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Abstract

Brain—machine interface decoding algorithms need to be predicated on assumptions that are
easily met outside of an experimental setting to enable a practical clinical device. Given
present technological limitations, there is a need for decoding algorithms which (a) are not
dependent upon a large number of neurons for control, (b) are adaptable to alternative sources
of neuronal input such as local field potentials (LFPs), and (c) require only marginal training
data for daily calibrations. Moreover, practical algorithms must recognize when the user is not
intending to generate a control output and eliminate poor training data. In this paper, we
introduce and evaluate a Bayesian maximum-likelihood estimation strategy to address the
issues of isolating quality training data and self-paced control. Six animal subjects
demonstrate that a multiple state classification task, loosely based on the standard center-out
task, can be accomplished with fewer than five engaged neurons while requiring less than ten
trials for algorithm training. In addition, untrained animals quickly obtained accurate device
control, utilizing LFPs as well as neurons in cingulate cortex, two non-traditional neural inputs.

Online supplementary data available from stacks.iop.org/JNE/8/046009/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of the relationship between neural firing rates and
associated motor activities in the 1980s and early 1990s led to a
number of groundbreaking neural control applications, known
more commonly as brain—-machine interfaces (BMIs), over the
last ten years [1-7]. Typical BMIs use previously measured
movements from a subject to map a linear relationship between
a subject’s recorded neural firing rates and each movement
parameter, and then apply this map directly to the control of
a device [2, 6, 8-12]. This approach has the advantage of
being both simple and intuitive, while still yielding insights
into the relationship between cortical neurons and natural
movement.

1741-2560/11/046009+15$33.00

Unfortunately, generating training data from which to
derive a linear relationship between neuronal firing rates
and movement parameters can be problematic in practical
application. BMIs are typically designed for use by individuals
with severe motor disabilities and are therefore unable to
make movements for calibration purposes. In recent studies,
researchers addressed this issue by mapping cortical neural
activity to observed movements [8, 12]. Similarly, Hochberg
et al successfully mapped neural activity to imagined
movements [13]. Although calibrating a BMI device based
on observed or imagined movement presents a promising
alternative to a priori movement measurements, the exact
relationship between observed/imagined movements and
neuronal firing rates is ill-defined [11]. There is no
obvious indicator of when the neural activity related to

© 2011 IOP Publishing Ltd  Printed in the UK
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the observed/imagined movement begins or ends, or if
any relationship is present at all on a particular trial
[11]. Consequently, neural data unrelated to any movement
parameter may unintentionally be used to train the neural
decoding algorithm, degrading device performance [11].

Another issue which needs to be addressed before the
experimental promise of BMI systems can be translated
to practical application is self-paced control [11, 14, 15].
According to Bashashati et al, in a self-paced system the user
directs the BMI by intentionally changing neural activity [11].
Between periods of intentional control (IC), the subject is
not actively attempting to use the BMI device (No-Control,
NC) [11]. Current cortical control paradigms, however,
operate under the assumption that the subject is always
intentionally attempting to control the output device. This
methodology presents two problems, (a) the output device
responds when the user is not intending to generate a control
signal, and (b) neural activity unrelated to observed/imagined
movement parameters is intermittently used to train the system
[8, 11, 16].

For BMI devices to translate to real clinical applications,
decoding algorithms need to be based on assumptions that are
easily met outside of an experimental setting [17, 18]. Given
present technological limitations, a low number of potentially
unstable neuronal units must be assumed from day to day
[19], driving a need for decoding algorithms which (a) are
not dependent upon a large number of neurons for control,
(b) are adaptable to alternative sources of neuronal input such
as local field potentials (LFPs), and (c) require only marginal
training data for day-to-day calibrations. Moreover, practical
decoding algorithms must be able to recognize and eliminate
poor training data, and operate without initial movement
measurements for calibration.

In this paper we introduce and evaluate a Bayesian
maximum-likelihood estimation (bMLE) strategy to identify
optimized training data for BMI devices in order to address
the issues of isolating quality training data and self-paced
control. Instead of correlating small samples of noisy—
and potentially unrelated—neural data to previously measured
movement parameters in order to train a decoding system,
we analyzed neural recordings for separate, distinct neural
states created during normal behavior, and then assigned these
individual states to control directions.

We implanted six Sprague-Dawley rats and employed our
modified bMLE scheme to allow the subjects to build their
own neuronal output states to accomplish a multiple state
classification task, loosely based on the standard center-out
task [20]. Subjects were able to quickly adapt to the bMLE
scheme and generate neuronal control sufficient to reliably
complete a useful BMI task, despite limited training data and
no external movement information. By limiting the initial
assumptions in our decoding strategy, we also demonstrate
that useful neural control is possible using LFPs and neurons
in cingulate cortex, two prospective neuronal information
sources without a clearly defined linear relationship to
movement parameters. All of this was accomplished using
very small training data sets and five or fewer isolated neurons,
without requiring any a priori movement information.
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Figure 1. Probability density function of a single neuron with a
mean firing rate of 40 Hz based on a Poisson distribution. Note that
over a 1 s interval, there is only a 6.3% chance of observing exactly
40 spikes from this neuron.

2. Experimental design and methods

In order to develop a classification strategy aimed at identifying
separable neural states from real-time recordings, we chose
to base our work on previous nonlinear bMLE schemes
[15, 21-23]. A nonlinear decoding scheme was selected as
prior studies have indicated that there is significant nonlinear
information present in the neural recordings [1, 9, 23-26]. In
addition, Santhanam et al found that the information transfer
rate of BMI devices can be greatly enhanced by eliminating the
prediction of unnecessary movement parameters (for example
continuous trajectory) using MLE techniques [22].

