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We present a technique to guarantee, with a speci�ed probability, that a steady 
ight
state can be maintained when stochastic wind gusts act upon an airplane. First we linearize
the airplane dynamic equations and present them as a linear time invariant system with
the airplane’s velocity and angular velocity as the state and gust velocity as the input. We
then treat the gust velocity as a stationary random process and append the dynamics of a
coloring �lter to the linearized airplane equations so that the input is Gaussian white noise.
We analyze the e�ect of the noise on the airplane’s dynamics, using the resulting equations
to quantify the e�ects of stochastic wind gusts on an airplane’s steady 
ight envelope.
During the analysis we introduce the notion of stationary 
ight and a stationary 
ight
envelope to guarantee, within a speci�ed probability, steady 
ight under such conditions.
We also present a numerical example of a general aviation aircraft in steady level 
ight
through moderate turbulence. In the example, the airplane’s cruise speed 
uctuates with
a variance of 1.2 m2/s2 and we show examples of stationary 
ight envelopes for this case.

Nomenclature

1n Identity matrix of dimension n
A State matrix of Eq. (25)
Acolor State matrix of the coloring �lter
AT Transpose of some matrix A
B Input matrix of Eq. (25)
Bcolor Input matrix of the coloring �lter
Ccolor Output matrix of the coloring �lter
Fa Sum of the forces acting on the airplane that depend on vc and !, i.e., aerodynamic forces
Fother Sum of the forces acting on the airplane that do not depend on vc and !
h Angular momentum of the airplane
H� Matrix formed from h to replace a cross product with an inner product, see 
�
I Moment of inertia matrix of the airplane
m Mass of the airplane
Ma Sum of the moments acting on the airplane that depend on vc and !, i.e., aerodynamic moments
Mother Sum of the moments acting on the airplane that do not depend on vc and !
n(t) Gaussian white noise that drives the coloring �lter
N (�; �2) Normal distribution with mean � and variance �2

P Covariance matrix of the state vector in Eq. (25)
P11 (1,1) component of P , variance of u
r Position vector
u Longitudinal component of the airplane’s velocity vc

vc Center of mass velocity of the airplane,
�
u v w

�T
_vc Dotting a vector denotes a time derivative
Vc� Matrix formed from vc to replace a cross product with an inner product, see 
�
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vw Gusts that perturb the steady state wind velocity
�Fa First order perturbation of Fa after applying vw
�Ma First order perturbation of Ma after applying vw
�vc Arbitrary perturbation of vc
�vc First order perturbation of vc after applying vw
�! Arbitrary perturbation of !
�! First order perturbation of ! after applying vw
�
� Matrix formed from �! to replace a cross product with an inner product, see 
�
�(r) Density of the airplane as a function of position
�2
n Variance of the noise input n(t)
� State vector used in coloring �lter

! Angular velocity of the airplane around its center of mass,
�
p q r

�T

� Matrix formed from ! to replace a cross product with an inner product, 
�(!) =

0B@ 0 �!3 !2

!3 0 �!1

�!2 !1 0

1CA
I. Introduction

A. Motivation

Figure 1. Illustration of the steady and stationary 
ight
envelopes for an airplane 
ying through turbulence.
Staying inside the stationary 
ight envelope ensures,
with a large safety margin, that the airplane’s speed
will stay within the steady 
ight envelope despite gusts.
The steady 
ight envelope is taken from the model in
Ref. 1.

In aviation, loss of control in-
ight is a leading
cause of accidents. In the years 2000{2009, 20
out of 89 commercial jet accidents, or 22%, had
loss of control in-
ight identi�ed as the primary
cause.2 Among 126 loss of control accidents that oc-
curred between 1979 and 2009, investigations listed
\stall/departure", meaning an excursion out of the

ight envelope, as a causal or contributing factor
in 49 cases, or 39%.3 The 
ight envelope, the set of
speeds, altitudes, 
ight path angles, and bank angles
at which an airplane can maintain steady 
ight, is a
useful tool in identifying when an airplane is prone
to loss of control. Steady 
ight, where the airplane’s
linear and angular velocity vectors are constant in
the body frame, is not conducive to loss of control
because most airplanes are designed to 
y stably
or stabilizably when 
ying steadily. Nevertheless,
models of steady 
ight assume nominal conditions,
conditions that cannot be expected in turbulence.
To cope with this environmental uncertainty, pilots
must 
y more conservatively in turbulence than un-
der nominal conditions, well within the steady 
ight envelope, or risk loss of control.

