
Leveraging the Cloud for Software Security Services

by

Jonathan Clarke Oberheide

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2012

Doctoral Committee:
Professor Farnam Jahanian, Chair
Professor Peter M. Chen
Associate Professor Zhuoqing Mao
Assistant Professor Eytan Adar
Assistant Research Scientist Michael Donald Bailey
Craig Partridge, BBN Technologies

c© Jonathan Clarke Oberheide 2012
All Rights Reserved

To my mother Julie, father Clarke, sister Kristin, and girlfriend Heidi.

ii

ACKNOWLEDGEMENTS

First and foremost, I’d like to thank my advisor Farnam Jahanian. Throughout my

undergrad, masters, and doctoral studies at the University of Michigan, Farnam has been a

close advisor to me on personal, academic, and professional levels. I cannot thank Farnam

enough for the opportunities enabled by his guidance over the past decade of my life.

I want to thank the rest of my doctoral committee, including Michael Bailey, Morley

Mao, Peter Chen, Craig Partridge, and Eytan Adar, all of whom have provided guidance,

feedback, and encouragement throughout the doctoral process. I’d like to thank Bailey,

especially, who has acted as a great mentor and friend in the doctoral process and provided

invaluable leadership and direction in our research group. Special thanks to Morley as well

for allowing me to work with her research group as an undergrad, providing me an early

glimpse into the academic process.

I also want to thank the many people and partners outside the University that made this

dissertation possible. This includes our colleagues at Arbor Networks, who have collab-

orated with our research group on projects ranging from malware analysis to large-scale

network traffic analysis. Thanks to Jose Nazario, Dug Song, Craig Labovitz, Rob Malan,

and the rest of the Arbor crew. I’d like to thank the folks at Merit Network for their col-

laboration and material support throughout the years. Manish Karir, Bert Rossi, and Larry

Blunk were instrumental in our cooperation with Merit and its member institutions. Spe-

cial thanks to Manish, who introduced me to the wonderful world of academia and guided

me through my first steps in the research process as an undergrad. Thanks also to the IT

and security staff at the University, spanning groups such as ITSS, CITI, CAEN, and DCO.

Folks including Jim Rees, Paul Howell, Matt Bing, Don Winsor, and Laura Fink have been

a great help in providing infrastructure services, access to data, and operational advice.

iii

I’d like to thank all of the software faculty at the University that I would have loved to

have on my doctoral committee if there were no limit on size, including Peter Honeyman,

Jason Flinn, Alex Halderman, Brian Noble, and Atul Prakash. And, of course, I’d like to

thank all the fellow doctoral students at the University that have provided friendship and

entertainment in our CSE office, including Evan Cooke, Sushant Sinha, Yunjing Xu, Timur

Alperovich, Mona Attariyan, Kaushik Veeraraghavan, Jodie Su, Dan Peek, Eric Vander

Weele, Kelsey Harris, and Kaustubh Nyalkalkar. In particular, Evan acted as a great mentor,

sounding board, and friend during my early years in the doctoral program.

Finally, and most importantly, I wish to thank my family. This thesis is dedicated to my

mother Julie, my father Clarke, my sister Kristin, and my girlfriend Heidi.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . xi

ABSTRACT . xiii

CHAPTERS

1 Introduction . 1
1.1 Previous Approaches . 1

1.1.1 The Evolution of Threats 1
1.1.2 Network-Centric Security Mechanisms 3
1.1.3 Host-Centric Security Mechanisms 4

1.2 Our Approach . 5
1.2.1 The Evolution of Computing 5
1.2.2 Cloud-Centric Software Security Services 6
1.2.3 Properties of Cloud-Centric Services 6

1.3 Contributions . 8
1.4 Structure of Thesis . 10

2 N-Version Malware Detection in the Cloud 12
2.1 Limitations of Antivirus Software 14

2.1.1 Vulnerability Window . 15
2.1.2 Antivirus Software Vulnerabilities 16

2.2 Approach . 17
2.2.1 Deployment Environment 18
2.2.2 Cloud-Based Detection 18
2.2.3 N-Version Protection . 19

2.3 Architecture . 19
2.3.1 Client Software . 20
2.3.2 Cloud Service . 23

v

2.3.3 Archival and Forensics Service 25
2.4 CloudAV Implementation . 26

2.4.1 Host Agent . 26
2.4.2 Cloud Service . 27
2.4.3 Management Interface 29

2.5 Evaluation . 30
2.5.1 Malware Dataset Results 31
2.5.2 Deployment Results . 32

2.6 Discussion and Limitations . 36
2.6.1 User Context and Environment in Detection Engines . . . 37
2.6.2 Disconnected Operation 37
2.6.3 Sources of Malicious Behavior 38
2.6.4 Detection Engine Licensing 39
2.6.5 Managing False Positives 40
2.6.6 Breaking Free of Vendor Lock-in 41

2.7 Related Work . 42
2.8 Summary . 42

2.8.1 Leveraging the Cloud . 43

3 Protecting Mobile Devices with a Cloud Service 44
3.1 Mobile CloudAV . 46

3.1.1 Mobile Agent . 46
3.1.2 Mobile-Specific Behavioral Engine 47
3.1.3 Connectivity and Mobile Data Usage 47
3.1.4 Additional Security Services 48

3.2 Evaluation . 49
3.2.1 Computational Resources 49
3.2.2 Power Consumption . 50
3.2.3 Scale of Detection Algorithms 51
3.2.4 On-Device Software Complexity 52

3.3 Related Work . 52
3.4 Summary . 52

3.4.1 Leveraging the Cloud . 53

4 The Dark Side of Cloud Services: Crimeware as a Service 54
4.1 AvP: Antivirus vs. Packers . 56

4.1.1 Packer Classification . 56
4.1.2 Antivirus Detection . 57

4.2 The PolyPack Cloud Service . 58
4.2.1 PolyPack Architecture 58
4.2.2 PolyPack Features . 60
4.2.3 Future Capabilities . 61

4.3 Evaluation . 62
4.4 Related Work . 63
4.5 Summary . 64

vi

4.5.1 Leveraging the Cloud . 65

5 Large-Scale Analysis and Classification of Malicious Software 66
5.1 Understanding Malware Labeling 67
5.2 Properties of a Labeling System 69
5.3 Limitations of Antivirus Labeling 69

5.3.1 Consistency . 70
5.3.2 Completeness . 71
5.3.3 Conciseness . 72

5.4 Behavior-based Malware Clustering 72
5.4.1 Defining and Generating Malware Behaviors 73
5.4.2 Clustering of Malware 73
5.4.3 Comparing Individual Malware Behaviors 75
5.4.4 Constructing Relationships Between Malware 76
5.4.5 Extracting Meaningful Groups 77

5.5 Evaluation . 78
5.5.1 Performance and Parameterization 78
5.5.2 Comparing Antivirus Groupings and Behavioral Clustering 80
5.5.3 Measuring Completeness, Conciseness, and Consistency . 81
5.5.4 Application of Clustering and Behavior Signatures 83

5.6 Related Work . 85
5.7 Summary . 87

5.7.1 Leveraging the Cloud . 87

6 A Cloud-Centric Service for Robust and Resilient Threshold Signatures . . 89
6.1 Challenges in Cryptography and PKI 92

6.1.1 Private Key Secrecy . 92
6.1.2 Failure of Revocation Mechanisms 95

6.2 CloudCard Architecture . 99
6.2.1 Threshold Signatures with CloudCard 99
6.2.2 CloudCard Operation . 100
6.2.3 Notable Features of CloudCard 102

6.3 Integration and Implementation 104
6.3.1 TC-RSA Library . 104
6.3.2 PKCS#11 Module . 104
6.3.3 ssh-keygen-tcrsa . 105
6.3.4 Cloud Service . 106
6.3.5 Mobile Application . 106
6.3.6 Other Applications and Integrations 107

6.4 Deployment and Evaluation . 108
6.4.1 Key Generation . 108
6.4.2 Signature Generation . 109
6.4.3 Signature Verification . 110
6.4.4 End-to-End Performance 111
6.4.5 Revocation . 112

vii

6.4.6 Limitations . 112
6.5 Related Work . 113
6.6 Summary . 114

6.6.1 Leveraging the Cloud . 115

7 Discussion and Conclusion . 116
7.1 Summary of Contributions . 116
7.2 Insights and Lessons . 119
7.3 Future Work . 121

BIBLIOGRAPHY . 124

viii

LIST OF TABLES

Table
2.1 A distribution of the sources of 1,000 executables observed during the de-

ployment of our host agent over a six-month period. 34
2.2 The percentage increase in detection coverage obtained when ClamAV, a

truly free engine, is added to a deployment with only a single engine. 39
2.3 The number of false positives observed at each engine threshold, and the

associated detection coverage over the full malware dataset. 41
3.1 An example of the increased detection coverage against a dataset of a recent

month’s worth of malware samples when using multiple engines in parallel:
ClamAV (CM), Symantec (SM), McAfee (MA), BitDefender (BD), and F-
Secure (FS). 46

3.2 Comparison of the mobile agent with ClamAV in memory consumption
and CPU jiffies on the Nokia N800. 49

3.3 Comparison of the mobile agent with Kaspersky Mobile Security on the
Nokia N95. 50

3.4 The number of threats addressed in the signature database of various detec-
tion engines. 51

4.1 For each packer, we list the increase over the unpacked binaries of the
total number of antivirus evasions across all binaries (out of 2,080) and the
median/average number of evasions per binary (out of 10). 62

4.2 The number of occurrences a packer produced the optimal packing for each
of the 208 distinct samples. 63

4.3 Parallels exist between the cloud computing models of legitimate services
and crimeware services. 64

5.1 The number of unique labels provided by five antivirus engines is listed for
each dataset. 67

5.2 The percentage of time two binaries classified as the same by one antivirus
are classified the same by other antivirus products. Malware is inconsis-
tently classified across antivirus vendors. 70

5.3 The percentage of malware samples detected across datasets and antivirus
vendors. Antivirus does not provide a complete categorization of the datasets. 71

ix

5.4 The ways in which various antivirus products label and group malware.
Antivirus labeling schemes vary widely in how concisely they represent
the malware they classify. 71

5.5 10 unique malware samples. For each sample, the number of process, file,
registry, and network behaviors observed and the classifications given by
various antivirus vendors are listed. 74

5.6 A matrix of the NCD between each of the 10 malware samples in our example. 75
5.7 The clusters generated via our technique for the malware listed in Table 5.5. 77
5.8 The completeness, conciseness, and consistency of the clusters created with

our algorithm on the large dataset as compared to various antivirus vendors. 81
5.9 The top five malware behaviors observed by type. 84
6.1 Timings of key generation across RSA schemes, key sizes, and CPU types. 109
6.2 Timings of signature generation across RSA schemes, key sizes (in bits),

and CPU types. 110
6.3 Combined TC-RSA (3,3) timings for signature generation, signature com-

bination, and the network communication overhead for a full CloudCard
SSH login sequence in the pessimistic model of all operations occurring
serially. 114

x

LIST OF FIGURES

Figure
2.1 Detection rate for 10 popular antivirus products as a function of the age of

the malware samples. 15
2.2 Number of vulnerabilities reported in the National Vulnerability Database

(NVD) for 10 antivirus vendors between 2005 and 2007 17
2.3 Architectural approach for cloud-centric file analysis service. 20
2.4 Screen captures of the detection engine VM monitoring interface (a) and

the web management portal which provides access to forensic data and
threat reports (b). 28

2.5 The average detection coverage for the various datasets (a) and the contin-
uous coverage over time (b) when a given number of engines are used in
parallel. 30

2.6 Executable launches (a) and unique executable launches (b) per day over a
one month period in a representative sample of 50 machines in the deploy-
ment. 33

4.1 The top 10 packers classes in our AML dataset as determined by PEiD and
SigBuster. 57

4.2 The fraction of detected binaries for 23 antivirus products and 35 most
popular packers. 58

4.3 Conceptual overview of the PolyPack architecture. 59
5.1 A Venn diagram of malware samples labeled as SDBot variants by three

antivirus products. 68
5.2 On the left, a tree consisting of the malware from Table 5.5 has been clus-

tered via a hierarchical clustering algorithm whose distance function is nor-
malized compression distance. On the right, a dendrogram illustrating the
distance between various subtrees. 76

5.3 The memory and runtime required for performing clustering based on the
number of malware clustered (for a variety of different-sized malware be-
haviors). 79

5.4 On the left, the number of clusters generated for various values of the in-
consistency parameter and depth. On the right, the trade-off between the
number of clusters, the average cluster size, and the inconsistency value. . . 79

xi

6.1 The evolution of past approaches designed to protect the secrecy of private
key material. 92

6.2 Traditional secret sharing schemes like have to combine the split key ma-
terial in a single location in order to perform a cryptographic operation as
illustrated in (a). Using threshold cryptography, partial signatures can be
combined to generate a full signature without ever having to combine the
split key material in a single location as illustated in (b). 98

6.3 Our proposed CloudCard architecture uses (3,3) threshold RSA to generate
a signature across a client’s host, a cloud service, and a mobile device. . . . 102

6.4 A screenshot of the CloudCard mobile application displaying a signature
confirmation for approval. 107

xii

ABSTRACT

Leveraging the Cloud for Software Security Services

by

Jonathan Clarke Oberheide

Chair: Farnam Jahanian

This thesis seeks to leverage the advances in cloud computing in order to address mod-

ern security threats, allowing for completely novel architectures that provide dramatic

improvements and asymmetric gains beyond what is possible using current approaches.

Indeed, many of the critical security problems facing the Internet and its users are inade-

quately addressed by current security technologies. Current security measures often are de-

ployed in an exclusively network-based or host-based model, limiting their efficacy against

modern threats. However, recent advancements in the past decade in cloud computing and

high-speed networking have ushered in a new era of software services. Software services

that were previously deployed on-premise in organizations and enterprises are now being

outsourced to the cloud, leading to fundamentally new models in how software services are

sold, consumed, and managed.

This thesis focuses on how novel software security services can be deployed that lever-

age the cloud to scale elegantly in their capabilities, performance, and management. First,

we introduce a novel architecture for malware detection in the cloud. Next, we propose

a cloud service to protect modern mobile devices, an ever-increasing target for malicious

attackers. Then, we discuss and demonstrate the ability for attackers to leverage the same

benefits of cloud-centric services for malicious purposes. Next, we present new techniques

for the large-scale analysis and classification of malicious software. Lastly, to demon-

strate the benefits of cloud-centric architectures outside the realm of malicious software,

xiii

we present a threshold signature scheme that leverages the cloud for robustness and re-

siliency.

Thesis Statement: By leveraging properties inherent to cloud computing, it is possible

to design new classes of cloud-centric software security services that scale elegantly in their

capabilities, performance, and management.

xiv

CHAPTER 1

Introduction

Security threats have plagued Internet-connected devices for some time. In particular,

malicious software has enabled attackers to achieve financial gains from botnets, credential

theft, spam, denial-of-service, phishing, and other attacks. In recent years, the scale and

sophistication of attacks on end users have increased dramatically. Therefore, it is vital to

the overall health of the Internet and its users that we develop effective and efficient security

mechanisms that are able to deter, detect, and defend against modern malicious threats.

1.1 Previous Approaches

1.1.1 The Evolution of Threats

Over the past decade, we’ve observed a distinct evolution of malicious threats. In the

first half of the decade, we saw the explosion of network-based threats on the Internet. Early

denial-of-service (DoS) attacks took down high-profile websites such as Yahoo, Amazon,

and CNN with little difficulty by flooding them with excessive traffic and requests [146].

As attackers realized that taking control of an end host was more powerful than simply

knocking it offline, the era of the flash worm began. Flash worms such as Code Red [131],

Slammer [130], and Witty [160] targeted vulnerabilities in network-facing operating sys-

tems and services. These threats wreaked havoc on the availability and integrity of network

infrastructure and vulnerable services exposed and listening on the Internet.

1

As the attack surface of network-facing services was minimized through proper isola-

tion and access control, broad patching and mitigation of remote code execution vulner-

abilities, and other mechanisms, the efficacy of network-based threats was reduced. In

the second half of the decade, malicious threats evolved to target end hosts and users di-

rectly. Instead of exploiting network-facing services, attackers began to target the large

host-based attack surface presented by client-side applications such as web browsers, PDF

viewers, and office suites [182]. By simply tricking a user into visiting an untrusted link

and exploiting a web browser vulnerability, the attacker could take full control of the user’s

host by installing their own malicious software, also known as malware. Many attackers

realized that persistent, stealthy control of a large number of compromised end hosts en-

abled powerful attacks and new monetization models. This realization led to the era of

botnets [50, 19]. Even as recent efforts to reduce the client-side attack surface of end hosts

have made progress, attackers have continued to evolve their host-based attacks to include

social engineering in order to trick users into installing malicious software [178, 92].

With concern, we’ve also observed an evolution in the sophistication of the actors be-

hind the malicious attacks. In the early 2000s, many attacks were perpetrated by amateurs

looking to explore the bounds of computing and security. Bored teenagers, politically-

motivated hackivists, and feuding hacker groups were frequently responsible for website

defacements and denial-of-service attacks. As bad actors realized that many types of at-

tacks such as financial fraud, spam, and denial-of-service could be monetized, Internet-

based attacks turned into a lucrative business opportunity. In the current day, it is well-

understood that rich underground crimeware markets, organized cybercrime groups, and

well-funded and sophisticated adversaries are active and responsible for many attacks on

the Internet [80, 77]. With accusations of state-sponsored attacks and terms like cyberwar

being thrown around in the current day [72, 39], it is clear that the security landscape has

drastically evolved in the past decade.

To address the increasing sophistication and scale of malicious threats, researchers have

proposed a broad range of software security technologies over the past decade, including

systems such as intrusion detection systems, intrusion prevention systems, firewalls, and

antivirus software. These systems have become essential components in detecting mali-

2

cious attacks and protecting end hosts and users.

While software security mechanisms can take many forms, a frequent goal for many

such approaches is to observe network or host activity and distinguish between legitimate

and malicious activity. We classify common software security mechanisms as network-

centric or host-centric, depending on their deployment model and which type of activity

they observe and inspect. For example, we would classify a sensor device placed on a

network link to passively listen for malicious traffic destined for an enterprise network

as a network-centric approach. On the other hand, we would classify antivirus software

installed on every end host in an enterprise that inspects host activity to detect malicious

software as a host-centric approach. As we will discuss, both models have pros and cons,

depending on which type of threats they are designed to address.

1.1.2 Network-Centric Security Mechanisms

In a network-centric model, mechanisms such as network access control (NAC), in-

trusion detection (NIDS), and intrusion prevention (NIPS) are commonly deployed on an

organization’s network to inspect traffic sourced and destined from the end hosts to be

protected. Network-based intrusion detection systems may employ both signature-based

matching to detect known malicious attacks [37, 139] and anomaly detection algorithms

to detect unknown attacks [93, 25]. Other detection systems may operate on a flow-based

granularity using formats such as NetFlow [95] instead of operating on live network traffic.

A network-centric approach typically offers of a wide breadth of visibility across hosts

on the network, but lacks the depth of visibility because it can only observe the bits present

on the network link and not what those bits represent when received and processed by an

end host. Network-centric mechanisms were prevalent during the early 2000s when dealing

with the propagation and detection of flash worms [131, 130, 160]. More recently, network-

based sensors have focused on the detection of malicious traffic and botnet activity [51, 86,

85].

However, as we’ve seen threats migrate from network attacks to host attacks, it has

become increasingly difficult for network-centric approaches to maintain their efficacy.

3

Inspecting network traffic delivered over SSL transports that are becoming more common-

place is just one of the challenges. As attackers increasingly target users via client-side

applications such as web browsers, PDF viewers, and office suites, network-centric mech-

anisms must be aware of a wide variety of complex file formats and have deep inspection

capabilities to detect malicious code [182]. For example, attackers may deliver a browser

exploit via obfuscated JavaScript, making it extremely difficult for a network-based sensor

to detect the presence of malicious intent. Lastly, it is common nowadays to see encrypted

botnet command and control traffic [17], causing challenges in identifying infected end

hosts for network-centric mechanisms.

1.1.3 Host-Centric Security Mechanisms

As malicious threats migrated more and more towards targeting end hosts in the second

half of the decade, more emphasis was placed on researching and developing host-centric

security mechanisms. In a host-centric model, software such as antivirus and host-based

intrusion detection systems (HIDS) is deployed on end hosts to monitor host activity and

block malicious attacks. The most common approach for protecting end hosts is traditional

antivirus engines [48, 129]. Such antivirus engines commonly operate on a file-based gran-

ularity to scan for malicious software that may enter an end host via a number of vectors.

HIDS can also be used by monitoring and restricting system-level activity at execution time

to detect malicious activity. Such approaches have been extensively explored in academia,

whether observing instruction and system-call level information [44], analyzing OS and

application information flow [188], or monitoring host activity from a hypervisor perspec-

tive [101].

Host-centric mechanisms systems may be able to inspect deep information and activity

on a single end host, but they lack the global network-wide visibility that network-centric

systems can often provide [118, 49, 151]. While both network-centric and host-centric sys-

tems are commonly deployed to attempt to detect and defend against malicious threats, it

is clear that Internet-connected devices and users remain under continued attack. There-

fore, this thesis advocates for exploring new deployment models beyond host-centric and

4

network-centric perspectives as threats continue to evolve in sophistication and scale.

1.2 Our Approach

1.2.1 The Evolution of Computing

While security threats have evolved considerably over the past decade, we’ve also wit-

nessed significant advancements in the realm of computing. In particular, the introduction

of cloud computing [172, 179, 126], bolstered by the popularization of x86 virtualization

and increased availability of high-speed, low-latency networking [20, 156, 3], has ushered

in a new era of software services. Cloud computing has enabled a wide range of new

service models, including infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS),

and software-as-a-service (SaaS), that change the way modern software services are sold,

consumed, and managed [78, 144, 190, 42]. Cloud computing is succinctly defined in [14]

as follows:

Cloud Computing refers to both the applications delivered as services over

the Internet and the hardware and systems software in the datacenters that pro-

vide those services.

The services themselves have long been referred to as Software as a Service

(SaaS). The datacenter hardware and software is what we will call a Cloud.

When a Cloud is made available in a pay-as-you-go manner to the general

public, we call it a Public Cloud; the service being sold is Utility Computing.

Thus, Cloud Computing is the sum of SaaS and Utility Computing.

Software services that were previously deployed on-premise in organizations and en-

terprises in a network-centric or host-centric model are now being outsourced to the cloud.

Cloud-delivered services are leveraging the beneficial properties of cloud computing, such

as reliability, scalability, performance, management, and cost, to more effectively deliver

software technologies [14].

5

1.2.2 Cloud-Centric Software Security Services

While the revolution in cloud computing presents interesting security challenges in

itself [100, 105, 40], this thesis seeks to understand how cloud computing and a SaaS

deployment model can enable more effective software security services. That is, rather

than investigating how we can “protect the cloud”, this thesis seeks to understand how

the cloud can protect us. While previous work has considered host-centric and network-

centric approaches, this thesis focuses on how novel cloud-centric architectures can provide

improved efficacy against modern security threats. While this thesis advocates for the

exploration of cloud-centric services, it is not aimed at discounting existing approaches,

just as host-centric services didn’t completely replace network-centric services as threats

moved from the network to the end host. Rather, we see cloud-centric services as the next

phase in the deployment model of security services that follows from the intersection of the

evolution of threats and evolution of cloud computing capabilities observed over the past

decade.

1.2.3 Properties of Cloud-Centric Services

This thesis argues that many of the properties inherent to cloud computing enable us

to construct effective and efficient cloud-centric software security services. While most

of the properties may provide beneficial gains for software security services, there may

also be trade-offs or potential negative consequences that must be carefully considered. As

this thesis is deeply rooted in practical issues, these properties may have significant impact

on the design of software security services and on real-world efficacy, deployment, and

management. Several of the properties of cloud computing that are relevant to the security

realm include the following:

• Global visibility and network effects: The potential for global visibility offered by

a cloud-hosted service can provide significant value to a security service. In many

scenarios, the more users or devices participating in a cloud-centric security service,

the more intelligence can be collected, which can result in a network effect that in-

creases the efficacy of the security service [118, 49, 151]. The visibility and network

6

effects of cloud-centric security services may span across hosts, networks, organiza-

tions, and even globally across the entire Internet. On the other hand, aggregating

globally-scoped data in a centralized multi-tenant cloud environment may have an

impact on cross-user and cross-organization privacy and confidentiality.

• Scalability and elasticity: Given the dramatic increase in malicious software and

attacks [128, 127], it is imperative that any security mechanisms be rapidly scalable.

In addition, such mechanisms need to be sufficiently elastic to handle highly variable

security workloads. Failing to scale and adapt to heavy or variable loads, whether

legitimately or intentionally generated, can potentially result in the failure of the se-

curity service. Cloud computing and public IaaS providers allow for the construction

of highly scalable and elastic security services.

• Agility and flexibility: Cloud computing enables agility and flexibility through the

rapid deployment of new functionality and software updates compared to the slow

delivery model of traditional on-premise software [14, 82]. Cloud-centric security

services can leverage such agility and flexibility in order to keep pace with an adap-

tive adversary. For example, updates or heuristics for the latest security threats may

be deployed in real-time in a cloud-centric service, as opposed to pushing down soft-

ware updates to an enterprise that will deploy them on-premise. In the field of secu-

rity where threats change on a daily basis, this agility has very practical benefits. On

the other hand, agility and flexibility may also empower attackers to build effective

malicious cloud services themselves, which we will explore later in the thesis.

• Availability and survivability: Contrary to popular belief about the reliability of

public cloud computing environments [113], the functionality offered by many IaaS

providers and cloud computing platforms can enable the construction of highly avail-

able and survivable systems beyond what is typically feasible with fixed infrastruc-

ture [14]. Cloud-centric security services can leverage such functionality to achieve

global accessibility and reliable connectivity. High availability is an absolute ne-

cessity when deploying security services that are often in the critical hot-path of

computing systems.

7

• Trustworthiness and host-proofing: Moving security functionality to a cloud-centric

service can introduce risk to confidentiality and integrity if the cloud provider is un-

trusted. However, some classes of cloud-centric services can be designed and de-

ployed in such a way that does not sacrifice trustworthiness, even in the face of a

compromised or malicious IaaS provider [65, 185]. By host-proofing software secu-

rity services [60], one may achieve guarantees about the confidentiality and integrity

of data handled by the cloud service. While achieving full host-proofing may not

be feasible for all types of security services, maintaining as much trustworthiness

as possible is an important goal to keep in mind when constructing cloud-centric

services.

By leveraging these advancements in cloud computing, we are able to develop and

deploy novel security services in a cloud-centric architecture that can scale elegantly in

terms of their capabilities, performance, and management.

1.3 Contributions

The main contributions of this thesis are the following:

• N-Version Malware Detection in the Cloud

While it’s generally known in the security community that antivirus software is not

a perfect solution, we provide novel quantification of the failure of commercial host-

centric antivirus in terms of its detection coverage, attack surface, vulnerability win-

dow, and classification capabilities. To address these limitations, we introduce the

CloudAV architecture, a core piece of research that moves the complexity of mal-

ware detection off of the end host and into the cloud. Deploying CloudAV security

services in the cloud enables N-version protection, retrospective detection, forensic

data collection, centralized management and policy definition, and a wide range of

practical deployment benefits. Through a real-world implementation and evaluation,

we find that migrating malware detection functionality from a host-centric to cloud-

centric model is an effective approach.

8

• Protecting Mobile Devices with a Cloud Service

While our results indicate that a cloud-centric approach to malware detection is quite

effective when deployed on traditional end hosts, offloading analysis to the cloud

lends itself naturally to the resource-constrained mobile environment. As mobile

devices and applications become an enticing target for attackers, protecting these de-

vices in an efficient and scalable manner is vital. Such protection is complicated

by the diversity of mobile platforms and the intricacies of each platform’s security

model. Our research indicates that cloud-based malware detection is indeed an en-

ergy and resource efficient approach for mobile device security through implementa-

tions and evaluations on a range of modern mobile platforms.

• The Dark Side of Cloud Services: Crimeware as a Service

While cloud-based security services have great potential for deploying protective

mechanisms, it would be incomplete to ignore the fact that the positive attributes

of cloud-centric services may also be abused to benefit attackers. To demonstrate

the potential for malicious cloud services, we construct PolyPack, an example of an

emerging model known as crimeware-as-a-service (CaaS). PolyPack is a cloud-based

service for automated malware obfuscation and antivirus evasion that integrates a

wide range of packers in front of CloudAV’s backend antivirus engines, allowing re-

searchers to understand the impact of malware packers of antivirus efficacy. Based

on our observations in the underground crimeware markets, we anticipate that CaaS

will present an attractive approach for attackers and concerning development for de-

fenders in the near future.

• Large-Scale Analysis and Classification of Malicious Software

Given the staggering growth of malicious software [128, 127], malware classification

has emerged as an important mechanism to understand and quantify the malware epi-

demic. To address the limitations of existing automated classification and analysis

tools, we developed and evaluated a dynamic analysis approach, based on the execu-

tion of malware in virtualized environments that are hosted in a cloud-centric service

9

and the causal tracing of the operating system objects affected during malware exe-

cution. The results of our analysis and clustering of runtime behaviors exhibit strong

consistency, completeness, and conciseness. Furthermore, our research illustrates the

necessity for scalable and performable cloud-centric architectures for heavyweight

analysis of malicious software.

• A Cloud-Centric Service for Robust and Resilient Threshold Signatures

Lastly, to demonstrate that the benefits of a cloud-oriented architecture apply to soft-

ware security services beyond those directly related to malicious software, we de-

sign a threshold signature scheme that leverages a cloud service. Threshold cryp-

tography offers attractive properties for requiring a number of independent parties to

cooperate in order to perform a cryptographic operation, such as generating a RSA

signature across multiple devices. We introduce an architecture, called CloudCard,

that employs a threshold signature scheme with key material split across a user’s

host, a user’s mobile device, and a cloud service. Using this (3,3) threshold RSA

scheme, our CloudCard approach enables improved secrecy of private key mate-

rial, flexible and fast revocation, and out-of-band signature confirmation, all while

maintaining full compatibility with existing PKCS#11-enabled applications and in-

terfaces. CloudCard also demonstrates that trustworthiness can be maintained even

when moving security functionality to a cloud-centric service.

1.4 Structure of Thesis

This thesis is organized into five primary chapters. Chapter 2 presents a novel architec-

ture for the deployment of malware detection services in the cloud. In Chapter 3, we discuss

leveraging a cloud service to protect modern mobile devices. Chapter 4 explores the dark

side of cloud services and the potential for attackers to leverage the same benefits of a

cloud-centric service for malicious purposes. In Chapter 5, we discuss new techniques for

the large-scale analysis and classification of malicious software. In Chapter 6, we present a

threshold signature scheme that leverages the cloud for robustness and resiliency. Finally,

10

Chapter 7 concludes the thesis with a review of the lessons learned throughout this research

and a look toward the future work in cloud-centric software security services.

11

CHAPTER 2

N-Version Malware Detection in the Cloud

In this chapter, we explore the problem of detecting malicious software using a cloud-

centric architecture called CloudAV. As with most approaches of “enumerating badness”

in security, detecting malicious software is a non-trivial problem. The vast, ever-increasing

ecosystem of malicious software and tools presents a daunting challenge for network oper-

ators and IT administrators. Currently, antivirus is one of the most widely-used host-centric

software security mechanisms for detecting and mitigating malicious software. However,

the elevating sophistication of modern malware means that it is increasingly challenging

for any single vendor to develop signatures for each new threat.

To address the growing sophistication and scale of malware, we propose a new cloud-

centric deployment model for the detection of malicious software that is a departure from

the traditional host-centric model of antivirus software. This architectural shift is charac-

terized by two key changes:

• Antivirus as a cloud service: First, we propose that the detection capabilities cur-

rently provided by host-based antivirus software can be more efficiently and effec-

tively provided as a cloud-centric security service. Instead of running complex anal-

ysis software on every end host, we suggest that each end host run a lightweight

process to detect new files, send them to a cloud service for analysis, and then permit

access to or quarantine them based on a report returned by the cloud service.

• N-version protection: Second, the identification of malicious software should be

12

determined by multiple, heterogeneous detection engines in parallel. Similar to the

idea of N-version programming, we propose the notion of N-version protection and

suggest that malware detection systems leverage the detection capabilities of multi-

ple, heterogeneous detection engines to more effectively determine malicious files.

This new cloud-centric model provides several important and practical benefits:

• Better detection of malicious software: Antivirus engines have complementary

detection capabilities, and a combination of many different engines can improve the

overall identification of malicious software.

• Enhanced forensic capabilities: Information about which hosts accessed which

files provides an incredibly rich database of information for forensics and intru-

sion analysis. Such information provides temporal relationships between file access

events on the same or different hosts.

• Retrospective detection: When a new threat is identified, historical information can

be used to identify exactly which hosts or users open similar or identical files. For

example, if a new bot infection is detected, a cloud-based antivirus service can use

the execution history of hosts on a network to identify which hosts have been infected

and notify administrators or even automatically quarantine infected hosts.

• Improved deployability and management: Moving detection off the host and into

the network significantly simplifies host software, enabling deployment on a wider

range of platforms and enabling administrators to centrally control signatures and

enforce file access policies.

To explore and validate this new model of deploying anti-malware security software, we

design a cloud-based architecture that consists of three major components: a lightweight

host agent run on end hosts that identifies new files and sends them into the network for

analysis; a cloud service that receives files from hosts and identifies malicious content; and

an archival and forensics service that stores information about analyzed files and provides

a management interface for operators.

13

We construct, deploy, and evaluate a production cloud antivirus system called Clou-

dAV. CloudAV includes a lightweight, cross-platform host agent for Windows, Linux, and

FreeBSD and a cloud service consisting of 10 antivirus engines and two behavioral de-

tection engines. We provide a detailed evaluation of the system using a dataset of 7,220

malware samples collected in the wild over a period of a year [136] and a production

deployment of our system on a campus network in computer labs spanning multiple de-

partments for a period of over six months.

Using the malware dataset, we show how the CloudAV N-version protection approach

provides 35% better detection coverage against recent threats compared to a single antivirus

engine and 98% detection coverage of the entire dataset, compared to 83% with a single

engine. In addition, we show how our architecture enables advanced functionality, such

as retrospective detection, which can greatly mitigate the impact of the large window of

vulnerability presented by antivirus products.

Finally, we analyze the performance and scalability of the system using deployment

results and show that while the total number of executables run by all the systems in a com-

puting lab is quite large (an average of 20,500 per day), the number of unique executables

run per day is two orders of magnitude smaller (an average of 217 per day). This means that

the caching mechanisms employed in the cloud service achieves a hit rate of over 99.8%,

reducing the load on the network, and in the rare case of a cache miss, we show that the

average time required to analyze a file using CloudAV’s detection engines is approximately

1.3 seconds.

2.1 Limitations of Antivirus Software

The ubiquitous deployment of antivirus software is closely tied to the ever-expanding

ecosystem of malicious software and tools. The rise of botnets and targeted malware at-

tacks for the purposes of spam, fraud, and identity theft present an evolving challenge for

antivirus companies. For example, the recent Storm worm demonstrated the use of en-

crypted peer-to-peer command and control and the rapid deployment of new variants to

continually evade the signatures of antivirus software [17].

14

AV Vendor Version 3 Months 1 Month 1 Week
Avast 4.7.1043 62.7% 45.8% 39.6%
AVG 7.5.503 83.8% 78.6% 72.2%
BitDefender 7.1.2559 83.9% 79.7% 78.5%
ClamAV 0.91.2 57.5% 48.8% 46.8%
CWSandbox 2.0 N/A N/A N/A
F-Prot 6.0.8.0 70.4% 49.6% 46.0%
F-Secure 8.00.101 80.9% 74.4% 60.3%
Kaspersky 7.0.0.125 89.2% 84.0% 78.5%
McAfee 8.5.0i 70.5% 56.7% 53.9%
Norman 1.8 N/A N/A N/A
Symantec 15.0.0.58 60.8% 38.8% 45.2%
Trend Micro 16.00 79.4% 74.6% 75.3%

(a) 1 Day d1 Week1 Month3 Months 1 Year
Recency of Malware Sample

20

30

40

50

60

70

80

90

100

Pe
rc

en
t D

et
ec

te
d

Avast
AVG
BitDefender
ClamAV
F-Prot
F-Secure
Kaspersky
McAfee
Symantec
TrendMicro

(b)

Figure 2.1: Detection rate for 10 popular antivirus products as a function of the age of the
malware samples.

However, two important trends, that we detail in this section, call into question the long-

term effectiveness of products from commercial antivirus vendors. The first is that antivirus

software fails to detect a significant percentage of malware in the wild. Moreover, there is

a significant vulnerability window between when a threat first appears and when antivirus

vendors generate a signature or modify their software to detect the threat. This means that

end systems with the latest antivirus software and signatures can still be vulnerable for long

periods of time. The second important trend is that the increasing complexity of antivirus

software and services has indirectly resulted in vulnerabilities that can be and are being

exploited by malware. That is, malware is actually exploiting vulnerabilities in antivirus

software as means to infect systems.

2.1.1 Vulnerability Window

The sheer volume of new threats means that it is difficult for any single antivirus vendor

to create signatures for all new threats. The ability of a vendor to create signatures for new

threats is dependent on many factors, such as detection algorithms, collection methodology

of malware samples, and response time to 0-day malware. The end result is that there is

often a significant period of time between when a threat appears and when a signature is

created by antivirus vendors. This period of time is known as the vulnerability window.

15

To quantify the vulnerability window, we analyzed the detection rate of multiple an-

tivirus engines across malware samples that were collected over a one-year period. The

dataset included 7,220 samples that were collected between November 11th, 2006, and

November 10th, 2007. The malware dataset is described in further detail in our evalu-

ation. The signatures used for the antivirus were updated the day after collection ended

(November 11th, 2007) and stayed constant throughout the analysis.

In the first experiment, we analyzed the detection of recent malware. We created three

groups of malware: one that included malware collected more recently than three months

ago, one that included malware collected more recently than one month ago, and one that

included malware collected more recently than one week ago. The antivirus engine and

signature versions, along with their associated detection rates for each time period, are

listed in Figure 2.1(a). The table clearly shows that the detection rate decreases as the

malware becomes more recent. Specifically, the number of malware samples detected in

the one week time period, arguably the most recent and important threats, is quite low.

In the second experiment, we extended this analysis across all the days in the year dur-

ing which the malware samples were collected. Figure 2.1(b) shows significant degradation

of antivirus engine detection rates as the age, or recency, of the malware sample is varied.

As can be seen in the figure, detection rates can drop over 45% when one day’s worth of

malware is compared to one year’s worth. As the plot shows, antivirus engines tend to be

effective against malware that is a year old but much less useful in detecting more recent

malware, which poses the greatest threat to end hosts.

2.1.2 Antivirus Software Vulnerabilities

A second major concern about the long-term viability of host-based antivirus software

is that the complexity of antivirus software has resulted in an increased risk of security vul-

nerabilities. Indeed, severe vulnerabilities have been discovered in the antivirus engines of

nearly every vendor. While local exploits are more common (ioctl vulnerabilities [57, 58],

overflows in decompression routines [59], etc.), remote exploits in management interfaces

have been observed in the wild [55]. Due to the common need for elevated privileges by

16

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65

ClamAV

McAfee

TrendMicro

Symantec

Kaspersky

F-Secure

Avast
BitDefender

AVG
F-Prot

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

AV Vendors

Severity of CVE/NVD Antivirus Vulnerabilities
Low Severity

Medium Severity
High Severity

Figure 2.2: Number of vulnerabilities reported in the National Vulnerability Database
(NVD) for 10 antivirus vendors between 2005 and 2007

antivirus software, many of these vulnerabilities result in a complete compromise of the

affected end host.

Figure 2.2 shows the number of vulnerabilities reported in the National Vulnerability

Database [140] for 10 popular antivirus vendors between 2005 and 2007. This large number

of reported vulnerabilities demonstrates not only the risk involved in deploying antivirus

software but also an evolution in tactics, as attackers are now targeting vulnerabilities in

antivirus software itself.

2.2 Approach

This thesis advocates a new model for the detection functionality currently performed

by antivirus software. First, the detection capabilities currently provided by host-based an-

tivirus software can be more efficiently and effectively provided as a cloud service. Second,

the identification of malicious software should be determined by multiple, heterogeneous

detection engines in parallel.

17

2.2.1 Deployment Environment

Before discussing the details of the approach, it is important to understand the envi-

ronment in which such an architecture is most effective. While such an architecture can be

very effective in a standalone deployment, the CloudAV system can also be deployed along-

side existing antivirus engines and host-based intrusion detection systems. Some possible

deployment environments include the following:

• Enterprise networks: Enterprise networks tend to be highly-controlled environ-

ments in which IT administrators control both desktop and server software. In ad-

dition, enterprises typically have good network connectivity with low latencies and

high bandwidth between workstations and back-office systems.

• Government networks: Like enterprise networks, government networks tend to be

highly controlled with strictly-enforced software and security practices. In addition,

policy enforcement, access control, and forensic logging can be useful in tracking

sensitive information.

Privacy implications: Shifting file analysis to a central location provides significant ben-

efits but also has important privacy implications. It is critical that users of a cloud-based

antivirus solution understand that their files may be transferred to another computer for

analysis. There may be situations in which this might not be acceptable to users (e.g.,

many law firms and many consumer broadband customers). However, in controlled envi-

ronments with explicit network access policies, like many enterprises, such issues are of

less concern. Moreover, the amount of information that is collected can be carefully con-

trolled depending on the environment. As we will discuss later, information about each

file analyzed and which files are cached can be controlled, depending on the policies of the

network.

2.2.2 Cloud-Based Detection

The core of the proposed approach is moving the detection of malicious files off of end

hosts and into the cloud. By moving the complexity of the detection engines off of the

18

end host, we significantly lower the complexity of host-based monitoring software. Clients

no longer need to continually update their local signature database, reducing administra-

tive cost. Simplifying the host software also decreases the chance that it could contain

exploitable vulnerabilities [110, 55]. Finally, a lightweight host agent allows the service to

be extended to resource-limited devices that lack sufficient processing power but remain an

enticing target for malware.

While moving detection to the cloud has a number of benefits, the approach is not with-

out trade-offs. Certainly, availability and connectivity to the cloud service is of paramount

concern when moving services from a host-centric to cloud-centric model. We believe that

cloud computing and high-speed networking makes the deployment of cloud-based detec-

tion more practical and worthy of exploration. Issues and policy surrounding disconnected

operation are discussed in further detail later in this chapter.

2.2.3 N-Version Protection

Moving to a cloud-centric architecture also enables us to employ a set of heterogeneous

detection engines that are used to provide analysis results on a file, which we call N-version

protection. This approach is analogous to N-version programming, a paradigm in which

multiple implementations of critical software are written by independent parties to increase

the reliability of software by reducing the probability of concurrent failures [15]. While N-

version programming uses multiple implementations to increase fault tolerance in complex

software, N-version protection uses multiple independent implementations of detection en-

gines in order to increase coverage against a highly complex and ever-evolving ecosystem

of malicious software.

2.3 Architecture

In order to move the detection of malicious files off of end hosts and into the network,

several important challenges must be overcome: (1) unlike existing antivirus software, files

must be transported into the network for analysis; (2) an efficient analysis system must

19

Host
Agent

P2P

Email

IM

Files

HTTP File
Threat Report

End Host

Safe
Files

Suspicious Files Network Service

Media Analysis Engines

Forensics
Archive

Figure 2.3: Architectural approach for cloud-centric file analysis service.

be constructed in order to handle the analysis of files from many different hosts using

many different detection engines in parallel; and (3) the performance of the system must

be similar to or better than existing detection systems, such as antivirus software.

To address these problems, we envision an architecture that includes three major com-

ponents. The first is a lightweight host agent run on end hosts that identifies new files and

sends them into the network for analysis. The second is a cloud service that receives files

from the host agent, identifies malicious content, and indicates to hosts whether access to

the files is safe. The third component is an archival and forensics service that stores in-

formation about what files were analyzed and provides a query and alerting interface for

operators. Figure 2.3 shows the high-level architecture of the cloud-based approach.

2.3.1 Client Software

Malicious files can enter an organization from many sources. For example, USB drives,

email attachments, downloads, and vulnerable network services are all common entry

points. Due to the broad range of entry vectors, the proposed architecture uses a lightweight

file acquisition agent run on each end system.

Just like existing antivirus software, the host agent runs on each end host and inspects

each file on the system. Access to each file is trapped and diverted to a handling routine

which begins by generating a unique identifier (UID) of the file and comparing that iden-

tifier against a cache of previously analyzed files. If a file UID is not present in the cache

then the file is sent to the cloud service for analysis.

20

To make the analysis process more efficient, the architecture provides a method for

sending a file for analysis as soon as it is written on the end host’s filesystem (e.g., via

file-copy, installation, or download). Doing so amortizes the transmission and analysis cost

over the time elapsed between file creation and system- or user-initiated access.

2.3.1.1 Threat Model

The threat model for the host agent is similar to that of existing software protection

mechanisms, such as antivirus, host-based firewalls, and host-based intrusion detection. As

with these host-based systems, if an attacker has already achieved code execution priv-

ileges, it may be possible to evade or disable the host agent. As previously discussed,

antivirus software contains many vulnerabilities that can be directly targeted by malware

due to its complexity. By reducing the complexity of the host agent by moving detection

into the network, it is possible to reduce the vulnerability footprint of host software that

may lead to elevated privileges or code execution.

2.3.1.2 File Unique Identifiers

One of the core components of the host agent is the file unique identifier (UID) gen-

erator. The goal of the UID generator is to provide a compact summary of a file. That

summary is transmitted over the network to determine if an identical file has already been

analyzed by the cloud service. One of the simplest methods of generating a UID is using

a cryptographic hash of a file, such as MD5 or SHA-1. Cryptographic hashes are fast and

provide excellent resistance to collision attacks. However, the same collision resistance

also means that changing a single byte in a file results in a completely different UID. To

combat polymorphic threats, a more complex UID generator algorithm could be employed

to avoid impacting cache performance. For example, a method such as locality-preserving

hashing in multidimensional spaces [97] could be used to track differences between two

files in a compact manner.

21

2.3.1.3 User Interface

We envision three majors modes of operation that affect how users interact with the

host agent. These modes range from less to more interactive, depending on the policy and

security requirements of the organization deploying CloudAV.

• Transparent mode: In this mode, the detection software is completely transparent

to the end user. Files are sent into the cloud for analysis, but the execution or loading

of a file is never blocked or interrupted. In this mode, end hosts can become infected

by known malware, but administrators can use detection alerts and detailed forensic

information to aid in cleaning up infected systems.

• Warning mode: In this mode, access to a file is blocked until an access directive

has been returned to the host agent. If the file is classified as unsafe then the user

is presented a warning about why the file is suspicious. The user is then allowed to

choose whether to proceed in accessing the file.

• Blocking mode: In this mode, access to a file is blocked until an access directive has

been returned to the host agent. If the file is classified as suspicious then access to

the file is denied and the user is informed about it by an error dialog.

2.3.1.4 Other File Acquisition Methods

While the host agent is the primary method of acquiring candidate files and transmitting

them to the cloud service for analysis, other methods can also be employed to increase

the performance and visibility of the system. For example, a network sensor or tap that

monitors the traffic of a network may pull files directly out of a network stream using deep

packet inspection (DPI) techniques. By identifying files and performing analysis before the

file even reaches the destination host, the need to retransmit the file to the network service

is alleviated and user-perceived latencies can be reduced. Clearly, this approach cannot

completely replace the host agent, because network traffic can be encrypted, files may

be encapsulated in unknown protocols, and the network is only one source of malicious

content.

22

2.3.2 Cloud Service

The second major component of the architecture is the cloud service responsible for

file analysis. The core task of the cloud service is to determine whether a file is malicious.

Unlike existing systems, each file is analyzed by a collection of detection engines. That

is, each file is analyzed by multiple detection engines in parallel and a final determination

of whether a file is malicious is made by aggregating these individual results into a threat

report.

2.3.2.1 Detection Engines

A cluster of servers can quickly analyze files using multiple detection techniques. Ad-

ditional detection engines can easily be integrated into a cloud service, allowing for consid-

erable extensibility. Such comprehensive analysis can significantly increase the detection

coverage of malicious software. In addition, the use of engines from different vendors who

use different detection techniques means that the overall result does not rely too heavily on

a single vendor or detection technology.

A wide range of both lightweight and heavyweight detection techniques can be used

in the backend. For example, lightweight detection systems like existing antivirus engines

can be used to evaluate candidate files. In addition, more heavyweight detectors like be-

havioral analyzers can also be used. A behavioral system executes a suspicious file in a

sandboxed environment (e.g., Norman Sandbox [141], CWSandbox [36]) or virtual ma-

chine and records host state changes and network activity. Such deep analysis is difficult or

impossible to accomplish on resource-constrained devices but is possible when detection

is moved to dedicated servers. In addition, instead of forcing signature updates to every

host, detection engines can be kept up-to-date with the latest vendor signatures at a central

source.

Finally, running multiple detection engines within the same service provides the ability

to correlate information between engines. For example, if a detector finds that the behavior

of an unknown file is similar to that of a file previously classified as malicious by antivirus

engines, the unknown file can be marked as suspicious.

23

2.3.2.2 Result Aggregation

The results from the different detection engines must be combined to determine whether

a file is safe to open, access, or execute. Several variables may impact this process.

First, results from the detection engines may reach the aggregator at different times.

For example, if a detector fails, it may never return any results. In order to prevent a slow

or failed detector from holding up a host, the aggregator can use a subset of results to

determine whether a file is safe. Determining the size of such a quorum depends on the

deployment scenario and variables like the number of detection engines, security policies,

and latency requirements.

Second, the metadata returned by each detector may be different so the detection re-

sults are wrapped in a container object that describes how the data should be interpreted.

For example, behavioral analysis reports may not indicate whether a file is safe but can

be attached to the final aggregation report to help users, operators, or external programs

interpret the results.

Lastly, the threshold at which a candidate file is deemed unsafe or malicious may be

defined by security policy. For example, some administrators may opt for a strict policy

where a single engine is sufficient to deem a file malicious, while less security-conscious

administrators may require multiple engines to agree to deem a file malicious. We explore

the balance between coverage and confidence further in the discussion section.

The result of the aggregation process is a threat report that is sent to the host agent and

can be cached on the server. A threat report can contain a variety of metadata and analysis

results about a file. The specific contents of the report depend on the deployment scenario.

Some possible report sections include: (1) an operation directive; a set of instructions indi-

cating the action to be performed by the host agent, such as how the file should be accessed,

opened, executed, or quarantined; (2) family/variant labels; a list of malware family/variant

classification labels assigned to the file by the different detection engines; and (3) behav-

ioral analysis; a list of host and network behaviors observed during simulation. This may

include information about processes spawned, files and registry keys modified, network

activity, or other state changes.

24

2.3.2.3 Caching

Once a threat report has been generated for a candidate file, it can be stored in both

a local cache on the host agent and in a shared remote cache on the server. This means

that once a file has been analyzed, subsequent accesses to that file by the user can be

determined locally without requiring network access. Moreover, once a single host in a

network has accessed a file and sent it to the cloud service for analysis, any subsequent

access of the same file by other hosts in the network can leverage the existing threat report

in the shared remote cache on the server. Cached reports stored in the cloud service may

also periodically be pushed to the host agent, to speed up future accesses, and invalidated

when deemed necessary.

2.3.3 Archival and Forensics Service

The third and final component of the architecture is a service that provides information

on file usage across participating hosts, which can assist in post-infection forensic analysis.

While some forensics tracking systems [106, 68] provide fine-grained details tracing back

to the exact vulnerable processes and system objects involved in an infection, they are often

accompanied by high storage requirements and performance degradation. Instead, we opt

for a lightweight solution consisting of file access information sent by the host agent and

stored securely by the cloud service, in addition to the behavioral profiles of malicious

software generated by the behavioral detection engines. Depending on the privacy policy

of an organization, a tunable amount of forensics information can be logged and sent to the

archival service. For example, a more security conscious organization could specify that

information about every executable launch be recorded and sent to the archival service.

Another policy might specify that only accesses to unsafe files be archived without any

personally identifiable information.

Archiving forensic and file usage information provides a rich information source for

both security professionals and administrators. From a security perspective, tracking the

system events leading up to an infection can assist in determining its cause, assessing the

risk involved with the compromise, and aiding in any necessary disinfection and cleanup. In

25

addition, threat reports from behavioral engines provide a valuable source of forensic data,

because the exact operations performed by a piece of malicious software can be analyzed in

detail. From a general administration perspective, knowledge about which applications and

files are frequently in use can aid the placement of file caches, application servers, and even

be used to determine the optimal number of licenses needed for expensive applications.

Consider the outbreak of a 0-day exploit. An enterprise might receive a notice of a new

malware attack and wonder how many of their systems were infected. In the past, this might

require performing an inventory of all systems, determining which were running vulnerable

software, and then manually inspecting each system. Using the forensics archival interface

in the proposed architecture, an operator could search for the UID of the malicious file over

the past few months and instantly find out where, when, and who opened the file and what

malicious actions the file performed. The impacted machines could then immediately be

quarantined.

The forensics archive also enables retrospective detection. This means that the complete

archive of files that are transmitted to the cloud service may be re-scanned by the antivirus

engines whenever a signature update occurs. Retrospective detection allows previously

undetected malware that has infected a host to be identified and quarantined.

2.4 CloudAV Implementation

To explore and validate the proposed cloud-based architecture, we constructed a pro-

duction quality implementation called CloudAV. In this section, we describe how CloudAV

implements each of the three main components of the architecture.

2.4.1 Host Agent

We implement the host agent for a variety of platforms including Windows 2000/XP/Vista,

Linux 2.4/2.6, and FreeBSD 6.0+. The implementation of the host agent is designed to ac-

quire executable files for analysis by the cloud service, as executables are a common source

of malicious content. We discuss how the agent can be extended to acquire DLLs, docu-

26

ments, and other common malcode-bearing files types in the discussion section.

While the exact APIs are platform dependent (CreateProcess on Win32, execve syscall

on Linux 2.4, LSM hooks on Linux 2.6, etc.), the host agent hooks and interposes on

system events. This interposition is implemented via the MadCodeHook [152] package on

the Win32 platform and via the Dazuko [147] framework for the other platforms. Process

creation events are interposed upon by the host agent to acquire and process candidate

executables before they are allowed to continue. In addition, filesystem events are captured

in order to identify new files entering a host and preemptively transfer them to the cloud

service before execution to eliminate any user-perceived latencies.

As motivating factors of our work include the complexity and security risks involved

in running host-based antivirus software, the host agent was designed to be simple and

lightweight, both in code size and resource requirements. The Win32 agent is approxi-

mately 1,500 lines of code of which 60% is managed code, further reducing the vulnerabil-

ity profile of the agent. The agent for the other platforms is written in Python and is under

300 lines of code.

While the host agent is primarily targeted at end hosts, our architecture is also effective

in other deployment scenarios such as mail servers. To demonstrate this, we also imple-

mented a Milter (mail filter) frontend for use with mail transfer agents (MTAs), such as

Sendmail and Postfix. This Milter frontend allows us to scan all attachments on incoming

emails. Using the Pymilter API, the Milter frontend weighs in at approximately 100 lines

of code.

2.4.2 Cloud Service

The cloud service acts as a dispatch manager between the host agent and the backend

analysis engines. Incoming candidate files are received, analyzed, and a threat report is

returned to the host agent dictating the appropriate action to take. Communication between

the host agent and the cloud service uses a HTTP wire protocol protected by mutually

authenticated SSL/TLS. Between the components within the cloud service itself, commu-

nication is performed via a publish/subscribe bus to allow modularization and scalability.

27

(a) (b)

Figure 2.4: Screen captures of the detection engine VM monitoring interface (a) and the
web management portal which provides access to forensic data and threat reports (b).

The cloud service allows for various priorities to be assigned to analysis requests to aid

latency-sensitive applications and penalize misbehaving hosts. For example, application

scanning may take higher analysis priority than background analysis tasks such as retroac-

tive detection and mail scanning. This also enables the system to penalize or temporarily

suspend misbehaving hosts that may try to submit many analysis requests or otherwise

flood the system.

Each backend engine runs in a Xen virtualized container, which offers significant ad-

vantages in terms of isolation and scalability. Given the numerous vulnerabilities in existing

antivirus software, isolation of the antivirus engines from the rest of the system is vital. If

one of the antivirus engines in the backend is targeted and successfully exploited by a ma-

licious candidate file, the virtualized container can simply be disposed of and immediately

reverted to a clean snapshot. As for scalability, virtualized containers allow the network

service to spin up multiple instances of a particular engine when demand for its services

increases.

Our current implementation employs 12 engines: 10 traditional antivirus engines (Avast [5],

AVG [6], BitDefender [7], ClamAV [168], F-Prot [8], F-Secure [9], Kaspersky [10], McAfee [11],

Symantec [12], and Trend Micro [13]) and two behavioral engines (Norman Sandbox [141]

and CWSandbox [36]). The exact version of each detection engine is listed in Figure 2.1(a).

Nine of the backend engines run in a Windows XP environment using Xen’s HVM capa-

bilities, while the other three run in a Gentoo Linux environment using Xen domU par-

avirtualization. Implementing each particular engine for the backend is a simple task and

28

extending the backend with additional engines in the future is equally as simple. For ref-

erence, the amount of code required for each engine is 42 lines of Python code on average

with a median of 26 lines of code.

2.4.3 Management Interface

The third component of the CloudAV architecture is a management interface that pro-

vides access to the forensics archive, policy enforcement, alerting, and report generation.

These interfaces are exposed to network administrators via a web-based management in-

terface. The web interface is implemented using Cherrypy, a Python web development

framework. A screen capture of the dashboard of the management interface is provided in

Figure 2.4.

The centralized management and network-based architecture allows for administrators

to enforce network-wide policies and define alerts when those policies are violated. Alerts

are defined through a flexible specification language consisting of attributes that describe

an access request from the host agent and boolean predicates similar to an SQL WHERE

clause. The specification language allows for notification for triggered alerts (via email,

syslog, SNMP) and the enforcement of administrator-defined policies.

Network administrators may want, for example, to block certain applications from be-

ing used on end hosts. While these unwanted applications may not be explicitly malicious,

they may have a negative effect on host or network performance or be against acceptable

use policies. We observed several classes of these potentially unwanted applications in our

production deployment including P2P applications (uTorrent, Limewire, etc.) and multi-

player gaming (World of Warcraft, online poker, etc.). Other policies can be defined to

reinforce prudent security practices, such as blocking the user from executing attachments

from an email application.

29

Engines 3 Months 1 Month 1 Week
1 73.9% 63.1% 59.6%
2 87.7% 81.0% 77.6%
3 92.0% 87.8% 84.8%
4 93.8% 90.9% 88.4%
5 94.8% 92.4% 90.5%
6 95.4% 93.4% 91.8%
7 95.9% 94.0% 92.8%
8 96.2% 94.5% 93.5%
9 96.5% 94.8% 94.0%

10 96.7% 95.0% 94.4%
(a)

1 Day d1 Week1 Month3 Months 1 Year
Recency of Malware Sample

50

60

70

80

90

100

Pe
rc

en
t D

et
ec

te
d

1 Engine
2 Engines
3 Engines
4 Engines
5 Engines
6 Engines
7 Engines
8 Engines
9 Engines
10 Engines

(b)

Figure 2.5: The average detection coverage for the various datasets (a) and the continuous
coverage over time (b) when a given number of engines are used in parallel.

2.5 Evaluation

In this section, we provide an evaluation of the proposed architecture through two dis-

tinct sources of data. The first source is a dataset of malicious software collected over a

period of one year. Using this dataset, we evaluate the effectiveness of N-version protection

and retrospective detection. We also utilize this malware dataset to empirically quantify the

size of the vulnerability window.

The second data source is derived from a production deployment of the system on a

campus network in computer labs that span multiple departments for a period of over six

months. We use the data collected from this deployment to explore the performance char-

acteristics of CloudAV. For example, we analyze the number of files handled by the cloud

service, the utility of the caching system, and the time it takes the detection engines to

analyze individual files. In addition, we use deployment data to demonstrate the forensics

capabilities of the approach. We detail two real-world case studies from the deployment,

one involving an infection by malicious software and one involving a suspicious, yet legit-

imate executable.

30

2.5.1 Malware Dataset Results

Our evaluation is based on a malware dataset obtained through Arbor Networks’ Arbor

Malware Library (AML) [136]. AML is composed of malware collected using a variety of

techniques such as distributed darknet honeypots, spam traps, and honeyclient spidering.

The use of a diverse set of collection techniques means that the malware samples are more

representative of threats faced by end hosts than malware datasets collected using only a

single collection methodology such as Nepenthes [16]. The AML dataset we used consists

of 7,220 unique malware samples collected over a period of one year (November 12th,

2006 to November 11th, 2007). An average of 20 samples were collected each day with a

standard deviation of 19.6 samples.

We used the AML malware dataset to assess the effectiveness of a set of heterogeneous

detection engines. Figure 2.5(a) and (b) show the overall detection rate across different time

ranges of malware samples as the number of detection engines is increased. The detection

rates were determined by looking at the average performance across all combinations of N

engines for a given N. For example, the average detection rate across all combinations of

two detection engines over the most recent three months of malware was 87.7%.

Figure 2.5(a) demonstrates how the use of multiple heterogeneous engines allows Clou-

dAV to significantly improve the aggregate detection rate. Figure 2.5(b) shows the detection

rate over malware samples ranging from one day old to one year old. The graph shows how

using 10 engines can increase the detection rate for the entire year-long AML dataset as

high as 98%.

The graph also reveals that CloudAV significantly improves the detection rate of more

recent malware. When a single antivirus engine is used, the detection rate degrades from

82% against a year old dataset to 52% against a day old dataset (a decrease of 30%). How-

ever, using 10 antivirus engines the detection coverage only goes from 98% down to 88% (a

decrease of only 10%). These results show that not only do multiple engines complement

each other to provide a higher detection rate, but the combination has resistance to cover-

age degradation as the encountered threats become more recent. Because the most recent

threats are typically the most important, a detection rate of 88% versus 52% is a significant

31

advantage.

Another noticeable feature of Figure 2.5 is the decrease in incremental coverage. Mov-

ing from one to two engines results in a large jump in detection rate, moving from two to

three is smaller, moving from three to four is even smaller, and so on. The diminishing

marginal utility of additional engines shows that a practical balance may be reached be-

tween detection coverage and licensing costs, which we discuss further in the discussion

section.

In addition to the averages presented in Figure 2.5, the minimum and maximum detec-

tion coverage for a given number of engines is of interest. For the one week time range,

the maximum detection coverage when using only a single engine is 78.6% (Kaspersky)

and the minimum is 39.7% (Avast). When using three engines in parallel, the maximum

detection coverage is 93.6% (BitDefender, Kaspersky, and Trend Micro) and the minimum

is 69.1% (ClamAV, F-Prot, and McAfee). However, the optimal combination of antivirus

vendors to achieve the most comprehensive protection against malware may not be a simple

measure of total detection coverage. Rather, a number of complex factors may influence

the best choice of detection engines, including the types of threats most commonly faced

by the hosts being protected, the algorithms used for detection by a particular vendor, the

vendor’s response time to 0-day malware, and the collection methodology and visibility

employed by the vendor to collect new malware.

2.5.2 Deployment Results

With the aid of network operations and security staff, we deployed CloudAV across a

large campus network. In this section, we discuss our results based on the data collected as

a part of this deployment.

2.5.2.1 Executable Events

One of the core variables that impacts the resource requirements of the cloud service

is the rate at which new files must be analyzed. If this rate is extremely high, extensive

computing resources will be required to handle the analysis load. Figure 2.6 shows the

32

0 5 10 15 20 25
Days

102

103

104

105

106

Ex
ec

ut
ab

le
 L

au
nc

he
s

Cumulative Executable Launches

20500/day

0 5 10 15 20 25
Days

102

103

104

105

106

U
ni

qu
e

Ex
ec

ut
ab

le
 L

au
nc

he
s

Cumulative Unique Executable Launches

217/day

(a) (b)

Figure 2.6: Executable launches (a) and unique executable launches (b) per day over a one
month period in a representative sample of 50 machines in the deployment.

number of total execution events and unique executables observed during a one month

period in a university computing lab.

Figure 2.6 shows that while the total number of executables run by all the systems in the

lab is quite large (an average of 20,500 per day), the number of unique executables run per

day is two orders of magnitude smaller (an average of 217 per day). Moreover, the number

of unique executables is likely inflated due to the fact that these machines are frequently

used by students to work on computer science class projects, resulting in a large number

of distinct executables with each compile of a project. A more static, non-development

environment would likely see even fewer unique executables.

We also investigated the origins of these executables based on the file path of 1,000

unique executables stored in the forensics archive. Table 2.1 shows the break down of these

sources. The majority of executables originated from the local hard drive but a significant

portion were launched from various network sources. Executables from the temp directory

often indicate that they were downloaded via a web browser and executed, contributing

even more to networked origins. In addition, a non-trivial number of executables were

introduced to the system directly from external media such as a CDROM drive and USB

flash media. This diversity exemplifies the need for a host agent that is capable of acquiring

files from a variety of sources.

33

Program Files 22.3%
Local Drives Temp Directory 14.2%

52.4% Windows Directory 13.4%
Other 2.4%
Engineering Apps 23.6%

Network Drives User Desktop Shares 9.3%
43.3% User AFS Shares 8.3%

Other 2.1%
External Media USB Flash 2.4%

4.4% CDROM Drive 2.0%

Table 2.1: A distribution of the sources of 1,000 executables observed during the deploy-
ment of our host agent over a six-month period.

2.5.2.2 Caching and Performance

A second important variable that determines the scalability and performance of the

system is the cache hit rate. A hit in the local cache can prevent network requests, and a hit

in the remote cache can prevent unnecessary file transfers to the cloud service. The hosts

instrumented as a part of the deployment were heavily loaded Windows XP workstations.

The Windows Start Menu contained more than 250 executable applications including a

wide range of Internet, multimedia, and engineering packages.

Our results indicate that 10 processes were launched from when the host agent service

loaded to when the login screen appeared, and another 52 processes were launched before

the user’s desktop loaded. As a measure of overhead, we measured the number of bytes

transferred between a specific client and network service under different caching condi-

tions. With a warm remote cache, the boot-up process took 8.7 KB, and the login process

took 46.2 KB. In the case of a cold remote cache, which would only ever occur once when

the first host in the network loaded for the first time, the boot-up process took 406 KB and

the login process took 12.5 MB. For comparison, the Active Directory service installed on

the deployment machines took 171 KB and 270 KB on boot and login respectively.

It is also possible to evaluate the performance of the caching system by looking at

Figure 2.6. We recorded almost 615,000 total execution events over one month yet only

observed 1,300 unique executables. As a remote cache miss only happens when a new

34

executable is observed, the remote cache hit rate is approximately 99.8%. Even more

significant, the local cache can be pre-seeded with known installed software during the

host agent installation process, improving the hit rate further. In the infrequent case when a

miss occurs in both the local and remote cache, the candidate file must be transferred to the

cloud service. Network latency, throughput, and analysis time all affect the user-perceived

delay between when a file is acquired by the host agent and a threat report is returned by

the network service. As local networks usually have low latencies and high bandwidth, the

analysis time of files will often dominate the network latency and throughput delay. The

average time for a detection engine to analyze a candidate file in the AML dataset was

approximately 1.3 seconds with a standard deviation of 1.8 seconds.

2.5.2.3 Forensics Case Studies

We review two case studies from the deployment concerning two real-world events that

demonstrate the utility of the forensics archive.

Malware Case Study: While running the host agent in transparent mode in the campus

deployment, the CloudAV system alerted us to a candidate executable that had been marked

as malicious by multiple antivirus engines. It is important to note that this malicious file

successfully evaded the local antivirus software (McAfee) that was installed alongside our

host agent. Immediately, we accessed the management interface to view the forensics infor-

mation associated with the tracked execution event and runtime behavioral results provided

by the two behavioral engines employed in our network service.

The initial executable launched by the user was warcraft3keygen.exe, an appar-

ent serial number generator for the game Warcraft 3. This executable was just a boot-

strap for the m222.exe executable which was written to the Windows temp directory and

subsequently launched via CreateProcess. m222.exe then copied itself to C:\Program

Files\Intel\Intel, made itself hidden and read-only, and created a fraudulent Windows

service via the Service Control Manager (SCM) called Remote Procedure Call (RPC)

MO to launch itself automatically at system startup. Additionally, the malware attempted

to contact command and control infrastructure through DNS requests for several names

35

including 50216.ipread.com, but the domains had already been blackholed.

Legitimate Case Study: In another instance, we were alerted to a candidate executable that

was flagged as suspicious by several engines. The executable in question was the PsExec

utility from SysInternals which allows for remote control and command execution. Given

that this utility can be used for both malicious and legitimate purposes, it was worthy of

further investigation to determine its origin.

Using the management interface, we were able to immediately drill down to the affected

host, user, files, and environment of the suspected event. The PsExec service psexesvc.exe

was first launched from the parent process services.exe when an incoming remote exe-

cution request arrived from the PsExec client. The next execution event was net.exe with

the command line argument localgroup administrators, which results in the listing of

all the users in the local administrators group.

Three factors led us to dismiss the event as legitimate. First, the operation performed

by the net command was not overtly malicious. Second, the user performing this action

was a known network administrator. Lastly, we were able to determine that the net.exe

executable was identical to the one deployed across all the hosts in the network, ruling out

the case where the net.exe program itself may have been a trojaned version. While this

event could be seen as a false positive, it is actually an important alert that needs to be dealt

with by a network administrator. The forensic and historical information provided through

the management interface allows these events to be dealt with remotely in an accurate and

efficient manner.

2.6 Discussion and Limitations

Moving detection functionality into the cloud has other technical and practical impli-

cations. In this section we attempt to highlight limitations of the proposed model and then

describe a few resulting benefits.

36

2.6.1 User Context and Environment in Detection Engines

One important benefit of running detection engines on end systems is that local con-

text such as user input, network input, operating system state, and the local filesystem are

available to aid detection algorithms. For example, many antivirus vendors use behavioral

detection routines that monitor running processes to identify misbehaving or potentially

malicious programs.

While it is difficult to replicate the entire state of end systems inside the cloud, there are

two general techniques that a cloud-based antivirus system can use to provide additional

context to detection engines. First, detection engines can open or execute files inside a VM

instance. For example, existing antivirus behavioral detection systems can be leveraged by

opening and running files inside a virtual antivirus detection instance. A second technique

is to replicate more of the local end system state in the cloud. For example, when a file

is sent to the cloud service, contextual metadata such as other running processes can be

attached to the submission and used to aid detection. However, because complete local

state can be quite large, there are many instances where deploying local detection agents

may be required to complement cloud-based detection.

2.6.2 Disconnected Operation

Another challenge with moving detection into the network is that network connectivity

is needed to analyze files. An end host participating in the service may enter a disconnected

state for many reasons including network outages, mobility constraints, misconfiguration,

or denial-of-service attacks. In such a disconnected state, the host agent may not be able

to reach the cloud service to check the remote cache or to submit new files for analysis.

Therefore, in certain scenarios, the end host may be unable to complete its desired opera-

tions.

Addressing the issue of disconnected operation is primarily an issue of policy, although

the architecture includes technical components that aid in continued protection in a dis-

connected state. For example, the local caching employed by our host agent effectively

allows a disconnected user to access files that have previously been analyzed by the cloud

37

service. However, for files that have not yet been analyzed, a policy decision is necessary.

Security-conscious organizations may select a strict policy that requires users to have net-

work connectivity before accessing new applications, while organizations with less strict

security policies may desire more flexibility. As our host agent works together with host-

based antivirus, local antivirus software installed on the end host may provide adequate

protection for these environments with more liberal security policies until network access

is restored.

2.6.3 Sources of Malicious Behavior

Code or input that cause malicious behavior can be present in many places such as in

the linking, loading, or running of the initial program instructions, and the reading of input

from memory, the filesystem, or the network. For example, some types of malware use

external files such as DLLs loaded at runtime to store and later execute malicious code.

In addition, recent vulnerabilities in desktop software such as Adobe Acrobat [96] and

Microsoft Word [173] have exemplified the threat from documents, multimedia, and other

non-executable malcode-bearing file types. Developing a host agent that handles all these

different sources of malicious behavior is challenging.

Our current CloudAV implementation focuses on executable files, but the host agent

can be extended to identify other file types. To explore the challenges of extending the

system we modified the host agent to monitor the DLL dependencies for each executable

acquired by the host agent. Each dependent DLL of an application is processed similarly

to the executable itself: the local and remote cache is checked to determine whether it was

previously analyzed, and if not, it is transmitted to the cloud service for analysis. Extending

the host agent further to handle documents would be as simple as instructing the host agent

to listen for filesystem events for the desired file types. In fact, the types of files acquired

by the host agent could be dynamically configured at a central location by an administrator

to adapt to evolving threats.

38

AV Vendor 3 Months 1 Month 1 Week
Avast +14.8% +16.6% +24.6%
AVG +5.9% +6.8% +8.7%
BitDefender +4.0% +5.3% +3.1%
ClamAV +0.0% +0.0% +0.0%
F-Prot +9.9% +15.3% +12.6%
F-Secure +7.9% +9.3% +15.0%
Kaspersky +1.5% +1.9% +2.3%
McAfee +10.6% +14.0% +14.2%
Symantec +17.8% +23.0% +20.6%
Trend Micro +9.8% +11.5% +12.6%

Table 2.2: The percentage increase in detection coverage obtained when ClamAV, a truly
free engine, is added to a deployment with only a single engine.

2.6.4 Detection Engine Licensing

Most of the antivirus and behavioral engines employed in our architecture required paid

licenses. Acquiring licenses for all the engines may be infeasible for some organizations.

While we have chosen a large number of engines for evaluation and measurement purposes,

the full amount may not be necessary to obtain effective protection. As seen in Figure 2.5,

10 engines may not be the most effective price/performance point as diminishing returns

are observed as more engines are added.

We currently employ four free engines in our system for which paid licenses were not

necessary: AVG, Avast, BitDefender, and ClamAV. Using only these four engines, we

are still able to obtain 94.3%, 92.0%, and 88.0% detection coverage over periods of three

months, one month, and one week respectively. These detection coverage values for the

combined free engines exceed every single vendor in each dataset period.

While the interpretation of the various antivirus licenses is unclear in our architecture,

especially with regards to virtualization, it is likely that site-wide licenses would be needed

for the “free” engines for a commercial deployment. Even if only one licensed engine is

used, our system still maintains the benefits such as forensics and management. As an

experiment for this scenario, we measured how much detection coverage would be gained

by adding the only truly free (GPL licensed) antivirus product, ClamAV, to an existing

system employing only a single engine. Although ClamAV is not an especially effective

39

engine by itself, it can add a significant amount of detection coverage, up to a 25% increase

when paired with another engine as seen in Table 2.2.

2.6.5 Managing False Positives

The use of parallel detection engines has important implications for the management

of false positives. While multiple detection engines can increase detection coverage, the

number of false positives encountered during normal operation may increase when com-

pared to a single engine. While antivirus vendors try hard to reduce false positives, they

can severely impair productivity and take weeks to be corrected by a vendor.

The proposed architecture provides the ability to aggregate results from different detec-

tion techniques which enables the unique ability to trade-off detection coverage for false

positive resistance. If an administrator wanted maximal detection coverage they could set

the aggregation function to declare a candidate file unsafe if any detector indicated the file

malicious. However, a false positive in any of the detector would cause the aggregator to

declare the file unsafe.

In contrast, an administrator more concerned about false positives may set the aggrega-

tion function to declare a candidate file unsafe if at least half of the detectors deemed the

file malicious. In this way multiple detection engines can be used to reduce the impact of

false positives associated with any single engine.

To explore this trade-off, we collected 12 real-world false positives that impact different

detectors in CloudAV. These files range from printer drivers to password recovery utilities

to self-extracting zip files. We defined a threshold, or confidence index, of the number

of engines required to detect a file before deeming it unsafe. For each threshold value, we

measured the number of remaining false positives and also the corresponding detection rate

of true positives.

The results of this experiment are seen in Table 2.3. At a threshold of four engines, all

of the false positives are eliminated while only decreasing the overall detection coverage by

less than 4%. As this threshold can be adjusted at any time via the management interface,

it can set by an administrator based on the perceived threat model of the network and the

40

Threshold False Positives Detection
1 12 97.7%
2 5 96.3%
3 2 95.2%
4 0 93.9%

Table 2.3: The number of false positives observed at each engine threshold, and the asso-
ciated detection coverage over the full malware dataset.

actual number of false positives encountered during operation.

A second method of handling false positives is enabled by the centralized manage-

ment of the cloud service. In the case of a standard host-based antivirus deployment, en-

countering a false positive may mean weeks of delay and loss of productivity while the

antivirus vendor analyzes the false positive and releases an updated signature set to all

affected clients. In the network-based architecture, the false positive can be added to a

network-wide whitelist through the management interface in a matter of minutes by a local

administrator. This whitelist management allows administrators to alleviate the inconve-

nience of false positives and empowers them to cut out the antivirus vendor middle-man

and make more informed and rapid decisions about threats on their network.

2.6.6 Breaking Free of Vendor Lock-in

Finally, a serious issue associated with extensive deployments of host-based antivirus

in a large enterprise or organizational network is vendor lock-in. Once a particular vendor

has been selected through an organization’s evaluation process and software is deployed to

all departments, it is often hard to switch to a new vendor at a later point due to technical,

management, and bureaucratic issues. In reality, organizations may wish to switch an-

tivirus vendors for a number of reasons, including increased detection coverage, decreased

licensing costs, or integration with network management devices.

The proposed antivirus architecture is innately vendor-neutral as it separates the ac-

quisition of candidate files on the end host from the actual analysis and detection process

performed in the cloud service. Therefore, even if only one detection engine is employed

in the cloud service, a network administrator can easily replace it with another vendor’s

41

offering if desired, without an upheaval of existing infrastructure.

2.7 Related Work

Our approach of moving the detection of malicious software into the cloud is aligned

with a strong trend toward moving services from end host and monolithic servers into the

cloud. For example, in-network email [137, 46, 163] and HTTP [133, 149] filtering systems

are already popular and are used to provide an additional layer of security for enterprise

networks. In addition, there have been several attempts to provide cloud services as overlay

networks [164, 186].

Our use of N-version protection is closely related to N-version programming, a paradigm

in which multiple implementations of critical software are written by independent parties to

increase the reliability of software by reducing the probability of concurrent failures [15].

Traditionally, N-version programming has been applied to systems requiring high avail-

ability such as distributed filesystems [155]. N-version programming has also been applied

to the security realm to detect implementation faults in web services that may be exploited

by an attacker [135].

A handful of online services have recently been constructed that implement N-version

detection techniques. For example, there are online web services for malware submission

and analysis [36, 90, 141]. However, these services are designed for the occasional manual

upload of a virus sample, rather than the automated and real-time protection of end hosts,

which results in vastly different architectural decisions and performance characteristics.

2.8 Summary

To address the ever-growing sophistication and scale of modern malicious software, we

have proposed a new cloud-centric model for the deployment of antivirus functionality. By

adapting a previously host-centric deployment model to leverage the cloud, our CloudAV

approach provides significant advantages over traditional antivirus including better detec-

tion of malicious software, enhanced forensics capabilities, retrospective detection, and

42

improved deployability and management.

2.8.1 Leveraging the Cloud

CloudAV offers a boost to dismal endpoint security mechanisms to protect against host-

based threats. Just a few years ago, sending files to an external network-based service for

analysis may have been perceived as infeasible from a performance perspective. How-

ever, the introduction of high-speed, low-latency networking and the widespread adoption

of cloud computing technologies has made such a cloud-centric model for anti-malware

services a feasible and enticing approach. In particular, the following properties of cloud

computing proved invaluable in the design and implementation of the CloudAV service:

• Availability: With a security service like antivirus that is in the critical path of end

host operation and user productivity, it is imperative that high availability be main-

tained. Cloud computing offers the ability to offer highly available cloud-based an-

tivirus services at affordable costs.

• Global Visibility: Our cloud-hosted anti-malware service offers global visibility of

threats across all the hosts participating in the service. Network effects can also

be observed through higher cache hit rates when more hosts are participating in the

CloudAV service as well as increased opportunities of retrospective detection by col-

lecting a large sample of potentially malicious binaries.

• Elasticity: The file analysis workloads in CloudAV can be quite variable in normal

operation and even more so if malicious parties intentionally increase workloads in

an attempt to cause denial-of-service. Therefore, the elasticity provided by cloud

computing services is key to adapt to and handle such variable workloads by spinning

up additional backend detection engines on demand.

• Isolation: By isolating the complexity of the detection engine from the end host,

CloudAV can protect end hosts from the impact of AV engine vulnerabilities. The

cloud service also insulates itself from these vulnerabilities by hosting the backend

detection engines in isolated and disposable virtual machines.

43

CHAPTER 3

Protecting Mobile Devices with a Cloud Service

In the previous chapter, we discussed our CloudAV approach to protecting traditional

end hosts from malicious software using a cloud-centric security service. One of the key

side-effects of moving the complexity of CloudAV’s detection engines to the cloud was the

simplification of the software agent that resides on each end host. We discussed some of the

benefits of a lightweight host agent including a reduced attack surface and increased porta-

bility across operating systems. One important side-effect not as thoroughly investigated

was the reduced performance impact on the host itself by alleviating that host from having

to execute expensive detection routines locally. While such performance gains may not be

as observable or important on common desktop platforms with plenty of spare CPU and

memory, resource-constrained devices may observe considerable gains by the CloudAV

approach. One common class of resource-constrained devices is consumer mobile devices,

which are receiving much more attention from both attackers and defenders in recent years.

In this chapter, we discuss our motivation and approach to adapting the CloudAV cloud ser-

vice and host agent to consumer mobile devices.

Modern mobile platforms such as Google’s Android, Apple’s iPhone, and Nokia’s

Maemo run near-complete versions of commodity operating systems like BSD and Linux.

Functionality like complete multi-protocol networking stacks, UI toolkits, and file sys-

tems provide developers with a rich environment to quickly build applications but open up

devices to the same wide range of threats that target desktops. Over a thousand native third-

party applications were developed for the iPhone platform before the official SDK was even

44

released [142], several hundred have been developed for Nokia’s Maemo platform [54], and

thousands of developers are creating applications for Google’s Android platform [83].

To date, security vendors have marketed mobile-specific versions of antivirus soft-

ware [112, 56, 53]. However, as the complexity of mobile platforms and threats increase,

we argue that mobile antivirus solutions will look more like their desktop variants. The

functionality required to detect sophisticated malware can have significant drain on com-

putation and power which are critical resources on mobile devices.

To conserve scarce mobile resources and improve detection of modern threats we ad-

vocate moving mobile antivirus functionality to an off-device cloud service. The core of

this approach is expending bandwidth to reduce on-device CPU and memory resources and

thereby save power. We foresee three important benefits:

• Better detection of malicious software: Once detection functionality is offloaded

to a cloud service, significantly more resources can be dedicated to evaluating each

suspicious file. Our approach uses detection engines running inside a cloud service

providing mobile devices with the protection capabilities of heavyweight behavioral

detection engines.

• Reduced on-device resource consumption: By transferring files to a cloud-centric

service for analysis, we argue that overall CPU use, memory use, and power can be

reduced compared to performing the analysis on-device. Even more important, the

cloud service can scale and be extended with new signatures and detection engines

without using additional resources on mobile devices. In exchange, the approach

may be more taxing on the mobile device’s radio and network data usage.

• Reduced on-device software complexity: Modern threats have become extremely

sophisticated, requiring complex antivirus software to detect and mitigate threats. By

deploying a relatively simple agent on mobile devices and pushing complex detection

software into the network, the complexity of mobile software can be minimized. This

reduces the on-device attack surface and the effort required to port the agent to the

numerous and evolving mobile platforms.

45

Engine Combination Detected Coverage
CM 229/469 48.82%

CM, SM 290/469 61.83%
CM, SM, MA 358/469 76.33%

CM, SM, MA, BD 417/469 88.91%
CM, SM, MA, BD, FS 430/469 91.68%

Table 3.1: An example of the increased detection coverage against a dataset of a recent
month’s worth of malware samples when using multiple engines in parallel: ClamAV (CM),
Symantec (SM), McAfee (MA), BitDefender (BD), and F-Secure (FS).

To explore the idea of a cloud-based malware detection service for mobile devices, we

extend the CloudAV platform with an on-device mobile agent and an off-device mobile-

specific behavioral detection engine. Through a series of benchmarks comparing CloudAV

to existing on-device antivirus software, we find that our mobile agent consumes an order

of magnitude less CPU and memory, consumes less power in common scenarios, and offers

greater protection capabilities that scale against future threats.

3.1 Mobile CloudAV

When designing the CloudAV architecture, we transitioned the complexity of the detec-

tion engines from the end host into the cloud. The result was a very lightweight agent that

remained on the end host. While not initially designed for mobile platforms, the lightweight

host agent was an intuitive application for protecting resource constrained mobile devices.

3.1.1 Mobile Agent

Extending the benefits of the CloudAV platform requires that an agent be deployed on

a mobile platform. Given that the CloudAV platform inherently encourages a simple on-

device agent, few fundamental modifications to the architecture are necessary to develop

and support a mobile agent. One of the notable differences between the traditional host

agent and our newly developed mobile agent is the constrained power, computation, and

network resources available to the mobile device. Therefore, the file identifier algorithms

46

and communications protocol with the cloud service are important, as the agent spends

most of its cycles on those activities.

We developed a mobile agent to interface with the CloudAV service for the Linux-

based Maemo platform and deployed it on a Nokia N800 mobile device. The mobile agent

is implemented in Python and uses the Dazuko [147] framework to interpose on system

events. Specifically, we hook the execve(2) syscall and file system operations to acquire

and process candidate files before permitting their access. The mobile agent required only

170 lines of code.

3.1.2 Mobile-Specific Behavioral Engine

A more resource-intensive method of detecting malicious activity is through behavioral

analysis. Behavioral engines attempt to emulate or run real operating systems and applica-

tions to determine whether a file is performing malicious behavior at runtime. While these

engines usually require a great deal of resources, which would not be suitable for a mo-

bile device, deploying such an engine in the cloud service allows us to gain the protection

benefits without the resource costs.

To demonstrate this point, we developed a mobile-specific behavioral detection engine.

The behavioral engine runs candidate mobile applications in a virtualized Maemo operat-

ing environment hosted in the cloud service and monitors the application’s system calls

and D-Bus interprocess communication for malicious behavior. To exemplify the capabil-

ity to detect and mitigate a malicious application, the behavioral engine flags potentially

malicious actions such as modifying or destroying a user’s personal data, initiating out-

going calls to unrecognized numbers via Skype, and initiating socket communications to

untrusted or blacklisted destinations.

3.1.3 Connectivity and Mobile Data Usage

Mobile devices may enter a disconnected state where the mobile agent may not be able

to effectively utilize the network-based security services. However, because connectivity

will often be required to acquire new applications and content, the need for analysis in a

47

disconnected state may be minimal. Furthermore, mobile devices are rapidly increasing in

connectivity capabilities with multiple radios for high-speed data transmission.

Users of mobile devices may also have concerns around the amount of cellular data us-

age incurred by such a service. While we anticipate that caching mechanisms and the com-

monality of applications will result in reasonable data usage amounts, to not consider the

practical deployment aspects of such a cloud service would be incomplete. Non-technical

aspects of the deployment may assist in resolving this issue. For example, if the cloud ser-

vice is deployed by a mobile service provider to protect its subscribers, the provider may

waive the data usage for users of the service.

3.1.4 Additional Security Services

The mobile security services that can be hosted in a cloud service are not limited to

antivirus functionality. We envision a cloud-centric platform enabling a range of different

security services.

• SMS Spam Filtering: SMS spam filtering functionality, which is currently imple-

mented in an ad-hoc manner by some mobile antivirus products [112], can be much

more accurate in a cloud-centric deployment model through the aggregation of data

from a large corpus of users.

• Phishing Detection: Just as a centralized view of the web has helped Google develop

strong anti-phishing tools [84], a centralized view of mobile activity in the service

provider can help mobile operators detect and prevent phishing attacks against their

customers.

• Centralized Blacklists: Blacklists of various communication addresses such as Blue-

tooth and IP may be implemented as an off-device security service. These blacklists

can be maintained on a global level by a service provider for known malicious entities

or on a personal user-specified level. These centralized policies may be opportunis-

tically pushed to client devices for enhanced performance.

48

Agent Startup Time Avg Mem Peak Mem User Jiffies Total Jiffies
ClamAV 57 sec 25967 KB 39556 KB 13349 15684

MA-CL+CR 0.2 sec 1502 KB 2154 KB 1502 2185
MA-CL+WR 0.2 sec 1486 KB 2124 KB 1486 1854
MA-WL+WR 0.2 sec 1189 KB 1812 KB 1189 1714

Table 3.2: Comparison of the mobile agent with ClamAV in memory consumption and
CPU jiffies on the Nokia N800.

Many of the above services are currently deployed in an ad-hoc manner on individual

mobile devices, potentially losing out on the network effect and security gains that can be

gleaned when numerous users participate in the service and provide feedback to a central

service.

Most importantly, the proposed architecture significantly lowers the bar for extending

novel security services to mobile devices. For example, if a security vendor develops a new

algorithm that is effective against detecting malicious mobile applications, that technique

can be seamlessly integrated into the network service and put into operation without af-

fecting any of the existing mobile devices. This transparent extensibility is a very powerful

tool as mobile platforms and their needs rapidly evolve.

3.2 Evaluation

For our evaluation, we perform a series of benchmarks on two Nokia mobile devices.

We measure the resource and power consumption of these devices and compare our mo-

bile agent with existing commercial antivirus products. For each experiment, we provide

results for three cache states for our mobile agent (MA): CL+CR: cold local, cold remote;

CL+WR: cold local, warm remote; and WL+WR: warm local, warm remote.

3.2.1 Computational Resources

In the first experiment, we compare the CPU and memory consumption of the Cla-

mAV [168] engine with our mobile agent on the Nokia N800. This benchmark serially

runs common applications: the built-in N800 web browser, the Skype VoIP client, the Pid-

49

Agent Avg / Peak / Total Energy
None (Baseline) 0.36 / 0.63 / 43.2 W

Kaspersky 0.86 / 1.27 / 89.4 W
MA-CL+CR (EDGE) 1.51 / 2.31 / 250.6 W
MA-CL+CR (WiFi) 1.31 / 2.44 / 165.1 W

MA-CL+WR (EDGE) 1.22 / 2.13 / 126.9 W
MA-CL+WR (WiFi) 0.92 / 1.83 / 74.5 W

MA-WL+WR 0.82 / 1.20 / 59.9 W

Table 3.3: Comparison of the mobile agent with Kaspersky Mobile Security on the Nokia
N95.

gin IM client, the Kagu media player, and a PDF viewer. The application binaries and

associated shared libraries, 346 files in total, are all processed by the particular engine.

CPU usage is measured in both the number of jiffies the process has been scheduled for in

userspace (utime) and total jiffies (utime + stime). The memory is based on the resident set

size (RSS) of the process, or the number of non-shared memory pages currently in use by

the process.

The results of the benchmark are listed in Table 3.2. ClamAV requires approximately

18 times as much memory and over eight times as much CPU time than the worst-case

cache configuration for the mobile agent. In addition, the ClamAV engine has an extremely

lengthy initialization process due to the loading of its signature database.

3.2.2 Power Consumption

In the second experiment, we perform a micro benchmark with a Nokia N95 smart-

phone. We measure the power consumption required to analyze files locally with Kasper-

sky’s Mobile Security [112] software and compare it to using the mobile agent and network

service. For instances in which the mobile agent needs to access the cloud service for cache

queries or file transfers, we compare both the WiFi and GRPS/EDGE radios on the N95.

The files analyzed are a collection of third-party applications and games totaling approxi-

mately 25 megabytes.

The results of the experiment are listed in Table 3.3. This experiment exemplifies the

importance of the local and remote caching mechanisms. While the cold-remote cache

50

Detection Engine Signature Database Size
Symantec Mobile 27 signatures
Kaspersky Mobile 284 signatures

ClamAV 262289 signatures
Mobile Agent > 5 million sigs + behavioral

Table 3.4: The number of threats addressed in the signature database of various detection
engines.

states result in increased power consumption due to the energy of the radio transmission,

a cold cache configuration is the worst case scenario which rarely occurs in practice. Both

the warm-local/warm-remote and cold-local/warm-remote cache states, which are arguably

the most common scenario, outperform the local Kaspersky engine in terms of consumed

power. While we observed extremely high remote cache hit rates in a desktop environment,

it is unclear whether the commonality of applications and associated cache hit rate would

be similar in a mobile environment.

3.2.3 Scale of Detection Algorithms

Table 3.4 shows the number of threats in each detection engine’s signature database.

Our mobile agent vastly outperformed ClamAV on the N800 device while protecting against

an order of magnitude more threats. While the power overhead of the mobile agent in the

worst case was greater than Kaspersky’s antivirus software, Kaspersky only scanned for

284 threats, roughly four orders of magnitude less than the CloudAV service.

Our results demonstrate that the current model of on-device antivirus software is not

scalable. As the number and complexity of mobile threats increase, on-device engines

and their signature databases will require more processing, storage, and power. On the

other hand, our mobile agent remains constant in its resource requirements and can easily

accommodate new signatures and entirely new engines in the cloud service.

51

3.2.4 On-Device Software Complexity

Our anecdotal experience with on-device antivirus software exemplifies their complex-

ity and inability to deal with mobile platform diversity. First, the ClamAV software running

on the N800 caused the device to randomly reboot when performing a normal system scan,

making reliable evaluation tedious. Second, the N95 evaluation was originally planned to

be with Symantec’s Norton Smartphone Security software which advertises compatibility

with N95’s OS (Symbian Series 60 version 3). However, when we initiated a basic file scan

on the N95, Norton would simply return error -15 and stop execution, with no further

information. In comparison, our model of using a lightweight mobile agent greatly reduces

on-device software complexity and failures.

3.3 Related Work

Several mobile services [73, 79, 111, 158, 180, 189] have advocated leveraging remote

execution by moving services off-device to minimize resource consumption while achiev-

ing performance targets. Our work is novel in the proposition of migrating complex security

services to a network-based detection service to provide enhanced protection capabilities

to mobile devices, while also achieving reduced complexity and resource consumption.

Furthermore, work such as [38] shows how security practitioners increasingly leverage

virtualization to improve host security. Researchers have also explored the use of on-device

virtualization for mobile security applications [61].

3.4 Summary

In this chapter, we investigated the emerging field of mobile security and demonstrated

the application of a cloud-centric security service for the detection of malicious applications

on consumer mobile devices. While mobile attacks are not yet widespread, taking an early,

proactive look at mobile security may prove to be beneficial. As attackers begin to feel out

the space of mobile security and discover economic incentives to target mobile users and

devices, such a cloud-centric approach will undoubtedly be necessary to address mobile

52

threats.

3.4.1 Leveraging the Cloud

Throughout this chapter, we learned that a cloud-centric model for deploying software

security services is an intuitive fit for the unique characteristics of mobile devices. In

particular, the following properties of cloud computing proved to be invaluable in the design

and implementation of the mobile CloudAV service:

• Scalability and Availability: Just like with CloudAV, cloud computing allows us to

build a highly-scalable and highly-available service for protecting mobile devices on

Internet-scale deployments. In addition, by scaling up detection capabilities in the

cloud instead of on the device, the on-device resource requirements for anti-malware

functionality remain static.

• Flexibility: Given that mobile security is a rapidly emerging and evolving field of

security, having the ability to rapidly develop and deploy new security mechanisms

in a flexible way is critical.

• Isolation: As our mobile-specific behavioral detection engine executes potentially

malicious applications during analysis, the isolation provided by virtualized environ-

ments common to cloud computing environments is vital in order to maintain the

integrity of the cloud service.

53

CHAPTER 4

The Dark Side of Cloud Services: Crimeware as a Service

While we have shown that cloud-centric security services have great potential for pro-

tecting end hosts and mobile devices against malicious software, it would be incomplete to

ignore the fact that the positive attributes of cloud services may also be abused by attackers.

Based on our observations in the underground crimeware markets, we anticipate that ma-

licious cloud services, known as Crimeware-as-a-Service (CaaS), will present an attractive

model for attackers. In this chapter, we explore the potential of CaaS, investigate the weak-

nesses of antivirus unpacking capabilities, and construct and evaluate a proof-of-concept

cloud-centric service called PolyPack, which demonstrates an effective CaaS model for

evading malware detection techniques.

PolyPack is a cloud-centric service that employs an array of packers, tools employed by

malware authors to obfuscate their malicious software, to produce a binary that is able to

evade detection by antivirus engines. A typical usage of the PolyPack service is as follows:

(1) a user submits an unpacked binary via PolyPack’s interface, (2) the binary is packed

using an array of packers and each packed version is analyzed by an array of antivirus

engines, and (3) the detection results from the antivirus engines are analyzed to select the

optimally-packed version that provides the most antivirus evasion, and (4) the results of the

PolyPack service are returned to the user.

PolyPack is targeted at providing a useful service for penetration testers who require

the ability to create payloads that will evade the signature detection of a number of an-

tivirus engines. For example, a penetration tester may be unaware of the antivirus product

54

running on a target host and may desire maximal evasion. While it is certainly possible to

manually pack a binary and test it against local antivirus engines, we believe that offering

an automated service can offload the burden of a manual effort and offer advanced features

and considerable extensibility.

Beyond its legitimate utility for penetration testers, PolyPack is an interesting concept

with respect to the crimeware industry. While crimeware such as LuckySploit, Mpack,

WebAttacker, phishing kits, and others have traditionally been sold in an ad-hoc manner,

crimeware authors may find that a software-as-a-service (SaaS) or subscription model is

an attractive alternative. Many benefits like centralized development, management, and

updating that drive the SaaS model for traditional software may translate effectively for

crimeware tools as well. We believe that PolyPack represents the sophistication and au-

tomation of a crimeware-as-a-service (CaaS) deployment that is likely to emerge in the

underground in the near future.

As with many penetration testing tools, PolyPack’s offensive capabilities may be used

for both good and evil. While unrestricted public access to such a service may border

on irresponsible, we believe that PolyPack can be responsibly deployed or licensed in a

similar vein as many of the existing penetration testing frameworks such as CANVAS [94].

In addition to its offensive capabilities, PolyPack allows defensive researchers to better

understand the current state of packer efficacy and the resulting impact that packers may

have on host-based protection mechanisms such as antivirus. Better understanding the

offensive capabilities of attackers can lead researchers to create more effective and resilient

defenses.

Toward these goals, we make three primary contributions:

• An analysis of a large dataset of malware of nearly 100,000 samples detailing the

detection coverage of 23 antivirus engines against malware packed by 35 packer

classes.

• The development of the cloud-based PolyPack service, complete with a backend of

10 popular antivirus engines, 10 common packers, and supplementary features such

as live updating.

55

• An evaluation of the increased evasion capabilities of the PolyPack cloud service us-

ing 208 distinct malware samples compiled from source, each packed by 10 packers

for a total of 2,288 samples.

4.1 AvP: Antivirus vs. Packers

Before delving into the architecture of the PolyPack cloud service, we investigate the

diversity of packer usage observed in the wild as well as the varying detection capabilities

of antivirus engines using a dataset of 98,801 malware samples from Arbor Networks’

Arbor Malware Library (AML) [136]. The 98,801 samples represent over a year’s worth

of AML collection.

4.1.1 Packer Classification

It is important to understand the current use of packers in the wild before investigating

their efficacy against modern antivirus engines. Many factors may influence the diversity

of packers used by malware authors including their feature sets, resistance to antivirus and

reverse engineering, and availability of the packing tool.

Table 4.1 shows the breakdown of packer usage in our dataset as determined by Sig-

Buster [174] and PEiD [102] respectively, both signature-based packer identification tools.

The top 10 packer classes only represent 55.3% and 33.3% of the total samples respectively,

indicating a substantial distribution of packers.

In addition, a significant portion of the malware samples remain unidentified by Sig-

Buster and PEiD, two of the most common tools for identifying packers. Of the 98,801

samples, 28,827 and 39,731 were unsuccessfully identified by SigBuster and PEiD (with

BoB’s userdb.txt) respectively. Of the 39,731 unidentified by PEiD, only 8,174 (20.6%)

compress by more than 20%, indicating that the vast majority of these samples are indeed

packed by unidentified packers. In addition, analysis of the overall binary entropy and the

number of IAT entries when comparing the malicious binaries with a set of legitimate ones

indicates that over 90% of all the samples in our dataset appear to be packed.

56

SigBuster Identifier Count
Allaple 22050
UPX 11324

PECompact 5278
FSG 5080

Upack 3639
Themida 1679
NsPack 1645
ASPack 1505
tElock 1332

Nullsoft 1058

PEiD Identifier Count
UPX 11244

Upack 6079
PECompact 4672

Nullsoft 2295
Themida 1688

FSG 1633
tElock 1398
NsPack 1375
ASpack 1283

WinUpack 1234

Figure 4.1: The top 10 packers classes in our AML dataset as determined by PEiD and
SigBuster.

4.1.2 Antivirus Detection

More interesting than packer diversity is the wide range of detection capabilities that

antivirus engines have when analyzing packed binaries. Such information can help us

determine whether there are antivirus engines that are more effective against a wide range

of packers or packers that are effective at evading a wide range of antivirus engines.

Figure 4.2 shows a set of 23 antivirus products (a subset of those supported by Virus-

Total [90]) crossed with the top 35 most popular packer families determined by PEiD in

our malware dataset (including non-packed and compiler classes such as Borland). Each

square represents the detection coverage of the particular antivirus engine against the mal-

ware samples packed by the particular packer. The greyscale shade of the square represents

the percentage of samples successfully detected as malicious, ranging from 0% (white) to

100% (black).

More important than individual antivirus or packer performance is observing the diver-

sity of detection coverages across the board. The detection ranges can vary widely not only

within a particular antivirus vendor against different packers but also across vendors with

a particular packer. These results hint that the selection of a packer to ensure optimal eva-

sion of antivirus engines may not be a trivial task. These results also provide the primary

motivation for our construction of the PolyPack service to automate this process.

57

AV Detection Fractions By Packer

no
th

in
g

up
x

m
icr

os
of

t
up

ac
k

bo
rla

nd
pe

co
m

pa
ct

nu
lls

of
t

th
em

id
a

fs
g

te
lo

ck
ns

pa
ck

as
pa

ck
wi

nu
pa

ck
pe

tit
e

yo
da

’s
pk

lite
32

as
pr

ot
ec

t
m

or
ph

in
e

ex
pr

es
so

r
m

ew
ex

ec
ry

pt
or

ob
sid

iu
m

pe
sp

in
wi

nr
ar

ar
m

ad
illo

rlp
ac

k
nt

kr
nl

th
in

st
al

l
pe sa

fe
pe

nc
ry

pt
pe

lo
ck

m
as

m
32

m
ol

eb
ox

np
ac

k

AVG7
AntiVir
Avast

Avast-Com
BitDefender

Clam
DrWeb
F-Prot

F-Prot6
F-Secure

G-Data
Ikarus

Kaspersky
McAfee
NOD32
Norman

Panda
QuickHeal

Sophos
TrendMicro

VBA32
Vexira

VirusBuster

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 4.2: The fraction of detected binaries for 23 antivirus products and 35 most popular
packers.

4.2 The PolyPack Cloud Service

In this section, we briefly describe the overall architecture and implementation of the

PolyPack cloud service and then discuss several of its additional features that may be ben-

eficial to penetration testers or other offensive parties.

4.2.1 PolyPack Architecture

The PolyPack architecture consists of three components: the web frontend, the packer

service, and the antivirus service. An overview of the architecture is described in Figure 4.3.

4.2.1.1 Web Frontend

Users of PolyPack interact with the system through a simple web interface. The user

can upload an unpacked binary and have it submitted for processing. PolyPack will process

the binary with its collection of packers and antivirus engines and return the packed binary

for optimal antivirus evasion to the user. Results from the PolyPack service can either be

displayed in real-time in the user’s browser or simply emailed to the user for later retrieval.

58

Web
Frontend

Packer
Service

P 1

P N

Antivirus
Service

AV 1

AV N

Evasion
Metrics

Submitted
Binary

Packed
Binary

Figure 4.3: Conceptual overview of the PolyPack architecture.

4.2.1.2 Packer Service

Submitted binaries are first delivered to the packer service to be processed by an array

of packers before being passed on to the antivirus service.

PolyPack’s packing service currently supports 10 packers: ASPack [171], FSG [21],

NsPack [166], Nullsoft [143], PECompact [175], tElock [177], Themida [176], UPX [145],

WinUpack [69], and Yoda [34]. These packers were chosen as they represent some of the

most common packers used by malware observed in the wild. While choosing common

packers may result in greater detection rate by antivirus than more obscure packers, it pro-

vides a more representative view of the detection coverage experienced in the real world.

We plan to significantly extend the set of supported packers in the future as adding addi-

tional packers is a trivial task. Only 32 lines of code on average are needed to support a

packer.

4.2.1.3 Antivirus Service

After submitted binaries are processed by the packer service, they are fed into the an-

tivirus service to be analyzed by a number of antivirus engines. The results from the various

engines are collected and evaluated to determine the optimal packing scheme.

PolyPack’s antivirus service supports a backend of 10 popular antivirus engines includ-

ing Avast [5], AVG [6], BitDefender [7], ClamAV [168], F-Prot [8], F-Secure [9], Kasper-

sky [10], McAfee [11], Symantec [12], and Trend Micro [13]. These engines are hosted

in disposable virtualized environments to maintain the integrity of the service. Again, the

framework is designed around being extremely extensible for new antivirus engines, re-

59

quiring only 42 lines of code on average to support an engine.

4.2.2 PolyPack Features

While the use of antivirus engines as a feedback mechanism to ensure evasion before

releasing malware is a common practice among attackers, we believe that automating the

process in a centralized service allows us to offer considerable extensibility and unique

features beyond what may be feasible by a manual effort.

4.2.2.1 Evasion Metrics

What constitutes “optimal” evasion may differ based on the goals of the user of PolyPack.

The default metric for determining how effectively a particular samples evades antivirus is

by a simple count of the number of engines that fail to detect it. However, in the real world,

not all antivirus vendors are deployed uniformly and some are significantly more popular

and commonly deployed than others. Therefore, PolyPack offers the ability to weight eva-

sion metrics by antivirus vendor market share size. In the future, we will allow users to

specify their own weighting preferences based on the specific engines they would like to

evade.

4.2.2.2 Live Updating

Once a malware sample is released into the wild, it may fall into the hands of an analyst

or antivirus vendor that produces a signature to block it. Continually monitoring a large

number of antivirus engines may be a tiresome task for a malware author trying to deter-

mine whether a new signature update detects their malware. Since PolyPack possesses both

the submitted binary and the signature update feeds of the antivirus engines, it can automat-

ically re-pack and push out a new optimally-packed binary to the PolyPack user whenever

a antivirus signature update is received. For up-to-the-minute evasion, live binaries may

even be pulled from PolyPack directly and delivered to the victim via HTTP instead of

being pushed to the PolyPack user.

60

4.2.2.3 Submission Confidentiality

As payloads may contain sensitive information or techniques, it is important that sub-

missions to such a service be kept confidential. Unlike services such as VirusTotal [90] that

share submitted samples with antivirus vendors, PolyPack maintains the confidentiality of

submitted binaries. In addition, the backend antivirus engines are isolated from the network

to ensure that samples or hash identifiers are not collected by the engine and leaked back

to the antivirus vendor.

4.2.3 Future Capabilities

While our current implementation offers useful functionality, we plan to extend PolyPack

to support more sophisticated capabilities:

• Additional Packers: Including additional exotic and sophisticated packers and tech-

niques [165] in addition to the current set of well-known packers should significantly

increase the flexibility of PolyPack’s evasion.

• Additional File Formats: Besides the currently supported Portable Executable (PE)

binaries, it would be useful to support additional binary formats, such as ELF and

Mach-O, as well as other common file types used to transport malcode, such as PDFs,

documents, and media files.

• Automated Unpacking Resistance: A significant number of projects have attempted

to tackle the problem of automated unpacking [124, 161, 104, 18, 157, 150]. Provid-

ing resistance to these tools, in addition to antivirus engine evasion, is desirable.

• Behavioral Antivirus: Many antivirus engines augment their signature databases

with the runtime behavioral detection of malware. Instrumenting the backend to pro-

vide feedback on whether a binary tripped an antivirus engine’s behavioral detection

would be valuable to the PolyPack user.

61

Packer Total Median Average
Unpacked 212 1 1.02
ASpack +128 +0 +0.61

FSG +39 +0 +0.19
NsPack +239 +1 +1.15
Nullsoft +646 +3 +3.11

PECompact +509 +2 +2.45
tElock +424 +2 +2.04

Themida +935 +5 +4.50
UPX +91 +0 +0.44

WinUpack +230 +1 +1.11
Yoda +654 +3 +3.14

Average +389 +2 +1.87
PolyPack +1005 +5 +4.83

Table 4.1: For each packer, we list the increase over the unpacked binaries of the total
number of antivirus evasions across all binaries (out of 2,080) and the median/average
number of evasions per binary (out of 10).

4.3 Evaluation

To evaluate the efficacy of the PolyPack cloud service, we analyze a dataset of 208

malware samples compiled from source. Each of these unpacked binaries is fed through

the PolyPack service, resulting in a total of 2,288 (208 unpacked and 2,080 packed) sam-

ples to be scanned by the antivirus engines. Since we can analyze both the packed and

unpacked binaries, we can detail exactly how effective each individual packer is at evading

the antivirus engines and determine how much benefit the PolyPack service provides.

Table 4.1 details the results of our evaluation. The first row shows the baseline for the

unpacked binaries. Across all of the 208 unpacked binaries and the 10 antivirus engines,

a sample goes undetected only 212 times, out of a total 2,080 scan events. On average

across the 208 binaries, a sample only evades 1.02 of the 10 engines. After establishing

this baseline for the unpacked binaries, we can measure how much additional evasion each

individual packer provides. For example, the best individual packer, Themida, goes unde-

tected in 935 more scan events than the baseline and corresponds to an average of evading

4.50 antivirus engines for a single sample. Table 4.1 also details the evasion efficacy if

one were to choose a packer that represented the average of the 10 common packers in our

62

Packer Optimal Occurrences
Themida 122
Nullsoft 59

Yoda 24
PECompact 3

Table 4.2: The number of occurrences a packer produced the optimal packing for each of
the 208 distinct samples.

evaluation.

At first glance, it may be tempting to select Themida for packing all binaries since it

appears to be the “best” of our evaluated packers. However, while Themida has the highest

evasion overall, it is not the optimal choice for all of the binaries. Since PolyPack is able to

evaluate the best packer choice for each binary individually, it is able to achieve a greater

evasion rate as seen in the last row of Table 4.1. Overall, PolyPack is over 250% more

effective at evading antivirus engines than picking a packer at random. Futhermore, while

Themida is the best packer individually, PolyPack picks a better packer for over 40% of the

samples.

Table 4.2 breaks down the cases when packers other than Themida provide the optimal

packing (for 86 binaries of the 208 binaries). Nullsoft provides the best evasion for 59

of the binaries, Yoda for 24 of the binaries, and PECompact for 3 of the binaries. These

results clearly indicate that one packer does not fit all and the variety provided by PolyPack

has a real and measurable effect on a sample’s evasion of antivirus engines. As a more

diverse set of packers are added to PolyPack, we expect these results to become even more

pronounced.

4.4 Related Work

Packers, crypters, protectors, and other tools that assist in the evasion of antivirus

software have been used by malware authors for years. For example, the popular UPX

packer [145] was first released in 1998 and used to legitimately compress executables

distributed over the Internet before malware authors adopted its functionality for evading

63

Cloud Type Legitimate Crimeware
IaaS Amazon EC2, Mosso Renting out infected bots
PaaS Google App Engine, Azure Botnet-backed spam services
SaaS SalesForce, SAP ByDesign Packing services, Decaptcha

Table 4.3: Parallels exist between the cloud computing models of legitimate services and
crimeware services.

signature-based antivirus software. In response to the alarming efficacy of simple packers

against modern antivirus products, researchers have attempted to tackle the difficult prob-

lem of automated unpacking [124, 161, 104, 18, 157, 150]. While such research has shown

promising results, those results have yet to have an observable impact on the real-world

efficacy of antivirus products.

More generally, PolyPack is an illustrative example of crimeware-as-a-service. Mali-

cious parties are keen to adopt the latest technological advances in order to increase the

efficacy of their attacks, and cloud computing platforms offer numerous benefits. While

PolyPack represents a novel approach for deploying malware packing services, it is not the

first cloud-centric service that can be used for illegitimate purposes. For example, botnet

rentals [116] for DDoS, spam, and other attacks, exploit kits [24], phishing kits [88], and

automated or crowd-sourced CAPTCHA-solving services [63, 31, 32] are all commonly

used and widely available crimeware services.

4.5 Summary

In this chapter, we explored the construction, deployment, and real-world evaluation of

a cloud-centric service for the packing and analysis of binaries. We believe such a service

is of value to researchers and penetration testers and is likely to represent the sophistication

and automation that we will continue to see in the crimeware industry. In fact, as seen

in Table 4.3, attackers have already capitalized on the advantages of various cloud com-

puting models to deploy crimeware-as-a-service (CaaS). Understanding the deficiencies of

our current defensive measures and the ease with which attackers can offensively innovate

using CaaS can aid our own efforts in developing adequate protection mechanisms.

64

4.5.1 Leveraging the Cloud

PolyPack represents a glimpse into the future of sophisticated cloud-centric crimeware

services while simultaneously demonstrating the weaknesses in current host-centric se-

curity mechanisms. The packing of malware samples for antivirus evasion, previously a

manual non-optimal operation performed by malware authors, can now be effectively de-

ployed as a cloud service with the support of cloud computing. In particular, the following

properties of cloud computing proved invaluable in the design and implementation of the

PolyPack service and future CaaS:

• Empowerment: PolyPack displays the power offered by cloud computing services

by demonstrating how a simple cloud-hosted service run by an unsophisticated party

can single-handedly defeat the combined capabilities of the entire antivirus industry.

Such empowerment for crimeware services should serve as an alarming warning for

the security community.

• Agility: PolyPack greatly benefits from the agility provided by cloud-delivered ser-

vices as it is able to adapt in real-time to the latest signature updates from antivirus

vendors. Users of the PolyPack service can receive the freshest results and optimally-

packed binaries instantly.

• Elasticity: The typical workloads experienced by a service such as PolyPack can

benefit from the elasticity of cloud computing. Individual packers experience vastly

different performance characteristics and dynamic scaling of particular packer under

a heavy workload is important for a cost-effective and practical deployment.

65

CHAPTER 5

Large-Scale Analysis and Classification of Malicious

Software

As discussed in the previous chapters, effectively detecting malicious software is a com-

plex and difficult problem. However, detection is not the only game in town in the realm of

malware. Indeed, classifying how malicious software operates is becoming an increasingly

important problem. Unfortunately, due to the thousands of new malware samples flood-

ing in each day, the sheer scale of the task of efficient and effective malware classification

is daunting, yet an intuitive fit for a cloud-based service. Deploying such a classification

service in a cloud-centric model not only allows us to scale flexibly and leverage virtualiza-

tion technology for safely executing and tracing malware, but it also offers the opportunity

to open the service to other researchers, thereby resulting in more effective classification

through the network effect. In this chapter, we explore, construct, and evaluate such a

service to classify and analyze malicious software.

Previous efforts to automatically classify and analyze malware focused primarily on

content-based signatures. Content-based signatures are inherently susceptible to inaccura-

cies due to polymorphic and metamorphic techniques [41]. As a result, antivirus products

often characterize malware in ways that are inconsistent across products, incomplete across

malware, and fail to be concise in their semantics. This creates an environment in which

defenders are limited in their ability to share intelligence across organizations, to detect the

emergence of new threats, and to assess risk in the quarantining and cleanup of infections.

66

Dataset Number of Number of Unique Labels
Name Unique MD5s McAfee F-Prot ClamAV Trend Symantec
legacy 3,637 116 1,216 590 416 57
small 893 112 379 253 246 90
large 3,698 310 1,544 1,102 2,035 50

Table 5.1: The number of unique labels provided by five antivirus engines is listed for each
dataset.

To address the limitations of existing automated classification and analysis tools, we

have developed and evaluated a dynamic analysis approach, based on the execution of

malware in a cloud-based virtualized environment and the causal tracing of the operating

system objects affected during malware execution. The reduced collection of these user-

visible system state changes (e.g., files written, processes created) is used to create a finger-

print of the malware’s behavior. These fingerprints can be used in assessing the potential

damage incurred, enabling detection and classification of new threats, and assisting in the

risk assessment of these threats in mitigation and clean up. To address the sheer volume of

malware and the diversity of its behavior, we provide a service to automatically categorize

these malware profiles at-scale into groups that reflect similar classes of behaviors.

5.1 Understanding Malware Labeling

The primary task of antivirus engines is to detect and prevent malicious software from

compromising end hosts. As a normal part of this process, these engines also provide a

label and short description for the malware they detected. The ability of these products to

successfully label and characterize these threats has far-reaching effects: from facilitating

sharing across organizations, to detecting the emergence of new threats, and assessing risk

in quarantine and cleanup. However, for this information to be effective, the descriptions

provided by these engines must be meaningful.

Antivirus engines rarely use the exact same labels for a threat, and users of these engines

have come to expect simple naming differences (e.g., W32Lovsan.worm.a versus Lovsan

versus WORM MSBLAST.A) across vendors. It has always been assumed, however, that

67

Figure 5.1: A Venn diagram of malware samples labeled as SDBot variants by three an-
tivirus products.

there existed a simple mapping from one vendor’s name space to another, and recently,

investigators have begun creating projects to unify these name spaces [22]. Unfortunately,

the task appears daunting. Consider, for example, the number of unique labels created

by various engines. The result in Table 5.1 is striking, because there exists a substantial

difference in the number of unique labels created by each antivirus engine. While one

might expect small differences, it is clear that antivirus vendors disagree not only on what

to label a piece of malware, but also on how many unique labels exist for malware in

general.

One simple explanation for these differences in the number of labels is that some of

these antivirus engines provide a finer level of detail into the threat landscape than the

others. For example, the greater number of unique labels in Table 5.1 for F-Prot may be

the result of F-Prot’s ability to more effectively differentiate small variations in a family

of malware. To investigate this conjecture, we examined the labels of the legacy dataset

produced by the antivirus engines and, using a collection of simple heuristics for the labels,

created a pool of malware classified by F-Prot, McAfee, and ClamAV as SDBot [125]. We

then examined the percentage of time each of the three antivirus engines classified these

malware samples as part of the same family. The result of this analysis can be seen in

Figure 5.1. Each antivirus classifies a number of samples as SDBot, yet the intersection of

68

these different SDBot families is not clean, since there are many samples that are classified

as SDBot by one antivirus and as something else by the others.

These differences in classification go beyond simple differences in labeling: antivirus

products assign distinct semantics to differing pieces of malware. Consistent, complete,

and concise labels are clearly necessary for effective malware classification.

5.2 Properties of a Labeling System

Our analysis of the classification capabilities of current antivirus engines in the previ-

ous section has provided a great deal of evidence indicating that labeling across antivirus

products does not operate in a way that is useful to researchers, operators, or end users. Be-

fore we evaluate these systems any further, it is important to precisely define the properties

an ideal labeling system should have. We have identified three key design goals for such a

labeling system:

• Consistency: Identical items must and similar items should be assigned the same

label.

• Completeness: A label should be generated for as many items as possible.

• Conciseness: The labels should be sufficient in number to reflect the unique proper-

ties of interest, while avoiding superfluous labels.

5.3 Limitations of Antivirus Labeling

Having identified consistency, completeness, and conciseness as the design goals of a

labeling system, we are now prepared to investigate the ability of antivirus products to meet

these goals.

69

legacy
McAfee F-Prot ClamAV Trend Symantec

McAfee 100% 13% 27% 39% 59%
F-Prot 50% 100% 96% 41% 61%
ClamAV 62% 57% 100% 34% 68%
Trend 67% 18% 25% 100% 55%
Symantec 27% 7% 13% 14% 100%

small
McAfee F-Prot ClamAV Trend Symantec

McAfee 100% 25% 54% 38% 17%
F-Prot 45% 100% 57% 35% 18%
ClamAV 39% 23% 100% 32% 13%
Trend 45% 23% 52% 100% 16%
Symantec 42% 25% 46% 33% 100%

Table 5.2: The percentage of time two binaries classified as the same by one antivirus are
classified the same by other antivirus products. Malware is inconsistently classified across
antivirus vendors.

5.3.1 Consistency

To investigate consistency, we grouped malware into categories based on the labels

provided by antivirus vendors. For each pair of distinct malware labeled as the same by

a particular vendor, we compared the percentage of time the same pair was classified by

other antivirus products as the same. For example, two binaries in our legacy dataset with

different MD5 checksums were labeled as W32-Blaster-worm-a by McAfee. These two

binaries were labeled consistently by F-Prot (both as msblast) and Trend (both as msblast),

but inconsistently by Symantec (one blaster and one not detected) and ClamAV (one blaster,

one dcom.exploit). We then selected each vendor in turn and used its classification as the

base. For example, Table 5.2 shows that malware classified by McAfee as the same was

only classified as the same by F-Prot 13% of the time. However, malware classified by F-

Prot as the same was only classified as the same by McAfee 50% of the time. Not only do

antivirus products place malware into different categories, but these categories don’t hold

the same meaning across vendors.

70

Dataset antivirus Updated Percentage of Malware Samples Detected
Name McAfee F-Prot ClamAV Trend Symantec
legacy 20 Nov 2006 100% 99.8% 94.8% 93.73% 97.4%
small 20 Nov 2006 48.7% 61.0% 38.4% 54.0% 76.9%
small 31 Mar 2007 67.4% 68.0% 55.5% 86.8% 52.4%
large 31 Mar 2007 54.6% 76.4% 60.1% 80.0% 51.5%

Table 5.3: The percentage of malware samples detected across datasets and antivirus ven-
dors. Antivirus does not provide a complete categorization of the datasets.

legacy (3,637 binaries) small (893 binaries)
Unique Labels Clusters or Families Unique Labels Clusters or Families

McAfee 116 34 122 95
F-Prot 1216 37 379 62
ClamAV 590 41 253 65
Trend 416 46 246 72
Symantec 57 31 90 81

Table 5.4: The ways in which various antivirus products label and group malware. An-
tivirus labeling schemes vary widely in how concisely they represent the malware they
classify.

5.3.2 Completeness

As discussed earlier, the design goal for completeness is to provide a label for each and

every item to be classified. For each of the datasets and antivirus products, we examined

the percentage of time the antivirus product detected a given piece of malware (and hence

provided a label). A small percentage of malware samples are still undetected a year after

the collection of the legacy datasets (Table 5.3). The results for more recent samples are

even more profound, with almost half the samples undetected in the small dataset and

one quarter in the large dataset. The one quarter undetected for the large set is likely an

overestimate of the ability of the antivirus, as many of the binaries labeled at that point were

many months old (e.g., compare the improvement over time in the two labeling instances

of small). Thus, antivirus products do not provide a complete labeling system.

71

5.3.3 Conciseness

Conciseness refers to the ability of the labeling system to provide a label that reflects

the important characteristics of the sample without superfluous semantics. In particular,

we find that a label that carries either too much or too little meaning has minimal value.

To investigate this property, we examined the number and types of labels and groups pro-

vided by the antivirus products. Table 5.4 shows the number of unique labels provided by

the antivirus products as well as the number of unique families these labels belong to. In

this analysis, the family is a generalized label heuristically extracted from the literal string,

which contains the portion intended to be human-readable. For example, an antivirus prod-

uct returned the literal labels W32-Sdbot.AC and Sdbot.42, which are both in the “sdbot”

family. An interesting observation from this table is that these products vary widely in how

concisely they represent malware. Vendors such as Symantec appear to employ a general

approach, reducing samples to a small handful of labels and families. On the other extreme,

FProt appears to aggressively label new instances, providing thousands of unique labels for

malware, but still maintaining a small number of groups or families to which these labels

belong.

5.4 Behavior-based Malware Clustering

As we described in the previous section, any meaningful labeling system must achieve

consistency, completeness, and conciseness, and existing approaches, such as those used by

antivirus products, fail to perform well on these metrics. To address these limitations, we

propose an approach based on the actual execution of malware samples and observation of

their persistent state changes. These state changes, when taken together, make a behavioral

fingerprint, which can then be clustered with other fingerprints in order to define classes

and subclasses of malware that exhibit similar state change behaviors. In this section, we

discuss our definition and generation of these behavioral fingerprints and the techniques for

clustering them.

72

5.4.1 Defining and Generating Malware Behaviors

Previous work in behavioral signatures has been based at the abstraction level of low-

level system events, such as individual system calls. In our approach, the intent is to capture

what the malware actually does on the system. Individual system calls may be at a level

that is too low for abstracting semantically meaningful information: a higher abstraction

level is needed in order to effectively describe the behavior of malware. We define the

behavior of malware in terms of non-transient state changes that the malware causes on the

system. State changes are a higher level abstraction than individual system calls, and they

avoid many common obfuscation techniques that foil static analysis as well as low-level

signatures, such as encrypted binaries and non-deterministic event ordering. In particular,

we extract simple descriptions of state changes from the raw event logs obtained from

malware execution. Spawned process names, modified registry keys, modified file names,

and network connection attempts are extracted from the logs, and the list of such state

changes becomes a behavioral profile of a sample of malware.

Observing the malware behavior requires actually executing the binaries. We send

each malware sample to a cloud service that hosts virtualized VMware-based environ-

ments [181] with Windows XP installed. Such a cloud-based service allows us to scale

up and out as the number of malware samples increases. The cloud service and its vir-

tual machines are partially firewalled so that the external impact of any immediate attack

behaviors (e.g., scanning, DDoS, and spam) is minimized during the limited execution pe-

riod. The system events are captured and exported to a centralized repository using the

Backtracker system [107]. In addition to exporting system events, the Backtracker system

provides a means of building causal dependency graphs of these events. The benefit of

this approach is that we can validate that the changes we observe are a direct result of the

malware, and not of some normal system operation.

5.4.2 Clustering of Malware

While the choice of abstraction and generation of behaviors provides useful information

to users, operators, and security personnel, the sheer volume of malware makes manual

73

Label MD5 P/F/R/N McAfee Trend
A 71b9... 8/13/27/0 Not detected W32/Backdoor.QWO
B be5f... 8/13/27/0 Not detected W32/Backdoor.QWO
C df1c... 1/1/6/1 W32/Mytob.gen@MM W32/IRCBot-based!Maximus
D 5bf1... 1/1/6/2 W32/Mytob.gen@MM Not detected
E eef8... 1/2/8/3 PWS-Banker.gen.i W32/Bancos.IQK
F 80f6... 2/11/28/1 IRC/Flood.gen.b W32/Backdoor.AHJJ
G 1258... 1/4/3/1 W32/Pate.b W32/Parite.B
H ff0f... 1/2/8/1 Not detected W32/Bancos.IJG
I 36f6... 3/22/29/3 IRC/Generic Flooder IRC/Zapchast.AK@bd
J c13f... 5/32/28/1 Generic BackDoor.f W32/VB-Backdoor!Maximus

Table 5.5: 10 unique malware samples. For each sample, the number of process, file,
registry, and network behaviors observed and the classifications given by various antivirus
vendors are listed.

analysis of each new malware intractable. Our malware source observed 3,700 samples in

a six-month period, representing over 20 new pieces per day. Each generated fingerprint,

in turn, can exhibit many thousands of individual state changes (e.g., infecting every .exe

on a Windows host). For example, consider the tiny subset of malware in table 5.5. The

10 distinct pieces of malware generate from 10 to 66 different behaviors with a variety

of different labels, including disjoint families, variants, and undetected malware. While

some items obviously belong together in spite of their differences (e.g., C and D), even the

composition of labels across antivirus products can not provide a complete grouping of the

malware. Obviously, for these new behavioral fingerprints to be effective, similar behaviors

need to be grouped and appropriate meanings assigned.

Our approach to generating meaningful labels is achieved through clustering the behav-

ioral fingerprints. In the following subsections, we introduce this approach and the various

issues associated with effective clustering, including how to compare fingerprints, combine

them based on their similarity, and determine which are the most meaningful groups of

behaviors.

74

A B C D E F G H I J
A 0.06 0.07 0.84 0.84 0.82 0.73 0.80 0.82 0.68 0.77
B 0.07 0.06 0.84 0.85 0.82 0.73 0.80 0.82 0.68 0.77
C 0.84 0.84 0.04 0.22 0.45 0.77 0.64 0.45 0.84 0.86
D 0.85 0.85 0.23 0.05 0.45 0.76 0.62 0.43 0.83 0.86
E 0.83 0.83 0.48 0.47 0.03 0.72 0.38 0.09 0.80 0.85
F 0.71 0.71 0.77 0.76 0.72 0.05 0.77 0.72 0.37 0.54
G 0.80 0.80 0.65 0.62 0.38 0.78 0.04 0.35 0.78 0.86
H 0.83 0.83 0.48 0.46 0.09 0.73 0.36 0.04 0.80 0.85
I 0.67 0.67 0.83 0.82 0.79 0.38 0.77 0.79 0.05 0.53
J 0.75 0.75 0.86 0.85 0.83 0.52 0.85 0.83 0.52 0.08

Table 5.6: A matrix of the NCD between each of the 10 malware samples in our example.

5.4.3 Comparing Individual Malware Behaviors

While examining individual behavioral profiles provides useful information on partic-

ular malware samples, our goal is to classify malware and give them meaningful labels.

Thus malware samples must be grouped. One way to group the profiles is to create a dis-

tance metric that measures the difference between any two profiles, and then use the metric

for clustering. Our initial naive approach to defining similarity was based on the concept

of edit distance [52]. In this approach, each behavior is treated as an atomic unit and we

measure the number of inserts of deletes of these atomic behaviors required to transform

one behavioral fingerprint into another. The method is fairly intuitive and straightforward

to implement; however, it suffers from two major drawbacks:

• Overemphasizing size: When the size of the number of behaviors is large, the edit

distance is effectively equivalent to clustering based on the length of the feature set.

This overemphasizes differences over similarities.

• Behavioral polymorphism: Many of the clusters we observed had few exact matches

for behaviors. This is because the state changes made by malware may contain sim-

ple behavioral polymorphism (e.g., random file names).

To solve these shortcomings we turned to normalized compression distance (NCD).

NCD is a way to provide approximation of information content, and it has been successfully

applied in a number of areas [1, 183]. NCD is defined as:

75

c1

A Bc2

E H

c3

C D

c4

G c5

F I

c6

c7

J

c8

c9

A B F I J C D E H G

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.2: On the left, a tree consisting of the malware from Table 5.5 has been clustered
via a hierarchical clustering algorithm whose distance function is normalized compression
distance. On the right, a dendrogram illustrating the distance between various subtrees.

NCD(x,y) =
C(x+ y)−min(C(x),C(y))

max(C(x),C(y))

where “x + y” is the concatenation of x and y, and C(x) is the zlib-compressed length of x.

Intuitively, NCD represents the overlap in information between two samples. As a result,

behaviors that are similar, but not identical, are viewed as close (e.g., two registry entries

with different values, random file names in the same locations). Normalization addresses

the issue of differing information content. Table 5.6 shows the normalized compression

distance matrix for the malware described in Table 5.5.

5.4.4 Constructing Relationships Between Malware

Once we know the information content shared between two sets of behavioral finger-

prints, we can combine various pieces of malware based on their similarity. In our ap-

proach, we construct a tree structure based on the well-known hierarchical clustering al-

gorithm [87]. In particular, we use pairwise single-linkage clustering, which defines the

distance between two clusters as the minimum distance between any two members of the

clusters. We output the hierarchical cluster results as a tree graph in graphviz’s dot format

[109]. Figure 5.2 shows the generated tree for the malware in Table 5.5.

76

Cluster Elements Overlap Example
c1 C, D 67.86% scans 25
c2 A, B 97.96% installs a cygwin rootkit
c3 E, G, H 56.60% disables antivirus
c4 F, I, J 53.59% IRC

Table 5.7: The clusters generated via our technique for the malware listed in Table 5.5.

5.4.5 Extracting Meaningful Groups

While the tree-based output of the hierarchical clustering algorithm does show the re-

lationships between the information content of behavioral fingerprints, it does not focus

attention on areas of the tree in which the similarities (or lack thereof) indicate an impor-

tant group of malware. Therefore, we need a mechanism to extract meaningful groups

from the tree. A naive approach to this problem would be to set a single threshold of the

differences between two nodes in the tree. However, this can be problematic as a single

uniform distance does not accurately represent the distance between various subtrees. For

example, consider the dendrogram in Figure 5.2. The height of many U-shaped lines con-

necting objects in a hierarchical tree illustrates the distance between the two objects being

connected. As the figure shows, the difference between the information content of subtrees

can be substantial. Therefore, we require an automated means of discovering where the

most important changes occur.

To address this limitation, we adopt an “inconsistency” measure that is used to compute

the difference in magnitude between distances of clusters so that the tree can be cut into

distinct clusters. Clusters are constructed from the tree by first calculating the inconsistency

coefficient of each cluster, and then thresholding based on the coefficient. The inconsis-

tency coefficient characterizes each link in a cluster tree by comparing its length with the

average length of other links at the same level of the hierarchy. The higher the value of

this coefficient, the less similar are the objects connected by the link. The inconsistency

coefficient calculation has one parameter, which is the depth below the level of the current

link to consider in the calculation. All the links at the current level in the hierarchy, as

well as links down to the given depth below the current level, are used in the inconsistency

calculation.

77

In Table 5.7 we see the result of the application of this approach to the example mal-

ware in Table 5.5. The 10 unique pieces of malware generate four unique clusters. Each

cluster shows the elements in that cluster, the average number of unique behaviors in com-

mon between the clusters, and an example of a high-level behavior in common between

each binary in the cluster. For example, cluster one consists of C and D and represents two

unique behaviors of mytob, a mass mailing scanning worm. Five of the behaviors observed

for C and D are identical (e.g., scans port 25), but several others exhibit some behavioral

polymorphism (e.g., different run on reboot registry entries). The other three clusters ex-

hibit similar expected results, with cluster two representing the cygwin backdoors, cluster

three the bancos variants, and cluster four a class of IRC backdoors.

5.5 Evaluation

To demonstrate the effectiveness of behavioral clustering, we evaluate our technique

on the large and small datasets. We begin by demonstrating the runtime performance and

the effects of various parameters on the system. We then show the quality or goodness

of the clusters generated by our approach by comparing existing antivirus groups (e.g.,

those labeled as SDBot) to our clusters. Next we discuss our clusters in the context of our

completeness, conciseness, and consistency criteria presented earlier. Finally, we illustrate

the utility of the clusters by answering relevant questions about the malware samples.

5.5.1 Performance and Parameterization

We now examine the memory usage and execution time for the hierarchical clustering

algorithm. To obtain these statistics, we take random sub-samples of length between 1

and 526 samples from the small dataset. For each sub-sample, we analyze its run time

and memory consumption by running 10 trials for each. The experiments were performed

on a Dell PowerEdge 4600 with two Intel Xeon MP CPUs (3.00GHz), 4 GB of DDR

ECC RAM, 146G Cheetah Seagate drive with an Adaptec 3960D Ultra160 SCSI adapter,

running Fedora Core Linux.

78

0 100 200 300 400 500 600
Number of Malware to Cluster

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

B
y

te
s

Inconsistency-based Tree Cutting

Normalized Compression Distance

Single-Linkage Hierarchical Clustering

0 100 200 300 400 500 600
Number of Malware to Cluster

0.0001

0.001

0.01

0.1

1

10

100

S
ec

o
n
d
s

Inconsistency-based Tree Cutting

Normalized Compression Distance

Single-Linkage Hierarchical Clustering

Figure 5.3: The memory and runtime required for performing clustering based on the num-
ber of malware clustered (for a variety of different-sized malware behaviors).

0 1 2 3 4
Inconsistency Threshold

0

25

50

75

100

125

150

175

200

225

250

275

300

325

N
u
m

b
er

 o
f

C
lu

st
er

s

1
2
4
6
8
10
12
14

Depth

0 0.5 1 1.5 2 2.5 3
Inconsistency

0.1

1

10

100

1000

10000

Average Cluster Size

Number of Clusters

Figure 5.4: On the left, the number of clusters generated for various values of the inconsis-
tency parameter and depth. On the right, the trade-off between the number of clusters, the
average cluster size, and the inconsistency value.

We first decompose the entire execution process into five logical steps: (1) trace col-

lection, (2) state change extraction, (3) NCD distance matrix computation: an O(N2) op-

eration, (4) clustering the distance matrix into a tree, (5) cutting the tree into clusters. We

focus on the latter three operations specific to our algorithm for performance evaluation.

Figure 5.3 shows the memory usage for those three steps. As expected, computing NCD

requires the most memory with quadratic growth with an increasing number of malware

for clustering. However, clustering 500 malware samples requires less than 300MB of

memory. The memory usage for the other two components grows at a much slower rate.

Examining the run-time in Figure 5.3 indicates that all three components can complete

within hundreds of seconds for clustering several hundred malware samples.

79

Phases 1-4 of the system operate without any parameters. However, the tree-cutting

algorithm of phase 5 has two parameters: the inconsistency measure and the depth value.

Intuitively, larger inconsistency measures lead to fewer clusters and larger depth values

for computing inconsistency result in more clusters. Figure 5.4 illustrates the effects of

depth on the number of clusters produced for the small dataset for various inconsistency

values. Values of between 4-6 for the depth (the 3rd and 4th colored lines) appear to

bound the knee of the curve. In order to evaluate the effect of inconsistency, we fixed

the depth to 4 and evaluated the number of clusters versus the average size of the clusters

for various inconsistency values in the large dataset. The results of this analysis, shown

in Figure 5.4, show a smooth trade-off until an inconsistency value between 2.2 and 2.3,

where the clusters quickly collapse into a single cluster. In order to generate clusters that

are as concise as possible without losing important feature information, the experiments in

the next selection utilize values of depth and inconsistency just at the knee of these curves.

In this case, it is a depth value of 4 and an inconsistency value of 2.22.

5.5.2 Comparing Antivirus Groupings and Behavioral Clustering

To evaluate its effectiveness, we applied our behavioral clustering algorithm on our

large dataset. Our algorithm created 403 clusters from the 3,698 individual pieces of mal-

ware using the parameters discussed above.

As a first approximation of the quality of the clusters produced, we returned to our ex-

ample in Section 2 and evaluated the clustering of various malware samples labeled as SD-

Bot by the antivirus products. Recall from our previous discussions that various antivirus

products take differing approaches to labeling malware. Some adopt a general approach

with malware falling into a few broad categories and others apply more specific, almost per

sample, labels to each binary. We expect that a behavior-based approach would separate out

these more general classes if their behavior differs, and aggregate across the more specific

classes if behaviors are shared. Looking at these extremes in our sample, Symantec, who

adopts a more general approach, has two binaries identified as back-door.sdbot. They were

divided into separate clusters in our evaluation based on differing processes created, differ-

80

Completeness Conciseness Consistency
Antivirus Detected % Detected Unique Clusters or Identical Behavior

Labels Families Labeled Identically
McAfee 2018 54.6% 308 84 47.2%
F-Prot 2958 80.0% 1544 194 31.1%

ClamAV 2244 60.7% 1102 119 34.9%
Trend 2960 80.0% 2034 137 44.2%

Symantec 1904 51.5% 125 107 68.2%
Behavior 3387 91.6% 403 403 100%

Table 5.8: The completeness, conciseness, and consistency of the clusters created with our
algorithm on the large dataset as compared to various antivirus vendors.

ing back-door ports, differing methods of process invocation or reboot, and the presence of

antivirus avoidance in one of the samples. On the other extreme, FProt, which has a high

propensity to label each malware sample individually, had 47 samples that were identified

as belonging to the sdbot family. FProt provided 46 unique labels for these samples, nearly

one unique label per sample. In our clustering, these 46 unique labels were collapsed into

15 unique clusters reflecting their overlap in behaviors. As we noted in Section 2, these

groupings have differing semantics: both Symantec labels were also labeled by FProt as

SDBot, but obviously not all FProt labels were identified as SDBot by Symantec. Both of

these extremes demonstrate the utility of our approach in moving toward a labeling scheme

that is more concise, complete, and consistent.

5.5.3 Measuring Completeness, Conciseness, and Consistency

We previously examined how the clusters resulting from the application of our algo-

rithm to the large dataset compared to classification of antivirus products. In this section,

we examine more general characteristics of our clusters in an effort to demonstrate their

quality. In particular, we demonstrate the completeness, conciseness, and consistency of

the generated clusters. Our analysis of these properties, summarized in Table 5.8, are high-

lighted each in turn:

81

5.5.3.1 Completeness

To measure completeness, we examined the number of times we created a meaningful

label for a binary and compared this to the detection rates of the various antivirus products.

For antivirus software, “not detected” means no signature matched, despite the up-to-date

signature information. For behavioral clustering, “not detected” means that we identified

no behavior. A unique aspect of this system is that our limiting factor is not whether we

have seen a particular binary before, as in a signature system, but whether we are able to ex-

tract meaningful behavior. Any such behavior can be clustered in the context of any number

of previously observed malware instances and differentiated, although this differentiation

is clearly more valuable as more instances are observed. In our experiments, roughly 311

binaries exhibited no behavior. The root cause of these errors, and a more complete discus-

sion of the general limitations of dynamic path exploration, is available in the Limitations

section. A striking observation from the table is that many antivirus products provide de-

tection rates as low as 51%, compared to around 91% using behavioral clustering. It should

be noted that these numbers are as much an indication of the mechanisms the vendors use

to collect malware as the antivirus products themselves, since signature systems can clearly

only detect what they have seen before. While it would be unfair to judge the detection rates

based on previously unseen malware, we hesitate to point out that our approach for collec-

tion of these binaries is not unique. In fact, while individual antivirus product rates may

vary, over 96 percent of the malware samples were detected by at least one of the antivirus

products. These samples are seen significantly more broadly than our single collection

infrastructure and many antivirus products fail to detect them.

5.5.3.2 Conciseness

Conciseness represented the ability of the labeling system to group similar items into

groups that both reflected the important differences in samples, but were devoid of super-

fluous labels. As in Section 2, we evaluate conciseness by examining the characteristics

of the grouping, or clusters, created by antivirus products with those created by our ap-

proach. We examine the number of unique labels generated by the antivirus products and

82

a heuristically-generated notion of families or groups of these labels extracted from the

human readable strings. For example, the labels W32-Sdbot.AC and Sdbot.42, are both in

the “sdbot” family. As we noted before, antivirus products vary widely in how concisely

they represent malware. Relative to other systems, our clusters strike a middle ground in

conciseness, providing fewer labels than the total unique labels of antivirus products, but

more than the number of antivirus product families. This observation is consistent with the

previous section in that the antivirus product families exhibit multiple different behaviors,

but these behaviors have much in common across individual labels.

5.5.3.3 Consistency

Consistency referred to the ability of a labeling system to identify similar or identical

items in the same way. In the context of our behavioral system goals, this implies that

identical behaviors are placed in the same clusters. In order to measure the consistency

of the system, we examined the binaries that exhibited exactly identical behavior. In the

large sample, roughly 2,200 binaries shared exactly identical behavior with another sample.

When grouped, these 2,200 binaries created 267 groups in which each sample in the group

had exactly the same behavior. We compared the percentage of time the clusters were

identified as the same through our approach, as well as the various antivirus products. As

expected, our system placed all of the identical behaviors in the same clusters. However,

because consistency is a design goal of the system, the consistency value for our technique

is more a measure of correctness than quality. What is interesting to note, however, is that

antivirus products obviously do not share this same goal. Antivirus products only labeled

exactly identical behavior with the same label roughly 31% to 68% percent of the time.

5.5.4 Application of Clustering and Behavior Signatures

In this subsection we look at several applications of this technique, in the context of the

clusters, created by our algorithm from the large dataset.

83

Network Process Files Registry
80/tcp execs cmd.exe writes winhlp32.dat uses wininet.dll
25/tcp execs iexplore.exe writes tasklist32.exe uses PRNG
6667/tcp execs regedit.exe writes change.log modifies registered applications
587/tcp execs tasklist32.exe writes mirc.ini modifies proxy settings
80/tcp scan execs svchost.exe writes svchost.exe modifies mounted drives

Table 5.9: The top five malware behaviors observed by type.

5.5.4.1 Classifying Emerging Threats

Behavioral classification can be effective in characterizing emerging threats not yet

known or not detected by antivirus signatures. For example, cluster c156 consists of three

malware samples that exhibit malicious bot-related behavior, including IRC command and

control activities. Each of the 75 behaviors observed in the cluster is shared with other

samples of the group (96.92% on average), meaning the malware samples within the cluster

have almost identical behavior. However, none of the antivirus vendors detect the samples

in this cluster except for F-Prot, which only detects one of the samples. It is clear that

our behavioral classification would assist in identifying these samples as emerging threats

through their extensive malicious behavioral profile.

5.5.4.2 Resisting Binary Polymorphism

Similarly, behavioral classification can also assist in grouping an undetected outlier

sample (due to polymorphism or some other deficiency in the antivirus signatures) together

with a common family that it shares significant behaviors with. For example, cluster c80

consists of three samples that share identical behaviors with distinctive strings “bling.exe”

and “m0rgan.org”. The samples in this cluster are consistently labeled as a malicious bot

across the antivirus vendors except Symantec, which fails to identify one of the samples. To

maintain completeness, this outlier sample should be labeled similarly to the other samples

based on its behavioral profile.

84

5.5.4.3 Examining Malware Behaviors

Clearly one of the values of any type of automated security system is not to simply

provide detailed information on individual malware, but also to provide broad analysis on

future directions of malware. Using the behavioral signatures created by our system, we

extracted the most prevalent behaviors for each of the various categories of behaviors we

monitor. The top five such behaviors in each category are shown in Table 5.9.

The network behavior seems to conform with agreed notions of how the tasks are being

performed by most malware today. Two of the top five network behaviors involve the use

of mail ports, presumably for spam. Port 6667 is a common IRC port and is often used for

remote control of the malware. Two of the ports are HTTP ports used by systems to check

for jailed environments, download code via the web, or tunnel command and control over

what is often an unfiltered port. The process behaviors are interesting in that many process

executables are named like common Windows utilities to avoid arousing suspicion (e.g.,

svchost.exe, tasklist32.exe). In addition, some malware uses iexplore.exe directly to launch

popup ads and redirect users to potential phishing sites. This use of existing programs and

libraries will make simple anomaly detection techniques more difficult. The file writes

show common executable names and data files written to the filesystem by malware. For

example, the winhlp32.dat file is a data file common to many Bancos trojans. Registry

keys are also fairly interesting indications of behavior and the prevalence of wininet.dll

keys shows heavy use of existing libraries for network support. The writing to PRNG

keys indicates a heavy use of randomization, as the seed is updated every time a PRNG-

related function is used. As expected, the malware does examine and modify the registered

application on a machine, the TCP/IP proxy settings (in part to avoid antivirus), and it

queries mounted drives.

5.6 Related Work

Our work is the first to apply automated clustering to understand malware behavior

using resulting state changes on the host to identify various malware families. Related work

in malware collection, analysis, and signature generation has primarily explored static and

85

byte-level signatures [138, 117]. Content-based signatures are insufficient to cope with

emerging threats due to intentional evasion. Behavioral analysis has been proposed as a

solution to deal with polymorphism and metamorphism, where malware changes its visible

instruction sequence (typically the decryptor routine) as it spreads. Similar to our work,

emulating malware to discover spyware behavior by using anti-spyware tools has been

used in measurements studies [132].

There are several abstraction layers at which behavioral profiles can be created. Previ-

ous work has focused on lower layers, such as individual system calls [114, 4], instruction-

based code templates [45], the initial code run on malware infection (shellcode) [121], and

network connection and session behavior [187, 70]. Such behavior needs to be effectively

elicited. In our work, we chose a higher abstraction layer for several reasons. In consider-

ing the actions of malware, it is not the individual system calls that define the significant

actions that a piece of malware inflicts upon the infected host; rather, it is the resulting

changes in the state of the host. Also, although lower levels may allow signatures that dif-

ferentiate malware, they do not provide semantic value in explaining behaviors exhibited

by a malware variant or family. In our work, we define malware by what it actually does,

and thereby build in more semantic meanings to the profiles and clusters generated.

Recently, Kolter and Maloof [108] studied applying machine learning to classify mali-

cious executables using n-grams of byte codes. Our use of hierarchical clustering based on

normalized compression distance is a first step at examining how statistical techniques are

useful in classifying malware, but the features used are the resulting state changes on the

host to be more resistant to evasion and inaccuracies. Normalized information distance was

proposed by Li et al. [115] as an optimal similarity metric to approximate all other effective

similarity metrics. In previous work [183], NCD was applied to worm executables directly

and to the network traffic generated by worms. Our work applies NCD at a different layer

of abstraction. Rather than applying NCD to the literal malware executables, we apply

NCD to the malware behavior.

86

5.7 Summary

In this chapter, we have proposed and evaluated a cloud-centric service for the large-

scale analysis and classification of malware by its runtime behavior. As the malware

epidemic continues, scalable classification architectures and techniques will become even

more important to understand and respond quickly to new threats.

5.7.1 Leveraging the Cloud

Throughout this chapter, we’ve learned that malware classification operating at a higher

abstraction layer of runtime behaviors imposes non-trivial architectural and performance

requirements. As we’ve demonstrated, cloud computing can effectively meet such require-

ments and provide the capabilities necessary to operate such a classification service at a

large scale. In particular, the following properties of cloud computing proved to be invalu-

able in the design and implementation of our analysis and classification service:

• Scalability: In order to analyze hundreds of thousands of malware samples in in-

strumented virtualized environments and run computationally-intensive classification

and clustering algorithms on the results requires scalability of computing resources

that cloud computing can provide. While running over 100 virtual machines in par-

allel in a cloud computing environment is a simple endeavor, such as a task with

traditional computing resources would likely be prohibitively difficult or costly.

• Network Effect: The more contributors and malware samples that are collected and

analyzed by the classification service, the increased potential for better clustering

and overall intelligence of the wide spectrum of malicious software in the wild. In

addition, a cloud-centric model offers the ability to open our classification service to

external researchers that may further contribute to a strong network effect.

• Isolation: Given that our classification approach requires the execution of malware

to elicit runtime behaviors, it is vital that our system insulates itself from any ma-

licious activity. Virtualization in cloud computing environments offers an effective

87

isolation mechanism to protect the cloud service and quickly snapshot and restore

virtual machines to clean states.

88

CHAPTER 6

A Cloud-Centric Service for Robust and Resilient

Threshold Signatures

Thus far, this thesis has primarily explored the detection and analysis of malicious soft-

ware. We’ve observed that protecting endpoints from malicious threats is a continually-

evolving and never-ending challenge, even with effective anti-malware cloud-centric ser-

vices such as CloudAV. With services such as PolyPack demonstrating severe weaknesses

in anti-malware mechanisms, it’s not unreasonable to assume that a substantial portion of

end hosts on the Internet are compromised with malicious software.

In this chapter, we aim to design more resilient cloud-centric services that can provide

security guarantees even if the end host is indeed compromised by malicious software. At

the same time, we assert that the benefits of cloud-centric architecture apply to software

security services beyond those directly related to malicious software. To demonstrate these

points, we design a security service for computing cryptographic signatures that may se-

curely authenticate a user’s actions even if their host is compromised. While cryptographic

signature computation is a task traditionally performed in a host-centric model, we propose

a cloud-centric model for signature computation using threshold cryptography.

Threshold cryptography offers attractive properties for requiring a number of indepen-

dent parties to cooperate to perform a cryptographic operation, such as generating a signa-

ture across multiple devices. In this chapter, we introduce an architecture called CloudCard

that employs a threshold signature scheme with key material split across a user’s host, a

89

user’s mobile device, and a cloud service. We show that CloudCard and its cloud-centric

architecture enables improved secrecy of private key material, flexible and fast revocation,

and out-of-band signature confirmation, all while maintaining compatibility with existing

applications and interfaces.

While threshold cryptography was first developed in the 1980s [30], it wasn’t until the

late 1990s and early 2000s that the first practical real-world applications were developed.

Providing the building blocks for improved private key secrecy and potentially eliminat-

ing the pains of credential revocation, threshold cryptography received attention from the

security community [26, 27], as well as improvements from the cryptographic commu-

nity [162].

Since then, interest in practical applications of threshold cryptography has been min-

imal. However, much has changed in the past decade with respect to the security threats

facing modern hosts and users. Endpoint security in the current day is often considered

laughable, with standard desktop loadsets representing such a large client-side attack sur-

face that they’re frequently assumed to be compromised. Many of the threats that threshold

cryptography schemes can help protect against are even more realistic and increasingly

relevant. In addition, the modern computing landscape has evolved drastically. Mobile

devices have exploded in popularity and are increasingly connected and powerful. In fact,

mobile devices are now frequently used to provide two-factor authentication to address

the problem of weak endpoint security. Lastly, commodity public cloud infrastructure has

made highly-available services easily architected and deployed.

Observing these trends over the past decade, we propose that a new generation of

threshold signature schemes may be appropriate and viable. In this chapter, we propose

CloudCard, an architecture that employs a threshold signature scheme with private key

material split across three parties: a user’s host, a user’s mobile device, and a cloud service.

For a typical signing operation, partial signatures are individually computed by each of the

parties, combined together on the user’s host, and then typically passed along to a service

for authentication purposes.

The CloudCard approach has very tangible benefits that result in a more secure and

more practically deployed model than previous approaches. The primary benefits from our

90

proposed CloudCard approach include:

• Improved secrecy of private key material: By splitting private key material be-

tween the user’s host, their mobile device, and a cloud service, we limit the exposure

of the private key. An attacker must now compromise all three devices involved in

the threshold signing operation in order to compromise the private key.

• Flexible and fast revocation: As detailed in [27], threshold signature schemes offer

fast revocation, allowing provable revocation through the simple act of destroying

one portion of the private key. In addition, we claim that CloudCard also enables

flexible revocation as the user can effectively revoke one of the two private key shares

under their control (e.g., if they lose their laptop or lose their mobile device).

• Out-of-band signature confirmation: Having a mobile device participate in the

threshold signature scheme also offers the benefit of out-of-band signature confirma-

tion. Even if the user’s host is completely compromised and the attacker attempts

to initiate a signature request, the user will be prompted in real-time on their mobile

device to approve or deny the signature request.

• Compatibility with existing applications and interfaces: Instead of introducing a

new approach incompatible with existing applications and services, our CloudCard

implementation leverages existing interfaces (e.g., PKCS#11 [169]) supported in a

wide-range of applications (e.g., web browsers, email clients, VPN clients, etc.) to

provide CloudCard functionality without any modifications to the client-side appli-

cation or server-side service.

More than a theoretical advancement, we see CloudCard as a missing link in the practi-

cal application and deployment of threshold cryptography and are excited to share our im-

plementation with the security community to protect SSH logins and any other PKCS#11-

enabled applications.

91

App

Client Host

sig

Standard Mediated RSASmartcard Virtual Smartcard

Server

App

Client Host

sig

PKCS
#11

Server

Smartcard

Sign sig

Server

App

Client Host

sig

PKCS
#11

Virtual
Smartcard

Sign

sig

Server

App

Client Host

sig
Semi-Trusted

Mediator
(SEM)

Sign

sig2

sig1

Figure 6.1: The evolution of past approaches designed to protect the secrecy of private key
material.

6.1 Challenges in Cryptography and PKI

Two major challenges in cryptographic systems and public key infrastructure (PKI)

deployments are maintaining key secrecy and enabling effective revocation of creden-

tials [134, 71]. Both of these challenges have a long history of proposed solutions that

have not optimally or adequately addressed the problems. In order to understand the mo-

tivation and advantages of our CloudCard approach, it is vital to understand the previous

approaches to these fundamental challenges in cryptographic authentication systems.

6.1.1 Private Key Secrecy

One of the major challenges in any cryptographic system is maintaining secrecy of key

material. For our purposes, we are primarily concerned with asymmetric and public-key

cryptosystems [66] used for authentication, where it is imperative to maintain secrecy of

the private key material. Over the years, a number of approaches have been proposed to

provide better key secrecy. We illustrate several of these previous approaches in Figure 6.1

and discuss each of their advantages and disadvantages in the following section.

6.1.1.1 Standard

In the most common approach, private key material is stored on the same host that

is going to be performing the signing operations [167]. For example, a user may store a

private key on their filesystem or in a certificate store, which is then used for a signing

operation by an application on their host.

92

On the positive side, storing key material directly on the host is cheap and relatively

simple. On the negative side, a compromise of the host will most likely result in a com-

promise of the private key material as well, even if the key is encrypted on-disk with a

passphrase. As the client software on a typical host presents quite a large attack surface,

using this standard model does not provide the desired level of key secrecy for most secu-

rity requirements.

6.1.1.2 Smartcard

Smartcards are dedicated hardware devices that can store private key material in tamper-

resistant storage and perform specialized cryptographic operations using that key mate-

rial [74]. Traditionally, a smartcard will physically interface with a computer to perform

signing operations via a USB-connected smartcard reader.

On the positive side, smartcards can solve the problems presented by storing key ma-

terial directly on the host in the standard model. Since the signing operations take place

directly on the dedicated smartcard processor, even a fully-compromised host cannot ex-

tract the private key material from a connected smartcard. However, as smartcards are

dedicated physical devices, they often come along with a large cost to purchase the hard-

ware as well as the readers that must be attached to all hosts. In addition, previous studies

have shown that many popular PKCS#11 smartcard implementations have suffered flaws

that may inadvertently expose secret key material [29, 47, 64].

6.1.1.3 Virtual Smartcard

Virtual smartcards were introduced to address the high hardware costs of traditional

smartcards, while maintaining some of their advantages in protecting private key secrecy.

Virtual smartcards will commonly re-use the existing PKCS#11 interface but call out to an

external server over the network instead of a physically-connected smartcard for signing

operations [159].

On the positive side, virtual smartcards do eliminate the high hardware costs associated

with smartcards, while maintaining some of the benefits of key secrecy. However, since

93

the external signing service is likely a general software platform, it commonly has a greater

attack surface and may be more vulnerable to compromise than a tamper-resistant hardware

smartcard. In addition, the external service is charged with storing all the key material,

resulting in a single point of compromise. Nonetheless, the general approach of offloading

a signing operation via PKCS#11 to an external service is very attractive.

6.1.1.4 Mediated RSA

While the virtual smartcard model offers advantages of the standard or smartcard ap-

proaches, its primary weakness is its requirement of storing all the private key mate-

rial on a single host. Addressing such a weakness might seem difficult or infeasible,

but fortunately cryptographers have developed a solution known as threshold cryptogra-

phy [162, 35, 119, 89]. In a threshold cryptosystem, a private key may be split among n

parties, each which can independently compute a partial signature with their partial key

material and later combine those signatures into a full valid signature.

For example, in [27], Boneh et al. proposed an approach known as mediated RSA

that employed threshold cryptography. In this model, illustrated in Figure 6.1, private

key material is split between the user’s host and a semi-trusted mediator (SEM) service.

When the user attempts a signature operation, partial signatures are generated by both the

host and the SEM independently and then combined at the host into a full valid signature.

Since the split key material is never recombined, the mediated RSA scheme is resistant

to compromise since an attacker must compromise both the host and the SEM to gather

enough key material in order to forge signatures.

While the general approach of mediated RSA offers great security properties, one po-

tential weakness is the fact that there is no secure out-of-band channel with which a user

can confirm or deny a particular signature operation. While the approach does split the key

between the user’s host and the SEM, if the user’s host is compromised and one portion

of the key material is disclosed, an attacker is free to ask the SEM to generate the other

necessary half of the signature without any sort of approval process like the traditional

SSH ASKPASS confirmation invoked by ssh-agent [148].

94

6.1.2 Failure of Revocation Mechanisms

As described in the previous section, keeping private key material secret is of utmost

importance. However, no cryptosystem is completely bullet-proof and attackers will un-

doubtedly work their way through numerous layers of defense in order to compromise a

user’s private keys. Therefore, an effective cryptosystem should be designed to handle re-

vocation gracefully. That is, in the event of the compromise of a user’s private key material,

the system should be able to revoke access to a compromised user, even if the attacker is

able to forge valid signatures with the user’s private key material.

Revocation techniques can vary depending on the type of cryptosystem employed. For

example, if standard asymmetric cryptography is used (e.g., standard SSH pubkey authen-

tication), revocation may be as easy as “deauthorizing” a user’s public key if their private

key is compromised. When a PKI model is employed, revocation becomes even more chal-

lenging. In this section, we discuss these models and the advantages and disadvantages of

several approaches with respect to providing effective revocation.

6.1.2.1 SSH Revocation

Asymmetric cryptography offers clear advantages over shared secrets when used in

authentication systems. In a simple case, such as SSH pubkey authentication, when a user

establishes an account with a server, they provide the server their public key rather than

a password. By using their private key to sign a random challenge from the server at

login time, the user can prove to the server that they possess their private key without ever

actually revealing it to the server.

In practice, users and organizations will often perform SSH pubkey authentication using

a variant of the system described above. Consider an organization with 50 SSH servers:

in lieu of heavier-weight centralized authentication systems, many such organizations will

place public keys from each administrator on each server (e.g., in the authorized keys

file). In such a scenario, revoking a user’s credentials would require removing the user’s

public key from each of the 50 servers. While certainly not an insurmountable task, such

revocation is ineffective and incomplete if the user’s public key is not removed from every

95

server that it was previously placed on.

6.1.2.2 PKI Revocation

If a user wants to prove their identity to a server with which they have no prior relation-

ship, however, then standard asymmetric cryptography like is typically deployed for SSH

logins is no longer sufficient. One model intended to address this problem is known as

public key infrastructure. This type of system works along similar lines to identity cards in

the real world. A central, trusted authority (e.g., Certificate Authority or CA) will by some

means validate a user’s identity, then provide an unforgeable credential to the user attest-

ing to their identity, typically by signing a binding between the user’s public key and their

distinguished name in the form of a certificate. Then, the user can present the certificate to

any server that trusts the CA, and the said server can authenticate the user by verifying that

the certificate is genuine and asking the user to prove that they do indeed hold their private

key.

Again, however, serious problems arise around revocation. If the user’s private key is

lost or stolen, thereby allowing someone else to impersonate the user, there are only two

possible recourses: either simply wait for the certificate to expire, or the CA must somehow

inform all parties relying on it about the revocation. In practice, certificate authorities

employ several mechanisms to represent and distribute revocation information to ensure

that a server does not accept credentials that may have been compromised and revoked [191,

184]. Two of the most popular and widely deployed mechanisms are CRLs and OCSP.

Certificate Revocation Lists (CRLs): A Certificate Revocation List (CRL), defined in

RFC 3280 [76], is a list of serial numbers of revoked certificates that is signed by a CA

and periodically updated and distributed to PKI-enabled servers. When a certificate needs

to be revoked, the CA will add the affected certificate’s serial number to the CRL. Upon

validation of a user’s credentials, a PKI-enabled server will check against CRL to ensure

that the user’s certificate has not been revoked by the CA.

While CRLs allow non-centralized distribution of revocation information, they are not

without problems. For one, CRLs will continue to grow in size as more and more revoked

signatures are added to the list (optionally, certificates may be removed from the CRL upon

96

expiration), increasing the distribution size of the CRL. In addition, as CRLs may only be

updated and distributed periodically, they may not contain the most up to date revocation

information, leading to potential use of revoked credentials.

Online Certificate Status Protocol (OCSP): The Online Certificate Status Protocol (OCSP),

defined in RFC 2560 [75], allows a PKI-enabled server to query an OCSP server to check

whether a particular certificate (based on its serial number) has been revoked. Instead of

downloading a full list of revoked certificate serials, OCSP defines a request/response pro-

tocol to check for individual certification revocation status.

While OCSP was developed to address some of the distribution and liveness shortcom-

ings of CRLs, it has serious deficiencies of its own:

• Replay Attacks: The OCSP protocol is vulnerable to replay attacks, where a previ-

ously captured “good” response can be replayed after a certificate has been revoked.

After obtaining a user’s revoked credentials and supplying them to a PKI-enabled

application, an eavesdropping attacker can simply replay the “good” response when

the PKI-enabled application makes an OCSP request to check the certificate’s re-

vocation status and successfully authenticate as that user. While the OCSP protocol

introduced a nonce attribute to prevent replay attacks, many OCSP clients and servers

do not support the nonce extension.

• Implementation Flaws: OCSP has suffered catastrophic implementation flaws such

as the OCSP “tryLater” attack from Moxie Marlinspike. Marlinspike discovered that

specifying an OCSP ResponseStatus of “tryLater” would cause most OCSP clients

to accept that response without any warnings. Since the ResponseStatus structure is

not included in fields signed by the CA in the response, an attacker can successfully

spoof such “tryLater” responses and subvert the OCSP protocol.

It is clear from these failures that CRLs and OCSP are not sufficient revocation mech-

anisms for practical deployment of PKI-based authentication. The underlying danger with

these revocation methods is that the full private key material still exists even after a certifi-

cate is revoked. If the revocation-checking mechanism is not bullet-proof, as the numerous

97

Party 1

Combine
Keys

Sign

Party 3

Party 2

key

key key

(a)

Combine
Signatures

Party 2

sig

sig sig

Sign

Party 3

Sign

Party 1

Sign

(b)

Figure 6.2: Traditional secret sharing schemes like have to combine the split key material in
a single location in order to perform a cryptographic operation as illustrated in (a). Using
threshold cryptography, partial signatures can be combined to generate a full signature
without ever having to combine the split key material in a single location as illustated in
(b).

limitations and vulnerabilities of CRLs and OCSP have shown to be true in practice, the pri-

vate key associated with a revoked certificate may be re-used by an attacker and erroneously

accepted by a PKI-enabled server, violating the fundamental intentions of revocation.

6.1.2.3 Fast Revocation with Mediated RSA

As mentioned previously, the downside of most revocations schemes is that they rely on

broadcasting to all PKI-enabled services that a user’s credentials were compromised, rather

than actually being able to universally wipe those credentials from existence to ensure

they’re no longer usable.

When a mediated RSA scheme or other threshold signature scheme is deployed, proper

revocation is near achievable [27, 26]. Since the private key material is split among the

client and an SEM in mediated RSA, revocation can be effectively achieved by simply

destroying one share of the private key, rendering any further valid signature computations

impossible.

98

6.2 CloudCard Architecture

Our CloudCard architecture was designed to address the limitations of the previous

approaches with respect to private key secrecy and revocation. Using the classification of

previous approaches listed in Figure 6.1, CloudCard could be seen as a combination of

the Virtual Smartcard and Mediated RSA approaches, gleaning the benefits of private key

secrecy and revocation from these models while introducing several new benefits of its

own.

In this section, we discuss the threshold signature scheme employed by CloudCard, the

primary components involved in its operation, how it performs key generation and signature

generation, and some of the notable features and benefits that arise from the CloudCard

approach.

6.2.1 Threshold Signatures with CloudCard

A threshold signature scheme forms the basis for our CloudCard approach. Threshold

signature schemes in asymmetric cryptosystems (e.g., RSA [154]) allow for the generation

of multiple private key shares as opposed to a single private key. Each key share can be

used to independently compute an individual signature, and all of the individual signatures

can be combined together to produce a valid full signature. Such schemes offer attractive

properties for requiring a number of independent parties to cooperate to perform a crypto-

graphic operation, such as generating a signature across multiple devices.

When many hear of key splitting, they often think of secret sharing schemes where a

secret key is split between n parties. Some secret sharing schemes such as Shamir’s intro-

duce a threshold where only k of n parties are necessary to reconstruct the key. However,

these schemes are much different than the threshold signature schemes that CloudCard is

based on. In a secret sharing scheme, when it comes time to perform some cryptographic

operation, all the key material must be recombined in a single location to perform that op-

eration, which is obviously not ideal from a security perspective. In a threshold signature

scheme, the key material is never recombined in a single location. Rather, the individual

signatures are computed independently by each participating party and then the signatures

99

(rather than the keys) are combined in a single location. This important distinction is illus-

trated in Figure 6.2.

In particular, CloudCard implements Shoup’s RSA threshold signature scheme. As de-

scribed in [162], Shoup’s RSA threshold signature scheme enjoys the following properties:

• It is unforgeable and robust in the random oracle model, assuming the RSA problem

is hard.

• Signature share generation and verification is completely non-interactive.

• The size of an individual signature share is bounded by a constant times the size of

the RSA modulus.

The advances made in Shoup’s threshold signature scheme eliminated some of the key

roadblocks that had hampered practical threshold cryptography. For example, previous

threshold RSA approaches were interactive, requiring a synchronous network with broad-

cast. In addition, the simplicity of Shoup’s scheme makes it attractive from an implementa-

tion point of view. Most importantly, the resulting signature computed in Shoup’s scheme

can be verified with a normal RSA operation. Therefore, a client who has generated a

signature using CloudCard, can pass that signature to a server who can verify it with a

completely vanilla RSA verification routine. This is a key detail as it means the verifying

component (e.g., an SSH server) does not require any modification and can be completely

oblivious to the CloudCard scheme.

6.2.2 CloudCard Operation

Any threshold signature scheme has several components that are tasked with various

functions during key generation and signature computation. Such components include:

• Dealer: The dealer is the component that is tasked with initially generating the key

shares and distributing them as necessary to the participating signers.

• Signer: A signer is a party that holds one of the key shares and uses it to compute

individual signatures.

100

• Combiner: The combiner is tasked with collecting the individual signatures gener-

ated by each signer and combining them into a full complete signature.

In our CloudCard system, we employ three signers and require individual signatures

from all of the signers to combine into the full signature. Therefore, we say that CloudCard

uses a (3,3) threshold RSA (TC-RSA) scheme. The three components are illustrated in

Figure 6.3 and are described as follows:

• User’s Host: The user’s host acts as the dealer during key generation, a signer for one

of three key shares, and the combiner for all the individual signature. The PKCS#11

module implements the signer and combiner functionality, while a simple command

line tool implements the dealer functionality.

• User’s Mobile Device: The user’s mobile device acts as a signer for one of the three

key shares. In addition, the mobile device implements signature confirmation func-

tionality, which allows the user to approve or deny a signature request interactively

on their mobile device.

• Cloud Service: The cloud service acts as a signer for one of the three key shares. In

addition, the cloud service is tasked with acting as a communication broker between

the user’s host and the mobile device, shuttling signature requests and the resulting

individual signatures back and forth between those components.

During key generation, the user’s host acts as a dealer, generating the three private key

shares and the corresponding public key. The three key shares are distributed as follows:

one key share is stored locally on the filesystem of the user’s host; one key share is dis-

tributed directly to the mobile device (e.g., via a QR code); and one key share is sent off to

the cloud service.

During a signature operation, the user’s host will generate its individual signature using

its locally-stored key share and will notify the cloud service about the signing request. The

cloud service will generate its individual signature and notify the user’s mobile device about

the signing request (preferably via a real-time push notification service such as Google’s

C2DM or Apple’s APNS). The user’s mobile device will then prompt the user to confirm

101

Server

App

Client Host

sig

PKCS
#11

Mobile Device

Sign

Cloud Service

Sign

sig2, sig3

sig1

sig3

Figure 6.3: Our proposed CloudCard architecture uses (3,3) threshold RSA to generate a
signature across a client’s host, a cloud service, and a mobile device.

the signing request and, upon confirmation, generate and send the individual signature back

to the cloud service. The cloud service would then return the individual signatures back

to the user’s host, which would combine all three individual signatures into a full valid

signature. These described steps for signature generation and the communication between

the components are illustrated in Figure 6.3.

6.2.3 Notable Features of CloudCard

CloudCard offers a number of novel features and properties that make it an attractive

model for performing any sort of asymmetric cryptography-based authentication.

6.2.3.1 Private Key Secrecy

By splitting private key material between the user’s host, their mobile device, and a

cloud service, the CloudCard approach can greatly increase private key secrecy. An attacker

must now compromise all three devices involved in the threshold signing operation in order

to compromise the private key.

6.2.3.2 Flexible and Fast Revocation

By employing a threshold signature scheme, CloudCard allows for provable, fast re-

vocation through the simple act of destroying one portion of the private key. In addition,

102

CloudCard also enables flexible revocation as the user can effectively revoke one of the

two private key shares under their control. For example, if the user believes their host has

been compromised, they can destroy the key share on their mobile device to ensure safety.

And vice versa, if a user loses their mobile device, they can simply destroy the key share

on their host. The key share stored in the cloud service may optionally be destroyable by

a third-party such as the user’s employer if deployed in an enterprise environment offering

even more flexibility in revocation.

6.2.3.3 Out-of-Band Signature Confirmation

Having a mobile device participate in the threshold signature scheme also offers the

benefit of out-of-band signature confirmation. Even if the user’s host is completely com-

promised and the attacker attempts to initiate a signature request, the user will be prompted

in real-time on their mobile device to approve or deny the signature request. Such func-

tionality is analogous to the traditional SSH ASKPASS confirmation invoked by ssh-agent,

but presented to the user securely on their mobile device instead of on their host.

6.2.3.4 Compatibility via PKCS#11

A number of common client applications (e.g., web browsers, email clients, VPN

clients, SSH client, etc.) offer a point of integration via a standard interface known as

PKCS#11 (i.e. Public-Key Cryptography Standard #11). This interface is designed pri-

marily for use with hardware tokens or smartcards. While PKCS#11 is intended primarily

for use with hardware tokens, what it actually offers is a generic mechanism for offloading

signature operations to custom code modules. As such, we can implement a PKCS#11

module which performs our CloudCard threshold signature scheme.

Leveraging this PKCS#11 interface, CloudCard can gain instant compatibility with a

wide range of client applications. Therefore, CloudCard offers a notable model for practical

deployments: no changes to client-side application or server-side services are necessary to

use CloudCard.

103

6.3 Integration and Implementation

To put our CloudCard architecture into practice for real-world use and evaluation, we

implemented CloudCard for SSH client login via pubkey authentication. While our ap-

proach doesn’t require any modifications to the client (e.g., OpenSSH’s ssh client) or the

server (OpenSSH’s sshd server), it does require implementation of a PKCS#11 interface

module, a cloud service, a mobile application, and the actual threshold RSA library that

each of the components uses. We describe each of these primary components and their

implementations in this section.

6.3.1 TC-RSA Library

At the core of our implementation is the TC-RSA library, which is a quite literal transla-

tion of Shoup’s paper into a C library [23]. The TC-RSA is present in all the components of

our system: it is used by the cloud service and mobile application for individual signature

generation and on the user’s host to implement dealer functionality, key share generation,

individual signature generation, and signature combination.

The TC-RSA library exposes a simple API: TC generate to generate a dealer and

key shares; genIndSig to generate individual signatures; and TC Combine Sigs to com-

bine individual signatures into a composite signature. The entire TC-RSA library is only

1200 lines of C code and makes heavy use of OpenSSL’s well-tested BIGNUM routines.

While the C-based library provides performance characteristics important for a crypto-

graphic component, it also is simple enough for easy auditing.

6.3.2 PKCS#11 Module

Integrating via the PKCS#11 interface [169] allows for compatibility with a wide range

of applications on the user’s host (such as web browsers, email clients, and VPN clients)

without making any modifications to those applications. For example, a PKCS#11 provider

module can be loaded into the Firefox web browser in the security preferences dialog and

in the OpenVPN client via the pkcs11-providers configuration option.

104

For our target implementation of SSH client authentication, the OpenSSH client can

simply be invoked with the -I option on the command line to specify the path to the shared

library implementing the desired PKCS#11 provider. For example, ssh -I cloudcard.so

user@host will cause the SSH client to invoke our PKCS#11 module for any RSA signing

operations.

Despite PKCS#11 being a fairly complicated interface, there are only a handful of

key functions that are necessary to implement for our purposes. Our PKCS#11 primar-

ily acts as a simple shim between the TC-RSA routines and the integrating application (the

OpenSSH client in our case), implementing minimal session support (e.g., C OpenSession,

C CloseSession), basic slot and token management (e.g., C GetInfo, C GetTokenInfo,

C GetMechanismInfo), and core object and signing operations (e.g., C GetAttributeValue,

C FindObjects, C Sign).

The meat of our PKCS#11 module weighs in at under 1,000 lines of C code, with a

large portion of that code from simply stubbing out all the unimplemented and unnecessary

PKCS#11 interface functions (e.g., with CKR FUNCTION NOT SUPPORTED). As this module

represents the primary software customization to the user’s host, we’ve strived to keep this

component as lightweight and simple as possible.

6.3.3 ssh-keygen-tcrsa

Before a user can start using CloudCard for their SSH logins, they need to generate a

public key and set of private key shares. In addition, the generated shares must also be

distributed to the cloud service and the mobile device. Both the generation and distribution

tasks are handled in our implementation by the ssh-keygen-tcrsa tool. Like the standard

ssh-keygen tool, our ssh-keygen-tcrsa will generate new SSH keys on behalf of the

user. Using the TC-RSA library, the tool generates the public and private key shares for the

desired RSA key length.

The public key is output to the user’s filesystem in ˜/.ssh/id tcrsa.pub, so that they

can later include that pubkey in the authorized keys file of any SSH servers that they

want to access using CloudCard.

105

Since our implementation uses a (3,3) threshold scheme, our TC-RSA dealer will gen-

erate three private key shares. One of the private key shares is stored locally on the

user’s filesystem in ˜/.ssh/id tcrsa. Another private key share is transmitted by the

ssh-keygen-tcrsa tool securely over the network to the cloud service. The last private

key share is distributed to the mobile device. Instead of transmitting the mobile key share

to the mobile device through some third-party (e.g., through the cloud service or through a

SMS provider), we directly communicate the key share from the user’s host to the mobile

device via a QR code that is output on the screen of the user’s host and scanned by our

mobile application on the mobile device.

6.3.4 Cloud Service

While it may seem counter-intuitive, the cloud service is actually one of the most simple

components in our implementation. While the cloud service does participate in the signing

operation using one of the three private key shares, it primarily acts as a simple transport

to pass signature requests from the PKCS#11 module to the user’s mobile device and pass

back the computed individual signatures.

The cloud service is implemented as a simple Python web service that presents a REST

API for communication with the PKCS#11 module and the mobile applications installed

on the user’s mobile device.

6.3.5 Mobile Application

In order for the user’s mobile device to participate in the CloudCard architecture, we

implemented a mobile application on the Android platform for the user to install. Although

the app is implemented in Java, it calls out to our existing C-based TC-RSA library via JNI

for its signing operations.

At the time of key generation on the user’s host, the Android app is seeded with its

private key share by scanning a QR code that is encoded with necessary key material. In

addition, the seeded mobile app registers itself with the cloud service so that the cloud

service will know how to reach the mobile device when a signing operation is requested.

106

Figure 6.4: A screenshot of the CloudCard mobile application displaying a signature con-
firmation for approval.

Upon a signature request, the cloud service will ping the mobile app using Android’s

C2DM (Cloud to Device Messaging) service, which allows near real-time push notifica-

tions to be sent to the user’s mobile device. Upon receiving a push notification, the mobile

application prompts the user to confirm the signature request simply by tapping approve or

deny on their mobile device. The PKCS#11 module can pass along contextual information

such as the executed command line (e.g., ssh -I cloudcard.so user@host) so that the

end user can see on their mobile device exactly which signing operation they are approv-

ing. This signature confirmation screen, seen in Figure 6.4, is analogous to the traditional

SSH ASKPASS confirmation invoked by ssh-agent.

6.3.6 Other Applications and Integrations

Integrating via the PKCS#11 interface is a huge win for instant compatibility with a

large number of existing applications. While our particular implementation was centered

around SSH client authentication, the CloudCard PKCS#11 module can be used for crypto-

graphic signature operations in any range of applications including browsers, email clients,

or VPN clients.

In addition to the PKCS#11 interface, other platform-specific interfaces exist that may

107

be useful to integrate with in future work. For example, CloudCard could easily be im-

plemented as a Cryptographic Service Provider (CSP) as part of the Windows CryptoAPI.

Similarly, on OS X, CloudCard could integrate via the native Common Data Security Ar-

chitecture (CDSA) and Keychain APIs.

6.4 Deployment and Evaluation

To evaluate our CloudCard approach and implementation, we deployed our system in a

real-world setting. As opposed to many experimental setups that may be deployed simply

as proof of concepts to gather research data, the authors use the deployed CloudCard system

on a daily basis to protect production servers and infrastructure.

For the experiments in this section, the following components were deployed and eval-

uated: the user’s host is a modest Intel desktop connected to the Internet via a typical con-

sumer broadband connection; the user’s mobile phone is a Nexus One, running the latest

version of Google’s Android platform; the cloud service is a m1.small AWS EC2 instance

hosted in the US-EAST-1 region; and the target service is a OpenSSH server hosted on a

separate instance also in AWS EC2.

6.4.1 Key Generation

In a normal RSA scheme, no restrictions are placed on the primes p and q other than

that they be sufficiently large [170, 98]. However, in our TC-RSA scheme, there is a

requirement that p and q must be strong primes. Due to this requirement, the generation of

the public key and the secret key shares in TC-RSA is more computationally expensive.

To measure the performance impact, we benchmarked key generation on a variety of

RSA schemes, key sizes, and CPU types. In particular, we compared key generation of

normal RSA, TC-RSA (2,2), and TC-RSA (3,3) with key sizes of 1024, 2048, 3072, and

4096 bits, running on both a modest desktop CPU (2.4 GHz Intel Core 2) and a mobile

device CPU (1.0 GHz Qualcomm QSD 8250 Snapdragon ARM).

The results of this key generation performance evaluation are listed in Table 6.1. As

108

RSA Scheme Key Size Mobile CPU Desktop CPU
Normal RSA 1024 0.841s 0.054s

2048 5.71s 0.316s
3072 9.66s 0.681s
4096 27.0s 2.20s

TC-RSA (2,2) 1024 31.3s 1.86s
2048 373s 25.1s
3072 1621s 133s
4096 4432s 376s

TC-RSA (3,3) 1024 21.6s 1.92s
2048 295s 27.4s
3072 1731s 141s
4096 4939s 445s

Table 6.1: Timings of key generation across RSA schemes, key sizes, and CPU types.

seen in the results, key generation times for the TC-RSA schemes are consistently about

two orders of magnitude greater than normal RSA on the desktop CPU. However, while

TC-RSA key generation takes significantly longer than normal RSA, we observe that the

required time is completely reasonable for real-world applications. As current recommen-

dations on RSA key sizes cite 2048-bit RSA keys as being sufficient through 2030 and

3072-bit keys exceeding well beyond that [103], we believe that key generation time in the

ballpark of a few minutes is acceptable.

In addition, we observe that key generation on the mobile CPU is at least an order of

magnitude greater than the desktop CPU. While the dealer and its key generation does not

take place on the mobile device in our current scheme, it’s worth noting these performance

numbers as mobile-generated key shares may be a viable, albeit computationally expensive,

model.

6.4.2 Signature Generation

In a TC-RSA scheme, individual signatures are generated by each signer, then com-

bined into one composite signature by the combiner. To evaluate the performance of our

proposed scheme, we benchmark the individual signature generation on the same key sizes

and devices as we did with our key generation benchmarks. However, in this experiment

109

RSA Scheme Key Size Mobile CPU Desktop CPU
Normal RSA 1024 6.09ms 0.664ms

2048 39.4ms 4.08ms
3072 123ms 12.6ms
4096 282ms 28.5ms

TC-RSA 1024 19.2ms 1.93ms
2048 137ms 12.5ms
3072 396ms 40.1ms
4096 901ms 92.5ms

Table 6.2: Timings of signature generation across RSA schemes, key sizes (in bits), and
CPU types.

there is no need to differentiate between the (2,2) and (3,3) TC-RSA schemes since we’re

only measuring the timing of a single individual signature operation and not the timing all

the signatures and their combination.

The results of this signature generation performance evaluation are listed in Table 6.2.

Across key sizes and CPUs, the signature generation timing is consistently a small constant

factor greater for the TC-RSA scheme compared to normal RSA. Given that three such

individual signatures are generated for each operation in our TC-RSA (3,3) scheme, it is

vital that the TC-RSA operations are not significantly more computationally expensive than

normal RSA.

As observed in our results on key generation, signature generation on the mobile CPU

is, similarly, an order of magnitude slower than the desktop CPU. Given that the mobile de-

vice does compute a partial individual signature in our CloudCard approach, it is important

that this mobile signature generation is not prohibitively expensive. Thankfully, even in the

most expensive case with a 4096-bit key size, mobile signature generation is a sub-second

operation.

6.4.3 Signature Verification

Since the verifying service (which is the OpenSSH daemon in our deployment) per-

forms the same operation to verify the generated signature, there is no significant mea-

surable difference in the performance of signature verification between the various RSA

110

schemes.

6.4.4 End-to-End Performance

In a real-world deployment, the user-perceived delays involved when using CloudCard

may exceed the importance of the individual cryptographic operations. After all, if the

user has to wait an extended amount of time to log in to the target SSH server when using

CloudCard, it may cause unnecessary frustration to the user and deter them from using such

a system, depriving them of the potential security benefits.

To measure end-to-end performance, we consider the individual signature operations,

the combination of individual signatures on the host, and the delays associated with all the

network communication between the host, cloud, and mobile components in the Cloud-

Card system. We conducted our measurements with the mobile device on WiFi, instantly

responding to signature requests upon receiving them to remove any user-dependent laten-

cies from the calculation (e.g., waiting for the user to tap the approve button on their mobile

device). Also, for simplicity when calculating the signature generation time, we assume the

cloud’s CPU is equivalent to the host’s CPU.

The results for our end-to-end timing for a full SSH login are listed in Table 6.3. The to-

tal time in the far right column of the table represents the time between when our PKCS#11

module first receives the signature request from the SSH client and when all of the partial

signatures have been combined back together into a composite signature returned by the

PKCS#11 module to the SSH client.

The results show that there is non-trivial computation involved across the participating

devices in the threshold scheme. For example, all the cryptographic signing and combining

operations requires approximately 50ms for 1024-bit key size, approximately 250ms for

2048-bit key size, approximately 750ms for 3072-bit key size, and approximately 1500ms

for 4096-bit key size. It’s worth noting that these signature operations would take place

in parallel by the various participating devices rather than serially, so the 1500ms worth of

cryptographic operations would not necessarily take 1500ms of wall time.

However, the total time is clearly dominated by communication overhead caused by

111

network latencies between the host, cloud, and mobile components in the CloudCard sys-

tem. We consider this a positive result, as the chatty HTTPS communication between

components in our current implementation is hardly optimized for latency, meaning there

is significant room to improve the total end-to-end performance of the CloudCard imple-

mentation.

6.4.5 Revocation

For completeness, we also performed a simple demonstration of the revocation capabil-

ities of our CloudCard approach by destroying the key share stored on the mobile device.

Without the appropriate key material, the mobile device returns a dummy signature to the

cloud service, causing the user’s signature to be correctly rejected.

6.4.6 Limitations

While our CloudCard approach has significant advantages compared to other approaches,

it is rare for such benefits to come without trade-offs and limitations. We view the current

limitations of our system as motivation for incremental improvements rather than as fun-

damental weaknesses of the approach.

6.4.6.1 Availability of Signers

The most obvious trade-off of having multiple networked devices participating in a

distributed system employing threshold cryptography is availability. That is, if a TC-RSA

(n,n) scheme is deployed that requires all signers to be available, an unavailable signer will

result in the system being unable to generate a valid combined signature. For example with

our implementation, if the user’s mobile device does not have data service available (via

the cellular data network or a WiFi network), the user will not be able to log in via SSH.

The most problematic component with respect to availability is undoubtedly the mobile

device. While mobile devices are becoming increasingly-connected over global data net-

works, availability and service coverage is certainly a concern. However, it may be possible

for the host to securely communicate with the mobile device over mechanisms other than

112

a wide-area network. For example, a host could request signatures from the mobile device

using a wireless network, Bluetooth, USB, or any similar local communication mechanism.

Alternately, backup key shares could be generated and stored securely offline in case

of any sort of extended availability outages or other such extenuating circumstances. For

example, a TC-RSA (3,4) scheme could be employed to generate four key shares, distribute

the usual three to the host, cloud, and mobile, and store the extra fourth share offline on a

USB stick. Obviously, the use of additional backup key shares has an impact on the security

and revocation capabilities of the system.

In summary, while availability is certainly a valid concern, we believe the security

advantages of the CloudCard approach outweigh the availability disadvantages.

6.4.6.2 Trustworthiness of Dealer

In our current scheme, the dealer generates the public key and private key shares on

the user’s host machine. If the host was compromised during the key generation phase, the

key shares could obviously be stolen by a malicious party, compromising the integrity of

the system. However, the same type of threat affects normal key generation on the host,

so in this scenario CloudCard is no worse than the normal RSA model. This type of Trust

On First Use (TOFU) model for bootstrapping trust has been shown to be acceptable and

survivable under most practical threat models (including SSH’s own host authentication

mechanism).

Distributed key generation [28, 123, 62] is another area of research that may provide

fruitful improvements. Instead of generating all the key shares on a single device which

may represent a single point of compromise, several parties may be involved in the key

generation protocol without any one of them possessing enough key material to forge a

valid signature.

6.5 Related Work

Shoup’s research on practical threshold signatures is the most relevant work [162] to

ours as it acts as the reference for our threshold RSA (TC-RSA) implementation. How-

113

Key Size Signature Generation Signature Combination Communication Overhead Total Time
1024 1.93 + 1.93 + 19.2 = 23.1ms 16.2ms 865ms 904ms
2048 12.5 + 12.5 + 137 = 162ms 98.1ms 865ms 1125ms
3072 40.1 + 40.1 + 396 = 476ms 297ms 865ms 1638ms
4096 92.5 + 92.5 + 901 = 1086ms 670ms 865ms 2631ms

Table 6.3: Combined TC-RSA (3,3) timings for signature generation, signature combina-
tion, and the network communication overhead for a full CloudCard SSH login sequence
in the pessimistic model of all operations occurring serially.

ever, while Shoup’s threshold signature scheme introduced useful properties for a prac-

tical realization, prior research laid the groundwork for threshold cryptography both for

RSA [35, 119, 89] and DSA [122, 81] algorithms. In addition, the benefits of fast revoca-

tion through the use of threshold cryptography was first pioneered by Boneh et al. [27, 26].

In general, most research in threshold cryptography has focused on expanding the

state of the art from a mathematical perspective rather than one of practical application.

Many researchers improved upon existing threshold cryptography schemes by strength-

ening assumptions of an adversary and tackling more challenging and exotic threat mod-

els [120, 99, 2, 43].

However, some practical applications of threshold cryptography have been explored in

the past. For example, in [185], Wu et al. used threshold signatures to build an intrusion-

tolerant web server and CA. Threshold cryptography has also been applied to distributed

storage systems [153], email signing [67], and various Java frameworks [91, 33].

As mentioned in the evaluation section, related research has been performed in the area

of distributed key generation which can be valuable for threshold cryptography schemes

where a centralized dealer may not be appropriate [28, 123, 62].

6.6 Summary

In this chapter, we have proposed a novel approach for employing threshold signatures

known as CloudCard that addresses many of the limitations of a host-centric approach for

cryptographic signatures and authentication. Through a unique architecture focused around

the use of a mobile device in conjunction with a cloud-hosted service, CloudCard enables

enhanced security, revocation, and usability, all while maintaining compatibility with ex-

114

isting PKCS#11-enabled applications and systems. Using a real-world implementation and

deployment of CloudCard, we demonstrate its utility when applied to traditional SSH lo-

gins.

6.6.1 Leveraging the Cloud

Throughout this chapter, we’ve shown that CloudCard can provide robust security guar-

antees even in a threat model where we assume that the user’s endpoint is compromised,

which contrasts with the properties of traditional host-centric signature generation. In ad-

dition, we validated that the fundamental assumptions of this thesis around the benefits of

cloud-centric security services are applicable to security realms beyond malicious software.

In particular, the following properties of cloud computing proved invaluable in the design

and implementation of the CloudCard service:

• Availability: High availability is an absolute necessity when considering an ap-

proach such as CloudCard. Cloud computing offers the ability to construct and

maintain a highly-available cloud service that is a core participant in the threshold

signature operation.

• Host-proofing: CloudCard’s use of threshold cryptography demonstrates that cloud-

hosted security services can operate securely even in the face of a compromised or

malicious IaaS provider.

• Empowerment: Cloud computing empowers organizations and even individuals to

spin up their own private CloudCard infrastructure with little difficulty, which would

likely be infeasible in a traditional computing environment.

115

CHAPTER 7

Discussion and Conclusion

This thesis has demonstrated how leveraging the cloud can be used to improve software

security services. While malicious threats have evolved considerably over the past decade,

the emergence of cloud computing has presented a new perspective for addressing such

threats. This thesis focuses on how cloud computing enables novel cloud-centric architec-

tures that can provide improved efficacy against modern security threats. Through its five

primary chapters, this thesis demonstrates how a cloud-centric model applies across a wide

range of security applications such as detecting malicious software, protecting resource-

constrained mobile devices, understanding the capabilities of malicious attackers, analyz-

ing and classifying malware, and generating robust and resilient cryptographic signatures.

7.1 Summary of Contributions

This thesis began with a new architecture for deploying malware detection functionality.

Our approach, CloudAV, ditches the host-centric model employed by traditional antivirus

and instead advocates for a cloud-centric model where the actual detection engines are

hosted in a cloud service. By maintaining a lightweight host agent to submit suspicious files

to the cloud service, CloudAV achieves better detection of malicious software, enhanced

forensic capabilities, retrospective detection, and improved deployability and management.

We evaluated our CloudAV implementation using a large malware dataset and a production

deployment of our system on a real-world campus network for a period of over six months.

116

Using the malware dataset, we showed how N-version protection provides substantial gains

in detection coverage against recent threats. In addition, we demonstrated how our cloud-

centric architecture enables advanced functionality, such as retrospective detection, which

can greatly mitigate the impact of the large window of vulnerability presented by antivirus

products. It is clear from our research and subsequent commercial activity that a cloud-

based approach for malware detection indeed offers significant advantages over a host-

centric approach.

While CloudAV brought benefits for malware detection in traditional computing envi-

ronments, this thesis further explored the application of the CloudAV principles to resource-

constrained mobile devices. We argued that it is possible to expend bandwidth resources

to significantly reduce on-device CPU, memory, and power resources. We demonstrated

how our cloud-centric model enhances mobile security and reduces on-device software

complexity, while allowing for new services such as platform-specific behavioral analysis

engines. Our benchmarks on Nokia’s N800 and N95 mobile devices showed that our mo-

bile agent consumes an order of magnitude less CPU and memory while also consuming

less power in common scenarios compared to existing on-device antivirus software. With

the skyrocketing adoption and sophistication of mobile devices, protecting these devices

against malicious threats in a resource-efficient and scalable manner is increasingly impor-

tant and can be effectively performed with a cloud-centric service.

Next, this thesis described a cloud-centric service, called PolyPack, that uses an array

of packers and antivirus engines to select the packer that will result in the optimal evasion

of the antivirus engines. Toward understanding the utility and efficacy of such a service,

we constructed an implementation of PolyPack which employs 10 packers and 10 popu-

lar antivirus engines. Our evaluation showed that PolyPack provides 258% more effective

evasion of antivirus engines than using an average packer and out-evades the best eval-

uated packer for over 40% of the binary samples. At its peak, PolyPack offered private

packing services to over 50 personally-vetted researchers and penetration testers. Besides

exposing the ease at which modern antivirus can be evaded in a comprehensive and auto-

mated fashion, PolyPack provided several important proof points that indicate the power of

cloud-centric services. For one, PolyPack demonstrated that cloud services can be rapidly

117

prototyped and deployed (e.g., with the fusion of the packing service with the existing

CloudAV service). More importantly, PolyPack demonstrated that the positive attributes of

cloud services may also be abused to benefit attackers. Not surprisingly, since our initial

research, a wide range of cloud-centric crimeware services, including those with PolyPack-

like functionality, have cropped up in the wild and are in active use.

With thousands of new malware samples flooding in each day, scalable approaches to

classification are an absolute necessity to gain a grasp of the ever-evolving capabilities of

malware authors. This thesis advocated for a cloud-centric security service to provide such

classification services at-scale. Deploying such a classification service not only allows us to

elastically scale and leverage our existing virtualization platform for safely executing and

tracing malware, but also offers the opportunity to open the service to other researchers,

resulting in more effective classification through the network effect. Toward this goal,

we developed and evaluated a dynamic analysis approach based on causal tracing of the

operating system objects created due to malware’s execution. The reduced collection of

these user-visible system state changes (e.g., files written, processes created) was used to

create a fingerprint of the malware’s behavior and automatically clustered into groups that

reflect similar classes of behaviors. The benefits of scale and isolation provided by our

virtualized classification service were instrumental in our research.

Lastly, this thesis investigated a new cloud-centric architecture for generating cryp-

tographic signatures using threshold cryptography. While the majority of the thesis has

discussed malware-related services, our CloudCard research demonstrated that the benefits

of cloud-centric services apply to other realms of security as well. CloudCard employed

a threshold RSA signature scheme with private key material split across three parties: a

user’s host, a user’s mobile device, and a cloud service. For a typical signing operation,

partial signatures are individually computed by each of the parties, combined together on

the user’s host, and then typically passed along to a service for authentication purposes. The

CloudCard approach has very tangible benefits including improved secrecy of private key

material, flexible and fast revocation, and out-of-band signature confirmation while main-

taining compatibility with existing applications and interfaces. To evaluate CloudCard, we

implemented a PKCS#11 module for SSH pubkey authentication that cooperates with an

118

Android mobile application and our cloud service. In summary, CloudCard is ideal exam-

ple of taking a security mechanism that was previously deployed in a purely host-centric

model and adapting the functionality to a cloud-centric model.

7.2 Insights and Lessons

Before concluding, it is important to review several of the key insights and lessons

learned from the research presented throughout this thesis.

• An Evolution of Security Threats and Computing Capabilities: Malicious threats

have evolved past the capabilities of our current host-centric security mechanisms.

Rather than propose incremental point solutions in an attempt to keep up with such

sophisticated adversaries, we believe that innovative and fundamentally different ar-

chitectures for security mechanisms are required to fight an asymmetric battle. We

also observe that advances in cloud computing and high-speed, low-latency network-

ing have drastically changed how software is deployed and consumed. This unique

intersection of cloud computing and security offers the ability to develop and deploy

novel security services in a cloud-centric architecture. We observe that this evolution

in computing has removed many of the performance and usability constraints that

would have previously hampered such security services. For example, transmitting

files over the network to a centralized service running 10 different antivirus engines

in parallel, like we advocate in CloudAV, would seem like an absurdly infeasible

approach before the advent of utility computing, virtualization, and high-speed net-

work interconnects. However, after our research results demonstrated its feasibility,

it seems like a straightforward and obvious evolution of security technology. We the-

orize that as computing capabilities continue to evolve in the future, we’ll observe

the development of similar “enabling technologies” in the security space to address

the continually-evolving malicious threats.

• A New Perspective for Security Mechanisms: While cloud-centric services offer

a promising new approach for software security mechanisms, they do have similari-

119

ties with previous network-centric and host-centric mechanisms. When approaching

a security service, one can separate the underlying mechanism (e.g., misuse detec-

tion, anomaly detection, access control) from the service itself (e.g., AV, NBADS,

firewall). For example, host-centric antivirus and network-centric NIDS both em-

ploy signature-based mechanisms. However, the former operates on a host-based

perspective with file-based granularity, while the latter operates on a network-based

perspective with flow or packet-based granularity. Identical underlying mechanisms

are also present in network-based and host-based firewalls and network-based and

host-based anomaly detection systems. So while the core underlying mechanism re-

mains unchanged in these examples, the security capabilities of these services can

differ wildly based purely on their perspective and level of granularity that they’re

able to inspect. This is a subtle, yet powerful point: the perspective of a security

mechanism can often have a more significant impact on its efficacy than the mecha-

nism itself. We see this same principle applied to our proposed cloud-centric model

in effect throughout the thesis (e.g., signature-based mechanism moved to cloud ser-

vice in CloudAV, cryptographic signature computation moved to cloud service in

CloudCard, etc). We’ve seen the cloud-centric model offer a powerful new perspec-

tive for such security mechanisms: the global scope of a network-centric perspective,

yet the fine-granularity of a host-centric perspective.

• A Blueprint for Constructing Cloud-Centric Services: A common blueprint for

building cloud-centric security services exists across the chapters of this thesis. While

the benefits of our cloud-centric security service often appear to be derived from a

hybrid of network-centric and host-centric models, the actual construction of such

services is more of an evolution of the host-centric model. In several of the services

presented in this thesis, a purely host-centric security mechanism was segmented and

adapted to a cloud-centric model. This segmentation usually involves splitting up the

host-centric functionality and moving a subset of it to a network-attached cloud ser-

vice. For example, with CloudAV we segmented the detection engine functionality

of antivirus and migrated it to a cloud service, while leaving behind the lightweight

120

agent on the end host. Similarly, with CloudCard we segmented the signature com-

putation and migrated a portion of the operation to a cloud service and a mobile

device. Many of the benefits of the security services presented in this thesis were

derived from this process of adapting a host-centric security mechanism to a cloud-

centric service. We feel this approach represents a logical and practical blueprint for

approaching the construction of future cloud-centric software security services.

7.3 Future Work

This thesis has laid the foundation for future researchers to explore the benefits of cloud-

centric security services. Our research has shown that existing security mechanisms can be

vastly improved when deployed in a cloud-centric architecture. In addition, we’ve shown

that completely novel services can be designed when leveraging the primitives provided

by cloud computing. As cloud computing and high-speed networking continue to evolve,

we anticipate that the benefits of our proposed approaches will be further amplified. In

addition, we envision severals areas of future work that may extend the principles described

in this thesis:

• Exploring trade-offs of granularity and abstraction: Interesting trade-offs may

exist between the efficacy and performance of a cloud-centric security service based

on the granularity of data collected and operated on. Too fine-grained information

may have significant impact on end hosts, the network, and the cloud service and

may be highly dependent on the deployment model and the number of hosts partic-

ipating in the service. For example, the CloudAV implementation presented in this

thesis operated primarily on a file-based granularity, sending suspicious files to the

cloud for analysis when they were observed on an end host. However, one can envi-

sion a cloud security service that operates on finer-grained system activity or objects

in order to detect and mitigate malicious attacks. For example, a cloud security ser-

vice observing the control flow graphs of userland or kernel activity may be more

effective in detecting in-memory attacks that never touch persistent storage devices.

One could imagine even finer-grained approaches such as full-blown synchronously

121

or asynchronously replicated computing with a network-attached reference monitor.

Thoroughly exploring these security and performance trade-offs may offer insight

into which classes of security services can be efficiently deployed with our current

and future computing capabilities.

• Defending against malicious use of cloud services: While this thesis has shown

that one can design new architectures that offer asymmetric gains over existing ap-

proaches to address modern security threats, we must also realize that attackers can

use the same beneficial properties of cloud computing to bolster their attacks, as

we demonstrated with our PolyPack research. Future work may investigate whether

there exist inherent properties in the way cloud services are architected or deployed

that can be leveraged to make their use for malicious purposes more difficult. Alter-

nately, it is possible that the availability of public cloud IaaS providers are a boon

for fraudsters, offering scalable, bullet-proof platforms to host their malicious crime-

ware services. While this thesis focuses on the benefits of cloud services regardless

of intent, this is will undoubtedly be an important research area as malicious actors

continue to increase in organization and sophistication.

• Designing trustworthy and host-proofed services: As the adoption of cloud-based

services is rapidly accelerating, the trustworthiness of the service provider is a ma-

jor area of contention. Enterprises offloading security services to third-party cloud

providers have serious and well-founded concerns about the confidentiality, integrity,

and availability of their sensitive data. Therefore, it is vital that future work in the

area of cloud-centric security services consider the threat model of a malicious or

compromised cloud infrastructure provider and adapt architectural design decisions

to be as resilient and trustworthy as possible. For example, techniques involving

private information retrieval, tokenization, and homomorphic encryption have been

proposed for ensuring data confidentiality in third-party cloud services. While de-

signing completely host-proofed services is a non-trivial task, it is possible to achieve

mathematically-provable security guarantees even in the face of a malicious or com-

promised cloud provider as we demonstrated with our CloudCard research.

122

• Architecting the next generation of cloud-centric security services: In addition

to amplifying the benefits of our proposed approaches, we anticipate that the further

evolution of cloud computing and high-speed networking will open up opportunities

for the next generation of cloud-centric security services that may be infeasible or

impractical in the current day. We believe that the lessons presented by this thesis

will serve as a blueprint for the research and development of next generation cloud-

centric security services.

123

BIBLIOGRAPHY

124

BIBLIOGRAPHY

[1] Normalized compression distance for gene expression analysis. In Workshop on
Genomic Signal Processing and Statistics (GENSIPS), May 2005.

[2] M. Abdalla, S. Miner, and C. Namprempre. Forward-secure threshold signature
schemes. Topics in Cryptology–CT-RSA 2001, pages 441–456, 2001.

[3] K. Adams and O. Agesen. A comparison of software and hardware techniques for
x86 virtualization. In ACM SIGOPS Operating Systems Review, volume 40, pages
2–13. ACM, 2006.

[4] Debin Gao andDesiree Beck, Julie Connolly” Michael K. Reiter, and Dawn Xi-
aodong Song. Behavioral distance measurement using hidden markov models. In
RAID, pages 19–40, 2006.

[5] Avast Antivirus. Avast. http://www.avast.com/en-us/index.

[6] AVG Antivirus. Avg. http://www.avg.com/us-en/homepage.

[7] BitDefender Antivirus. Bitdefender. http://www.bitdefender.com.

[8] F-Prot Antivirus. F-prot. http://www.f-prot.com/.

[9] F-Secure Antivirus. F-secure. http://www.f-secure.com/en/web/home_us/
home.

[10] Kaspersky Antivirus. Kaspersky. http://usa.kaspersky.com/.

[11] McAfee Antivirus. mcafee. http://www.mcafee.com/us/.

[12] Symantec Antivirus. Symantec. http://www.symantec.com/index.jsp.

[13] Trend Micro Antivirus. Trend micro. http://us.trendmicro.com/us/home/
index.html.

[14] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, et al. Above the clouds: A berkeley view of
cloud computing. Technical report, Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, 2009.

125

[15] Algirdas Avizienis. The n-version approach to fault-tolerant software. IEEE Trans-
actions on Software Engineering, 1985.

[16] Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix
Freiling. The nepenthes platform: An efficient approach to collect malware. In
9th International Symposium On Recent Advances In Intrusion Detection. Springer-
Verlag, 2006.

[17] Josh Ballard. An Eye on the Storm: Inside the Storm Epidemic. 41st Meeting of the
North Americian Network Operators Group, October 2007.

[18] Piotr Bania. Generic Unpacking of Self-modifying, Aggressive,
Packed Binary Programs. http://piotrbania.com/all/articles/
pbania-dbi-unpacking2009.pdf, 2009.

[19] P. Barford and V. Yegneswaran. An inside look at botnets. Malware Detection, pages
171–191, 2007.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. ACM SIGOPS Oper-
ating Systems Review, 37(5):164–177, 2003.

[21] bart, xt. Fast Small Good (FSG). http://www.woodmann.com/collaborative/
tools/index.php/FSG, 2009.

[22] Desiree Beck and Julie Connolly. The Common Malware Enumeration Initiative. In
Virus Bulletin Conference, October 2006.

[23] Abhilasha Bhargav, Rahim Sewani, and Sarvjeet Singh. Intrusion fault-tolerance
using threshold cryptography. Purdue University, Threshold Cryptography, 2004.

[24] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi, and
L. Wang. On the analysis of the zeus botnet crimeware toolkit. In Privacy Security
and Trust (PST), 2010 Eighth Annual International Conference on, pages 31–38.
IEEE, 2010.

[25] D. Bolzoni, E. Zambon, S. Etalle, and P. Hartel. Poseidon: A 2-tier anomaly-based
intrusion detection system. Arxiv preprint cs/0511043, 2005.

[26] D. Boneh, X. Ding, and G. Tsudik. Fine-grained control of security capabilities.
ACM Transactions on Internet Technology (TOIT), 4(1):60–82, 2004.

[27] D. Boneh, X. Ding, G. Tsudik, and C.M. Wong. A method for fast revocation of pub-
lic key certificates and security capabilities. In Proceedings of the 10th conference
on USENIX Security Symposium-Volume 10, pages 22–22. USENIX Association,
2001.

[28] D. Boneh and M. Franklin. Efficient generation of shared rsa keys. Advances in
Cryptology–CRYPTO’97, pages 425–439, 1997.

126

[29] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and fixing pkcs#
11 security tokens. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 260–269. ACM, 2010.

[30] C. Boyd. Digital multisignatures. Cryptography and coding, 1986.

[31] Death by Captcha. Death by captcha: Fastest discount captcha solvers. http:
//www.deathbycaptcha.com.

[32] BypassCaptcha.com. Bypass captcha. http://www.bypasscaptcha.com/.

[33] G.T. Byrd, F. Gong, C. Sargor, and T.J. Smith. Yalta: A secure collaborative space
for dynamic coalitions. In Proceedings of the 2001 IEEE Workshop on Information
Assurance and Security, pages 30–37. Citeseer, 2001.

[34] Danilo Bzdok. Yoda’s Crypter. http://yodap.sourceforge.net, 2009.

[35] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security
for threshold cryptosystems. In Advances in Cryptology–CRYPTO’99, pages 78–78.
Springer, 1999.

[36] Carsten Willems and Thorsten Holz. Cwsandbox. http://www.cwsandbox.org/,
2007.

[37] Brian Caswell and Marty Roesch. Snort: The open source network intrusion detec-
tion system, June 2004.

[38] P.M. Chen and B.D. Noble. When virtual is better than real. Proceedings of the 2001
Workshop on Hot Topics in Operating Systems (HotOS), pages 133–138, 2001.

[39] T.M. Chen. Stuxnet, the real start of cyber warfare?[editor’s note]. Network, IEEE,
24(6):2–3, 2010.

[40] Y. Chen, V. Paxson, and R.H. Katz. Whats new about cloud computing secu-
rity? University of California, Berkeley Report No. UCB/EECS-2010-5 January,
20(2010):2010–5, 2010.

[41] WetStone Chet Hosmer. Polymorphic and metamorphic malware.
http://www.blackhat.com/presentations/bh-usa-08/Hosmer/BH_US_
08_Hosmer_Polymorphic_Malware.pdf.

[42] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina.
Controlling data in the cloud: outsourcing computation without outsourcing control.
In Proceedings of the 2009 ACM workshop on Cloud computing security, pages 85–
90. ACM, 2009.

[43] S. Chow, C. Boyd, and J. Nieto. Security-mediated certificateless cryptography.
Public Key Cryptography-PKC 2006, pages 508–524, 2006.

127

[44] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, and R.E. Bryant. Semantics-aware
malware detection. In Ieee symposium on security and privacy, pages 32–46. Cite-
seer, 2005.

[45] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E.
Bryant. Semantics-aware malware detection. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy (Oakland 2005), pages 32–46, Oakland, CA,
USA, May 2005. ACM Press.

[46] Cloudmark. Cloudmark authority anti-virus. http://www.cloudmark.com, 2007.

[47] J. Clulow. On the security of pkcs# 11. Cryptographic Hardware and Embedded
Systems-CHES 2003, pages 411–425, 2003.

[48] Fred Cohen. A Short Course on Computer Viruses. John Wiley & Sons, 2nd edition,
April 1994.

[49] E. Cooke, M. Bailey, Z.M. Mao, D. Watson, F. Jahanian, and D. McPherson. Toward
understanding distributed blackhole placement. In Proceedings of the 2004 ACM
workshop on Rapid malcode, pages 54–64. ACM, 2004.

[50] E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding,
detecting, and disrupting botnets. In Proceedings of the USENIX SRUTI Workshop,
pages 39–44, 2005.

[51] Evan Cooke, Farnam Jahanian, and Danny McPherson. The Zombie roundup: Un-
derstanding, detecting, and disrupting botnets. In Proceedings of the Steps to Re-
ducing Unwanted Traffic on the Internet (SRUTI 2005 Workshop), Cambridge, MA,
July 2005.

[52] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, Cambridge, MA, 1990.

[53] F-Secure Corporation. F-secure mobile anti-virus. http://mobile.f-secure.
com/, 2008.

[54] Nokia Corporation. Maemo sdk. http://maemo.org/, 2008.

[55] Symantec Corporation. Symantec security advisory (sym06-010). http://www.
symantec.com/avcenter/security/Content/2006.05.25.html, 2006.

[56] Symantec Corporation. Symantec mobile antivirus for windows mobile. http://
www.symantec.com/norton/products/overview.jsp?pcid=pf&pvid=smavwm,
2008.

[57] The MITRE Corporation. Cve-2006-4926. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2006-4926, 2006.

[58] The MITRE Corporation. Cve-2006-4927. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2006-4927, 2006.

128

[59] The MITRE Corporation. Cve-2010-0098. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2010-0098, 2010.

[60] Aldo Cortesi. Host-proof applications. http://corte.si/posts/security/
hostproof.html.

[61] L.P. Cox and P.M. Chen. Pocket Hypervisors: Opportunities and Challenges. Pro-
ceedings of HotMobile, 2007.

[62] I. Damgård and M. Koprowski. Practical threshold rsa signatures without a trusted
dealer. Advances in Cryptology–EUROCRYPT 2001, pages 152–165, 2001.

[63] DeCaptcher. Decaptcher. http://decaptcher.com/client/.

[64] S. Delaune, S. Kremer, and G. Steel. Formal security analysis of pkcs# 11 and
proprietary extensions. Journal of Computer Security, 18(6):1211–1245, 2010.

[65] Y. Deswarte, L. Blain, and J.C. Fabre. Intrusion tolerance in distributed comput-
ing systems. In Research in Security and Privacy, 1991. Proceedings., 1991 IEEE
Computer Society Symposium on, pages 110–121. IEEE, 1991.

[66] W. Diffie. The first ten years of public-key cryptography. Proceedings of the IEEE,
76(5):560–577, 1988.

[67] X. Ding and G. Tsudik. Simple identity-based cryptography with mediated rsa. In
Proceedings of the 2003 RSA conference on The cryptographers’ track, pages 193–
210. Springer-Verlag, 2003.

[68] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and Peter M.
Chen. ReVirt: Enabling intrusion analysis through virtual-machine logging and
replay. In Proceedings of the 2002 Symposium on Operating Systems Design and
Implementaiton (OSDI), December 2002.

[69] Dwing. UPack. http://dwing.cjb.net, 2009.

[70] Dan Ellis, John Aiken, Kira Attwood, and Scott Tenaglia. A Behavioral Approach
to Worm Detection. In Proceedings of the ACM Workshop on Rapid Malcode
(WORM04), October 2004.

[71] C. Ellison and B. Schneier. Ten risks of pki: What you’re not being told about public
key infrastructure. Comput Secur J, 16(1):1–7, 2000.

[72] N. Falliere, L.O. Murchu, and E. Chien. W32. stuxnet dossier. White paper, Syman-
tec Corp., Security Response, 2011.

[73] Jason Flinn, Dushyanth Narayanan, and M. Satyanarayanan. Self-tuned remote ex-
ecution for pervasive computing. In Proceedings of the 8th Workshop on Hot Topics
in Operating Systems (HotOS-VIII), pages 61–66, Schloss Elmau, Germany, May
2001.

129

[74] International Organization for Standardization. Iso/iec 7816. http:
//www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=29257.

[75] Internet Engineering Task Force. Rfc 2560. http://www.ietf.org/rfc/
rfc2560.txt.

[76] Internet Engineering Task Force. Rfc 3280. http://www.ietf.org/rfc/
rfc3280.txt.

[77] M. Fossi, G. Egan, K. Haley, E. Johnson, T. Mack, T. Adams, J. Blackbird, M.K.
Low, D. Mazurek, D. McKinney, et al. Symantec internet security threat report
trends for 2010. Volume XVI, 2011.

[78] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing 360-
degree compared. In Grid Computing Environments Workshop, 2008. GCE’08,
pages 1–10. Ieee, 2008.

[79] A. Fox, S.D. Gribble, E.A. Brewer, and E. Amir. Adapting to network and client
variability via on-demand dynamic distillation. ACM SIGPLAN Notices, 31(9):160–
170, 1996.

[80] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An inquiry into the nature and
causes of the wealth of internet miscreants. In ACM Conference on Computer and
Communications Security (CCS), 2007.

[81] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold dss signatures.
In Advances in Cryptology–EUROCRYPT’96, pages 354–371. Springer, 1996.

[82] Bernard Golden. Cloud computing: Two kinds of agility. http://www.cio.com/
article/599626/Cloud_Computing_Two_Kinds_of_Agility.

[83] Google. Android - an open handset alliance project. http://code.google.com/
android/, 2008.

[84] Google. Google safe browsing. http://code.google.com/apis/
safebrowsing/, 2008.

[85] G. Gu, R. Perdisci, J. Zhang, W. Lee, et al. BotMiner: Clustering analysis of network
traffic for protocol-and structure-independent botnet detection. In Usenix Security
Symposium, 2008.

[86] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter: Detecting
malware infection through ids-driven dialog correlation. In Proceedings of the 16th
USENIX Security Symposium, pages 167–182, 2007.

[87] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2001.

130

[88] C. Herley and D. Florêncio. Nobody sells gold for the price of silver: Dishonesty,
uncertainty and the underground economy. Economics of Information Security and
Privacy, pages 33–53, 2010.

[89] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public
key and signature systems. In Proceedings of the 4th ACM conference on Computer
and communications security, pages 100–110. ACM, 1997.

[90] Hispasec Sistemas. Virus total. http://virustotal.com, 2004.

[91] Y. Huang, D. Rine, and X. Wang. A jca-based implementation framework for thresh-
old cryptography. In Computer Security Applications Conference, 2001. ACSAC
2001. Proceedings 17th Annual, pages 85–91. IEEE, 2001.

[92] N. Ianelli and A. Hackworth. Botnets as a vehicle for online crime. CERT Coordi-
nation Center, pages 1–28, 2005.

[93] IBM/ISS. Proventia network intrusion prevention system. http://www-935.ibm.
com/services/us/index.wss/offerfamily/iss/a1030570.

[94] Inc Immunity. CANVAS. http://www.immunitysec.com/products-canvas.
shtml, 2009.

[95] Cisco Systems Inc. Netflow services and applications. http://www.cisco.com/
warp/public/cc/pd/iosw/ioft/neflct/tech/napps_wp.htm, 2002.

[96] Adobe Systems Incorporated. Apsb07-18: Adobe reader and acrobat vulnerabil-
ity. http://www.adobe.com/support/security/bulletins/apsb07-18.html,
2007.

[97] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. Locality-
preserving hashing in multidimensional spaces. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing (STOC 1997), May 1997.

[98] American National Standards Institute. Public key cryptography using reversible
algorithms for the financial services industry (rdsa). ANSI X9.31-1998.

[99] S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptosystems without
erasures. In Eurocrypt’00, pages 221–242, 2000.

[100] M. Jensen, J. Schwenk, N. Gruschka, and L.L. Iacono. On technical security issues
in cloud computing. In Cloud Computing, 2009. CLOUD’09. IEEE International
Conference on, pages 109–116. Ieee, 2009.

[101] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction. In Proceedings of the 14th ACM con-
ference on Computer and communications security, page 138. ACM, 2007.

[102] Jibz, Qwerton, snaker, xineohP, BoB. PEiD. http://www.peid.info, 2009.

131

[103] Burt Kaliski. Twirl and rsa key size. RSA Laboratories.

[104] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. Renovo: a hidden code
extractor for packed executables. In WORM ’07: Proceedings of the 2007 ACM
workshop on Recurring malcode, 2007.

[105] L.M. Kaufman. Data security in the world of cloud computing. Security & Privacy,
IEEE, 7(4):61–64, 2009.

[106] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP’03), Bolton Landing,
NY, USA, 2003.

[107] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP’03), pages 223–236,
Bolton Landing, NY, USA, October 2003. ACM.

[108] J. Zico Kolter and Marcus A. Maloof. Learning to Detect and Classify Malicious
Executables in the Wild. Journal of Machine Learning Research, 2007.

[109] Eleftherios Koutsofios and Stephen C. North. Drawing graphs with dot. Technical
report, AT&T Bell Laboratories, Murray Hill, NJ, 8 October 1993.

[110] Abhishek Kumar, Vern Paxson, and Nicholas Weaver. Exploiting underlying struc-
ture for detailed reconstruction of an internet-scale event. Proceedings of the
USENIX/ACM Internet Measurement Conference, October 2005.

[111] Thomas Kunz and Sali Omar. A mobile code toolkit for adaptive mobile applica-
tions. In Proceedings of the 3rd IEEE Workshop on Mobile Computing Systems and
Applications, pages 51–59, Monterey, CA, December 2000.

[112] Kaspersky Lab. Kaspersky mobile security. http://usa.kaspersky.com/
products_services/mobile-security.php, 2008.

[113] N. Leavitt. Is cloud computing really ready for prime time? Computer, 42(1):15–20,
2009.

[114] Tony Lee and Jigar J. Mody. Behavioral classification. In Proceedings of EICAR
2006, April 2006.

[115] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vitányi. The similarity metric. In
SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 863–872, Philadelphia, PA, USA, 2003. Society for Indus-
trial and Applied Mathematics.

[116] Z. Li, Q. Liao, and A. Striegel. Botnet economics: uncertainty matters. Managing
Information Risk and the Economics of Security, pages 245–267, 2009.

132

[117] Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez. Hamsa: Fast Signature Genera-
tion for Zero-day Polymorphic Worms with Provable Attack Resilience. In Proc. of
IEEE Symposium on Security and Privacy, 2006.

[118] M. Locasto, J. Parekh, S. Stolfo, A. Keromytis, T. Malkin, and V. Misra. Collabora-
tive distributed intrusion detection. Dept. Computer Science, Columbia Univ., Tech.
Rep. CUCS-012-04, 2004.

[119] A. Lysyanskaya. Efficient threshold and proactive cryptography secure against the
adaptive adversary. 1999.

[120] A. Lysyanskaya and C. Peikert. Adaptive security in the threshold setting: From
cryptosystems to signature schemes. Advances in Cryptology–ASIACRYPT 2001,
pages 331–350, 2001.

[121] Justin Ma, John Dunagan, Helen Wang, Stefan Savage, and Geoffrey Voelker. Find-
ing Diversity in Remote Code Injection Exploits. Proceedings of the USENIX/ACM
Internet Measurement Conference, October 2006.

[122] P. MacKenzie and M. Reiter. Two-party generation of dsa signatures. In Advances
in Cryptology–CRYPTO 2001, pages 137–154. Springer, 2001.

[123] M. Malkin, T. Wu, and D. Boneh. Experimenting with shared generation of rsa
keys. In 1999 Symposium on Network and Distributed System Security (SNDSS),
pages 43–56. Citeseer, 1999.

[124] L. Martignoni, M. Christodorescu, and S. Jha. Omniunpack: Fast, generic, and safe
unpacking of malware. In Proceedings of the Annual Computer Security Applica-
tions Conference (ACSAC), 2007.

[125] McAfee. W32/Sdbot.worm. http://vil.nai.com/vil/content/v_100454.
htm, April 2003.

[126] P. Mell and T. Grance. The nist definition of cloud computing (draft). NIST special
publication, 800:145, 2011.

[127] Microsoft. Microsoft security intelligence report: January-june 2006. http://www.
microsoft.com/technet/security/default.mspx, October 2006.

[128] Microsoft. Microsoft security intelligence report. http://www.microsoft.com/
security/portal/Threat/SIR.aspx, 2009.

[129] Y. Miretskiy, A. Das, C.P. Wright, and E. Zadok. Avfs: An on-access anti-virus file
system. In Proceedings of the 13th USENIX Security Symposium (Security 2004),
pages 73–88, 2004.

[130] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside
the slammer worm. Security & Privacy, IEEE, 1(4):33–39, 2003.

133

[131] D. Moore, C. Shannon, et al. Code-red: a case study on the spread and victims of
an internet worm. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, pages 273–284. ACM, 2002.

[132] Alex Moshchuk, Tanya Bragin, Steven D. Gribble, and Henry M. Levy. A Crawler-
based Study of Spyware in the Web. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), San Diego, CA, 2006.

[133] Alexander Moshchuk, Tanya Bragin, Damien Deville, Steven D. Gribble, and
Henry M. Levy. Spyproxy: Execution-based detection of malicious web content.
In Proceedings of the 16th USENIX Security Symposium, August 2007.

[134] M. Myers. Revocatoin: Options and challenges. In Financial Cryptography, pages
165–171. Springer, 1998.

[135] Lajos Nagy, Richard Ford, and William Allen. N-version programming for the de-
tection of zero-day exploits. In IEEE Topical Conference on Cybersecurity, Daytona
Beach, Florida, USA, 2006.

[136] Arbor Networks. Arbor malware library (AML). http://www.arbornetworks.
com, 2009.

[137] Barracuda Networks. Barracuda spam firewall. http://www.
barracudanetworks.com, 2007.

[138] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating
signatures for polymorphic worms. Proceedings 2005 IEEE Symposium on Security
and Privacy, Oakland, CA, USA, May 8–11, 2005, 2005.

[139] P. Ning, Y. Cui, D.S. Reeves, and D. Xu. Techniques and tools for analyzing in-
trusion alerts. ACM Transactions on Information and System Security (TISSEC),
7(2):318, 2004.

[140] NIST/DHS/US-CERT. National vulnerability database. http://nvd.nist.gov/,
2007.

[141] Norman Solutions. