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Abstract: Laboratories have been a cornerstone in teaching and learning across multiple scientific

disciplines for more than 100 years. At the collegiate level, science laboratories and their corresponding

lectures are often offered as separate courses, and students may not be required to concurrently enroll in

both. In this study, we provide evidence that enrolling in an introductory laboratory concurrently with

the corresponding lecture course enhances learning gains and retention in comparison to students who

enroll in the lecture alone. We examined the impact of concurrent versus nonconcurrent enrollment on

9,438 students’ withdrawal rates from and final grades in the general chemistry lecture at the University

of Michigan at Ann Arbor using multiple linear and binary logistic regression analyses, respectively, at

a significance level of 0.05. We found that concurrent enrollment in the lecture and laboratory positively

impacts (1) the odds of retention in the lecture by 2.2 times on average and (2) final lecture grades by

up to 0.19 grade points on a 4.0 scale for the lowest-scoring students according to university-level

mathematics and chemistry placement exam scores. These data provide important results for consider-

ation by curriculum advisors and course planners at universities that do not require concurrent enroll-

ment in general chemistry as well as other science courses. In the face of current budget cuts that

threaten to shorten or eliminate laboratory experiences altogether at multiple educational levels, this

study demonstrates the value of laboratories in promoting science learning and retention. � 2012 Wiley

Periodicals, Inc. J Res Sci Teach 49: 659–682, 2012

Keywords: college/university; concurrent enrollment; final course grades; general chemistry; lecture and

laboratory; withdrawal/retention rate

Laboratories have historically been important tools for teaching and learning in the natu-

ral sciences; for more than 100 years, laboratories have been employed to help students inter-

act with scientific phenomena (Hofstein & Lunetta, 1982, 2004). In multiple disciplines as

well as across educational levels, laboratories have been shown to improve creative thinking
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and problem-solving abilities (Hill, 1976), scientific thinking (Raghubir, 1979; Wheatley,

1975), intellectual development (Renner & Fix, 1979), and practical skills, and increase favor-

able attitudes towards science (Ben-Zvi, Hofstein, Samuel, & Kempa, 1976; Bybee, 1970).

Because laboratory experiences have been found to promote learning in so many disciplinary

contexts, the laboratory has truly become a cornerstone of science education.

Recently, the National Research Council defined a core set of seven science learning

goals for students that laboratories should advance in America’s Lab Report (2006): ‘‘enhanc-

ing mastery of subject matter, developing scientific reasoning, understanding the complexity

and ambiguity of empirical work, developing practical skills, understanding the nature of

science, cultivating interest in science and interest in learning science, and developing team-

work abilities’’ (p. 76–77). The general goals for science education are similar, but laborato-

ries are especially and uniquely suited for helping students develop practical skills and

understand the complexity and ambiguity of empirical work (Millar, 2004). The extent to

which these goals are attained in laboratories at any educational level differs according to

instructor competence, available resources, integration with other instructional activities, and

students’ prior knowledge and experiences. The specific rationale for each goal in learning

science necessarily varies. For example, scientific reasoning skills, such as developing scien-

tific arguments and models, are indispensable for examination of the material world and are

not easily learned without structured education (Zimmerman, 2000). Decades of studies have

shown that both students’ and the general public’s understanding of the nature of science is

oftentimes naı̈ve and inaccurate (Driver, Leach, Millar, & Scott, 1996; Lederman, 1992),

therefore another goal of laboratories is to improve understanding of the nature of science.

Student achievement of these seven goals in concert is vital for fostering general scientific

literacy and training future scientists, engineers, and citizens at large.

For as many years as laboratories have been lauded for achieving science-learning gains,

however, they have also come under fire for being expensive in terms of materials and person-

nel as well as time-consuming (Baker & Verran, 2004). Budget restrictions, safety concerns,

increased attention to test scores on state- and nation-wide standardized exams, and lack of

adequate instructor preparation for teaching laboratories have all contributed to the reduction

in time students are able to spend doing laboratory experiments, and, in some cases, these

factors have been instrumental in the elimination of laboratories altogether at the high school

level (National Research Council, 2006; Washam, 2007, Autumn). Indeed, one of the key

conclusions of America’s Lab Report is ‘‘the quality of current laboratory experiences is poor

for most students’’ (p. 6). Students at schools with low socioeconomic status and/or high

proportions of non-Asian underrepresented ethnic groups are especially likely to experience a

lack of adequate laboratory space, equipment, and materials, and these circumstances play a

role in these students spending less time doing laboratory activities than others (Banilower,

Green, & Smith, 2004). This is problematic because the balance of remaining laboratory

instructional time may not reflect established educational design principles. Laboratories may

lack explicit learning goals or adequate connection to other instructional activities, for exam-

ple, and this can reduce laboratory experiences to ‘‘cookbook’’ procedures where coverage of

long lists of science topics takes precedence. In these weak (or nonexistent) laboratory envi-

ronments, students may pick up some subject matter, but are unlikely to attain other important

science learning goals for laboratories, namely developing scientific reasoning, understanding

the nature of science, and cultivating interest in science (National Research Council, 2006).

The high financial, time, and personnel commitments required for running laboratories

has for decades motivated research studies comparing laboratory instruction with other modes

of teaching with the goal of identifying equally beneficial but more cost-effective methods,
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and some have fought for the removal of wet laboratories altogether (see (Hofstein &

Lunetta, 1982, 2004) and references therein). Some of these studies concluded that laboratory

experiences are no more beneficial to students than other types of instruction such as viewing

a movie, doing group work, or having a class discussion, with the exception that students

in traditional laboratory settings have better abilities to perform practical manipulations in

the laboratory. However, the usual method of student evaluation in these studies was paper-

and-pencil tests that did not measure many of the important science learning goals described

above. Given, then, that the laboratory is uniquely suited for helping students achieve some

specific learning goals, but also that it is expensive and time-consuming, current studies are

needed to assess the value of laboratories in terms of encouraging science learning. Here,

we demonstrate that enrolling in an introductory college-level laboratory concurrently with

the corresponding lecture course promotes learning gains and retention in comparison to

students who enroll in the lecture alone.

Rationale and Research Question

Most scientists and educators agree that laboratory experience is imperative for learning

science (Carnduff & Reid, 2003); teaching general chemistry apart from the laboratory has

even been considered ‘‘pedagogically and philosophically unsound’’ (Wojcik, 1990). Even so,

a survey of the most recent available course guides at 40 public, U.S. universities with high

undergraduate enrollment revealed that 38%, 43%, and 33% offer general biology, chemistry,

and physics lectures and laboratories, respectively, as separate courses without requiring

concurrent enrollment (Table 1). This separation does provide some perceived benefits.

