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In this work we examine how the nonlinearity of the Rankine-Hugoniot
jump conditions dictates the behavior of shock capturing methods, par-
ticularly of Godunov-type schemes. Here we present four related one-
dimensional examples of the artifacts caused by this: sub-cell shock position
in the stationary shock, the slowly moving shock, the wall heating problem,
and the carbuncle phenomenon. Each one of these well known problems
is shown to be directly related to the nonlinearity of the Hugoniot and
numerical experiments are performed to verify the connection. Lastly, a
system with a straight Hugoniot is described and shown not to su�er from
any of these phenomena.

I. Introduction

Why do numerical shocks jump to the wrong conclusions? When a physical shockwave is
formed, it moves through the ow with a certain speed, having some �nite width determined
by physical dissipation until it encounters some event in its path. For numerical shockwaves,
however, a numerical width is enforced, often much greater than the physical width. With
this numerical width comes the formation of intermediate states having no direct physical
interpretation. These ‘�ller’ states serve the same purpose as the �ller within a rough stone
wall - we are only interested on how it looks from either side, and we just put anything
within it, as long as the �nal product is acceptable. Of course, as the mesh is re�ned,
these intermediate states do not go away; they simply occupy less space. Their existence
does not compromise the Lax-Wendro� Theorem1 that consistency and conservation, taken
together, imply convergence to a weak solution. Convergence is only to be expected in an
integral sense. The existence of intermediate states does raise some doubt, however, about
how closely a captured shockwave may emulate an ideal discontinuous shockwave, or a real
physical one.

There are in fact several types of error associated with captured shockwaves, and their
impact on the quality of the solution ranges from irritating to calamitous. In this paper
we review four of these errors, and link them all to a common cause. Our investigations
are limited to the one-dimensional case. One error is the ambiguity concerning the location
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of a captured shock. Another is the creation of persistent \entropy traces" caused by an
inappropriate production of entropy, which then propagates in a physical manner. One such
example, the wall heating phenomenon exempli�ed by Noh’s2,3 well known test problem has
caused much grief, both in the Eulerian and Lagrangian communities. A special case of
this is the so-called \start-up error". A third problem is that of the slowly moving shock-
wave.4{6 Finally we consider the \carbuncle".7{9 Although this is really a multidimensional
phenomenon, it does have a one-dimensional manifestation.

It has been previously postulated by Barth10 and Robinet et al.11 among others that many
of these numerical problems are related, often applying a linearized analysis to demonstrate
the similarity. In this work, we apply a di�erent approach to study these problems, choosing
to link them through the nonlinearity of the Hugoniot curve.

II. Governing Equations

While this work only examines this issue for the Euler equations with a gamma-law
equation of state, similar work5 suggests that these problems are found in other, related
systems. The Euler equations, here shown in one dimension, are

ut + f(u)x = 0: (1)

expanded as
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II.A. The Rankine-Hugoniot Jump Conditions

For a shockwave moving in one dimension with speed S the jump conditions are given by

[f ] = S[u]: (4)

Suppose that the left (preshock) state is completely known, as �L; uL; pL. If the density on
the right is prescribed to be �R, then the remaining postshock variables are given by12

pR
pL

=
( + 1)�R � ( � 1)�L
( + 1)�L � ( � 1)�R

(5)

uR � uL = (pL � pR)

s
2

�L (( � 1)pL + ( + 1)pR)
(6)

The curve traced out in phase space by solving these equations is the Hugoniot curve. It
has two branches. If we take �R > �L then each point on the curve represents a valid state
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behind a (generally moving) shockwave, and we will refer to this as the physical branch of the
Hugoniot curve. If we take �R < �L this generates the nonphysical branch of the Hugoniot.
A jump from uL to uR would violate thermodynamics. Note however, that each point on the
nonphysical branch represents a state from which uL could be reached by a valid shockwave.

