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Abstract 

 The purpose of this study was to determine how the North Branch of Amos Palmer Drain 

(Wayne County, Michigan) stream ecosystem changed after a mining company stopped 

discharging waste water into the stream in 2003.  Macroinvertebrates, stream morphology, 

habitat, and water chemistry samples were collected in 2010 at a site on Amos Palmer Drain and 

other similar sites within the watershed and were compared to samples collected at the same 

locations from 1997, 1999 and 2002 using t-tests, correlations and box plots.  At NB of Amos 

Palmer Drain, significant increases were found in the number of families from 1997 to 2010, and 

average tolerance scores of the macroinvertebrate community from 1997, 1999, and 2002 to 

2010.   Significant decreases were found in all of the flow measurements, pH, and conductivity 

between 1999 and 2002, and 2010.  Macroinvertebrate assemblage changes were likely due to 

changes in overall habitat, caused primarily by a decrease in flow to a more natural flow regime 

with levels reflecting conditions found in similar sites in the watershed.  The variables measured 

were comparable to other local sites of similar size.  Evidence supports the hypothesis that the 

NB of Amos Palmer Drain has reverted back to its state prior to mining drainage, though the 

state of the site previous to pollution was not assessed.  

 Introduction 

 Streams are thought to be among the most threatened ecosystems on our planet (Hawkins 

and Vinson, 1998).  Humans have historically used streams to dispose of unwanted materials 

including trash, sewage and industrial waste.  Chemicals and toxins enter the watershed in rain 

water runoff as well.  The physical state of streams is often altered by channelization, removal of 

the riparian buffer, alteration of stream flow, and alteration of watershed landuse (Sahagian and 
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Vorosmarty, 2000).  Streams also may be highly vulnerable to climate change, through its 

anticipated impact on the hydrological cycle (Chen and Shen, 2010; Arnell, 1999).  Some 

researchers believe the hydrological cycle will be intensified with climate change, due to changes 

in evaporation and precipitation rates (Arnell, 1999).    

 Many aspects of the environment, economy, and society are dependent on water 

resources (Zabihollah, 1999; Arnell, 1999).  In less than 15 years, it is estimated that 62% of the 

world’s population of eight billion will live in countries experiencing water stress (Arnell, 1999).  

Information about the ecological quality of water resources is critical to understanding the state 

of our environment and understanding our environment is critical to protecting our economy and 

society (Carlisle et al., 2009).  In order to effectively manage bodies of water, it is important to 

quantify changes and alterations (natural or anthropogenic) which have significant impact on 

ecosystems (Doledec and Statzner, 2010).    

 Assessment of biological integrity is an integral part of watershed management plans 

(Davies and Jackson, 2006; Doledec and Statzner, 2010).  Here I define a stream system with 

biological integrity to be an adaptive system with a full, balanced range of functions expected of 

a system with minimal human influence, commonly referred to as “reference condition” (Davies 

and Jackson, 2006; Doledec and Statzner, 2010).  Aquatic fauna are useful tools for studying the 

biological integrity of an aquatic system because they integrate ecosystem changes over time 

(Doledec and Statzner, 2010).  Macroinvertebrates in particular are accepted to be one of the 

most useful fauna for assessing biological integrity and have been commonly used to determine 

the health of freshwater systems (Brand et. al, 2008; Chon et. al, 2009).  The state of 

macroinvertebrates communities can reveal a past disturbance such as a pollution event even 

when all chemical traces in the water are gone (Doledec and Statzner, 2010).   
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 An important process which influences the state of an ecosystem is disturbance.  

Disturbance can be defined as a discrete temporal event that severely disrupts the structure and 

functions of an ecosystem (Brown et al., 1988).  Natural disturbance regimes are common in 

most ecosystems; however, repeated human disturbance has made streams some of the most 

threatened systems on earth (Hawkins and Vinson, 1998).  This study examines the capacity of a 

stream to recover from a typical human disturbance.  

 London Aggregates operated a limestone quarry in Milan, Michigan, and discharged 

effluent into the Amos Palmer Drain which was found to have flow, and concentrations of total 

dissolved solids (TDS), hydrogen sulfides, and dissolved oxygen (DO) that exceeded the limits 

set by their National Pollutant Discharge Elimination System (NPDES) permit under the Clean 

Water Act of 1992 (CWA, 1992; PIRGIM, 2005; Tobler, 1997).  The Intercounty Citizens 

Action Group (ICAG: made up of residents from London and Augusta Townships) described this 

stream as milky white water without life during periods when London Aggregates was 

discharging effluent (Tobler, 1997).  In 1998, London Aggregates was sued by the ICAG and the 

Public Interest Group in Michigan (PIRGIM) for 2,700 violations of the CWA (Gearheart, 2009; 

PIRGIM, 2005).  In 2003, the court handling the lawsuit found London Aggregates to be at fault 

and subsequently the mining company closed (PIRGIM, 2005).  