Consider the case of an airplane cruising close to its stall speed. If that airplane encountered turbulence,
the forward component of its velocity would begin to 
uctuate. Depending on turbulence intensity, the
velocity could 
uctuate su�ciently to cause the airplane to stall, as depicted in Figure 1. The �gure shows
a hypothetical case where turbulence causes 
uctuations in airplane forward speed that have a standard
deviation of 3 m/s. The dash-dot line shows three standard deviations worth of 
uctuations around the
steady 
ight state. Flying within the stationary 
ight envelope would ensure that the stall speed remained
at least three standard deviations below the steady 
ight state, or that the plane’s speed remained above
the stall speed 99.9% of the time, assuming a Gaussian distribution.

The techniques described herein provide a tool to help clarify the boundaries of the 
ight envelope when
faced with uncertain wind conditions. These techniques enable computation of the probability that a 
ight
would stray beyond the boundaries of the steady 
ight envelope as a result of the uncertain wind conditions.
In particular, we introduce the notions of stationary 
ight and stationary 
ight envelopes, the envelopes
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that result from adjustment of the steady 
ight envelope to take into account the e�ects of a stationary
random process acting on the aircraft. Pilots can use the resulting tools to better understand their aircraft’s
capabilities and safe operating conditions in an uncertain environment.

B. Prior Work and Present Contribution

This paper primarily draws on two well-established �elds: airplane dynamics and wind gust modeling.
Detailed discussions of airplane dynamic equations and perturbations of these equations can be found in
standard textbooks on the subject.4,5 Additional work has also been performed to model the e�ect of wind
gusts6,7 and wind shear8,9 on aircraft dynamics. In this paper we take the traditional airplane dynamic
equations and their linearization and express them in a format conducive to linear time invariant (LTI)
system analysis with wind gusts as the input.

Several publications give detailed discussions of wind gust models and their power spectral densities,
speci�cally the Dryden and von K�arm�an models.10,11 Discussions on spectral factorization of these wind
models are also available.10 In this paper we apply these wind models to the aircraft dynamics and control
problem described above.

By combining the work of the two �elds we develop a tool to analyze how wind gusts a�ect steady 
ight.
In particular, our results allow us to determine the probability that a particular maneuver remains safe
despite stochastic gusts.

C. Paper Organization

We begin the paper by reviewing the standard airplane equations of motion and steady 
ight. We linearize
the equations of motion around a steady 
ight condition with perturbations in the aerodynamic forces and
moments as the input. We then show how the perturbations in aerodynamic forces and moments depend
on stochastic wind gusts. This results in a LTI system with the airplane linear and angular velocities as the
states, and the wind gusts as the input. Because the most widely accepted models of wind gusts are not
white noise, we append to our LTI system a coloring �lter that produces the wind gusts as its output from
a stationary, Gaussian, white noise input. We then analyze the implications of the stochastic input on the
airplane dynamics and give numerical examples for a general aviation aircraft. In the analysis and example
we show what guarantees can be made about steady 
ight under uncertain wind conditions and introduce
the notion of the stationary 
ight envelope.

II. Developing the System of Equations

A. Linearizing the Airplane Equations of Motion

We start with the airplane dynamic equations given by4

m( _vc + 
�vc) = Fa(vc; !) + Fother; (1)
_h+ 
�h = Ma(vc; !) +Mother; (2)

where all the vectors are expressed in the body frame,

h = I!; (3)

and

I =

Z
V olume

�(r)(jjrjj213 � rrT)dV =

0B@ Ixx �Ixy �Ixz
�Ixy Iyy �Iyz
�Ixz �Iyz Izz

1CA : (4)

To understand 
�, note the following identity for the cross product of a pair of vectors expressed in an
orthonormal coordinate system:

a� b = A�b = BT
�a; (5)

A�(a) ,

0B@ 0 �a3 a2

a3 0 �a1
�a2 a1 0

1CA = �AT
�(a): (6)
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The subscript � reminds us that this matrix replaced a cross product. 
� is therefore a matrix formed from
the three components of ! as in Eq. (6). It is an alternative to the cross products commonly used in the
airplane dynamic equations.

These airplane dynamic equations require a number of assumptions. They assume that the Earth is 
at
and that a point on the Earth’s surface can be the origin of an inertial reference frame. They assume that
the airplane’s mass and moment of inertia do not change over time. They assume that the airplane is a
rigid body and that it 
ies at a small angle of attack. They also assume still air, namely that air not yet
disturbed by the airplane is �xed relative to the ground. Generalized equations exist that allow a nonzero
but constant wind velocities.

