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CHAPTER I

Introduction

This thesis consists of three essays.

In the first essay, chapter II, we investigate the optimal investment strategy for

an individual to minimize the probability of going bankruptcy before death. The

individual is assumed to invest in a financial market with one riskfree and one risky

asset, with the latter’s price following a diffusion with stochastic volatility. Using

stochastic optimal control techniques, perturbation analysis and Markov Chain Ap-

proximation method, we solve this minimization problem and provide insights for

retirees.

This chapter is based on Bayraktar et al. [16]. Parts of this work as been pre-

sented at SIAM Conference on Financial Mathematics and Engineering (FM10),

San Francisco, November 19, 2010; First Annual University of Michigan SIAM Stu-

dent Conference, Ann Arbor, November 13, 2010; Bachelier Finance Society World

Congress, Fields Institute, Toronto, June 25, 2010; and Financial/Actuarial Mathe-

matics Seminar, University of Michigan, Ann Arbor, 2009.

Chapter III extends the Heston stochastic volatility model to include state-dependent

jumps in the price and the volatility, and develops a method for the exact simulation

of this model. The jumps arrive with a stochastic intensity that may depend on

1
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time, price, volatility and jump counts. They may have an impact on the price or

the volatility, or both. The random jump size may depend on the price and volatility.

Numerical experiments demonstrate the performance of our exact method.

This chapter is based on Bayraktar et al. [15]. Parts of this work has been pre-

sented at Statistic Student Seminar, University of Michigan, Ann Arbor, October

13, 2011 and will be presented at SIAM Conference on Financial Mathematics and

Engineering (FM12), Minnesota, July 2012.

In Chapter IV, we study the properties of systemic sovereign credit risk using

CDS spreads for U.S. and major sovereign countries. We develop a regime-switching

two-factor model that allows for both global-systemic and sovereign-specific credit

shocks, and use maximum likelihood estimation to calibrate model parameters to

CDS weekly data. The preliminary results suggest a heterogeneity across different

countries in their sensitivity to system risk. In addition, the regime across high-

volatility and low-volatility regimes behaves differently with asymmetric regime-shift

probabilities. This chapter is based on Li et al. [72].



CHAPTER II

Minimizing the Probability of Lifetime Ruin under
Stochastic Volatility

2.1 Introduction

Pension actuaries traditionally have computed the liabilities for defined benefit

(DB) pension plans; however, more and more employees are participating in defined

contribution (DC) plans. Indeed, in June 2007, the Employee Benefits Research

Institute (EBRI) reported that in 1979, among active workers participating in re-

tirement plans, the percentages in DB plans only, DC plans only, and both DB and

DC plans were 62%, 16%, and 22%, respectively. The corresponding percentages in

2005 were 10%, 63%, and 27%, respectively.

In terms of numbers of employees, EBRI reported that in 1980, 30.1 million ac-

tive workers participated in DB plans, while 18.9 million workers participated in

DC plans. The corresponding numbers in 2004 were 20.6 and 52.2 active workers,

respectively. Finally, in terms of numbers of plans in the private sector, in 1980,

there were 148 thousand DB plans and 341 thousand DC plans; the corresponding

numbers in 2004 were 47 and 653 thousand plans, respectively.

Therefore, however one measures the change in employee coverage under DB ver-

sus DC plans, it is clear that pension actuaries will need to adapt to the migration

from DB to DC plans. One way that they can adapt is to switch from advising

3
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employers about their DB liabilities to providing investment advice for retirees and

employees in DC plans. The purpose of our proposed research is to help train ac-

tuaries for this opportunity under the easy-to-explain goal of an employee or retiree

avoiding bankruptcy.

Previous work focused on finding the optimal investment strategy to minimize the

probability of bankruptcy under a variety of situations: (1) allowing the individual

to invest in a standard Black-Scholes financial market with a rate of consumption

given by some function of wealth, Young [97], Bayraktar and Young [19]; (2) incor-

porating immediate and deferred annuities in the financial market, Milevsky et al.

[81], Bayraktar and Young [22]; (3) limiting borrowing or requiring that borrow-

ing occur at a higher rate than lending, Bayraktar and Young [20]; (4) modeling

consumption as an increasing function of wealth or as a random process correlated

with the price process of the stock, Bayraktar and Young [21], Bayraktar et al.

[17], Bayraktar and Young [18]. Throughout this body of work, the price process of

the stock is modeled as a geometric Brownian motion, which is arguably unrealistic,

but has given results that one can consider to be “first approximations.” Here we

extend some of the previous work and allow the stock price to exhibit stochastic

volatility. Additionally, we intend to find easy-to-implement rules that will result in

nearly minimal probabilities of bankruptcy under stochastic volatility.

The rest of the chapter is organized as follows. In Section 2, we introduce the

financial market and define the problem of minimizing the probability of lifetime ruin.

In Section 3, we present a related optimal controller-stopper problem, and show that

the solution of that problem is the Legendre dual of the minimum probability of

lifetime ruin. By solving the optimal controller-stopper problem, we effectively solve

the problem of minimizing the probability of lifetime ruin. Relying on the results in
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Section 3, we find an asymptotic approximation of the minimum probability of ruin

and the optimal strategy in Section 4. On the other hand, in Section 5, relying on

the Markov Chain Approximation Method, we construct a numerical algorithm that

solves the original optimal control problem numerically. In Section 6, we present

some numerical experiments.

We learn that the optimal investment strategy in the presence of stochastic volatil-

ity is not necessarily to invest less in the risky asset than when volatility is fixed.

We also observe that the minimal probability of ruin can be almost attained by the

asymptotic approximation described in Section 5.1. Also, if an individual uses the

investment prescribed by the optimal investment strategy for the constant volatility

environment while updating the volatility variable in this formula according to her

observations, it turns out she can almost achieve the minimum probability of ruin in

a stochastic volatility environment.

2.2 The Financial Market and the Probability of Lifetime Ruin

In this section, we present the financial ingredients that make up the individual’s

wealth, namely, consumption, a riskless asset, and a risky asset. We, then, define

the minimum probability of lifetime ruin.

We assume that the individual invests in a riskless asset whose price at time t,

Xt, follows the process dXt = rXtdt,X0 = x > 0, for some fixed rate of interest

r > 0. Also, the individual invests in a risky asset whose price at time t, St, follows

a diffusion given by

dSt = St

(
µdt+ σt dB

(1)
t

)
, S0 = S > 0, (2.2.1)

in which µ > r and σt is the (random) volatility of the price process at time t.

Here, B(1) is a standard Brownian motion with respect to a filtered probability space



6

(Ω,F ,P,F = {Ft}t≥0). We assume that the stochastic volatility is given by

σt = f(Yt, Zt), (2.2.2)

in which f is a smooth positive function that is bounded and bounded away from zero,

and Y and Z are two diffusions. Below, we follow Fouque et al. [44] in specifying the

dynamics of Y and Z. Note that if f is constant, then S follows geometric Brownian

motion, and that case is considered by Young [97].

The first diffusion Y is a fast mean-reverting Gaussian Ornstein-Uhlenbeck pro-

cess. Denote by 1/ε the rate of mean reversion of this process, with 0 < ε � 1

corresponding to the time scale of the process. Y is an ergodic process, and we as-

sume that its invariant distribution is independent of ε. In particular, the invariant

distribution is normal with mean m and variance ν2. The resulting dynamics of Y

are given by

dYt =
1

ε
(m− Yt) dt+ ν

√
2

ε
dB

(2)
t , Y0 = y ∈ R, (2.2.3)

in which B(2) is a standard Brownian motion on (Ω,F ,P,F). Suppose B(1) and B(2)

are correlated with (constant) coefficient ρ12 ∈ (−1, 1).

Under its invariant distribution N (m, ν2), the autocorrelation of Y is given by

E [(Yt −m)(Ys −m)] = ν2 e−|t−s|/ε. (2.2.4)

Therefore, the process decorrelates exponentially fast on the time scale ε; thus, we

refer to Y as the fast volatility factor.

The second factor Z driving the volatility of the risky asset’s price process is

a slowly varying diffusion process. We obtain this diffusion by applying the time

change t→ δ · t to a given diffusion process:

dZ̃t = g(Z̃t) dt+ h(Z̃t) dB̃t, (2.2.5)
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in which 0 < δ � 1 and B̃ is a standard Brownian motion. The coefficients g and

h are smooth and at most linearly growing at infinity, so (2.2.5) has a unique strong

solution. Under the time change t → δ · t, define Zt = Z̃δ·t. Then, the dynamics of

Z are given by

dZt = δ g(Zt) dt+ h(Zt) dB̃δ·t, Z0 = z ∈ R. (2.2.6)

In distribution, we can write these dynamics as

dZt = δ g(Zt) dt+
√
δ h(Zt) dB

(3)
t , Z0 = z ∈ R, (2.2.7)

in which B(3) is a standard Brownian motion on (Ω,F ,P,F). Suppose B(1) and

B(3) are correlated with (constant) coefficient ρ13 ∈ [−1, 1]. Similarly, suppose B(2)

and B(3) are correlated with (constant) coefficient ρ23 ∈ [−1, 1]. To ensure that the

covariance matrix of the Brownian motions is positive semi-definite, we impose the

following condition on the ρ’s:

1 + 2ρ12ρ13ρ23 − ρ2
12 − ρ2

13 − ρ2
23 ≥ 0. (2.2.8)

Let Wt be the wealth at time t of the individual, and let πt be the amount that

the decision maker invests in the risky asset at that time. It follows that the amount

invested in the riskless asset is Wt − πt. We assume that the individual consumes at

a constant rate c > 0. Therefore, the wealth process follows

dWt = [rWt + (µ− r)πt − c] dt+ f(Yt, Zt) πt dB
(1)
t , (2.2.9)

and we suppose that initial wealth is non-negative; that is, W0 = w ≥ 0.

By lifetime ruin, we mean that the individual’s wealth reaches zero before she

dies. Define the corresponding hitting time by τ0 := inf{t ≥ 0 : Wt ≤ 0}. Let

τd denote the random time of death of the individual, which is independent of the

Brownian motions. We assume that τd is exponentially distributed with parameter
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λ (that is, with expected time of death equal to 1/λ); this parameter is also known

as the hazard rate, or, force of mortality.

Moore and Young [82] minimize the probability of lifetime ruin with varying

hazard rate and show that by updating the hazard rate each year and treating it as a

constant, the individual can quite closely obtain the minimal probability of ruin when

the true hazard rate is Gompertz. Specifically, at the beginning of each year, set λ

equal to the inverse of the individual’s life expectancy at that time. Compute the

corresponding optimal investment strategy as given below, and apply that strategy

for the year. According to the work of Moore and Young [82], this scheme results in

a probability of ruin close to the minimum probability of ruin. Therefore, there is

no significant loss of generality to assume that the hazard rate is constant and revise

its estimate each year.

Denote the minimum probability of lifetime ruin by ψ(w, y, z), in which the argu-

ments w, y, and z indicate that one conditions on the individual possessing wealth

w at the current time with the two factors Y and Z taking the values y and z,

respectively, then. Thus, ψ is the minimum probability that τ0 < τd, in which one

minimizes with respect to admissible investment strategies π. A strategy π is admis-

sible if it is Ft-progressively measurable, and if it satisfies the integrability condition∫ t
0
π2
s ds <∞ almost surely for all t ≥ 0. Thus, ψ is formally defined by

ψ(w, y, z) = inf
π
Pw,y,z [τ0 < τd] . (2.2.10)

Here, Pw,y,z indicates the probability conditional on W0 = w, Y0 = y, and Z0 = z.

Note that if w ≥ c/r, then ψ(w, y, z) = 0 because the individual can invest c/r

of her wealth in the riskless asset and generate a rate of income equal to c, which

exactly covers her consumption. Therefore, we effectively only need to determine the

minimum probability of lifetime ruin and corresponding optimal investment strategy
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on the domain D := {(w, y, z) ∈ R3 : w ∈ [0, c/r]}.

2.3 Computing the Minimum Probability of Lifetime Ruin

2.3.1 A related optimal controller-stopper problem

In this section, we present an optimal controller-stopper problem whose solution

ψ̂ is the Legendre dual of the minimum probability of ruin ψ. It is not clear a pri-

ori that the value function ψ is convex or smooth due to the implicit dependent on

the initial values of the state variable. By passing to the controller-stopper prob-

lem, however, we can obtain the regularity of ψ̂ in more simply, which, in turn,

provides an intermediate tool in the proof of regularity of ψ. The dual relationship

and the analysis of the controller-stopper problem are, therefore, crucial and worth

investigating.

First, note that we can represent the three Brownian motions from Section 2

as follows: given B(1), B(2), and B(3), define B̃(1), B̃(2), and B̃(3) via the following

invertible system of equations:

B
(1)
t = B̃

(1)
t ,

B
(2)
t = ρ12 B̃

(1)
t +

√
1− ρ2

12 B̃
(2)
t ,

B
(3)
t = ρ13 B̃

(1)
t +

ρ23 − ρ12ρ13√
1− ρ2

12

B̃
(2)
t +

√
(1− ρ2

12)(1− ρ2
13)− (ρ23 − ρ12ρ13)2√

1− ρ2
12

B̃
(3)
t .

(2.3.1)

One can show that B̃(1), B̃(2), and B̃(3) thus defined are three independent standard

Brownian motions on (Ω,F ,P,F). Also notice that condition (2.2.8) on the ρ’s

guarantees that the expression under the square root in the coefficient of B̃
(3)
t is

non-negative.
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Next, define the controlled process Xγ by

dXγ
t = −(r − λ)Xγ

t dt−
µ− r

f(Yt, Zt)
Xγ
t dB̃

(1)
t + γ

(2)
t dB̃

(2)
t + γ

(3)
t dB̃

(3)
t , X0 = x > 0,

(2.3.2)

in which γ =
(
γ(2), γ(3)

)
is the control, and Y and Z are given in (2.2.3) and (2.2.7),

respectively.

For x > 0, define the function ψ̂ by

ψ̂(x, y, z) = inf
τ

sup
γ

Ex,y,z
[∫ τ

0

e−λtcXγ
t dt+ e−λτ min ((c/r)Xγ

τ , 1)

]
. (2.3.3)

ψ̂ is the value function for an optimal controller-stopper problem. Indeed, the con-

troller chooses among processes γ in order to maximize the discounted running

“penalty” to the stopper given by cXγ
t in (2.3.3). On the other hand, the stop-

per chooses the time to stop the game in order to minimize the penalty but has to

incur the terminal cost of min ((c/r)Xγ
τ , 1), discounted by e−λτ when she stops.

Bayraktar and Young [18] consider a controller-stopper problem that is mathe-

matically similar to the one in this chapter; see that paper for details of the fol-

lowing assertions–specifically, see Theorem 2.4 and its proof. One can show that

the controller-stopper problem has a continuation region given by {(x, y, z) : 0 ≤

xc/r(y, z) ≤ x ≤ x0(y, z)} for some functions 0 ≤ xc/r(y, z) ≤ r/c ≤ x0(y, z) with

(y, z) ∈ R2. Thus, if x ≤ xc/r(y, z), we have ψ̂(x, y, z) = (c/r)x, and if x ≥ x0(y, z),

we have ψ̂(x, y, z) = 1. Moreover, ψ̂ is non-decreasing and concave with respect to x

on R+ (increasing and strictly concave in the continuation region) and is the unique

classical solution of the following free-boundary problem on
[
xc/r(y, z), x0(y, z)

]
:

cx+
(

1
ε
L0 + 1√

ε
L1 + L2 +

√
δM1 + δM2 +

√
δ
ε
M3

)
ψ̂ +NLε,δ = 0;

ψ̂(xc/r(y, z), y, z) = c
r
xc/r(y, z), ψ̂x(xc/r(y, z), y, z) = c

r
;

ψ̂(x0(y, z), y, z) = 1, ψ̂x(x0(y, z), y, z) = 0;

(2.3.4)
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in which

L0v = (m− y) vy + ν2 vyy, (2.3.5)

L1v = −ρ12
µ− r
f(y, z)

ν
√

2x vxy, (2.3.6)

L2v = −λ v − (r − λ)x vx +
1

2

(
µ− r
f(y, z)

)2

x2 vxx, (2.3.7)

M1v = −ρ13
µ− r
f(y, z)

h(z)x vxz, (2.3.8)

M2v = g(z) vz +
1

2
h2(z) vzz, (2.3.9)

M3v = ρ23 ν
√

2h(z) vyz, (2.3.10)

and

NLε,δ = sup
γ

1

2

((
γ(2)
)2

+
(
γ(3)
)2
)
ψ̂xx

+ γ(2)

(
ν

√
2

ε

√
1− ρ2

12 ψ̂xy +
√
δ h(z)

ρ23 − ρ12ρ23√
1− ρ2

12

ψ̂xz

)

+ γ(3)
√
δ h(z)

√
(1− ρ2

12)(1− ρ2
13)− (ρ23 − ρ12ρ13)2√

1− ρ2
12

ψ̂xz

]
.

(2.3.11)

Because ψ̂ is concave with respect to x, we can express NLε,δ as follows:

NLε,δ = −1

ε
ν2
(
1− ρ2

12

) ψ̂2
xy

ψ̂xx
−1

2
δ h2(z)

(
1− ρ2

13

) ψ̂2
xz

ψ̂xx
−ν
√

2

√
δ

ε
h(z) (ρ23 − ρ12ρ13)

ψ̂xyψ̂xz

ψ̂xx
.

(2.3.12)

2.3.2 Convex Legendre dual of ψ̂

Since ψ̂ is strictly concave with respect to x in its continuation region (which

corresponds to wealth lying in [0, c/r]), we can define its convex dual Ψ by the

Legendre transform: for (w, y, z) ∈ D = {(w, y, z) ∈ R3 : w ∈ [0, c/r]},

Ψ(w, y, z) = max
x

(
ψ̂(x, y, z)− wx

)
. (2.3.13)

In this section, we show that the convex dual Ψ is the minimum probability of lifetime

ruin; then, in the next section, we asymptotically expand ψ̂ in powers of
√
ε and

√
δ.
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Theorem 2.3.1. Ψ equals the minimum probability of lifetime ruin ψ on D, and

the investment policy π∗ given in feedback form by π∗t = π∗(W ∗
t , Yt, Zt) is an optimal

policy, in which W ∗ is the optimally controlled wealth (that is, wealth controlled by

π∗) and the function π∗ is given by

π∗(w, y, z) = − µ− r
f 2(y, z)

ψw
ψww

− ρ12

√
2

ε

ν

f(y, z)

ψwy
ψww

− ρ13

√
δ

h(z)

f(y, z)

ψwz
ψww

, (2.3.14)

in which the right-hand side of (2.3.14) is evaluated at (w, y, z).

Proof. From (2.3.13), it follows that the critical value x∗ solves w = ψ̂x(x, y, z);

thus, given w, we have x∗ = I(w, y, z), in which I is the inverse function of ψ̂x

with respect to x. Therefore, Ψ(w, y, z) = ψ̂(I(w, y, z), y, z) − wI(w, y, z). By

differentiating this expression of Ψ with respect to w, we obtain Ψw(w, y, z) =

ψ̂x(I(w, y, z), y, z)Iw(w, y, z) − I(w, y, z) − wIw(w, y, z) = −I(w, y, z); thus, x∗ =

−Ψw(w, y, z). Similarly, we obtain (with w = ψ̂x(x, y, z)) the following expressions:

ψ̂xx(x, y, z) = − 1

Ψww(w, y, z)
, (2.3.15)

ψ̂y(x, y, z) = Ψy(w, y, z), (2.3.16)

ψ̂z(x, y, z) = Ψz(w, y, z), (2.3.17)

ψ̂yy(x, y, z) = Ψwy(w, y, z) ψ̂xy(x, y, z) + Ψyy(w, y, z), (2.3.18)

ψ̂zz(x, y, z) = Ψwz(w, y, z) ψ̂xz(x, y, z) + Ψzz(w, y, z), (2.3.19)

ψ̂xy(x, y, z) = Ψwy(w, y, z) ψ̂xx(x, y, z), (2.3.20)

ψ̂xz(x, y, z) = Ψwz(w, y, z) ψ̂xx(x, y, z), (2.3.21)

and

ψ̂yz(x, y, z) = Ψwy(w, y, z) Ψwz(w, y, z) ψ̂xx(x, y, z) + Ψyz(w, y, z). (2.3.22)
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By substituting x∗ = −Ψw(w, y, z) into the free-boundary problem for ψ̂, namely

(2.3.4), one can show that Ψ uniquely solves the following boundary-value problem

on D: 
minβ Dβv(w, y, z) = 0;

v(0, y, z) = 1, v(c/r, y, z) = 0.

(2.3.23)

where the differential operator Dβ is given by

Dβv = −λ v + (rw + (µ− r)β − c) vw +
1

ε
(m− y) vy + δ g(z) vz

+
1

2
f 2(y, z) β2 vww +

1

ε
ν2 vyy +

1

2
δ h2(z) vzz + ρ12 f(y, z) β ν

√
2

ε
vwy

+ ρ13 f(y, z) β
√
δ h(z) vwz + ρ23

√
2 ν

√
δ

ε
h(z) vyz.

(2.3.24)

Observe that Ψ is strictly convex in w because ψ̂ is strictly concave in x in its

continuation region which corresponds to D in the original space. Since Ψ is strictly

convex with respect to w, the optimal policy π∗ in (2.3.23) is given by the first-

order necessary condition, which results in the expression in (2.3.14). Now, using

a standard verification theorem we deduce that Ψ is the minimum probability of

lifetime ruin ψ.

Theorem 2.3.1 demonstrates the strong connection between ψ̂ and ψ, namely that

they are dual via the Legendre transform. (As an aside, if we have ψ, we can obtain ψ̂

via ψ̂(x, y, z) = minw (ψ(w, y, z) + wx).) Therefore, if we have ψ̂, then we obtain the

minimum probability of ruin ψ via (2.3.13). More importantly, we get the optimal

investment strategy π∗ via (2.3.14). As a corollary to Theorem 2.3.1, we have the

following expression for π∗ in terms of the dual variable x.

Corollary 2.3.2. In terms of the dual variable x, the optimal investment strategy

π∗ is given by π∗t = π̂∗(X∗t , Yt, Zt), in which X∗ is the optimally controlled process
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X, and

π̂∗(x, y, z) = − µ− r
f 2(y, z)

x ψ̂xx + ρ12

√
2

ε

ν

f(y, z)
ψ̂xy + ρ13

√
δ

h(z)

f(y, z)
ψ̂xz, (2.3.25)

with the right-hand side of (2.3.25) evaluated at (x, y, z).