2.1. Review of Bayesian maximum-likelihood estimation
based on a priori measurements

Bayesian maximum-likelihood prediction of stimuli is
dependent upon determining the probability distribution of
neuronal responses for each delivered stimulus [27-32]. For
purposes of this discussion, a stimulus may also include a
measured movement parameter or a target position. Given
the past history of neuronal responses with respect to different
stimuli, observed neural responses can then be used to predict
which stimulus is presently being delivered.

As a simple example, assume that the mean firing rate for
a specific neuron when a subject’s arm remained stationary
was previously determined to be 40 Hz. The probability of
this neuron firing n times over a short interval Af while the arm
remains stationary is given by the following Poisson statistic
(see figure 1):

P (n spikes|stationary) = (40Ar)" e =040 /) (D

A Poisson distribution of spike counts was assumed in
this work, as a Poisson distribution has been demonstrated to
be a more accurate model of neural firing rates than standard
Gaussian distributions [22, 25, 27, 29].

Furthermore, assume that the firing rate of the same
neuron during a subject’s arm movement to the right was
previously determined to be 80 Hz. The probability of this
neuron firing n times over a short interval Af while a subject’s
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Figure 2. Probability density function of a single neuron’s firing
rate when the subject’s arm remains stationary or moves to the right.
The red line is located at 7 spikes over a 200 ms interval, the
magenta line is located at 13 spikes, and the black line is located at
22 spikes. Note that the probability of 7 spikes occurring during a
200 ms interval is much greater when the subject’s arm remains
stationary than when the subject’s arm moves right. In terms of a
BMLI, an observed firing rate of 7 spikes per 200 ms indicates the
device should remain stationary. Conversely, an observed firing rate
of 22 spikes per 200 ms would indicate the prosthetic device should
move to the right. An observed firing rate of 13 spikes per 200 ms
would not yield a useable prediction, as this firing rate is
approximately equally likely when the subject’s arm remains
stationary or moves to the right.

arm moves to the right is given by the following Poisson
statistic:

P (n spikes|right) = (80Ar)" e~ #0210 /p1 2)

Using Bayes’ law, the observed firing rate of the neuron can
then be used to predict whether the subject’s arm is presently
stationary or moving to the right (figure 2). Given an observed
firing rate of 7 spikes over 200 ms, equation (1) becomes

P (7 spikes over 200 ms|stationary)
= (40 Hz x 0.25)7sPikes g =@0HZX0.29) /7 ¢pikes! = 0.1396.

Similarly, equation (2) becomes

P (7 spikes over 200 ms|right)
= (80 Hz x 0.2 5)7 spikese= (B0 Hzx0.29) /7 ohikes) = 0.0060.

Assuming that the likelihood of subject’s arm remaining
stationary or moving to the right is equally likely, Bayes’
law states that the probability of the subject’s arm remaining
stationary given an observed firing rate of 7 spikes over
200 ms can be calculated as follows:

P (stationary|7 spikes over 200 ms)

_ P (7 spikes over 200 ms|stationary)
~ P(7 spikes over 200 ms|stationary)+P (7 spikes over 200 ms|right)

= 0.1396/(0.1396 + 0.0060)
= (0.9588, orapproximately 96%.

Note that this formula is simply the ratio of the probability of
observing 7 spikes while the subject’s arm remains stationary
over the total probability of observing 7 spikes.

Likewise, the probability of the subject’s arm moving to
the right given an observed firing rate of 7 spikes over 200 ms
is given by

P (right|7 spikes over 200 ms)

_ P (7 spikes over 200 ms|right)
~ P(7 spikes over 200 ms|stationary)+P (7 spikes over 200 ms|right)

= 0.0060/(0.1396 + 0.0060)
= 0.0412, orapproximately 4%.

In terms of a BMI, a threshold of 95% probability can be used
to determine a significant prediction. If the observed firing
rate from a group of neurons predicts a movement to the right
with a probability of greater than 95%, the BMI device is then
moved to the right. For this one neuron example, a firing
rate of 7 spikes per 200 ms indicates that the BMI controlled
device should remain stationary (see figure 2). Conversely,
an observed firing rate of 22 spikes per 200 ms indicates the
BMI device should move to the right (P(stationary | 22 spikes
per 200 ms) < 0.001, P(right | 22 spikes per 200 ms) >
0.999). An observed firing rate of 13 spikes per 200 ms does
not yield a useable prediction, as this firing rate is likely to
occur when the subject’s arm remains stationary or moves
to the right (P(stationary | 13 spikes per 200 ms) < 0.2668,
P(right | 13 spikes per 200 ms) > 0.7332).

This methodology can easily be extended to incorporate
multiple neurons and multiple stimulus parameters. Assuming
that the previously determined mean firing rate of a group of
neurons with respect to a specific stimulus s; is defined as the
vector M;:

M; = {uj1, Hj2s --os Ujn)s

where n is the total number of recorded neurons and ( { is the
mean firing rate of neuron 1 during stimulus s;.