III. The Shock Capturing Method

We study our four problems through a �rst-order in space and time shock capturing
scheme of the form

un+1
j = unj �

�t

�x

�
fn
j+ 1

2
� fn

j� 1
2

�
(7)

where the interface ux, fj+ 1
2

= f(uj;uj+1), is computed using either the exact Riemann

solver or Roe’s approximate Riemann solver.13 These schemes are interesting because they
attempt to employ physical reasoning, which appears to be successful in some respects
(crisply captured discontinuities) but less so in others, notably the four issues raised above.
Also, they have certain properties that encourage analysis. We restrict ourselves to �rst-
order accuracy partly for simplicity, but also because experience suggests that high-order
schemes su�er all of the problems that a�ict their �rst-order versions, merely providing
better resolution of the spurious physics.14

III.A. Intermediate Shock States

As already noted, captured shocks contain intermediate states, as seen in Figure 1, that are
are not part of the exact solution but are required for the discrete representation. While
the number of required intermediate states varies from scheme to scheme and depends on
the Courant number and Riemann solver,4,15 among other things, all conservative schemes
produce them.
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Figure 1. Representative single shock problem. (left) Exact Solution. (middle) Discretized exact solution for
a single shockwave with resulting intermediate states.(right) Shock curve, and locations of intermediate states.

One might imagine that the set of intermediate states could all lie along the Hugoniot
curve, but this not possible. Suppose that states L and R are connected through an inter-
mediate state M that lies on the physical Hugoniot that passes through L. There cannot be
another shock transition from M to R, because M does not lie on the nonphysical Hugoniot
from R. Therefore the transition from M to R would have to involve waves of the other
families.
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Figure 2. Representative Hugoniot curves for the
stationary shock. We plot the physical Hugoniot
through L and the nonphysical Hugoniot through
R. Note that the curves should really be in three-
dimensional space, and do not actually intersect.

For the special case of a stationary shock-
wave, calculated either the exact or Roe-
averaged ux, a transition with one intermedi-
ate state is in fact possible.16,17 The compres-
sion from M to R is accomplished by a physical
shock of the u�a family. This ensures that no
right-going wave is generated at the interface
MR. The state at the interface LM turns out
to be supersonic, so no left-going waves are
generated at LM. All of the waves generated
within the shock region remain trapped. The
set of possible states M lie on the nonphysical
Hugoniot through R as shown in Figure 2.

Of note is that, wherever these intermedi-
ate states lie, they are always assumed to satisfy local thermal equilibrium in a cell-averaged
sense, and therefore to obey the equilibrium equation of state (3). However, from the exact
solution to the Navier-Stokes equations, we know that local thermal equilbrium does not
hold inside the shock itself. This suggests a form of ‘interpretation’ error, an error made in
the philosophical approach we take when assigning meaning to the shock-captured solution.

IV. Ambiguity in Stationary Shock Position

u L 

u R 
A 

A L 

R 

x S 

Figure 3. For the conserved variable, u, the shock posi-
tion, xS , divides the discrete solution such that the two
regions, AL and AR are equal in area.

To properly understand the ambiguity of
shock position for a stationary shock, we
must �rst decide how we would like to cal-
culate this position. For a scalar conserva-
tion law, the shock position can be deter-
mined using the equal-area rule18 within a
control volume around the shock. As illus-
trated in Figure 3, the equal-area rule states
that the shock position divides the discrete
solution into two regions such that the in-
tegrated error in each region has the same
absolute value. This comes directly from conservation principles and provides an unamigu-
ous location for a shock that separates two uniform states.

One would hope that for a system of conservation laws a similar rule could be used
to determine the shock position from any of the conserved variables, and that these shock
positions would agree. In fact, there is systematic disagreement. This is already known,
although we are not aware of any formal publication on the matter, and the fact does not
seem to be well-known. The discrepancy can be proved for the special case of a stationary
shock, and can be a signi�cant fraction of a cell-width.

It was shown above that a one-dimensional Euler code employing either the exact or
Roe-averaged Riemann solver as a ux function has solutions of the following form. Left
and right states satisfying the conditions for a stationary jump are separated by a single
intermediate state that lies on the nonphysical Hugoniot of the right state.
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Figure 4. Loci of density versus energy ratios in the intermediate cell for initial Mach numbers of 1.5, 2.5, 4.0
and 10.0.

The locus of all possible states uM can therefore be computed using standard shock
relationships. We would obtain shock locations of

xS(�) =
�M � �R
�L � �R

xS(E) =
EM � ER
EL � ER

(8)

by applying conservation of density or energy respectively. We would hope that these would
be the same. Plots of EM=ER versus �M=�R are shown in Figure 4, and under suitable scaling
these are plots of xS(E) versus xS(�). The two locations are roughly equal for a weak shock
but become increasingly nonlinear as Mach number increases. Therefore the two predictions
do not agree. At Mach 10, the maximum discrepancy is about �x=2. The situation is even
worse if we try to predict the shock position using momentum, because this is equal for the
left and right states, but �nite for the intermediate state. See Barth10 for commentary on
this point.