Proof. Let w = ψ̂x(x, y, z) in (2.3.14) and simplify the right-hand side via equations

(2.3.15)-(2.3.22) to obtain (2.3.25).

2.4 Asymptotic Approximation of the Minimum Probability of Lifetime
Ruin

In this section, we asymptotically expand ψ̂, the Legendre transform of the mini-

mum probability of ruin, in powers of
√
ε and

√
δ. (A parallel analysis of expanding

the Legendre transform of the value function of the utility maximization problem

was carried out in Jonsson and Sircar [64].) We expand ψ̂ instead of ψ because if one

were to do the latter, then one would note that each term in the expansion solves a

non-linear differential equation. The differential equation for the zeroth-order term

has a closed-form solution; however, none of the differential equations for the higher-

order terms does. What this fact implies is that to solve any of these non-linear

differential equations, one would have to assume that it has a convex solution, deter-

mine the corresponding linear free-boundary problem for the concave dual, solve this

free-boundary problem, then invert the solution numerically, as in equation (2.3.13).

Note that one would have to perform this procedure for each higher-order term in

the expansion.

By contrast, when we expand ψ̂, each term solves a linear differential equation,

as we show below. We explicitly solve these linear differential equations, then invert

the approximation using (2.3.13) once to obtain an approximation for the minimum

probability of lifetime ruin ψ. Note that the resulting approximation of ψ is not
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guaranteed to be a probability, that is, to lie in the interval [0, 1]; however, our nu-

merical experiments show that this is not a problem for the values of the parameters

we consider. See [45] for an example of approximating a probability that solves a

linear differential equation.

To begin, expand ψ̂ and the free boundaries in powers of
√
δ:

ψ̂ = ψ̂0 +
√
δ ψ̂1 + δ ψ̂2 + · · · , (2.4.1)

xc/r(y, z) = xc/r,0(y, z) +
√
δ xc/r,1(y, z) + δ xc/r,2(y, z) + · · · , (2.4.2)

and

x0(y, z) = x0,0(y, z) +
√
δ x0,1(y, z) + δ x0,2(y, z) + · · · . (2.4.3)

Insert the expression in (2.4.1) into NLε,δ in (4.12) to obtain the following expansion

in powers of
√
δ:

NLε,δ = − 1

ε
ν2
(
1− ρ2

12

) ψ̂2
0,xy

ψ̂0,xx

+
√
δ

1

ε
ν2
(
1− ρ2

12

)( ψ̂0,xy

ψ̂0,xx

)2

ψ̂1,xx − 2
ψ̂0,xy

ψ̂0,xx

ψ̂1,xy


−
√

2

ε
ν h(z)(ρ23 − ρ12ρ13)

ψ̂0,xy ψ̂0,xz

ψ̂0,xx

]
+O(δ).

(2.4.4)

Keeping terms up to
√
δ, we expand the free-boundary conditions in (2.3.4) as

ψ̂0(xc/r,0(y, z), y, z) +
√
δ
[
xc/r,1(y, z) ψ̂0,x(xc/r,0(y, z), y, z) + ψ̂1(xc/r,0(y, z), y, z)

]
=
c

r

(
xc/r,0(y, z) +

√
δ xc/r,1(y, z)

)
,

(2.4.5)

ψ̂0,x(xc/r,0(y, z), y, z) +
√
δ
[
xc/r,1(y, z) ψ̂0,xx(xc/r,0(y, z), y, z) + ψ̂1,x(xc/r,0(y, z), y, z)

]
=
c

r
,

(2.4.6)
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ψ̂0(x0,0(y, z), y, z) +
√
δ
[
x0,1(y, z) ψ̂0,x(x0,0(y, z), y, z) + ψ̂1(x0,0(y, z), y, z)

]
= 1,

(2.4.7)

and

ψ̂0,x(x0,0(y, z), y, z) +
√
δ
[
x0,1(y, z) ψ̂0,xx(x0,0(y, z), y, z) + ψ̂1,x(x0,0(y, z), y, z)

]
= 0.

(2.4.8)

We begin by approximating ψ̂0 and the free boundaries xc/r,0 and x0,0. Then, we use

the boundaries xc/r,0 and x0,0 as fixed boundaries to determine ψ̂1. As one can see

from equations (2.4.5)-(2.4.8), this fixing of the boundaries introduces an O(
√
δ)-

error into ψ̂1 in O(
√
δ)-neighborhoods of xc/r,0 and x0,0.

Terms of order δ0

By inserting (2.4.1)-(2.4.4) into (2.3.4) and collecting terms of order δ0, we obtain

the following free-boundary problem:

cx+
(

1
ε
L0 + 1√

ε
L1 + L2

)
ψ̂0 − 1

ε
ν2 (1− ρ2

12)
ψ̂2
0,xy

ψ̂0,xx
= 0;

ψ̂0(xc/r,0(y, z), y, z) = c
r
xc/r,0(y, z), ψ̂0,x(xc/r,0(y, z), y, z) = c

r
;

ψ̂0(x0,0(y, z), y, z) = 1, ψ̂0,x(x0,0(y, z), y, z) = 0.

(2.4.9)

Terms of order
√
δ

Similarly, by comparing terms of order
√
δ and using xc/r,0 and x0,0 as fixed bound-

aries for ψ̂1, we obtain the following boundary-value problem:

(
1
ε
L0 + 1√

ε
L1 + L2

)
ψ̂1 +

(
M1 + 1√

ε
M3

)
ψ̂0

+ 1
ε
ν2 (1− ρ2

12)

((
ψ̂0,xy

ψ̂0,xx

)2

ψ̂1,xx − 2 ψ̂0,xy

ψ̂0,xx
ψ̂1,xy

)
−
√

2
ε
ν h(z)(ρ23 − ρ12ρ13) ψ̂0,xy ψ̂0,xz

ψ̂0,xx
= 0;

ψ̂1(xc/r,0(y, z), y, z) = 0, ψ̂1(x0,0(y, z), y, z) = 0.

(2.4.10)
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Next, we expand the solutions of (2.4.9) and (2.4.10) in powers of
√
ε:

ψ̂0(x, y, z) = ψ̂0,0(x, y, z) +
√
ε ψ̂0,1(x, y, z) + ε ψ̂0,2(x, y, z) + · · · , (2.4.11)

and

ψ̂1(x, y, z) = ψ̂1,0(x, y, z) +
√
ε ψ̂1,1(x, y, z) + ε ψ̂1,2(x, y, z) + · · · . (2.4.12)

Similarly, expand the free boundaries xc/r,0 and x0,0 in powers of
√
ε:

xc/r,0(y, z) = xc/r,0,0(y, z) +
√
ε xc/r,0,1(y, z) + ε xc/r,0,2(y, z) + · · · , (2.4.13)

and

x0,0(y, z) = x0,0,0(y, z) +
√
ε x0,0,1(y, z) + ε x0,0,2(y, z) + · · · . (2.4.14)

Substitute (2.4.11) and (2.4.12) into (2.4.9) and (2.4.10), respectively, and collect

terms of the same order of
√
ε. As discussed earlier, we determine the free boundaries

xc/r,0,0(y, z) and x0,0,0(y, z) via a free-boundary problem for ψ̂0,0; then, we use these

boundaries as the fixed boundaries for ψ̂0,1 and ψ̂1,0.

Terms of order 1/ε in (2.4.9)

By matching terms of order 1/ε in (2.4.9), we obtain the following:

L0 ψ̂0,0 − ν2
(
1− ρ2

12

) ψ̂2
0,0,xy

ψ̂0,0,xx

= 0, (2.4.15)

or equivalently

(m− y) ψ̂0,0,y + ν2 ψ̂0,0,yy − ν2
(
1− ρ2

12

) ψ̂2
0,0,xy

ψ̂0,0,xx

= 0. (2.4.16)

We, therefore, look for an ψ̂0,0 independent of y; otherwise, ψ̂0,0 will experience

exponential growth as y goes to ±∞ Fouque et al. [43, 44]. We also seek free

boundaries xc/r,0,0 and x0,0,0 independent of y.
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Terms of order 1/
√
ε in (2.4.9)

By matching terms of order 1/
√
ε in (2.4.9) and using the fact that ψ̂0,0,y ≡ 0, we

obtain the following:

L0 ψ̂0,1 = 0. (2.4.17)

Therefore, we look for an ψ̂0,1 independent of y; otherwise, ψ̂0,1 will experience ex-

ponential growth as y goes to ±∞.

Terms of order ε0 in (2.4.9)

By matching terms of order ε0 in (2.4.9) and using the fact that ψ̂0,0,y = ψ̂0,1,y ≡ 0,

we obtain the following Poisson equation (in y) for ψ̂0,2:

L0 ψ̂0,2 = −cx− L2 ψ̂0,0. (2.4.18)

The solvability condition for this equation requires that cx+L2 ψ̂0,0 be centered with

respect to the invariant distribution N (m, ν2) of the Ornstein-Uhlenbeck process Y .

Specifically, 〈
cx+ L2 ψ̂0,0

〉
= cx+ 〈L2〉 ψ̂0,0 = 0, (2.4.19)

in which 〈·〉 denotes averaging with respect to the distribution N (m, ν2):

〈v〉 =
1√

2πν2

∫ ∞
−∞

v(y) e−
(y−m)2

2ν2 dy. (2.4.20)

In (4.43), the averaged operator 〈L2〉 is defined by

〈L2〉 v = −λ v − (r − λ)x vx +
1

2

(
µ− r
σ∗(z)

)2

x2 vxx, (2.4.21)

in which σ∗(z) is given by

1

σ2
∗(z)

=

〈
1

f 2(y, z)

〉
. (2.4.22)
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Thus, we have the following free-boundary problem for ψ̂0,0:

cx− λ ψ̂0,0 − (r − λ)x ψ̂0,0,x + s(z)x2 ψ̂0,0,xx = 0 ;

ψ̂0,0(xc/r,0,0(z), z) = c
r
xc/r,0,0(z), ψ̂0,0,x(xc/r,0,0(z), z) = c

r
;

ψ̂0,0(x0,0,0(z), z) = 1, ψ̂0,0,x(x0,0,0(z), z) = 0.

(2.4.23)

with s(z) = 1
2

(
µ−r
σ∗(z)

)2

. The general solution of the differential equation in (2.4.23)

is given by

ψ̂0,0(x, z) = D1(z)xB1(z) +D2(z)xB2(z) +
c

r
x, (2.4.24)

in which

B1(z) =
1

2s(z)

[
(r − λ+ s(z)) +

√
(r − λ+ s(z))2 + 4λs(z)

]
> 1, (2.4.25)

and

B2(z) =
1

2s(z)

[
(r − λ+ s(z))−

√
(r − λ+ s(z))2 + 4λs(z)

]
< 0. (2.4.26)

We determine D1 and D2 from the free-boundary conditions.

The free-boundary conditions imply that

D1(z)xc/r,0,0(z)B1(z) +D2(z)xc/r,0,0(z)B2(z) +
c

r
xc/r,0,0(z) =

c

r
xc/r,0,0(z), (2.4.27)

D1(z)B1(z)xc/r,0,0(z)B1(z)−1 +D2(z)B2(z)xc/r,0,0(z)B2(z)−1 +
c

r
=
c

r
, (2.4.28)

D1(z)x0,0,0(z)B1(z) +D2(z)x0,0,0(z)B2(z) +
c

r
x0,0,0(z) = 1, (2.4.29)

and

D1(z)B1(z)x0,0,0(z)B1(z)−1 +D2(z)B2(z)x0,0,0(z)B2(z)−1 +
c

r
= 0, (2.4.30)

which gives us four equations to determine the four unknowns D1, D2, xc/r,0,0, and

x0,0,0. Indeed, the solution to these equations is

D1(z) = − 1

B1(z)− 1

(
c

r
· B1(z)− 1

B1(z)

)B1(z)

, (2.4.31)
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D2(z) ≡ 0, (2.4.32)

xc/r,0,0(z) ≡ 0, (2.4.33)

and

x0,0,0(z) =
B1(z)

B1(z)− 1
· r
c
. (2.4.34)

It follows that

ψ̂0,0(x, z) = − 1

B1(z)− 1

(
c

r
· B1(z)− 1

B1(z)
· x
)B1(z)

+
c

r
x. (2.4.35)

Terms of order
√
ε in (2.4.9)

By matching terms of order
√
ε in (2.4.9) and using the fact that ψ̂0,0,y = ψ̂0,1,y = 0,

we obtain the following Poisson equation (in y) for ψ̂0,3:

L0 ψ̂0,3 = −L1 ψ̂0,2 − L2 ψ̂0,1. (2.4.36)

As above, the solvability condition for this equation requires that

〈
L1 ψ̂0,2 + L2 ψ̂0,1

〉
= 0, (2.4.37)

in which

ψ̂0,2(x, z) = L−1
0

(
−cx− L2 ψ̂0,0

)
. (2.4.38)

It follows that ψ̂0,1 solves

〈L2〉 ψ̂0,1 =
〈
L1L−1

0

(
cx+ L2 ψ̂0,0

)〉
. (2.4.39)

Recall that we impose the (fixed) boundary conditions ψ̂0,1(xc/r,0,0(z), z) = 0 and

ψ̂0,1(x0,0,0(z), z) = 0 at xc/r,0,0(z) ≡ 0 and x0,0,0(z) = B1(z)
B1(z)−1

· r
c
.

From (2.4.38), it is straightforward to show that ψ̂0,2 can be expressed as follows:

ψ̂0,2(x, y, z) = −D1(z)B1(z) (B1(z)− 1)xB1(z) η(y, z), (2.4.40)
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in which η solves

(m− y)ηy + ν2 ηyy =
1

2

(
µ− r
f(y, z)

)2

− 1

2

(
µ− r
σ∗(z)

)2

=
1

2

(
µ− r
f(y, z)

)2

− s(z). (2.4.41)

It follows that the right-hand side of (2.4.39) equals

− ρ12 (µ− r) ν
√

2D1(z)B2
1(z) (B1(z)− 1)xB1(z)

〈
ηy(y, z)

f(y, z)

〉
= ρ12 (µ− r)

√
2ν D1(z)B2

1(z) (B1(z)− 1)xB1(z)

〈
F̃ (y, z)

(
1

2

(
µ− r
f(y, z)

)2

− s(z)

)〉
,

(2.4.42)

in which F̃ is an antiderivative of 1/f with respect to y; that is,

F̃y(y, z) =
1

f(y, z)
. (2.4.43)

From (2.4.39) and (2.4.42), we obtain that ψ̂0,1 equals

ψ̂0,1(x, z) = D̃1(z)xB1(z) + D̃2(z)xB2(z) + A(z)xB1(z) lnx, (2.4.44)

in which B1 and B2 are given in (2.4.25) and (2.4.26), respectively, and A is given

by

A(z) =
ρ12 (µ− r)

√
2ν D1(z)B2

1(z) (B1(z)− 1)

(2B1(z)− 1) s(z)− (r − λ)

〈
F̃ (y, z)

(
1

2

(
µ− r
f(y, z)

)2

− s(z)

)〉
.

(2.4.45)

The functions D̃1 and D̃2 are given by the (fixed) boundary conditions at xc/r,0,0(z) ≡

0 and x0,0,0(z) = B1(z)
B1(z)−1

· r
c
, from which it follows that

ψ̂0,1(x, z) = A(z)xB1(z)

(
lnx− ln

(
B1(z)

B1(z)− 1
· r
c

))
= A(z)xB1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

)
.

(2.4.46)

Next, we focus on (2.4.10) to find ψ̂1,0, after which we will approximate ψ̂ by

ψ̂0,0 +
√
ε ψ̂0,1 +

√
δ ψ̂1,0.
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Terms of order 1/ε in (2.4.10)

By matching terms of order 1/ε in (2.4.10), we obtain the following:

L0 ψ̂1,0 = 0, (2.4.47)

from which it follows that ψ̂1,0 is independent of y; otherwise, ψ̂1,0 will experience

exponential growth as y goes to ±∞ Fouque et al. [44].

Terms of order 1/
√
ε in (2.4.10)

By matching terms of order 1/
√
ε in (2.4.10) and using the fact that ψ̂1,0,y ≡ 0,

we obtain the following:

L0 ψ̂1,1 = 0. (2.4.48)

Therefore, we look for an ψ̂1,1 independent of y; otherwise, ψ̂1,1 will experience ex-

ponential growth as y goes to ±∞.

Terms of order ε0 in (2.4.10)

By matching terms of order ε0 in (2.4.10) and using the fact that ψ̂1,0,y = ψ̂1,1,y ≡ 0,

we obtain the following Poisson equation (in y) for ψ̂1,2:

L0 ψ̂1,2 = −L2 ψ̂1,0 + ρ13
µ− r
f(y, z)

h(z)x ψ̂0,0,xz. (2.4.49)

The solvability condition for this equation requires that〈
−L2 ψ̂1,0 + ρ13

µ− r
f(y, z)

h(z)x ψ̂0,0,xz

〉
= 0, (2.4.50)

or equivalently,

〈L2〉 ψ̂1,0 = ρ13

〈
µ− r
f(y, z)

〉
h(z)x ψ̂0,0,xz. (2.4.51)
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with boundary conditions ψ̂1,0(xc/r,0,0(z), z) = 0 and ψ̂1,0(x0,0,0(z), z) = 0 at the

boundaries xc/r,0,0(z) ≡ 0 and x0,0,0(z) = B1(z)
B1(z)−1

· r
c
. It follows that ψ̂1,0 is given by

ψ̂1,0(z) = xB1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

) [
A1(z) + A2(z) ln

(
x · B1(z)

B1(z)− 1
· r
c

)]
,

(2.4.52)

in which A1 and A2 are

A1(z) =
H1(z)

(2B1(z)− 1) s(z)− (r − λ)
− H2(z) s(z)

[(2B1(z)− 1) s(z)− (r − λ)]2
, (2.4.53)

and

A2(z) =
1

2
· H2(z)

(2B1(z)− 1) s(z)− (r − λ)
, (2.4.54)

with H1 and H2 functions of z defined by

H1(z) +H2(z) ln x

= −ρ13 h(z)

〈
µ− r
f(y, z)

〉
B′1(z)

B1(z)− 1

(
B1(z)− 1

B1(z)
· c
r

)B1(z) [
1 +B1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

)]
.

(2.4.55)

2.4.1 The approximation of the probability of lifetime ruin and the optimal invest-
ment strategy

Combining (2.4.35), (2.4.46), and (2.4.52), we obtain the following approximation

of ψ̂

ψ̂ε,δ(x, z) = ψ̂0,0(x, z) +
√
ε ψ̂0,1(x, z) +

√
δ ψ̂1,0(x, z)

= − 1

B1(z)− 1

(
c

r
· B1(z)− 1

B1(z)
· x
)B1(z)

+
c

r
x

+
√
εA(z)xB1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

)
+
√
δ xB1(z) ln

(
x · B1(z)− 1

B1(z)
· c
r

) [
A1(z) + A2(z) ln

(
x · B1(z)

B1(z)− 1
· r
c

)]
,

(2.4.56)

in which A, A1, and A2, are specified in (2.4.45), (2.4.53), and (2.4.54), respectively.
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We also approximate the dual of the optimal investment strategy up to the first

powers of
√
ε and

√
δ, as we did for ψ̂. Using (2.3.25), we obtain

π̂ε,δ(x, z) = − µ− r
f 2(y, z)

x ψ̂0,0,xx +
√
ε

(
− µ− r
f 2(y, z)

x ψ̂0,1,xx + ρ12
ν
√

2

f(y, z)
ψ̂0,2,xy

)

+
√
δ

(
− µ− r
f 2(y, z)

x ψ̂1,0,xx + ρ13
h(z)

f(y, z)
ψ̂0,0,xz

)
.

(2.4.57)

Given w ∈ R+, we solve for x using w = ψ̂ε,δx (x, z). Then, we let ψε,δ(w, z) :=

ψ̂ε,δ(x, z) − xw, thereby performing the calculation in equation (2.3.13). We also

denote by πε,δ the function that satisfies πε,δ(w, z) := π̂ε,δ(x, z). Note that the result-

ing approximation of ψ is not guaranteed to be a probability; however, this is not a

problem in the numerical experiments we consider in the next section.

2.5 Numerical Solution using the Markov Chain Approximation Method

In this section, we describe how to construct a numerical algorithm for the origi-

nal optimal control problem directly using the Markov Chain Approximation Method

(MCAM); see e.g. Kushner and Dupuis [70], Kushner [69]. For the ease of presen-

tation, we will describe the numerical algorithm only when the fast scale volatility

factor is present. In what follows ρ will denote the correlation between the Brownian

motion driving the stock and the one driving the fast factor, that is, ρ = ρ12.

Let us fix an h-grid, that is, a rectangular compact domain Gh ⊂ R2 with the

same spacing h in both directions. We choose an initial guess (on this grid) for a

candidate optimal strategy. Denote this strategy by π. Then, our goal is to create

a discrete-time Markov chain (ξhn)n≥0 that lives on Gh and that satisfies the local
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consistency condition

Eh,πx,n[∆ξhn+1] = b(x, π)∆tπ,h(x, π) + o(∆th),

Covh,πx,n[∆ξhn+1] = A(x, π)∆tπ,h(x, π) + o(∆th),

(2.5.1)

in which ∆ξn+1 = ξn+1 − ξn, and b and A denote the drift and the covariance of the

vector Xt = (Wt, Yt), respectively. (The Markov chain is constructed to approximate

this vector in a certain sense.) Eh,πx,n denotes the expectation, given that the state of

the Markov chain at time n is x. In (2.5.1) the quantity ∆th (called the interpolation

interval) is to be chosen so that it goes to zero as h→ 0. We also do not want this

quantity to depend on the state variables or the control variable.

Since Gh is a compact domain, we impose reflecting boundary conditions at its

edges. (Natural boundaries exist for W (t), specifically 0 and the safe level c
r
. How-

ever, Yt lives on an infinite region.) For example, we choose the transition probabil-

ities to be pπ,h((w, y), (w, y − h)) = 1, when y is as large it can be in Gh and for all

w ∈ [0, c
r
].

2.5.1 Constructing the approximating Markov Chain

When ρ = 0.

Denote α = 1
ε
, β = ν

√
2
ε
. We obtain the transition probabilities of the Markov

chain ξh as



pπ,h((w, y), (w, y ± h)) =
β2/2 + hα(m− y)±

Q̃h
,

pπ,h((w, y), (w ± h, y)) =
(f(y)π(w, y))2/2 + h(µ− r)π(w, y)± + h(rw − c)±

Q̃h
,

pπ,h((w, y), (w, y)) = Q̃h−Qπ,h(w,y)

Q̃h
,

(2.5.2)
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and choose the interpolation interval to be

∆th =
h2

Q̃h
,

in which

Qπ,h(w, y) = (πf(y))2 + β2 + h|α(m− y)|+ h|(µ− r)π(w, y)|+ h|rw − c|,

and

Q̃h = max
(w,y,π)

Qπ,h(w, y),

in order to satisfy the local consistency condition. Here a± = max{0,±a}.

