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We develop a multi-input, multi-output direct adaptive controller for discrete-time, pos-

sibly nonminimum-phase, systems with unknown nonminimum-phase zeros. The adaptive

controller requires limited modeling information about the system, specifically, Markov pa-

rameters from the control input to the performance variables. Often, only a single Markov

parameter is required, even in the nonminimum-phase case. We demonstrate the algo-

rithm on command-following and disturbance-rejection problems, where the command and

disturbance spectra are unknown. This controller is based on a retrospective performance

objective, where the controller is updated using either batch or recursive least squares.

I. Introduction

One of the ironies of feedback control is that the underlying motivation for feedback is uncertainty, yet
uncertainty in the dynamics of a system can degrade performance and render the closed-loop system unstable.
Although robust control can mitigate this difficulty by trading performance for stability, unpredictable
changes that occur during operation may be sufficiently large so as to render prior uncertainty analysis
unreliable.

Unlike robust control, an adaptive controller is self-tuned during operation. This tuning accounts for the
actual—and possibly changing—dynamics of the system as well as the nature of the external signals, such as
commands and disturbances. Adaptive control may also be required for systems that are difficult to model
due to unknown physics or due to the inability to perform sufficiently accurate identification. Adaptive
control may depend on prior modeling information, such as bounds on the model order and parameters,
or it may entail explicit on-line identification. These approaches are known, respectively, as direct and
indirect adaptive control. The key issue then becomes the nature of the modeling information required by
the adaptive controller provided either prior to or during operation.

Whether the adaptive controller is direct or indirect, it is desirable to develop algorithms that require
the least amount of modeling information. In the most extreme case, LQG control, which is nonadaptive,
requires a complete and exact model of the plant dynamics as well as a complete and exact model of the
disturbance and sensor noise statistics and spectrum. Although robust control techniques increase forgiveness
to modeling errors, these methods require a nominal model as well as bounds on all uncertain parameters.
These bounds can be determined by prior analysis or identification, but may become invalid during operation
if changes occur, and, as noted above, they necessitate tradeoffs between stability and performance.

Minimizing the amount of modeling information needed for control is the motivation for adaptive control,
which is inherently robust to modeling information that it does not require. For example, if an adaptive
controller requires no knowledge of the plant pole locations, then it is unconditionally robust to the actual
pole locations, assuming that they are constant or, perhaps, slowly changing. While the closed-loop system
may depend on the actual locations of the poles, the achievable performance under adaptive control is not
impeded by the lack of prior knowledge regarding that modeling information. The main benefit of adaptive
control is thus the reduced need to model the system for controller tuning without sacrificing performance.

In many applications, modeling is performed for reasons other than controller tuning, such as for design
studies and certification. However, modeling for control often requires knowledge of system properties that
are not provided by models developed for other purposes. For example, bounds on the plant phase near
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crossover directly affect stability. In addition, many applications require plant operation over a wide range
of conditions that may lead to large changes in the dynamics of the system, for example, changes in modal
frequencies and damping. The engineering cost of modeling a system over a wide range of operational
conditions may be exorbitant, especially if ambient disturbances and test limitations make it impossible to
identify a viable model.

The ultimate objective of adaptive control is thus to reduce—to the greatest possible extent—the reliance
on modeling for the purpose of controller tuning. In fact, reducing the required modeling information can
decrease the cost of modeling while increasing the reliability of the system to changes that occur during
operation. These are the benefits of adaptive control.

In adaptive control, the controller is tuned to the actual plant during operation. However, this ability
comes at a cost. Adaptive control algorithms may require restrictive assumptions, such as full-state feedback,
positive realness, minimum-phase zeros, matched disturbances, as well as information on the sign of the high
frequency gain, relative degree, or zero locations.1–4 In particular, the starting point for the present paper
is the retrospective cost adaptive control (RCAC) approach.5–8 This direct adaptive control approach is
applicable to MIMO (output feedback) plants that are possibly unstable and nonminimum phase (NMP)
with uncertain command and disturbance spectra. The modeling information required by RCAC in5–8 is the
first nonzero Markov parameter and locations of the NMP zeros, if any. Alternatively, a collection of Markov
parameters can be used as long as a sufficient number is available to capture the NMP zero locations.

The present paper extends prior RCAC results by describing a modification of RCAC that does not
require knowledge of the locations of the NMP zeros. Instead, this extension requires knowledge of a limited
number of Markov parameters; typically only one Markov parameter is needed. The significant aspect of
this extension is the fact that knowledge of the NMP zeros is not needed. This extension thus increases the
applicability of the method to systems with unknown NMP zeros, as well as systems with NMP zeros that
may be changing slowly due to aging or due to a slowly varying linearization of a nonlinear plant.