In Eqs. (1) and (2) we have split the forces and moments into components that depend on velocity and
angular velocity|typically the aerodynamic forces and moments|and components that do not. We perturb
the airplane equations of motion to �rst order with the substitutions

Fa(vc; !) ! Fa(vc + �vc + vw; ! + �!) � Fa(vc; !) + �Fa(�vc; �!; vw); (7)

Ma(vc; !) ! Ma(vc + �vc + vw; ! + �!) �Ma(vc; !) + �Ma(�vc; �!; vw): (8)

We could also include an input !w, the gusts’ angular velocity, but here opt to consider only the gusts’
linear velocity. Reference 11 gives criteria based on airplane stability derivatives to judge when the angular
velocity components should be included. Because of the wind velocity perturbations’ impact on the velocity
and angular velocity, we also need to make the substitutions

vc ! vc + �vc; ! ! ! + �!: (9)

The angular velocity substitution will also require a perturbation of 
� to ~
�(! + �!). The reader can
verify using Eq. (6) that

~
�(! + �!) = 
�(!) + �
�(�!): (10)

After substituting all of these perturbations into Eqs. (1) and (2), cancelling the steady state terms, and
ignoring second order terms, we get

�Fa � m(� _vc + �
�vc + 
��vc); (11)

�Ma � I� _! + �
�h+ 
�I�!: (12)

Note that in Eq. (5) when we convert a cross product into an inner product, either vector from the cross
product can be converted into a matrix. We therefore de�ne Vc� and H� in the same manner as 
� and
replace �
�vc and �
�h with �Vc��! and �H��!, respectively. After making these substitutions and
rearranging terms, the linearized equations become

� _vc = Vc��! � 
��vc +
1

m
�Fa; (13)

I� _! = H��! � 
�I�! + �Ma: (14)

We can realistically assume that the airplane’s moment of inertia is positive de�nite and therefore invertible
and can be moved to the right hand side of Eq. (14). Finally, we combine the two linearized equations,
resulting in the LTI system 

� _vc

� _!

!
=

 
�
� Vc�

0 I�1(H� � 
�I)

! 
�vc

�!

!
+

 
1
m13 0

0 I�1

! 
�Fa

�Ma

!
; (15)

with the force and moment perturbations as the input and the airplane’s linear and angular velocity per-
turbations as the state. The only assumption we relax in the linearization is the assumption that the wind
velocity is constant, now allowing the small vw to perturb it. We still ignore any structural modes that the
gusts could excite.

B. Perturbing the Forces & Moments

Next we determine how to relate �Fa and �Ma to vw. Consider an arbitrary perturbation to vc and ! where
vc ! vc + �vc and ! ! ! + �!. For small perturbations Fa responds as

Fa(vc + �vc; ! + �!) � Fa(vc) + �Fa(�vc;�!); (16)
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where, to �rst order, the perturbations to the force and similarly to the moment are

�Fa(�vc;�!) =
@Fa

@vc
�vc +

@Fa

@!
�!; (17)

�Ma(�vc;�!) =
@Ma

@vc
�vc +

@Ma

@!
�!: (18)

The partial derivatives above are evaluated at the reference condition and consist of airplane stability deriva-
tives. We can consider �vc and vw to each be independent perturbations of vc akin to �vc above, and �! to
be a perturbation to ! akin to �!. As a result we get

�Fa(�vc; �!; vw) =
@Fa

@vc
(�vc + vw) +

@Fa

@!
�!; (19)

�Ma(�vc; �!; vw) =
@Ma

@vc
(�vc + vw) +

@Ma

@!
�!: (20)

Making these substitutions, Eq. (15) becomes 
� _vc

� _!

!
=

 
�
� + 1

m
@Fa
@vc

Vc� + 1
m

@Fa
@!

I�1 @Ma

@vc
I�1(H� � 
�I + @Ma

@! )

! 
�vc

�!

!
+

 
1
m

@Fa
@vc

I�1 @Ma

@vc

!
vw; (21)

a LTI system with the velocity of the gusts as the input. Note that Eq. (21) does not assume that vw is a
random process. We can also use these equations to study the impulse response of an airplane to changes in
wind velocity or to study the step responses to wind shear events.

Note that we have only perturbed the force and moment with respect to velocity and angular velocity.
We are, as a result, assuming that the force and moment do not depend on the linear or angular acceleration.
We also assume that the system is stable with the inclusion of those partial derivatives in the state matrix.
Note as well that we do not include any control inputs; the inputs are assumed to remain at the values
corresponding to the reference condition. For the stability derivatives, details on how to compute them are
available in Chapter 3 of Ref. 4.

C. Modeling the Gusts

Until this point the only assumption we have made about vw is that it is small. This was necessary to discard
higher order terms in the linearization. For our application, we model uncertainty in the airplane’s velocity
by substituting for vw a stationary random process. Such a de�nition of gusts is generally consistent with
turbulence found in clear air or storms but is not appropriate for modeling wind shear or discrete gusts.
Engineers typically use one of two models of stochastic wind gusts: the Dryden and von K�arm�an models.10,11

Both models de�ne the random gusts in terms of their power spectral densities and in both cases the random
process de�ned by the power spectral density is colored. For the purposes of our analysis we would prefer to
work with white noise. Let us de�ne the spectral density of vw to be �w and assume that it has a rational
spectral factorization. This assumption is valid for the Dryden model but can only be approximated for the
von K�arm�an model.10 Once spectrally factorized, vw is given as the output of a coloring �lter driven by
Gaussian white noise n(t) with zero mean and variance �2

n. We write this �lter as

_� = Acolor�+Bcolorn(t); (22)

vw = Ccolor�; (23)

n(t) = N (0; �2
n): (24)

Such a �lter can be derived from the power spectral densities of the Dryden or von K�arm�an models given in
Ref. 11.

D. Combining the Models

We can append the �lter from the previous section to Eq. (21) and get the system of equations0B@ � _vc

� _!
_�

1CA =

0B@ �
� + 1
m

@Fa
@vc

Vc� + 1
m

@Fa
@!

1
m

@Fa
@vc

Ccolor

I�1 @Ma

@vc
I�1(H� � 
�I + @Ma

@! ) I�1 @Ma

@vc
Ccolor

0 0 Acolor

1CA
0B@ �vc

�!

�

1CA+

0B@ 0

0

Bcolor

1CAn(t);

(25)
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or more compactly, 0B@ � _vc

� _!
_�

1CA = A

0B@ �vc

�!

�

1CA+Bn(t): (26)

In most applications the state matrix A is asymptotically stable because the state matrices of Eq. (21) and
the coloring �lter are asymptotically stable. Since the system given by Eq. (25) is linear, asymptotically
stable, and driven by zero-mean, Gaussian white noise, the perturbations �vc and �! are also zero-mean,
Gaussian, stationary random processes. For a white noise input to Eq. (25), the steady state covariance P
of this system’s state is �nite and given by the solution of the Lyapunov equation

AP + PAT +B�2
nB

T = 0: (27)

The diagonal terms of P are of particular interest as they represent the variances of the state variables.
Given the dynamics of the noise �lter and the variance of the white noise that drives it, we can determine
the variances of the components of the linear and angular velocities. This allows us to determine the
probability that the airplane strays outside the 
ight envelope when subject to turbulence.

III. Stationary Flight and the Stationary Flight Envelope

This section describes an application of the model just derived. The application centers on a Navion
general aviation aircraft model from Ref. 4. The necessary parameters are summarized in Table 1 in the
appendix. To calculate the 
ight envelopes, we use the algorithm published in Chapter 14 of Ref. 1.

A. Utility of the Model

Once we know the covariance matrix of the system de�ned by Eq. (25) we can quantify the e�ect of wind
gusts on steady 
ight. Consider the cruise example discussed earlier. For steady level 
ight the reference
condition is

vc =

0B@ u

0

0

1CA ; ! =

0B@ 0

0

0

1CA : (28)

The top left term P11 of the covariance matrix P is the variance of the airplane’s cruise speed u. If the
airplane were cruising at a point in its 
ight envelope close to stall and encountered turbulence, then P11

could be used to compute the probability of stalling. The angle of attack and sideslip angle will also 
uctuate,
but here we assume stall will be driven by changes in u. If we call the longitudinal component of �vc �u
then we can say that u+ �u is a random process with the Gaussian distribution N (u; P11). The probability
p that at a particular instant the process’ value is less than N standard deviations below the mean can be
computed from the Gaussian distribution’s cumulative distribution function and is given by

p(u+ �u � u�N
p
P11) =

1

2
(1� erf(

Np
2

)); (29)

where erf( Np
2
) is the error function. So, for example, if the stall speed were exactly two standard deviations

less than u, i.e., N = 2, then as the cruise speed randomly 
uctuated the airplane would slow to below
the stall speed at most 2.3% of the time. If it were three standard deviations less than u, the plane would
slow below the stall speed 0.13% of the time. Figure 2 gives an illustration. We could also consider other
excursions from the 
ight envelope, such as exceeding the airplane’s thrust limit on the right side of the
envelope, but for now limit our discussion to stall because it has greater implications on loss of control.

