
Particulate matter concentrations in residences: an intervention

study evaluating stand-alone filters and air conditioners

Introduction

The home is generally the most important setting for
pollutant exposure for children and other non-occupa-
tionally exposed individuals because so much time is
spent indoors (averaging 86–87% of time for the

general population and 89–90% for children (Klepeis
et al., 2001), and because indoor pollutant concentra-
tions often greatly exceed outdoor levels (Wallace,
1996). Pollutant concentrations in residences are deter-
mined by multiple factors: the strength of indoor
emission sources, for example, tobacco smoke and gas

Abstract This study, a randomized controlled trial, evaluated the effectiveness of
free-standing air filters and window air conditioners (ACs) in 126 low-income
households of children with asthma. Households were randomized into a control
group, a group receiving a free-standing HEPA filter placed in the child�s
sleeping area, and a group receiving the filter and a window-mounted AC.
Indoor air quality (IAQ) was monitored for week-long periods over three to four
seasons. High concentrations of particulate matter (PM) and carbon dioxide
were frequently seen. When IAQ was monitored, filters reduced PM levels in the
child�s bedroom by an average of 50%. Filter use varied greatly among house-
holds and declined over time, for example, during weeks when pollutants were
monitored, filter use was initially high, averaging 84 ± 27%, but dropped to
63 ± 33% in subsequent seasons. In months when households were not visited,
use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with
central or room ACs. The study shows that measurements over multiple seasons
are needed to characterize air quality and filter performance. The effectiveness of
interventions using free-standing air filters depends on occupant behavior,
and strategies to ensure filter use should be an integral part of interventions.

S. Batterman1, L. Du1,2, G. Mentz1,
B. Mukherjee1, E. Parker3,
C. Godwin1, J.-Y. Chin1,
A. O'Toole1, T. Robins1, Z. Rowe4,
T. Lewis1,5

1School of Public Health, University of Michigan, Ann
Arbor, MI, USA, 2School of Environmental Science and
Engineering, Donghua University, Shanghai, China,
3College of Public Health, University of Iowa, Iowa City,
IA, USA, 4Community Action Against Asthma,
Community Partner at Large, Detroit, MI, USA, 5School
of Medicine, University of Michigan, Ann Arbor, MI,
USA

Key words: Air filters; Air conditioner; Air exchange
rate; Asthma; Intervention; Particulate matter.

S. Batterman
School of Public Health
University of Michigan
Room 6075 SPH2, 1420 Washington Heights
Ann Arbor, MI 48109-2029
USA
Tel.: +1-734-763-2417
Fax: +1-734-763-8095
e-mail: stuartb@umich.edu

Received for review 23 September 2011. Accepted for
publication 29 November 2011.

Practical Implications
Environmental tobacco smoke (ETS) increased particulate matter (PM) levels by about 14 lg/m3 and was often
detected using ETS-specific tracers despite restrictions on smoking in the house as reported on questionnaires
administered to caregivers. PM concentrations depended on season, filter usage, relative humidity, air exchange ratios,
number of children, outdoor PM levels, sweeping/dusting, and presence of a central air conditioner (AC). Free-
standing air filters can be an effective intervention that provides substantial reductions in PM concentrations if the
filters are used. However, filter use was variable across the study population and declined over the study duration, and
thus strategies are needed to encourage and maintain use of filters. The variability in filter use suggests that exposure
misclassification is a potential problem in intervention studies using filters. The installation of a room AC in the
bedroom, intended to limit air exchange ratios, along with an air filter, did not lower PM levels more than the filter
alone.
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stoves; outdoor concentrations, for example, sus-
pended soils and traffic exhaust; airflows, for example,
air exchange rates (AERs) in the building that intro-
duce, remove, and mix pollutants; particulate- and/or
gas-phase filtration, if any; other building characteris-
tics that influence pollutant deposition and lifetime;
and the nature of the pollutant, specifically deposition
and reaction rates (Abt et al., 2000; Hussein et al.,
2005; Macintosh et al., 2008). These factors, and
concentrations of airborne pollutants, can be affected
by personal behavior (Abt et al., 2000; Eggleston et al.,
2005; McCormack et al., 2008); building characteristics
(Allen et al., 2003; Crain et al., 2002; Vanderheide
et al., 1997; Weisel et al., 2005); cigarette smoking,
incense, gas stoves and other indoor combustion
sources; weather including outdoor temperature and
wind speed (Lai et al., 2006); season (Allen et al., 2003;
Keeler et al., 2002; LeBouf et al., 2008; McCormack
et al., 2008; Scapellato et al., 2009; Weisel et al., 2005);
central air conditioning; diesel vehicles parked nearby
(Meng et al., 2009); window opening (McCormack
et al., 2008); and location (Crain et al., 2002; Lai et al.,
2006; Weisel et al., 2005). Many of these factors are
dynamic, and consequently concentrations and
exposures vary at diurnal, seasonal, and decadal time
scales.
Analyses of the effects of variability are possible in

studies using repeated measurements, specifically pol-
lutant measurements obtained across multiple seasons
at the same sites. Seasonal variability of PM concen-
trations, the focus of the present study, has been
examined in a number of studies. In the RIOPA study,
which used 48-h sampling periods in two seasons
between summer 1999 and spring 2001 in non-smokers
homes, indoor levels of PM2.5 (PM < 2.5 lm dia)
differed significantly by season in Los Angeles, CA, but
not in Houston, TX and Elizabeth, NJ (Weisel et al.,
2005). Monitoring in three seasons in bedrooms of 150
asthmatic children in Baltimore, MD, did not show
seasonal differences in mean PM2.5 concentrations,
although coarse fraction particles (PM2.5–10, PM
between 2.5 and 10 lm dia) were significantly lower
in summer (McCormack et al., 2009). In slightly over
100 homes in Regina, Saskatchewan, Canada, PM2.5

concentrations were slightly but significantly higher in
summer than winter (7.3 vs. 6.2 lg/m3) (Heroux et al.,
2010). In 44 residences in Seattle, WA, monitored over
2 years in both heating and non-heating seasons,
outdoor PM2.5 accounted for a large fraction (average
of 79 ± 17%) of indoor PM levels, and seasonal
differences were apparent for particle penetration,
AER, and particle decay rates (Allen et al., 2003). In
20 homes of children with asthma in Detroit, Michi-
gan, PM2.5 and PM10 levels in both smokers� and non-
smokers� homes varied seasonally (Keeler et al., 2002).
In DEARS, a study of 137 non-smoking households in
Detroit, MI, that spanned three winter and three

summer seasons, both adult personal and indoor PM2.5

levels were lower in one winter; means in other seasons
were similar. In four non-smoking households in
Boston, MA, monitored for one or two 6-day periods
in winter and summer, PM0.1–0.5 (and AERs) varied on
both daily and seasonal bases (Abt et al., 2000). In
Padova, Italy, personal PM10 measurements collected
as six 24-h samples in different seasons among 31
asthmatic subjects (including 10 smokers) exceeded
outdoor concentrations and varied seasonally (Scapel-
lato et al., 2009). These and other studies suggest the
significance of seasonal changes in residential and
personal concentrations of PM.
Indoor PM concentrations can be reduced quite

easily and substantially using free-standing filters
(Batterman et al., 2005), which are also called room
air filters or purifiers. Such filters may provide some
improvement in health and symptoms, for example,
reduced frequency of asthma symptoms (Crain et al.,
2002; Sublett et al., 2010; Xu et al., 2010). Free-
standing filters can be used in many situations, and
their use may be particularly well suited for susceptible
individuals, for example, children with asthma. We
previously evaluated free-standing filters equipped with
HEPA (high efficiency particulate air) filters placed in
both living rooms and bedrooms of homes in Detroit,
MI, and compared performance to predictions of
simple box-type models. Filters reduced PM levels in
nearly all homes, and reductions averaged 69–80% on
days when the filter was used at least 75% of the time
(Batterman et al., 2005; Du et al., 2011). Many of these
homes contained smokers. A study evaluating the long-
term effectiveness of HEPA filters in Baltimore, MD,
using evaluations at baseline, 6 and 12 months follow-
ing installation found PM10 reductions of up to 39% as
compared to a control group (Eggleston et al., 2005).
More sophisticated air cleaning/ventilating units can
further improve indoor air quality (IAQ), but expen-
sive building modifications may be required (Xu et al.,
2010).
The rooms or space in a building that can be

controlled by a free-standing filter depends on its clean
air delivery rate (CADR), the volume of the space,
mixing, the AER, and the pollutant characteristics.
There are several important sources of inconsistencies
in the existing performance evaluations of filters. First,
variations in the AER, which is rarely measured in
filter studies, can cause several effects. As the AER
increases, the filter treats a smaller fraction of air, thus
lowering its impact; the contribution of outdoor
pollutants to indoor levels rises, decreasing indoor
concentrations if outdoor levels are lower than levels
those indoors (Allen et al., 2003); and indoor emission
sources are increasingly diluted, potentially lowering
indoor concentrations if outdoor air is cleaner than in
indoors (McCormack et al., 2008). The net effect of the
AERs thus depends on both indoor and outdoor
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pollutant levels. Fluctuations associated with AERs
might be smaller in homes with ACs where windows
remained closed. Beyond AERs, there are additional
challenges in real-life performance evaluations of air
filters. Filter studies have rarely evaluated seasonal
effects, which can affect PM concentrations as well as
AERs (Breen et al., 2010). Very few studies have
measured how filters are used. Finally, most filter
studies have been modest in scope, relatively short in
duration, and limited by incompletely known or
controlled variables, for example, emission sources,
and studies measuring both indoor and outdoor
pollutant levels are rare.
A few studies have examined the impact of ACs on

IAQ. Air conditioning can reduce relative humidity
and thus may lower concentrations of dust mites and
allergens (Arlian et al., 2001; Delfino et al., 1997;
Lintner and Brame, 1993; Munir et al., 1994). Because
air conditioning requires closed windows, AERs may
be lowered, which can impact pollutant levels, as just
described. Finally, central and some room ACs utilize
filters, and circulating air will be cleaned, at least to
some extent. Thus, ACs have the potential to lower
indoor PM concentrations if indoor emission sources
are minimized.

Objectives

This study was a randomized controlled trial. Study
objectives included characterizing pollutant exposures
in homes of children with asthma living in Detroit, MI,
evaluating the effectiveness of HEPA air filters in
reducing PM concentrations and determining effects of
ACs on PM concentrations and filter performance.
Study methods were designed to obtain long-term,
representative, and robust results. This research was
part of an epidemiological study investigating the
effectiveness of air filters for alleviating symptoms of
children with asthma in Detroit, MI. This study was
conducted as community-based participatory research
by the Community Action Against Asthma (CAAA)
partnership, which includes community-based organi-
zations, health and human service organizations, and
university researchers. Detroit contains about 715,000
people (2010), and the study area is predominantly
African American and Latino, household incomes are
low, and asthma hospitalization rates are high (Abt
et al., 2000; Center for Urban Studies, 2000; Hussein
et al., 2005; Macintosh et al., 2008).

Materials and methods

Recruitment, intervention, and sampling schedule

Households with a child from 6 to 12 years of age
identified as having probable persistent asthma were
recruited in Detroit, MI, via community-based distri-

bution of validated screening questionnaires (Lewis
et al., 2004) at schools, health fairs and other commu-
nity gatherings, and using door-to-door recruitment
and contacts of our community partners. Children
were classified as having persistent asthma if their
parents reported either doctor diagnosis of asthma
coupled with routine use of asthma medications or
active symptoms, or high frequency or severity of
symptoms consistent with asthma. Households were
excluded if occupants had participated in one of our
previous studies, intended to move in the next
6 months, or if neither English nor Spanish were
spoken. Recruitment and study protocols utilized
written informed consent and followed ethical guide-
lines approved by the University of Michigan Institu-
tional Review Board.
The original recruitment protocol required a brief

home inspection of all potentially eligible households
identified via the screening questionnaire prior to study
enrollment to determine whether the child�s bedroom
window could accommodate a study AC and whether a
suitable electrical outlet was nearby. Some funds were
available for minor electrical outlet upgrades per-
formed by a licensed electrician when necessary. Owing
to logistical issues (e.g., scheduling visits for the home
inspections and electrician if needed) and household
characteristics (e.g., windows that could not receive the
AC), recruitment was extremely slow and many
otherwise eligible families were being excluded. With
the advice and approval of our data safety monitoring
board, the recruitment protocol was modified to allow
enrollment prior to home inspection using a two-stage
randomization process. In the modified protocol,
households were initially randomized to either the
�control� or the filter group. Households in the latter
group then underwent the household inspection, fol-
lowed up with an electrician visit if necessary, and
those households capable of receiving an AC were
randomly assigned to receive an AC or not. If the home
could not accept the AC, it was assigned to the
�standard� intervention group that received only the
filter. All households received community health
worker (CHW) home education visits. The final sample
contained 126 households randomized to one of three
groups: the control group receiving only CHW visits
(N = 37); the �standard� intervention group receiving a
filter and the CHW visits (N = 47); and the �enhanced�
intervention group receiving the filter, the CHW visits,
and the room AC (N = 42).
Filters and ACs were provided at no cost and could

be kept by the household after the study concluded.
These households also received $10 for the home
inspection; $15 for each week-long data collection
home visit; and $15 for electricity consumed by the
filter during each visit. Households not receiving filters
received $100 plus the same incentive for each data
collection visit.

Air filters and air conditioners in homes
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Households entered the study on a rolling basis
beginning from March 2009 to February 2010. Field
work was concluded in September 2010. On most
weeks, 6–10 homes were monitored. This study reports
on a total of 346 week-long household visits. Table 1
shows the number of visits by season.
In the middle of the initial week-long �baseline� visit,

both standard and enhanced intervention groups
received a stand-alone air filter that was placed in the
child�s bedroom. The technician and interviewers
instructed caregivers on the use of the filter (and AC, if
installed, see below). The unit (Whispure 510;Whirlpool
Corporation, Benton Harbor, MI, USA) featured a
carbon-impregnated pre-filter, a HEPA filter, four fan
speed settings, a vertical discharge, and amanufacturer�s
maximum CADR of 330 CFM (9.36 m3/min). The
manufacturer recommends this unit for rooms up to
500 ft2 (46.5 m2) in floor area,which is larger thannearly
all of the children�s sleep areas (largest was 47.2 m2). The
pre-filter was porous and light in weight. (We measured
the total weight of a new pre-filter as 38 g, but did not
determine the quantity of carbon in the pre-filter, though
it is unlikely to be more than a few grams.) The pre-filter
is expected to have only aminor effect on volatile organic
compounds (VOCs) levels, although it did trap dust and
larger particles. In previous tests in four homes contain-
ing smokers, we measured flow rates from 6.6 (lowest
speed) to 12.4 m3/min (highest speed) (Batterman et al.,
2005). To achieve the best performance, participants
were instructed to operate the filter continuously at the
highest speed tolerable considering noise and comfort,
and to close the door of the bedroomwhere the filter was
placed asmuch as practical. Participants were instructed
how to clean the pre-filter. Our technician replaced pre-
filters and HEPA filters after 6 months of operation.
Filter usage was recorded at 2 h or shorter intervals.
Following the baseline visit, each household received
two or three follow-up or �seasonal� visits spaced
approximately three or 4 months apart. (Baseline visits
were repeated for the two families that moved prior to
their next seasonal visit.)

In May and early June 2010, a technician installed a
window-type AC (FAA062P7A; Frigidaire, Augusta,
GA, USA) in the child�s bedroom in the enhanced
intervention group. The manufacturer specified a max-
imum cooling rate of 6000 BTU/h (620 cooling W/h)
and recommends this capacity for rooms up to 216 ft2

(20.1 m2). This basic unit had a thermostat and three
speeds, but no blend or fresh air vent controls, and we
confirmed by inspection and using smoke tubes that no
flow path existed between the inside and outside of the
unit. Airflow information was unavailable from the
manufacturer. In the laboratory, we measured airflows
at each speed by configuring an interface from the AC
unit�s intake and discharge vents to a calibrated flow
monitor (Velgrid; Shortridge Instruments, Inc., Scotts-
dale, AZ, USA), making five measurements on both
inflows and outflows separately, and averaging results.
The measured airflow rates were 37, 40, and 45 m3/min
at low, medium, and high settings, respectively.

Walk-through and caregiver surveys

A technician completed a walk-through inspection in
each home to collect information on its characteristics
and condition. Using a checklist with direct computer
entry, the inspection assessed building characteristics,
for example, type of heating and cooling system,
evidence of water damage, mold, chipping paint,
number of windows, type of covering on floors and
furniture, and presence of emission sources such as
candles, incense, and room deodorizers. Dimensions of
the home and the child�s bedroom were measured.
During baseline and seasonal visits, participants

completed short surveys that included questions about
health status, features of their home, and indoor PM-
emitting activities, for example, frequency of cigarette
smoking, cooking activities, and cleaning practices.
After completion of the study, a focus group and
survey was completed to identify factors that influ-
enced the household�s use of the filters, which will be
reported in a subsequent study.

Table 1 Sampling events by season for baseline and seasonal visits

Season

Baseline visits Seasonal visits Total visits

TotalControl Standard Enhanced Control Standard Enhanced Control Standard Enhanced

2009 Spring (March–May) 2 4 3 – – – 2 4 3 9
2009 Summer (June–August) 14 3 3 – – – 13 3 3 19
2009 Fall (September–November) 6 22 15 1 3 4 7 25 19 51
2009 Winter (December–February) 11 18 18 2 1 1 12 19 19 50
2010 Spring (March–May) 4 – 3 21 35 32 25 35 35 95
2010 Summer (June–August) – – – 31 45 29 31 45 29 105
2010 Fall (September–October) – – – 4 6 7 4 6 7 17
Total 37 47 42 59 90 73 94 137 115 346

'Control' = community health worker (CHW) home education visits; 'Standard' = CHW + filter; 'Enhanced' = CHW + filter + air conditioner; 'Total' includes sum of three groups.
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IAQ monitoring

Air quality and ventilation parameters in the child�s
bedroom and the living area were measured during
each week-long assessment. During the baseline sam-
pling week, PM concentrations were measured as
seven sequential 24-h samples, sampled at 15 l/min
using 1-lm 47-mm-dia PTFE filters (225-2749; SKC,
Eighty-Four, PA, USA) installed in static-free poly-
propylene cassettes (Omega Specialty Instruments Co.,
Houston, TX, USA). The cassette inlets are not size-
selective, and performance is similar to open-face filter
sampling. Size-selective inlets were not used for
reasons of cost and compatibility with sampling
equipment. Seasonal visits used 48-h samples to reduce
the number of filters needed. Flows were measured
and logged continuously, and flow systems were
regularly calibrated using a piston-type flow meter.
A blank filter was collected at each house during each
sampling week. Filter conditioning and weighing was
conducted at 25�C and 34% relative humidity, weights
were determined to 1 lg using a microbalance (ME-5;
Sartorius, Goettingen, Germany), and variation
exceeding 3 lg in filter weight was flagged and filters
reweighed. The estimated limit of quantitation for PM
measurements is 3 lg/m3. Additional particle mea-
surements included optical particle number counts
(PNCs) in 0.3–1.0 lm and 1–5 lm dia size ranges,
measured every 1-min using calibrated instruments
(GT-521; MetOne, Grants Pass, OR, USA). The
smaller size range is attributable to mostly combus-
tion-related particles, for example, ETS; the larger size
includes mechanically generated emissions, for exam-
ple, floor dust. Side-by-side tests confirmed compara-
bility of PNC measurements, for example, agreement
within the 16 instruments deployed was typically
within 7% and 10% for 0.3–1.0 and 1–5 lm dia size
ranges, respectively. Further description of the sam-
pling methods and quality elements is provided
elsewhere (Du et al., 2011).
Carbon dioxide (CO2) concentrations were measured

every 5 min as a measure of occupancy and ventila-
tion. All 16 IR sensors (C7632A; Honeywell Corp.,
Morristown, NJ, USA) were calibrated using flow
controllers to blend zero air and a certified CO2 gas
(1011 ppm; Scott Specialty Gases, Plumstead, PA,
USA) at concentrations between 0 and 1011 ppm, and
rechecked after approximately 6 months, which
showed average and maximum variations from stan-
dards of 6.5% and 21%, respectively. Temperature
and relative humidity were recorded every 5 min using
miniature loggers (Hobo H08; Onset Computer Cor-
poration, Bourne, MA, USA).
VOCs, perfluorocarbon tracers (PFTs) for AER

determinations, and ETS tracers were measured using
passive samplers (Jia et al., 2007), which were
analyzed using thermal desorption, cryofocusing and

GC-MS (Batterman et al., 2002). Duplicate samples
were collected in the child�s bedroom; a third sample
was collected in the living area, along with tempera-
ture and humidity. Blanks were taken in each home
each week. Target VOCs included 2,5-dimethyl furan
and 3-ethenyl pyridine, which are qualitative tracers of
ETS (Charles et al., 2008). While low levels of ETS
may not always be identified, ETS is nearly certainly
present if the tracers were detected. Duplicate VOC
and tracer measurements were nearly always within
20%. This study discusses only the ETS and PFT
tracers.
AERs in the home and child�s sleeping area were

estimated using the multizone constant injection
method, two different PFTs, and measurements in the
bedroom and living room. Two passive emitters of
hexafluorobenzene were placed in the living area, and
two octafluorotoluene emitters in the sleeping area,
typically in opposite corners, each releasing these
compounds at a constant rate over the week-long
sampling period. Emitters were individually calibrated
and checked periodically. AERs for the house and
child�s sleeping area, and flows between these zones,
were determined using PFT concentrations measured
at the two locations, the measured volumes of the
house and bedroom, and methods presented elsewhere
(Batterman et al., 2006).

Data analysis and modeling

Data processing. Short-term measurements (PNC,
CO2, temperature, humidity) were reduced to 1 h
averages, then to 24-hr averages using periods
starting at 6 AM to better represent the child�s
exposure period and to avoid splitting the night into
two periods, and finally to weekly averages used in
the present analysis. In the baseline week when homes
received a filter, PM, PNC, and CO2 concentrations
were determined separately for the 3 or 4 days prior
to filter deployment and for the 3 or 4 days following
deployment. Duplicate VOC measurements were
averaged.
A wide range of variables from the walk-through and

caregiver surveys that were plausibly associated with
PM levels and/or filter performance were selected for
analysis. Additional variables were created to summa-
rize building conditions, for example, total number of
locations where deteriorating paint or water damage in
the home was noted.
Hourly meteorological data obtained from the

Detroit City Airport, located in northeast Detroit,
were processed to obtain daily averages of ambient
temperature, relative humidity, and wind speed.
Table S1 summarizes these data for the study period.
To help account for outdoor PM that can infiltrate

intohomes, ambient PM2.5measurementswere obtained
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fromDetroit area compliancemonitoring sites that were
representative of population exposure. Daily data were
obtained for four sites (Allen Park, Ambassador Bridge,
Dearborn, Newberry School) and every third day data
from five additional sites (Southwest High School,
Linwood, East 7 Mile, Livonia, Wyandotte). The
ambient data are summarized in Table S2; Figure 1
shows the location of the monitoring sites in Detroit.

Data analysis. Paired t-tests were used to test for
differences within the week and for seasonal effects.
Seasonal analyses were conducted with summer
defined as June, July, and August; fall as September,
October, and November; winter as January, February,
and March; and spring as April, May, and June.
Kruskal–Wallis nonparametric tests were used for
differences in medians, and F and Tukey�s tests for
means.
Statistical models were used to account for the

variation in PM levels among the households and to
distinguish and estimate effects of standard and
enhanced interventions. Variables potentially associ-
ated with indoor PM concentrations were drawn from
the walk-through and caregiver surveys, and relevant
indoor and outdoor measurements, and tested using
ANOVAs and simple regression models. Selected
variables were used in general estimating equation
(GEE) models, which account for repeated measures
(i.e., multiple visits to a home) and control for season,
smoking, filter use, intervention group, and other
factors. Because indoor and outdoor PM concentra-
tions were positively skewed, values were log-normally

transformed in these models. The three models
discussed below (and others used in exploratory and
sensitivity analyses) were estimated for three out-
comes: PM, 0.3–1.0 lm PNC, and 1–5 lm PNC.
Model 1 included all three randomization groups

and evaluated effects of both standard and enhanced
interventions:

Ci;t ¼ b0 þ b1IEnhanced;i þ b2IControl;i

þ b3DETSi;t þ b4AERLR;i;t þ b5AERBR;i;t

þ b6Cout;t þ b7Ti;t þ b8RHi;t þ b9Iwin;i;t

þ b10Ispr;i;t þ b11Isumn;i;t ð1Þ

where Ci,t = concentration in house i and time t
(baseline visit or seasonal visit 1, 2 or 3); IControl,i and
IEnhanced,i = indicator variables for randomization
into either the control and enhanced intervention
(HEPA filter plus AC) groups, respectively;
DETSi,t = detection of the ETS tracer; AERLR,i,t

and AERBR,i,t = AERs in living room and bedroom,
respectively (/h), Cout,t = log of outdoor PM2.5 con-
centration (lg/m3); Ti,t and RHi,t = average indoor
temperature (�C) and relative humidity (%), respec-
tively; Iwin,i,t, Ispr,i,t and Isum,i,t = indicator variables
for winter, spring and summer seasons, respectively;
and b0 through b11 = estimated parameters. The key
parameters are b1 and b2, the effect sizes of the
standard and enhanced interventions, respectively.
The main goal of model 2 was to evaluate differ-

ences between standard and enhanced intervention
groups while controlling for filter usage in each

   5 km

4 km 8 km 

Fig. 1 Map showing location of households, major highways, and secondary streets in Detroit. Also shown are locations of six Detroit
PM2.5 monitoring sites; directions and distances to three other sites just outside the city are also indicated. PM, particulate matter
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household, which was measured as the percent of time
the filter was used during the IAQ sampling period:

Ci;t ¼ b0 þ b1IEnhanced;i þ b2Usei;t þ b3Isum;i;t

þ b4Cout;t þ b5Ti;t þ b6RHi;t

þ b7AERLR þ b8AERBR

þ b9Swepti;t þ b10Childi þ b11Smokei

þ b12IEnhanced;i �Usei;t þ b13Usei;t � Isum;i;t
þ b14IEnhanced;i � Isum;i;t ð2Þ

where Usei,t = fraction of time the filter was used (%);
Swepti,t = indicator variable if the house had been
swept or dusted in the last 2 weeks; Childi = number
of children in household; Smokei = number of smok-
ers in the household; and other variables were defined
previously. This model contains three interaction terms
(discussed in Results), and it excludes observations
from the control group, which did not have filters.
To further investigate whether central ACs altered

effects of filters and to distinguish effects of the
standard and enhanced interventions, a third model
was stratified by both the season and the presence of
central ACs:

Ci;t ¼ b0 þ b1IEnhanced;i þ b2IControl;i

þ b3DETSi;t þ b4Cout;t þ b5Ti;t

þ b6RHi;t þ b7AERLR;i;t þ b8AERBR;i;t ð3Þ

Like the preceding models, model 3 was estimated
for the three outcomes (PM, 0.3–1.0 lm PNC, and 1–
5 lm PNC) and also for each of the four combina-
tions of the stratifying variables (summer 2010 vs.
other seasons, and presence or absence of central
ACs). This model has the advantage that interaction
terms are not needed (given the two levels of strati-
fication), but the disadvantage that each strata has a
small sample size.
Statistical models were run using several data sets,

starting with the �raw� data. Next, missing data was
imputed by multiple imputation using IVEWare (SAS
for Windows; Survey Research Center, Ann Arbor,
MI, USA), which draws missing values from distribu-
tions that characterize the conditional relationship of
imputed variables to other variables and which
accounts for the inter-season correlation of measure-
ments at the same house. Imputations used regression
models fitted to the current values of observed and
imputed data and an estimated posterior covariance
matrix (multivariate normal approximation). We also
ran models using a �partially� imputed data set, which
imputed values only if measurements were obtained at
that house in that season, for example, imputed data
simply completed any measurements that were missing
because of an instrumentation problem or other
failure. We considered models using the partially
imputed data set as the final and most representative,

and present results from this data set in this study. To
account for potential bias in assignments to the
intervention groups, we also estimated models using
only those households that �passed� the home inspec-
tion and were eligible for an AC. Differences among
the models, which usually were fairly minor, are
discussed in the study. The supplemental materials
present model estimates using the raw data set.
Following Zheng (2000), we computed a marginal R2

for each model (R2
m), which measures the fit of the

estimated model in a manner largely analogous to R2
m

for regression models.

Results and discussion

Household characteristics

The study homes were distributed across Detroit
(Figure 1). The homes were mostly modest 2- to 4-
bedroom single-family homes that varied widely in age
(<9 to >100 years). Most (88%) used forced air
heating systems, and 30% had central ACs. Most
(87%) had some water damage (mostly in basements),
and 26% had visible mold or mildew (most commonly
in bathrooms or kitchens). The average occupancy of
the homes was 1.7 ± 0.8 adults and 2.4 ± 1.4 chil-
dren; the highest was five adults and eight children.
Over half (60%) of the households included adult
smokers, although many households reported limiting
indoor smoking by prohibiting it, reducing it, or
restricting smoking to one room. Thirty-six percent
of the households had dogs or cats. Forty-four percent
of the caregivers reported using vacuum cleaners, and
all of the child�s sleeping areas were reported to have
been cleaned in the past 2 weeks by either vacuuming,
sweeping, or dusting. Additional characteristics of the
homes are listed in Table S3.
Although the numbers of households and visits

varied by season and were somewhat unbalanced,
group medians of all of the household and occupant
characteristics (listed in Table S3) did not vary signif-
icantly among control, standard, and intervention
groups (Kruskal–Wallis tests, P < 0.05). On this basis,
bias was not apparent in the randomization of house-
holds to the three groups.

Pollutant levels in residences

PM levels before filter deployment. Table 2 summarizes
PM and CO2 measurements with and without filters,
and Table 3 provides a seasonal breakdown. Concen-
trations obtained without filters are based on all
measurements in the control group (typically an 18-
day average: 6 days in each baseline and two seasonal
visits), and the baseline measurements in the two
intervention groups prior to filter deployment (typi-
cally a 2–3 day average), with each house weighted
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equally. Without filters, PM concentrations across
the study homes averaged 29 ± 23 lg/m3 (N = 114).
Concentrations varied across the three intervention
groups (P < 0.01), but this was largely attributable to

seasonal effects and the unbalanced sample sizes in
each season (discussed below). We did not find
systematic day-to-day or weekend–weekday differences
during the baseline sampling week (Du et al., 2011).

Table 2 PM, 0.3–1.0 lm PNC, 1–5 lm PNC, and CO2 measurements with and without air filters in baseline and seasonal visits for three groups

Outcome Group

Without filter use With filter use

n Average s.d. Median P-valuea n Average s.d. Median P-valuea

PM (lg/m3) Control 35 32.5 14.7 30.4 0.003
Standard 41 21.4 18.1 14.2 46 11.8 8.8 10.0 0.015
Enhanced 38 32.5 30.5 15.7 37 16.8 10.9 13.8
All 114 28.5 22.7 21.8 83 14.1 10.1 11.4

0.3–1.0 lm PNC (#/l) Control 35 94,757 46,653 80,498 <0.001
Standard 40 57,857 57,981 39,120 46 30,444 25,386 20,522 0.007
Enhanced 38 71,501 64,364 49,985 37 43,528 27,880 37,155
All 113 73,875 58,564 58,101 83 36,277 27,161 27,802

1–5 lm PNC (#/l) Control 35 1774 1470 1306 <0.001
Standard 40 1356 1361 839 46 459 403 325 0.042
Enhanced 38 1516 1470 933 37 623 467 542
All 116 1298 1325 846 83 532 438 399

CO2 (ppm) Control 35 925 304 843 0.022
Standard 46 1183 468 1011 46 966 260 912 0.923
Enhanced 40 1182 501 1079 39 972 287 953
All 121 1108 451 969 85 969 271 948

The CO2 average and SD may be underestimated (see text).
PM = particulate matter; PNC = particle number count.
aP-value from Kruskal–Wallis test.

Table 3 PM, 0.3–1.0 lm PNC, 1–5 lm PNC, and CO2 measurements for three groups by season

Outcome Season

Control Standard Enhanced All groups R (%)

n Average s.d. Median n Average s.d. Median n Average s.d. Median n Average s.d. Median Standard Enhanced

PM (lg/m3) Spring 26 30.7 17.7 24.7 36 13.7 13.2 10.2 33 17.9 15.2 14.0 95 19.8 16.6 16.4 59 43
Summer 42 36.7 20.3 31.9 46 12.0 9.2 9.7 31 16.5 11.9 13.1 119 21.9 18.3 17.0 70 59
Fall 10 27.6 12.9 27.0 22 11.7 13.6 7.5 15 23.2 21.9 14.6 47 18.7 17.6 15.4 72 46
Winter 12 24.0 12.9 26.9 11 2.8 2.9 2.3 12 8.3 11.7 5.0 35 12.0 13.6 6.1 91 81
All 90 32.2 18.4 28.9 115 11.6 11.4 8.8 91 17.0 15.4 12.0 296 19.6 17.3 14.7 69 58
P-valuea 0.083 0.001 0.010 0.001

0.3–1.0 lm PNC (#/l) Spring 26 80,961 47,165 69,370 36 28,563 29,224 19,566 33 38,145 35,088 28,737 95 46,232 42,484 34,780 72 59
Summer 39 112,422 58,390 98,683 45 43,603 36,759 33,983 31 57,649 36,837 58,419 115 70,728 54,284 61,323 66 41
Fall 10 113,567 67,077 104,557 24 18,503 20,723 11,843 15 46,138 57,823 25,741 49 46,364 57,910 23,025 89 75
Winter 10 40,437 21,342 32,893 13 7185 9,291 3,152 15 34,537 62,899 13,563 38 26,732 42,959 13,588 90 59
All 85 94,464 57,727 84,037 118 29,897 31,838 19,355 94 45,277 45,255 33,094 297 53,244 52,107 37,479 77 61
P-valuea <0.001 <0.001 0.007 <0.001

1–5 lm PNC (#/l) Spring 26 2119 2362 1212 36 610 690 362 33 783 791 472 95 1083 1512 658 70 61
Summer 39 1669 1739 1122 45 501 553 273 31 552 444 420 115 911 1215 565 76 63
Fall 10 1703 979 1325 24 367 410 213 15 862 1101 453 49 791 937 453 84 66
Winter 10 1421 1122 1150 13 93 100 52 15 352 468 202 38 545 828 191 95 82
All 85 1781 1823 1175 118 462 562 259 94 651 725 405 297 900 1246 477 78 66
P-valuea 0.653 <0.001 0.134 0.001

CO2 (ppm) Spring 25 909 297 904 36 971 301 976 33 927 281 846 94 939 291 898 )8 6
Summer 38 921 494 717 46 765 289 695 32 892 396 787 116 851 398 704 3 )10
Fall 10 895 215 858 29 1232 477 1043 22 1056 430 984 61 1113 440 1010 )22 )15
Winter 11 1022 464 864 19 1022 475 828 18 1066 533 909 48 1038 485 862 4 )5
All 84 927 408 791 130 964 407 861 105 967 400 866 319 955 404 846 )9 )9
P-valuea 0.515 <0.001 0.298 <0.001

Results for standard and enhanced groups exclude baseline measurements without filter. CO2 average and s.d. may be underestimated (see text).
PM = particulate matter; PNC = particle number count; R = reduction in control (%, median concentrations).
aP-value from Kruskal–Wallis test.
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However, seasonal variation was strong, for example,
PM levels fell to 24 ± 13 lg/m3 during the winter in
the control group, and proportionately larger changes
were seen in 0.3–1 lm PNC concentrations (Table 3).
The three PM measures were highly correlated, for

example, correlation coefficients between PM and 0.3–
1.0 and 1–5 lm PNCs were 0.72 and 0.74, respectively
(N = 279 and 279), and 0.81 (N = 297) between the
two PNC measurements (Pearson r, log values, weekly
averages, all groups). Despite the high correlation,
different factors influenced these outcomes, as shown
later in statistical modeling.
The PM concentrations are comparable to levels

measured in other US cities. In 137 mostly non-
smoking households in the DEARS study in Detroit,
MI, PM2.5 and PM2.5–10 (fine and coarse fraction)
measured in living rooms averaged 19 ± 20 and
13 ± 19 lg/m3, respectively (Williams et al., 2009),
thus giving a PM10 average of 33 lg/m3, and indoor
PM2.5 concentrations were lower in winter than sum-
mer by 5 lg/m3 (Rodes et al., 2010). In an earlier
Detroit study examining 20 homes, PM2.5 concentra-
tions in smokers� homes averaged 34 ± 11 and
45 ± 22 lg/m3 in summer and winter, respectively,
and PM10 averaged 54 ± 14 lg/m3 and 69 ± 47 lg/
m3; in non-smokers� homes, PM2.5 averaged 22 ± 15
and 18 ± 9 lg/m3, in summer and winter, respectively,
and PM10 averaged 36 ± 17 and 30 ± 14 lg/m3

(Keeler et al., 2002). These studies suggest that PM
levels decrease in non-smoker�s homes in winter, but
increase in smoker�s homes. In the present study, the
lower wintertime levels may result from filters in the
forced air heating systems used in most of the study
homes, which typically utilize low efficiency filters that
remove some PM when the house is heated and air is
circulating. The higher levels in smokers� homes in
winter may be due to more indoor smoking (because it
may be too cold to smoke outdoors) and enhanced
distribution of ETS throughout the house because of
the operation of the mechanical (forced air) heating
system. Some of the effect of these factors may be
countered by seasonal changes in AERs, which
increased slightly in winter (as described later).

PM levels after filter deployment. After filter deploy-
ment, PM concentrations in both standard and
enhanced intervention groups were well below levels
in the control group. With the filters deployed,
concentrations averaged 14 ± 10 lg/m3 (N = 83),
based on the multiseason household average (typically
2–3 days of the baseline visit and 6 days in each of two
seasonal visits; Table 2). On this basis, filters reduced
levels by 15 ± 13 lg/m3 or 50% from pre-intervention
levels. Both PNC sizes showed comparable or larger
reductions. Thus, filters effectively controlled PM in at
least the 0.3–5.0 lm size range. We previously reported
higher removals for the same filters in an analysis that

required filter use to exceed 75% (Batterman et al.,
2005; Du et al., 2011). The assessment in the present
study is more representative because no such constraint
was imposed.
The seasonal variation seen in baseline measure-

ments without filter use was also seen when filters were
deployed (Table 3). PM, 0.3–1.0 PNC, and 1–5 lm
PNC concentrations were lowest in winter, sometimes
by a large amount; PM and 0.3–1.0 lm PNC levels
were highest in spring, summer, and fall; and 1–5 lm
PNC levels were highest in spring (although only
several of the 1–5 lm PNC changes were statistically
significant). The similarity between PM and 0.3–1.0 lm
PNC trends suggests that small particles (<1 lm)
accounted for the majority of PM. Compared to the
control group, the standard and enhanced groups had
significantly lower PM levels in each season, for
example, PM concentrations in the standard interven-
tion group were 59–91% lower; 0.3–1.0 lm PNC levels
were 66–90% lower, and 1–5 lm PNC levels were 70–
95% lower. Reductions in the enhanced group tended
to be smaller: PM concentrations in the standard
intervention group were 43–81% lower; 0.3–1.0 lm
PNC levels were 41–75% lower, and 1–5 lm PNC
levels were 61–82% lower. These comparisons do not
control for differences between groups, for example,
filter usage or ETS.

CO2 levels. The median and interquartile range of CO2

levels in the households before filters were deployed
were 969 and 593 ppm, respectively (N = 121;
Table 2). Median CO2 levels among the three groups
differed before but not after filters were installed. CO2

levels tended to be lowest in summer and highest in fall
and winter (Table 3). Short-term levels frequently
exceeded the instrument�s range (about 2100 ppm),
thus the average, standard deviation, and maximum
statistics for CO2 in Tables 2 and 3 are underestimated;
however, medians are accurate.
CO2 levels exceeding 1000 ppm above the ambient

level (about 380 ppm) indicate low ventilation and/or
crowding (ventilation rate <7 l/s/occupant) (Morey
et al., 2011), which can increase concentrations from
building emission sources and indicate excess humidity,
a concern for biological contaminants. A total of 38
homes (30%) experienced at least 1 week during the
study in which the median weekly CO2 level exceeded
1380 ppm. The CO2 statistics are based on multiday
averaging periods that include times when children
(and others) are not at home. Consequently, CO2 levels
during occupied periods were considerably higher.

Outdoor PM concentrations. Long-term PM2.5 concen-
trations measured at the nine ambient monitoring sites
were similar (8.4–11.7 lg/m3), and the multisite
average was 10.0 ± 1.0 lg/m3. Daily PM2.5 levels
across these nine sites were highly correlated
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(0.86 < r < 0.98). Some seasonal variation was seen,
for example, concentrations were often highest in
winter (MDEQ, 2010), although no consistent patterns
were seen over the study period (Table S2). A daily
spatial average of outdoor PM2.5 measurements was
computed for use in subsequent statistical analyses.
Over the study period, the spatial average had a
mean concentration of 10.8 ± 5.6 lg/m3, range from
1 to 34 lg/m3, and 90th percentile concentration of
18 lg/m3.
Ambient PM2.5 levels were weakly correlated with

the indoor measurements; for example, considering all
groups, the correlation coefficients between ambient
PM2.5 and indoor PM, 0.3–1.0 lm and 1–5 lm PNC
concentrations were 0.12, 0.30, and 0.05, respectively
(N = 279, 279 and 279, log values), and slightly
higher, 0.21, 0.37, and 0.07 (N = 86, 85 and 85) for
homes without filters. On a seasonal basis, indoor and
outdoor levels did not show similar trends.
Overall, outdoor PM2.5 levels were about one-third

of pre-filter indoor levels. However, the outdoor PM2.5

measurements excluded the coarse fraction PM that
was included in the indoor measurements. In addition,
monitoring at central sites may not be representative of
neighborhood levels. Recent studies in Detroit show
that spatial gradients are sometimes significant for
PM2.5 (Rodes et al., 2010) and more frequently impor-
tant for coarse fraction PM (PM10–2.5; Thornburg
et al., 2009) because of the influence of local sources
such as industry and highways. Residence- or neigh-
borhood-specific ambient PM measurements would
provide more information, but such measurements
were unavailable, and we could not validate alternate
measures, for example, use of the nearest monitor.
Because the nine sites in Detroit showed close agree-
ment, however, the spatial average should provide a
useful and generally representative estimate of PM2.5

levels.

Air exchange rates

AERs in the homes averaged 0.73 ± 0.76/h (med-
ian = 0.57/h, N = 263) and varied seasonally
(P = 0.002), for example, AERs were highest in winter
(0.88 ± 0.63, median = 0.74) and lowest in spring
(0.57 ± 0.55, median = 0.40). AERs in the bedrooms,
which include exchange to other spaces in the house,
averaged 1.66 ± 1.50/h (median = 1.23/h, N = 253)
and also varied seasonally (P = 0.049). Median AERs
in both homes and bedrooms did not differ among the
randomization groups throughout the study or in
summer 2010 when the enhanced intervention group
received a room AC. For a given building, the AER is
largely driven by the indoor–outdoor temperature
gradient and wind speed (Breen et al., 2010). Thus,
owing to both the higher temperature gradient and
faster wind speed (Table S1), higher AERs are

expected in winter. The higher AERs coupled with
the slightly higher levels of outdoor PM in winter
(Table S2) might be expected to increase indoor PM
levels. However, AERs generally were not significantly
associated with indoor PM levels. As discussed later in
�Statistical models�, this may result from confounding
with other factors, for example, PM removal by
furnace filters used in the winter, the relatively modest
variation in outdoor PM levels and AERs, and the
limitations of the AER measurement, including the
time averaged results provided and the assumption that
each zone is fully mixed (Batterman et al., 2006).
Across all seasons, homes with a central AC (as
compared to a room AC just discussed) had lower
AERs compared to other homes, for example, averages
and medians changed by about 10–20%. These differ-
ences were statistically significant for the whole house
AER (P = 0.012) but not the bedroom AER
(P = 0.62). Effects were largest in summer when
homes with a central AC had both lower and more
consistent AERs (0.50 ± 0.38, median = 0.38,
N = 24) compared to other homes (0.98 ± 1.44,
median = 0.68, N = 36; P = 0.030, Mann–Whitney
test). The differences in non-summer seasons suggest
that homes with central air conditioning may be
tighter, for example, better weatherized. Central air
conditioning also increased bedroom AERs by 10–
20%, possibly reflecting air circulation through the
heating, ventilation and air conditioning (HVAC)
system, although these changes were not significant.
Contrary to expectations, providing room ACs to the

enhanced intervention group did not significantly alter
AERs in either the house or the bedroom, that is, there
continued to be no statistical difference between the
three groups. However, the enhanced intervention
group tended to have slightly lower house AERs and
sometimes much lower bedroom AERs. This suggests
that the room ACs did not significantly affect house
AERs and that bedroom AERs may have been slightly
lowered using the room AC in conjunction with a (at
least partially) closed bedroom door, as occupants were
instructed. Again, these changes were not statistically
significant.

Filter use

Filter use across the study population, depicted in
Figure 2, shows several patterns. First, use varied
widely among participants, from 0% to 100%, over the
five periods reported (Table S4 provides more details).
Second, on average, filter use was high (average
use = 70 ± 33%, N = 228) during the baseline (lat-
ter half) and seasonal visits (week-long periods during
which staff repeatedly visited households to conduct
monitoring and interviews). Still, use dropped from the
first (baseline) visit (83 ± 27%, N = 73) to subse-
quent seasonal visits (first season visit, 63 ± 34%,
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N = 79; second seasonal visit, 64 ± 31%, N = 69;
third seasonal visit, 46 ± 35%, N = 7). Use during
the first two seasonal visits did not vary (P = 0.70,
Mann–Whitney test.) Third, in the several months
between the baseline and seasonal visits, and between
seasonal visits, use dropped to 34 ± 30% (N = 143),
roughly half that during weeks when IAQ monitoring
took place. Finally, filter use in the standard interven-
tion group (75 ± 30%, N = 126) was slightly but
statistically higher than that in the enhanced group
(63 ± 34%, N = 102; P = 0.01, Mann–Whitney
test.) The key results are that filter use varied greatly
among individual households and declined over time.
While participants were blinded to the filter use
measurements, they were informed about the operation
and potential benefits of the filters for their asthmatic
child, the filter was provided for free, and the costs of
its electricity consumption was reimbursed.
Patterns of filter use have not been previously

reported. In designing this study, we had considered
the filter intervention to be largely passive in nature,
requiring essentially no action by the caregiver, that is,
the filter would simply be left on continuously. The
initially high use may reflect a �novelty� effect when
the filter was first introduced to the participants. The
higher usage during seasonal visits when our staff were
present might represent a �good behavior� effect,
reflecting participants� understanding that filters were
to be used as much as possible, and also a �Hawthorne�
effect in which our observations altered individual
behaviors. The low use during the long periods
between IAQ monitoring may also reflect an �eco-
nomic� perception that filter use significantly increased
the household�s electricity consumption, although this
cost was reimbursed. Clearly, knowledge of such trends
and the factors influencing behavior are critically
important for �active� interventions that depend on
participant compliance. The use data acquired in the
present study will be addressed in future analyses, but
the patterns in study households suggest that exposure

and epidemiological studies that use air filter interven-
tions and that do not account for filter use will be
biased toward the null. Our findings regarding filter use
may apply primarily to intervention studies in which
participants are actively recruited and enrolled. Filter
use may be higher and more consistent when a family
seeks out and purchases a filter unit, a situation in
which both greater knowledge of PM�s effect on health
and motivation to use the filter are expected.

Environmental tobacco smoke

ETS tracers were detected in a total of 34 homes, most
commonly in both the living room and the bedroom.
Both tracers and positive survey responses for smoking
were found for 19 homes, but tracers were found in an
additional 15 homes where smoking was not reported
by respondents. Additionally, smoking was reported in
19 homes where tracers were not detected. Thus, the
concordance (inter-method agreement) of these meth-
ods is not particularly high. Because the ETS tracer
measurements were week-long measurements, they do
not indicate the temporal pattern of smoking or if the
child was present. The discord between ETS detections
and survey responses suggests that many respondents
understood the significance of smoking but could not
control smoking use in the home. In eight homes, levels
of the tracer were sometimes higher in the child�s
bedroom than in the living room, suggesting that
smoking took place in the bedroom.
Table 4 shows PM and CO2 concentrations stratified

by the detection of the ETS tracer. Across the three
randomization groups and prior to filter deployment,
ETS tracer detection was associated with an increase of
12 ± 35 lg/m3 in PM concentrations and significant
changes in PNC levels. Still larger increases were
associated with ETS in standard and enhanced inter-
vention groups. (In a few cases, PNCs may have been
underestimated because of coincident errors, which
occurs at about 600,000 # per l for the instrument
used.) The estimated ETS contribution was smaller
when analyses were based on survey data, a result of
misclassification (Du et al., 2011). With filter use,
concentrations fell by about half, and ETS detection
was associated with a 13 ± 22 lg/m3 increase in PM,
nearly the same as just noted, although PNC incre-
ments were reduced. A seasonal analysis shows similar
trends (Table S6). Thus, filters reduced PM concentra-
tions in smokers� and non-smokers� homes alike;
however, the ETS contribution to PM exposures
remained about the same. This may occur because of
the episodic nature of ETS, which greatly but briefly
elevates PM concentrations whether or not the filter is
present.
ETS is a well-known contributor to indoor PM. As

examples, in three large studies (>150 homes), ETS
contributed from 12 to 45 lg/m3, depending on the
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Fig. 2 Filter use over study, showing week-long baseline and
seasonal visits, and multi-month long �inter-season visit� periods.
Figure shows median, interquartile, and 10th and 90th percentile
use for each period. Total sample size = 358. Third seasonal
visit not shown
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numbers of smokers and cigarettes smoked (Wallace,
1996); in five RIOPA study homes where ETS was
reported, the median PM2.5 concentration increased
by 9 lg/m3 compared to non-smoking homes (Meng
et al., 2009); indoor PM2.5 levels measured in the
EXPOLIS study increased from 10 to 48 lg/m3

depending on the number of smokers present and
based on a model that controlled for several covariates
(Lai et al., 2006); and smoking elevated PM2.5 concen-
trations by 33 lg/m3 in inner city Baltimore homes
(Breysse et al., 2005). Because most ETS is less than
2 lm in dia (Nazaroff et al., 1993), larger changes in
the 0.3–1 lm PNC were expected. In the present study,
ETS increases were somewhat smaller than seen in
other studies, probably because air sampling was
conducted in the child�s bedroom while most smoking
likely occurred elsewhere in the residence, and because
caregivers were aware of the need to limit ETS
exposure to their asthmatic child. Still, PM levels in
bedrooms were notably elevated when the ETS tracer
was detected.

Statistical models of intervention effectiveness

A number of house characteristics, occupancy vari-
ables, and meteorological variables were associated
with indoor PM levels (Table S5). Significant param-
eters in model 1 for the three PM outcomes included
intervention type, ETS detection, outdoor PM levels,
temperature, relative humidity, and spring and summer
seasons (Table 5). The outdoor PM2.5 concentration
was a significant predictor for PM and nearly signif-
icant for 0.3–1.0 lm PNC. Effects of standard and
enhanced interventions, referenced to the control
group and averaged across seasons and house-
holds, can be estimated as a percentage change in
concentrations as 100% [1 ) exp()b1)] and 100%

[1 ) exp()b1 + b2)], respectively. The standard inter-
vention reduced PM, 0.3–1.0 lm PNC, and 1–5 lm
PNC concentrations by 56%, 62% and 67%, respec-
tively, while the enhanced intervention group attained
smaller reductions of 41%, 45% and 54%, respectively.
While they have similar magnitudes, these reductions
are more consistent than estimates based on (uncon-
trolled) stratified analyses (Tables 2 and 3). Using
model 1 with the estimated coefficients and parameter
averages, ETS detection was associated with an
increase of 8.8 lg/m3 in PM in the control homes,
smaller than the 14.4 lg/m3 estimated from the raw
(unimputed) data (Table 2). The effect sizes attributed
to the interventions, smoking, and other variables
decreased when the imputed data were used, for
example, using the raw data, the magnitudes of the
coefficients were larger (Table S7), and the effect of
cigarette smoking was exactly matched. A second effect
of imputation was to reduce the effect of seasonal
variability, which can be particularly sensitive to
sample size in the present data set; this along with
the reduced size of confidence intervals is the major
benefit of imputation in the present application.
Overall, models using raw and imputed data were very
similar, and generally the same variables were signif-
icant and influential.
Table 6 shows results for model 2, which incorpo-

rated additional covariates and interactions, and which
used data from only the standard and enhanced
interventions. Significant variables for most outcomes
were filter use, ambient PM2.5 concentration, and
number of smokers in the household. Filter use was a
strong predictor, and parameter b2 (which multiplies
filter use in percent) is a key result. Based on the
estimated coefficients, the (theoretical) reduction
achieved with 100% filter use is 56, 60, and 61% for
PM, 0.3–1.0 lm PNC, and 1–5 lm PNC, respectively

Table 4 Particle concentrations stratified by detection of environmental tobacco smoke (ETS) tracers

Outcome

No ETS tracer With ETS tracer Difference

n Average s.d. n Average s.d. Average s.d.

Without filter use (Control, Standard and Enhanced groups)
PM (lg/m3) 128 26.6 17.9 41 39.0 29.8 12.4 34.8
0.3–1.0 lm PNC (#/l) 124 61,987 41,911 39 137,806 75,714 75,820 86,540
1–5 lm PNC (#/l) 124 1412 1328 39 2262 2285 850 2643
CO2 (ppm) 131 1045 465 39 1093 461 47 655

Without filter use (Standard and Enhanced groups)
PM (lg/m3) 62 21.6 20.6 18 42.8 32.9 21.1 38.8
0.3–1.0 lm PNC (#/l) 61 44,734 33,950 17 135,444 82,714 90,710 89,410
1–5 lm PNC (#/l) 61 1240 1285 17 2131 1639 891 2083
CO2 (ppm) 68 1161 466 18 1264 539 103 712

With filter use (Standard and Enhanced groups)
PM (lg/m3) 172 11.7 11.1 35 25.1 18.5 13.4 21.6
0.3–1.0 lm PNC (#/l) 176 28,603 26,278 37 74,319 61,924 45,716 67,269
1–5 lm PNC (#/l) 176 472 569 37 884 851 412 1024
CO2 (ppm) 196 943 405 40 1052 409 109 575

PM = particulate matter; PNC = particle number count.
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(calculated as 100% {1 - exp[b2 100]}). The second key
result of model 2 is that all coefficients involving
IEnhanced, including the interaction terms, were not
significant, indicating that standard and enhanced
interventions did not differ. Rather, the positive
although not statistically significant coefficients on
IEnhanced and IEnhanced · Use terms again suggest lower
removals by filters when an AC was present. Model 2
also shows that outdoor PM2.5 concentrations and
indoor smoking were significant predictors of the three
PM measures. Results were very similar in models
using the �raw� data (without imputations; Table S8),
although effect sizes were stronger, as noted above. In
addition, these models show that ambient PM2.5 did
not affect 1–5 lm PNC measurements; the number of

children were significant predictors of the three PM
outcomes; and sweeping/dusting tended to increase
1–5 lm PNC measurements (but with marginal statis-
tical significance). Sweeping/dusting and children rep-
resent local emission �sources�, for example, children�s
activity can entrain dust, primarily coarse fraction PM.
Model 3 was designed to identify effects caused by

(existing) central and room ACs. A key goal in
reviewing results, shown in Table 7, was to determine
whether b1 was significant, which would indicate that
the enhanced intervention improved air quality over
the standard intervention, presumably due to the room
AC. In summer with homes without central air
conditioning, when the room AC was installed and
potentially operating, b1 was positive for the three

Table 5 General estimating equation estimates for model 1 for PM, 0.3–1.0 lm PNC, and 1–5 lm PNC

Variable

log PM log 0.3–1.0 lm PNC log 1–5 lm PNC

Est. s.e. Est. s.e. Est. s.e.

Intercept 0.912 0.433 7.595 0.522 5.746 0.587
IEnhanced 0.291 0.108 0.368 0.138 0.322 0.161
IControl 0.826 0.098 0.960 0.121 1.106 0.150
DETS 0.433 0.106 0.854 0.118 0.458 0.144
AERLR 0.099 0.058 0.046 0.061 0.040 0.085
AERBR 0.034 0.026 0.047 0.025 0.029 0.035
ln(Count) 0.247 0.110 0.216 0.130 0.150 0.129
T 0.014 0.012 0.045 0.017 )0.012 0.017
RH 0.013 0.004 0.016 0.005 0.008 0.006
IWinter )0.089 0.153 0.092 0.166 )0.322 0.212
ISpr )0.123 0.127 )0.125 0.131 )0.328 0.152
ISum )0.316 0.114 0.030 0.150 )0.601 0.149
Sample size 378 378 378
R2

m 0.264 0.326 0.172

Bolded values are significant at a = 0.05.
AER = air exchange rates; PM = particulate matter; PNC = particle number count.

Table 6 General estimating equation estimates for model 2 for PM, 0.3–1.0 lm PNC, and 1–5 lm PNC

Variable

log PM log 0.3–1.0 lm PNC log 1–5 lm PNC

Est. s.e. Est. s.e. Est. s.e.

Intercept 0.830 0.522 8.178 0.591 5.501 0.683
IEnhanced 0.063 0.214 0.205 0.311 0.456 0.326
Use )0.008 0.002 )0.009 0.003 )0.010 0.003
ISum )0.256 0.182 0.426 0.244 )0.654 0.274
log Cout 0.379 0.134 0.371 0.150 0.336 0.152
T 0.022 0.017 0.038 0.021 )0.013 0.023
RH 0.011 0.004 0.003 0.005 0.004 0.006
AERLR 0.123 0.094 0.082 0.108 0.121 0.131
AERBR 0.046 0.032 0.049 0.032 0.035 0.044
Swept 0.020 0.041 0.073 0.050 0.062 0.058
Child 0.057 0.050 )0.010 0.057 0.030 0.073
Smoke 0.116 0.053 0.336 0.057 0.223 0.071
IEnhanced · Use 0.003 0.002 0.002 0.004 )0.003 0.004
Use · Isum )0.003 0.002 )0.004 0.003 0.004 0.003
IEnhanced · Isum )0.096 0.139 )0.084 0.222 )0.050 0.225
Sample size 273 273 273
R2

m 0.225 0.306 0.171

Bolded values are significant at a = 0.05.
AER = air exchange rates; PM = particulate matter; PNC = particle number count.
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outcomes but statistically insignificant. (Models for the
raw data, shown in Table S9, are similar but b1 was
significant for 0.3–1.0 lm PNC.) In summer in homes
with central air conditioning, b1 was also positive for
the three outcomes and significant for PM and 1–5 lm
PNC. Positive values indicate higher concentrations in
the enhanced intervention as compared to the standard
intervention; thus, the room ACs appeared to increase
PM concentrations. However, other factors must be
considered to interpret results. For example, the
enhanced and standard interventions should have been
equivalent in seasons other than summer. This is
supported in the homes with central air conditioning
where b1 was not significant, but b1 was positive and
significant for the three outcomes in homes without
central air conditioning, again indicating higher con-
centrations in the enhanced group. This trend also was
shown in the unadjusted statistics presented earlier for
both pre- and post-intervention cases (Tables 2 and 3).
Higher PM concentrations in the enhanced interven-

tion group could have occurred for many reasons, for
example, the presence of strong indoor emissions (like
smoking), lower AERs associated with ACs, or greater
air exchange between the bedroom and other spaces
(possibly to distribute the cool air). While differences
were not statistically significant, the standard interven-
tion group had more homes with forced air systems
than the enhanced group (94 vs. 82%), and more

homes with central air conditioning (38 vs. 22%;
Table S3). As mentioned, heating and cooling of these
homes would remove some PM because of the furnace
air filter. Also, while smoking rates and smoking rules
in the two intervention groups did not differ statisti-
cally (Table S3), ETS tracers were detected more
frequently in the enhanced group, specifically, in 23%
of visits (26 of 115 visits) as compared to 11% of visits
(15 of 137 visits) in the standard group. [ETS was
detected in 24% of visits (23 of 94 visits) to the control
group.] Unfortunately, the sample size does not permit
further stratification or interactions that jointly address
smoking, central and room air conditioning, season,
and intervention group. Another possibility is a differ-
ential in the assignment of intervention groups. This
was evaluated by re-estimating model 3 for only those
households that passed the screening visit (representing
64% households). In summer for homes without
central air conditioning, these models were similar to
those just discussed except that b1 was now statistically
significant and positive, showing a detrimental effect of
the room AC. The more important result is that during
the balance of the year, while models using the data
subset had very similar values of b1, as seen earlier, this
coefficient was not significant for any outcome in
homes with or without central air conditioning. This
change, the loss of significance, could represent bias in
assigning the intervention group; however, since only

Table 7 General estimating equation estimates for model 3 for PM, 0.3–1.0 lm PNC, and 1–5 lm PNC showing models stratified by summer 2010 and by central air conditioning

Variable

All seasons except summer 2010 Summer 2010

log PM log 0.3–1.0 lm PNC log 1–5 lm PNC log PM log 0.3–1.0 lm PNC log 1–5 lm PNC

Est. s.e. Est. s.e. Est. s.e. Est. s.e. Est. s.e. Est. s.e.

With central air conditioning
Intercept 1.486 0.932 8.891 0.929 5.392 1.719 )1.245 1.728 8.327 3.524 6.390 2.194
Enhanced )0.155 0.229 )0.198 0.267 )0.398 0.352 0.479 0.184 0.153 0.219 0.704 0.253
IControl 0.507 0.220 0.711 0.253 0.860 0.357 1.101 0.269 0.762 0.319 1.423 0.281
DETS 0.836 0.227 1.177 0.253 0.857 0.317 0.567 0.264 1.268 0.265 1.013 0.299
log Cout 0.104 0.378 0.422 0.216 0.369 0.501 0.325 0.348 )0.007 0.328 )0.371 0.412
T )0.017 0.031 )0.058 0.039 )0.066 0.045 0.035 0.039 )0.013 0.063 )0.071 0.048
RH 0.017 0.008 0.020 0.007 0.018 0.009 0.028 0.014 0.036 0.034 0.020 0.022
AERLR 0.432 0.139 0.323 0.199 0.324 0.326 0.308 0.209 0.349 0.240 0.426 0.234
AERBR )0.011 0.082 0.103 0.087 0.063 0.117 0.103 0.070 0.095 0.083 0.160 0.075
Sample size 73 73 73 47 47 47
R2

m 0.089 0.117 0.119 0.556 0.429 0.400
Without central air conditioning

Intercept 0.625 0.523 7.422 0.674 4.974 0.726 12.963 27.266 4.952 2.133 4.117 4.549
IEnhanced 0.353 0.142 0.450 0.190 0.452 0.208 )0.193 1.207 0.411 0.259 0.011 0.432
IControl 0.714 0.144 1.038 0.157 1.049 0.222 1.552 1.593 1.056 0.378 0.720 0.659
DETS 0.348 0.138 0.894 0.152 0.465 0.171 1.030 1.059 0.694 0.519 0.925 0.627
log Cout 0.345 0.177 0.301 0.291 0.312 0.226 0.040 1.364 0.122 0.475 0.995 0.987
T 0.017 0.019 0.049 0.023 )0.004 0.026 )0.418 0.820 0.085 0.068 )0.125 0.158
RH 0.013 0.005 0.012 0.005 0.011 0.006 )0.010 0.121 0.052 0.035 0.044 0.049
AERLR 0.092 0.105 0.046 0.124 0.058 0.155 0.806 2.234 0.015 0.492 0.184 0.867
AERBR 0.034 0.054 0.056 0.069 )0.041 0.063 0.225 0.341 )0.010 0.069 0.036 0.189
Sample size 167 167 167 91 91 91
R2

m 0.179 0.981 0.937 NC NC NC

Bolded values are significant at a = 0.05. NC denotes that an R2
m value could not be obtained.

AER = air exchange rates; PM = particulate matter; PNC = particle number count.
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the standard error of b1 changed, it appears to be
mostly an effect of sample size.
A second goal of model 3 was to determine whether a

central AC altered the filter�s effect, shown primarily by
parameter b2 (which multiples IControl,i, the variable
denoting a control home). In nearly all cases, this
coefficient was significant. In summer, we did not see
consistent patterns in comparing b2 for households
with and without central ACs; for example, summer
values of b2 for PM and 0.3–1 lm PNC were smaller
for homes with air conditioning, but b2 was larger or
comparable using the raw data. Other seasons showed
similar inconsistencies and differences among the three
PM measures. Overall, these results do not show strong
or consistent effects when a central AC was present.
Like room ACs, central ACs can cause several effects.
First, air circulated while cooling (and heating) can
increase AERs in the space where the free-standing
filter is installed, potentially lowering the reduction (in
lg/m3) that can be achieved using the filter. Second, air
circulating through the heating/cooling system may
also be filtered (depending on the type of �furnace filter�
installed), which will decrease PM levels throughout
house. Third, homes with central air conditioning had
lower AERs, especially in summer, which can either
increase or decrease concentrations, depending on the
relative strengths of indoor and outdoor sources.
Because the statistical modeling used the logarithm of
concentrations, the estimated parameters more closely
represent the filter efficiency or percentage reduction in
PM levels, which should have been unchanged even
though the absolute reduction, for example, in terms of
lg/m3, may have been smaller in some homes with
central air conditioning.

Need for repeated measures

The multiseason and repeated measures used in this
study enabled an understanding of the long-term
effectiveness of air filters for controlling air pollutants.
Both indoor and outdoor PM concentrations, along
with many of the factors governing pollutant levels,
can vary by season. Consequently, representative and
long-term concentration estimates can be obtained
only using multiple measurements obtained in different
seasons. Short-term variation in pollutant levels, for
example, hour-to-hour and day-to-day variation, can
also be large. Because we used mostly week-long
averages, short-term variation is not expected to affect
our conclusions. A second finding, not unique to this
study but worth emphasizing, are the many determi-
nants of PM concentrations. In addition to filter
operation and season, PM concentrations in the
present study were associated with ETS, number
of children, outdoor pollutant levels, sweeping and
dusting, outdoor PM2.5 concentration, central air
conditioning, number of smokers, indoor/outdoor

temperature and relative humidity, and AERs. In the
intervention, the use of filters became the dominant
factor affecting indoor concentrations; the largest
influences in homes without filters are outdoor levels
and smoking (Meng et al., 2009). The GEE models
account for many factors potentially affecting filter
performance, but they did not change the fundamental
conclusions drawn in the unadjusted analyses. How-
ever, they tended to temper the effect size and to reduce
variability.
The dynamic and widely varying patterns of filter use

among the households are striking. Some households
used the filter continuously, others not at all, and filter
use tended to decline over time. These findings would
not have been found without repeated measures.

Strengths and limitations

This study evaluated a large number of occupied
homes in a susceptible population of primarily low-
income African Americans with an asthmatic child.
Both integrated and continuous measurements over a
week�s time in multiple seasons were used to evaluate
effects of air filters, ACs, seasonal variability, AERs,
outdoor PM levels, and other factors that can influence
indoor PM levels. The filter use measurements turned
out to be instrumental as filter use in many of the
households did not follow our expectations that this
was a primarily passive intervention.
The study has several limitations. The numbers of

homes in each group and season were not balanced,
although home characteristics did not vary among
groups. We emphasized weekly average data, and thus
our analysis does not address short-term fluctuations.
Limited information was available pertaining to PM
emissions and determinants, for example, occupant
activity, and window and door opening. While three
types of PM measurements were utilized, the gravi-
metric measurements were not size-selective, although
PM appeared to be dominated by small (<1 lm dia)
particles based on correlations with 0.3–1.0 lm PNCs,
seasonal variations, and the literature. Indoor and
outdoor emissions and concentrations were assumed to
be independent of filter installation and operation; this
could only be partly confirmed by the CO2 measure-
ments or adjusted in the statistical models. Still, we
have some concern that the filter�s noise and drafts
could either drive children away or possibly attract
children (and maybe smokers). While we had contin-
uous measurements regarding filter use, AC use was
not monitored. The room AC units installed in the
study homes did not provide forced ventilation. There
may be biases due to the randomization into the three
groups, although our examination did not show
significant effects. Our sample size did not permit
analyses that simultaneously accounted for interactions
between season, filter use, air conditioning, and
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smoking. Finally, the results and statistical models may
not apply to other cities or populations, although PM
levels and the housing stock appear fairly typical of
many residences in northern and eastern US cities.

Conclusions

Air quality parameters were monitored in 126 homes of
asthmatic children in Detroit during 1-week periods in
three or four seasons per year. Prior to the interven-
tion, PM concentrations averaged 28 ± 34 lg/m3.
When present, ETS elevated PM levels in the child�s
bedroom by 12–14 lm/m3. PM levels were also asso-
ciated with outdoor PM2.5 concentrations, tempera-
ture, wind speed, vacuuming, sweeping and dusting,
number of pets, number of children, filter use, bedroom
AER, heating system type, and presence of a central
AC. In the intervention groups receiving a free-
standing HEPA filter, PM concentrations averaged
14 ± 10 lg/m3, representing approximately a 50%
reduction in PM concentrations. Larger reductions
were achieved with more continuous use of the filter.
Filter effectiveness was not significantly different in
homes with central ACs, and filter effectiveness did not
change when a room AC was installed in the child�s
bedroom. Filter use, an important and revealing
variable, varied greatly among households in the study
and declined over the study period. Filter use was
especially low during the long periods when IAQ was
not being monitored. Thus, to sustain lasting reduc-
tions in PM exposures, strategies to ensure filter use
should be an integral element of the intervention.
Future analyses will clarify the impact of the filter and
AC on asthma symptoms and respiratory health.
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