The algorithm developed in the present paper is demonstrated on a representative collection of SISO and
MIMO examples. In all cases, the number of Markov parameters that are used is not sufficient to determine
the NMP zeros of the system. Consequently, these examples demonstrate the ability to control MIMO NMP
systems with unknown NMP zeros.

In the present paper we assume that that the Markov parameters that are used in RCAC are exactly
known. However, in practice, these parameters are uncertain due to modeling errors. Therefore, in11 we
consider the effect of uncertainty in the Markov parameters.

II. Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) = Cx(k) + D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu , w(k) ∈ R
lw , and k ≥ 0. Our goal is to develop

an adaptive output feedback controller that minimizes the performance variable z in the presence of the
exogenous signal w with minimal modeling information about the dynamics and w. The block diagram for
(1)-(3) is shown in Figure 1, where G(q) = [Gzw(q) Gzu(q)] and

z(k) = Gzw(q)w(k) + Gzu(q)u(k), (4)

where q is the forward-shift operator. Note that w can represent either a command signal to be followed, an
external disturbance to be rejected, or both. The system (1)–(3) can represent a sampled-data application
arising from a continuous-time system with sample and hold operations.

If D1 = 0 and E0 6= 0, then the objective is to have the output E1x follow the command signal −E0w. On
the other hand, if D1 6= 0 and E0 = 0, then the objective is to reject the disturbance w from the performance

measurement E1x. Furthermore, if D1 =
[

D̂1 0
]

, E0 =
[

0 Ê0

]

, and w(k) =
[

w1(k)T w2(k)T
]T

,

then the objective is to have E1x follow the command −Ê0w2 while rejecting the disturbance w1. Lastly, if
D1 and E0 are empty matrices, then the objective is output stabilization, that is, convergence of z to zero.
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Figure 1. Disturbance-rejection and command-following architecture.

III. Retrospective Surrogate Cost

For i ≥ 1, define the Markov parameter of Gzu given by

Hi
△
= E1A

i−1B. (5)

For example, H1 = E1B and H2 = E1AB. Let r be a positive integer. Then, for all k ≥ r,

x(k) = Arx(k − r) +

r
∑

i=1

Ai−1Bu(k − i) +

r
∑

i=1

Ai−1D1w(k − i), (6)

and thus

z(k) = E1A
rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k) + H̄Ū(k − 1), (7)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
lz×rlu

and

Ū(k − 1)
△
=









u(k − 1)
...

u(k − r)









.

Next, we rearrange the columns of H̄ and the components of Ū(k − 1) and partition the resulting matrix
and vector so that

H̄Ū(k − 1) = H′U ′(k − 1) + HU(k − 1), (8)

where H′ ∈ R
lz×(rlu−lU ), H ∈ R

lz×lU , U ′(k − 1) ∈ R
rlu−lU , and U(k − 1) ∈ R

lU . Then, we can rewrite (7) as

z(k) = S(k) + HU(k − 1), (9)

where

S(k)
△
= E1A

rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k) + H′U ′(k − 1). (10)
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For example, H̄ =
[

H1 H2 H3 H4 H5

]

,

H′ =
[

H1 H2 H4

]

, U ′(k − 1) =







u(k − 1)

u(k − 2)

u(k − 4)






,

and

H =
[

H3 H5

]

, U(k − 1) =

[

u(k − 3)

u(k − 5)

]

.

Next, for j = 1, . . . , s, we rewrite (9) with a delay of kj time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the
form

z(k − kj) = Sj(k − kj) + HjUj(k − kj − 1), (11)

where (10) becomes

Sj(k − kj)
△
= E1A

r
x(k − kj − r) +

r
∑

i=1

E1A
i−1

D1w(k − kj − i) + E0w(k − kj) + H′
jU

′
j(k − kj − 1)

and (8) becomes

H̄Ū(k − kj − 1) = H′
jU

′
j(k − kj − 1) + HjUj(k − kj − 1), (12)

where H′
j ∈ R

lz×(rlu−lUj
)
, Hj ∈ R

lz×lUj , U ′
j(k − kj − 1) ∈ R

rlu−lUj , and Uj(k − kj − 1) ∈ R
lUj . Now, by

stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=









z(k − k1)
...

z(k − ks)









∈ R
slz . (13)

Therefore,

Z(k)
△
= S̃(k) + H̃Ũ(k − 1), (14)

where

S̃(k)
△
=









S1(k − k1)
...

Ss(k − ks)









∈ R
slz , (15)

Ũ(k − 1) has the form

Ũ(k − 1)
△
=









u(k − q1)
...

u(k − qlŨ
)









∈ R
lŨ , (16)

where, for i = 1, . . . , lŨ , k1 ≤ qi ≤ ks + r, and H̃ ∈ R
slz×lŨ is constructed according to the structure of

Ũ(k − 1). The vector Ũ(k − 1) is formed by stacking U1(k − k1 − 1), . . . , Us(k − ks − 1) and removing copies
of repeated components.

For example, with k1 = 0 and k2 = 1, stacking U1(k − 1) =

[

u(k − 1)

u(k − 2)

]

and U2(k − 2) = u(k − 2)

results in Ũ(k − 1) =

[

u(k − 1)

u(k − 2)

]

. The coefficient matrix H̃ consists of the entries of H1, . . . ,Hs arranged

according to the structure of Ũ(k − 1).
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Next, we define the surrogate performance

ẑ(k − kj)
△
= Sj(k − kj) + Hj Ûj(k − kj − 1), (17)

where the past controls Uj(k − kj − 1) in (11) are replaced by the surrogate controls Ûj(k − kj − 1). In
analogy with (13), the extended surrogate performance for (17) is defined as

Ẑ(k)
△
=









ẑ(k − k1)
...

ẑ(k − ks)









∈ R
slz (18)

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃
U(k − 1), (19)

where the components of ˆ̃
U(k − 1) ∈ R

lŨ are the components of Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) ordered
in the same way as the components of Ũ(k − 1). Subtracting (14) from (19) yields

Ẑ(k) = Z(k) − H̃Ũ(k − 1) + H̃ ˆ̃
U(k − 1). (20)

Finally, we define the retrospective cost function

J( ˆ̃
U(k − 1), k)

△
= ẐT(k)R(k)Ẑ(k), (21)

where R(k) ∈ R
lzs×lzs is a positive-definite performance weighting. The goal is to determine refined controls

ˆ̃
U(k − 1) that would have provided better performance than the controls U(k) that were applied to the

system. The refined control values ˆ̃
U(k − 1) are subsequently used to update the controller.

IV. Cost Function Optimization with Adaptive Regularization

To ensure that (21) has a global minimizer, we consider the regularized cost

J̄( ˆ̃
U(k − 1), k)

△
= ẐT(k)R(k)Ẑ(k)

+ η(k) ˆ̃
UT(k − 1) ˆ̃

U(k − 1), (22)

where η(k) ≥ 0. Substituting (20) into (22) yields

J̄( ˆ̃
U(k − 1), k) = ˆ̃

U(k − 1)TA(k) ˆ̃
U(k − 1)

+ B(k) ˆ̃
U(k − 1) + C(k), (23)

where

A(k)
△
= H̃TR(k)H̃ + η(k)IlŨ

, (24)

B(k)
△
= 2H̃TR(k)[Z(k) − H̃Ũ(k − 1)], (25)

C(k)
△
= ZT(k)R(k)Z(k) − 2ZT(k)R(k)H̃Ũ(k − 1) + ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1). (26)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this case, J̄( ˆ̃
U(k − 1), k) has

the unique global minimizer

ˆ̃
U(k − 1) = −

1

2
A−1(k)B(k). (27)
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V. Controller Construction

The control u(k) is given by the strictly proper time-series controller of order nc given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (28)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
lu×lu and Ni(k) ∈ R

lu×ly . The control (28) can be expressed as

u(k) = θ(k)φ(k − 1), (29)

where

θ(k)
△
= [M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k)] ∈ R

lu×nc(lu+lz) (30)

and

φ(k − 1)
△
=























u(k − 1)
...

u(k − nc)

y(k − 1)
...

y(k − nc)























∈ R
nc(lu+ly). (31)

Let d be a positive integer such that Ũ(k− 1) contains u(k− d), and let p be the data window size. Then
ˆ̃
U(k − 1), . . . , ˆ̃

U(k − p + 1) contain û(k − d), . . . , û(k − d + 1 − p), respectively. We can thus construct

Ψp(k − d)
△
=









ûT(k − d)
...

ûT(k − d + 1 − p)









∈ R
p×lu . (32)

The matrix Ψp(k − d) is used below for the controller update.

A. Batch Least Squares Update of θ(k)

Define

Φp(k − d − 1)
△
=

[

Ly,p(k − d − 1) Lu,p(k − d − 1)
]

∈ R
p×[nc(lu+ly)], (33)

where

Ly,p(k − d − 1)
△
=









y(k − d − 1) · · · y(k − nc − d)
...

. . .
...

y(k − d − p − 1) · · · y(k − nc − d − p)









(34)

and

Lu,p(k − d − 1)
△
=









u(k − d − 1) · · · u(k − nc − d)
...