Given a vector of observed neuronal responses R from
this group of neurons, where r; is the observed firing rate from
neuron 1 of n neurons

R:{r19 r27"'srll}‘

The probability of an observed response vector R during
the specific stimulus s; is

P(Rs)) = [ ] (wpiany™ e 0080 /it 3
i=1
If s is one of a set of m possible stimuli, then the set of possible
stimuli S is given by

S={S1, s25"'7sm}'

Assuming the delivery of all stimuli in set S is equally probable,
the probability of any specific stimulus s; based on observed
response vector R can be computed as follows:

P(sjIR) = P(RIsj) / > P(Rls). “
i=1

As in the one neuron example, a response vector R that
predicts a specific movement s; with a confidence level
greater than 95% indicates that the BMI device should also
perform movement s;. This basic Bayesian framework is
often extended to include movement kinematics (previous
position, velocity, and acceleration, for example) to further
refine instantaneous movement predictions [2, 23, 24, 27, 29].
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Figure 3. The virtual center-out task (visual representation). Each circle on the periphery represents possible targets. The middle circle
represents the center ‘start’ button. The subject is given neural control of a virtual cursor on the two-dimensional axis, represented by the
cross hairs. On a given trial, the subject is required to first move the cursor into the center circle for 1 s. A target circle is then presented,
denoted by the filled blue circle. During the response window, the subject is required to move the virtual cursor into the target circle for 1 s.
Moving the cursor into a circle other than the target results in an incorrect trial. Note that the axes in this figure generate an auditory analog

of the center-out task (see section 2.2.3).

2.2. Bayesian MLE classification scheme

In the standard center-out task, subjects are trained to reach
out and interact with indicated targets. A center target is
typically placed directly in front of the subject, and additional
targets are placed equidistant from the center at regular angular
intervals. In a given trial, the center target is indicated first, and
the subject is required to move their hand to touch the center
target for 1 s. Next, one of the additional targets is randomly
indicated. For a successful trial, a subject is required to move
their hand from the center to the indicated target [21, 33].

In a typical neural controlled center-out task, first neural
recordings are obtained during manual performance of the
task. These neural recordings are then analyzed to find
neural states that were indicative of either measured kinematic
parameters during movement, or a successfully touched target
position (end goal) [22]. In this fashion, a map is generated
between the subject’s neural state and specific target positions
or kinematic parameters. This neural map is then applied
to determine the position of a virtual cursor during a neural
controlled center-out task. Instead of manually moving their
hands to touch a center target and then a specified target,
subjects are required to manipulate their neural states to move

a virtual cursor into a center circle, and then to a specified
target position (see figure 3).

Figure 4 depicts a flow chart of our bMLE decoding
scheme, which proceeds identically to standard bMLE with
one major exception. In our bMLE scheme, a priori movement
measurements were not available to create a neural map.
Similar to the work of Bashashati, neural data for training was
identified based on external knowledge of the ‘approximate’
time of intended control (IC) [11]. During the IC response
window, IC may or may not be present, and the timing of IC
is unknown. Neural data during the IC response window may
belong to either the IC or NC class.

Our task required the subject to first develop a distinct
neural state for the center position on the two-dimensional
(2D) virtual axis, and subsequently for each of the possible
target positions (see figure 3). After developing a neural state
for each target, real-time control proceeded according to the
standard bMLE scheme. To successfully complete a trial,
subjects were required to match their neural state to the neural
state associated with the center position on the 2D axis for
1 s (see figure 4, question 1), and then match their neural state
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Figure 4. Flowchart of bMLE decoding scheme. A trial begins after question 1 is answered ‘Yes’, indicating that the observed neural state
matched the neural state indicative of the center position for 1 s. Gray boxes indicate questions, whereas black boxes indicate actions. Solid
lines denote a path taken depending on the answer to a question. Dotted black lines indicate a path automatically taken as the next in a
sequence. The large dotted black box indicates steps that occur in a standard bMLE scheme based on a priori measurements.

to the neural state associated with a randomly selected target
position for 1 s (see figure 4, question 3a).

At the beginning of an experimental run, baseline neural
recordings were taken for 20 s to establish a mean neural
state representative of the NC state. The firing rate of each
recorded neuron was calculated in 200 ms non-overlapping
windows (also known as ‘bins’), and then averaged over the
20 s of baseline recordings to determine the mean firing rate
of each neuron during the baseline NC window (see figure 5,
step 1). This NC neural state was then mapped to the center
of the 2D auditory axis. In order to start a trial, subjects were
required to match their current neural state to the NC state with
a confidence level of greater than 95% for five consecutive
200 ms bins (see section 2.1, equation (4)).

2.2.1. Developing separable neural states for each target.
At the start of each trial, one of the targets was randomly
selected to be presented to the subject. On the first presentation
of a target position, there was no previous neural history
from which to generate a unique neural state for the target.
As a result, the subject could not match their current neural
state to the neural state indicative of the target, and the first
presentation of any target always resulted in an incorrect trial.
After all incorrect trials, the neural activity over the 10 s
response window was inspected for a candidate neural state

to be added to the history for the target in subsequent trials
(see figure 4, question 4).

Candidate neural states were selected on the basis of
‘separability’ from the neural state already assigned to the
center and prior target positions. ‘Separable’ neural states can
be statistically distinguished from the neural states already
associated with the center and other target positions using a
bMLE classification scheme, and therefore can be effectively
used to predict an additional target position in the future. To
identify ‘separable’ neural states, the 10 s response window
was inspected for neural states that were unlikely to have
been generated by random fluctuations around the mean neural
firing rates already associated with previous target positions.
Returning to a simple one neuron example from section 2.1,
a neuron with a mean firing rate of 40 Hz during the baseline
NC state and a mean firing rate of 45 Hz at target position 1
would have low separability, as this neuron’s probability
density functions for the NC and target position 1 states largely
overlap, providing little information to distinguish between
these two states. Conversely, a neuron with a mean firing rate
of 20 Hz during the NC state and 80 Hz at target position 1
provides information to distinguish between these two states,
as the probability density function for each state is separate
and distinct, and therefore has high separability.
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Figure 5. Analyzing the response window for a new neural state. The response window for each trial began immediately after the target
position, j, was presented. The firing rates of individual neurons during the response window were binned every 0.2 s to generate an
observed response vector R; (step 1). The vectors for each bin were then grouped into overlapping blocks of five bins, and a mean vector for
each block, M, was determined (step 2). Using M as the mean neural state for the presented target position, 1000 variance vectors were
generated around M and tested as observed responses (step 3). For a block to be included in the history for the target position j, at least
95% of the variance vectors were required to predict target position j (as compared to the mean neural state for the center and other target
positions) with a probability of less than p < 0.01. In step 4, steps 1 through 3 were repeated on a neuron-by-neuron basis to determine
which neurons (if any) were modulating significantly during the response window. Neurons excluded from future Bayesian MLE analysis
have been indicated by a dotted red line.