Practically, it can act to ease students’ scheduling conflicts. Oftentimes these general science

courses act as service courses for other disciplines, so offering the lecture and laboratory

separately can also ‘‘benefit’’ students who are required to take only one of them for a partic-

ular course of study (Long, McLaughlin, & Bloom, 1986) and may ease the financial burden

of the laboratory on the department (Dubravcic, 1979). Additionally, universities may not

have sufficient physical laboratory space for all of the lecture students in a given term to

enroll in the laboratory. The separation of lecture and laboratory courses may also help

deconvolute a student’s grades; in other words, a student who performs well in the laboratory

but has trouble in the lecture earns separate lecture and laboratory grades that more accurately

reflect the student’s abilities than a single, all-inclusive grade (Cawley, 1992). Similarly,

as a department chair at the university studied aptly stated, it allows students to fail one

course while still receiving credit for the other; that is, it reduces the risk of taking a four- or

five-credit course by dividing the class into three- and one- or two-credit segments.

Offering collegiate-level lectures and laboratories in the sciences as separate courses is

typical and may have some benefits for the practical issues of scheduling and finances. There

are, however, advantages to offering the lecture and laboratory as a single course or, at least,

requiring concurrent enrollment. In particular, encountering the same scientific concept in

multiple contexts has been shown to promote deeper conceptual understanding and facilitate

transfer (Bransford & Schwartz, 1999). Also, isolated laboratory experiences have not been

compelling in effecting mastery of specific scientific subject matter, whereas laboratory expe-

riences combined with other instructional activities have promoted science learning (Hofstein

& Lunetta, 2004). When laboratories are paired with other types of instruction such as

lectures and group discussion, students are more apt to demonstrate interest in and positive

attitudes towards science, and integrated instruction has been shown to specifically benefit

lower ability students’ scientific reasoning skills (White & Frederiksen, 1998). These and
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Table 1

Introductory Science Lecture and Laboratory Enrollment Requirements at 40 NCAA, Public Universities

NCAA Conference University

Biology Chemistry Physics

Ca NCb Ca NCb Ca NCb

Atlantic Coast Clemson University � � �
Florida State University � � �
Georgia Institute of Technology � � �
North Carolina State University � � �
University of Maryland � � �
University of North Carolina � � �
University of Virginia � � �
Virginia Polytechnic Institute � � �

Big Ten Indiana University � � �
Michigan State University � � �
Ohio State University � � �
Pennsylvania State University � � �
Purdue University � � �
University of Illinois � � �
University of Iowa � � �
University of Michigan � � �
University of Minnesota � � �
University of Nebraska � � �
University of Wisconsin � � �

Pacific-10 Arizona State University � � �
Oregon State University � � �
University of Arizona � � �
University of California (Los Angeles) � � �
University of California (Berkeley) � � �
University of Colorado � � �
University of Oregon � � �
University of Utah � � �
University of Washington � � �
Washington State University � � �

Southeastern Auburn University � � �
Louisiana State University � � �
Mississippi State University � � �
University of Alabama � � �
University of Arkansas � � �
University of Florida � � �
University of Georgia � � �
University of Kentucky � � �
University of Mississippi � � �
University of South Carolina � � �
University of Tennessee � � �

Total 25 15 23 17 27 13

Note: The most recent available course guides (either 2010–2011 or 2011–2012) from flagship campuses were

surveyed.
aConcurrent enrollment is required.
bConcurrent enrollment is not required. We considered an institution to offer nonconcurrent enrollment if the lecture

was listed as a corequisite for the laboratory but the laboratory was not listed as a corequisite for the lecture, or if

multiple introductory tracks were offered and any allowed for nonconcurrent enrollment.
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other positive outcomes of integrated instructional methods support a concurrent approach to

teaching science lectures and laboratories.

Although literature support exists for the role of laboratories in learning science at the

collegiate level, comparatively little has been published on the impact of the timing of labora-

tory enrollment in comparison to the lecture, that is, concurrent versus nonconcurrent enroll-

ment; only a few studies that support concurrent enrollment have been reported. In the

community college context, concurrently enrolled general biology students achieved higher

learning gains on exams and reported more positive attitudes on attitude inventories than

nonconcurrent students (Saunders & Dickinson, 1979). Concurrent enrollment in general

physics lecture and laboratory courses was found to increase the lecture grades of students

with intermediate grade point averages (GPAs) by approximately one third of a letter grade,

though no significant effect was found for students with the highest and lowest GPAs (Long

et al., 1986). Here, we sought to understand the impact of concurrent enrollment in general

chemistry lecture and laboratory on the withdrawal rates and final grades of students in the

lecture at University of Michigan, a large, public university with high undergraduate enroll-

ment. We hypothesized that concurrent enrollment would positively impact students in terms

of both withdrawal rates and final grades because of the aforementioned goals of laboratories,

particularly enhancing mastery of subject matter.

General chemistry at University of Michigan is an interesting context in which to investi-

gate this issue of enrollment because of the strong emphasis on collaborative learning and

teamwork in the laboratory studied; we suspected that concurrent enrollment would benefit

students in part for this reason. Across many years and disciplines, collaborative work has

been shown to enhance student achievement, retention, and attitudes, among other outcomes

(Bowen, 2000; National Research Council, 2006; Springer, Stanne, & Donovan, 1999).

Proposed causal mechanisms for this relationship include that students working in groups

perform metacognitive processes when they explain their reasoning to other group members

(Hogan, 1999; White & Frederiksen, 1998), and ensuing peer interaction and argumentation

enhances students’ cognitive development by requiring students to validate their ideas (Chin

& Osborne, 2010; Driver, Newton, & Osborne, 2000; Lumpe & Staver, 1995; Richmond &

Striley, 1996). More broadly speaking, productive argumentation can promote science literacy

(Cavagnetto, 2010). In the specific context of college-level chemistry courses, collaborative

work has been shown to positively affect students’ attitudes and perceptions (Cooper &

Kerns, 2006; Tien, Roth, & Kampmeier, 2002), problem-solving strategies and abilities

(Cooper, Cox, Nammouz, Case, & Stevens, 2008), overall achievement level (Bowen, 2000;

Tien et al., 2002), and has even been implicated in increasing retention among females in

general chemistry laboratories (Cooper, 1994).

As compared to what is currently available in the literature, our data set is unique, cover-

ing 6 years and nearly 10,000 students. Of the studies we found specifically pertaining to

concurrent versus nonconcurrent enrollment in science lecture and laboratory settings, one

observed �2,500 students over 5 years, but the other studied only 500 students over a single

year, and both studies are dated (Long et al., 1986; Saunders & Dickinson, 1979). Also, much

time and attention has recently been paid to reforming ‘‘traditional’’ learning settings into

‘‘studio-style’’ settings. In this closely related set of literature, the majority of studies are

current; yet report on usually <1,000 students over 1 or 2 years (DiBiase & Wagner, 2002;

Hoellwarth, Moelter, & Knight, 2005; Oliver-Hoyo, Allen, Hunt, Hutson, & Pitts, 2004). Our

study is additionally based on relatively current student demographics; as the proportions of

female, Hispanic, Asian/Pacific Islander, and Black students in post-secondary classrooms

have steadily increased since the 1970s (U.S. Department of Education, 2011), this research
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probes a fundamentally different population of students than those in studies from the 1970s,

1980s, and 1990s.

