along a line. The choice of basis
functions for û is best illustrated through Figure 2. The positive x-axis represents increasing
polynomial order in x, and the negative y-axis represents increasing polynomial order in y.
Consider the solid-line square to represent the original basis functions of u. The left and
right boundaries of a cell add two (K + 1)-element columns to the right of the square, and
the top and bottom boundaries add two (K + 1)-element rows to the bottom of the square.

1 x

y

x2

y2

1 x

y xy

x2 x3

x2y x3y

y2 xy2

y3 xy3

1 x

y xy

x2 x3

x2y x3y

y2 xy2

y3 xy3

x4

y4

x4y2x3y2

x4y

xy4

x2y2

x2y3

x2y4

K = 0

K = 1

K = 2

Figure 2. Basis functions for û in 2-D Cartesian grid for K = 0; 1; and 2 from left to right.

III.A.3. RDG-0x+

We brie
y introduce an experimental scheme called RDG-0x+. As the name implies, the
scheme acts upon the original weak form of the PDE’s without any integration by parts, and
replaces u with a special enhanced solution, ~u,

Z

i

(vk)i ui;t d
 =

Z

i

(vk)ir � F (~ui;r~ui) d
: (9)

The construction of ~u is similar to that of û; however, ~u also shares the normal derivative,
fn, of f ,
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I
@
i

(vm)i ~un;i d@
 =

I
@
i

(vm)i fn;j d@
; m = 1:::(K + 1)d�1: (10)

A comparison between RDG-1x+ and RDG-0x+ reveals many interesting di�erences. The
number of terms RDG-0x+ deals with is signi�cantly less in 2-D and 3-D, which translates
to greater computational speed. However, this is o�set by a more complicated solution-
enhancement procedure that is more expensive. Users of RDG may choose between dealing
with complicated terms in the 1x form, or spend more computational work to acquire ~u.
Currently, this experimental scheme only works with a PDE without cross derivatives.

An interesting note: Huynh11 analyzed various DG schemes for the scalar di�usion equa-
tion and found RDG-2x, albeit expensive, to be the most accurate and to have the smallest
eigenvalue range. Smaller eigenvalues in the spatial discretization allow an explicit time-
marching scheme to take larger time steps. For the scalar Laplace operator, both RDG-0x+
and RDG-1x+ expands into the original RDG-2x scheme; thus, both RDG-0x+ and RDG-
1x+ come from the same �ne pedigree as RDG-2x, with the additional ability to solve
nonlinear equations.

III.A.4. Numerical results for 2-D Nonlinear Viscous Terms

The following numerical experiment is designed to isolate the need for recovery-function en-
hancement, and focuses on solution enhancement only. We consider the scalar 2-D nonlinear
di�usion equation with a source term,

ut = e�u2

(uxx + uyy) + S (t) ; (11)

on the domain x 2 [0; 1], where S (t) is a time-dependent source term determined by Math-
ematica software for the manufactured solution

u (x; t) = sin (2�x) sin (2�y) e�t: (12)

Table 2 shows the L2-error of the cell average at t = 1 for RDG-1x+ and RDG-0x+. The
RDG spatial discretizations are coupled with the 3rd, 4th, and 5th-order explicit Runge-
Kutta temporal schemes for K = 1; 2; and 3, respectively. (Note that O(�t) = O ((�x)2)
for an explicit di�usion scheme.) RDG-0x+ is slightly more accurate for K = 2 and 3, while
both schemes obtain the same order of accuracy (O.O.A) as the original RDG-2x scheme for
scalar di�usion.

III.B. Recovered-function enhancement

Using the recovered function for the viscous 
uxes in 1-D problems is su�cient; however,
in multi-dimensional problem, the recovered function is not accurate in the face-tangential
direction of the cell boundary. The need for accurate representation of the solution’s face-
tangential derivative, such as appear in the Navier-Stokes shear terms, is imperative for
achieving overall high-order accuracy. Our newest scheme RDG-1x++ performs binary re-
covery over the new enhanced solution û from the previous section to obtain an enhanced
recovered function f̂ as shown in Figure 3.
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RDG-1x+ RDG-0x+

K Cells L2-error O.O.A. K Cells L2-error O.O.A.