When ρ 6= 0.

In this case a convenient transition probability matrix solving the local consistency

condition is

pπ,h((w, y), (w, y ± h)) =
(1− ρ2)β2/2− |ρπ(w, y)|βf(y)/2 + hα(m− y)±

Q̃h
,

pπ,h((w, y), (w ± h, y)) =
(f(y)π(w, y))2 − |ρπ(w, y)|βf(y)

2Q̃h

+
h(µ− r)π(w, y)± + h(rw − c)±

Q̃h
,

pπ,h((w, y), (w + h, y + h)) = pπ,h((w, y), (w − h, y − h)) =
(ρπ(w, y))+βf(y)

2Q̃h
,

pπ,h((w, y), (w + h, y − h)) = pπ,h((w, y), (w − h, y + h)) =
(ρπ(w, y))−βf(y)

2Q̃h

pπ,h((w, y), (w, y)) =
Q̃h −Qπ,h(w, y)

Q̃h
,

(2.5.3)

where

Qπ,h(w, y) = (πf(y))2+β2−|ρπ(w, y)|βf(y)+h|α(m−y)|+h|(µ−r)π(w, y)|+h|rw−c|.

For values of |ρ| close to 1, the transition probabilities may be negative. The

positiveness of these probabilities is equivalent to the diagonal dominance of the
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covariance matrix A = (aij). (Recall that we call A diagonally dominant if aii −∑
j,j 6=i |aij| > 0, ∀i.) The construction of an approximating Markov chain when

some of the expressions in (2.5.3) are negative will be discussed next.

When ρ = 1 and some of the transition probabilities in (2.5.3) are negative.

We accomplish the construction of the approximating Markov chain in two steps,

following Kushner [69]:

(i) Decomposition. As in Kushner and Dupuis [70] Sections 5.3 and 5.4, we

decompose X into separate components and build approximating Markov chains to

match each component. Then, we combine the transition probabilities appropriately

to obtain the approximating Markov chain for X itself.

Let X = X(1) +X(2), in which

dX
(1)
t =

πf(y)

β

 dB1
t , (2.5.4)

dX
(2)
t =

rWt − c+ (µ− r)πt

α(m− Yt)

 dt. (2.5.5)

Since ρ = 1, we take B1 = B2. Suppose that the form of the locally consistent (with

dynamics of X(1) and X(2), respectively) transition probabilities and interpolation

intervals are

pπ,h1 (x, x̄) =
nπ,h1 (x, x̄)

Q̃h
1

, ∆tπ,h1 =
h2

Q̃h
1

,

pπ,h2 (x, x̄) =
nπ,h2 (x, x̄)

Q̃h
2

, ∆tπ,h2 =
h

Q̃h
2

,

for some nπ,h1 (x, x̄), nπ,h2 (x, x̄), and appropriate normalizers Q̃h
1 , Q̃h

2 . Then, the fol-

lowing transition probabilities and the interpolation interval are locally consistent
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with the dynamics of X

pπ,h(x, x̄) =
nπ,h1 (x, x̄) + hnπ,h2 (x, x̄)

Q̃h
1 + hQ̃h

2

, ∆tπ,h =
h2

Q̃h
1 + hQ̃h

2

. (2.5.6)

Since it is easier, we first provide the expression for pπ,h2 :

pπ,h2 ((w, y), (w, y ± h)|π) =
α(m− y)±

Q̃h
2

,

pπ,h2 ((w, y), (w ± h, y)|π) =
(µ− r)π(w, y)± + (rw − c)±

Q̃h
2

,

pπ,h2 ((w, y), (w, y)) =
Q̃2

h
−Qπ,h

2 (w, y)

Q̃h
2

,

(2.5.7)

where

Qπ,h
2 (w, y) = α|m− y|+ (µ− r)|π(w, y)|+ |rw − c|.

The computation of pπ,h1 is more involved. This is the subject of the next step.

(ii) Variance control. System (2.5.4) is fully degenerate; that is, the corresponding

covariance matrix A is not diagonally dominant. The previous technique for building

a Markov chain does not work. Instead, we will build an approximating Markov chain

by allowing the local consistency condition to be violated by a small margin of error.

If (σ1, σ2) = (qk1, qk2) for some constant q and integers k1, k2, we could let the

transition probability to be ph(x, x± (hk1, hk2)) = 1/2 and the interpolation interval

to be ∆th = h2/q2, and we would obtain a locally consistent Markov chain. This is

not possible in general. For an arbitrary vector (σ1, σ2), we can find a pair of integers

k1(x, π), k2(x, π), and a real number γ(x, π) ∈ [0, 1], such thatσ1(x, π)

σ2

 = q(x, π)

 k1(x, π)

k2(x, π) + γ(x, π)

 .

Since the Markov chain is constrained to the grid Gh, we can only approximately
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let it move in the direction of (σ1, σ2)T . We choose

pπ,h(x, x± h(k1, k2)T ) = p1/2,

pπ,h(x, x± h(k1, k2 + 1)T ) = p2/2,

(2.5.8)

in which p1 + p2 = 1, and p1 and p2 will be appropriately chosen in what follows.

The mean and the covariance of the approximating chain is

Eh,πx,π[∆ξh(x, π)] = 0,

Eh,πx,π[∆ξh(x, π)∆ξh(x, π)T ] = h2C(x, π),

(2.5.9)

where

C(x, π) = p1

 k2
1 k1k2

k1k2 k2
2

+ p2

 k2
1 k1(k2 + 1)

k1(k2 + 1) (k2 + 1)2


=

 k2
1 k1(k2 + p2)

k1(k2 + p2) k2
2 + 2pk2 + p2

 .

(2.5.10)

We choose the interpolation interval to be ∆tπ,h(x, π) = h2/q2. On the other hand

a(x, π) = A(x, π)/q2 =

 k2
1 k1(k2 + γ)

k1(k2 + γ) (k2 + γ)2

 ,

and we see that if we pick p2 = γ, then C11 = a11 and C12 = a12 match, but we

violate the local consistency condition by

C22 − a2
22

a2
22

=
γ(1− γ)

(k2 + γ)2
= O

(
1

k2
2

)
. (2.5.11)

We will choose k2 sufficiently large so that the local consistency condition is almost

satisfied, and the numerical noise in (2.5.11) is significantly reduced.

The case when ρ ∈ (−1, 1) and some of the transition probabilities in (2.5.3) are negative

We will decompose the state variable into three components:

d ~Xt =

dWt

dYt

 =

rWt − c+ (µ− r)πt

α(m− Yt)

 dt+

πtf(Yt)

βρ

 dB1
t +

0 0

0 β
√

1− ρ2


dB1

t

dB2
t

 ,

(2.5.12)
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that is, a drift component, a fully degenerate noise component, and a noise compo-

nent with diagonally dominated covariance matrix. We can build an approximating

Markov chain for each component separately and then combine them as discussed

above.

2.5.2 Approximating the probability of ruin and updating the strategy

We solve the system of linear equations

V π,h(x) = e−λ∆tπ,h
∑
x̃∈Gh

pπ,h(x, x̃)V π,h(x̃), (2.5.13)

with boundary conditions V π,h(0, y) = 1 and V π,h(c/r, y) = 0. This is the dynamic

programming equation for a probability of ruin problem when the underlying state

variable is the Markov chain ξh. In the next step, we update our candidate for the

optimal strategy. For convenience, denote V π,h by V .

In the interior points of the grid

π(w, y) =− h(µ− r)[V (w + h, y)− V (w, y)]

f 2(y)[V (w + h, y) + V (w − h, y)− 2V (w, y)]

+
(β/2)ρf(y) [V (w + h, y + h) + V (w, y − h)− V (w + h, y − h)− V (w, y + h)]

f 2(y) [V (w + h, y) + V (w − h, y)− 2V (w, y)]
.

On the wealth dimension boundaries of the grid, we let π(c/r, y) = 0 and

π(0, y) =− h(µ− r)[V (h, y)− V (0, y)]

f 2(y) [2V (0, y)− 5V (h, y) + 4V (2h, y)− V (3h, y)]

+
(β/2)ρf(y) [V (h, y + h) + V (0, y − h)− V (h, y − h)− V (0, y + h)]

f 2(y) [2V (0, y)− 5V (h, y) + 4V (2h, y)− V (3h, y)]
.

The updates of the optimal strategy for the maximum and minimum values of y

are similar.

Iteration

Once the optimal strategy is updated, we go back and update the transition

probabilities and solve the system of linear equations in (2.5.13) to update the value
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function. This iteration continues until the improvement in the value function is

smaller than an exogenously picked threshold.

Two Technical Issues

• The initial guess of the optimal strategy is important. For ρ = 0, we take

the initial strategy as the one in constant volatility case, where the closed-

form solution is available in Young [97]. For ρ 6= 0, we take the final strategy

computed from zero-correlation case (ρ = 0) as the initial guess. This initial

guess makes the algorithm converge fast.

• For ρ 6= 0, the covariance matrix of the wealth process and volatility factor,

in general, does not satisfy the diagonal dominance condition. The problem

is more serious for the slow factor, since its variance is of the order of δ, and

the numerical noise using ”‘variance control”’ is far greater. To solve this issue

we perform a “scale adjustment” to increase the variance of the factor. For

example, if we define Z̄t = 100Zt, then the dynamic of the system becomes

dSt
St

= µdt+ f

(
Yt,

Z̄t
100

)
dB1

t ,

dZ̄t = δ(100m− Z̄t)dt+ 100
√
δ
√

2ν2dB
(3)
t .

(2.5.14)

when g = (m− z) and h =
√

2ν. The new system is mathematically equivalent

to the original one, but with a much bigger variance; thus, the numerical noise

in variance control is much smaller. Note that the scheme here is equivalent to

choosing a different grid sizes for the volatility and wealth dimensions.
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2.6 Numerical Experiments

In order to conduct our numerical experiments we will take the dynamics of the

slow factor in (2.2.7) to be

dZt = δ(m− Zt)dt+
√
δ
√

2νdB
(3)
t , Z0 = z.

We let f(y, z) = exp(−y) or f(y, z) = exp(−z) in (2.2.2), depending on whether

we want to account for the fast volatility factor or the slow volatility factor in our

modeling. We will call 1/ε or δ the speed of mean reversion. We will take the

correlations between the Brownian motions driving the volatility factors and the

stock price to be ρ = ρ13 = ρ12.

The following parameters are fixed throughout this section:

• r = 0.02; the risk-free interest rate is 2% over inflation.

• µ = 0.1; the expected return of risky asset is 10% over inflation.

• c = 0.1; the individual consumes at a constant rate of 0.1 unit of wealth per

year.

• λ = 0.04; the hazard rate (force of mortality) is constant such that the expected

future lifetime is always 25 years.

• m = 1.364 and ν = 0.15, so that the harmonic average volatility, which we will

denote by σm =
√

1/E[1/f 2(Y )] =
√

1/E[e2Y ] = e−m−ν
2

= 0.25, in which Y is a

normal random variable with mean m and variance ν2. The distribution of this

random variable is the stationary distribution of the process (Yt)t≥0; see (2.4.22).

[Note that σm is very close in value to E[f(Y )] = E[e−Y ] = e−m+ν2/2 = 0.26.]

In our numerical procedure we use a bounded region for Y and impose reflecting

boundary conditions. However, f(Yt) is not bounded and not bounded away from
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zero. On the other hand, the invariant distribution of the process Y is normal with

mean 1.364, and variance 0.152. So it is with very small probability that Yt is negative

or very large. Therefore, the fact that f(Yt) is not bounded or bounded away from

zero does not affect the accuracy of our numerical work in a significant way.

Observation 1

We give a three-dimensional graph of the minimum probability of ruin and the

optimal investment strategy in Figure 2.1, which are computed using MCAM. Here

the speed of mean reversion is 0.5, ρ = 0, and only one factor is used. In our

experiments we observed that the optimal strategy π∗ is positive (no-shortselling).

As expected we observe that w → ψ(w, y) is convex and decreasing. Note that

f(y)→ ψ(w, y) is increasing. Also, f(y)→ π∗(w, y) is decreasing; however, it is not

necessarily true that w → π∗(w, y) is decreasing. The latter behavior depends on

the value of y.

The probability of ruin does not depend on the sign of the correlation, ρ, between

the Brownian motions driving the stock and the one driving the volatility. The

larger the magnitude of ρ, the larger the probability of ruin. However, the minimum

probability of ruin is quite insensitive to the changes in ρ; see Figure 2.2.

Observation 2

We compare the optimal investment strategy π∗(w, y, z) in (2.3.14) to

π̃(w;σ) =
µ− r
σ2

c− rw
(p− 1)r

,

in which

p =
1

2r

[
(r + λ+ s) +

√
(r + λ+ s)2 − 4rλ

]
,
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and

s =
1

2

(
µ− r
σ

)2

.

When we want to emphasize the dependence on σ, we will refer to p as p(σ). Young

[97] showed that the strategy π̃ is optimal when the volatility is fixed to be σ.

If only the fast factor is present and the speed of mean reversion is 250 (ε = 0.004),

then ψ̂ε,δ in (2.4.56) can be expressed as

ψ̂ε(w) = φ̂0,0(x)

whose inverse Legendre transform is

ψε(w;σm) =
(

1− r

c
w
)p(σm)

, (2.6.1)

which is exactly the minimal probability of ruin if the volatility were fixed at σm.

Therefore, it is not surprising that for very small values of ε, the minimum prob-

ability of ruin ψ(w, y), calculated using MCAM, can be approximated by (2.6.1);

see Figure 2.3-a. In our numerical calculations and in (2.6.1), we observe that the

minimum probability of ruin ψ does not depend on its second variable. This result

is intuitive, since when only the fast factor is present whatever the initial value of

σ0 is, the volatility quickly approaches its equilibrium distribution (which is normal

with mean σm). In fact π0(w;σm) practically coincides with the optimal investment

strategy π∗, which is computed using MCAM; see Figure 2.3-b.

The most important conclusion from Figure 2.3-b is that it is not necessarily true

that the optimal investment strategy when there is stochastic volatility is more or

less than the optimal investment strategy when the volatility is constant. Comparing

π̃(w;σ) and π∗(w,− ln(σ)) for different values of σ, we see that π∗(w,− ln(σ)) <

π̃(w;σ) for larger values of σ, whereas the opposite inequality holds for smaller values

of σ. The investment amount decreases significantly as the volatility increases.
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If only the slow factor is present and the speed of mean reversion is 0.02, then

ψδ(w, z) =
(

1− r

c
w
)p(e−z)

, (2.6.2)

approximates the minimum probability of ruin ψ(w, z), which we calculate using

MCAM, quite well; compare ψ(w,−ln(σ)) and ψδ(w,−ln(σ)) for different values of

σ in Figure 2.4-a. We also compare π̃(w;σ) and π∗(w,−ln(σ)) for several values of

σ and draw the same conclusions as before. Also note that the optimal investment

strategy is not necessarily a decreasing function of wealth.

When we take the speed of mean reversion to be 0.2 (medium speed), then the

probability of ruin starts diverting from what (2.6.1) or (2.6.2) describes; see Fig-

ure 2.5-a. As to the comparison of the optimal investment strategy with π̃(w;σ), the

same conclusions can be drawn; see Figure 2.5-b.

Observation 3

We compare the performance of several investment strategies in the stochastic

volatility environment. Let σ0 be the initial volatility. We denote by πM the strategy

when one only invests in the money market. The corresponding probability of ruin

can be explicitly computed as ψM(w) = (1 − c/rw)1∨[λ/r]. We will also denote

πa(w) = π̃(w;σ0), πb = π̃(w;σm), and

πc(w, y, z) =
µ− r
f 2(y, z)

c− rw
(p− 1)r

. (2.6.3)

Let πε(w) denote the approximation to the optimal strategy we obtained in Sec-

tion 2.4.1 when we only use the ε-perturbation. Similarly, let πδ(w, z) be the approx-

imation to the optimal strategy when we only use the δ-perturbation.

We obtain the probability of ruin corresponding to a given strategy π by solving

the linear partial differential equation Dπv = 0, (see (2.3.24) for the definition of the
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differential operator Dπ) with boundary conditions v(0, y, z) = 0 and v(c/r, y, z) = 1.

(This computation uses the MCAM without iterating.)

In Figure 2.6-2.8 we observe that the performance of πc and πε are almost as

good as the optimal strategy π∗. (Here we are considering a medium mean reversion

speed. When the mean reversion speed is much smaller, then πδ would be a better

investment strategy.) Moreover, their performances are robust, in that, they do not

depend on the initial volatility σ0. This should be contrasted to πa and πb. The

former performs relatively well when σ0 is small, whereas the latter performs better

when σ0 is large. When σ0 = σm, all strategies perform as well as the optimal

strategy. Also, observe that for wealthy or very poor individuals the choice of the

strategy does not matter as long as they invest in the stock market. The difference

is for the individuals who lie in between.

As a result, we conclude that if the individual wants to minimize her probability

of ruin in a stochastic volatility environment, she can still use the investment that

is optimal for the constant volatility environment. She simply needs to update the

volatility in that formula whenever the volatility changes significantly.
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(a) Minimum probability of ruin

(b) Optimal investment strategy

Figure 2.1: Minimum probability of ruin and optimal strategy computed by MCAM. Speed of mean
reversion= 0.5.
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(a) Probability of ruin at σ0=0.6

(b) Probability of ruin at σ0= σm=0.25

(c) Probability of ruin at σ0=0.1

Figure 2.2: Variations of the minimum probability of ruin with respect to ρ. Speed of mean
reversion= 0.5.
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(a) Minimum probability of ruin

(b) Optimal investment strategy

Figure 2.3: Stochastic volatility versus constant volatility environment. Speed of mean reversion is
250.
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(a) Minimum probability of ruin

(b) Optimal investment strategy

Figure 2.4: Stochastic volatility versus constant volatility environment. Speed of mean reversion is
0.02.
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(a) Minimum probability of ruin

(b) Optimal investment strategy

Figure 2.5: Stochastic volatility versus constant volatility environment. Speed of mean reversion is
0.5.
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Figure 2.6: Performance of the investment strategies described in Observation 3 (of Section 6).
Speed of mean reversion=0.2. Correlation ρ = 0.5. Initial volatility σ0 = 0.6.
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Figure 2.7: Performance of the investment strategies described in Observation 3 (of Section 6).
Speed of mean reversion=0.2. Correlation ρ = 0.5. Initial volatility σ0 = σm = 0.25.
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Figure 2.8: Performance of the investment strategies described in Observation 3 (of Section 6).
Speed of mean reversion=0.2. Correlation ρ = 0.5. Initial volatility σ0 = 0.1.



CHAPTER III

Exact Simulation of Heston Stochastic Volatility Model with
Jumps

3.1 Introduction

The Heston stochastic volatility model is widely used in practice. Its popular-

ity in equity, foreign exchange and interest rate markets rests on its computational

tractability: Heston [61] showed that the value of a European call option can be ob-

tained by transform inversion, facilitating quick calibration to market prices. How-

ever, the valuation of path-dependent and other securities with complex features is

less tractable, and typically requires the application of Monte Carlo methods.

The Monte Carlo simulation of the Heston model is challenging. Standard dis-

cretization schemes are difficult to apply, largely because of the square-root diffusion

dynamics of the volatility. These dynamics violate the conditions often used to guar-

antee convergence of a discretization scheme. Alfonsi [3], Andersen [4], Jaeckel and

Kahl [63], Lord et al. [75], and Van Haastrecht and Pelsser [96] discuss and evaluate

the performance of alternative discretization schemes. While relatively easy to im-

plement, discretization methods introduce bias into the simulation estimator. The

magnitude of the bias is hard to quantify. Therefore, it is difficult to obtain valid

confidence intervals. Many time steps may be required to reduce the bias to an ac-

ceptable level, and a large number of simulation trials may be needed to verify that

45
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the bias is sufficiently small. Finally, the optimal allocation of the computational

budget between the number of time steps and the number of trials is difficult to

specify in advance. In an innovative paper, Broadie and Kaya [27] develop an exact

simulation scheme that addresses these issues. Glasserman and Kim [52] derive an

explicit representation of the transitions of the Heston model and use it to circum-

vent the most time-consuming step in that scheme, namely the numerical inversion

of the characteristic function of the integrated variance. Smith [94] approximates

the characteristic function to improve computational efficiency. The cost of these

improvements is a small bias.

In this chapter, we extend the Heston model to include state-dependent jumps,

and develop a method for the exact simulation of this model. The price and the

volatility are subject to common and correlated jumps. The jumps arrive with an

intensity that may depend on time, price, volatility and jump counts. The jump

size may depend on the price and volatility. The Monte Carlo algorithm extends

a projection method developed by Giesecke et al. [49] for the exact simulation of a

point process with an intensity driven by a one-dimensional jump-diffusion process.

Filtering arguments, coupled with the analytical features of the square-root diffusion

governing the volatility between jumps, facilitate the exact sampling of the Heston

jump-diffusion in the filtration generated by the jumps. The samples from the exact

distribution can then be used to generate an unbiased estimator of the price of a

derivative security. We compare our method with the discretization scheme of Lord

et al. [75], which appears to produce the smallest bias among several discretization

schemes for the Heston model without jumps. We verify that the error of our simu-

lation estimator converges faster. We also demonstrate that our scheme requires the

smaller computational budget to achieve a given error.
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The extension of Heston’s stochastic volatility model to include common and

correlated jumps in the price and volatility is empirically motivated. According to

Eraker et al. [41], jumps in price and jumps in volatility serve complementary pur-

poses. The former generate infrequently large movements, such as the 1987 crash.

The latter generate sudden changes in the volatility and have a lasting impact on

the distribution of price changes due to volatility persistence. The need to incorpo-

rate jumps in volatility in addition to jumps in return has been recognized by many

authors, including Bakshi et al. [11], Duffie et al. [36], Eraker et al. [41], and others.

Todorov and Tauchen [95] find evidence of common jumps in price and volatility as

well as of component-specific jumps. Bates [13], Eraker [40], Pan [84] and others em-

phasize the state-dependence of jump arrivals. The Heston jump-diffusion model we

propose can capture each of the aforementioned empirical features. The formulation

can be further generalized to address a possible time-dependence of the coefficient

functions.

Prior research has studied the exact simulation of jump-diffusion processes. Giesecke

and Smelov [51] develop an exact acceptance/rejection scheme for a general one-

dimensional jump-diffusion process with state-dependent drift, volatility, jump in-

tensity and jump size distribution. Their method does not easily generalize to the

two-dimensional Heston jump-diffusion. The exact method of Broadie and Kaya [27]

extends to the case of jumps in the price and of contemporaneous jumps in the price

and volatility, assuming that jumps arrive according to a Poisson process with con-

stant intensity. Under this assumption, the jumps can be generated independently of

the diffusion terms. The scope of our exact method includes state-dependent jump

times and sizes. With state-dependence, the diffusion and jump terms cannot be

simulated independently. We address this issue by proceeding sequentially. After
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generating the jump times and sizes in their own filtration, we draw the value of

the jump-diffusion at the horizon from its conditional distribution given the jump

times and sizes. The conditional distribution is encoded in the conditional transform,

which follows from point process filtering arguments. This method is the first ex-

ample of an exact algorithm for a multi-dimensional jump-diffusion with correlated

diffusion terms and state-dependent jump times and sizes.

The rest of this chapter is organized as follows. Section 3.2 introduces the He-

ston jump-diffusion model and explains a scheme for its discretization. Section 3.3

explains the exact simulation method. The algorithm for exact simulation is given

in Section 3.4. Section 3.5 provides numerical results and Section 4.4.4 concludes.

There is a technical Appendix.

3.2 The Heston Jump-diffusion

3.2.1 Model specification

Fix a filtered probability space (Ω,F , (Ft),P) satisfying the usual conditions. Let

S be a strictly positive process representing the stock price under the risk neutral

measure P, and let Y = log(S) be the log-price process. The variance process of the

stock is denoted by V . The risk-neutral dynamics of the state process (Y, V ) are

given by

dYt =
[
r(t)− Vt/2− At

]
dt+

√
Vt
[
ρ(t)dW v

t +
√

1− ρ2(t)dW y
t

]
+ dJyt ,

dVt = κ(t) [θ(t)− Vt] dt+ σ(t)
√
VtdW

v
t + δdJvt .

(3.2.1)

Here, r(t) is the risk-free interest rate and
√
Vt is the volatility. The variance process

V follows a mean-reverting square-root process with long-run mean θ(t), mean rever-

sion speed κ(t), and volatility σ(t). The process (W y,W v) is a standard Brownian

motion. The instantaneous correlation between log-price and variance, ρ(t), takes
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values in (−1, 1). The parameter δ specifies the sensitivity to jumps for the vari-

ance process. The compensator process At = A(t, Yt, Vt) will be specified later by

no-arbitrage condition in risk-neutral measure. Jy and Jv are pure jump processes

whose jumps have state-dependent sizes and arrive with state-dependent intensity.

To be precise, denoting

µ(t, y, v) =

r(t)− v/2− A(t, y, v)

κ(t)[θ(t)− v]

 , Σ(t, y, v) =
√
v

ρ(t)
√

1− ρ2(t)

σ(t) 0

 ,

(3.2.2)

we suppose (Y, V, Jy, Jv) has an infinitesimal generator D, defined for bounded C2

function f , as

Df(t, y, v, jy, jv) = ft(t, y, v, j
y, jv)

+∇f(t, y, v, jy, jv) · µ(t, y, v) +
1

2
tr[∇2f(t, y, v, jy, jv)Σ(t, y, v)Σ′(t, y, v)]

+ Λ1(t, y, v)

∫
R

[f(t, y + ∆y(t, y, v; z), v, jy + ∆y(t, y, v; z), jv)− f(t, y, v, jy, jv)] dν1(z)

+ Λ2(t, y, v, jy, jv)

∫
R

[f(t, y, v + δ∆v(t, y, v; z), jy, jv + ∆v(t, y, v; z))− f(t, y, v, jy, jv)] dν2(z)

+ Λ3(t, y, v)

∫
R2

[
f(t, y + ∆y,c(t, y, v; z), v + δ∆v,c(t, y, v; z), jy + ∆y,c(t, y, v; z),

jv + ∆v,c(t, y, v; z))− f(t, y, v, jy, jv)
]
dν3(z).

(3.2.3)

where ∇f = (fy, fv)
′, ∇2f is the Hessian matrix of f with respect to (y, v), measur-

able functions ∆y,∆v,∆y,c,∆v,c specify the jump magnitude and νi represents the

probability distribution of marker z.

Intuitively, this means that, conditional on the path of the state process, there

are three types of jumps:

(i) jumps in only Y , which arrive with stochastic intensity λ1
t = Λ1(t, Yt, Vt) and

have state-dependent jump sizes determined by function ∆y;
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(ii) jumps in only V , which arrive with stochastic intensity λ2
t = Λ2(t, Yt, Vt, J

y
t , J

v
t )

and have state-dependent jump sizes determined by function ∆v;

(iii) common jumps in both Y and V , which arrive with stochastic intensity λ3
t =

Λ3(t, Yt, Vt) and have state-dependent jump sizes determined by the pair of

functions (∆y,c,∆v,c).

Assume

E
[∫ t

0

λisds

]
< +∞. ∀t ∈ [0, T ] (3.2.4)

The no-arbitrage condition in risk-neutral measure requires that

At = A(t, Yt, Vt) =Λ1(t, Yt, Vt)

∫
R

(
e∆y(Yt,Vt;z) − 1

)
dν1(z)+

Λ3(t, Yt, Vt)

∫
R2

(
e∆y,c(t,Yt,Vt;z) − 1

)
dν3(z).

To ensure the existence and uniqueness of the solution to SDE (3.2.1), technical

restrictions need to be imposed, as discussed by Ikeda and Watanabe [62], Protter

[87], Situ [93], Athreya et al. [10], Platen and Bruti-Liberati [86], Kliemann et al. [67],

and Ceci and Gerardi [31]. As shown in Appendix A of Ceci and Gerardi [31] (page

571 - 572), a unique strong solution exists under assumption (A) while a solution

exists in strong sense and is weakly unique under assumption (B). In this chapter we

adopt those assumptions from Ceci and Gerardi [31].

3.2.2 Discretization scheme

A discretization method can be used to approximate the process (Y, V ) between

jump times. Partition time into segments of equal length h and let (Ŷ , V̂ ) denote the

discretization of (Y, V ). Lord et al. [75] find that the following scheme produces the

smallest discretization bias among a set of alternative schemes for the discretization

of the Heston model:
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Ŷi+1 = Ŷi +
[
r(ti)−

1

2
V̂ +
i − A(ti, Ŷi, V̂

+
i )
]
h

+

√
V̂ +
i

[
ρ(ti)∆W

v
i +

√
1− ρ(ti)2∆W y

i

]
, (3.2.5)

V̂i+1 = V̂i + κ(ti)
[
θ(ti)− V̂ +

i

]
h+ σ(ti)

√
V̂ +
i ∆W v

i , (3.2.6)

where V̂ +
i = max(V̂i, 0). The variables ∆W y

i and ∆W v
i are i.i.d. normal with mean

0 and variance h.

The jump times of (Y, V ) can be generated using a time-scaling scheme based on

a result of Meyer [79]. Let N i be the counting process associated with type i jumps,

with stochastic intensity λi. The process N = N1 + N2 + N3 counting all jumps of

(Y, V ) has stochastic intensity λ = λ1 + λ2 + λ3. Under a change of time defined by∫ t
0
λsds, N is a standard Poisson process. This implies that the jump times (Tn) of

N can be constructed as

Tn+1 = inf

{
t ≥ Tn :

∫ t

Tn

λsds ≥ En
}
, (3.2.7)

where (En) is a sequence of i.i.d. standard exponential variables and T0 = 0. The

complete path of the cumulative intensities Ht =
∫ t
Tn
λsds is approximated by Rie-

mann sum on the discrete-time grids as

Ĥm =
∑

Tn≤tk≤tm

λ̂kh, for h = tk − tk−1, (3.2.8)

where λ̂k is the sample of the continuous-time intensity process λt at time tk = kh

on the grid. The next jump time is then determined by

Tn+1 = min
{
tm : Ĥm ≥ En, En ∼ Exponential(1)

}
Note that Ĥ0 = λ̂Tnh and that if the hitting occurs between the grid point tm

and tm+1, then the left endpoint tm is taken as the hitting time. This scheme for
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integration and computation of the hitting time is found, in Giesecke et al. [50], to

perform the best among others in terms of error convergence.

After a new jump time Tn+1 = tm is generated, we apply thinning algorithm

by generating a marker ξn+1 which takes the value i ∈ {1, 2, 3} with probability

pi = λ̂im/λ̂m. This marker specifies the jump type and determines whether this jump

time is for only one of Yt and Vt or for a common jump in both of them. The jump

sizes ∆Jy and ∆Jv are then sampled from their specific distribution accordingly.

That is, if ξn+1 = 1, then (∆Jy,∆Jv) = (∆y(tm, Ŷm, V̂m; z), 0) where z ∼ ν1; if

ξn+1 = 2, then (∆Jy,∆Jv) = (0,∆v(tm, Ŷm, V̂m; z) where z ∼ ν2; else if ξn+1 = 3,

then (∆Jy,∆Jv) = (∆y,c(tm, Ŷm, V̂m; z),∆v,c(tm, Ŷm, V̂m; z)) where z ∼ ν3.

The log-price and variance process are updated at the jump time tm asŶm
V̂m

 =

Ŷm
V̂m

+

∆Jy

δ∆Jv

 ,

where Ŷm and V̂m on the right-hand side of above equation represent the simulated

state processes right before the jump time according to diffusion component using

(3.2.5) (3.2.6), and those on the left-hand side represent state processes updated

at the jump time. Similarly, we can update the point processes Ĵym, Ĵ
v
m and the

intensities λ̂im, λ̂m.

In summary, we have the following algorithm to obtain a simulation path for

(Ŷ , V̂ ), (Ĵy, Ĵv) given Y0 and V0 using Euler scheme.

Algorithm 3.2.1. Pseudo-code of the Euler scheme for the Heston model with

stochastic intensity:

1: Initialize (Ŷ0, V̂0)← (Y0, V0), (Ĵy0 , Ĵ
v
0 )← (0, 0), n← 0, Tn ← 0.

2: Set H ← λ̂0h, and generate E ∼ Exponential(1).

3: for k = 1, · · · ,M do
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4: set tk ← kh;

5: simulate the (pre-jump) state process Ŷk, V̂k given Ŷk−1 and V̂k−1 using (3.2.5)

and (3.2.6);

6: compute the (pre-jump) intensity λ̂k = Λ(tk, (Ŷk, V̂k), (Ĵ
y
k , Ĵ

v
k ));

7: set the (pre-jump) point processes (Ĵyk , Ĵ
v
k )← (Ĵyk−1, Ĵ

v
k−1);

8: H ← H + λ̂kh;

9: if H ≥ E then

10: set the jump time Tn+1 ← tk;

11: compute the intensities λ̂ik = Λi(tm, (Ŷm, V̂m), (Ĵym, Ĵ
v
m)) for i = 1, 2, 3;

12: generate a marker ξ taking value i ∈ {1, 2, 3} with probability λ̂ik/λ̂k, and

generate the jump sizes ∆Jy and ∆Jv accordingly, similar as in Algorithm

3.4.3;

13: update the (post-jump) state process as Ŷk ← Ŷk+∆Jy and V̂k ← V̂k+δ∆Jv.

14: update the (post-jump) point process as Ĵyk ← Ĵyk +∆Jy and Ĵvk ← Ĵvk +∆Jv.

15: update the (post-jump) intensity as λ̂k = Λ(tk, (Ŷk, V̂k), (Ĵ
y
k , Ĵ

v
k ))

16: reset H ← λ̂kh and generate a new E ∼ Exponential(1)

17: n← n+ 1

18: end if

19: end for

Let Ŷ M
T and V̂ M

T be the simulated value of the log-price and variance of stock

price using M time-steps. The price of a financial derivative E[f(ST , VT )] can then
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be estimated by Monte Carlo simulation as

CN,M =
1

N

N∑
k=1

f(exp(Ŷ M
T ), V̂ M

T ),

where N is the number of sample paths. This estimator converges to the derivative’s

price as the number of sample paths N and number of time steps M get larger.

There are multiple layers of bias in this Monte-Carlo estimation with Euler dis-

cretization. First, there is a discretization error or bias caused by using discrete-time

approximation (3.2.5),(3.2.6) in the simulation of continuous-time state processes

between jumps. For a pure diffusion process, under some regularity conditions (see

Kloeden and Platen [68], Bally and Talay [12]), the discretization error decreases

at the rate O(1/M) for Euler discretization. For the SDE in the Heston model,

however, the conditions for first-order convergence do not hold, so the actual con-

vergence may be slower. When state-dependent jumps are involved, the convergence

rate becomes more complicated to determine and is largely unknown. Second, since

the jump times are determined as the first hitting time of the integrated intensity

to an exponential level, there is an approximation error or bias by approximating

the paths of cumulative intensities in (3.2.7) on discrete-time grid, and by approxi-

mating the integral with Riemann sum. Other integration schemes, for example, the

trapezoidal rule, could be used instead. The improvements of the basic integration

scheme, however, may not give a better error convergence. In addition, even if one

can eliminate the discretization bias mentioned previously and simulate the state

processes at grid points exactly, the bias in hitting time would remain.

Because of these multiple layers of errors or bias in the Monte-Carlo estimation

with Euler discretization, it is difficult to quantify the magnitude of the error in

the estimator of financial derivative’s price, and hence it is hard to obtain valid

confidence intervals. In addition, it is difficult to specify the optimal allocation of
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computational resources between number of paths N and number of steps M .

3.3 Exact Simulation

This section explains an algorithm for the exact simulation of the Heston jump

diffusion (3.2.1). The algorithm exploits the projection method developed by Giesecke

et al. [49] for the exact simulation of point processes with stochastic intensities. We

project the point process (Jy, Jv) representing the jumps of (Y, V ) onto its own

filtration, and generate the event times based on the arrival intensity in this sub-

filtration. The sub-filtration intensity is deterministic between arrivals, and this

property facilitates the application of exact schemes for the sequential generation

of event times. Given a path of (Jy, Jv) over some period [0, T ], we then draw

the value of (YT , VT ) from the conditional transform given the point process paths.

The conditional transform is computed using point process filtering arguments. This

approach applies to a wide range of multi-variate jump-diffusion processes with state-

dependent jump intensities.

We write Tn as the nth arrival time of the global counting process N . The counting

processes N i would be extracted later from the global counting process N by thinning

algorithm.

3.3.1 Intensity projection

The idea of our unbiased exact simulation, as mentioned before, is to project

the jump processes onto their own right-continuous and complete filtration Gt =

σ(Jys , J
v
s ; s ≤ t). After the projection, we have the inter-arrival intensity

hi(t) = E[λit|Gt] =
∑
n

hi,n(t)1{N(t)=n},

and

h(t) = E[λt|Gt] = h1(t) + h2(t) + h3(t).
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They are deterministic between events and jump at event times.

To calculate the projected intensity, we need the conditional distribution πt(dy, dv)

of the state processes (Yt, Vt) given Gt. The distribution is implied by the Laplace

transform

Mt(z1, z2) = E[e−z1Yt−z2Vt|Gt] =

∫
R×R+

e−z1y−z2vπt(dy, dv).

We will refer to Mt(z1, z2) as the filter.

The filtering results for point processes (see Kliemann et al. [67], Ceci and Gerardi

[31], Frey et al. [46]) imply that Mt(z1, z2) is the solution to the Kushner-Stratonovich

equation. The assumption (A) or (B) in Section 2.1 guarantee that the solution to

the Kushner-Stratonovich equation is unique. The filtering equation splits to an

equation for t ∈ [Tn, Tn+1) between arrivals and an update at arrival Tn+1.

3.3.2 Filtering between arrivals of jumps

To calculate the filter, we define an auxiliary process X = (Xy, Xv)′ as a unique

solution to the stochastic differential equation

dXt = x +

∫ t

0

µ(s,Xs)ds+

∫ t

0

Σ(s,Xs)dWs, (3.3.1)

where the drift function µ and volatility matrix Σ are the same as in (3.2.2). For

s ≤ t, x = (x1, x2) ∈ R2,J = (jy, jv) ∈ R2, let 1

ϕ(s, t,x,J; z1, z2) = E
[
exp

{
−
∫ t

s

Λ(u,Xu,J)du

}
e−z1X

y
t −z2Xv

t

∣∣Xs = x

]
, (3.3.2)

Theorem 4.1 in Kliemann et al. [67] implies that, for t ∈ [Tn, Tn+1),

Mt(z1, z2) =
ρt(z1, z2)

ρt(0, 0)
, (3.3.3)

where

ρt(z1, z2) = E[ϕ(Tn, t, (YTn , VTn), (JyTn , J
v
Tn); (z1, z2))|Gt].

1We use bold font for vectors, that is, x = (x1, x2), z = (z1, z2), b = (b1, b2), l = (l1, l2), Jt = (Jyt , J
v
t ), and so

on.
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3.3.3 Filtering at arrival of jumps

Consider the jumps arrival time Tn+1. Let ξn+1 ∈ {1, 2, 3} be the variable that

classifies the types of the shocks at time Tn+1. From the filtering result (Kliemann

et al. [67], Ceci and Gerardi [31], Frey et al. [46]), we have

MTn+1(z1, z2) =
E[λ

(ξn+1)

T−
n+1

exp (−z1YTn+1 − z2VTn+1)|GT−
n+1

]

E[λ
(ξn+1)

T−
n+1

|GT−
n+1

]

= e−z1∆Jyn+1−z2δ∆Jvn+1

E[λ
(ξn+1)

T−
n+1

exp(−z1YT−
n+1
− z2VT−

n+1
)|GT−

n+1
]

E[λ
(ξn+1)

T−
n+1

|GT−
n+1

]
,

(3.3.4)

where we assume the jump sizes (∆Jyn+1,∆J
v
n+1) are measurable with respect to

GT−
n+1

.

3.3.4 Computing the filter

Concluding the above sub-sections, we see that an important step is to obtain

a representation of ϕ in (3.3.2), which will then lead to a solution of the filtering

equations.

By Ito’s formula, ϕ satisfies the following partial differential equation,

∂ϕ

∂s
+
(
r(s)− A(s, y, v)− 1

2
v
)∂ϕ
∂y

+ κ(s)
(
θ(s)− v

)∂ϕ
∂v

+
1

2
v

(
∂2ϕ

∂2y
+ σ2(s)

∂2ϕ

∂v2
+ 2ρ(s)σ2(s)

∂2ϕ

∂y∂v

)
= Λ(s, y, v,J)ϕ

(3.3.5)

with terminal condition ϕ(s, y, v,J; z1, z2)|s=t = exp(−z1y − z2v) for fixed z1, z2 and

t.

The representation (3.3.2) of ϕ is also closely related to the term-structure of bond

price in interest rate theory. In particular, closed-form formulas are developed, for
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example, in Duffie et al. [36] for affine setting, in Leippold and Wu [71] for quadratic

setting.

If no closed-form for ϕ is available, some numerical recursive algorithm might be

used to compute the filter. For example, Ceci and Gerardi [31] developed approxi-

mations to the filter based on Markov chain approximation method, and Frey and

Runggaldier [47] developed approximations by particle filtering method.

In the next sub-section, we illustrate the affine case, where the explicit represen-

tation is available for ϕ and hence for the filter.

3.3.5 Filtering in affine models

If the drift vector µ, volatility matrix Σ, and the jumps intensities have affine

structures with respect to the state processes (Y, V ), we can obtain semi-analytical

recursive formulas for projected intensity and the filter Mt(z1, z2). We assume the

intensities are affine in (Y, V ) as

λit = Λi(t, (Yt, Vt)) = Λi,0(t) + Λi,1(t)Yt + Λi,2(t)Vt, i = 1, 3,

λ2
t = Λ2(t, (Yt, Vt), (J

y
t , J

v
t )) = Λ2,0(t, (Jyt , J

v
t )) + Λ2,1(t, (Jyt , J

v
t ))Yt + Λ2,2(t, (Jyt , J

v
t ))Vt,

(3.3.6)

therefore the global intensity λt = λ1
t + λ2

t + λ3
t is also affine as

λt = Λ(t, (Yt, Vt), ((J
y
t , J

v
t )) = Λ0,0(t, (Jyt , J

v
t ))+Λ0,1(t, (Jyt , J

v
t ))Yt+Λ0,2(t, (Jyt , J

v
t ))Vt.

(3.3.7)

Also assume the drift term µ(t, y, v) is affine in (Y, V ). Notice that the drift of V is

already affine as κ(t)(θ(t) − Vt), we only need to assume the drift of Y be affine as

µ0(t)− µ1(t)Yt − µ2(t)Vt.

Since the auxiliary process X is now a two-dimensional affine diffusion, thanks to
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Duffie et al. [36], we have the formula for ϕ as

ϕ(s, t,x,J; z) = exp (a(s, t,J, z)− b(s, t,J, z) · x) ,

where functions b = (b1, b2) and a satisfy the ODE

∂sb1(s, t,J, z) = −Λ0,1(s,J) + µ1(s)b1,

∂sb2(s, t,J, z) = −Λ0,2(s,J) + µ2(s)b1 + κb2 +
1

2
(b2

1 + 2ρσb1b2 + σ2b2
2),

∂sa(s, t,J, z) = Λ0,0(s,J) + µ0(s)b1 + κθb2,

(3.3.8)

with terminal condition b1|s=t = z1, b2|s=t = z2, a|s=t = 0.

Remark 3.3.1. Note that Duffie et al. [36] gives a closed-form formula for the Laplace

transform of the distribution of state process when the intensity is affine in both the

state processes and the point processes. Our exact simulation method can handle

the case where intensities are not affine in the point processes (Jy, Jv), and hence

goes beyond Duffie et al. [36].

3.4 Algorithm for exact simulation

Based on the above results, we can now write down an algorithm to recursively

compute the filter and to exact simulate the Heston jump diffusion when the inten-

sities are affine in state processes.

Algorithm 3.4.1. Algorithm for exact jump simulation

(i) Initialization: set T0 = 0, compute M0(z1, z2) = E[exp(−z1Y0 − z2V0)];

(ii) Computing intensity projection: for n = 1, 2, .., for t ∈ [Tn, Tn+1) compute

hin(t) = E[λit|Gt]
= Λi,0(Tn,JTn)− Λi,1(Tn,JTn)∂z1Mt(z1, z2)

∣∣
z1=z2=0

− Λi,2(Tn,JTn)∂z2Mt(z1, z2)
∣∣
z1=z2=0

;

(3.4.1)

(iii) Simulating the jump time: generate the next jump times Tn+1 according to the

intensity hn(t) = h1
n(t) + h2

n(t) + h3
n(t) (see Algorithm 3.4.2);
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(iv) Thinning: classify the jump type ξn+1 which takes value of 1, 2, 3 with probabil-

ity p1, p2, p3 respectively, and generate sample jumps sizes (∆Jyn+1,∆J
v
n+1) (see

Algorithm 3.4.3 );

(v) Update the filter recursively:

For t ∈ [Tn, Tn+1),

Mt(z1, z2) =
exp(a(Tn, t,JTn , z))MTn(b(Tn, t,JTn , z))

exp(a(Tn, t,JTn ,0))MTn(b(Tn, t,JTn ,0))
,

and at jump time Tn+1,

MTn+1(z1, z2) =An+1(z1, z2)·

Λ̃n+1,0MT−
n+1

(z1, z2)− Λ̃n+1,1∂z1MT−
n+1

(z1, z2)− Λ̃n+1,2∂z2MT−
n+1

(z1, z2)

[Λ̃n+1,0 − Λ̃n+1,1∂z1MT−
n+1

(z1, z2)− Λ̃n+1,2∂z2MT−
n+1

(z1, z2)]|z1=0,z2=0

,

where

Λ̃n+1,k = Λξn+1,k(T
−
n+1,JTn), k = 0, 1, 2,

An+1(z1, z2) = exp(−z1∆Jyn+1 − z2δ∆J
v
n+1),

MT−
n+1

(z1, z2) = lim
t→T−

n+1

Mt(z1, z2).

(vi) Repeat the above steps, cursively compute hn(t) and Mt(z1, z2), until we reach

the time horizon T .

Algorithm 3.4.2 (Sub-routine used in Algorithm 3.4.1). Algorithm for generating

jump times Tn+1 given hn(t):

(i) Set t = Tn;

(ii) Find bound Bn
t and Cn

t such that for s ∈ [0, Cn
t ], hn(t+ s) ≤ Bn

t ;

(iii) Generate candidate jump time t̂ = t+ E , where E ∼ Exponential(Bn
t ),

• If E > Cn
t , set t = t̂ and repeat step 2;
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• Else, calculate the ratio q = hn(t+E)/Bn
t , draw a standard uniform random

variable U ,

– If U ≤ q, accept the candidate, set Tn+1 = t̂, stop;

– Else, reject the candidate, set t = t̂, and repeat step 2.

Algorithm 3.4.3 (Sub-routine used in Algorithm 3.4.1). Algorithm for classifying

jump type and generate jump sizes:

(i) Calculate the ratios pi = hin(Tn+1)
hn(Tn+1)

, and generate a uniform random variable V ,

• If V < p1, then ξn+1 = 1;

• Else if V < p1 + p2, then ξn+1 = 2;

• Else ξn+1 = 3.

(ii) Classify the type of shock according to the result of jump type ξn+1 and simulate

jump sizes:

• If ξn+1 = 1, only Yt jumps; we set ∆Jv = 0 and generate jump sizes

∆Jy = ∆y(t, YT−
n+1
, VT−

n+1
; z) where z follows distribution ν1(z);

• If ξn+1 = 2, only Vt jumps; we set ∆Jy = 0 and generate jump sizes

∆Jv = ∆v(t, YT−
n+1
, VT−

n+1
; z) where z ∈ R is sampled from distribution

ν2(z);

• If ξn+1 = 3, both Yt and Vt jump; we generate jump sizes ∆Jy = ∆y,c(t, YT−
n+1
, VT−

n+1
; z)

and ∆Jy = ∆y,c(t, YT−
n+1
, VT−

n+1
; z) where z ∈ R2 is sampled from the joint

distribution ν3(z),

Remark 3.4.4. Under the following cases, our exact simulation method degenerates

to a conditioning transform method. The algorithm 3.4.1 still works, but is not a

“projection method” anymore.
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(i) λit ≡ 0. That is, jump occurs in neither the log-price process nor the variance

process, and the model degenerates to the stochastic volatility (SV) model. In

this cases, steps (2)-(5) is unnecessary since there are no jumps, and the filter

at terminal time horizon is simply

MT (z1, z2) =
exp(a(0, T,0, z))MTn(b(0, T,0, z))

exp(a(0, T,0,0))MTn(b(0, T,0,0))
.

(ii) λit are all deterministic functions with at least one of them non-zero. In this

case, the projection step (2) is unnecessary, and the filter is simply updated at

jump times in step (5) as

MTn+1(z1, z2) = An+1(z1, z2)
exp(a(Tn, t,JTn , z))MTn(b(Tn, t,JTn , z))

exp(a(Tn, t,JTn ,0))MTn(b(Tn, t,JTn ,0))
.

In this chapter, we do not consider these two cases and assume that at least one of

the intensities λit is non-zero and stochastic. We also rule out the case where the

jump sizes are simultaneously zero almost surely.

3.4.1 Exact method for a certain class of pay-off functions

We consider the price of a general financial derivative E[f(YT , VT , J
y
T , J

v
T )] where

the final payoff function takes the form f(y, v, jy, jv) =
∑

p,q,m,n e
pyeqvymvng(jy, jv),

where p, q are real numbers, m,n are integers and g(·) is some measurable function. In

this case, the price of the derivative can be easily obtained using the filter calculated

in Algorithm 3.4.1. To see this, notice that, for each term in the component of such

function,

E[SpT e
qVTY m

T V
n
T g(JyT , J

v
T )] = E

[
g(JyT , J

v
T )E[SpT e

qVTY m
T V

n
T |GT ]

]
= E[g(JyT , J

v
T )(−1)m+n∂(m)

z1
∂(n)
z2
MT (z1, z2)|z1=−p,z2=−q],

(3.4.2)
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where the derivatives ∂
(m)
z1 ∂

(n)
z2 MT (z1, z2) can be calculated from the filter MT (z1, z2).

For the kth path, we estimate the values of the conditional price as C(k) =

E[f(ST , VT ,JT )|GT ], then the Monte-Carlo estimator for the price of the financial

derivative is given by

CN =
1

N

N∑
k=1

C(k). (3.4.3)

Example 3.4.5 (Futures). Futures on a stock have (un-discounted) price

F = E[ST ].

Note that E[ST |GT ] = MT (−1, 0), hence the Monte-Carlo price of a future is

FN =
1

N

n∑
k=1

M
(k)
T (−1, 0),

where the subscript (k) denotes estimator of the kth path.

Example 3.4.6 (Variance swap). Consider the continuous strike variance swap rate,

which is computed as the risk-neutral expectation of realized variance (see Carr and

Wu [30]) as

C = E[RV ], RV =
1

T

∫ T

0

Vudu+
1

T

N1
T+N3

T∑
n=1

(
∆Jyn

)2
.

Define It =
∫ t

0
Vsds, that is, dIt = V (t)dt, and define

Mt(z1, z2, z3) = E[exp(−z1Yt − z2Vt − z3It)|Gt].

Notice the drift and volatility vector of (Yt, Vt, It) are affine in the state processes if

(Yt, Vt) is so. The filtering algorithm can be easily extended to affine setting with

three state processes. For the kth path,

C(k) = E[RV |GT ] = − 1

T
∂z3MT (0, 0, z3)|z3=0 +

1

T

N1
T+N3

T∑
n=1

(
∆Jyn

)2
,

hence the Monte-Carlo estimates of the variance swap rate can be easily obtained by

(3.4.3).
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3.4.2 Method I: FFT method for other pay-offs

The conditional distribution of (Yt, Vt) given GT , denoted by πt(dy, dv), can be

obtained by performing the inverse Laplace transform onMt(z1, z2). Exact samples of

the state process can then be drawn from this distribution using the inverse method.

The characteristic function of log-price YT given GT is given by φ(u) = E[eiuYT |GT ] =

MT (−iu, 0). Fourier inversion techniques, as used in Scott [92] and Broadie and Kaya

[27], can be used to invert the characteristic function to sample for ST conditional

on GT . Let Y be a random variable with same distribution as YT given GT , then its

cumulative distribution function can be written as

F (x) = P(Y ≤ x) =
2

π

∫ ∞
0

sin(ux)

u
<(MT (−iu, 0))du, (3.4.4)

where <(c) denotes the real part of a complex number c.

Trapezoidal rule is then applied to compute it numerically as

F (x) =
hx

π
+

2

π

L∑
j=1

sin(hjx)

j
<(MT (−ihj, 0)), (3.4.5)

the number L is chosen so that

|MT (−ihL, 0)|
L

≤ πε

2
,

where ε is the desired truncation error.

The value of Y can then be simulated using inverse transform method as Y =

F−1(U), where U is a uniform random number. Let Y (k) be the simulated value of

Y for the kth path. Then the conditional price of a derivative with payoff f(ST ) is

given by C(k) = f(exp(Y (k))), and the Monte-Carlo price CN is obtained by (3.4.3).

Alternatively, when we have the transform of the price of the financial deriva-

tive directly, (for example, the options), an easier and faster technique can be used

to invert functionals of the characteristic function for only once on each path. In
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particular, Carr and Madan [28] developed a FFT method for the price of a vanilla

call option. Similar technique can be used here to calculate conditional call price

E
[
(ST −K)+|GT

]
and then the call price C = E[(ST −K)+] = E

[
E[(ST −K)+|GT ]

]
.

Denote q(y) the risk-neutral density of log-price YT = log(ST ) conditioned on GT .

Writing the log-strike price as k = log(K), we have the conditional call price

c(k) = E[(eYT −K)+|GT ] =

∫ ∞
k

(ey − ek)q(y)dy. (3.4.6)

Note that as k → −∞, c(k) goes to a positive constant, so it is not square integrable

and we can not directly apply Fourier transform on c(k). To handle this, we apply

Fourier transform on a modified call option instead. Using a damping coefficient α >

0, we define the modified function by cα(k) = eαkc(k). Assume that E[(ST )α+1] <∞.

The Fourier transform of cα(k) is

ψα(u) = F(cα(k)) =

∫ +∞

−∞
eiukcα(k)dk =

∫ +∞

−∞
eiuk

∫ +∞

k

eαk(ey − ek)q(y)dydk

=

∫ +∞

−∞
q(y)

∫ y

−∞
eiuk(ey+αk − eα+αk)dkdy

=

∫ +∞

−∞
q(y)e(1+α+iu)y(

1

α + iu
− 1

α + 1 + iu
)dy

=
φ(u− (α + 1)i)

α2 + α− u2 + i(2α + 1)u
.

Now performing the inverse Fourier transform on ψα(u), we have

c(k) = e−αkcα(k) =
e−αk

2π

∫ +∞

−∞
e−iukψα(u)du =

e−αk

π

∫ +∞

0

e−iukψα(u)du. (3.4.7)

Notice that we can then use FFT to calculate (3.4.7) quickly and efficiently. To see

it, we discretize u and k as uj = jη for j = 0, 1, · · ·L − 1, and kn = −Lξ
2

+ ξn, for

n = 0, 1, · · ·L − 1. The sizes of the discretization satisfy ξη = 2π
L

, and L = 2d for

some big integer d. To gain more accuracy, Simpson’s rule for weightings are also

incorporated in the summation. The call option price can be computed as
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c(kn) =
e−αkn

π

L−1∑
j=0

e−i
2π
N
jnei

Nξ
2
ujψα(uj)

η

3
(3 + (−1)j+1 + δj),

and ĉ = c(kN
2

) gives the price of the at-the-money call option. Denote C(k) to be

the conditional call price for the kth path. The Monte-Carlo price can be calculated

similarly as in (3.4.3).

While feasible, the FFT method seems computationally intensive, since one needs

to either perform FFT for each path then average, or do one FFT after averaging

the conditional transform. Besides, the bias in the final estimator introduced by the

FFT error is unknown.

3.4.3 Method II: Polynomial Approximation method

Alternatively, to price a financial derivative with final payoff f(ST ), we can ap-

proximate the payoff function with polynomials, then use techniques in Section 3.4.1

to get the moments of the stock, and hence estimate the price. With this approach,

it is easy to characterize the magnitude of the bias of simulation estimator since the

approximation error is known. Furthermore, since the evaluation is much faster, we

can generate more paths to get more accurate results.

Schoutens [91], Carr and Schoutens [29] and others use linear combinations of

power payoffs to approximate a payoff function f(x) in a least square sense. The

Weierstrass approximation theorem guarantees the existence of some polynomial

which can uniformly approximate a continuous function defined on a finite interval

as closely as desired. However, as seen in Carr and Schoutens [29] and mentioned in

Royston and Altman [90], using conventional power polynomials with higher degree

can lead to wilder oscillation, the “Runge’s phenomenon”. In this case, higher de-

gree does not necessarily lead to a better fit. One way to reduce this oscillation is
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to extend the approximation to fractional polynomials. Fractional polynomials are

linear combinations of xp where p can be a real number. They provide more flexible

fit than conventional polynomials and can obtain similar accuracy with a smaller de-

gree, as shown in Royston and Altman [89] and Royston and Altman [90]. However,

little is known about the rate of convergence or how to choose the fractional powers

optimally.

We, instead, use Chebyshev polynomials. Chebyshev series expansion can min-

imize the Runge’s phenomenon and provide an approximation that is close to the

best polynomial for a continuous function under the maximum norm (see Mason and

Handscomb [76], Boyd [26], or more explicitly in the introduction of Pachón and

Trefethen [83]). The Chebyshev polynomials (of the first kind) Tn(x) are defined by

the recurrence relation Tn+1(x) = 2xTn(x) − Tn−1(x), with T0(x) = 1, T1(x) = x.

They are orthogonal with respect to the weight 1/
√

1− x2 on the interval [-1,1], and

< Tm(x), Tn(x) >:=
1 + δ0n

π

∫ 1

−1

Tn(x)Tm(x)√
1− x2

= δmn.

A function f on [-1,1] can then be represented by Chebyshev expansion f(x) =∑∞
n=1 anTn(x), where an is given by the inner product < f(x), Tn(x) >. If a function

f is (m − 1)-times differentiable almost everywhere with (m − 1)-st derivative of

bounded variation, then it can be approximated by a M -degree Chebyshev series∑M
n=1 anTn(x) with maximum absolute error of order O(M−m) (see Theorem 2.1(ii)

of Battles and Trefethen [14]).

Any finite range 0 ≤ y ≤ a can be transformed to the basis range −1 ≤ x ≤ 1 with

change of variable y = a(x+1)/2. In our case, we approximate the call option payoff

f̄(y) = (y − 1)+ on truncated domain [0, a] with a = 4 and transform y = 2(x + 1).

Write T̄n(y) = Tn(x), f̄(y) = f(x), then T̄n(y) can be made explicit and so does the

Chebyshev expansion of f̄(y) ≈ PM(y) =
∑M

n=1 anT̄n(y). (Without loss of generality,
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the strike price can be rescaled to unity as E[(ST − K)+] = KE[(S̄T − 1)+] where

S̄ has similar dynamic as S and S̄0 = S0/K. The call price will be rescaled by

a factor of K accordingly.) Since the payoff function of a call option is piecewise

differentiable, the maximum absolute error is at most of order O(1/M).

Assume the stock price has finite moments. The truncated domain [0, a] can be

chosen such that the error is negligible outside the region. Here our choice of a = 4

is more than three standard derivations of stock price. Of course we can pick an

even bigger region [0, b] with b > a to obtain smaller error due to the truncation of

domain, but the approximation error using the scaled Chebyshev basis Tn(x) will

generally get bigger. There is a trade-off in the choice of a.

Once the Chebyshev expansion is determined, we can rearrange the terms and get

f̄(S) = (S − 1)+ ≈
∑M

n=0 anT̄n(S) =
∑M

n=0 a
∗
nS

n. The conditional call price for the

kth path is then given by

C(k) ≈ E[PM(St)|GT ] =
M∑
j=1

a∗jMT (−j, 0),

and (3.4.3) gives the Monte-Carlo estimation of the un-discounted option price.

3.5 Numerical Results

We compare the exact method with the discretization method described in Section

3.2.2. We price a European call option on the stock. We consider the following

intensity specification:

λ1
t = c1Vt, λ2

t = Vtg(Jyt , J
v
t ), λ3

t = c3Vt. (3.5.1)

where c1 and c3 are constants, and g(·, ·) is an arbitrary non-negative function. We

assume that the initial value V0 for the variance process has a Gamma distribution,

its stationary distribution. The diffusion parameters κ, θ, σ, r, ρ are constants. The
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initial log-price of stock Y0 is independent of V0, and could either be a fixed value

or follow some distribution. The jump sizes are chosen to be independent of state

processes. Assumption (A) is satisfied and strong unique solution exists for SDE

(3.2.1). In this formulation, the filter Mt(z1, z2) and projected intensities hi,n(t) in

Algorithm 3.4.1 can be computed exactly in closed-form or approximated in closed-

form as in Appendix A; see Propositions A.1 and A.2.

Under this specification, the compensator in (2.1) becomes At = λ1
t µ̄y,o + λ3

t µ̄y,c,

where µ̄y,o = E[exp(∆y) − 1] is the average jump size of stock price due to type I

jumps (jumps in only Yt), and µ̄y,c = E[exp(∆y,c) − 1] is the average jump size of

stock price due to type III jumps (common jumps). In addition, µ0 = r, µ1 = 0, µ2 =

1
2

+ c1µ̄y,o + c3µ̄y,c in equation (3.3.8) are also constants. The ODE system (3.3.8)

now has closed-form solutions,

b1(s, t,J, z) = z1

b2(s, t,J, z) =
z2(C −Beγ(t−s))− BC

σ2 (eγ(t−s) − 1)

σ2z2(eγ(t−s) − 1) + Ceγ(t−s) −B
,

a(s, t,J, z) = −rz1(t− s) +
2κθ

σ2
log

[
2γ exp[1

2
(κ+ γ + ρσz1)(t− s)]

σ2z2(eγ(t−s) − 1) + Ceγ(t−s) −B

]
,

(3.5.2)

with γ =
√

(κ+ ρσz1)2 − σ2z1(z1 + 2µ2) + 2σ2[g(jy, jv) + c1 + c3], B = k+ρσz1−γ,

and C = k + ρσz1 + γ. The filter Mt(z1, z2) in Algorithm 3.4.1 is hence

• for t ∈ [Tn, Tn+1),

Mt(z1, z2) =
ea(Tn,t,JTn ,z)MTn(b(Tn, t,JTn , z)

ea(Tn,t,JTn ,0)MTn(b(Tn, t,JTn ,0)
,

• at Tn+1

MTn+1(z1, z2) = e−z1∆Jyn+1−δz2∆Jvn+1

∂v2
[
ea(Tn,Tn+1,JTn ,v)MTn(b(Tn, Tn+1,JTn ,v))

] ∣∣
v=(z1,z2)

∂v2 [ea(Tn,Tn+1,JTn ,v)MTn(b(Tn, Tn+1,JTn ,v))]
∣∣
v=(0,0)

,
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The recursive formulas for projected intensity are

hn(t) =− (c1 + c3 + g(JTn))
∂z2
[
ea(Tn,t,(0,z2),JTn )MTn(0, b2(Tn, t, (0, z2),JTn))

]
|z2=0

ea(Tn,t,0,JTn )MTn(0, b2(Tn, t,0,JTn))
,

(3.5.3)

and the probabilities pi = P(ξn+1 = i) for the jump-type process ξ at Tn+1 are

pi = ci/[c1 + c3 + g(JyTn , J
v
Tn

)], i = 1, 3, and p2 = 1− p1 − p3.

3.5.1 Jumps in price only.

Suppose λ2
t = λ3

t = δ = 0 in (3.2.1). The intensity of price jumps is λyt = λ1
t =

c1Vt. The jump sizes have a log-normal distribution. In this setting, the filter can

be computed explicitly, see Proposition 3.7.1. We also obtain a semi-analytical value

for the option price from the results of Duffie et al. [36], which will facilitate the

evaluation of the simulation estimators.

The parameter values for numerical computations (see Table 3.1) are taken from

Duffie et al. [36], and were found by minimizing the mean square error for market

option prices on the S&P 500 on November 2, 1993. (Duffie et al. [36] assume a

constant jump intensity equal to 0.11. We select the intensity parameter c1 such

that the average number of jumps per year is around 0.11.)

Methods I and II are configured as follows. We choose α = 1.5, L = 212, and

η = 600/L in the calculation for FFT in Method I. The result is not sensitive to

the choice of α,L, and η as long as they are appropriate. In Method II, we choose

the degree of Chebyshev polynomials to be M = 26. The Chebyshev expansion

approximates the payoff function (S− 1)+ with maximum absolute error of 0.02 and

mean absolute error of around 0.002 on interval [0, 4]. The strike price is rescaled

to unity as E[(ST − K)+] = KE[(S̄T − 1)+] where S̄ has same dynamic as S and

S̄0 = S0/K.
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To further reduce the error of approximation in method II, we could correct the

error using “benchmark adjustment”. Note the option price C = E[f(x)|GT ] =

E[P ∗(x)|GT ] + err, where err = E[f(x)|GT ]− E[P ∗(x)|GT ]. We can approximate the

error term with err ≈ E0[f(x)|GT ] − E0[P ∗(x)|GT ] where E0[·] is some computable

expectation under a simpler measure close to the original measure. For example, it

could be the expectation when no jump occurs. That is, we perform option valua-

tion with a single FFT and a single polynomial approximation using MT with zero

total number of jumps, then store the difference as the value err for benchmark ad-

justment. These single valuations are fast and generally complete in less than 0.02

second. We denote this method “adjusted Method II”.

To evaluate an estimator of the option price, we consider its root mean square

error (RMSE), given by
√

Bias2 + SE2. The standard error (SE) is estimated as the

sample standard deviation of the simulation output divided by the square root of

the number of trials. The bias is estimated using a large number of trials to estimate

the expectation of the estimator, and then taking the difference with the true value.

The true value can be computed using the results of Duffie et al. [36]. They give

the explicit formula for the characteristic function of terminal stock price under affine

setting with fixed initial values (Y0, V0). Using properties of Gamma distributions,

the characteristic function of stock price with Gamma distributed initial value V0

can also be obtained. This characteristic function can be used here to compute the

true option price. Below we give the details on how to get the true price.

According to (2.4)-(2.6) of Duffie et al. [36], the transform function given V0 is

given by

E[euYT |Yt = y, Vt = v] = eα(t)+β1(t)y+β2(t)v,

where α(t), β(t) solves ODEs (when λ1 = c1Vt, λ
2 = λ3 = 0 and log-normal jumps in
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Yt )

∂tβ1(t) = 0

∂tβ2(t) =

(
1

2
+ c1µ̄y,o

)
β1(t) + κβ2(t)− 1

2

[
β2

1(t) + 2ρσβ1(t)β2(t) + σ2β2
2(t)
]
− c1[J (β1(t))− 1]

∂tα(t) = −rβ1(t)− κθβ2(t)

(3.5.4)

with terminal condition β1(T ) = u, β2(T ) = 0, α(T ) = 0, where J (u) = exp(µy,ou +

1
2
σ2
y,ou

2) is the jump transform and µ̄y,o = J (1) − 1. This ODE has closed-form

solution and the transform of the state process is given by

E[euYT |Yt = y, Vt = v] = exp(ᾱ(T − t, u) + uy + β̄(T − t, u)v) (3.5.5)

where

β̄(τ, u) = − a(1− e−γτ)

(γ − b) + (γ + b)e−γτ

ᾱ(τ, u) = ruτ +
2κθ

σ2
log

(
2γe−(γ+b)τ/2

(γ − b) + (γ + b)e−γτ

) (3.5.6)

where b = σρu − κ, a = u(1 − u) + 2c1µ̄y,ou − 2c1[J (u) − 1], γ =
√
b2 + σ2a.

Hence E[exp(uYT )|Y0, V0] = exp(ᾱ(T, u) + uY0 + β̄(T, u)V0). Since V0 follows gamma

distribution with scale parameter σ2/2κ and shape parameter 2κθ/σ2, we have the

characteristic function of log-price as

φ(u) = E[exp(iuYT )|Y0] = exp(ᾱ(T, iu) + iuY0)(1− β̄(T, iu)σ2/2κ)−2κθ/σ2

. (3.5.7)

We then apply FFT on the characteristic function of log-price to get the true value

of vanilla call option price.

The simulation experiments were performed on a desktop computer running Win-

dows 7 with 3 GB RAM. The codes were written in Matlab R2009b (Version 7.9.0).

Motivated by the results of Duffie and Glynn [35], the number of discretization time

steps was set to the square root of the number of simulation trials.
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Table 3.1 reports the simulation results. The bias column is estimated using

6,553,600 trails. We see that the exact simulation method leads to much lower

variance, as expected, than the Euler discretization method. In addition, the bias

introduced by FFT in Method I is negligible. In Method II, the bias introduced

by approximation using finite number of polynomials is bounded by the approxima-

tion error, and decreases a lot after benchmark adjustment as shown in “Method II

adjusted”. Figure 3.1 shows the convergence of the two methods graphically. The

curve for Method II flattens because the SE column with more than 102,400 trails is

smaller than its bias -0.007. After benchmark adjustment, the bias in Method II was

reduced and the method converges. The projection method, implemented either in

Method I or adjusted Method II, achieves the optimal square-root convergence, with

the error of estimator decreases at the rate O(1/
√
t) for computational budget t.

The steeper slopes of the projection methods show faster convergence rate than that

of Euler method. All projection methods also outperform the discretization scheme

in terms of absolute errors: for a given computational budget, they generate smaller

RMS errors. Among the projection method, adjusted Method II performs the best

since it evaluates MT at much fewer points and hence runs much faster.

3.5.2 Jumps in the price and volatility

When δ in (3.2.1) is not zero, we can still approximate the filter by an explicit ex-

pression with approximation error of order O(δ2) as in Proposition A.2 in Appendix.

Here we give an example with δ = 0.5 and allow jumps in both log-price process and

the variance process.

The parameter values in the numerical example (see Table 3.2) are taken from

the third column of Table I from Duffie et al. [36]. We allow three types of jumps as

follows,
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• Type I: jumps in only the log-price process. The jump sizes follow a normal

distribution with mean µy,o and standard-derivation σy,o=0.15. The value µy,o is

chosen such that the mean jump sizes of the stock is µ̄y,o = −0.12. The relation

of the three parameters is given by µy,o = log(µ̄y,o + 1)− σ2
y,o/2. The intensity

of this type of jumps is λ1
t = c1Vt.

• Type II: jumps in only the variance process: the jump sizes follow an exponential

distribution with mean µv,o = 0.03. The intensity of this type of jumps is

λ2
t = Vt log(|1− Jyt + Jvt |).

• Type III: common jumps in both processes: the jumps sizes in variance process

∆v,c follow an exponential distribution with mean µv,c = 0.05; conditional on

∆v,c, the jumps sizes in log-price ∆y,c follow a normal distribution with mean

µy,c + ρJ∆v,c and standard-derivation σy,c = 0.0001, where ρJ = −0.38. The

value µy,c is chosen such that the mean jump sizes of the stock is µ̄y,c = −0.10.

These parameters satisfy the equation µy,c = log[(µ̄y,c + 1)(1− ρJµv,c)]− σ2
y,c/2.

The intensity of this type of jumps is λ3
t = c3Vt.

In addition, we assume V0 ∼ Gamma(2κθ/σ2, σ2/2κ). The value c1, c3 are chosen

such that the average number of jumps per year is around 0.11.

At these parameter values, the projected intensity h(t) is decreasing between

jumps. Hence in Algorithm 3.4.2, we can take its initial value as an upper bound

Bn
t , and don’t need to find a value for Cn

t .

In this example, the point process Jvt associated with the variance process V is

self-exciting since its jump intensity is a function of the state process and the point

process itself. The intensity λ2
t = Vt log(|1 − Jyt + Jvt |) suggests that more jumps

occur for a higher level of volatility point process or a lower level of stock price point
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process. Since the intensity is a non-linear function of point processes, it goes beyond

the affine model of Duffie et al. [36].

Table 3.2 and Figure 3.2 give the simulation results and convergence diagram of

RMS errors. Here both “Method I” and “Method I*” use FFT techniques as in Sec-

tion 3.4.2 to compute the option price based on the filter, while “Method I” calculates

the filter numerically using Algorithm 4.1 and “Method I*” approximates the filter

by Proposition A.2. Similarly, both “adjusted Method II” and “adjusted Method

II*” apply the benchmark adjustment after the polynomial approximation method

in Section 3.4.3 to get option price based on the filter, while the filter is computed,

respectively, by numerical recursion in “adjusted Method II” and by Proposition A.2

in “adjusted Method II*”.

The bias column is estimated using 6,553,600 trails except for Method I/II, which

use 409,600 trails due to the cost of numerical recursion to compute MT . For a given

computation budget, all projection method outperform the discretization method,

except Method I which uses numerical recursive calculation together with FFT. Dur-

ing the numerical recursion, large proportion of the computational time was spent

on solving ODE (3.3.8) for different z1 necessary in FFT. If ODE (3.3.8) had an

explicit solution, or can be solved quickly for a vector of z1, Method I would beat

discretization method. The adjusted Method II* flattens because the bias is bigger

than the SE column with more than 409,600 trails. The bias comes from two places:

the approximation of MT using Proposition A.2 with error O(δ2) and the Chebyshev

polynomial approximation to the payoff function with error O(1/M) where M is the

degree of polynomial. If one can reduce these errors, the curve will be straight. We

see that projection method still achieves the optimal square-root convergence rate

even for the approximated filter using Proposition A.2. The discretization method,
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on the other hand, has a slower convergence rate.

3.5.3 Extensions

Our method can be generalized further to Heston model with time-dependent dif-

fusion coefficients. For example, piece-wise constant coefficients are widely used, as in

Mikhailov and Nögel [80], Elices [39], Benhamou et al. [23], and many others, due to

its flexibility in fitting market data. Our exact simulation method can easily handle

models with time-dependent diffusion parameters r(t), κ(t), θ(t), and σ(t). After all,

no additional work needs to be done except for solving the equation system (3.3.8),

while numerous efficient and accurate numerical ODE solvers are available. No re-

striction needs to be imposed on the joint distribution of initial state process (Y0, V0).

They can be either fixed values or follow a certain joint distribution. The global jump

intensities can take a general form λt = g0(Jyt , J
v
t ) + g1(Jyt , J

v
t )Vt + g2(Jyt , J

v
t )Yt. As

seen in previous example, for call option price valuation, the projection method gen-

erates smaller standard errors and smaller bias for a given number of trails than

discretization method. But it runs slowly due to the intensive ODE solving and

intensive evaluation at the FFT points. We suspect that the projection method in a

very general case may be computational expensive. However, if we want to evaluate

the price of such contracts as in section 4.1 which directly use the moments of state

processes, the projection method would be superior to discretization method.

3.6 Conclusion

This chapter extends the Heston model to include state-dependent jumps and

develops methods for exact simulation of the model. The exact sampling, based on

a change of the filtration that describes the information flow in the point process

and facilitated by filtering arguments, extends a projection method developed by
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Giesecke et al. [49]. Numerical experiments demonstrate the effectiveness of the

exact methods and their advantages over Euler discretization schemes. Our unbiased

scheme requires a smaller computational budget to achiever a given error and has a

faster convergence rate.

3.7 Appendix: Derivation of an explicit formula for the filter

Here we provide and prove an explicit formula for the filter MTn+1(z1, z2) used in

section 3.5.1 when the intensities take the form (3.5.1).

Proposition 3.7.1. Denote φ0(z1) = E[e−z1Y0 ] to be the moment generating function

of Y0. Assume that V0 follows Gamma distribution with parameters (2κθ/σ2, σ2/2κ)

and the sensitivity parameter δ = 0, then

MTn(z1, z2) =

(
Fn(z1)

Fn(0)

) 2κθ
σ2

e−z1rTnφ0(z1)e−z1
∑n
k=1 ∆Jyn

· (z2Hn(z1) +Kn(z1))−
2κθ
σ2
−n(Kn(0))

2κθ
σ2

+nP
(z1)
n (z2)

P 0
n(0)

(3.7.1)

where P
(z1)
n (z2) is a polynomial of z2 with degree n− 1, which satisfies

P0(z2) = 1, P1(z2) = H1

Pn(z2) = (Unz2 +Wn)n−2Pn−1

(
Rnz2 + Sn
Unz2 +Wn

)[
−2κθ

σ2
Un(Hnz2 +Kn)−

(
2κθ

σ2
+ n− 1

)
Gn

]
+ (Unz2 +Wn)n−3P ′n−1

(
Rnz2 + Sn
Unz2 +Wn

)
(Hnz2 +Kn)Gn, n ≥ 2,

with Fn = Fn(z1) = D1D2 · · ·Dn, Dn = (2γ) exp(1
2
(κ+ γ + ρσz1)(Tn − Tn−1)), Gn =

RnWn − SnUn = (2γ)2eγ(Tn−Tn−1) , and

Hn = RnHn−1 + UnKn−1, H0 = σ2/2κ,

Kn = SnHn−1 +WnKn−1, K0 = 1,
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where

Rn = Rn(z1) = Cn −Bne
γ(Tn−Tn−1),

Sn = Sn(z1) = (2g(J1,n, J2,n) + 2c1 + 2c2 − z1(z1 + 2µ2))(eγ(Tn−Tn−1 − 1),

Un = Un(z1) = σ2(eγ(Tn−Tn−1) − 1),

Wn = Wn(z1) = Cne
γ(Tn−Tn−1) −Bn,

with γ = γn =
√

(κ+ ρσz1)2 − σ2z1(z1 + 2µ2) + 2σ2[g(JyTn−1
, JvTn−1

) + c1 + c2], Bn =

k + ρσz1 − γ, Cn = k + ρσz1 + γ.

Proof. First of all, denoting Dn = 2γ exp[1
2
(κ+γ+ρσz1)(Tn−Tn−1)], we can re-write

the functions a(·) and b2(·) in (3.5.2) as 2

a(Tn−1, Tn, (z1, z2)) = −z1r(Tn − Tn−1) +
2κθ

σ2
log

(
Dn

Unz2 +Wn

)
,

b2(Tn−1, Tn, (z1, z2)) =
z2Rn + Sn
z2Un +Wn

,

and

∂z2a(Tn−1, Tn, (z1, z2)) = −2κθ

σ2

Un
Unz2 +Wn

,

∂z2b1(Tn−1, Tn, (z1, z2)) = 0 ,

∂z2b2(Tn−1, Tn, (z1, z2)) =
RnWn − SnUn
(Unz2 +Wn)2

=
Gn

(Unz2 +Wn)2
.

For n = 0, M0(z1, z2) = φ0(z1)(1 + z2)−
2κθ
σ2 . For n > 0,

MTn(z1, z2) = e−z1∆Jyn
∂z2e

a(z1,b2(Tn−1,Tn,(z1,z2))MTn−1(z1, b2(Tn−1, Tn, (z1, z2)))

∂z2e
a(z1,b2(Tn−1,Tn,(z1,z2))MTn−1(z1, b2(Tn−1, Tn, (z1, z2)))|(z1,z2)=(0,0)

.

(3.7.2)

2 to get shorter notations, we make the dependency of (JyTn−1
, JvTn−1

) implicit here.
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Assume claim (3.7.1) holds for n− 1, then the numerator of expression in (3.7.2) is

∂z2e
a(Tn−1,Tn,(z1,z2))MTn−1(z1, b2(Tn−1, Tn, (z1, z2)))

=ea(Tn−1,Tn,(z1,z2))MTn−1(z1, b2(Tn−1, Tn, (z1, z2)))

·
[
∂z2a(Tn−1, Tn, (z1, z2)) + ∂v log(MTn−1(z1, v))|v=b2(Tn−1,Tn,(z1,z2))∂z2b2(Tn−1, Tn, (z1, z2))

]
=C0e

−rTne−z1Y0−z1
∑n−1
k=1 ∆Jyk

(
Dn

z2Un +Wn

) 2κθ
σ2

(Fn−1)
2κθ
σ2

[
z2Rn + Sn
z2Un +Wn

Hn−1 +Kn−1

]− 2κθ
σ2
−n+1

· Pn−1

(
z2Rn + Sn
z2Un +Wn

)[
− 2κθ

σ2

Un
z2Un +Wn

+

(
−(2κθ

σ2 − n+ 1)Hn−1

z2Rn+Sn
z2Un+Wn

Hn−1 +Kn−1

+
P ′n−1( z2Rn+Sn

z2Un+Wn
)

Pn−1( z2Rn+Sn
z2Un+Wn

)

)
Gn

(z2Un +Wn)2

]
=C0e

−rTne−z1Y0e−z1
∑n−1
k=1 ∆Jyk (Fn)

2κθ
σ2 (z2Hn +Kn)−

2κθ
σ2
−n+1(z2Un +Wn)n−2

· Pn−1

(
z2Rn + Sn
z2Un +Wn

)[
−2κθ

σ2
Un +

(
−(2κθ

σ2 − n+ 1)Hn−1

z2Hn +Kn

+
P ′n−1( z2Rn+Sn

z2Un+Wn
)

Pn−1( z2Rn+Sn
z2Un+Wn

)(z2Un +Wn)

)
Gn

]

=C0e
−rTne−z1Y0e−z1

∑n−1
k=1 ∆Jyk (Fn)

2κθ
σ2 (z2Hn +Kn)−

2κθ
σ2
−nPn(z2).

Here, C0 is some constant, and

Pn(z2) = (z2Un +Wn)n−2(z2Hn +Kn)
[
− 2κθ

σ2
Un

+

(
−(2κθ

σ2 − n+ 1)

z2Hn +Kn

+
P ′n−1( z2Rn+Sn

z2Un+Wn
)

Pn−1( z2Rn+Sn
z2Un+Wn

)(z2Un +Wn)

)
Gn

]
= (Unz2 +Wn)n−2Pn−1(

Rnz2 + Sn
Unz2 +Wn

)
[
− 2κθ

σ2
Un(Hnz2 +Kn)− (

2κθ

σ2
+ n− 1)Gn

]
+ (Unz2 +Wn)n−3P ′n−1(

Rnz2 + Sn
Unz2 +Wn

)(Hnz2 +Kn)Gn.

Note that Pn−1(z2) is a polynomial of z2 with degree n−2, so (Unz2+Wn)n−2Pn−1( Rnz2+Sn
Unz2+Wn

)

is a polynomial of z2 with degree n− 2, and (Unz2 +Wn)n−3P ′n−1( Rnz2+Sn
Unz2+Wn

) is a poly-

nomial with degree n− 3. In a word, Pn(z2) is a polynomial of z2 with degree n− 1.

Hence MTn(z1, z2) have the expression (3.7.1).

Proposition 3.7.2 (Approximated Exact Simulation when δ 6= 0 in (3.2.1)). Given

δ << 1, and define M̃Tn(z1, z2) to be (1− δ∆Jvnz2) multiplied by the one given in the
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formula (3.7.1), then the error |MTn(z1, z2)− M̃Tn(z1, z2)| is of order O(δ2).

Proof. The proof is similar to the proof of Proposition A.2 in Giesecke et al. [49].
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Method Trials Time-steps Estimator Bias SE RMSE Time(sec)
Method I 1,600 N/A 7.04246 2.48E-4 0.05185 0.05185 2.15

6,400 N/A 7.04324 2.48E-4 0.02662 0.02662 8.47
25,600 N/A 7.04352 2.48E-4 0.01353 0.01353 34.64

102,400 N/A 7.02434 2.48E-4 0.00650 0.00650 137.24
409,600 N/A 7.02312 2.48E-4 0.00331 0.00331 559.12

1,638,400 N/A 7.02069 2.48E-4 0.00163 0.00165 2149.50
6,553,600 N/A 7.02022 2.48E-4 0.00082 0.00086 8571.25

Method II 1,600 N/A 7.05777 -0.00706 0.04929 0.04979 0.29
6,400 N/A 7.00064 -0.00706 0.02800 0.02887 1.15

25,600 N/A 7.01282 -0.00706 0.01306 0.01485 4.59
102,400 N/A 7.01575 -0.00706 0.00660 0.00966 18.34
409,600 N/A 7.01086 -0.00706 0.00329 0.00779 75.61

1,638,400 N/A 7.01629 -0.00706 0.00163 0.00724 296.53
6,553,600 N/A 7.01292 -0.00706 0.00082 0.00710 1191.19

Adjusted Method II 1,600 N/A 7.06473 -8.85E-05 0.04929 0.04929 0.31
6,400 N/A 7.00761 -8.85E-05 0.02800 0.02800 1.17

25,600 N/A 7.01978 -8.85E-05 0.01306 0.01307 4.60
102,400 N/A 7.02272 -8.85E-05 0.00660 0.00660 18.36
409,600 N/A 7.01783 -8.85E-05 0.00329 0.00329 75.62

1,638,400 N/A 7.02326 -8.85E-05 0.00163 0.00164 296.55
6,553,600 N/A 7.01989 -8.85E-05 0.00082 0.00082 1191.20

Discretization 1,600 40 7.05283 -0.00738 0.19070 0.19074 0.46
6,400 80 7.09184 -0.01013 0.09508 0.09510 3.01

25,600 160 6.97298 -0.00242 0.04690 0.04802 21.85
102,400 320 7.00894 -0.00262 0.02369 0.02407 166.25
409,600 640 7.00193 0.00153 0.01186 0.01187 1291.06

1,638,400 1280 7.01313 -0.00081 0.00603 0.00609 9432.17
6,553,600 2560 7.01846 -0.00151 0.00297 0.00333 80421.19

Table 3.1: Simulation result for a European call option (un-discounted price). Parameters: S0 =
100, K = 100, r = 3.19%, κ = 3.99, θ = 0.014, σ = 0.27, ρ = −0.79, µ̄y,o = −0.12, σy,o = 0.15,
c1 = 7, T = 1 year, and V0 ∼ Gamma(2κθ/σ2, σ2/2κ). True option price (un-discounted) is
7.01998. (Method I: projection method A.1 with FFT; Method II: projection method A.1 with
Chebyshev polynomial approximation to payoff. Adjusted Method II: Method II with benchmark
adjustment.)
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Figure 3.1: Convergence of the exact method and Euler method. Parameter values as in Table 3.1.
Exact method performs much better than Euler method. The curve for Method II flattens because
the SE column with more than 102,400 trails is smaller than its bias -0.007. After benchmark
adjustment, the Adjusted Method II converges.

Figure 3.2: Convergence of the projection method and Euler method in terms of Root Mean Square
Error(RMSE). Parameter values as in Table 3.2. The adjusted Method II* flattens because the bias
is bigger than the SE column with over 409,600 trails.
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Method Trails Time-steps Estimation Bias SE RMSE Time(sec)
Method I 100 N/A 5.76222 0 0.09432 0.09432 390.32

400 N/A 5.77321 0 0.05151 0.05151 1274.32
1600 N/A 5.80043 0 0.02820 0.02820 5002.32
6400 N/A 5.76599 0 0.01562 0.01562 18989.40

25,600 N/A 5.77744 0 0.00785 0.00785 73858.13
102,400 N/A 5.78101 0 0.00404 0.00404 242716.94
409,600 N/A 5.77432 0 0.00204 0.00204 944714.40

Adjusted Method II 100 N/A 5.76154 0.00185 0.09512 0.09514 3.10
400 N/A 5.76842 0.00185 0.05257 0.05260 10.19

1,600 N/A 5.79650 0.00185 0.02847 0.02853 40.61
6,400 N/A 5.76132 0.00185 0.01573 0.01583 181.91

25,600 N/A 5.77310 0.00185 0.00793 0.00814 737.01
102,400 N/A 5.77657 0.00185 0.00408 0.00448 2994.34
409,600 N/A 5.77617 0.00185 0.00202 0.00274 12010.97

Method I* 1,600 N/A 5.76188 -0.00068 0.02751 0.02752 1.10
6,400 N/A 5.73967 -0.00068 0.01611 0.01612 3.83

25,600 N/A 5.77708 -0.00068 0.00799 0.00802 14.38
102,400 N/A 5.77445 -0.00068 0.00401 0.00407 57.89
409,600 N/A 5.77365 -0.00068 0.00203 0.00214 241.19

1,638,400 N/A 5.77217 -0.00068 0.00101 0.00122 972.26
6,553,600 N/A 5.77364 -0.00068 0.00051 0.00085 3871.69

Adjusted Method II* 1,600 N/A 5.75818 -0.00422 0.03021 0.03050 0.28
6,400 N/A 5.76784 -0.00422 0.01824 0.01872 0.75

25,600 N/A 5.77913 -0.00422 0.00818 0.00921 2.92
102,400 N/A 5.76183 -0.00422 0.00413 0.00591 11.78
409,600 N/A 5.77155 -0.00422 0.00204 0.00469 47.02

1,638,400 N/A 5.77091 -0.00422 0.00102 0.00434 187.99
6,553,600 N/A 5.77010 -0.00422 0.00051 0.00425 759.97

Discretization 1,600 40 5.61963 0.00826 0.14747 0.14770 1.11
6,400 80 5.77398 0.00801 0.07534 0.07576 7.91

25,600 160 5.73435 0.00808 0.03733 0.03819 61.30
102,400 320 5.78812 0.00800 0.01892 0.02054 479.19
409,600 640 5.78257 0.00712 0.00945 0.01184 3796.70

1,638,400 1280 5.78412 0.00641 0.00473 0.00797 29882.27
6,553,600 2560 5.77874 0.00442 0.00236 0.00501 238420.54

Table 3.2: Simulation result for a European call option (un-discounted price). Jump occurs in
both log-price process and variance process. Non-affine intensities λ1t = 5Vt, λ

2
t = Vt log(|1 − Jy

t +
Jv
t |), λ3t = Vt. Parameters: µ̄y,o = −0.12, µv,o = 0.03, µv,c = 0.05, ρJ = −0.38, µ̄y,c = −0.1,

and others are same as in Table 1. True price is given by 5.77432, estimated by Method I with
409,600 trails instead of 6,553,600 trails due to expensive computational cost. (Method I: recursive
projection method with FFT; Method II: recursive projection method with Chebyshev polynomial
approximation to payoff; Method I*/II*: use Proposition A.2 to approximate MT .)



