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The ‘classical’ B7 family members, B7-1 (CD80) and B7-

2 (CD86), provide T-cell costimulatory or coinhibitory

signals upon binding their receptors CD28 or CTLA-4,

respectively [reviewed in (1)]. Over the past decade, a

number of ligands ⁄ counter-receptors with homology to

B7-1 ⁄B7-2 have been identified. These B7 homologues

(‘B7-H’), including B7-H1 (CD274 or PD-L1), B7-H2

(CD275 or ICOS-L), B7-H3 (CD276), B7-H4 (B7S1 or

B7x), B7-H6, B7-DC (CD273 or PD-L2), and BTLN2,

play a critically important role in the maintenance of

self-tolerance and the regulation of innate and adaptive

immunity in the tumor-bearing host (Fig. 1). Many of

these B7-H family members are exploited by tumor cells

to escape and suppress host immunity and are being

actively investigated as therapeutic targets in solid

tumors. While a comprehensive discussion of the B7-H

family is beyond the scope of this review, recently pub-

lished reviews provide an excellent overview of the B7-H

family, emphasizing their role in solid tumor immunity

(2–6). Instead, we hope to highlight areas that are of par-

ticular relevance in hematologic malignancies.

The B7-H family: a primer

The rapid expansion of the B7-H family coupled with

improved understanding of their immunologic functions

has changed the view of T-cell co-stimulation within the

context of the ‘two-signal hypothesis’ (7, 8). Simply sta-

ted, the ‘two-signal hypothesis’ postulates that combined

antigen-dependent signaling via the T-cell receptor and a

second ‘costimulatory’ signal are required for optimal

T-cell activation. In this view, costimulatory ligands func-

tion as molecular ‘toggle’ switches. It is now apparent

that B7-H family members not only influence the activa-

tion of naı̈ve T cells following antigen presentation, but

also have broad roles in the control of T-cell differentia-

tion, effector functions, deactivation, and survival. There-

fore, members of the B7-H family are molecular ‘dimmer’

switches that fine-tune adaptive (and innate) immunity.

B7-H family members with either stimulatory or inhib-

itory functions are widely expressed by both tumor cells

and constituents of the tumor microenvironment in he-

matologic malignancies (Table 1)(9–24). B7-H2 provides

a T-cell costimulatory signal (25–29) upon engaging
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either of its receptors, CD28 and ICOS (25, 30). In con-

trast, B7-H1 (2) and B7-H4 (31–33) both inhibit T-cell

immunity. The available evidence suggests both inhibi-

tory and stimulatory functions for B7-H3 (6). Whether

the triggering receptor expressed on myeloid cells family

member TLT-2 is a bona fide costimulatory receptor for

B7-H3 is also controversial (34–36). The identification of

B7-H3 receptors using novel techniques should help clar-

ify its role in immunity (30). Ultimately, the B7 ligands

exert disparate effects on T-cell immunity depending

upon the particular receptor ⁄ counter-receptor engaged

(Fig. 1; B7-1 ⁄CD28 cf. B7-1 ⁄CTLA-4 ⁄B7-H1).

With the exception of CTLA-4, the B7-H1 ⁄PD-1 ⁄B7-1
axis is best understood among the inhibitory B7-H fam-

ily members. In contrast to CTLA-4-deficient mice that

develop a profound lymphoproliferative disorder, PD-1-

deficient mice, depending upon their genetic background,

develop a variety of more subtle autoimmune

manifestations (37–39). This work clearly supports the

role of PD-1 as an important inhibitory receptor. The

striking difference in phenotypes between CTLA-4- and

PD-1-deficient mice suggests that targeting PD-1 may be

associated with fewer immune-related adverse events

compared with CTLA-4 blockade. While it may be pre-

mature to draw any definitive conclusions, the available

evidence supports this conclusion (40–42). Recruitment

of SH2-domain containing protein tyrosine phosphatases

(SHP-1 and ⁄or SHP-2) to the immunoreceptor tyrosine–

based switch motif (ITSM) within the PD-1 cytoplasmic

tail inhibits signaling events, particularly PI3K ⁄AKT

activation, downstream of the T-cell receptor (43). PD-1

also promotes tumor cell evasion of host immunity as a

major counter-receptor for B7-H1. Recent studies also

demonstrate that B7-1 engagement by B7-H1 downregu-

lates T-cell immunity (44). Engagement of B7-H1 on

tumor cells confers resistance to cytotoxic T-cell (CTL)-

mediated killing, thus functioning as a ‘molecular shield’

(43). In the setting of persistent antigenic exposure, PD-1

engagement contributes to the maintenance of function-

ally incompetent antigen-specific T cells (45). This has

been nicely demonstrated in chronic viral infections, like

HIV. In most patients with HIV, viral-specific CTL

highly express PD-1 and are functionally suppressed or

‘exhausted’ (46, 47). However, T-cell effector functions

and proliferation are restored upon B7-H1 blockade. In

contrast, a low viral load and maintenance of peripheral

blood CD4+ T-cells are observed in the absence of anti-

viral therapies in a subset of HIV patients. These long-

term non-progressors have a pool of functional HIV-spe-

cific T cells that express little PD-1. These observations

have significant implications for virally associated lym-

phoproliferative disorders. Adult T-cell leukemia ⁄ lym-

phoma (ATLL) is associated with human T-cell leukemia

virus-1 (HTLV-1) infection, but only develops in a

minority of infected patients after a long latency period.

In contrast to HTLV-1 carriers, antigen-specific T cells

in ATLL patients highly expressed PD-1 and are

suppressed by B7-H1-expressing lymphoma cells (20).

The contribution of the B7-H1 ⁄PD-1 axis in the mainte-

nance of T-cell anergy or exhaustion is unlikely to be

limited to virally associated lymphoproliferative disorders

(48).
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Figure 1. The B7-H family and their receptors.
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In addition to regulating T-cell immunity, B7-H family

members have recently been shown to influence NK-cell

activation. This observation is particularly relevant in he-

matologic malignancies given the widespread use of

monoclonal antibodies that mediate antibody-dependent,

NK-cell-mediated cytotoxicity (ADCC). NK cells derived

from multiple myeloma patients, in contrast to healthy

donors, highly express PD-1. As myeloma cells highly

expressed B7-H1, PD-1 blockade enhanced conjugate

formation between NK cells and myeloma cells, increas-

ing NK-cell-mediated cytotoxicity (49). Interestingly,

lenalidomide decreased myeloma cell B7-H1 expression.

Therefore, lenalidomide may increase ADCC when used

in conjunction with monoclonal antibody-based therapies

by directly stimulating NK-cell cytotoxicity and by

impairing B7-H1 expression on target cells (50, 51).

Analogous to its role in maintaining a state of T-cell

exhaustion, PD-1 was found to mediate NK-cell ‘exhaus-

tion’ in EBV-associated post-transplant lymphoprolifera-

tive disorders (52). In contrast to B7-H1, B7-H2 and B7-

H6 promote NK-cell cytotoxicity (53–56).

The role of the B7-H family is not limited to direct

interactions between malignant cells and effector cells of

the adaptive immune response. B7-H family members

expressed on non-malignant cells within the tumor

microenvironment play a critically important role in pro-

viding a niche favorable for tumor growth and survival

in hematologic malignancies. For example, in various

T-cell lymphoproliferative disorders B7-H1 expression

was far more common within the tumor microenviron-

ment and was less commonly expressed by clonal T cells

(18). A considerable body of work now supports the

important role of both myeloid-derived cells and regula-

tory T cells (Treg) in many hematologic malignancies.

Monocytes and their progeny within the tumor microen-

vironment (e.g., lymphoma-associated macrophages) pro-

vide trophic factors that support the growth of

malignant lymphocytes, promote angiogenesis, and regu-

late host immunity (57). Not surprisingly then, increased

frequencies of peripheral blood monocytes and lym-

phoma-associated macrophages are associated with infe-

rior outcomes in both Hodgkin and non-Hodgkin

lymphomas (58–61). Dendritic cells (DC) and other mye-

loid cells, including subsets of monocytic cells (18, 62,

63), determine the fate of activated T cells, at least in

part, by the provision of costimulatory ⁄ coinhibitory
ligands. For example, T-cell lymphoma cells were found

to stimulate B7-H1 expression on both monocytes and

DC (18). In vitro co-culture experiments demonstrated

that DC promote Treg generation in a B7-H1-dependent

Table 1 Expression of selected B7 homologues in hematologic malignancies

Tumor Cell B7-H Expression (%)

B7-H1 B7-H2 B7-H3 B7-H4

MDS Present (<25%) (9)

AML �25% (10–13) �15%� (21)

ALL Absent (23)

DLBCL �25% (14) �5% (24)

PMBCL >50% (16)

BL Rare (23, 24)

FL Absent (14) Rare (24)

CLL ⁄ SLL Rare (24)

MCL Absent (24)

CBCL Present (131)

cHL �90% (14, 15) �5% (24)

NLPHL Absent (24)

MM >50% (17, 49) Rare (22)

PTCL-U �20% (18)

AITL Rare (18)

ALCL, ALK+ 33% (18) �20% (ALK status unknown) (24)

ALCL, ALK- 15% (18)

ATLL �20% (20)

CTCL �25% (18, 19)

MDS, myelodysplastic syndrome; AML, acute myelogenous leukemia; ALL, acute lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma;

PMBCL, primary mediastinal large B-cell lymphoma; BL, Burkitt lymphoma; FL, follicular lymphoma; CLL ⁄ SLL, chronic lymphocytic leukemia ⁄ small

lymphocytic lymphoma; MCL, mantle cell lymphoma; CBCL, cutaneous B-cell lymphoma; cHL, classical Hodgkin lymphoma; NLPHL, nodular lym-

phocyte-predominant Hodgkin lymphoma; MM, multiple myeloma; PTCL-U, peripheral T-cell lymphoma, unspecified; AITL, angioimmunoblastic

lymphoma; ALCL, anaplastic large cell lymphoma; ALK, anaplastic lymphoma kinase; ATLL, adult T-cell leukemia ⁄ lymphoma; CTCL, cutaneous T-

cell lymphoma.
�Associated with survival.
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manner (18, 64). This was further supported by immuno-

histochemical analyses demonstrating the co-localization

of B7-H1+ DC and Treg in T-cell lymphoma specimens

(18). While these studies support the role of B7-H1 in

Treg induction, B7-H1 may also promote the expansion

of Treg (65). Regulatory T cells have also been impli-

cated in the pathogenesis of MDS ⁄AML (66, 67) and

B-cell malignancies (68, 69). B7-H1, expressed by either

malignant cells or tumor-infiltrating DC, appears to simi-

larly regulate the induction and suppressive functions of

Treg in these diverse hematologic malignancies (69–72).

Given their inhibitory role, expression of many B7-H

family members by tumor cells is an adverse prognostic

factor in most solid tumors that have been examined

(4–6). This is usually attributed to their immunologic

affects. However, recent evidence demonstrates that

‘reverse signaling’ mediated by B7-H1, B7-H3, and B7-

H4 may regulate tumor cell survival. Using tumor cells

transfected with B7-H1 constructs lacking the cytoplas-

mic domain, Azuma et al. demonstrated that B7-H1 sig-

naling following engagement by T-cell PD-1 led to

resistance to CTL-mediated killing (73). A more general-

ized role for B7-H1 in regulating tumor cell survival is

demonstrated by the observation that these cells were

similarly resistant to Fas- or chemotherapy-mediated

apoptosis. In a murine model, B7-H1 increased the sur-

vival of CD8+ T cells during the contraction phase of

the immune response by upregulating Bcl-xL expression

(74). Silencing of B7-H3 or B7-H4 expression have simi-

larly been shown to increase tumor cell apoptosis (75,

76). Therefore, these ligands promote tumorigenesis by

both immunologic and non-immunologic affects. Not

surprisingly then, malignant cells inducibly express mem-

bers of the B7-H family by a variety of different mecha-

nisms.

B7-H expression in hematologic malignancies

Given their important immunoregulatory roles, B7-H

expression is strictly regulated. For example, B7-H1 is

post-transcriptionally regulated by type I and II interfer-

ons and by MyD88, JAK ⁄STAT, TRAF6, MEK, and

PI3K ⁄AKT signaling in solid tumors (2). While B7-H1

may be similarly regulated in hematologic malignancies

(9, 10, 17), both anaplastic large cell lymphoma (ALCL)

and primary mediastinal large B-cell lymphoma

(PMBCL) regulate the expression of B7-H family mem-

bers by novel mechanisms, including chromosomal trans-

locations and gene amplification.

A subset of ALCL harbor a novel nucleophosmin

(NPM) – anaplastic lymphoma kinase (ALK) fusion pro-

tein resulting from a chromosomal translocation [most

commonly t(2;5)(p23;q35)]. Constitutively active NPM-

ALK is oncogenic and culminates in the activation of

multiple signaling pathways, including STAT3. In

ALK+ ALCL, B7-H1 expression was strictly dependent

upon NPM-ALK expression and activity and was attrib-

uted to NPM-ALK-dependent activation of STAT3 and

its subsequent binding to the B7-H1 promoter (77). In

similarly performed experiments, STAT3 was shown to

bind the ICOS promoter and inhibit the expression of

miR-219, culminating in ICOS expression (78). Whether

NPM-ALK further regulates B7-H1 expression in a

miRNA-dependent manner is unknown (79). In addition,

exposure to a hypomethylating agent further increased

ICOS expression owing to its effects on the putative

ICOS enhancer, which is methylated in ALK+ ALCL

cell lines (78).

Genomic amplifications involving chromosome 9

(9p24.1) are a characteristic finding observed in over

50% of PMBCL (80). This subtelomeric region of chro-

mosome 9 includes the genes for B7-H1 and B7-DC.

Integrative analyses have clearly demonstrated that

amplification at these loci results in increased expression

of B7-H1 and B7-DC in PMBCL (16). Furthermore,

JAK2 is also involved in this amplification and further

enhances B7-H1 gene transcription in PMBCL (16). It

remains to be determined whether JAK2 amplifications

or mutations observed in other malignancies are associ-

ated with the induction of B7-H1 expression (81). Alter-

natively, recurrent translocations involving the major

histocompatibility complex class II transactivator (CIIT-

A) and the B7-H1 and B7-H2 loci are associated with

overexpression of these ligands in PMBCL and classical

Hodgkin lymphoma (82). These observations raise the

possibility that the B7-H family may bridge oncogenic

events driving tumor proliferation with the suppression

of host immunity.

In contrast to ALCL and PMBCL, B7-H expression in

other hematologic malignancies may be explained by der-

ivation from a cell subset that normally expresses specific

B7-H family members. Therefore, B7-H expression pro-

vides important clues about the ‘cell of origin’ in these

hematologic malignancies.

Defining the ‘cell of origin’: follicular helper
T-cell lymphomas

Germinal center formation is regulated by follicular

helper T cells (TFH), a subset of differentiated CD4+ T

cells regulated by the ‘master’ transcriptional repressor

Bcl-6 [reviewed in (83)]. TFH cells express chemokines

(CXCL13), chemokine receptors (CXCR5), and adhe-

sion molecules (SLAM family receptors) that permit

co-localization with germinal center B cells and follicular

dendritic cells (FDC). Specific cytokines (IL-4, IL-21)

and cell-surface ligands (CD40L) expressed by TFH pro-

mote somatic hypermutation, class-switch recombination,
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and B-cell proliferation ⁄ survival leading to memory B

cell and plasma cell generation. Angioimmunoblastic

T-cell lymphoma (AITL) is an aggressive peripheral

T-cell lymphoma (PTCL) that originates from clonally

expanded TFH cells [reviewed in (84)]. This is supported

by gene expression profiling similarities between AITL

and TFH cells (85). The ontogeny of malignant T cells in

AITL explains the histologic findings (varying expansion

of germinal center B cells and an expanded meshwork of

FDC) and clinical manifestations (polyclonal hyper-

gammaglobulinemia, autoimmunity) characteristic of this

PTCL. Malignant T cells in AITL share a common

immunophenotype with TFH cells, including the expres-

sion of B7-H family members PD-1(86–89) and ICOS

(90–93).

ICOS and PD-1 play a critical role in TFH regulation.

Soon after antigen presentation by dendritic cells, ICOS

costimulation induces Bcl-6, leading to TFH differentia-

tion (94). Continued ICOS costimulation, provided by

germinal center B cells, is required for TFH maintenance

(83). Not surprisingly then, a subset of patients with

common variable immunodeficiency owing to the geno-

mic loss of ICOS have a severe loss of memory B cells

and IgG (95, 96). Conversely, Sanroque mice harbor a

missense mutation in Roguin, a negative regulator of

ICOS expression, and thus develop TFH hyperplasia, a

robust germinal center reaction, and spontaneous au-

toimmunity (97). PD-1 is highly expressed on TFH and

may provide inhibitory signals upon engagement by B7-

H1-expressing germinal center B cells. The observation

that PD-1- and B7-H1-deficient mice develop increased

frequencies of TFH cells following vaccination is consis-

tent with this notion. Perhaps unexpectedly, increased

B-cell apoptosis and impaired generation of long-lived

plasma cells was observed in PD-1- and B7-H1-deficient

mice (98). This phenotype was attributed to decreased

cytokine production by PD-1-deficient TFH. However,

reverse signaling by B7-H1 was recently demonstrated to

promote T-cell survival (74), thus raising the possibility

that reverse signaling by B7-H1 may similarly regulate

the survival of germinal center B cells. The extent to

which malignant T cells in AITL are regulated by ICOS

or PD-1 signaling remains to be defined, although it was

recently demonstrated that ICOS provides growth and

survival signals to malignant T cells in ALK+ ALCL

(78). In addition to classic AITL, both a follicular

variant of peripheral T-cell lymphoma, unspecified

(PTCL-U) and cutaneous T-cell lymphoma subtypes

express ICOS and PD-1 and may be derived from TFH

cells (91, 93, 99, 100). Furthermore, non-malignant TFH

cells represent an important constituent of the tumor

microenvironment in some B-cell lymphomas [e.g., nodu-

lar lymphocyte-predominant Hodgkin lymphoma (101,

102) and follicular lymphoma (103–105)]. Therefore,

PD-1 and ICOS are rational therapeutic targets in these

lymphomas.

B7-H4 and neutropenia

While their role in the regulation of adaptive immunity

is increasingly appreciated, emerging evidence suggests

that B7-H family members also regulate the function of

the innate immune response (106). This was illustrated

by the phenotype observed in B7-H4-deficient mice. Sur-

prisingly, these mice were resistant to infection with Lis-

teria monocytogenes (107). This was observed within a

few days of inoculation, suggesting a role for the innate

immune response. Therefore, investigators examined the

neutrophil response in these mice. B7-H4-deficient mice

were found to mount a more robust neutrophil response

following infection when compared with their normal lit-

termates. This was explained by the inhibition of neutro-

phil progenitors by B7-H4. A constellation of hematologic

malignancies, most obviously T-cell large granular lym-

phocytic leukemia (T-LGL), are associated with an

expansion of cytotoxic T-lymphocytes and significant

neutropenia. The association between severe neutropenia

and T-LGL is well described, but its pathogenesis is

poorly understood, with increased peripheral destruction

as well as impaired neutrophil production being

described (108–110). For example, FasL is expressed by

T-LGL cells and may be cleaved from the cell surface,

thus explaining the elevated levels of soluble FasL

observed in the sera of patients (110). Serum from these

patients may trigger neutrophil apoptosis in a Fas-depen-

dent manner (110). While reverse signaling via B7-H4

may upregulate FasL in EBV-transformed B cells, we are

unaware of any data to suggest that a similar mechanism

may exist in T cells (111). T-LGL cells have also been

demonstrated to suppress neutrophil colony growth in a

manner that is independent of Fas ⁄FasL interactions

(109). The observation that T-LGL cells highly express

B7-H4 (R.A.W. unpublished observation), in conjunction

with the recently described phenotype of B7-H4-deficient

mice, implicates B7-H4 in the pathogenesis of disorders

associated with immune-mediated neutropenia (112–114).

Targeting B7-H: novel therapeutic approaches
in hematologic malignancies

The B7-H family members are important regulators of

adaptive and innate immunity in the tumor-bearing host

and have non-immunologic effects that promote the sur-

vival of malignant cells. Therefore, targeting B7-H

ligands with antagonistic monoclonal antibodies is

rational and supported by preclinical studies performed

in animal models. A phase I study of CT-011, a

humanized IgG1 monoclonal antibody (mAb) that
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blocks PD-1, included 17 patients with various hemato-

logic malignancies, including nine with MDS ⁄AML and

7 with non-Hodgkin lymphoma (41). A maximum toler-

ated dose was not reached in this study. Diarrhea was

the most common adverse event, being observed in two

patients. Grade 4 graft-versus-host disease (GVHD)

developed in one of these patients who had undergone

prior allogeneic transplantation for AML. Whether anti-

body administration may have exacerbated GVHD in

this patient is unclear. Otherwise, no serious immune-

related adverse events were observed in this study. A sin-

gle complete remission was observed in a previously

untreated patient with bulky stage III follicular lym-

phoma. A minimal response was observed in a single

patient with AML and stable disease reported in four

patients (2 CLL, 1 cHL, and 1 MM). Peripheral blood

CD4+ and CD8+ T cells were monitored during the

course of the study. A statistically significant increase in

the CD4+ T-cell count was observed in patients treated

at higher dose levels. Lymphopenia is an adverse prog-

nostic factor at diagnosis and is associated with disease

relapse in many lymphoproliferative disorders (59, 115–

121). For example, in a cohort of 149 consecutive

DLBCL patients treated with R-CHOP at a single insti-

tution, the cumulative incidence of relapse was 79% for

patients with an absolute lymphocyte count (ALC)

<0.96 · 109 ⁄L at the time of follow-up (121). In con-

trast, the relapse rate was 6% among those with a higher

ALC. In a similarly performed study including DLBCL

patients following autologous stem cell transplantation,

the development of new-onset lymphopenia during fol-

low-up was associated with a cumulative incidence of

relapse of 92%, compared with a cumulative incidence of

relapse of only 19% for those with a higher ALC (122).

PD-1 blockade may represent a novel therapeutic strat-

egy to reverse lymphopenia and decrease the incidence of

disease relapse in lymphopenic, high-risk patients. Two

observations may further support this approach. First,

elevated serum levels of a soluble form of B7-H1 are

associated with lymphopenia in lymphoma patients

(123). Finally, soluble B7-H1 was shown to promote

T-cell apoptosis (124). In a phase I study conducted in

patients with refractory solid tumors, tumor cell expres-

sion of B7-H1 appeared to predict the likelihood of

response following PD-1 blockade with MDX-1106 (42).

Theoretically, antibodies targeting B7-H1 interactions

with both B7-1 and PD-1 may be superior to antibodies

blocking either receptor ⁄ counter-receptor alone. A clini-

cal trial in hematologic malignancies using a B7-H1

targeting antibody (BMS-936559) is planned (http://

www.clinicaltrials.gov). The identification of predictive

biomarkers will be important in the selection of patients

for therapeutic strategies targeting the B7-H1 ⁄PD-1 ⁄B7-1
axis.

Allogeneic transplantation is frequently considered for

patients with various high-risk or relapsed hematologic

malignancies. The goal of allogeneic stem cell transplan-

tation is the generation of a robust graft-versus-leukemia

(GVL) response. Unfortunately, concomitant graft-

versus-host disease (GVHD) is a frequent complication

that contributes to significant morbidity and mortality.

Recent work demonstrates that therapeutic manipulation

of B7-H family members may promote the GVL

response (10, 125–127), leading to the eradication of min-

imal residual disease, and prevent GVHD (128, 129). For

example, B7-H1 expression by residual leukemic blasts

confers resistance to T-cell mediated eradication and

may thus promote immune evasion and disease recur-

rence following allogeneic stem cell transplantation (126,

127). In a murine model, B7-H1 blockade restored the

GVL effect following the adoptive transfer of leukemia-

specific T cells without exacerbating GVHD (128). This

data should be interpreted cautiously, however, as PD-1

was shown to inhibit GVHD in another model (130).

These studies raise the possibility that manipulation of

B7-H family members may augment the GVL response

without exacerbating GVHD and may thus increase the

therapeutic index associated with allogeneic stem cell

transplantation.

The significant survival advantage observed in many

lymphoproliferative disorders following the introduction

of rituximab highlights the important role of mAb-medi-

ated targeting in these malignancies. These antibodies

mediate ADCC, complement-dependent cytotoxicity, or

have direct apoptotic affects. As B7-H1 impairs NK-cell-

mediated ADCC, therapeutic strategies targeting B7-H1

may be rationally combined with targeting mAb, like rit-

uximab (49–51).

Conclusions

Members of the B7-H family are widely expressed by

malignant cells, and within the tumor microenvironment,

in many hematologic malignancies. Inhibitory B7-H

ligands promote the suppression of host anti-tumor

immunity while those with stimulatory functions may

directly stimulate the growth and survival of malignant

cells. It is anticipated that further clarification of their

pathogenic role in hematologic malignancies will have

significant implications for the classification and risk

stratification of these disorders. The development of

novel therapeutic strategies targeting the B7-H family in

hematologic malignancies is warranted.
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