1 18� 18 1:24e� 05 1 18� 18 1:23e� 05

24� 24 3:96e� 06 4:0 24� 24 3:96e� 06 4:0

30� 30 1:63e� 06 4:0 30� 30 1:63e� 06 4:0

36� 36 7:89e� 07 4:0 36� 36 7:91e� 07 4:0

2 18� 18 1:50e� 10 2 6� 6 5:01e� 11

24� 24 1:65e� 11 7:7 12� 12 5:16e� 12 7:9

30� 30 2:87e� 12 7:8 18� 18 9:00e� 13 7:8

36� 36 6:70e� 13 8:0 24� 24 2:60e� 13 6:8

3 6� 6 8:66e� 08 3 6� 6 2:46e� 09

8� 8 6:35e� 09 9:1 8� 8 7:07e� 11 12:3

10� 10 7:14e� 10 9:8 10� 10 6:02e� 12 11:0

12� 12 1:08e� 10 10:3 12� 12 9:27e� 13 10:3
Table 2. L2-error of the cell average for the RDG-1x+ and RDG-0x+ schemes.

As mentioned before, the subroutine for recovery is the same for any level of enhancement,
with the equations for the enhanced recovered equation similar to that of f :

Z

L

(v̂k)L ûLd
 =

Z

L

(v̂k)L f̂(L;R)d
; 8k such that v̂k 2 V̂ ;

Z

R

(v̂k)R ûRd
 =

Z

R

(v̂k)R f̂(L;R)d
; 8k such that v̂k 2 V̂ : (13)

Here, v̂ is a basis function of V̂ and f̂ belongs to a di�erent function space Ŵ ,

f̂(L;R) =
X
k

b̂k!̂k; ; !̂ 2 Ŵ ; (14)

where !̂ denotes the basis function for f̂ (see10 for more information about recovery bases).
This extra layer of binary recovery comes at a hefty cost due to the increased stencil

size, which e�ectively decreases the maximum allowable time-step in an explicit scheme,
or increases connectivity cost in an implicit scheme. Figure 4 compares the stencil size of
various RDG schemes. It is worth noting that both Compact DG (CDG)12 and BR2 share the
compact stencil of RDG-1x, but these schemes cannot handle PDE’s with cross-derivatives
at the K = 0 level. Clearly, cRDG is the most expensive out of all the schemes present,
while RDG-1x++CO is the optimal scheme to handle PDE’s with cross-derivatives for all
K � 0, if the grid is Cartesian.
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u u
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^ ^

^ ^

f f f

f f f

f f

f f

f f
^ ^ ^

^ ^ ^

^ ^

^ ^

^ ^

f = BR(u)
^^

Figure 3. The recovered function is inaccurate in the face-tangential direction. We apply binary recovery
on top of û to get an enhanced recovered function f̂ to improve on the accuracy of f in the face-tangential
directions.

RDG-1x RDG-1x++CO RDG-1x++ CRDG

Figure 4. The 2-D stencils for various RDG schemes. Stencil size has direct in
uence on the time-step of
explicit time-marching schemes, and also on the matrix density of implicit time-marching schemes.

III.B.1. RDG-1x++CO (Cartesian Optimization)

We draw our inspiration to optimize the RDG-1x++ scheme from dimension-splitting tech-
niques found in.13,14 We recognize the solution-enhancement step for 2-D Cartesian grids
can be factorized into 1-D steps. The convenience of such a factorization is twofold. Firstly,
the same operator developed for 1-D is reusable for 2-D case; secondly, multi-dimensional
codes reduce to a sequence of 1-D sweeps.

On a Cartesian grid the enhanced recovered function is too accurate in face-normal di-
rection; hence we eliminate the extraneous information in the face-normal direction by using
fewer moments in Eqn 7. Consider the stencils in Figure 5 used to obtain the enhanced
recovered function for RDG-1x++ and RDG-1x++CO. The thick solid line indicates the
interface of interest. Since we do not need more information in the face-normal direction,
we can optimize RDG-1x++ by taking away the two cells furthest away from the interface
in the face-normal direction. This optimization techniques require di�erent sets of enhanced
solutions ûx and ûy, which are solution-enhanced in the x-direction and y-direction, respec-
tively.