. . .
...

u(k − d − p − 1) · · · u(k − nc − d − p)









. (35)

Next, consider the quadratic cost

JB(θ(k))
△
= ‖Φp(k−d − 1)θT(k) − Ψp(k − d)‖2 + α(k)tr[θ(k)θT(k)], (36)

where α(k) > 0. Minimizing (36) yields the controller update

θT(k) =[ΦT
p (k − d − 1)Φp(k − d − 1) + α(k)I]−1ΦT

p (k − d − 1)Ψp(k − d). (37)
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B. Recursive Least Squares Update of θ(k)

Next, noting that Ψ1(k − d) = ûT(k − d), we define the cumulative cost function

JR(θ(k))
△
=

k
∑

i=d+1

λk−i‖φT(i − d − 1)θT(i − 1) − ûT(i − d)‖2, (38)

where ‖ · ‖ is the Euclidean norm, and λ(k) ∈ (0, 1] is the forgetting factor. Minimizing (38) yields

θT(k)
△
= θT(k − 1) + P (k − 1)φ(k − d − 1)[φT(k − d)P (k − 1)φ(k − d − 1) + λ(k)]−1

· [φT(k − d − 1)θT(k − 1) − ûT(k − d)]. (39)

The error covariance is updated by

P (k)
△
= λ−1(k)P (k − 1) − λ−1(k)P (k − 1)φ(k − d − 1)[φT(k − d − 1)P (k − 1)φ(k − d) + λ(k)]−1

· φT(k − d − 1)P (k − 1). (40)

We initialize the error covariance matrix as P (0) = γI, where γ > 0.

VI. Stability Analysis

A. Conditions for Convergence of z(k) − ẑ(k) to Zero

Consider the retrospective system

x̂(k + 1) = Ax(k) + Bû(k) + D1w(k), (41)

ẑ(k) = E1x̂(k) + E0w(k), (42)

which is obtained by replacing u(k) in (1) with û(k). The extended retrospective system is given by

X̂(k + 1) = ÃX(k) + B̃
ˆ̃
U(k) + B̃′ ˆ̃U ′(k) + D̃1W (k), (43)

Ẑ(k) = Ẽ1X̂(k) + Ẽ0W (k), (44)

where

X̂(k) =









x̂(k − k1)
...

x̂(k − ks)









∈ R
sn, (45)

W (k) =









w(k − k1)
...

w(k − ks)









∈ R
slw , (46)

Ũ ′(k − 1)
△
=









u(k − q′1)
...

u(k − q′lŨ′

)









∈ R
lŨ′ , (47)

Ã
△
= Is ⊗ A ∈ R

sn×sn, D̃1
△
= Is ⊗ D1 ∈ R

sn×slw , Ẽ0
△
= Is ⊗ E1 ∈ R

slz×slw , Ẽ1
△
= Is ⊗ E1 ∈ R

slz×sn, and ⊗
is the Kronecker product. The matrices B̃ ∈ R

sn×lŨ and B̃′ ∈ R
sn×lŨ′ are block-row matrices with block

entries B and 0n×lu such that

B̃
ˆ̃
U(k) + B̃′ ˆ̃U ′(k) =









Bû(k − k1)
...

Bû(k − ks)









∈ R
slu , (48)

7 of 18

American Institute of Aeronautics and Astronautics



where ˆ̃
U ′(k) is formed by replacing the entries u(k − q′i) of Ũ ′(k) by û(k − q′i) for i = 1, . . . , lŨ ′ .

The following result gives conditions under which Ẑ(k) = 0.

Fact VI.1 Assume that H̃ has full column rank, η(k) = 0, R(k) = I, and Z(k) is in the range of H̃ for

all k, and let ˆ̃
U(k − 1) be given by (27). Then Ẑ(k) = 0.

Proof. Since Z(k) is in the range of H̃, there exists Q ∈ R
slũ such that Z(k) = H̃Q. Substituting (27)

into (20) yields

Ẑ(k) = Z(k) + H̃(H̃TH̃)−1H̃T(−Z(k) + H̃Ũ) − H̃Ũ

= Z(k) − H̃(H̃TH̃)−1H̃TZ(k)

= H̃Q − H̃(H̃TH̃)−1H̃TH̃Q = 0. �

The next result assumes that the recursive-least-squares optimization yields u(k − d) − û(k − d) → 0 as
k → ∞, that is, θ(k)φ(k − d − 1) − û(k − d) → ∞ as k → ∞.

Fact VI.2 Assume that θ(k) is updated using (39) and (40), and assume that θ(k)φ(k−d−1)−û(k−d) →
0 as k → ∞. Then x(k) − x̂(k) → 0 as k → ∞.