We have found in experiments with other shock-capturing schemes that there is almost
always a discrepancy in the location of a captured shock, although when the number of
intermediate states increases the discrepancy tends to be smaller.

V. The Wall Heating Phenomenon

u = -1 

u = 0 

x 

t 
Density 

Pressure 

Velocity 

x 

Figure 5. (left) Space-time representation of the Noh
problem. (right) Representative solutions for the Noh
problem after the shock has left the wall area. Note the
density defect at the wall.

A notorious problem for those who com-
pute high speed ow is the Noh problem,2

a seemingly trivial Riemann problem with
initial data corresponding to the collision
of two equal shocks, or equivalently the re-
ection of a single shock from a solid wall.
The initial data is u0 = (�0; �0u0; E0)

T but
can be reduced to a one parameter family
with �0 = 1; u0 = �1 and Mach number,
M0 = 1p

p0
, as a free parameter. Virtually

all shock-capturing methods provide quite
good solutions for pressure and velocity, but
predict too small a density in a small region
at the origina, as in Figure 5. In consequence the temperature there is too high, so that this

aThe di�culty is exacerbated by posing the problem in cylindrical or spherical geometry, but still occurs
in one dimension.
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and related phenomena have been called wall heating. In the more than twenty years since
Noh proposed the problem, no satisfactory solution has been exhibited that would carry over
to other settings, nor is there even any generally accepted explanation of the mechanism.
Our demonstration is with  = 5=3.

We solve the Noh problem, and then try to locate the shock by considering the mass,
momentum or energy in a control volume. In fact, two control volumes are used:

1. Local - contains only the region immediately around the shock.

2. Global - contains the whole domain, including the density defect in the calculation.

Figures 6 and 7 show results for Mach 1.1 and 106 shocks, calculated with a CFL number of
0.5. On the left, the complete solution for conserved variables is shown. In the middle, shock
positions are calculated using a local control volume. All three conserved quantities produce
di�erent shock positions. The position calculated from the energy distribution agrees almost
perfectly with the exact solution, but the position calculated from density is about 0:2 �x
ahead of it. This can be interpreted as meaning that the shock contains excess mass.

However, on the right, shock positions have been calculated using the global control vol-
ume. Here, the shock positions computed using density and energy are equal, showing that
the density defect observed at the wall exactly compensates the excess in the shock. With
hindsight, this should have been expected. Conservation ensures that all of the mass that
should be present really is present. Therefore, if it is de�cient in one place it must be exces-
sive in another. It seems possible that if the ambiguity in shock position could be resolved,
there might be no wall heating.

Further studies on this problem lead to two key observations:
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Figure 6. Conserved quantities for a Mach 1.1 shock. (left) Full solution. (middle) Sub-cell shock locations
computed using a local control volume. (right) Sub-cell shock locations computed using a global control
volume.
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Figure 7. Conserved quantities for a Mach 106 shock. Same three plots as above.
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� The distance between shock positions computed by any two conserved variables is
constant with time after the shock has settled.

� The distance between shock positions computed by any two conserved variables is fairly
independent of Mach number.

These observations demonstrate that despite the di�erence in sub-cell shock position, the
shock speed in each conserved variable is the same and that while the shock strength may
vary, the ambiguity remains the same and is directly compensated by the error at the wall.
In other situations the ‘missing mass’ may appear somewhere else, but it will have to ap-
pear somewhere. The second observation would appear to contradict the theory in Section
IV, however in the Noh problem, the shock now consists of multiple intermediate states,
especially at the lower Mach numbers, and the theory for a single shock state does not
apply.

VI. The Slowly Moving Shockwave Phenomenon

Another known example of a numerical anomaly is the slowly moving shockwave phe-
nomenon. Examined in detail by Roberts,4 Arora and Roe5 and by Karni and Canic6 among
others, the observation is that spurious waves are thrown o� by slowly moving shocks. These
waves are purely numerical, but once created, they will be propagated as though they were
real. The cause of this phenomenon is that not all of waves produced by solving Riemann
problems involving the intermediate states are of the same family as the shockwave.

To show that nonlinearity is directly responsible for the spurious waves, we conducted
experiments involving small perturbations of the stationary shock. This limiting case will
be produced by prescribing the left state to be [�L; uL; pL]T = [1; 1; 1=M2

L]T with the right
state

�R =
( + 1)M2

L

( � 1)M2
L + 2

; (9)

uR =
1

�R
=

( � 1)M2
L + 2

( + 1)M2
L
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M2
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�
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Figure 8. (left) An initially stationary Mach 10 shockwave. (middle) A 1% perturbation to create a slowly
moving shock moving to the left. (right) A 1% perturbation to create a slowly moving shock moving to the
right.
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Figure 9. Intermediate States from the Slowly Moving Shock. While the intermediate states do not lie exactly
on the nonphysical Hugoniot, they do lie slightly o� of it, on curve corresponding to two other end states. On
the left, the intermediate states correspond to the left slowly moving shock. On the right, they correspond to
the right moving shock.

By slightly perturbing this right state, slowly moving shocks in either direction can be
created. Figure 8 shows two equal and opposite perturbations of a Mach 10 stationary
shockwave.

In a previous investigation by Arora and Roe5 plots were made in phase space showing
every state that appears in the solution at any time step. This reveals the locus that is
followed by the intermediate states. Some of the loci presented in5 were highly intricate.
We tested here shockwaves that moved even more slowly, to check that approaching the
limit of zero speed caused the locus to approach the steady equilibrium locus. In other
words, we wanted to see if the slowly moving shock was a regular or singular perturbation
of a stationary shock. We found that the perturbation was usually regular, with exceptions
discussed in the next section, and which are ignored here.

We �nd, then, that each snapshot of a slowly moving shock can be viewed very closely
as a sample of the stationary cases. Figure 9, shows that the locus for a shock moving very
slowly to the left is the same as that for a shock moving very slowly to the right.

To see the connection with the curved Hugoniot, consider that as the shock moves across
the grid, the amount of discrepancy between its positions, as calculated from each conserved
variable, will change periodically. The discrepancy will repeat itself every time that the shock
has crossed one more cell. If we interpret this as meaning that the shock has excess mass
that varies with the same period, there must be, by conservation, a mass de�cit elsewhere.
This accounts for the periodic shedding of the spurious waves.

VII. The Carbuncle Phenomenon

Often in hypersonic ow computations, regions of anomalous shock structure occur,
generically called \carbuncles". A related, and probably relevant, behavior can be seen
in one dimension. As analysed by Barth,10 Serre,19 and Dumbser et al.20 not all of the equi-
librium solutions (involving an intermediate state lying on the nonphysical Hugoniot through
R) are stable. The attempt to compute a stationary shock at a position corresponding to
one of these unstable equilibria results in a shock that does not remain stationary. Either
the shock moves to a stable location, or, under suitable boundary conditions that exactly
conserve mass, it enters into a limit cycle. That cycle involves the shedding of spurious waves
and their reection from the downstream boundary. These unstable equilibria only exist at
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high Mach number. The critical value for  = 7=5 is about 6.0.
As in Kitamura, Roe, and Ismail7 and Chauvat, Moschetta and Gressier8 we specify

the intermediate point by a parameter xS such that �M = xS�L + (1 � xS)�R. We also
examine cases where the initial intermediate state lies o� of either Hugoniot to observe its
behavior. Thus, we examine cases where the initial data corresponds to either a stable or an
unstable location, and the initial pro�le does or does not represent an equilibrium solution.
In Figure 10, four cases are shown.
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Figure 10. All results shown with Roe’s Riemann solver, and a Mach 20 shock. (top) Two carbuncle free
cases. On the left, xS = 0:5 and the initial intermediate state lies on the nonphysical Hugoniot. On the right,
the initial intermediate state is o� both Hugoniot curves.(bottom) Two cases with carbuncles. On the left,
xS = 8:0. On the right, the initial intermediate state is again o� both Hugoniot curves.

Stable location, equilibrium data. As would be expected, the code exactly preserves
the initial data.

Stable location, nonequilibrium data. The locus of intermediate states moves directly
to the equilibrium locus and then travels along it to �nd the equilibrium that conserves mass.

Unstable location, equilibrium data. The intermediate states \hunt" back and forth
along the equilibrium curve, without �nding a stable location. The outow boundary condi-
tion was here speci�ed to be constant mass ow, so there is no way that the code can shed
surplus mass.