To help predict safe 
ight conditions when facing turbulence we propose the de�nition and use of the
terms stationary 
ight and stationary 
ight envelope. Stationary 
ight is a 
ight state where the airplane’s
velocity and angular velocity are stationary random processes. Equation (25) is itself an example of a system
whose 
ight state is stationary. A stationary 
ight envelope is an adjustment of the steady 
ight envelope
for use in the case of stationary 
ight. It involves shifting the boundaries of the steady 
ight envelope as a
function of the variances of the airplane’s linear and angular velocities to achieve a desired safety margin.
For the case of cruise we can form a stationary 
ight envelope by shifting the steady 
ight envelope inward
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Figure 2. Steady and stationary 
ight envelopes for a general aviation aircraft in moderate turbulence where
the stationary 
ight envelope is shifted inward by 3

p
P11. Also shown are two reference steady 
ight states.

For the state inside the stationary 
ight envelope, as the cruise speed 
uctuates due to the turbulence, at most
0.13% of the time the cruise speed strays outside the steady 
ight envelope. The state outside the stationary

ight envelope spends between 0.13% and 50% of the time with its cruise speed outside of the steady 
ight
envelope.

Figure 3. Steady 
ight envelope for a general aviation aircraft and several stationary 
ight envelopes. For
each stationary 
ight envelope the turbulence is the same but the safety margin, the percentage of 
uctuations
extending outside of the steady 
ight envelope, changes.
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by three standard deviations of the 
uctuations of the cruise speed, as shown in Figure 2. When planning
a 
ight through known turbulent conditions or upon encountering turbulence and 
ight state perturbations
whose statistics can be estimated, a pilot can adjust the airplane’s speed and altitude to ensure that the 
ight
lies within the stationary 
ight envelope. For an inward shift of three standard deviations, 
ying within the
stationary 
ight envelope would guarantee that the airplane would stay within the steady 
ight envelope at
least 99.9% of the time. Of course our choice of a three standard deviation adjustment is arbitrary and can
be changed to generate the desired safety margin.

B. Numerical Example: General Aviation Aircraft

We now give a numerical example using the Navion general aviation aircraft model, detailed in Table 1
in the appendix. We consider the case of steady level cruise in moderate turbulence. We use high altitude
turbulence, which Ref. 11 de�nes as valid at 2,000 ft above terrain. For the noise we use a �lter for continuous
Dryden gusts given in Ref. 12. The parameters chosen for the airplane’s 
ight state and the coloring �lter
are given in Table 2, also in the appendix. Given this airplane model, 
ight state, and turbulence model, we
compute the variance of the airplane’s forward speed, P11, to be 1.2 m2/s2. With this information we can
plot the stationary 
ight envelope by shifting the steady 
ight envelope inwards by three standard deviations,
3
p
P11, as shown in Figure 2. For computational simplicity we assume that P11 remains constant throughout

the envelope. This assumption appears to be valid because varying the reference cruise speed across the
entire envelope only changes P11 by 0.1%. However, our sources do not quantify how the stability derivatives
and other airplane parameters vary throughout the envelope.

For other choices of safety margin, the stationary 
ight envelope is a di�erent size. Equation (29)
shows the relationship between probability of departing the steady 
ight envelope and how many standard
deviations below u the stall speed is. Figure 3 shows several stationary 
ight envelopes corresponding to
di�erent probabilities of instantaneously dropping below the stall speed. Note that as you consider tighter and
tighter safety margins, the probability of departing the envelope decreases faster than the number of standard
deviations. Decreasing the probability by an additional factor of 10�3 results in less than three standard
deviations worth of additional inward shift to draw the resulting stationary 
ight envelope. Choosing a
probability that is su�ciently small does eventually reduce the 
ight envelope dramatically. Also note that
the steady 
ight envelope is itself a stationary 
ight envelope with a 50% probability of instantaneously
departing the steady 
ight envelope as the cruise speed 
uctuates.