 Roughly seven years have passed since London Aggregates stopped discharging effluent 

into Amos Palmer Drain.  I hypothesized that this time period was sufficiently long enough for 

the ecosystem to improve its biological integrity.  I expected that the water quality would have 

improved and macroinvertebrate assemblages would have diversified.  I tested my hypothesis by 

sampling macroinvertebrate assemblages, water chemistry, habitat, and stream morphology.  I 

compared samples from 2010 to samples collected from 1997, 1999, and 2002 when the effluent 
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was being discharged.  I also sampled neighboring streams that did not receive effluent to test if 

Amos Palmer Drain, near the site of limestone effluent discharge, had recovered in comparison 

to the state of streams with similar characteristics in the same watershed.  Looking at this 

incidence of human disturbance and comparing the ecosystem from the time of the disturbance to 

the current condition gives insight into the time it takes for a stream ecosystem to recover from 

limestone mining practices.   

Materials and Methods 

Site Description  

Amos Palmer Drain is a small, intermittent tributary of Stoney Creek in Wayne County, 

Michigan (Table 1, Figure 1).  Sampling was conducted at seven sites in the upper portion of the 

Stoney Creek watershed, which were located east of Milan.  Chosen site locations both matched 

sites from previous studies and roughly matched landscape conditions with the NB of Amos 

Palmer Drain watershed (Gustavson and Ohren, 2005).  However many of the sites did not 

overlap with all of the studies and therefore data was not available for every site for every year.  

In all of the studies every site was located within the Stoney Creek drainage system. The NB of 

Amos Palmer Drain is a small intermittent stream with a drainage area of 6.10 km
2
 (Table 1).  I 

sampled macroinvertebrate communities and habitat only in intermittent upstream sites and 

tributaries (sites 1-5) with drainage areas less than 25 km
2
 (Table 1, Figure 1).   Stream 

morphology and water chemistry were sampled in intermittent streams and downstream sites 

(sites 6-8), which could be classified as river sites and were considered too large (drainage areas 

over 200 km
2
) to compare biological samples (Table 1; Figure 1).  Sampling was scheduled to be 

conducted in August of 2010 but was pushed back to October, because the smaller, intermittent 
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sites (sites 1-5) were nearly dry and would have been incomparable to samples from the earlier 

studies taken in wetter seasons.   

Amos Palmer Drain was the lowest tributary on Stoney Creek sampled. The site 1 was 

located on the north branch of Amos Palmer Drain, close to where the limestone effluent was 

discharged and had one of the smaller drainage areas (Figure 1, Table 1). Site 2 was the closest 

site to the NB of Amos Palmer Drain, located on the south branch of Amos Palmer Drain and it 

had the smallest drainage area, 2.63 km
2
 (Table 1).  The site nearest the headwaters of Stoney 

Creek was site 3 and it had the largest drainage area of the sites sampled for macroinvertebrates 

(24.86 km
2
).  Sites 4 and 5 were located on separate tributaries from site 3 and had similar 

drainage areas (Table 1, Figure 1). Sites 6, 7 and 8 were located on the central branch of Stoney 

Creek.  Sites 7 and 8 were located downstream from Amos Palmer Drain convergence with 

Stoney Creek.     

Historical Data 

 London Aggregates discharged effluent from mining operations into the north branch of 

Amos Palmer Drain from 1992 until 2003 (PIRGIM, 2005; Tobler, 1997).  I obtained historical 

biological, water chemistry, and habitat data from two sources: the University of Michigan’s 

fluvial ecosystems class in 1999 and 2002 (Wiley, personal communication, 2010), and the 

Michigan Department of Environmental Quality’s 1997 survey.  The 1999 and 2002 surveys 

were conducted in March and the 1997 survey was conducted in July.  This historical data on 

Stoney Creek, collected during the time of the London Aggregates unauthorized effluent 

discharge was compared to data collected in 2010, seven years after the mining discharge ended.  

Landuse data were obtained from summarized Anderson Level variables in ArcView GIS and 
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drainage area data were calculated by the Michigan Department of Natural Resources using 

1:100,000 scale topographic maps (Brenden et al., 2006).  

