A generalized theory of DNA looping and cyclization

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 EPL 9359901

(http://iopscience.iop.org/0295-5075/93/5/59901)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 141.211.173.82
The article was downloaded on 06/04/2012 at 16:54

Please note that terms and conditions apply.

Erratum

A generalized theory of DNA looping and cyclization

D. P. $\mathrm{Wilson}^{1(\mathrm{a})}$, A. V. Tkachenko ${ }^{2}$ and J.-C. Meiners ${ }^{1,3}$

${ }^{1}$ Department of Physics, University of Michigan - 450 Church St., Ann Arbor, MI 48109, USA
${ }^{2}$ Center for Functional Nanomaterials, Brookhaven National Laboratory - Bldg 735, Upton, NY 11973, USA
${ }^{3}$ LSA Biophysics, University of Michigan - 930 N University Ave, Ann Arbor, MI 48109, USA
Original article: Europhysics Letters (EPL), 89 (2010) 58005.
PACS 99.10.Cd - Errata

Copyright © EPLA, 2011

We incorrectly reported the sign of the sub-dominant exponential factor $\frac{L}{4 \ell_{p}}$ introduced by Shimada and Yamakawa [1]. The corrected form of eq. (5) is then

$$
\begin{align*}
J & =\frac{1}{\ell_{p}^{3}} \sqrt{\frac{\operatorname{det} \mathcal{H}^{o}}{2 \pi^{3} \operatorname{det} \mathcal{H}^{\ell} \operatorname{det} V}\left(\frac{\ell_{p}}{L}\right)^{11}} e^{-\frac{1}{2} \frac{\ell_{p}}{L} \int \kappa_{p}^{2} \mathrm{ds}+\frac{L}{4 \ell_{p}}} \\
& =\Lambda(\Theta) \exp \left(-\frac{1}{2} \frac{\ell_{p}}{L} \int \kappa_{p}^{2} \mathrm{ds}+\frac{L}{4 \ell_{p}}\right) \tag{5}
\end{align*}
$$

Our numeric fit for the planar J factors as a function of the loop binding angle Θ in eq. (7) is modified simply as

$$
\begin{align*}
J(\Theta)= & {\left[I_{0}(2 \pi \Theta) e^{-2 \pi \Theta}\right] \gamma(\Theta) \frac{1}{\ell_{p}^{3}}\left(\frac{\ell_{p}}{L}\right)^{11 / 2} } \\
& \times \exp \left(-\frac{\ell_{p}}{L} E(\Theta)+\frac{L}{4 \ell_{p}}\right) \tag{7}
\end{align*}
$$

Consequently, the additional factor $\exp (-1 / 2) \simeq 1.65$ results in a minor upward shift of all curves in fig. 3 . None of the remaining results, nor our conclusions are affected by this correction.

We would like to thank R. Kollar for bringing the sign error to our attention.

REFERENCES

[1] Shimada J. and Yamakawa H., Macromolecules, 17 (1984) 689.

[^0]
[^0]: (a)E-mail: davewilson13@gmail.com