CHAPTER IV

Pricing Sovereign Credit Default Swaps with a Regime
Switching Model

4.1 Introduction

Sovereign credit risk in the global financial market has gained much attention in

recent years. Among all credit derivative instruments in emerging markets, sovereign

credit default swap (CDS) contracts are considered to be the most liquid and actively

traded. They serve as insurance against credit loss and oblige the seller to compensate

the buyer in the event of loan default. In addition, they have full term-structures

available to infer default risk from market data. Due to these reasons, sovereign CDS

spreads have become popular in investigating emerging credit markets.

There has been extensive research on the sovereign credit market. For example,

Edwards(1984, 1986, 2002), Collin-Dufresne et al. [32], Dooley [34], Berg and Sachs

[24], Boehmer and Megginson [25], Duffie et al. [37], Zhang [98] and many others

have investigated the determinants for sovereign credit spreads. Some recent stud-

ies suggest that sovereign credit spreads are linked to common global and market

factors. Such research includes Kamin and Von Kleist [65], Eichengreen and Mody

[38], Mauro et al. [77], Geyer et al. [48], Gonzalez-Rozada and Yeyati [53], Remolona

et al. [88],Pan and Singleton [85], Ang and Longstaff [8], and Longstaff et al. [74].

In particular, Pan and Singleton [85] used a single-factor model with the default

84
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rate following a log-normal process, estimated loss rate, and linked risk premiums

to economic variables. Longstaff et al. [74] applied the framework in Pan and Sin-

gleton [85] to a larger sample of sovereigns and explored the linked risk premiums

to broader sets of macroeconomic variables. Ang and Longstaff [8] paralleled the

U.S state credit risk with the EMU sovereign credit risk and estimated the systemic

factors as well as sovereign-specific factors of sovereign credit spreads from CDS term

structures. The parameters in their model were estimated by least square method

under risk-neutral measure.

The model we developed in this paper has several distinguishing features. Firstly,

it admits both a systemic factor for the global market and a heterogeneous factor

for each country. Our model can thus capture both systematic and country-specific

risks. Secondly, it takes into account both risk-neutral and physical measures and

provides a way to analyze the market price of risk. Thirdly, the model incorporates

regime-switching of global economic states and captures the time-changing behavior

of sovereign credit risk.

Since the pioneering work of Hamilton [58], regime-switching models have been

widely used in modeling equity returns, interest rates, exchange rates and asset

allocation. For examples, see Hamilton and Susmel [60], Hamilton and Lin [59],Ang

and Chen (2002),Perez-Quiros and Timmermann (2000), Gu (2005), and Guidolin

and Timmermann (2008b) for applications to equity returns; see Gray [54], Bekaert

et al. (1997), and Ang and Bekaert [5], Li and Xu [73] for applications to the short

rate and bond yields; see Ang and Bekaert [6], Ang and Bekaert [7], Guidolin and

Timmermann [55, 56] for applications to asset allocations. As discussed in Hamilton

[58], regime switching models effectively capture the abrupt changes or dramatic

breaks in economic variables and financial data. This is the case for CDS spreads,
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which behaved quite differently before and after the sub-prime crisis. The regime

shifting model can capture this time-changing behavior.

In this study, we analyzed weekly CDS data with full term-structures. The data

consists of one year up to ten year CDS spreads in the United States as well as in

five other sovereign countries. Using maximum likelihood estimation for the regime-

switching model as in Dai et al. [33], we are able to infer the model parameters from

market data.

Several findings are presented in the preliminary results. We have found that the

global-systemic risk factor behaves differently in high-volatility regimes compared to

low-volatility regimes, in which its reverting speed and volatility are much higher

in the high-volatility regimes. Furthermore, the sensitivity to systemic risk and the

time series dynamics of sovereign-specific risk factors is shown to be heterogeneous

across these different sovereign countries.

The remainder of this chapter is organized as follows. In section 4.2, we de-

velop a regime-switching model for sovereign credit default swap, which features a

mean-reverting global factor and mean-reverting country-specific factors. Section 4.3

describes the maximum likelihood method. Section 4.4 examines the data, presents

empirical findings, and draws together our conclusions.

4.2 A Regime Switching Model

In this section, we introduce a regime shifting model for credit default swaps. The

model features a decomposition of a global systemic risk factor and sovereign-specific

risk factors.
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4.2.1 Regime-dependent hazard rate of default

We assume that the regime variable R(t) ∈ {1, · · · , K} follows a continuous-time

Markov Chain with a constant transition matrix

Q = {qij}{i,j=1,·,K},
K∑
k=1

qik = 0, qi,j 6=i ≥ 0,

where K is the total number of regimes. The hazard rate for each of the sovereign

countries is a mixture of regimes and continuous processes given by

hR(t−)(t) = δ
R(t−)
0 + δR(t−)g(t) + z(t), (4.2.1)

with constant parameter δk0 and sensitivity index δk for each regime k.

The regime-dependent continuous process g(t) is global, representing a systemic

risk factor that affect all countries; while the process z(t) is sovereign-specific, rep-

resenting a risk factor that is unique for each country. The factors g(t) and z(t) are

independent, satisfying

dg(t) = κkg [θ
k
g − g(t)]dt+ σkg

√
g(t)dWg(t), R(t−) = k, (4.2.2)

dz(t) = κz[θz − z(t)]dt+ σz
√
z(t)dWz(t), (4.2.3)

where κz, θz, σz, κg’s, θg’s and σg’s are constants, and Wg and Wz are independent

Brownian motions under the risk-neutral measure.

4.2.2 Pricing general default-sensitive securities

Denote G(t) be the diagonal matrix with k-th diagonal element δk0 +δkg(t) and let

H(t) = G(t) + z(t)I. Let P (t, T ) be the price vector associated with a payoff P (T )

at maturity T if no default occurs and a payoff PD(s) if it defaults at s ∈ [t, T ).

The i-th element of the pricing vector P (t, T ) is the price of the securities when the
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current regime is R(t) = i. It can be shown, similar to Proposition 2 in Farnsworth

and Li [42], that

P (t, T ) = E
[∫ T

t

{[Q− r(s)I −H(s)]P (s, T ) +H(s)PD(s)}ds+ P (T )

]
(4.2.4)

Suppose that the default-free interest rate r(t) is independent of regimes and z’s.

Denote by P0(t, T ) the price of a default-free bond with maturity T . If the payoff at

default does not depend on the price just before defaults, for example, if the recovery

rate is based on principal, then the pricing equation can be rewritten as

P (t, T ) = P0(t, T )Et
[
exp

(
−
∫ T

t

z(a)da

)
Φ(t, T )P (T )

]
+

∫ T

0

P0(t, s)Et
[
exp

(
−
∫ s

t

z(a)da

)
Φ(t, s)[G(s) + z(s)I]PD(s)

]
ds,

(4.2.5)

where Φ(t, s) is defined as the solution to the following ordinary differential equation

dΦ(t, s)

dt
= −[Q−G(t)]Φ(t, s), t ≤ s (4.2.6)

with boundary condition Φ(s, s) = I.

This pricing equation is intuitive. The matrix Φ(t, s) represents the probability

that the security has not default yet up to time s, the matrix [G(s) + z(s)I]ds =

H(s)ds represents the default probability over time period (s, s+ds]. Thus summing

(integrating) all of the expected discount cash flow under the risk-neutral probability

yields the price of the security.

Since the continuous processes g(t) and z(t) are assumed to be independent, we

can separate the expectations with respect to g(t) and z(t). To obtain a closed-form

expression of the pricing equation, we define

Λz(τ, z(t), x, y) = Et[(x+ yz(s)) exp(−
∫ s

t

z(a)da)]
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where x and y are constants and τ = s− t. Similarly, we define

Λg(τ, g(t),x,y) = Et[Φ(t, s)(x + yG(s))],

where x and y are K-dimensional constant vectors. In the next few subsections,

we derive an explicit expression for these two quantities and hence for the pricing

equation.

4.2.3 An explicit expression for Λz

Notice that the country-specific factor z(t) follows the CIR process. Similar to

affine term-structure arguments, we get

Λz(τ, z(t), x, y) = Et
[
[x+ yz(s)] exp

(
−
∫ s

t

z(a)da

)]
= [Az(τ, x, y) + Cz(τ, x, y)z(t)]eBz(τ)z(t),

(4.2.7)

where functions Az, Bz, and Cz satisfy a set of ordinary differential equations:

0 = −dAz
dτ

+ κzθz(Cz + AzBz),

0 = −dCz
dτ
− (κz − κzθzBz − σ2

zBz)Cz,

0 = −dBz

dτ
− κzBz +

1

2
σ2
zB

2
z − 1,

with initial conditions Az(0, x, y) = x,Bz(0, x, y) = 0, Cz(0, x, y) = y.

This ODE can be solved in closed-form and the explicit expressions for Az, Bz, Cz

are

B(τ, x, y) = − 2(eγτ − 1)

(γ − κz) + (γ + κz)eγτ

C(τ, x, y) = ye−κzτ
(

2γe(γ+κz)τ/2

(γ − κz) + (γ + κz)eγτ

)2+ 2κzθz
σ2z

A(τ, x, y) =

(
2γe(γ+κz)τ/2

(γ − κz) + (γ + κz)eγτ

) 2κzθz
σ2z

[x− yκzθzB(τ, x, y)]

with γ =
√
κ2
z + 2σ2

z .
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Notice that B(τ, x, y) = B(τ) does not depend on the initial values of x and y,

and C(τ, x, y) = C(τ, y) does not depend on x.

4.2.4 A closed-form approximation to Λg

Under the setting of the model, Λg(τ,x,y) has no closed-form solutions. How-

ever, it has an approximation that is characterized by a set of ordinary differential

equations.

By Ito’s formula and dynamic programming principle, we have

∂Λg(τ, g,x,y)

∂t
+AΛg(τ, g,x,y) + [Q−G(t)]Λg(τ, g,x,y) = 0, (4.2.8)

where A is the infinitesimal generator given by

AΛk
g = κkg(θ

k
g − g)

∂Λk
g

∂g
+

1

2
g(σkg )2

∂2Λk
g

∂g2
, k = 1, 2, · · ·K.

As shown in Appendix 4.5.1, the differential equation (4.2.4) has an approximate

solution of

Λk
g(τ, g,x,y) = [Akg(τ,x,y) + Ck

g (τ,x,y)g)]eB
k
g (τ,x,y)g, (4.2.9)

where τ = s− t, and Akg , B
k
g , C

k
g satisfy the ODE

0 = −
dAkg
dτ

+ κkgθ
k
g (C

k
g + AkgB

k
g ) +

K∑
j=1

qkjA
j
g − δk0Akg

0 = −
dCk

g

dτ
−
(
κkg − κkgθkgBk

g − (σkg )2Bk
g + δk0

)
Ck
g

− Akg

(
dBk

g

dτ
+ κkgB

k
g −

1

2
(σkg )2(Bk

g )2 + δk

)
+

K∑
j=1

qkj[C
j
g + Ajg(B

j
g −Bk

g )]

0 = −Ck
g

(
dBk

g

dτ
+ κkgB

k
g −

1

2
(σkg )2(Bk

g )2 + δk

)
+

K∑
j=1

qkjC
j
g(B

j
g −Bk

g ),

(4.2.10)

with initial conditions

Akg(0,x,y) = xk + ykδ
k
0 , C

k
g (0,x,y) = ykδ

k, Bk
g (0,x,y) = 0. (4.2.11)

where xk, yk are the k-th component of the vector x,y.
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4.2.5 Pricing sovereign credit default swap spreads

A sovereign credit default swap (CDS) buyer pays a constant premium C for an

insurance from the seller on the reference defaultable sovereign country. When the

sovereign government bond defaults, the buyer gets a one-time cash settlements in

the amount of L and stops paying any remaining premiums, where L is the loss rate

of the defaultable bond.

To compute the value of the premium (fixed) leg of a CDS, we substitute into

equation (4.2.5) the periodical payments of P (Tm) = C∆T , where Tm, m = 1, · · · ,M

are premium payment times to date for the on-the-run CDS, ∆T = Tm − Tm−1 is

the time interval between premium payments, and C is the nominal premium. The

value of the premium leg becomes

Pfx(t, T ) =
M∑
m=1

C∆T · P0(t, t+ Tm)Et
[
exp

(
−
∫ t+Tm

t

z(a)da

)
Φ(t, t+ Tm)P (Tm)

]
1

= C∆T
M∑
m=1

P0(t, t+ Tm)Λz(Tm, z(t), 1, 0)Λg(Tm, g(t),1, 0),

For the default (floating) leg, substituting P (T ) = 0 and PD(s) = L into equation

(4.2.5) yields

Pfl(t, T ) =

∫ t+T

t

P0(t, s)Et
[
exp

(
−
∫ s

t

z(a)da

)
Φ(t, s)[G(s) + z(s)I]L

]
ds

=

∫ T

0

P0(t, t+ u)[Λz(u, z(t), 1, 0)Λg(u, g(t), 0,L) + Λz(u, z(t), 0, 1)Λg(u, g(t),L, 0)]du.

Equaling the premium leg and default leg, we obtain the CDS pricing formula,

given the current regime R(t) = k, as

C(t, gk(t), z(t)) =
1TkPfl(t, T )

1Tk
∑M

m=1 P0(t, t+ Tm)Et
[
exp

(
−
∫ T
t
z(a)da

)
Φ(t, Tm)P (Tm)

]
∆T

=

∫ τ
0
P0(t, t+ u)[Λz(u, z(t), 1, 0)Λk

g(u, g(t), 0, L) + Λz(u, z(t), 0, 1)Λk
g(u, g(t), L, 0)]du∑M

m=1 P0(t, t+ Tm)Λz(Tm, z(t), 1, 0)Λk
g(Tm, g(t),1, 0)∆T

(4.2.12)
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4.2.6 Market price of risk and physical transition probability

In the pricing equations above, we use the risk-neutral measure and take the ex-

pectations with respect to the distribution associated with a hypothetical investor

who is neutral towards the risk of unpredictable variation in the risk factors. To

estimate the parameters of the risk factors from market data, however, we will need

the physical measure and the probability distribution implied by the historical data.

We use the superscript P to denote the parameters of the risk factors under the phys-

ical measure, and use the superscript P∗ or no superscript to denote the parameters

under the risk-neutral measure.

Under the physical measure P, the risk factors g(t), z(t) are assumed to also follow

the mean-reverting process,

dz(t) = κPz [θ
P
z − z(t)]dt+ σzdW

P
z (t)

dg(t) = κk,Pg [θk,Pg − g(t)]dt+ σkgdW
P
g (t), R(t−) = k.

The dynamics of the risk factors under these two probability measures P and P∗

are connected by the “market price of risk”

η(t) =

σkg√g(t) 0

0 σz
√
z(t)


−1

λkg,0
λz,0

+

λkg,1 0

0 λz,1


g(t)

z(t)


 , (4.2.13)

at regime k. The change of probability distribution from risk-neutral measure P∗ to

historical measure P implies that the parameters satisfy

κPz = κz − λz,1,

θPzκ
P
z = κzθz + λz,0,

κk,Pg = κkg − λkg,1,

θk,Pg κk,Pg = κkgθ
k
g + λkg,0.
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This market price of risk allows the reverting speed and average level of the risk

factors to differ across the physical measure P and the risk-neutral measure P∗, while

assuring the factors g(t), z(t) follow square-root mean-reverting processes under both

measures.

We also assume the price of risk associated with the regime-shifts be

Γ =

Γ11 0

0 Γ22

 .

Thus, the transition matrix under the physical measure P is

QP = ΓQ =

 q11Γ11 −q11Γ11

−q22Γ22 q22Γ22


4.3 Maximum Likelihood Estimation

Different methods can be used to estimate model parameters in a regime-switching

model. Gibbs sampling was developed for regime switching models by Albert and

Chib [2] and Kim and Nelson [66]. Alternatively, the maximum likelihood method

has gained much popularity since Hamilton [57], or in more details, Dai et al. [33].

The maximum likelihood algorithm contains a Bayesian updating procedure that

computes the probability of being in a regime given all available information up to

that time.

Given our model structure, we now proceed with the maximum likelihood esti-

mation for the regime-switching models. Similar to Dai et al. [33], we assume that

the five-year CDS spreads are priced exactly, so that the default intensity can be

inferred by inverting the pricing function. The CDS spreads with each of the other

maturities are assumed to be priced with normally distributed errors with mean zero

and constant variance.
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We assume two regimes R = {1, 2}. Let ĉt be the CDS spreads priced exactly by

the model, then in regime st = j,

ĉt = C(t, gjt , zt), (4.3.1)

and we can obtain gjt and zt
1 by solving the above equations.

The remaining spreads used in estimation are denoted by c̃t, with price error ujt

assumed to be i.i.d Gaussian with mean zero and variance Ωj in regime st = j. The

information set Jt = {ĉτ , c̃τ , τ ≤ t} contains the observed price history up to time t,

and Sjt = P(st = j|Jt) is the probability of regime j given the current information.

Given the assumptions above, we can construct the likelihood function under

physical measure P for the observed CDS spreads

f(ĉt+1, c̃t+1|Jt) =
∑
j,k

f(ĉt+1, c̃t+1|Jt, st = j, st+1 = k)f(st = j, st+1 = k|Jt)

=
∑
j,k

f(ĉt+1, c̃t+1|Jt, st = j, st+1 = k)f(st+1 = k|st = j, Jt)f(st = j|Jt)

=
∑
j,k

f(c̃t+1|ĉt+1, Jt, st = j, st+1 = k)f(ĉt+1|Jt, st = j, st+1 = k)πP
jkS

j
t

(4.3.2)

The Log-likelihood is then

logL =
1

M − 1

M−1∑
t=0

log f(ĉt+1, c̃t+1|Jt).

To complete the construction in (4.3.2), we need two terms: the first term, f(c̃t+1|ĉt+1,

Jt, st = j, st+1 = k), calculates the likelihood of the spreads priced with errors, given

the perfectly priced spreads ; the second term, f(ĉt+1|Jt, st = j, st+1 = k), updates

the likelihood of next observation of the perfectly priced spreads given current infor-

mation.
1For convenience, we denote gt, t = 1, 2, · · · to be the discrete sample of g(t∆t) and similarly for ct, zt, st. Here

∆t is the time increment of observation, for example, ∆t = 5/255 for weekly observation of market data
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We first derive the formula for the first term. When st+1 = k,

c̃t+1 = C(t+ ∆t, gkt+1, zt+1) + ukt+1, ukt+1 ∼ N(0,Ωk)

where gkt+1, z
k
t+1 are functions of ĉt+1, which are numerically solved using the pricing

equation ĉt+1 = C(t+ ∆t, gkt+1
, zt+1). Thus the conditional density is

f(c̃t+1|ĉt+1, Jt, st = j, st+1 = k) = f(c̃t+1|ĉt+1, st = j, st+1 = k)

=
exp

{
−1

2

[
c̃t+1 − C(t+ ∆t, gkt+1, zt+1)

]′ |ΩkΩk′|−1
[
c̃t+1 − C(t+ ∆t, gkt+1, zt+1)

]}√
2π|ΩkΩk′|

(4.3.3)

We then derive the second term. Under the physical measure P, denote fz(x|zt)

be the conditional density function of zt+1 given zt. Similarly, denote by fg(x|gjt ) the

conditional density function of gt+1 = x given gjt in regime j. The second term is

f(ĉt+1|Jt, st = j, st+1 = k) = f(ĉt+1|ĉt, st = j, st+1 = k)

= f(ĉt+1|gjt , zt; st = j, st+1 = k)

= f(C(t+ ∆t, gkt+1, zt+1)|gjt , zt; st = j, st+1 = k)

= fg(g
k
t+1|g

j
t )fz(zt+1|zt)[det(∂C(t+ ∆t, g, z))]−1|(g,z)=(gkt+1,zt+1).

(4.3.4)

where ∂C(t+ ∆t, g, z) is the Jacobian matrix of the pricing function C with respect

to g and z. The last equality in the above formula is obtained by transformation

formula of random variable.

Since z(t) and g(t) are independent square-root mean-reverting processes, the

conditional distributions are known. Specifically, the value zt+1, conditioned on

zt, follows a scaled non-central chi-squared distribution. Denote χ2
pdf(x, s, d) as the

density function of the non-central chi-squared distribution with scale parameter s

and freedom d, we have the conditional density function of zt+1 given zt as

fz(x|zt) = cz · χ2
pdf(xcz, e

−κz∆tztcz, dz)
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where the scale cz = 4κPz/[(σz)
2(1−e−κPz∆t)] and freedom parameter dz = 4κPzθ

P
z/(σz)

2.

Similarly, conditional on gjt and regimes st = j, st+1 = k, we have

fg(x|gjt ) = c · χ2
pdf(xc, e

−κk,Pg ∆tgjt c, d),

with c = 4κk,Pg /[(σkg )2(1− e−κ
k,P
g ∆t)] and d = 4κk,Pg θk,Pg /(σkg )2.

The calculation of the non-central chi-squared density involves the evaluation of

Bessel functions of the first kind, which can be numerically burdensome. Instead, we

use Yacince’s method (see Table 2 in Aı̈t-Sahalia [1]) to get a closed-from approx-

imation to the CIR density. This method was proved to have high-order accuracy

and fast implementation.

The regime probability Skt+1 is updated recursively using Bayes’ rule

Skt+1 = f(st+1 = k|Jt+1)

= f(st+1 = k|ĉt+1, c̃t+1, Jt)

=

∑
j f(ĉt+1, c̃t+1, st+1 = k|Jt, st = j)Sjt

f(ĉt+1, c̃t+1|Jt)

=

∑
j f(c̃t+1|ĉt+1, st+1 = k, st = j, Jt)f(ĉt+1|st+1 = k, st = j, Jt)f(st+1 = k|st = j, Jt)S

j
t

f(ĉt+1, c̃t+1|Jt)

=

∑
j f(c̃t+1|ĉt+1, st+1 = k, st = j)f(ĉt+1|ĉt, st = j, st+1 = k)πP

jkS
j
t

f(ĉt+1, c̃t+1|Jt)

(4.3.5)

where the terms in the summation are given by (4.3.3) and (4.3.4), and the denomi-

nator is given by (4.3.2).