Field Methods  

Latitude and longitude coordinates for each site were taken with a GPS unit (Garmin, 

Nuvi).  Sites were about 25m stretches of stream starting from where the road crossed the stream.  

Habitat characteristics in percentage of stream area, including riffles, back water, undercut bank, 

submerged vegetation, overhanging vegetation, rocks, log pieces, and leaf packs were recorded 

along with the percentage of total bank cover of riparian vegetation represented, including forest, 

shrubs, forbs/grasses, and bare soil.  Habitat characteristics were estimated visually. Water 

samples were taken in jars that were washed with stream water three times, kept on ice for travel 

and placed in a refrigerator until analysis could be conducted.  However, the samples were 

misplaced and due to time constraints could not be recollected.  Water temperature (YSI-58), 

dissolved oxygen concentrations (DO; YSI-58), pH (Hanna-HI98127), and TDS (TDSTestr, low) 

were measured with meters on site.  Stream width, depth, and flow velocity were measured (YSI-

2000) at one meter intervals along a single transect, established 5 to 10 meters from the road.  

These measurements were used to calculate mean depth and discharge.  General substrate 

composition was visually estimated and recorded.  

Macroinvertebrate Analysis 

 Macroinvertebrate samples were collected following rapid bioassessment methods 

(Catherine Riseng, personal communication, 2010; Fluvial Ecosystems, University of Michigan, 

1999 and 2002).  Samples were collected using kick screens, D-nets, and hand picking in all 

observed habitats.  Depositional and erosional habitats were sampled proportionately to their 
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occurrence.  Each site was sampled for one hour with two people; fifteen minutes total were 

devoted to collecting specimens and forty five minutes were devoted to processing these samples.  

Each sample was emptied into a white tray, picked for all living macroinvertebrates, preserved in 

70% ethanol, and returned to the lab for identification and enumeration.  Locations sampled at 

each site were recorded.   

 Invertebrates in the samples were classified to family to match historical samples 

(Hilsenhoff, 1995).  Tolerance score, behavior, common habitat, and functional feeding group 

were assigned to families (Berg et al., 2008; Hilsenhoff, 1988; EPA, 2010).  Tolerance score 

refers to a number assigned from 1 through 10 that indicates how tolerant of poor conditions 

such as low oxygen and pollution a taxa is, with 10 being extremely tolerant and 1 being 

extremely intolerant (Berg et al., 2008; Hilsenhoff, 1988).  Behavior is the type of life an insect 

lives including burrowing, clinging, sprawling, skating, climbing, and swimming. Habitat 

indicates where they live, including depositional, erosional, lotic, lentic, and surface habitats.  

Functional feeding group refers to the way an insect feeds including collectors, predators, 

gatherers, filterers, shredders, scrapers, and piercers.  Ephemeroptera, Plecoptera and Trichoptera 

were grouped together and their presence was used as an indicator of good dissolved oxygen 

conditions in the stream.  When families were without a tolerance score, I used the average of the 

generic tolerance scores within that family; if the metrics did not agree I used Hilsenhoff (1988).          

Data Analysis  

 I conducted simple t-tests to determine if there were any significant changes in the 

variables measured across all of the sites over the years (PASW-18, 2009).  The 2010 samples 

were compared to each of 1997, 1999, and 2002’s samples separately.  I examined change at the 

NB of Amos Palmer Drain by comparing 2010 data to each of the previous years, using simple t-
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tests for each variable. I also graphed the linear relationship between conductivity and number of 

families for the 2010 samples using scatter plots with fitted linear least squares regression lines 

and 95% confidence intervals (PASW-18, 2009).  Line graphs and box plots were used to 

visualize the variation in variables across sites and years.  Variables used in correlation analyses 

were transformed using natural log for simple linear regressions to conform to normality 

assumptions.  All of the tests were run at 95% confidence levels.  

Results     

 Stream Habitat and General Characteristics 

 Most of the Stoney Creek watershed was dominated by agricultural landuse, ranging 

from 38% to 72% with average of 56% (Table 3.).  Agricultural drainage tiles were found at site 

6 and were likely present at other sides.  Substrate was generally uniform (silt) in the all streams 

surveyed, except site 4 which was sandy.  Many of the smaller sites (sites 1-4) were intermittent 

streams and were nearly dry in August.   