Unstable location, nonequilibrium data. The intermediate states track quickly onto
the equilibrium locus, but are not able to �nd a stable location.
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In those cases where no stable equilibrium exists, examining intermediate states reveals
that all lie on the nonphysical Hugoniot curve, identical to those seen in Figure 9 for a left
and right moving shockwave. Viewing the carbuncle in this frame, it is observed that in one
dimension, it is no more than a slowly moving shock that is unable to �nd a stable position,
moving in one direction and then the other within the cell. Since the slowly moving shock
phenomenon is due to the nonlinearity of the Hugoniot curve, the connection between the
carbuncle and this nonlinearity is made. Kitamura,7 however, showed that some shocks were
unstable in 2D even though stable in 1D, so this cannot be a complete explanation.

VIII. A Linear Hugoniot?

If much of the odd behavior of captured shocks is associated with curvature of the Hugo-
niot, it is interesting to ask the question, ‘what if the Hugoniot were linear?’. This is
mathematically possible, even if the conservation laws are nonlinear. In fact, there is a
substantial literature on \straight line systems", for example Temple21 and Bressan and
Jensen.22 Arora and Roe5 claimed that 2 x 2 systems with linear Hugoniots do not su�er
from the slowly moving shock phenomenon. Here, we examine a 3 x 3 system used as a
model of magnetohydrodynamics by Myong and Roe.23264 u

a

b

375
t

+

264 1
2

(u2 + a2 + b2)

ua

ub

375
x

= 0 (12)

This system has a propagation speed, c =
p
a2 + b2 (which is also a conserved quantity)

and supports genuinely nonlinear \acoustic waves" that move with speeds u� c = constant
and a contact discontinuity with speed u (and constant u and c across it). Since both
the physical and nonphysical Hugoniot are linear and identical, we would expect that there
would be agreement in shock position and that there would be no evidence of any of the
aforementioned phenomena. Indeed this is the case. Only results for the Noh problem and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Position

C
on

se
rv

ed
 Q

ua
nt

iti
es

 

 

u
a
b

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

u

c

Figure 11. The Noh problem for the system of equations 12 with Mach number 10. On the left, the solution
after the reecting shocks have moved su�ciently far away from the wall. While there are jumps in a and b
across the contact discontinuity, there is no remaining error. On the right, all solution states are plotted in c
vs u space. All states lie on either Hugoniot curve.

the slowly moving shock are shown, since there is no ambiguity in stationary shock position
and an exhaustive numerical study of carbuncle-like issues reveals no evidence of any similar
problem. For the Noh problem, we can construct an analogous symmetric problem with two
reecting shockwaves separated by a stationary contact discontinuity. In Figure 11, there is
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Figure 12. The Slowly moving shock problem for Equations 12 with Mach number 10. On the left, the solution
after the shock has passed through several cells. On the right, all solution states are plotted in c vs u space.
All states lie on the correct Hugoniot curve.

no error made along the contact discontinuity, and thus no ‘wall heating’-like behavior. In
Figure 12, a single shock moves slowly through the domain. In both problems, there are no
spurious waves shed, and all intermediate states lie on the Hugoniot. While this system does
not prove that nonlinearity is the sole cause of all of these issues, it suggests that correct
placement of intermediate states may result in better solutions and the alleviation of many
numerical shockwave anomalies.

IX. Conclusions and Future Work

In this paper, we have established connections between four common defects of shock-
capturing methods, by linking each of them to the nonlinearity of the Hugoniot curve. Since
that nonlinearity is a physical fact, it would seem that an over-reliance on physical deriva-
tions may have some drawbacks, especially if they rely on assumptions of thermodynamic
equilibrium. At present, the bene�ts of schemes that crisply resolve discontinuities seem to
outweigh the drawbacks, but at the cost of various �xes and workarounds.

At the present time we can only speculate about the possibility of a completely satisfac-
tory method, but almost certainly it will involve giving up the property of capturing shocks
with only one intermediate state. However, for Navier-Stokes applications, it will important
to retain the ability to recognise contact discontinuities. We are currently experimenting
with various ways of enforcing a better-behaved set of intermediate states. We have consid-
ered insisting on a �xed width for the shock, and also allowing cells that are not in local
thermodynamic equilibrium. Although both approaches show some promise, they are not
yet ready for presentation.

Future work will focus on strengthening the connections made, by testing a wider range
of Riemann solvers and examining the relationship of stationary shocks to their transient
relatives. By instituting a form of shock structure control, we hope to position intermediate
shock states to minimize the creation of spurious waves.
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