This section describes the steps to acquire an enhanced recovered function on a vertical
interface from ûy, and because this is a factorization technique, the same steps can be
applied to get an enhanced recovered function on a horizontal interface from ûx. We �rst
cycle through all cells to get a new enhanced solution ûy. Figure 6 shows a K = 1 example
beginning from the left. The subscripts M , L, and R, stand for middle, left and right,
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f  of  RDG-1x++CO
^

f  of  RDG-1x++
^

Figure 5. The stencils of the enhanced recovered function for RDG-1x++ and RDG-1x++CO on the left and
right, respectively.

respectively. We require ûyM to share all moments of uM , and in addition, share the moments
(without the y basis) of the recovered functions on the top and bottom faces of the cell. The
resulting ûyM will be enhanced in the y-direction only, as shown in the middle of Figure 6,
where the solution within the cell now contains quadratic and cubic information in the y-
direction. Our next step is to recover the enhanced recovered function, f̂ , from the vertically
enhanced solutions on the left and right of an interface. Using the standard binary recovery
technique with ûyL and ûyR as inputs, the resulting f̂ is more accurate in both r and s directions
(see right-most frame of Figure 6). For higher K, recovery in the face-normal direction will
still be more accurate than in the face-parallel direction; nevertheless, the slight improvement
in the s-direction is su�cient for high-order accuracy.
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y xy

y xy

y xy

2 2

3 3
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^
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r
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u   = SE(u     ) M T,M,B

y
^ f  = BR(      ,      ) ^ u   L

y
^ u   R
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^

Figure 6. Reduced-accuracy y-recovery, followed by standard x-recovery, to create an enhanced recovered
function f̂ for use at an interface along the y-direction.

IV. Solution enhancement on unstructured grids

In our 2009 conference paper on DG for di�usion15 we discussed the concept of solu-
tion enhancement due to Nourgaliev et al.,9 in which information from all neighboring cells
(neighbors that share at least one point with the central cell) is drawn in via a large set
of weak interpolation equations (cell-centered recovery). As is evident from the previous
section, we have come away from this technique, for practical reasons, and are now only
allowing enhancement using cell-face distributions obtained by interface-centered recovery.

What order of accuracy could we expect from such an approach on an unstructured grid?
Such a grid does not agree with a tensor-product basis, so one would see the maximum order
attainable drop from 3p + 1 or 3p + 2 to, perhaps, 2p + 2, which we found earlier7,8 for a
minimal basis of order p used on a Cartesian grid. In the latter calculations, though, we did
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not pull in corner-cell information through solution enhancement, so the order ceiling might
be higher than 2p+ 2 for a stencil including all neighbors.

An unstructured grid made of simplices lacks the chief bene�t o�ered by a Cartesian grid,
i.e., fortuitous cancelation of truncation errors among 
uxes; other than that there seems to
be no formal reason why the accuracy on an unstructured grid should be further lowered.
On the contrary, on a simplex grid the information is packed more densely; for instance,
a 2-D triangular cell has more direct neighbors than a Cartesian cell. Therefore, solution
enhancement using all these neighbors would potentially lead to a higher order of accuracy
than on a Cartesian grid. The big question is whether the information in the neighboring
cells can be accessed and incorporated in a practical algorithm.

Consider Figure 7, taken from;15 part (b) it shows the \butter
y" stencil for a 2-D 
ux
calculation. Before the �nal 
ux between cells A and B is computed by recovery, the solution
in these cells may �rst be enhanced using solution values recovered at the interfaces between
the pairs of cells (A; C), (A; E), (B;D), (B;F) and even (A;B). But neighbors of C, E , D
and F that touch A or B are not included, leaving gaps in a stencil that at best would
fully enclose the central cell. Further analysis and numerical experiments are now needed
to uncover the e�ect of these gaps on the accuracy and stability of the unstructured DG
method.