 Water was not flowing at the NB of Amos Palmer Drain downstream of the road, and the 

site had wetland characteristics with marsh flora such as cattails, rushes and sedges.  On the 

upstream side of the road, however, stream flow was visible and no vegetation was in the 

channel.  The water color had a  slight brown tint that was seen in all of the sites sampled in 2010, 

noticeably different from the milky white color described by ICAG (Gearheart, 2009), which 

was due to the addition of limestone washed effluent from London Aggregates.  The NB of 

Amos Palmer Drain had the lowest agricultural landuse percentage (38%) and the highest urban 

landuse percentage (15%).  The NB of Amos Palmer Drain had the most backwater habitat, since 

it was ponded, and 90% overhanging forb and grass vegetation was present. 
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 Site 2 also had a large portion of overhanging (60%) and emergent vegetation (60%) and 

was one of the shallowest sites (about 50 cm deep).  It had straight, steep banks that appeared to 

have been altered for flood prevention.  The silt substrate was nearly completely covered in 

undecomposed leaves and there was such limited habitat variation that sampling was ended 15 

minutes early.  Site 3 on the other hand, had a high variety of habitats including backwater, 

overhanging vegetation, and log pieces (Table 3).  Site 4, along with being the only site to have 

sandy substrate, had even more habitat variety than site 3 with backwater, undercut bank, 

overhanging vegetation, leaf packs and it was the only site with riffles (Table 3).  The channel at 

site 5, like site 2, was filled with undecomposed leaves, that mostly covered the edges of the 

channel and an island in the middle.  This site also had undercut banks, submerged vegetation, 

overhanging vegetation and log pieces (Table 3). Site 6, 7 and 8 were larger and were perennial. 

Site 6 had the most diverse habitats of the river sites, but also contained garbage such as sharp 

pieces of metal and buckets.  Site 7 was surrounded by woods and site 8 was next to a 

subdivision.     

Stream Morphology 

 Overall, average velocity and average depth were lower at all sites in 2010 than 2002 but 

not significantly different (Table 2, Table 6).  In the NB of Amos Palmer Drain depth 

significantly decreased by 0.16 m from 0.24 m, velocity significantly decreased by almost half 

from 0.24 m/s to 0.16 m/s, and discharge was drastically reduced from 0.36 m
3
/s to 0.002 m

3
/s 

from 2002 to 2010.  The flow of previous years was artificially high from London Aggregates’ 

additional load of limestone wash, which was four to five times above their permitted discharge 

(Gearheart, 2010).   
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 Sites 2 and 4 were chosen to compare to site 1 on the NB of Amos Palmer drain because 

they had the most similar drainage areas (Table 1).  Site 2 was one of the shallowest sites; it was 

too shallow to measure velocity and calculate discharge.  Site 4 was the deepest and had the 

highest average velocity and discharge of the smaller sites.   

Water Chemistry 

 At all of the sites, water temperatures significantly lower in 2010 compared to 1999 

(Table 4, Table 6).  Conductivity was also significantly lower in 2010 compared to 2002.  The 

NB of Amos Palmer Drain had the highest conductivity of all of the sites from 1997 through 

2002 ranging from 1,690µs to 2,035µs, but had dropped to 595.95µs in 2010.  In fact, in 2010 it 

had the lowest conductivity of all sites and would be considered to be within normal ranges for 

southern Michigan streams.  DO at the NB of Amos Palmer Drain was within range of the other 

sites sampled in 2010 but was not sampled in the historical studies.  However, at all most all of 

the sites, pH remained relatively similar from 1997 through 2010.  The pH at the NB of Amos 

Palmer Drain decreased from 8.3 to 7.72, and of the smaller streams was the highest site 4 in 

2010.    

Macroinvertebrate Assemblages  

 The number of families collected increased significantly from 1997 to 2010 but the 

average tolerance increased significantly from 1997, 1999, and 2002 to 2010 (Table 5 & 6, 

Figure 2 & 3).  In the NB of Amos Palmer Drain macroinvertebrate family richness increased 

dramatically from 2 families in 1997 to 19 families in 2010, but the average tolerance increased 

from a low of 4.47 in 1997 and 2002 to the highest observed at any of the sites in all of the years 

at 6.52 in 2010 (Table 5, Figure 2 & 5).  Site 2 had the lowest number of families (7) in 2010 and 
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a relatively average tolerance score (5.48; Table 5).  Site 4 had the third highest number of 

families (14), the highest number of Ephemeroptera, Plecoptera, and Trichoptera of all sites (6), 

and the second lowest tolerance in 2010 (4.72) (Table 5, Figure 5).  However, average tolerance 

was actually higher at all sites in 2010 compared to previous, years except for Stoney Creek at 

Fuller Road (Figure 3).  Conductivity was negatively correlated with number of families (0.9), 

though linear regression analysis could not be run due to the small number of sites (Figure 4).  