Proof. It follows from (1) and (41) that

x(k − d + 1)−x̂(k − d + 1) = Bu(k − d) − Bû(k − d). (49)

It follows from (29) that u(k − d) = θ(k − d)φ(k − d − 1). Defining g(k)
△
= θ(k)φ(k − d − 1)− û(k − d), (49)

becomes

x(k − d + 1)−x̂(k − d + 1) = B[θ(k − d) − θ(k)]φ(k − d − 1) + Bg(k). (50)

Since g(k) → 0 as k → ∞, it follows from (39) that θ(k)− θ(k − 1) → 0 as k → ∞. It thus follows from (50)
that x(k − d + 1) − x̂(k − d + 1) → 0 as k → ∞. �

In view of Fact VI.2, we assume henceforth that k is sufficiently large that the difference between x̂(k),
û(k), ŷ(k), and ẑ(k) and x(k), u(k), y(k), and z(k), respectively, is negligible. For convenience we set d = r.

The following analysis focuses on the subsequent behavior of x̂(k), û(k), and ẑ(k), when η(k) = 0 and
R(k) = I.

B. Boundedness of the Internal State

Next, we introduce the ideal system performance

z∗(k) = E1A
rx∗(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k) + H′U ′(k − 1) + HU∗(k − 1), (51)

where x∗(k) is the state of the ideal system and U∗(k − 1) is defined analogously to U(k − 1), with u(k)
replaced by u∗(k), where

u∗(k) = θ∗φ∗(k − 1), (52)

φ∗(k − 1)
△
=























u∗(k − 1)
...

u∗(k − nc)

y∗(k − 1)
...

y∗(k − nc)























, (53)
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and the ideal controller θ∗ is assumed to yield the ideal performance

z∗(k) ≡ 0. (54)

Adding and subtracting E1A
rx̂(k − r) to and from (51) yields

z∗(k) = S(k) + E1A
re(k − r) + HU∗(k − 1), (55)

where S(k) is defined by (10) with x(k) replaced by x̂(k), and e(k)
△
= x∗(k) − x̂(k).

The extended ideal system is given by

X∗(k + 1) = ÃX∗(k) + B̃Ũ∗(k) + B̃Ũ ′(k) + D̃1W (k), (56)

Z∗(k) = S̃(k) + Ẽ1Ã
rE(k − 1) + H̃Ũ∗(k − 1) = 0, (57)

where X∗(k + 1) and Z∗(k) are defined in the same way as X(k + 1) and Z(k), E(k)
△
= X∗(k) − X̂(k), and

Ũ∗(k)
△
= [IlŨ

⊗ θ∗]φ̃∗(k − 1), (58)

φ̃∗(k)
△
=









φ∗(k − q1)
...

φ∗(k − qlŨ
)









. (59)

The goal is to drive the refined controls ˆ̃
U(k − 1) to Ũ∗(k − 1) to ensure that θ(k) − θ∗ → 0 as k → ∞.

Next, subtracting (19) from (57) and solving for ˆ̃
U(k − 1) yields

ˆ̃
U(k − 1) = H̃†[Ẽ1Ã

rE(k − 1) + H̃Ũ∗(k − 1) + Ẑ(k)], (60)

where H̃†H̃ = IlŨ
and H̃ is assumed to have full column rank.

Under the assumptions of Fact VI.1, Ẑ(k) = 0 and therefore (60) reduces to

ˆ̃
U(k − 1) = H̃†Ẽ1Ã

rE(k − 1) + Ũ∗(k − 1). (61)

Subtracting (43) from (56), and using (61) yields the error dynamics

E(k) = (Ã − B̃H̃†Ẽ1Ã
r)E(k − 1). (62)

Therefore, if Ã − B̃H̃†Ẽ1Ã
r is asymptotically stable, then x(k) − x∗(k) → 0 as k → ∞. Furthermore,

z(k) − z∗(k) = E1x(k) − E1x
∗(k) → 0 as k → ∞. Since z∗(k) = E1x

∗(k) = 0, it follows that z(k) → 0 as
k → ∞.

C. Illustrative Example

Consider the case d = r = s = 1, H̃′ = 0lz×lu , and H̃ = H1 = E1B. Furthermore, assume that H1 is
square and invertible. Next, let

Gzu(q) = E1(qI − A)−1B, (63)

and it follows from (4) that

z(k) = qGzu(q)u(k − 1) + Gzw(q)w(k). (64)

Substituting (7) in (27), with η(k) = 0, yields

û(k − 1) = −H−1
1 [E1Ax(k − 1) + E1D1w(k − 1)], (65)

9 of 18

American Institute of Aeronautics and Astronautics



which yields the closed-loop retrospective system

x(k) = (A − BH−1
1 E1A)x(k − 1) + (D1 − BH−1

1 E1D1)w(k − 1), (66)

z(k) = E1x(k). (67)

Note that substituting (66) into (67) yields ẑ(k) = 0. Next, for this example, the error system (62) is

E(k + 1) = (A − BH−1
1 E1A)E(k). (68)

The following result shows that the stability of (68) depends on the transmission zeros of (A, B, E1).

Fact VI.3 Assume that lz = lu and H1 is nonsingular. Then A − BH−1
1 E1A is asymptotically stable if

and only if (A, B, E1) is minimum phase.