A B

C D

E F

A

B

C

D

E

F

(a) (b)

Figure 7. Extended Cartesian (a) and triangular "butter
y" (b) stencils for more isotropic interface-based
recovery.

IV.A. Numerical Results for 2-D Navier-Stokes Viscous Terms

In order to isolate the numerical scheme for di�usion, we remove the Euler terms from the
Navier-Stokes equations and use RDG for the viscous 
uxes. As a result the density equation
drops out resulting in the following system:0B@ �u

�v

�E

1CA
t

=

0B@ �xx
�yx

u�xx + v�xy � qx

1CA
x

+

0B@ �xy
�yy

u�yx + v�yy � qy

1CA
y

; (15)

Our numerical test case is for a manufactured solution with approximate physics; therefore,
the values of the physical constants (such as Prandtl number, gas constant, and speci�c-heat
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ratio) are �xed. The simpli�ed equations are as follows. The shear stresses with Stokes’
hypothesis are

�xx =
2

3
� (2ux � vy) ; (16)

�yy =
2

3
� (2vy � vx) ; (17)

�xy = �yx = � (uy + vx) ; (18)

and the heat 
uxes are,

qx =
19

4
�

�
P

�

�
x

; (19)

qy =
19

4
�

�
P

�

�
y

: (20)

We use a viscosity coe�cient similar to that of Sutherland’s law,

� =

�
2

T + 1

�
T

3
2 ; (21)

where T is the temperature from the ideal gas law, P = �RT , with R = 1. We consider the
following manufactured solutions,

� = U0 (x; y; t) = 2; (22)

�u = U1 (x; y; t) = sin (2�x) sin (2�y) e�t; (23)

�v = U2 (x; y; t) = sin (2�x) sin (2�y) e�t; (24)

�E = U3 (x; y; t) = 5+sin (2�x) sin (2�y) e�t; (25)

and generate the appropriate source terms with Mathematica. We consider a periodic bound-
ary unit square domain with x 2 [0; 1] and y 2 [0; 1]. The RDG spatial discretizations
are coupled with the 3rd, 4th, and 5th-order explicit Runge-Kutta temporal schemes for
K = 1; 2; and 3, respectively. The Table 3 shows the L2-error of the cell average for both
RDG-1x++ and RDG-1x++CO at t = 1. It is worth adding that RDG-1x++CO is roughly
three to four times faster than RDG-1x++.

IV.B. Numerical Fourier Analysis of 2-D RDG Schemes

Now that all the new RDG schemes have been revealed, we present Fourier-analysis results
for all RDG schemes on the 2-D Cartesian grid. The scalar equation of interest is the
di�usion-shear equation including a Laplacian and a cross-derivative term,

ut = uxx + uyy + �uxy; (26)

where � is a constant, with the requirement �2 � � � 2 for the PDE to be stable. The
cross-derivative term is included to mimic the behavior of certain Navier-Stokes viscous
terms. The numerical schemes should approximate the Fourier operator,

uxx + uyy + �uxy ’ �
�

2�2

h2
+
��2

h2

�
u; (27)
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RDG-1x++ RDG-1x++CO

K Cells L2-error O.O.A. K Cells L2-error O.O.A.

1 6� 6 0:000544 1 6� 6 0:000487

12� 12 3:79e� 05 3:8 12� 12 3:66e� 05 3:7

18� 18 7:61e� 06 4:0 18� 18 7:49e� 06 3:9

24� 24 2:42e� 06 4:0 24� 24 2:40e� 06 4:0

2 12� 12 1:91e� 08 2 12� 12 1:17e� 09

16� 16 3:89e� 09 5:5 16� 16 7:52e� 11 9:5

20� 20 1:08e� 09 5:7 20� 20 1:27e� 11 8:0

24� 24 3:76e� 10 5:8 24� 24 4:68e� 12 5:5

3 6� 6 1:32e� 09 3 6� 6 3:27e� 10

8� 8 8:61e� 11 9:5 8� 8 2:39e� 11 9:1

10� 10 9:80e� 12 9:7 10� 10 2:92e� 12 9:4

12� 12 1:62e� 12 9:9 12� 12 4:93e� 13 9:8
Table 3. L2-error of the cell average for the RDG-1x++ and RDG-1x++CO schemes.