This example demonstrates how the steady 
ight envelope can be adjusted based on known turbulent
conditions and a speci�ed safety margin. We expect that for an airplane model with a smaller steady 
ight
envelope, like a light unmanned aerial vehicle, the reduction of the 
ight envelope would be even more
pronounced.

IV. Conclusion

As we have shown, by using linearized airplane dynamic equations and driving them with random wind
gusts we can estimate the probability of violating the steady 
ight constraints. This information can ulti-
mately be used, given wind gust statistics, to choose 
ight states that guarantee, with speci�ed probability,
that the aircraft remains within the steady 
ight envelope despite uncertain conditions. In particular, we
propose shifting the boundary of the steady 
ight envelope based on the statistics of the wind gusts to provide
a well-de�ned safety margin when 
ying through turbulence. We argue that the stationary 
ight envelope
can help pilots or autopilots plan safe 
ights through known turbulent conditions. Similarly, if airplanes
encounter turbulent conditions in-
ight and can estimate the statistics of the turbulence or the 
ight state,
the stationary 
ight envelope can give pilots a basis to determine quantitatively which maneuvers are safe.

We see this framework as a promising route toward advancing the notion of steady 
ight into situations
where it did not previously apply. In the future we will continue to extend the notion of the steady 
ight
envelope in uncertain environments. For instance, we can consider use of the stationary 
ight envelope to
predict the probability of loss of control in other phases of 
ight besides cruise, to design closed-loop control
systems robust to turbulence, and to analyze a di�erent departure from the 
ight envelope, namely excessive
loading of an airplane’s structure.
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Appendix: Parameters for the Numerical Example

In our numerical example we use a Navion general aviation aircraft model from Ref. 4. Table 1 summarizes
the necessary airplane parameters. The parameters provided by this source correspond to a steady 
ight
state where u = 54:2 m/s and the altitude is mean sea level. For parameters not speci�ed in Ref. 4,
we use the value given in Ref. 1’s general aviation aircraft model. The last �ve parameters in the table
are not given in either source. We based the last two on a plot for a di�erent airplane given in Ref. 5.
The remaining three parameters did not seem to have an impact on the results of this example and we
set them as zero. Table 2 summarizes the 
ight state and turbulence parameters used in our example.

Table 1. General aviation aircraft parameters and stability derivatives needed in our analysis.
Values are given in the units used by the source.

Symbol Value Name (Where Applicable) Ref. Symbol Value Ref.

W 2,750 lbs Weight 4 CL� 4.44 4

Ixx 1,048 slug ft2 Rolling Moment of Inertia 4 CD� 0.33 4

Iyy 3,000 slug ft2 Pitching Moment of Inertia 4 Cm� �0:683 4

Izz 3,530 slug ft2 Yawing Moment of Inertia 4 Cmq
�9:96 4

Ixz 0 slug ft2 Product of Inertia About xz Axis 4 Cy� �0:564 4

Ixy, Iyz 0 Other Products of Inertia 4 Cl� �0:074 4

S 184 ft2 Wing Planform Area 4 Cn� 0.071* 4

b 33.4 ft Wing Span 4 Clp �0:410 4

�c 5.7 ft Mean Chord 4 Cnp 0.0575 4

e 0.8 Oswald E�ciency Factor 1 Clr 0.107 4

a 0.6 Air Density Exponent 1 Cnr �0:125 4

P s
max 290 hp Maximum Engine Power 1 Cyp 0

CLmax 2.4 Maximum Coe�cient of Lift 1 Cyr 0

� 0.8 Propeller E�ciency 1 Czq 0

CL 0.41 Coe�cient of Lift 4 dCD
dM
y 0 5

CD .05 Coe�cient of Drag 4 dCm
dM
y 0 5

* The �rst and second editions of Ref. 4 disagree on the sign of Cn� for this airplane model. We have chosen the
positive sign from the �rst edition, which gives a stable state matrix.
yM denotes the Mach number.

Table 2. Parameters describing the 
ight state and moderate turbulence. Values are given in units used by
the source.

Symbol Value Name (Where Applicable) Ref.

u 54.2 m/s Airplane Cruise Speed N/A

�2
n 1 Noise Variance 12

�u 20 ft/s Longitudinal Turbulence Intensity 11

�v, �w �u Other Turbulence Intensities 11

Lu 1,750 ft Longitudinal Turbulence Scale Length 11

Lv, Lw
Lu
2 Other Turbulence Scale Lengths 11
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