Proof. It follows from (63) that

qGzu(q) = E1A(qI − A)−1B + H1 (69)

=
1

α(q)
β(q), (70)

where α(q) ∈ R[q] and β(q) ∈ R
lz×lz [q] are defined by

α(q)
△
= det(qI − A)

= qn + α1q
n−1 + · · · + αn−1q + αn, (71)

β(q)
△
= E1Aadj(qI − A) + α(q)H1

= qnβ0 + qn−1β1 + · · · + q2βn−2 + qβn−1. (72)

Furthermore, note that

det qGzu(q) =
det β(q)

αlz (q)
. (73)

Since H1 is nonsingular, it follows that qGzu(q) has full normal rank, det β(q) is not the zero polynomial,
and the transmission zeros of qGzu(q) are the roots of det β(q). Hence (70) implies that

q−1G−1
zu (q) =

α(q)

det β(q)
adj β(q). (74)

From (66), it follows that det β(q) = det (qI−A+BH−1
1 E1A). Therefore, the eigenvalues of A−BH−1

1 E1A

are the roots of det β(q). Consequently, (A, B, E1) is minimum phase if and only if q−1G−1
zu (q) is asymp-

totically stable. �

Fact VI.4 Assume that lz = lu < n and H1 is nonsingular. If (A − BH−1
1 E1A, E1) is detectable, then

(A, B, E1) is minimum phase.

Proof. To prove necessity, define

O
△
=













E1

E1(A − BH−1
1 E1A)

...

E1(A − BH−1
1 E1A)n−1













, (75)

which is the observability matrix of (A − BH−1
1 E1A, BH−1

1 , E1). Since H1 = E1B, it follows that E1(A −
BH−1

1 E1A) = 0. Therefore,

O
△
=













E1

0lz×n

...

0lz×n













, (76)

and thus, rank O = lz. Since (A, B, E1) is minimum phase it follows from Fact VI.3 that A − BH−1
1 E1A is

asymptotically stable, and thus (A − BH−1
1 E1A, E1) is detectable. �
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VII. Regularized Retrospective Cost

We now let η(k) > 0. In this case, choosing ˆ̃
U(k − 1) as in (27) yields

Ẑ(k) = Z(k) − H̃Ũ(k − 1) + H̃(H̃TR(k)H̃ + η(k)IlŨ
)−1H̃TR(k)[−Z(k) + H̃Ũ(k − 1)]). (77)

The following result is an extension of Fact VI.1, where we no longer assume that η(k) = 0.

Fact VII.1 Assume that H̃ has full column rank, Z(k) is in the range of H̃ for all k, u(k) − û(k) → 0

as k → ∞, and let ˆ̃
U(k − 1) be given by (27). Then Z(k) − Ẑ(k) → 0 as k → ∞.

Proof. Since u(k) − û(k) → 0 as k → ∞, it follows that ˆ̃
U(k) − Ũ(k) → 0 as k → ∞. Next, the

retrospective cost function is

Ẑ(k) = Z(k) − H̃( ˆ̃
U(k) − Ũ(k)),

(78)

therefore, Ẑ(k) − Z(k) → 0 as k → ∞. �

In view of Fact VII.1, we assume henceforth that k is sufficiently large that the difference between x̂(k),
û(k), ŷ(k), and ẑ(k) and x(k), u(k), y(k), and z(k), respectively, is negligible. For convenience we set d = r.

The following analysis focuses on the subsequent behavior of x̂(k) and ẑ(k), when η(k) > 0.

Substituting (27) into (43) yields

X̂(k) = ÃX̂(k) + B̃(H̃TR(k)H̃ + η(k − 1)IlŨ
)−1H̃TR(k)[−Ẑ(k) + H̃ ˆ̃

U(k − 1)]

+ B̃′ ˆ̃U ′(k − 1) + D̃1W (k − 1), (79)

Ẑ(k) = Ẽ1X̂(k) + Ẽ0W (k). (80)

Next, we write the performance as

Ẑ(k) = Ẽ1Ã
rX̂(k − 1) + H̃ ˆ̃

U(k − 1) + H̃′ ˆ̃U ′(k − 1) + D̃ÃrW (k − 1). (81)

Substituting (81) into (79) yields

X̂(k) = [Ã − B̃(H̃TR(k)H̃ + η(k − 1)IlŨ
)−1 · H̃TR(k)Ẽ1Ã

r]X̂(k − 1),

+ [D̃1 − B̃(H̃TR(k)H̃ + η(k − 1)IlŨ
)−1 · H̃TR(k)D̃Ãr]W (k − 1)

+ [B̃ − B̃(H̃TR(k)H̃ + η(k − 1)IlŨ
)−1H̃TR(k)H̃′] ˆ̃U ′(k − 1). (82)

Therefore, it follows from (82) that if Ã−B̃(H̃TR(k)H̃+η(k−1)IlŨ
)−1H̃TR(k)Ẽ1Ã

r is asymptotically sta-

ble, then X̂(k) and Z(k) are bounded. Furthermore, note that Ã−B̃(H̃TR(k)H̃+η(k−1)IlŨ
)−1H̃TR(k)Ẽ1Ã

r →

Ã as η(k) → ∞.

VIII. Numerical Examples

For all numerical examples in this paper we use the recursive least squares update (39) and (40). Fur-
thermore, we consider only the disturbance rejection problem, where D1 6= 0, D2 = 0, and E0 = 0. For the
examples in this paper we choose η(k) = η̄(k)ZT(k − 1)Z(k − 1), where η̄(k) is a nonnegative number.

A. SISO Examples

Example VIII.1 (SISO MP) Consider the system

A =







1.7 −1.2 0.7

1 0 0

0 0.5 0






, B =







2

0

0






, (83)

11 of 18

American Institute of Aeronautics and Astronautics



D1 =







0.9794

−0.2656

−0.5484






, C = E1 =







0.5

−0.65

0.4







T

, (84)

which is minimum-phase and stable. The goal is to reject the disturbance w(k) = sin(π
5 k). We choose

H̃ = H1, nc = 5, γ = 1 and η̄(k) = 0. Figure 2 shows the adaptive controller in closed-loop with the plant.
The performance is reduced to zero with knowledge of just one Markov parameter. Furthermore, we are able
to choose η̄(k) = 0, since the plant is minimum phase.
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Figure 2. For this example, the plant is SISO and minimum phase. We choose H̃ = H1 and η̄(k) = 0. (a) shows
the performance z(k), (b) shows the controller parameters θ(k), (c) shows the control signal u(k), and (d) shows
the disturbance w(k).

Example VIII.2 (SISO NMP) Consider the system (83) and (84), where C and E1 are replaced by

C = E1 =
[

0.5 −1.25 1
]

, (85)

which makes the system nonminimum phase, with a zero at 2. The goal is to reject the disturbance w(k) =
sin(π

5 k). We choose H̃ = H1 = 1, nc = 5, η̄(k) = 2, and γ = 1. Figure 3 shows the adaptive filter in
closed loop with the nonminimum-phase system. Note that the controller does not have any knowledge of the
nonminimum-phase zero.

Example VIII.3 (SISO NMP) To examine the effect of η̄(k), we reconsider Example 2 with η̄(k) = 0.
All other controller parameters are identical. Figure 4 shows the adaptive filter in closed loop with the
nonminimum-phase system without adaptive regularization. As the stability analysis predicts, the control
signal grows unbounded, which results in unbounded performance as k becomes large.

Example VIII.4 (SISO NMP) Next, we consider the same plant and disturbance as Examples VIII.2 and
VIII.3. Furthermore we choose the controller parameters as in V III.2. However, in this case we assume that
we have knowledge of only the 4th Markov parameter, so that H̃ = H4 = −1.3420. Figure 5 shows the closed-
loop performance using knowledge of just the 4th Markov parameter. There is no discernible performance
gain or degradation when using H4 as opposed to H1.
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Figure 3. For this example, the plant is SISO and nonminimum phase. We choose H̃ = H1 = 1, and η̄(k) = 2.
(a) shows the performance z(k), (b) shows the controller parameters θ(k), (c) shows the control signal u(k), and
(d) shows the disturbance w(k).
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Figure 4. For this example, the plant is SISO and nonminimum phase. We choose H̃ = H1, and η̄(k) = 0. (a)
shows the performance z(k), (b) shows the controller parameters θ(k), (c) shows the control signal u(k), and
(d) shows the disturbance w(k).
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Figure 5. For this example, the plant is SISO and nonminimum phase. We choose H̃ = −1.3420 and η̄(k) = 2.
(a) shows the performance z(k), (b) shows the controller parameters θ(k), (c) shows the control signal u(k), and
(d) shows the disturbance w(k).

Example VIII.5 (SISO NMP) We consider the same plant and disturbance as in Example VIII.2. Fur-
thermore we choose the controller parameters as in Example V III.2. However, in this case assume that the
2nd and 6th Markov parameters are known, and thus H̃ = [−0.8 − 0.1076]T. Figure 6 shows the closed-loop
performance with knowledge of the 2nd and 6th Markov parameters.