Discussion  

Mining affects on stream  

 The NB of Amos Palmer Drain changed since London Aggregates closed and mining 

pollution stopped.  London Aggregates’ additional load of limestone wash increased the stream’s 

flow by four to five times their permitted increase and now without that input (Gearheart, 2009), 

discharge, average velocity, average depth, conductivity, and pH decreased significantly.  The 

visible appearance of the water also changed from milky white to the brown tint found in all of 

the other sites sampled.  Stream morphological characteristics shape stream habitat, and stream 

morphology has been cited as having the strongest relationship to macroinvertebrate diversity, 

suggesting a correlation between stream morphology and macroinvertebrate community structure 

(Buffagni et al., 2010). My research found that the number of macroinvertebrate families present 

had significantly increased from 1997 to 2010.  Discharge in the NB of Amos Palmer Drain prior 

to 2003 was significantly elevated by a mining discharge, thus the observed decrease in 

discharge actually resulted in a more natural flow regime.  Flow increased and decreased in the 

NB of Amos Palmer Drain depending on London Aggregate’s discharge and not on natural 

precipitation patterns.  Conductivity was found to have a significant negative correlation with 

number of families (Figure 4).  Since conductivity significantly decreased after the unnatural 
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addition of calcium carbonate from London Aggregates discharge, this may be one of the causes 

of increased macroinvertebrate community richness.   

 The tolerance score at the NB of Amos Palmer Drain also increased which usually 

indicates a decline in ecosystem health (Hilsenhoff, 1988).  During low flow the NB of Amos 

Palmer Drain in September 2010 resembled a wetland ecosystem on the downstream side of the 

road.  Tolerance scores were developed to assess organic loading in flowing stream ecosystems, 

and therefore rate taxa on their tolerance of low oxygen conditions.  In this case, the removal of 

the mining discharge resulted in a reduction in flow and re-establishment of a more natural 

intermittently flowing but lower oxygen environment typical of wetland drains.  With low flow 

and a high amount of organic matter, oxygen levels become depleted by decomposition during 

the night.  Taxa which live in these settings are typically air breathing forms (beetles, bugs, ect.) 

which also can tolerate organically polluted streams.  My findings suggest that the NB of Amos 

Palmer Drain is reverting back to its natural flow regime and to an ecosystem reflecting the 

characteristics expected of an intermittently ponded, wetland drainage stream. 

 In comparison to sites of similar size (sites 2-5), the NB of Amos Palmer Drain had the 

most backwater habitat and the lowest habitat variety, discharge, average depth, and average 

velocity in 2010.  It was the only site that appeared to be ponded.  This could be due in part to 

earlier channel erosion by the high rates of flow generated from London Aggregates.  The NB of 

Amos Palmer Drain also had the lowest conductivity and percent watershed agricultural landuse.  

One would expect streams with larger drainage area to have more taxa because they are likely to 

have more habitats, as stated in the habitat heterogeneity hypothesis of the species-area 

relationship pattern (Kallmanis et al., 2008).  The NB of Amos Palmer Drain had a larger 

drainage area and had naturally corresponding higher macroinvertebrate counts compared to the 
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site closest site to it, site 2.  Site 2 had the lowest number of families, twelve lower than the NB 

of Amos Palmer Drain.  It was also the site with the smallest drainage area (2.63 km
2
) and its 

substrate was choked with undecomposed leaves (Table 1).  In comparison to site 4, however, 

the NB of Amos Palmer Drain had a smaller drainage area and this difference was demonstrated 

by habitat and sensitive taxa.  Site 4 had the highest number of Ephemeroptera, Plecoptera and 

Trichoptera, the second lowest tolerance score, and a high variety of habitats.  It was also the 

only site with riffles.  These characteristics make sense given the stream had a larger drainage 

area (Table 1).  NB of Amos Palmer Drain had a drainage area in between those of sites 2 and 4 

and habitat and macroinvertebrate community characteristics also fell between the two sites. 

Given the ecological differences between ponded streams and free streams, evidence indicates 

the NB of Amos Palmer Drain has returned to a state within the range of similar stream sites in 

the area. 

 Combined number of families from sites 1-5 significantly increased from 1997 to 2010.  