where � is the frequency of the Fourier mode assumed equal in the x- and y-directions, and h
is the cell width. Table 4 shows the results for � = 0 (pure Laplacian), and Table 5 shows the
results for � = 1. The three numbers shown are the largest real eigenvalue max (Re (�)), the
largest imaginary eigenvalue max (Im (�)), and the order of accuracy. In designing di�usion
schemes, we want the maximum real eigenvalue to be as small as possible to allow for a
larger time-step and the imaginary component to be as close to zero as possible.

(maxjRe (�) j; max (Im (�)) ; O.O.A.)

K RDG-2x RDG-1x+, RDG-1x++CO RDG-1x++

0 (7:9=0=2) (7:9=0=2) (20:2=0=2)

1 (30:0=0=4) (30:0=0=4) (82:5=0=4)

2 (66:0=0=8) (66:0=0=8) (183:3=0=6)

3 (134:9=11:1=10) (134:9=11:1=10) (318:8=0=10)

4 (217:2=18:4=14) (217:2=18:4=14) (477:1=0=14)

5 (302:3=21:4=16) (302:3=21:4=16) (649:9=20:5=16)
Table 4. Fourier-analysis results for � = 0 (pure Laplacian). Note that RDG-1x+, RDG-1x++CO, and RDG-2x
are identical.

RDG-2x was �rst presented in 2005 and represents our best scheme for the scalar Lapla-
cian, with the smallest real eigenvalues and the highest order of accuracy. For the scalar
Laplacian, both RDG-1x+ and RDG-1x++CO reduces to the RDG-2x scheme. RDG-1x++
has larger real eigenvalues due to its larger stencil.

In the case with cross-derivative, the older generation RDG schemes, RDG-2x, RDG-1x,
and RDG-1x+, fail to approximate the cross-derivative term; they result in zeroth-order
schemes. Of the two remaining schemes, RDG-1x++CO allows a twice-as-large time-step

13 of 15

American Institute of Aeronautics and Astronautics



(maxjRe (�) j; max (Im (�)) ; O.O.A.)

K RDG-1x++ RDG-1x++CO

0 (20:2=0=2) (7:9=0=2)

1 (82:5=0=4) (33:7=0:4=4)

2 (183:6=0:76=6) (87:1=3:0=8)

3 (319:2=7:59=10) (169:6=10:7=10)

4 (495:3=30:43=10) (278:6=23:8=14)

5 (803:6=105:5=14) (412:8=43:4=16)
Table 5. Fourier analysis results for � = 1 (with cross-derivative). The maximum real eigenvalue of RDG-
1x++CO is about half of that of RDG-1x++.

and obtains a higher order of accuracy for certain K.

V. Future Works and Conclusion

RDG is a simple and intuitive method for DG di�usion. The only extra information that
needs to be stored is the recovered function f at each interface, which is much less than for
other schemes (LDG, CDG, BR1, BR2) with multiple lifting functions. In this paper, we
show that the recovery concept is now used for both di�usion 
ux and solution enhancement.
The level of enhancement is dependent on the nature of the PDE; the current RDG-1x++
and RDG-1x++CO schemes are optimized for the Navier-Stokes equation. Numerical results
clearly demonstrate super-convergence on the 2-D Cartesian grid for Navier-Stokes viscous
terms.

Our future goal is to extend RDG-1x++ scheme to unstructured triangular grids. Our
criterion for order of accuracy on the Cartesian grid is ambitious; however, for an unstruc-
tured triangular grid, we aim for a simple compact scheme with order of accuracy of at least
K + 1. Similarly to how LDG is optimized into CDG, or BR1 is optimized into BR2, the
current RDG schemes for Navier-Stokes must be optimized for parallelization by reducing
connectivity between cells.
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