Figure 5 depicts a detailed example of the process used to M;, aC x 1 vector to be examined as a possible new neural
identify separable neural states present in the response window, state for target position j. From a practical application
and proceeds as follows. perspective, a subject cannot consistently generate a

neural response state exactly matching a mean vector;
there is an inherent variability in the observed firing rate
of a neuron around a given mean [34, 35]. For a new
neural state to be useful in the context of a BMI task,
expected fluctuations around the mean firing rates for the

Step 1, creating bins: first, the firing rate of each neuron
was calculated in 200 ms non-overlapping bins to create
the vector Ry, a C x 1 vector containing the firing rates
of C observed neurons for bin k (where k = 1 indicates
the 200 ms bin immediately following the presentation of

the target, k = 2 indicates the bin starting at 200 ms after state must be differentiable from the neural states already
target presentation and ending at 400 ms, etc; see figure 5 assigned to other target positions. To account for this,
step 1 for an example). 1000 artificially generated ‘variance’ vectors, drawn from
Step 2, calculating the mean vector: the vectors for each the probability distribution resulting from the expected
bin were then grouped into overlapping blocks of five variance centered around M (see supplementary material
bins (where block 1 consists of vectors Rj_s, block 2 (B) available at stacks.iop.org/JNE/8/046009/mmedia for
consists of Ry_g, etc), and a C x 1 mean vector for each details), were tested as observed responses. Equation (4)
block was determined (see figure 5 step 2 for an example). was then used to calculate the probability of target position
This was performed to generate a 1 s mean updated every J given each observed response, using M; as the vector
200 ms for subsequent calculations. mean for the neural state representing position tone j.
Step 3, testing neural states for separability: next, the For M; to be considered ‘separable’, at least 95% of the
mean vector for each block was tentatively assigned as ‘variance’ vectors were required to predict target position
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J (as opposed to the neural states for the center and the
other target positions) with a probability of p < 0.01 (see
figure 5 step 3 for an example).

If a ‘separable’ block was evident in the response

window, this block was appended to the history for target
position j. If multiple blocks were separable, the block
with the greatest number of ‘variance’ vectors accurately
predicting target position j was appended to the history
for target position j. If no ‘separable’ block was evident
during the IC response window, no block was appended
to the history for the target position. This distinction is
important, as adding data to the history for the target
when no useful neural modulation was present would
significantly alter the mean firing rates for the neural
state associated with the target position, and therefore
negatively impact performance. The mean of all the
individual vectors in the history for target position j was
used to generate the mean neural state for target position
J»M;, for future trials.
Step 4, refining the neuronal sample: including neurons
that do not change firing rates with respect to at least
one target detracts from neural control performance, as
these neurons act as additional noise sources [8]. The
neuronal sample for a Bayesian MLE classifier is normally
pared down to include only the neurons positively
contributing to performance by iterating through all
possible combinations of neurons as input to the classifier.
Due to the time constraints of a real-time application,
this strategy was not technologically feasible. Therefore,
an alternative methodology to eliminate neurons failing
to positively contribute to completing the BMI task was
implemented. Using the procedure outlined earlier to
locate separable neural states in the response window,
neurons were analyzed on an individual basis to locate
neurons that changed firing rates significantly during the
IC response window. A neuron, k, was deemed to generate
a significant response to a target if at least 90% of the
artificially generated variance responses centered around
the neuron’s mean for a block in the response window,
M ;, were sufficient to differentiate a new target position
from center position/NC with p < 0.05 (see figure 5
step 4). For a neuron to be included in the Bayesian
MLE analysis, it was required to exhibit one significant
response to at least one of the target positions in the trial
history. This strategy ensured that every neuron included
in the real-time analysis significantly modulated during
the presentation of at least one target position.

The size of the history for each target was adjusted
based on the percentage of correct trials for the presentation
of each target (see supplementary material (C) available at
stacks.iop.org/INE/8/046009/mmedia for details). The prior
history for a given target was shortened during periods of
poor performance and lengthened during periods of strong
performance. This strategy was implemented to allow the
subject to quickly generate new neural states for a target
position while performing poorly, but minimize the influence
of occasional aberrant responses during periods of strong
performance.

2.2.2. Subsequent trials. After a history for each tone was
built to establish the neural state for each target, prediction
of the current position based on the present neural firing rate
proceeded identically to Bayesian MLE classification based
on a priori measurements. Defining the mean firing rate based
on the history of n neurons with respect to the target position
J as the vector M;:

M; = {pj1, mjoseens Ujnl

The real-time observed response R can be used to predict the
probability of the center position and each target position by
equation (4).

In order to start a trial, the observed response vector
R generated by the subject was required to predict the NC
state (center position, p < 0.05) for five consecutive bins (see
figure 4, question 1). If the subject failed to start a trial,
a 20 s recording was taken to establish a new mean vector
for the baseline NC state. Upon starting a trial, a random
target position was presented to the subject, and the subject
was required to generate an observed response vector R that
predicted the neural state for that target with a p < 0.01 for five
consecutive bins to receive a food reward. The five ‘correct’
bins were then appended to the history for the target. Failing
to accomplish this task, or generating an observed response
vector R that predicted a target position other than the one
presented, resulted in an incorrect trial (see figure 4, questions
2 and 3). After all incorrect trials, the response window was
inspected for candidate neural states to be appended to the
history for the target position (see figure 4, question 4).