Since nothing is thought to have changed at any of these sites except the NB of Amos Palmer 

Drain, this increase could be due to differences in sampling technique.  Average tolerance also 

showed a significant increase across all years.  These differences could be due to the fact that 

many macroinvertebrate families are present only seasonally and since the studies were 

conducted in three different seasons, this likely was a confounding factor (Berg et al., 2008).  In 

Michigan, spring is the wettest season and watersheds receive an increased water runoff from 

snow melt and spring rains.  As the year continues, the weather becomes drier.  The 1997 

samples were taken in July, 1999 and 2002 samples were taken in March, and 2010 samples 

were taken in October.  The differences in seasonal precipitation patterns and resulting stress 
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from a drier condition leading could explain an increase in tolerance score along with an increase 

in temperature and a decrease in stream depth.   

Ecology 

 Landuse has had documented negative effects on macroinvertebrate richness because of 

the changes in flow, substrate, water temperature, and water chemistry and commonly the 

increase in non-point source pollutants that usually appear with them (Brown et al., 2010; Chon 

et al., 2009).  In this study, landuse was not correlated with macroinvertebrate community 

characteristics.  In fact, two of the sites with the highest numbers of families had the highest 

percentages of agricultural landuse, but the study was not designed to appropriately test landuse 

effects since I only sampled a few sites located in the same watershed with generally similar 

landuse.  Agricultural landuse ranged from 38% to 72% and was 56% on average.  Other studies 

have found agricultural landuse greater than 30-75% to have negative affects on 

macroinvertebrate communities, so all of the sites are likely impacted. (Riseng et al., 2010).  

Nevertheless, invertebrate diversity, water chemistry, and stream morphology all improved; 

many of these changes were statistically significant.  The logical conclusion is that the 

termination of London Aggregates’ discharge caused these changes. 

Weaknesses of this Analysis 

 In addition, the samples were taken at different times of the year, which is particularly 

critical to the state of intermittent streams, and different sampling methods were used.  Many 

macroinvertebrates have seasonally cycling lives and therefore their community composition is 

sensitive to season even at the family level used in this study (Minshall et. al, 1985; Reece et. al, 

2001; Berg et al., 2008).  Sampling techniques varied substantially, because they were conducted 

by three different groups and it was difficult to account for the different sampling techniques 
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between all sites and years.  In addition there were gaps in the data, because different studies 

sampled different characteristics and it was difficult to find characteristics that were sampled in 

every study.  It is likely that more patterns could be seen in the data if the studies were cohesive 

with standardized sampling goals, times, and methods.  

Conclusion  

 In conclusion, seven years after London Aggregates ceased discharging limestone 

effluent into the NB of Amos Palmer Drain, the stream has increased in macroinvertebrate 

community richness, although the macroinvertebrate community tolerance index has also 

increased.  My evidence suggests that this increase in richness was due to effects corresponding 

to elimination of limestone effluent discharge and the following transition to more natural flow 

regimes.  For the NB of Amos Palmer Drain this is an intermittent regime and intermittent 

streams are often ponded seasonally.  Natural Flow Regime resulted in an increase in 

macroinvertebrate richness and an increase in number of taxa tolerant of fluctuating DO 

concentrations typical of an intermittent stream (Lytle and Poff, 2004). Possible new avenues for 

study could include more sites and other intermittent streams to better understand how 

macroinvertebrate richness is affected by seasonal ponding.  Further, this study could have been 

improved upon by having one cohesive study instead of studies conducted by three different 

groups.  In addition to the pollution of Amos Palmer Drain by London Aggregates, all of my 

stream sites were heavily impacted by agricultural activity and likely were all degraded to some 

point.  It is important that the consequences of human activities on water systems be weighed 

against their gain.  
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Table 1. Site Information: Placement indicates the site location in relation to where Amos Palmer 

Drain enters Stoney Creek. – means the data was not available. 

Site Stream  Location Latitude Longitude Drainage Area 

(km
2
) 

Years Sampled 

1 Amos 

Palmer 

Drain 

Grames Road 42.057617 - 83.5495 6.10 1997,1999, 

2002, 2010 

2 Amos 

Palmer 

Drain 

Gramlick 

Road 

42.052567 - 83.556933 2.63 1997, 2010 

3 Sugar 

Creek 

Gooding 

Road 

42.103417 - 83.637283  24.86 1997, 1999, 

2002, 2010 

4 Buck 

Creek 

Hitchingham 

Road 

42.102883 - 83.6183 8.28 2002, 2010 

5 Stoney 

Creek 

Fuller Road 42.079011 - 83.608 9.56 1999, 2002, 

2010 

6 Stoney 

Creek 

Palmer 42.064633 - 83.53875 207.88 1997, 2010 

7 Stoney 

Creek 

Timbers Road 42.048483 - 83.50925 253.02 2010 

8 Stoney 

Creek 

Exeter 42.022883 - 83.586017 - 1997, 2010 

Table 2. Data summarizing stream morphology at each sample site in 2010 and 2002. - indicates 

measurements were not taken due to equipment failure.  