Withdrawal rates were specifically examined in light of the national need to encourage

retention of post-secondary students in the natural and physical sciences (Committee on

Prospering in the Global Economy of the 21st Century, 2007; Maltese & Tai, 2011). As

general chemistry is a ‘‘gateway course’’ to many scientific disciplines, withdrawal at this

introductory level not only increases time-to-degree but is also a serious barrier to progression

in the sciences and engineering (Seymour & Hewitt, 1997; Strenta, Elliott, Adair, Matier, &

Scott, 1994). In the data described herein, for example, there were 260 students who withdrew

from general chemistry lecture. Of these students, only 109 (42%) returned to take the course

a second time. The retention of nonscience majors in science courses is also an important

issue due to the need for a scientifically literate and critical public (Glynn, Taasoobshirazi, &

Brickman, 2007; Martens, 2007; National Research Council, 1996, 2006). Considering only

the 3,359 general chemistry students in this study who had graduated by the time the data

was obtained, we found that 35% (1,172) did not major in a science or engineering field

(Table 2).

We also specifically examined final grades because exam and overall course grades are

routinely used as measures of cognitive outcomes, that is, student performance, achievement,

and/or learning (Dubravcic, 1979; Long et al., 1986; Marshall & Dorward, 2000; Saunders &

Dickinson, 1979). A student’s college grades are also useful as a gauge of how well they

have adapted to the college environment, and are a strong predictor of earning a bachelor’s

degree (Pascarella & Terenzini, 2005). We recognize that there are significant pitfalls in

blindly assuming that grades reflect real learning (Pascarella & Terenzini, 2005; Walvoord,

2004), however, grades are generally useful as tools for approximating cognitive results.

Methods

Study Context: General Chemistry at University of Michigan

This study was performed at a large, public, midwestern university where general chem-

istry consists of separate lecture and laboratory courses, each one semester in length. Students

have the option to enroll in the lecture and laboratory either concurrently or nonconcurrently,

and some students enroll in the lecture without ever enrolling in the laboratory. In this data

set, 63% of students were concurrent, 22% were nonconcurrent (though neither course is a

prerequisite for the other, the vast majority of these students—97%—enroll in the lecture

first), and 15% enrolled in the lecture only. Because the majority of nonconcurrent students

enroll in the lecture first, the students who enrolled in the lecture only were considered non-

concurrent students in this research. Students have the option of taking the lecture in one of

three different formats, and in any given year, approximately 91% of students enroll in

the traditional lecture format with the remaining 9% roughly evenly split between the

other two formats. For all courses, the content was generally stable from year to year, and

technological advances mainly influenced changes in structure. Based on the students for

whom we have degree information, 66% of students in the traditional lecture format eventual-

ly completed science and/or engineering majors, the highest percentage of all three lecture

formats (Table 2). Additionally, in the traditional format, the majority of students were con-

currently enrolled regardless of whether they completed a science/engineering or nonscience/

nonengineering degree (59% and 53% concurrently enrolled, respectively) (Table 2). A quasi-

experimental design was employed in which the assignment of students to (1) the concurrent

or nonconcurrent group or (2) a particular lecture format was uncontrolled because of the
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disruption to the students’ education that using random assignment in a true experiment

would have caused, and we have attempted to control for resultant confounding variables.

The first lecture format is a traditional course that meets three times weekly for

50 minutes; 63% of students who take the lecture in the first format are concurrently enrolled.

This course is a general introduction to chemistry, considering the following major topics:

measurement, atomic theory and structure, stoichiometry, types of chemical reactions, gas

laws, thermochemistry, quantum theory, electron configurations and periodicity, bonding,

molecular orbital theory, states of matter, equilibrium, and acid–base chemistry. In addition to

lecture time, students have a 50-minute discussion once per week with a graduate student

teaching assistant. Discussion attendance is not explicitly required, but most students attend

most discussions because weekly quizzes are administered there, and these eventually count

for 20% of the final grade. The grading scheme places a large emphasis on exams with 70%

Table 2

Summary of Student Characteristics

Characteristic

Lecture Formata

TotalTraditional Extra time Studio

Total 8,624 466 348 9,438
Laboratory enrollment
Concurrent 5,390 232 348 5,970
Nonconcurrent 3,234 234 0 3,468

Gender
Female 3,930 324 192 4,446
Male 4,694 142 156 4,992

Ethnicity
Asian 1,276 29 63 1,368
Black 525 165 24 714
Hispanic 394 50 14 458
Native American 69 12 1 82
White 5,609 192 222 6,023
None 615 13 21 649
Missing 136 5 3 144

Ageb

Freshman (�2) 7,519 395 339 8,253
Sophomore (2< � �4) 820 54 6 880
Junior (4< � �6) 158 10 1 169
Senior (>6) 115 7 2 124
Missing 12 0 0 12

Degrees earnedc

Science or engineering (total) 2,077 55 55 2,187
Concurrent 1,228 26 55
Nonconcurrent 849 29 0 1,172

Nonscience or –engineering (total) 1,047 81 44
Concurrent 551 34 44 6,079
Nonconcurrent 496 47 0

Missing 5,500 330 249

aLecture formats are fully described in the Study Context section.
bStudent’s ages are reported according to the cumulative number of terms they had been enrolled at the university

prior to and including the term in which they first enrolled in the lecture.
cDescribes students who had completed a major (minors not included) in a science or engineering field by the time

that this data was collected in 2008.
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of the final grade derived from the two midterms plus the final exam. All exams are multiple-

choice, whereas quizzes require work to be shown, and the online homework is a hybrid that

requires student-generated responses. Of all the courses described here, this version has the

most variance in terms of the number of instructors involved, with 12 unique instructors

having taught one or more sections (each section is �400 students) over the years of this

study. A single instructor has served as the course coordinator throughout this time, providing

continuity in course structure and content. The average total class size during this period was

�1,400 students. This format serves the largest number of students by far, so the results

presented here should be interpreted as mainly reflective of the effect of enrollment for

students’ final grades in and withdrawal rates from this lecture format.

The second lecture format is designed for students who were expected to benefit from

extra in-class time and office hours, generally underrepresented ethnic groups, first-generation

college students, and students from low socioeconomic status backgrounds and/or very small

high schools. In this format, students meet with an experienced instructor four times weekly

for 50 minutes each, and 50% of these students are concurrently enrolled. As in the first

lecture format, students attend one 50-minute discussion once per week with a graduate stu-

dent teaching assistant and have the same structure for quizzes, though the number of students

per discussion is smaller compared to the traditional format. The extra class period as well as

extra faculty and teaching assistant office hours are provided for in-depth analysis of central

concepts and extra practice time for students. The content of this lecture format is the same

as that of the traditional format, and the syllabi, grading schemes, homework, quizzes, and

exams are uniform across the two formats. The primary difference between this format and

the traditional format is pacing, having 200 and 150 minutes per week of contact time,

respectively, to teach the same material. The instructor for this lecture format was the same

across all years of this study, and average class size was �80 students. Students can gain

access to this lecture format in one of a few different ways. Firstly, based on the factors

described above, the Office of Undergraduate Admissions (OUA) identifies incoming students

as eligible for participation in a comprehensive academic support program, which includes

access to extended forms of introductory courses such as this general chemistry lecture

format. Students in the comprehensive program are encouraged to enroll in this lecture format

but may elect not to do so. Secondly, students who are not identified by OUA as eligible for

the comprehensive program may apply to become an affiliate of the program and thus gain

access to the resources that the program offers, including this lecture format of general chem-

istry. Thirdly, students who are not at all affiliated with the comprehensive program may be

able to register for this format if they demonstrate a scheduling conflict with all sections of

the traditional format of the course. In this data, the percent of students who are affiliated

with the comprehensive academic support program in this lecture format and the traditional

format is 52% and 7%, respectively.

The general chemistry laboratory course is offered in a single format; students who enroll

in either of the lecture formats described above may take this laboratory course. Students

attend one 3-hour laboratory/discussion session and one 50-minute lecture per week. The

topics of experiments in this course include solubility, solution analysis, redox reactions,

acid–base chemistry, metal complexes, and analysis of reactions, and though the topics are

obviously similar to those taught in the lecture, the laboratory content is not explicitly linked

to or aligned with the lecture content in any way. The pacing of the two courses is uncorrelat-

ed, and lecture exams do not intentionally test understanding of phenomena encountered in

the laboratory. The laboratory course is inquiry-based and the experiments have evolved from

requiring mostly individual work to teamwork in the last decade. Heterogeneous groups of
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generally four students are formed by the instructor based on factors such as prior chemistry

knowledge, familiarity with computers, gender, age, and location on campus, and all group

members receive the same grade for team assignments which discourages competition among

students, with team points accounting for �50% of the final grade. Students receive instruc-

tion regarding how to productively work in teams, such as strategies for conflict resolution,

and rotate amongst well-defined roles for each experiment: team manager (keeps group on

task, presents the team answers to oral discussion questions), recorder (documents team data,

records abstract and outline for answers to oral discussion questions), chemist/safety officer

(measures reagents, responsible for proper disposal and monitoring safety of all group mem-

bers), and technologist (operates instruments, records group data into class data banks). Other

major features of this course are that students produce group laboratory reports, give team

oral presentations, and the experiments are designed such that students evolve concepts from

their observed data. The exams include both multiple-choice questions and computational and

conceptual problems that require students to show their work. A single instructor taught the

laboratory course over the years of this study, and average class size was �1,300 students

with lecture sections averaging �400 students and laboratory sections averaging �20 students.

The third format integrates the lecture and laboratory into one five-credit ‘‘studio’’ course

that explicitly aligns all ‘‘lecture’’ and ‘‘laboratory’’ topics. Therefore, unlike the first and

second formats, the third format requires concurrent enrollment. With enrollment capped at

96 students per term, this format is also characterized by a small class size yielding more

personal attention in comparison to the traditional lecture format. Students attend three

50-minute lectures and 5 hours of laboratory/discussion time per week. These 5 hours

were fluidly allocated to laboratory or discussion time, so though points were not given for

attendance, students were essentially required to attend all 5 hours each week due to the

course design. The studio course is an intimate and creative version of general chemistry that

is completely isolated from the lectures and laboratory described above, and enrollment in

this format is completely determined by self-selection. The same subject matter is covered in

approximately the same order, but both the lecture and laboratory/discussion incorporate

more hands-on activities and small group discussions. This course is also project-based, with

the major group project (27% of the final grade) culminating in a group paper and poster

presentation. The overall grading scheme deemphasizes exam grades (35% of the final grade)

in comparison to the first and second lecture formats, and the exams are different from those

administered in the other formats. Points from online homework, class participation, and

individual laboratory reports make up the balance of the grades. For the fall terms in 2006

and 2007, this course was taught in a (then) new undergraduate science building with innova-

tive laboratory and ‘‘dinner theater’’ classroom space, whereas all other courses described

here have always been held in the chemistry building. Designed to facilitate both small-group

collaboration and large-group interaction, the ‘‘dinner theater’’ classroom is tiered with each

level containing four to five small tables, each accommodating up to four students. There

were two unique instructors for this course over the years of this study, and the average class

size was �60 students.

Data Collection

Data was collected from the Office of the Registrar for the 9,438 students who enrolled

in the general chemistry lecture during the fall terms between 2002 and 2007, inclusive. The

data consists of various demographics (e.g., gender, ethnicity, age), high school GPA, SAT,

and ACT scores, mathematics and chemistry placement exam scores, participation in honors

programs, degrees earned, and other factors (see Table 2 for a breakdown of some student
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characteristics according to lecture format). We also collected information about any general

chemistry laboratory and organic chemistry laboratory and lecture courses in which students

had enrolled between Fall 2002 and Spring 2008, including term enrolled, section number,

final grade (measured on a 4.0 scale), and the drop date if the student withdrew from the

course. Students who withdrew before the ‘‘normal’’ drop/add deadline, which is the end of

the third week of class, were not considered in this study as withdrawals occur for a

broad range of reasons early on each term. Students’ names were not used; rather, they were

identified by eight-digit numbers.

Data Analysis

The data was imported into the statistical software package PASW Statistics (version

18.0). Students were partitioned into four clusters according to their standardized (Z) scores

on the university’s mathematics and chemistry placement exams by pairwise K-means cluster

analysis, a method that attempts to identify the centers of natural, homogeneous clusters in

the data; Table 3 describes the clusters. There was a significant effect of cluster number on

final lecture grade, F(3, 3815) ¼ 665.63, p < 0.05, v ¼ 0.44, and the post hoc Games–

Howell procedure revealed that all clusters are significantly different from one another

(Welch’s F was used because the homogeneity of variance assumption was broken). Doing

the cluster analysis pairwise means that students are assigned a cluster number if they have a

mathematics placement exam score, a chemistry placement exam score, or both. Only stu-

dents who are missing scores for both the placement exams (5.4%) will not be assigned a

cluster number. Most students (91%) have valid data for both their mathematics and chemis-

try placement exam scores. This clustering technique was used because these two variables

are positively correlated with each other (r ¼ 0.34 [8538], p [two-tailed] < 0.01, representing

a medium-sized effect). Using the variables separately in multiple regressions can lead to

multicollinearity where the accuracy of individual predictors may be compromised, though

the predictive power of the whole model is usually unaffected (Field, 2009; Hutcheson &

Sofroniou, 1999). Therefore, the regressions were also performed using the placement exam

scores as separate, continuous variables, and we found results (Tables S1–S4) similar to those

reported here. Differences in final lecture grades according to enrollment status (i.e., concur-

rent vs. nonconcurrent) by cluster number are also reported (Table 4); this data is consistent

with previous work in physics education research that has shown strong, positive correlations

between preinstructional measures, and normalized learning gains (Coletta, Phillips, &

Steinert, 2007; Meltzer, 2002).

Table 3

Summary of Student Clusters Based on K-Means Cluster Analysis

Cluster

no.

No. of Students
Avg. Mathematics

Placement Exam Scoreb
Avg. Chemistry

Placement Exam Scoreb

Final Gradec

Total Retained M SD

0 1,681 1,551 10.9 13.6 2.29 0.81
1 1,743 1,712 14.0 20.8 2.77 0.68
2 3,848 3,811 21.2 17.8 2.99 0.66
3 1,657 1,650 22.3 27.5 3.36 0.58
—a 509 454 — — — —

aStudents who were missing both placement exam scores were not assigned a cluster number.
bThe mathematics and chemistry placement exams were scored out of 25 and 40, respectively.
cThese statistics do not include withdrawn students.
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It is noted that without having access to placement exam scores from other universities,

it is difficult to quantitatively comment as to whether other students would cluster in a similar

fashion as students at University of Michigan. The nature of these particular placement exams

also complicates comparison to other universities’ exams. Here, the chemistry placement

exam is designed to generate a normal bell-shaped distribution centered on a mean score of

50% whereas the mathematics placement exam is designed to generate a negatively skewed

distribution with a mean score of 70% and, of course, placement exams at other universities

may not be designed with such intended outcome distributions. One of the reasons we

employed the clustering technique was to generate a handle for thinking about different types

of students, broadly speaking. We wanted to have a method for assessing how concurrent

enrollment affected the highest performing versus the lowest-performing students, and sus-

pected that placement exam scores would generally reflect the students’ abilities well. That

being the case, we reasonably expect that students at any university would exhibit a similar

distribution according to ability as the students in this study, with overall low-, medium-, and

high-performers.

Binary logistic and linear regressions were used to evaluate the impact of concurrent

enrollment on withdrawal rates and final course grades in the lecture, respectively, at a signifi-

cance level of 0.05. Because of the major differences in assessments and grading systems

between the studio and other lecture formats, we have excluded the studio students from the

main analyses and instead report results for these students in a separate section. Although it

is nonideal to use post hoc, observational data to identify outcomes of an educational experi-

ence (e.g., due to hindsight bias), we also find support for these descriptive and inferential

statistical procedures as common and accepted for empirical studies in this discipline

(Creswell, 2008; Fayowski & MacMillan, 2008; Goldstein & Perin, 2008; Long et al., 1986;

Shavelson, 1996). Both binary logistic and linear regressions use covariates (independent

variables) to predict the value of an outcome variable (dependent variable). Binary logistic

regression is used when the outcome variable is dichotomous (e.g., withdrawn or not with-

drawn) and linear regression is used when the outcome variable is a scale variable (e.g., final

course grades).

Five covariates were used in the regressions: (a) the student’s high school GPA, (b) the

student’s comprehensive SAT score (scores for students who had taken the ACT but not the

SAT were converted using a concordance table published by The College Board (The College

Board, 2006)), (c) the student’s cluster number, (d) whether or not the student concurrently

enrolled in the general chemistry lecture and laboratory, and (e) the product of (c) and (d)

which was included in order to elucidate any interaction between them. High school GPA and

Table 4

Differences in Final Lecture Grades According to Enrollment Status By Cluster

Cluster no.

Concurrent Nonconcurrent Difference

M SD N M SD N M t pa

0 2.42 0.73 888 2.11 0.87 663 0.31 �7.48 0.00
1 2.83 0.67 1,107 2.66 0.70 605 0.17 �4.83 0.00
2 3.05 0.62 2,597 2.86 0.71 1,214 0.19 �8.03 0.00
3 3.37 0.58 1,065 3.34 0.57 585 0.03 �0.99 0.32

Note: These statistics do not include withdrawn students.
aThe significance of differences in final grades between concurrent and nonconcurrent students was determined by

independent-samples t-tests.
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comprehensive SAT scores were used as covariates because they have been found to be good

predictors of freshman college achievement in multiple contexts (Daugherty & Lane, 1999;

Fincher, 1974; Wolfe & Johnson, 1995), though they do not have equal predictive power

across racial groupings (Sue & Abe, 1988; Ting & Robinson, 1998) and, thus, we treated

them independently. The correlations between covariates do not represent large effect sizes,

with the exception that the product term (e) is, as expected, highly correlated with (c) cluster

number and (d) enrollment status (Table 5). Additionally, variance inflation factors for all

covariates are <10, implying that multicollinearity due to covariate correlations does not

substantially bias the regressions (Field, 2009).

Both types of regressions were performed listwise, which means that in order for students

to be included in the analysis, they were required to have valid data for all of the covariates

used. Because of this stipulation, 91.6% of all nonstudio students (N ¼ 9,090) were included

in the binary logistic regression where withdrawal rate was the outcome variable, and 92.1%

of retained nonstudio students (N ¼ 8,834) were included in the linear regression where final

grades was the outcome variable. There was no way to determine whether the missing data is

missing completely at random with respect to the outcome variables (Little & Rubin, 2002).

If a student took the lecture or laboratory more than once, only the first time that they

enrolled in the course(s) was analyzed. Finally, these analyses were based on an observational

study and we attempted to design predictive models that would adjust for differences in

students, and, in particular, the analytic form of the equations were selected specifically to

work for these data. In other words, we sought to disentangle the effect of concurrent enroll-

ment from a student’s GPA, SAT, and mathematics and chemistry placement exam scores

using these variables as covariates in our models. Of course, subsequent analyses may reveal

other functional forms and other functional variables that may be more effective at describing

the already substantial variation in student scores.

Results

Final Course Grades

The linear regression model revealed a systematic relationship between concurrent enroll-

ment and final course grades. Specifically, concurrent enrollment positively affected students’

final grades in the lecture by up to 0.19 grade points (Table 6). This linear model predicts

that a student who enrolls concurrently in the lecture and laboratory can earn almost one third

of a letter grade higher (e.g., B to Bþ) than a student who takes the lecture first and

the laboratory in a later semester or not at all. A simple point-biserial correlation between

enrollment status and final grade points reveals rpb ¼ 0.14 [8822], p [two-tailed] < 0.01,

representing a small-sized effect.

Table 5

Correlation Coefficients for Covariates Used in Regression Models

(a) HS GPA (b) SAT (c) Cluster (d) Enrollment (e) (c)�(d)
(a) HS GPA 1 0.13 0.11 0.10 0.12
(b) SAT 8,932 1 0.43 0.08 0.27
(c) Cluster 8,666 8,919 1 0.07 0.56
(d) Enrollment 8,938 9,346 8,929 1 0.75
(e) (c)�(d) 8,666 8,919 8,929 8,929 1

Note: All correlations are significant at the 0.01 level (two-tailed).
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Importantly, the interaction covariate (e) term in this model reveals a differential impact

of concurrent enrollment on final grades that is dependent on cluster number. For example,

students in cluster three, those with the highest average mathematics and chemistry placement

exam scores, benefited from concurrent enrollment on average by 0.07 grade points. This

difference is due to the interaction covariate (e) term in the linear equation (since, in the

linear equation, the coefficient B is multiplied by the interaction term for concurrent students

in cluster three: 0.07 ¼ 0.19 þ (�0.04 � 3)). However, students in cluster zero, those with

the lowest average mathematics and chemistry placement exam scores, benefited from con-

current enrollment on average by 0.19 grade points in their lecture grade (here, in the linear

equation, the coefficient B is multiplied by the interaction term for concurrent students in

cluster zero: 0.19 ¼ 0.19 þ (�0.04 � 0)). In summary, the average increase in final lecture

grades for concurrently enrolled students according to cluster number was 0.19 for cluster

zero, 0.15 for cluster one, 0.11 for cluster two, and 0.07 for cluster three. This shows that in

terms of final grades in the lecture, the lowest-scoring students according to mathematics and

chemistry placement exams receive the most benefit from concurrent enrollment.

Although we have controlled for differences in high school GPA, comprehensive SAT

scores, and mathematics and chemistry placement exam scores, we may not have accounted

for other important measures of student quality. Motivation, for example, has been found to

foster science achievement in large, introductory biology courses (Glynn et al., 2007), and

logical thinking skills have positively predicted student performance in physical chemistry

courses (Nicoll & Francisco, 2001). These and/or other measures could contribute to the

result that concurrent students earn higher final grades in the lecture than nonconcurrent stu-

dents. Though the analysis works well for these practical measures that are routinely

employed, it is important to ascertain the extent to which these results are confounded.

Determining the regression equation for one group of students and applying it to a second

group can address this issue of prediction bias (Sue & Abe, 1988). The modeling described

here deals with the issue of stronger students potentially self-selecting into concurrent enroll-

ment by isolating the effect that concurrent enrollment has on increasing final lecture grades.

First, we selected only concurrently enrolled students and, based on their data, calculated a

linear regression model that shows the progression of performance (final lecture grade) as a

function of covariates. The covariates used in this model were the student’s high school GPA,

cumulative SAT score, and cluster number. Then, this model was applied to the nonconcurrent

students. This process essentially applies the ‘‘treatment’’ of concurrent enrollment to the

nonconcurrent students. After applying the concurrent enrollment ‘‘treatment’’ to the noncon-

current students, we observed the difference in mean final grades for each of the two groups

Table 6

Impact of Concurrent Enrollment on Final Grades in the Lecture

Covariates B SE B t p

Constant �2.43 0.128 �19.0 0.00
(a) High school GPA 0.86 0.029 29.4 0.00
(b) Comprehensive SAT score 0.00a 0.000 18.4 0.00
(c) Cluster number 0.27 0.012 22.0 0.00
(d) Concurrent or nonconcurrent enrollment 0.19 0.027 6.9 0.00
(e) Interaction of (c) and (d) �0.04 0.015 �2.5 0.01

Note: The proportion of variance (R2) in final grades accounted for by this linear regression model is 0.32.
aThe coefficient B is positive for this covariate but rounds to zero.
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to be 0.10 units on average (Table 7). This implies that the concurrent treatment may not be

entirely responsible for the increase in final lecture grades that concurrently enrolled students

have. To check the quality of this linear model, we calculated the linear regression model

based on nonconcurrent students only and applied it to the concurrent students. Again, this

process essentially applies the ‘‘treatment’’ of being nonconcurrently enrolled to the concur-

rent students. Here, the observed difference in mean scores for each of the two groups

is again 0.10 final grade units on average (Table 6). That the difference found in this model is

similar to the average difference found in the first model is confirmation that the models

themselves are reasonable and accurate.

This modeling exercise affirms that the highest-performing students, according to the

preinstructional measures used as covariates in the regressions, are not randomly distributed

between concurrent and nonconcurrent enrollment. Rather, these students are more often con-

currently than nonconcurrently enrolled, perhaps due to self-selection, advising, and/or other

reasons. In fact, for an average of 0.10 final grade units out of the 0.19 potential increase in

final grade, we cannot deconvolve the contribution of concurrent enrollment and other factors

that we have not measured about the students in this data set. Because the magnitude of the

mean final grade difference (0.10) is greater than or very similar to the effect of concurrent

enrollment determined for clusters two (0.11) and three (0.07), it is untenable to claim that

concurrent enrollment is exclusively responsible for the increase in final grades in these clus-

ters. However, this does not necessarily imply that concurrent enrollment has no positive

effect for the two highest clusters. In reality, concurrent enrollment may benefit students in

the two highest clusters, but we cannot know this with statistical certainty. Regardless, the

significant positive effect of concurrent enrollment for the students in clusters zero and one

remains. Furthermore, considering the number of students with ‘‘borderline’’ final grades

in clusters zero and one for a representative term of data and that enrollment in general

chemistry exceeds 2,000 students annually, we find that the final grades of approximately

400 students (20%) would be positively impacted on an annual basis by concurrent enrollment.

Withdrawal Rates

Concurrent enrollment in general chemistry lecture and laboratory was found to system-

atically decrease the withdrawal rate from the lecture according to the binary logistic regres-

sion model, with concurrent and nonconcurrent students’ retention rates being 99% and 95%,

Table 7

Descriptive Statistics of Linear Regression Models Addressing Uncontrolled Variables

N Min Max Mean SD

Concurrent
Average final lecture grade 5,538 0.00 4.00 2.95a 0.72
Predicted average final lecture grade with nonconcurrent

treatment applied
5,253 1.11 3.77 2.83a 0.40

Nonconcurrent
Average final lecture grade 3,284 0.00 4.00 2.73b 0.84
Predicted average final lecture grade with concurrent

treatment applied
2,887 1.15 3.83 2.85b 0.44

aThe difference between the concurrent students’ average final lecture grade and the average grade that the concurrent

model predicts for nonconcurrent students is 0.10 (0.10 ¼ 2.95–2.85).
bThe difference between the nonconcurrent students’ average final lecture grade and the average grade that the non-

concurrent model predicts for concurrent students is 0.10 (0.10 ¼ 2.83–2.73).
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respectively (x2 (1) ¼ 101.87, p < 0.001). Overall, the odds of a concurrent student being

retained in the lecture were 2.2 times higher than students who took the lecture and laboratory

separately, or those who never took the laboratory at all (Table 8). In this regression, the

interaction covariate (e) term of cluster and enrollment status was nonsignificant (p > 0.05),

therefore, there is no significant differential effect of enrollment status according to cluster

number. The odds of concurrent students from any cluster being retained in the lecture are

2.2 times higher than nonconcurrent students, according to this model. Practically speaking,

increasing the retention rate of nonconcurrent students to 99% translates into approximately

125 more students being retained in the lecture course over the years of this study. It is noted

that other features of students reflecting their overall quality were unavailable; therefore,

self-selection may bias our estimate of the impact of concurrent enrollment on withdrawal

rates.

Lecture Format Designed for Additional Academic Support

Students have the option of enrolling in general chemistry lecture in one of three differ-

ent formats (delineated in the Study Context section), and one format is designed for students

who may benefit from extra academic support. Even though 75% of the students who enrolled

in this lecture format are in cluster zero (they have the lowest average placement exam

scores), and the difference in average final grade between the students, taking into account all

clusters, in the academic support section (M ¼ 2.36, SD ¼ 0.84, SE ¼ 0.04, N ¼ 418) and

those not enrolled in this format (M ¼ 2.89, SD ¼ 0.76, SE ¼ 0.01, N ¼ 8404) is significant

t(452) ¼ 12.94, p < 0.05, our analyses indicate that there is no significant difference between

the two groups in the amount that concurrent enrollment helps students’ final lecture grades.

Statistically, students in the lecture format designed for additional academic support are no

more likely to be helped by concurrent enrollment than students in the traditional format. The

same conclusion holds true when withdrawal rates are the outcome variable. Also, in perform-

ing regression analyses to explore whether enrollment in this lecture format influenced final

grades or retention, regardless of concurrent versus nonconcurrent enrollment, we found no

significant effect for either metric, indicating that comparable students who enroll in this

format and the traditional format would not be predicted to have different final grades or

retention outcomes.

Studio-Style Course Format

The students who enrolled in the studio-style format of general chemistry were required

to register for a single five-credit course, meaning nonconcurrent enrollment was not an

Table 8

Impact of Concurrent Enrollment on Withdrawal Rate from the Lecture

Covariates B SE B Exp(B) p

Constant �5.41 0.98 0.00 0.00
(a) High school GPA 0.94 0.23 2.56 0.00
(b) Comprehensive SAT score 0.00a 0.00 1.00 0.00
(c) Cluster number 0.70 0.12 2.02 0.00
(d) Concurrent or nonconcurrent enrollment 0.79 0.21 2.19 0.00
(e) Interaction of (c) and (d) 0.19 0.19 1.20 0.32

Note: The proportion of variance (R2) in withdrawal rate accounted for by this binary logistic regression model is

0.19.
aThe coefficient B is positive for this covariate but rounds to zero.
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option for these students. Enrollment in the studio format was found to have no significant

effect on withdrawal rates from the lecture when compared to nonstudio students,

whether nonconcurrent students were included in the analyses (x2 (1) ¼ 3.48, p > 0.05) or

not (x2 (1) ¼ 0.19, p > 0.05).

The studio instructors sought to generate similar final grade distributions as in the

traditional and extra support formats, however the studio assessment techniques do differ

from the other formats, and the following direct comparisons of final grades across the differ-

ent formats should, accordingly, be cautiously interpreted. Considering both concurrent and

nonconcurrent students, studio students had significantly higher final grades (M ¼ 3.10,

SD ¼ 0.65, SE ¼ 0.04, N ¼ 344) than those in the nonstudio lecture courses (M ¼ 2.87,

SD ¼ 0.78, SE ¼ 0.01, N ¼ 8,822) t(382) ¼ �6.45, p < 0.05. Comparison of the studio

students to the group that most closely mimics their experience, the concurrent students in

the traditional lecture format (M ¼ 2.97, SD ¼ 0.72, SE ¼ 0.01, N ¼ 5,322), reveals a mean

difference of 0.13 grade point units t(5,663) ¼ �3.35, p < 0.05. Though this represents a

statistically significant positive effect of the studio course on final grade, the uncertainty about

how the differing assessments across the formats could impact the statistics as well as the

results regarding withdrawals implies that, overall, there is no benefit to enrollment in the

studio course over concurrent enrollment in a nonstudio format based on these metrics.

Limitations

Our objective was to analyze the first experience of each student in the lecture and labo-

ratory courses. However, because data was collected between Fall 2002 and Spring 2008,

we cannot exclude cases where students enrolled prior to Fall 2002. The overall number of

students in this data set who enrolled more than once in the lecture (65 students or 0.7%

overall) or laboratory (38 students or 0.4% overall) is small. Therefore, we reasonably expect

that the number of students who are affected by this limitation is minimal, and we do not

think the bias is substantial. Similarly, general chemistry lecture data was collected for the

fall terms between 2002 and 2007, inclusive, however, any student who enrolled in the lecture

more than once could have enrolled during a winter or spring term. In this case, we could

have compared outcomes of a student’s second enrollment in the lecture with that of other

students’ first enrollment. One guard against this potential error is that the bulk of general

chemistry students regularly enroll in the lecture in the fall term. Average enrollment in the

lecture during the fall, winter, and spring terms between Fall 2002 and Spring 2008 was

1,589, 518, and 50 students, respectively; in a given academic year, then, approximately 74%

of general chemistry lecture students enroll in the course in the fall. Additionally, this study

does not attempt to make comparisons between students who enrolled in the laboratory

only and any other group, primarily because the number of students who enroll in the labora-

tory without ever enrolling in the lecture is very small. Finally, the instructors of the lecture

courses were uncontrolled.

Discussion and Implications

The key findings of this study are that concurrent enrollment in general chemistry lecture

and laboratory positively impacts (1) retention in the lecture for all students, and (2) final

lecture grades for the students who score lowest on mathematics and chemistry placement

exams. Considering that increasing retention of students, especially in science courses, is a

consistent challenge in post-secondary education (Committee on Prospering in the Global

Economy of the 21st Century, 2007; Daempfle, 2003–2004) and that educators fear driving

students permanently away from the sciences, these findings provide an important guide to
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practice at universities that do not require concurrent enrollment in introductory science

lectures and laboratories. These findings could, for example, impact students by means

of curriculum advisors. Personal communication with a prehealth advisor (P. K. Zitek,

September 13, 2009) at University of Michigan revealed that some advisors encourage stu-

dents to enroll in lectures and laboratories concurrently if at all possible. Other advisors,

however, do not prioritize concurrent enrollment, and students who do not feel comfortable

with their science abilities may be disinclined to concurrently enroll. Understanding that em-

pirical data supports a significant increase in retention and final lecture grades could certainly

impact both advisors’ practices and students’ choices, and result (2) substantiates a relatively

easy and financially viable route for universities to better assist students who may require

more academic support.

Decades of research have been published concerning improving student performance,

learning, and attitudes in college-level introductory science courses. Topics include utilizing

student response systems (Hall, Collier, Thomas, & Hilgers, 2005, August), requiring writing

assignments (Horton, Fronk, & Walton, 1985), individualized, self-paced instruction (Paul,

1983), and lecturing based on student-generated questions (Teixeira-Dias, Pedrosa de Jesus,

& Neri de Souza, 2005), among many other categories of innovation. According to the data

presented here, student performance is significantly positively affected by enrolling in the

lecture and laboratory during the same term. Similarly, increasing student retention has been

found to be affected by implementing cognitive task analyses (Feldon, Timmerman, Stowe, &

Showman, 2010), supplemental instruction (Peterfreund, Rath, Xenos, & Bayliss, 2007–

2008), computer-assisted instruction (Wrensford & Wrensford, 2003), and more appropriate

placement strategies (Edwards, Roberts, & Pitter, 2010, November), among other methods.

The data presented here, though, supports concurrent enrollment as a method for significantly

increasing retention in the lecture. In short, unlike previous studies, this data provides evi-

dence that significant increases in both student performance and retention can be brought

about by relatively simple actions on the parts of students and the university.

We argue that the reasons for the observed results, though they are coupled with the issue

of ‘‘time on task,’’ are related to the design of the laboratory course itself, especially because

the sequencing of topics in the lecture and laboratory are unrelated. ‘‘Time on task’’ is truly

an important factor in achieving learning gains, but student’s problem-solving strategies have

been shown to stabilize after a small number of related problems (Stevens, Soller, Cooper, &

Sprang, 2004, August). Cooper et al. (2008) has also shown that when students problem-solve

as a group, they are able to arrive at efficient strategies more quickly than when working

individually. Therefore, the design of the learning environment in the laboratory must be

considered when interpreting these results. The laboratory course exemplifies some of the

principles that purportedly support effective learning environments as outlined in the National

Research Council studies How People Learn: Brain, Mind, Experience, and School (1999)

and How Students Learn: Science in the Classroom (2005), that is, the laboratory is knowl-

edge- and community-centered. Specifically, the course is comprised of guided inquiry experi-

ments in which students are not presumed to know the expected results prior to collecting

and analyzing their data, and prelabs are not intended to give away the outcomes (Minner,

Levy, & Century, 2010; Wilson, Taylor, Kowalski, & Carlson, 2010). Students’ resultant con-

fusion facilitates development of their scientific reasoning skills and addresses the ambiguity

of the scientific process (Kerner & Penner-Hahn, 2010). Students are encouraged in explora-

tion, organization, and application in each experiment, with the overall goal of deriving con-

cepts and principles from authentic, empirical data and, interestingly, students have access to

a bank of many years of prior students’ data to aid in pattern discernment. The cumulative
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curricular design also promotes more cohesive knowledge than a disconnected, traditional

curriculum. Finally, this course challenges students with several forms of assessment, very

few of which are multiple-choice.

Though the design principles described above contribute to the excellent quality of the

laboratory course, we conjecture that the heavy emphasis on collaborative work in the labora-

tory is the most important causal element related to the outcomes described here. The labora-

tory is community-centered as the majority of the coursework is done in teams, and

productive management of the differences among group members encourages positive learn-

ing outcomes (Heller & Hollabaugh, 1992). Team-learning environments have been repeated-

ly found to be superior to individualized problem solving in terms of student learning,

development of interpersonal skills, and promoting student enjoyment of a course (Johnson &

Johnson, 1989; Totten, 1991), perhaps cultivating student interest in learning science. In col-

lege-level chemistry courses, many studies have lauded various benefits of collaborative work

(Bowen, 2000; Cooper, 1994, 1995; Cooper et al., 2008; Cooper & Kerns, 2006; Tien et al.,

2002). The collaborative aspects of the specific laboratory studied here are numerous. Most

notably, the team lab reports encourage students to come to consensus on all aspects of

performing the experiments, and the team discussion presentations require that students con-

fer about the implications of an experiment, including resolving differences of opinion within

the group and explaining to the whole class how they did so. Additionally, in the beginning

of the term, teams spend time identifying the strengths and previous experiences of their

group members with the goal of recognizing skills they may be lacking as a group, and each

team member evaluates the contributions of other members to the experiments, team reports,

discussion presentations, and team as a whole throughout the semester.

The metacognitive and peer interaction (including argumentation) features of collabora-

tive work may constitute the mechanism that yields the observed results both here and in

other studies that explore group work as an intervention. Students engage in metacognitive

practices when they must explain their thinking to another group member, and in this labora-

tory, there are multiple contexts in which students share their ideas with one another, which

has been shown to enhance learning by leading to cognitive development (National Research

Council, 1999, 2006); these contexts include performing the experiment, writing the team

report, and giving oral presentations as a group to the whole class. Sharing and constructing

ideas with another student, as well as listening to a student explain something to himself, are

metacognitive and peer interaction methods that have been proposed to lead to learning gains

(Hausmann, Chi, & Roy, 2004, August). White and Frederiksen (1998) have also shown that

metacognitive activities can specifically help lower-achieving students, which may explain the

observed disproportionate effect of concurrent enrollment on final grades that depends on

students’ placement exam scores. The collaborative design of the laboratory facilitates

these metacognitive and peer interaction processes that may lead to the described benefits for

concurrently enrolled students.

Despite the large laboratory and lecture courses not being explicitly linked in format or

content (other than that they are both general chemistry courses), concurrent enrollment posi-

tively impacts student performance and retention in the lecture. These results beg the question

as to what outcomes might be observed if the laboratory and lecture were explicitly aligned

and taught synergistically, especially in light of studies that have reported advantages of

integrated course structures (Bailey, Kingsbury, Kulinowski, Paradis, & Schoonover, 2000;

Oliver-Hoyo et al., 2004). Recall that in the studio-style course, the laboratory and lecture

were integrated and aligned in a five-credit course, yet our results indicated no practical bene-

fit in terms of final grades or withdrawal rates over concurrent enrollment in a nonstudio
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format. This may seem confusing in light of the number of universities that have reported

benefits of studio-style courses, but the findings are understandable considering that many

pedagogical methods that render studio courses beneficial to students are already present in

the laboratory course studied here. It is also possible that the particular metrics employed

in this study are not sensitive enough to differentiate between the two student populations

given the differences in how studio students were evaluated. In summary, though content

alignment is a useful technique, our data indicates that educational benefits can be achieved

in unaligned courses as well.

Our survey of large, public universities (Table 1) demonstrates that a substantial portion

are not requiring concurrent enrollment in introductory-level science lectures and laboratories.

The data presented herein indicates that requiring concurrent enrollment may be a viable path

for improving student performance and retention in the lecture, and, considering the sheer

magnitude of undergraduates who take these introductory science courses, the number of

students who could be affected is substantial. Though we focused our attention here on large,

public universities, there is potential for similar results to be found at any college or universi-

ty that does not require concurrent enrollment, regardless of size. Additionally, these results

could be extremely influential at the high school level. Consider the potential implications on

graduation rates and the scientific pipeline of more students being retained in high school

science classes!

Similar results may be found in higher-level courses such as organic chemistry, as well

as in disciplines such as physics and biology in which it is evidently fairly common for

lectures and laboratories to be offered separately. Comparable effects may also exist across

disciplines. For example, based on previous research that has established college math scores

as a predictor of good general chemistry scores (Angel & LaLonde, 1998), does a student

who enrolls in college algebra and general chemistry do better with regard to some outcome

than a comparable student who enrolls in general chemistry but not algebra? The link be-

tween general physics and calculus would also be interesting to explore. As is, the results

presented here may have impact at the course-level, but similar findings in other disciplines

could generate significant impact in pedagogical practice at the college- and university-level;

these levels of application are oftentimes neglected in Scholarship of Teaching and Learning

research (McKinney, 2007).

Because of the high cost of science laboratories, there is an ever-present need to justify

their value, and this is especially true in the face of budget restraints. This research, in sum-

mary, supports the laboratory as a valuable method for achieving learning gains and increas-

ing retention in the lecture. The collaborative design of the laboratory provides an important

element of practice for metacognitive development and peer interaction, and we surmise that

this collaborative nature of the laboratory is the most important feature related to the observed

results. We anticipate that this work will be of interest to a broad range of teachers, profes-

sors, and educational researchers, especially those involved in course design, as this study is

realistically applicable to any discipline that offers a course with separate lecture and labora-

tory components. Further research is needed as to the particular reasons why the laboratory

benefits students’ final grades in and withdrawal rates from the lecture, as well as the ratio-

nale behind the choice that students make to nonconcurrently enroll, as we fully expect that

the reasons why students nonconcurrently enroll are nonuniform.
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