2.2.3. Auditory variant of the standard center-out task. As
Sprague-Dawley rats were used as test subjects in this study, an
auditory BMI classification task was developed that parallels
the standard center-out task in order to cater to the rat’s heavy
reliance on auditory cues. As noted earlier, in the standard
center-out task subjects are trained to reach out and touch
targets that have been lit. A center target is typically placed
directly in front of the subject, and additional targets are placed
equidistant from the center at regular angular intervals. In a
given trial, first the center target is indicated, and the subject
is required to touch the center target for 1 s. Next, one of the
other targets is randomly indicated. For a successful trial, a
subject is required to move their hand to touch the indicated
target [21, 33]. In a virtual representation of this paradigm,
the subject is given neural control of a cursor on a computer
screen and tasked with moving the cursor on the x- and y-axis;
first into a center circle on the screen and then into a target
circle (see figure 3).

In our auditory classification task, the subject was given
neural control of a tone which could be manipulated in
frequency and intensity, which we refer to as an auditory
cursor. The auditory cursor was represented by 200 ms tone
pips, corresponding to a specific location on a two-dimensional
axis, with frequency and intensity as the individual axes (see
figure 3). In order to start a trial, subjects were required to
hold the auditory cursor in the center of the two axes for 1 s,
matching the cursor to the frequency and intensity selected
for the center position. Each trial began with the random
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presentation of one of four possible target tones. The target
tones were selected to be equidistant from the center of both
axes, and spaced at regular angular intervals (see figure 3).
After the presentation of the target tone, subjects were given
a 10 s response window to match the auditory cursor to the
presented target tone in order to obtain a food reward. If
the subject failed to accomplish this task in 10 s, or matched
the audio cursor to one of the other possible target tones, the
trial ended and no reward was given.

2.2.4. Local field potentials. The basic MLE methodology
presented here can easily be extended to include LFPs as
a potential neural input source. After being relayed from
the Multichannel Acquisition Processor System (Plexon, Inc.,
Dallas, TX), LFPs were additionally filtered in MATLAB
using a fourth-order Butterworth filter with a passband
between 10 and 40 Hz. The RMS voltage of the filtered LFP
signal for each channel was calculated over non-overlapping
200 ms bins and used as the input to the MLE filter. The
mean (1) and standard deviation (o) of the recorded RMS was
then calculated for each channel. Similar to other LFP studies,
the probability distribution for the RMS for each channel was
assumed to be Gaussian [36, 37]. The previously determined
RMS mean for each channel with respect to a specific stimulus
s; was defined as the vector M;:

M; = {uj1, Uj2sens Ujnls

where n is the total number of recorded LFP channels and
is the RMS mean for channel 1 during stimulus s;.
Given a vector of observed RMS responses R from each

channel where ry is the observed RMS from channel 1 of n

channels:
R = {rl, rz,...,rn}.

Under the Gaussian assumption for RMS voltages, equation
(3) becomes

1 n e—(r;—ujl)z/(ZUiZ)
Vor i3 ai .

Bayesian MLE analysis after this modification proceeded
identically to single neuron analysis.

P(R]s;) = &)

2.3. Behavioral testing

Six Sprague-Dawley rats were implanted with standard
Michigan 4 x 4 arrays to test the MLE classifier under
practical BMI conditions. Surgical procedures were identical
to those outlined previously [38—40]. While five animals
were implanted in motor cortex, one animal was implanted
in cingulate cortex using coordinates 1.5-2.5 mm anterior to
bregma, 0.3-0.7 mm lateral from bregma, and 1.6-2.5 mm
deep from the surface of the brain [41]. The cingulate animal
was used to assess the suitability of the naive MLE classifier for
use with cortical areas not known to have a linear relationship
between neuronal firing rates and movement parameters.

2.3.1. Electrophysiology and behavior system. Units were
sorted via a Multichannel Acquisition Processor System
(Plexon, Inc., Dallas, TX), and spike times were relayed
with nominal delays via TCP/IP to a Dell Dimension
Computer (Dell, Inc., Austin, TX) that both analyzed the
spike activity using in-house designed software (Mathworks,
Inc.,, Natick, MA) and controlled the behavioral box
(Coulborne Instruments, Inc., Allentown, PA). During each
experimental session neural electrophysiological data from the
16 electrode channels sampled at 40 kHz were simultaneously
amplified and bandpass filtered (450-5000 Hz). Manual
spike sorting was conducted prior to each experimental
session. Autocorrelograms were generated for each sorted
unit and visually inspected for an obvious absolute and relative
refractory period. Local field potential recordings from all
16 channels were initially bandpass filtered from 3 to 90 Hz
and sampled at 1000 Hz. Auditory stimuli were delivered
via a speaker (Yamaha NS-10M Studio, Yamaha Corporation,
Buena Park, CA) located 35 cm directly above the test box.
The system delivered a near-flat frequency response between
500 Hz and 32 kHz. The system was calibrated to a position
at the food delivery tray, although calibration measurements
indicated that the test box approximated a free field.

2.3.2. Behavioral training. All rats entering training were
deprived to 85% of their free-feeding weight to provide
motivation to receive a food reward. For each behavioral
session, the rats were plugged into the headstage and
commutator cables and placed into the behavioral box.