B. MIMO Examples

Example VIII.6 (2 × 2 NMP) Consider the asymptotically stable system

A =





















−0.3 0.3 0.56 0 0 0

1 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0 −0.6 −0.1 0.4

0 0 0 1 0 0

0 0 0 0 0.5 0





















, (86)

B =





















2 0

0 0

0 0

0 4

0 0

0 0





















, D1 =





















0.9794

−0.2656

−0.5484

0.0963

−1.3807

−0.7284





















, (87)

C = E1 =

[

0 0.5 0 0.25 −0.25 −1

0 0 1 0 0.25 −1

]

, (88)
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Figure 6. For this example, the plant is SISO and nonminimum phase. We choose H̃ = [−0.8 − 0.1076]T and
η̄(k) = 2. (a) shows the performance z(k), (b) shows the controller parameters θ(k), (c) shows the control signal
u(k), and (d) shows the disturbance w(k).

which has a nonminimum-phase transmission zero at 2. The goal is to reject the disturbance w(k) = sin(π
5 k).

We choose H̃ = H2 = E1AB =

[

1 −1.6

0 1

]

, nc = 5, η̄(k) = 2, and γ = 1.

Figure 7 shows closed-loop performance with knowledge of the 2nd Markov parameter. Note in this case

that the first nonzero Markov parameter E1B =

[

0 1

0 0

]

is not left invertible, and thus another Markov

parameter must be used in H̃, specifically, we used H2 = E1AB.

Example VIII.7 (2 × 1 NMP) Consider the system

A =

[

0.6 −0.32

0.25 0

]

, B =

[

4

0

]

, (89)

D1 =

[

0.9794

−0.2656

]

, C = E1 =

[

0 1

0.25 −1.5

]

, (90)

which is minimum phase and asymptotically stable. Note that the channel from the control to the second
output has a nonminimum-phase zero at 1.5. The goal is to reject the disturbance w(k) = sin(π

5 k). We choose

H̃ = H1 =
[

0 1
]T

, nc = 5, γ = 1, and η̄(k) = 1. Note that A − BH
†
1E1A has an unstable eigenvalue at

1.5. Figure 8 shows the closed-loop performance with knowledge of the 1st Markov parameter. Note that only
one control input is available to reject a disturbance that affects two outputs. It is not possible, in this case,
to reduce both performance variables to zero. Consequently, the adaptive controller reduces one performance
variable, while the other variable remains at approximately its open-loop value.
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Figure 7. For this example, the plant is 2 × 2 MIMO, and is nonminimum phase. We choose H̃ = H2 and
η̄(k) = 2. (a) shows the performance z(k), (b) shows the controller parameters θ(k), (c) shows the control signal
u(k), and (d) shows the disturbance w(k).
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Figure 8. For this example, the plant is 2 × 1 MIMO, and A − BH
†
1
E1A is unstable. We choose H̃ = H1 and

η̄(k) = 1. (a) shows the performance z(k), (b) shows the controller parameters θ(k), (c) shows the control signal
u(k), and (d) shows the disturbance w(k).
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Example VIII.8 (1 × 2 NMP) Consider the asymptotically stable system

A =











0 0.4 0 0

0.5 0 0 0

0 00 −0.1 0.4

0 0 0.5 0











, B =











2 0

0 0

0 2

0 0











, (91)

D1 =











0.9794

−0.2656

−0.5484

0.0963











, C = E1 =











0.5

−1.5

0.5

−1.5











T

, (92)

which has a nonminimum-phase transmission zero at 1.5. The goal is to reject the disturbance w(k) =

sin(π
5 k). We choose H̃ = [HT

1 HT
2 ]T =

[

1 1

−1.5 −1.6

]

, nc = 15, γ = 0.001, and η̄(k) = 0.01. Figure 8
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Figure 9. For this example, the plant is nonminimum phase 1x2 MIMO. We choose H̃ = [HT
1

HT
2

]T and
η̄(k) = 0.01. (a) shows the performance z(k), (b) shows the controller parameters θ(k), (c) shows the control
signal u(k), and (d) shows the disturbance w(k).

shows the closed-loop performance with knowledge of the 1st and 2nd Markov parameters. In this case, we
note that any single Markov parameter is not left invertible. Therefore, wide systems require more than one
Markov parameter to ensure that H̃ is invertible.

IX. Conclusions

In this paper we extended the RCAC adaptive control algorithm and investigated its ability to adaptively
control systems without knowledge of the nonminimum-phase zeros, if any. Conditions for the stability of
the error system were examined in the unregularized and regularized versions of the algorithm. Furthermore,
the algorithm was demonstrated on SISO and MIMO examples, starting with a minimum-phase system, and
working up to the nonminimum-phase case, including non-square systems. Furthermore, we demonstrated
that the algorithm can utilize various combinations of Markov parameters, for example, the 2nd and 6th,
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Markov parameters. In all cases, the number of Markov parameters that are used is not sufficient to determine
the nonminimum-phase zeros of the system. Consequently, these examples demonstrate the ability to control
MIMO nonminimum-phase systems with unknown nonminimum-phase zeros.
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