Characteristic 2010 2002 

Site 1 2 3 4  5 6 7 8 1 3 4 5 

Average 

Depth (m) 

0.10 0.05 0.17 0.23 0.05 0.28 0.66 0.81 0.26 0.29 0.48 0.6 

Average 

Velocity (m/s) 

0.16 - 0.04 0.09 - 0.11 0.04 0.032 0.24 0.38 0.12 0.18 

Discharge 

(m
3
/s) 

0.002 - 0.026 0.07 - 0.16 0.30 0.21 0.36 0.24 0.31 0.38 
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Table 3.  Habitat Characteristics: numbers are percent of the 

stream found as the described habitat or percent of the 

watershed landuse. 

site 1 2 3 4 5 6 

Habitat 

Riffles 0 0 0 30 0 0 

Back water 100 0 30 2 0 5 

Undercut bank 0 5 0 30 30 0 

Submerged or 

emergent vegetation 

25 60 0 2 20 10 

Overhanging 

vegetation 

90 60 10 2 90 20 

Rocks 0 0 0 0 0 10 

Logs pieces 0 1 10 0 20 50 

Leaf packs 0 100 90 10 100 0 

Landuse 

Agriculture 38 58 72 60 58 48 

Urban 15 3 6 6 5 11 

Table 4.  Physical and chemical data. – indicates information was missing from previous 

studies. 

Site  Year Month Temperature (
o
C) DO (mg/l) pH Conductivity (µs) 

1 1997 July - - 7.3 2035 

1999 March 8 - 7.7 1690 

2002 March - - 8.3 1940 

2010 October 15 7.2 8.14 595.95 

2 2010 October 13.7 - - 640.65 

3 1997 July - - 8.17 792 

1999 March 6 - 8.4 650 

2002 March - - 7.8 430 

2010 August 12 8 7.92 715.14 

4 2002 March - - 8.4 720 

2010 October 12.02 6.7 8.07 968.41 

5 2002 March - - 7.9 790 

2010 October 10.01 - 8.92 - 

6 2010 October 22.6 7.03 7.9 864.12 

7 2010 October 13.7 - - 938.62 

8 2010 October 12.5 - 8.09 1028.01 
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Table 5. Macroinvertebrate summaries for each sample site for years 1997 through 2010. 

Characteristic 2010 2002 1999 1997 

Site 1 2 3 4 5 1 3 5 1 3 4 1 3 

Number of  

Families 

19 7 15 14 9 2 6 1 3 7 8 2 13 

Average 

Tolerance 

6.52 5.48 5.76 4.72 4 4.47 5.3 - 5.47 5.33 3.88 4.47 5.89 

Number of 

EPT 

0 0 1 6 1 0 1 1 0 1 3 0 0 

Number of 

Skaters 

2 0 2 1 0 0 0 0 0 0 0 0 0 

Table 6. Comparison of biological characteristics: simple t-tests 

statistics comparing 2010 samples to the years below. 

Measurement Year Compared to t p-value 

Number of Families 2002 1.964 0.188 

Number of Families 1999 3.928 0.059 

Number of Families 1997 3.608 0.037 

Average Tolerance 2002 6.619 <0.00 

Average Tolerance 1999 9.282 <0.00 

Average Tolerance 1997 7.962 <0.00 

Table 7.  T-test statistics comparing the NB of Amos Palmer Drain in 2010 

to previous years. 

Measurement Year Compared 

to 

t p-value 

Discharge 2002 45.320 <0.000 

Average 

Velocity 

2002 10.729 0.009 

Average Depth 2002 9.610 0.011 

pH 2002 142.028 <0.000 

Temperature 1999 7.591 0.005 

Conductivity 2002 4.631 0.006 

Conductivity 1999 3.579 0.037 
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Figures 

1.  Location of sites: Site 1 is the NB of Amos Palmer Drain 

2.   Number of families at each site across the years sampled 

3.  Mean tolerance for each site in all of the years sampled. 

4. Linear relationship between number of families and conductivity:  A linear plot of number of 

families against conductivity shows the relationship between the natural log of conductivity and 

the natural log of number of families for 2010 (p = 0.009).   