3. Results

3.1. Invivo performance

All six animals in this study were first started on a one-state
detection task, where the same target tone was presented each
trial. This task required the animal to generate a second neural
state on command—different than the center position/NC
state—after the target tone was presented. Figure 6 depicts
arepresentative example of one animal progressively learning
to generate a second distinct neural state in response to the
presentation of a target. All six animals were able to use the
bMLE classifier to complete this task at a 90% or greater level
within three days of the first experimental run (see table 1).
To complete this task, the animals developed individualized
repeated motor behaviors (e.g. lifting of the front paws into the
air, turning the head in a particular direction, etc) in response
to the presentation of target tone 1. These stereotyped motor
behaviors in turn generated a repeatable, separable, neural
state sufficient to drive the auditory cursor.

After learning the one-state task, four of the six animals—
three implanted in motor cortex, the other implanted in
cingulate cortex—were advanced to a two-state discrimination
task where one of two possible targets was randomly presented
to the animal. The other two animals no longer had obvious
unit activity on at least two electrode sites, and consequently
were moved to the LFP task (section 3.3). Again, animals
were typically able to complete the two-state task above forced
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Figure 6. Building a distinct neural state for a target. Each row depicts the same four neurons recorded from one animal, across the same
recording day. The dotted line denotes the mean firing rate for each neuron during the baseline window. The dark black line centered at O s
indicates the presentation of a target tone. Row 1 depicts the mean firing rate averaged over the first 200 trials for the animal, where the
subject successfully completed the one-state center-task on only 5% of the trials. Row 2 depicts the mean firing rate averaged over the
second set of 200 trials for this animal, where 45% of the trials were successfully completed. Row 3 depicts the mean firing rate averaged
over the third set of 200 trials for this animal, where 91% of the trials were successfully completed. Note that as performance improves, the
animal progressively learns to decrease the firing rates of neurons 1 and 3, while increasing the firing rate of neuron 2, in response to the

presentation of the target.

Table 1. Summary of in vivo results.

Neural input Number of Number of

Average day 1

Average day 3 Average day 7 Forced choice

source target tones animals performance  performance performance random chance
Units 1 6, 5 Motor 1 cingulate 16.8 = 7% 928 £5%* N.A. N.A.

2 4,3 Motor 1 cingulate 3254+ 11% 64 £ 10%*®  73.3 £ 9%*° 50%

4 2, 1 Motor 1 cingulate 15 + 8% 26 £ 8% 53 £ 13%*°  25%
LEPs 1 6, 5 Motor 1 cingulate 67.4+13% 752+ 10% 83 &+ 14%* N.A.

2 2, 1 Motor 1 cingulate 37.5 + 9% 51 £9%* 65 + 6%"° 50%

# Significant improvement over day 1 performance (p < 0.01).
b Significant improvement over forced choice random chance (p < 0.01).

choice chance within three days of training (see table 1). Note
that as this task was not a forced choice paradigm, but instead
resulted in a failed trial when no choice was made, chance
based on a forced choice paradigm should be considered a
very conservative reference for comparison. Figure 7 depicts
a peri-stimulus time histogram (PSTH) of an experimental run
from a subject successfully completing this task well above
forced choice chance. When first exposed to the task, the
animal generated only one neural response state different than
the center position/NC state, presumably a hold-over response
from training with the one-state detection task. Hold-over
behavior was evident every time an animal was switched to

a more difficult/new task (see figures 7 and 8). After only
three days of training (100 trial sessions, seven sessions per
day), subjects were able to consistently perform the two-state
discrimination above chance.

After reaching a two-state task performance level of
greater than 80%, two of the animals were anesthetized for
a 300 trial experimental run. In both cases, the anesthetized
animal’s performance level was under 2%. Under anesthetized
conditions, the bMLE classifier rarely generated training
data, and almost never deviated from the center position/NC
condition.
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Figure 7. Representative example, two-state classification task. The dotted line denotes the mean firing rate for each neuron during the
baseline (center position/NC) window. The dark black line centered at O s indicates the presentation of a target. Data set depicts the mean
firing rate averaged over a 200 trial interval in which one subject (KMI 5) successfully completed 91% of trials (significant, p < 0.001).
Note that for tone 1, the subject increases the firing rate of neuron 3 while decreasing the firing rate of neuron 6. For tone 2, the subject only
increases the firing rate of neuron 1. In a forced choice paradigm, chance would be 50%.

After learning the two-state task, two of the four
animals—one implanted in motor cortex, the other implanted
in cingulate cortex—were moved to a four-state discrimination
task, where four target tones were randomly presented to the
animal. At this point, the other two animals had obvious
unit activity on one or fewer channels, and consequently
were moved to the LFP task (section 3.2). Both remaining
subjects were able to successfully complete the four-state task
significantly above forced choice chance after one week (see
table 1). A full eight-state task was never attempted, due to
the limitations of the rat model.

Figure 8 depicts PSTHs of an experimental run from a
subject (KMI 5) successfully completing this task well above
forced choice chance. Note that KMI 5 retained the same
neural states for tones 1 and 2 as generated for the two-state
task (see figure 7). However, for tone 3, KMI 5 increased
the firing neuron 3 without decreasing the firing rate of neuron
6, therefore creating a neural state distinct from tone 2. For
tone 4, the subject decreased the firing rate of neuron 7 slightly
without changing the firing pattern for the other neurons. The
performance of both animals when presented with tone 1 or
tone 2 was superior to the subject performance for tones 3 and
4, presumably because of previous training.

10

3.2. Performance using local field potentials

As noted in other studies, recorded unit activity for animals in
this study typically diminished substantially over the three
weeks following surgery [2, 38, 39, 42]. When fewer
than two well-isolated neuronal units were evident, animals
were transitioned to a single-state classification task using
their recorded LFPs as the input to the classifier. All six
animals were able to generate a second neural state sufficient
to complete the one-state task on the first day of LFP
training (see table 1). Subjects typically retained the same
stereotyped motor responses noted when performing the one-
state unit task, which may explain how quickly the animals
were able to generate viable LFP responses (see figure 10).
Subjects tended to increase the RMS voltage across the entire
array in response to a presented tone. Subject performance
increased significantly (p < 0.01) over the first week of LFP
training.

After learning the one-state LFP task, two animals—one
implanted in motor cortex, the other implanted in cingulate
cortex—were transitioned to a two-state LFP discrimination
task. Both animals were able to successfully complete the
two-state task significantly above chance for a two-state forced
choice paradigm (p< 0.01, see figure 10). Again, as this task
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Figure 8. Representative example, four-state classification task. The dotted line denotes the mean firing rate for each neuron during the
baseline window. The dark black line centered at O s indicates the presentation of a target tone. Data set depicts the mean firing rate averaged
over a 200 trial interval in which one subject (KMI 5) successfully completed 56% of trials (significant, p < 0.001). Note that for tones 1 and
2, KMI 5 has retained approximately the same neural states as those adopted for the two-state center-out task (figure 7). However, for tone 3,
the subject modulates neuron 3 without demodulating neuron 6, therefore creating a neural state distinct from tone 2. For tone 4, the subject
demodulated neuron 7 slightly without changing the firing pattern for the other neurons. As subjects progressed from the one-state task to
the four-state task, they typically retained neural states associated with previous tones, and added new neural states for additional tones.

Per cent correct for each tone: tone 1 = 85%, tone 2 = 74%, tone 3 = 38%, tone 4 = 28%. In a forced choice paradigm, chance would be

25%.

was not a forced choice paradigm, but instead resulted in a
failed trial when no choice was made within the time limits,
forced choice chance should be considered a very conservative
reference for comparison. As with the one-state LFP task, both
subjects tended to increase the RMS voltage in the 10-40 Hz
frequency band across the entire array in response to tone 1.
In response to tone 2 presentation, however, both subjects
increased the RMS voltage across only the upper half of the
array.

4. Discussion

4.1. Animal behavior during task performance

In the process of developing new neural states, animals
implanted in motor and cingulate cortices often developed
specific stereotyped movements for each of the target tones.
This result is not surprising, as the animal is probably
learning a new movement/behavior for each target tone, which
incidentally changes the firing rates of recorded neurons, as
opposed to deliberately modulating neural activity. Behaviors
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associated with a specific target would often carry over as the
number of targets was increased. In cases where the neurons
recorded across the array changed dramatically from one day
to the next, animals would often learn a new behavior for each
target in order to generate the separate neural states necessary
to complete the task.

4.2. Algorithm performance

Results from implanted animals utilizing our bMLE algorithm
in real time to develop neural control indicate solid
performance using very few neurons and very little training
data. Animals well trained in a particular task typically
required only one trial for each target to establish a useable
neural state. Moreover, animals performing the two-state and
four-state tasks used fewer than five total neurons to generate
the neural states necessary to perform these tasks'. Finally,
the speed at which animals were able to successfully perform

1" The number of neurons actively engaged in the task, out of the total number
of neurons isolated on a given day, was determined as described in section
2.2.1 step 4, ‘refining the neuronal sample’.
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Figure 9. Performance improvement over time for each task. The y-axis for all subplots indicates the percentage of correct trials over 200
trials. The first row depicts each animal’s performance improvement from day 1 to day 3 when performing the one target task (n = 6). Note
that on day 1, the percentage of correct trials is only 16.8%. Over the next two days, all animals were able to greatly improve their ability to
match the auditory cursor to a single target tone via neural control. The second row depicts the performance improvement of each animal
from day 1 to day 7 when performing a two-state target identification task (n = 4). All animals performed well when presented with target
tone 1 on the first day of the two-state task, presumably because of prior training in the one-state task. Over seven days, an obvious
improvement in correctly matching the auditory cursor to target tone 2 is evident across all four animals. The third row depicts the trend in
performance over the first week of the four-state classification task (n = 2). Both animals again exhibited some residual ability to match the
neurally controlled auditory cursor to target tones presented in previous tasks.

new tasks above chance—typically within a week—suggests
the self-paced bMLE decoding strategy presented in this study
is easy to use.

4.3. Algorithm parameters

Algorithm parameters—window size, number of consecutive
‘correct’ bins, required degree of statistical separability of
neural states, etc—were initially determined from the relevant
literature, and then modified through systematic trial and
error to optimize animal performance. Depending on specific
requirements for a particular BMI, these parameters can
be modified to tailor device performance. For example,
the required p value to specify a particular target from a
NC state can be decreased to reduce accidental movements.
Similarly, the required percentage of variance vectors around
a prospective neural class indicating a new target can be
varied to decrease the probability of training on poor data.
Window size can be decreased to increase information transfer
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rates, but at the expense of accuracy. In clinical applications,
these parameters would need to be determined based off the
preferences of the subject.