Remark 4.3.1. Note the parameters used in CDS pricing equations are those under

the risk-neutral measure P∗, and those used in likelihood function based on observa-

tion are under the physical measure P.



97

Using matrix notation, we denote

St =

(
S1
t S2

t

)
, (4.3.6)

f ct,t+1 =

f(ĉt+1|ĉt, st = 1, st+1 = 1) f(ĉt+1|ĉt, st = 1, st+1 = 2)

f(ĉt+1|ĉt, st = 2, st+1 = 1) f(ĉt+1|ĉt, st = 2, st+1 = 2)

 , (4.3.7)

fut,t+1 =

f(c̃t+1|ĉt+1, st = 1, st+1 = 1) f(c̃t+1|ĉt+1, st = 1, st+1 = 2)

f(c̃t+1|ĉt+1, st = 2, st+1 = 1) f(c̃t+1|ĉt+1, st = 2, st+1 = 2)

 ,(4.3.8)

π̂ =

π11 π12

π21 π22

 =

1− π1 π1

π2 1− π2,

 (4.3.9)

The log-likelihood is given by

logL =
1

M − 1

M−1∑
t=0

log f(ĉt+1, c̃t+1|Jt), (4.3.10)

f(ĉt+1, c̃t+1|Jt) = St × (f ct,t+1 � fut,t+1 � π̂)× 1, (4.3.11)

St+1 =
St × (f ct,t+1 � fut,t+1 � π̂)

f(ĉt+1, c̃t+1|Jt)
(4.3.12)

where � denotes element-by-element multiplication of matrices, × denotes matrix

multiplication, and 1 is a unit vector with one row and two columns.

To interpret the regimes from the probabilities Sit , we use the “smoothed regime

probabilities” pjt = f(st = j|Jt) to classify the observations. If pjt > 0.5, we classify

the observation at date t to regime j. The probability pjt can be computed by

pjt =
Ijt S

j
t∑

k I
k
t S

k
t

where Ijt is calculated backwards in time, with IjT = 1 and

Ijt = f(c̃l, c̄l : t+ 1 < l < T |st = j, Jt)

=
∑
k

πP
jkf(c̃l, c̄l|Jt, st = j, st+1 = k)Ikt+1
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In matrix notation,

pt =

p1
t

p2
t

 =
S ′t � It
StIt

, 1 ≤ t ≤ T

IT =

1

1

 ,

It =

I1
t

I2
t

 = (πP � f ct,t+1 � fut,t+1)× It+1, 1 ≤ t ≤ T − 1

4.3.1 Estimation of the global risk factor and country-specific factors

Note that in the pricing model, gt is a global factor applying to all countries. If

we perform the likelihood estimation country by country, we will most likely end up

with different gt’s. If we perform the estimation with data from all of the sovereign

counties together to get global factor gt and country-specific factor zt, the scale of

computing is too large to be practical. Therefore, we perform the computation in two

steps. The first step is to extract and estimate the global factor gt and its parameters

from credit default swaps of the United States by assuming that zU.S.t ≡ 0.

The likelihood function is the same as described in equation (4.3.2), except for

some appropriate modifications in (4.3.3) and in (4.3.4). In (4.3.3), zt+1 takes the

value of 0. In (4.3.4), function fz vanished, and the Jacobian formula is written with

respect to only g. That is, equation (4.3.4) in the likelihood estimation becomes

f(ĉt+1|Jt, st = j, st+1 = k) = fg(g
k
t+1|g

j
t ) · [det(∂C(t+ ∆t, g, 0))]−1|g=gkt+1

. (4.3.13)

The second step is to perform an estimation of the zt’s and their parameters for

each of the sovereign country individually.

The five-year spread is assumed to be priced without error, and spreads with

other maturities are assumed to be priced with Gaussian errors with mean zero. The
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five-year spreads are chosen as benchmark since they are more liquid and actively

traded in larger volume than those spreads with other maturities in general. Note

that in the pricing equation (4.3.1) we take gt as given, and the information set

becomes Jt = {ĉτ , c̃τ , gτ , Qj
τ , τ ≤ t, j = 1, 2}. The likelihood functions (4.3.2) and

(4.3.3) remain unchanged and the Jacobian formula (4.3.4) involves only z. That is,

equation (4.3.4) becomes

f(ĉt+1|Jt, st = j, st+1 = k) = fz(zt+1|zt) · [det(∂C(t+ ∆t, g, z))]−1|z=zkt+1
. (4.3.14)

4.4 Empirical Results

In this section we begin by briefly describing the data used in the empirical anal-

ysis. We then describe the procedure of maximum likelihood estimation and discuss

the empirical results obtained from the estimation.

4.4.1 Data

We use weekly CDS spreads with quarterly premium payments quoted in basis

points,2 where the CDS spreads in the United States are available from December

11, 2007 to February 15, 2011. The other sovereign countries include Brazil, Korea,

Mexico, Russia, and South Africa. For each country, time series are available in full-

time structure for seven fixed maturities: one, two, three, four, five, seven and ten

years. The zero-coupon bond prices are extracted from Libor rates and swap rates

by bootstrapping, the details of which are listed in Appendix 4.5.2. By matching

the common time period of both CDS spreads and Libor rates data, we obtain 159

available observations.3

Table 4.1 provides summary statistics for the CDS spreads in the U.S. and the five

2 One basis point is equivalent to 0.01%.
3There are 749 observations available for daily spreads. However we found that using weekly spreads seems to

produce more stable results and the estimation is faster.
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foreign countries. The top section shows the average levels of CDS spreads for each

maturity in each country. The average values of the premiums vary widely across

different countries, from a low of 34.90 basis points for 5-year spreads of the U.S

to a high of 250.06 basis points for those of Russian. This variety of CDS average

values indicates heterogeneity across different countries. The middle section gives

the standard deviations, which are of similar magnitude to the previous mentioned

average levels, indicating a significant time-series variation in the spreads. In addi-

tion, the standard deviations do not necessarily decrease as the terms increase. This

might suggest persistency of credit risk in the risk-neutral measure, since otherwise

less variation over the longer term would have been expected if the risk factor fol-

lowed a strong mean-reversion. The bottom section presents the auto-correlations

in the time-series, which are close to one, ranging from 0.8757 to 0.9723. This may

suggest that the CDS spreads, and hence the credit risk factors, are persistent under

statistical measure P.

Figure 4.1 plots the time series of CDS spreads at selected maturities of one year

(dashed blue lines), five years (solid green lines), and ten years (dash-dotted red

lines). Each panel represents one country. The six chosen countries all experienced

dramatic changes in CDS spreads during the sample period, especially during the

sub-prime financial crisis. The three curves in each panel also show the variation of

CDS term structure. The spreads with a longer term are in general wider than those

with a shorter term, especially during normal time periods. The term structure can,

however, revert during a crisis period. For example, from Russian CDS time series

in the last panel of Figure 4.1, we see that the one-year spreads are much higher

than the five-year and ten-year spreads during the first two quarters of 2009. This

inverted term-structure curve, with wider spreads for shorter maturity, suggests that
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Russia underwent a period of distressed credit.

4.4.2 Estimation

Several normalizations and restrictions are applied on the parameters as follows.

• To distinguish the two regimes, we let σ1
g < σ2

g and hence refer to regime 1 as

“low-volatility regime” and regime 2 as “high-volatility regime.” This restriction

is intuitive, since we would expect a more volatile risk factor in the regime

associate with more uncertainty. In addition, the estimation of volatility is

generally more accurate than the estimation of means, as the mean can only

be pinned down by long time series (see Merton [78]). Ang and Timmermann

[9] tested estimations of a regime switching model on equity excess returns.

They cannot reject the hypothesis that the means in two regimes are equal,

but overwhelmingly reject the hypothesis that volatilities in two regimes are the

same.

• To ensure that the mean-reverting risk factor g(t) remains positive, we require

2κigθ
i
g > σig for each regime i ∈ {1, 2}.

• To facilitate numerical identification of other free parameters, we assume that

the sensitivity index does not depend on regimes, that is, δ1
0 = δ2

0, δ
1 = δ2 = δ.

In addition, assume the loss rate L = 40%.

With these normalization and constraints, the parameters to be estimated include

κ1
g, κ

2
g, θ

1
g , θ

2
g , σ

1
g , σ

2
g , δ0, δ, q1, q2, λ

1
g,0, λ

2
g,0, λ

1
g,1, λ

2
g,1,Γ11,Γ22,Ω1,2,3,4,7,10y.

Since the estimation involves a high dimensional parameter space as above, the

choice of initial parameters is important. To get a fair initial guess, we follow the

steps below.
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• We first obtain an initial guess of κig, θ
i
g, σ

i
g using the five-year U.S CDS spreads.

To do this, we split the data into two sets: one time-series before October 3,

2008 and one after. For each of the two time-series, we assume a single regime

and zero market price of risks, perform the maximum likelihood estimation to

find the mean-reversion parameters, then assign the result to low and high -

volatility regimes respectively. The intuition behind this is that we expect that

in the normal period before the sub-prime crisis the market is mainly in a low-

volatility regime, while during and after the crisis, it switched to a high-volatility

regime.

• Next we utilize the full-term structures by using the one-year up to ten-year U.S

CDS spreads to estimate the regime switching parameters and the variances in

pricing error. The market price of risks are still not considered in this step and

will be estimated in the next step. Note that the mean-reversion parameters

are also tuned to optimize the overall likelihood in this step.

• We then take the parameters found in the above steps as initial parameters and

perform the full maximum likelihood estimation.

Once the dynamic of the global factor gt and its parameters are obtained from the

estimation in the first step, a second maximum likelihood estimation is performed

on each sovereign country to obtain the country-specific factor zt. For each of the

seven countries, the parameters needed are

κz, θz, σz, δ1, λz,0, λz,1,Ω1y,2y,3y,4y,7y,10y.

The maximum likelihood algorithms are implemented in MATLAB 2010a. To

find a global maximizer of the likelihood, we use a direct pattern search method
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until the result is close to a global optimum, then switch to a gradient-based or a

derivative-free searching method to tune the results near the global optimum.

4.4.3 Empirical results

The time series of the estimated global factor gt are shown in Figure 4.2. The

systemic default risk factor increased significantly during the last quarter of 2008

after the bankruptcy of Lehman Brothers on September 15. It reached its peak of

277.7 basis points at the end of February 2009. It then decreased over the last three

quarters of 2009. It rose again in November 2009 and reached a second peak near

the end of February 2010, which may correlate with the large losses of Fannie Mae

and public concerns about large deficits. After March 2010, it began to stabilize.

Figure 4.2 also presents the estimated probability of being in the high-volatility

regime. According to National Bureau of Economic Research(NBER) business-cycle

dating, the nearest period of recession starts from December 2007 to June 2009. Our

model implies that the high-volatility regime starts from December 2007 to October

2008, shorter than the NBER defined recession period.

The estimated parameters for the global risk factor are presented in Table 4.2.

We observed different behavior from the risk factor in the low-volatility v.s high-

volatility regime with asymmetric regime-shift rates. The volatility of the global risk

factor in the high-volatility regime is about twice as big as that in the low-volatility

regime. The reverting speed κ, under both the physical P measure and the risk-

neutral measure P ∗, is much bigger in the high-volatility regime, suggesting that the

risk factor is more persistent in the high-volatility regime than in the low-volatility

regime.

The estimates of variance Ωn measure the variance of the pricing errors for the

CDS contracts with maturities of 1,2,3,4,7,10 years. They are typically small, on
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the order of several basis points. For example, Ω2y = 18.257E-08 implies that the

standard deviations of the pricing error for one-year CDS spreads is 4.273 basis

points . In addition, the standard deviation of pricing error tends to be smaller for

intermediate maturities than short or long maturities. In other words, the model

tends to fit the four-year spreads best with standard deviation of pricing error 1.212

basis points, and tends to fit the three-year and seven-year spreads (with standard

deviation of pricing error of 2.913 and 2.618 respectively) better than one-year and

ten-year spreads (with standard deviation of pricing error of 7.233 and 5.382 respec-

tively). This make sense since we assumed the five-year spreads are priced without

error and the rest of the spreads are priced with normally distributed error with

mean zero and variance Ωn.

Table 4.3 shows the estimated parameters for country-specific risk factor. Four

out of five countries have a loading of systemic risk δ1 greater than one. Brazil has

biggest value of systemic index of 1.72, suggesting that it is most sensitive to the

systemic risk. Russia, Brazil, South Africa and Mexico all have systemic index larger

than one, indicating that their probability of default given a systemic shock is bigger

than that of the United States. On the other hand, South Korea has δ1 less than 1,

implying that its default risk is more sovereign specific than systemic compared to

other countries.

Brazil and Mexico exhibits larger volatility and faster reverting speed for country-

specific risk factors than other countries. In terms of pricing error, Korea seems to

show the best fit with relatively small Ωn and large likelihood.

The time series of country-specific factors are presented in Figure 4.3. The

sovereign-specific factors all experienced large increases in credit risk beginning with

the sub-prime crisis in 2008, and reached their peak around September 2008 before
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the systemic credit risk gt reached its peak in 2009. The country-specific factor for

Brazil showed a single high-rise and high-drop spike; Russia stayed at a high spread

for a much longer time; while the other countries exhibit a v-shaped double dip

during 2008 and 2009. The average magnitudes of sovereign-specific risks also vary

across different countries.

4.4.4 Conclusion

This study investigated the properties of sovereign credit risk using credit default

swap spreads for the United States and five major sovereign countries. Using a two-

factor regime-switching credit model, we were able to decompose sovereign credit risk

into a systemic risk factor and a country-specific risk factors. Maximum likelihood

estimate was used to calibrate the model parameters to market data.

We discovered a high level of commonality in sovereign credit spreads and ex-

tracted the dynamics of the regime-switching systemic risk factor that contributes

to this commonality. We also observed a large variation across different countries in

terms of their exposure to systemic shocks and the dynamic of their country-specific

risk factors.

4.5 Appendix

4.5.1 Derivation of the closed-form approximation for Λg

Plugging the expression (4.2.9) into the partial differential equation (4.2.8) and

noticing the equalities

∂Λk
g

∂t
= −(

dAkg
dτ

+
dCk

g

dτ
)eB

k
g g − (Akg + Ck

g g)
dBk

g

dτ
eB

k
g g,

∂Λk
g

∂g
= Ck

g e
Bkg g + (Akg + Ck

g g)Bk
g e

Bkg g,

∂2Λk
g

∂g2
= 2Ck

gB
k
g e

Bkg g + (Akg + Ck
g g)(Bk

g )2eB
k
g g,
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and the first-order approximation

{QΛg}k =
K∑
j=1

qkj(A
j
g + Cj

g)e
Bjgg

= eB
k
g g

K∑
j=1

qkj(A
j
g + Cj

g)e
(Bjg−Bkg )g

≈ eB
k
g g

K∑
j=1

qkj(A
j
g + Cj

g)[1 + (Bj
g −Bk

g )g],

we can rewrite equation (4.2.8) explicitly as

0 =− (
dAkg
dτ

+
dCk

g

dτ
)− (Akg + Ck

g g)
dBk

g

dτ

+ κkg(θ
k
g − g)

[
Ck
g + [Akg + Ck

g g]Bk
g

]
+

1

2
g(σkg )2

[
2Ck

gB
k
g + [Akg + Ck

g g](Bk
g )2
]

+
K∑
j=1

qkj(A
j
g + Cj

g)[1 + (Bj
g −Bk

g )g]− (δk0 + δk1g)(Akg + Ck
g g).

This equation holds for all g. By matching the terms, we obtain the ODE system

(4.2.10) in Section 4.2.4.

4.5.2 Extracting the default-free zero-coupon bond prices from LIBOR and swap data

The default-free zero-coupon bond prices (discount factors) P0(t, T ) for the CDS

pricing equation in Section 4.2.5 are extracted from the U.S. LIBOR rates and swap

rates 4 by bootstrapping with a standard liner interpolation algorithm.5 The data

were obtained from Bloomberg.

The available LIBOR rates L(t, T ) include those for overnight, one week, two

week, and for one month up to twelve month. The discount factors based on these

rates are

P (t, T ) =
1

1 + TL(t, T )
. (4.5.1)

4Swap rates are for a fixed rate payer in return for receiving three month LIBOR
5Alternative interpolation schemes are available, but the estimation results are not sensitive to the choice of the

interpolation algorithm.
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The swap rates are available for maturity of one year, two years, three years, etc ,

up to ten years. The semi-annual swap rate s(T ) with maturity T and the discount

factor P (t, k) satisfies

1 =
s(T )

2

2T∑
k=1

P (t,
k

2
) + P (t, T ).

With linear interpolation on the bond price such that P (t, T )+P (t, T−1) = 2P (t, T−

1
2
), we have

P (t, T ) =

1− s(T )

2

2(T−1)∑
k=1

P (t,
k

2
)− s(T )

4
P (0, T − 1)

1 + 3
4
s(T )

. (4.5.2)

Applying equation (4.5.1), equation (4.5.2) and linear interpolation, we can boot-

strap the zero-curve P (t, T ) for every T on a given day.

4.5.3 The transition rate matrix and transition probability matrix

The stationary distribution for the continuous-time Markov Chain with rate ma-

trix Q =

−q1 q1

q2 −q2

 is given by

(
q2

q1 + q2

,
q1

q1 + q2

)
.

Noting Q can be diagonalized as

Q = A

−(q1 + q2) 0

0 0

A−1, (4.5.3)

where matrix A =

 q1 1

−q2 1

 and its inverse A−1 =
1

q1 + q2

 1 −1

q2 q1

, we can

obtain the one-step transition matrix as

(π)ij = exp(Q∆t) = A

e−(q1+q2)∆t 0

0 1

A−1

=
1

q1 + q2

 q1e
−(q1+q2)∆t + q2 −q1e

−(q1+q2)∆t + q1

−q2e
−(q1+q2)∆t + q2 q2e

−(q1+q2)∆t + q1


(4.5.4)
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Term 1 yr 2 yr 3 yr 4 yr 5 yr 7 yr 10 yr
Mean U.S. 21.5782 28.0311 30.6606 33.2165 34.9040 37.3985 39.4581

Brazil 91.1677 116.4472 134.1498 152.4452 165.8267 180.4143 194.6439
Russia 210.3797 231.1624 241.8788 247.1236 250.9829 255.0645 259.7290
Mexico 101.0520 122.7155 137.6096 155.1387 167.2919 180.1023 189.3149
South Africa 119.3359 145.4896 167.0282 183.9909 195.9781 206.3323 213.5603
South Korea 115.5827 125.2705 133.4531 141.4076 148.2501 154.4032 158.6413

Standard U.S. 11.9447 16.1281 17.5830 18.8836 19.5185 19.8381 20.2655
Deviation Brazil 73.1577 81.6996 84.5838 86.8887 88.4120 86.6050 84.0495

Russia 296.7372 262.2709 238.1338 217.2570 204.3764 190.2685 183.0235
Mexico 85.5295 91.8631 93.2407 94.6789 95.2834 94.3345 93.6841
South Africa 116.2586 112.9740 109.1549 105.7984 103.4776 95.9319 90.4837
South Korea 109.0316 110.8867 109.5936 105.9472 102.9308 98.7574 96.0723

Auto- U.S. 0.9709 0.9715 0.9717 0.9715 0.9702 0.9698 0.9671
Correlation Brazil 0.9056 0.9088 0.8993 0.8984 0.8911 0.8885 0.8831

Russia 0.9578 0.9460 0.9363 0.9238 0.9126 0.8968 0.8867
Mexico 0.9494 0.9358 0.9201 0.9137 0.9039 0.8979 0.8929
South Africa 0.9366 0.9267 0.9127 0.9032 0.8937 0.8832 0.8757
South Korea 0.9121 0.9106 0.9052 0.8988 0.8918 0.8892 0.8870

Table 4.1: Summary statistics of CDS spreads (in basis points).

low-vol regime high-vol regime
under P∗ κjg 0.097735 1.073436

θjg 0.020842 0.000450
σj
g 0.066532 0.184256
qij 0.000092 0.274053

under P κjg 0.097735 1.073419
θjg 0.022822 0.016368
σj
g 0.066532 0.184256
qij 0.000058 0.175485

λjg,0 0.000193 0.017086

λjg,1 5.1829E-06 0.000018(
Γ11 0
0 Γ22

) (
0.631982 0

0 0.640347

)
Ω(1y) 50.3217E-08
Ω(2y) 18.2569E-08
Ω(3y) 8.48761E-08
Ω(4y) 1.4678E-08
Ω(7y) 6.8558E-08
Ω(10y) 28.9663E-08

Table 4.2: MLE estimates for global factor parameters using weekly U.S. CDS data. Maximized
log-likelihood is 45.0523.
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Figure 4.1: The time series of CDS spreads at selected maturities of one year (dashed blue lines),
five years (solid red lines), and 10 years (dash-dotted black lines). Each panel is for one country.

Brazil Russia South Africa South Korea Mexico
κPz 1.708736 0.189423 0.697728 0.034730 1.623650
θPz 0.127030 0.100966 0.020892 0.399726 0.143155
σP
z 0.641032 0.195578 0.170743 0.166627 0.619225
δ1 1.716005 1.188747 1.184653 0.254693 1.104975
λ0,z 0.209272 0.008130 0.000207 0.008867 0.203402
λ1,z 0.005387 0.000014 0.000004 0.000002 0.000001
Ω1y 0.00102960 0.00008359 0.00026426 0.00000417 0.00070749
Ω2y 0.00029122 0.00002203 0.00012914 0.00000194 0.00021050
Ω3y 0.00007872 0.00000726 0.00004098 0.00000118 0.00005909
Ω4y 0.00001286 0.00000106 0.00000758 0.00000025 0.00000917
Ω7y 0.00001342 0.00000179 0.00000791 0.00000042 0.00001017
Ω10y 0.00004170 0.00000842 0.00002301 0.00000186 0.00002947

log-likelihood 24.8147 30.4090 25.9331 37.2523 25.4528

Table 4.3: Estimated parameters of the sovereign-specific risk factors zt for the five countries. The
parameters are calibrated by maximum likelihood estimation to weekly CDS spreads.
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Figure 4.2: Estimated time series of global risk factor gt (red solid curve above) and the probability
of being in the high-volatility regime (blue dotted line below).
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Figure 4.3: The time series of sovereign-specific factor zt. Each panel represents one country.
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