5.  Tolerance scores for macroinvertebrate families at each site in 2010. 
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Figure 1. 

 

 

 

 

 

 

 

 
 

 



University of Michigan                                                          Ecosystem Recovery Analysis of Amos Palmer Drain,                                              Laura Fields-Sommers                                                                             

Under Graduate Honors Thesis                                                                          in  Milan, Michigan April 2011 

26 
 

 
Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 5. 
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Appendix 

Table A1. Family Presence: Shows the presences of specified families at each site and their tolerance values, habitat, habit 
and trophic relationships.  

Family Year 2010 2002 1999 199
7 

Tolerance 
values  Habitat Habit 

trophic 
relationships 

Site 1 2 3 4 5 1 3 5 1 3 5 1 3 - - - - 

Dytisciade 1 - - - - - - - - 1 - - - 5.38 - - - 

Elmidae 1 1 - 1 - - 1 - - 1 - - 1 4 - - - 

Gyrinidae 1 - - - - - - - 1 - - - - 5 - - - 

Halipidae 1 - - - - - - -  - - - - 7 lentic Climbers shredders 

Ceratopogonidae 1 - 1 - - - - - - - - - - 6 - Burrowers - 

Chironomidae 1 1 1 1 - 1 - - 1 1 1 1 1 5.93 - Burrowers Collectors 

Culicidae 1 1 1 - - - - - - - - - - 8 Depositional - collectors 

Dixidae - - - 1 - - - - - - - - - 1 lentic Swimers Collectors 

Ptychopteridae - - - - 1 - - - - - - - - 7 depositional Burrowers collectors 

Simulidae - - 1 1 - - - - - 1 - - - 6 erosional Clingers Collectors 

Tabanidae 1 - 1 1 - - - - - - 1 - - 8 erosional Burrowers Shredder 

Tipulidae 1 1 1 1 1 - - - - - 1 - - 4.12 erosional Burrowers Shredder 

Baetiscidae - - - 1 - - - - - 1 - - - 3 depositional Sprawlers Collectors 

Heptageniidae - - - 1 - - 1 - - - - - 1 4 erosional Swimers Collectors 

Leptophlebiidae - - - 1 - - - - - - 1 - - 2 erosional Swimers Collectors 

Corixidae 1 - - 1 - - 1 - - - - - 1 10 depositional Swimmers Collectors 

Gerridae 1 - 1 - - - - - - - - - 1 5 surface Skaters Predators 

Hebridae - - - 1 - - - - - - - - - - detritus Climbers Predators 

Pleidae 1 - - - - - - - - - - - - - Hydrophytes Swimmers Predators 

Veliidae - - 1 1 - - - - - - - - 1 - Surface Skaters Predators 

Sialidae - - 1 - - 1 - - 1 1 - 1 - 4 Erosional Burrowers Predators 

Aeshnidae - - 1 - - - 1 - - - - - 1 3 - Climbers Predators 

Calopterygidae - - 1 1 1 - 1 - - - 1 - 1 5 - Climbers Predators 

Coenagrionidae 1 - - - - - - - - 1 - - - 9 - Climbers Predators 

Corduliidae 1 - - - - - - - - - - - - 5 - Sprawlers Predators 

Gomphidae - - - - - - - - - - 1 - - 1 - Burrowers Predators 

Capniidae - - - - - - - - - - 1 - - 1 - Sprawlers Shredders 

Hydropsychidae - - - 1 - - - - - - - 1 1 4 - clingers Collectors 

Limnephilidae - - - - - - - 1 - - - - 1 4 - Climbers - 

Uenoidae - - - - 1 - - - - - - - - 0 - Clingers Scrapers 

Phryganeidae - - - 1 1 - - - - - 1 - - 4 - - - 

Polycentropodidae 1 - - - - - - - - - - - - 6 - - - 

Psychomyiidae - - - 1 - - - - - - - - - 2 - - - 

Amphipoda 1 - 1 - 1 - - - - - - - - - - - - 

Gastropoda 1 - - 1 1 - - - - - - - - - - - - 

Hirudinea 1 - - 1 1 - - - - - - - 1 - - - - 

Isopoda 1 1 1 - 1 - - - - - - - 1 - Surface - - 

Shaeriidae - 1 1 - - - - - - - - - - - - - - 

 

 

 