4.4. Limiting decoding assumptions

Only two assumptions were necessary for the bMLE classifier
presented in this study to work: (1) the approximate time
of IC, and (2) the probability distribution of the neural
input source (Poisson or Gaussian for individual neurons
and LFPs, respectively). In contrast, the linear mapping of
neural firing rates to prosthetic control is dependent on a
number of assumptions [43] that can be difficult to achieve
in practice [8, 10, 13, 16, 22, 23, 37]. In order to generate
an effective neural map, the recorded sample of neurons must
be sufficient to fully define the movement parameter space
[2, 10, 22, 23]. However, often only a small number of stable
neuronal units can be recorded under chronic conditions due
to technological limitations and the chronic immune response
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Figure 10. Performance improvement over time for each LFP task. The y-axis for all subplots indicates the percentage of correct trials over
200 trials. The first row depicts each animal’s performance over the first week when performing the one-state LFP task (n = 6). All animals
were immediately able to match the auditory cursor to a single target tone using the LFPs as a control signal. This result is not surprising;
through the unit driven task the prior week the animals developed specific motor behaviors (e.g. lifting of the front paws into the air, turning
the head in a particular direction, etc) in response to the presentation of target tone 1. These stereotyped motor behaviors in turn generated a
repeatable, separable neural state sufficient to drive the auditory cursor. As the frequency and intensity of a target tone never changed from
task to task, the animals tended to retain stereotyped motor behaviors with respect to familiar target tones—also generating a differentiable
neuronal signal in the LFP recordings. The second row depicts the performance improvement of each animal from day 1 to day 7 when
performing a two-state LFP task (n = 2). On the first day of the two-state task, both animals were able to match the auditory cursor to target
tone 1 using LFPs as the control signal, as they had been trained on the one-state LFP task the week immediately prior. Conversely, target
tone 2 had not been presented to the animals the previous week. Consequently, the animals did not perform well when target tone 2 was
presented on day 1, but instead demonstrated a marked improvement in performance over the course of the first week.

[2, 10, 13, 22, 39, 44-50]. Moreover, the firing rates of By limiting the initial assumptions used in our decoding
many neurons recorded in motor cortex have no identifiable  algorithm, subjects were allowed to utilize neuronal sources
relationship to movement parameters [8, 16, 20], and the Wwithout a known linear relationship to a movement parameter
firing rates of neurons that are related to movement are only ~to create an output signal for neural control. Specifically,
approximately linear during precisely defined stereotypical —nheurons from cingulate cortex and LFPs were effectively used
movements [10, 16, 23]. In addition, accurately isolating S neuronal input sources to the bMLE algorithm in real time.
individual neurons can be difficult given low signal-to-noise 11 @ previous study, rats were able to modulate single neurons
recordings [10, 51, 52]. Consequently, multi-unit clusters from cingulate cortex on command [41]. By successfully
are often used as the input for neural prosthetic applications, completing a four-state classification task significantly above

which can negatively affect the performance of linear decoding chance levels, the cingulate animal in this study demonstrated
algorithms [8, 16] an even more refined neural control signal, demonstrating that

librati | 1 based ousl cortical areas outside of motor cortex can be used to generate
Ca_l rating a neurd control system base (O PTEeVIOUSIY  effective neural control. As an additional benefit, by limiting
determined relationships between neural firing rates and

i . © . the initial decoding assumptions, the bMLE classification
measured movement parameters may also ignore the subject’s  cheme presented in this study should be less dependent upon
ability to adapt neural firing patterns in order to generate a

experimental environment and set-up for practical clinical use.
greater number of usable output states. Studies which use

decoding algorithms that can incorporate transient changes
in neural ensemble firing patterns have indicated that animal
subjects can learn to adapt their firing patterns in order to  Although prior studies have investigated the utility of the
improve performance in neural control tasks [4, 6, 53-55].  recorded LFPs to predict observed movements off-line
In these studies, neurons which had little or no previous [36, 37], real-time control of a neuronal output signal
relationship to a known movement parameter often adapted utilizing LFPs has only been demonstrated in one study
over time to provide information relevant to completing the [56, 57]. LFPs could represent the optimal input signal for
neural control task [4, 6, 53-55]. BMI systems, as LFPs exhibit greater spatial and temporal

4.5. Local field potential recordings
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resolution than electroencephalograms (EEGs) [5, 36, 37],
and are presumed to be easier to obtain and more stable
than single unit recordings for chronic implantations [5, 37].
Unlike action potentials, which can be differentiated from
noise sources due to their characteristic waveforms [51], there
is no universally accepted method to distinguish viable LFP
signal from confounding noise sources.

In this study, animals were able to modulate the RMS
voltage of LFPs in the 1040 Hz band to generate a real-
time control signal sufficient to complete the one-state and
two-state center-out tasks above forced choice chance (see
table 1). However, there is no way to determine if the
animals were manipulating their LFPs through neurological
mechanisms, or by inducing artifact into the recordings.
As noted in many other studies [36, 37, 39, 42], obvious
artifact was intermittently apparent during animal motion,
which would on occasion create a perturbation in the RMS
voltage of the LFP between 10 and 40 Hz. Not surprisingly,
despite the self-paced architecture of the bMLE classifier,
these noise perturbations could generate occasional unwanted
control outputs. However, the specificity demonstrated by
completing the two-state LFP task suggests that accidentally
induced recording artifact was unlikely to be responsible for
animal performance. Unlike other studies which removed
periods of extensive noise during post hoc analysis [36, 37,
58], the constraints of real-time decoding preclude this option.
In order to generate more refined real-time control with
LFPs in a self-paced context, techniques drawn from EEG
(electroencephalography) control tasks to isolate signal from
noise should be applied in future experiments [3, 59].

5. Conclusions

In this study, we developed and tested a nonlinear bMLE
classification scheme to identify statistically separable neural
states evident in real-time neural recordings, and then mapped
these states to generate self-paced neural control of a BMI
suitable for accomplishing a useful task. By limiting initial
decoding assumptions and training only on relevant neural
data, accurate neural control was possible with five or fewer
neurons, using minimal training data and no a priori movement
measurements for calibration. In addition, we expanded our
pool of possible neuronal input sources to include neurons
in motor cortex without a detectable linear relationship to
movement parameters, neurons from non-motor cortical areas,
multi-unit clusters, and LFPs. This decoding scheme was
sufficient to identify periods of NC in the data set, and neither
generated training data nor control output during these periods.
Finally, as the methodology proposed here is both simple
and adaptive, this framework should be more resistant to the
inherent instability of the neuronal input source resulting from
the chronic immune response.
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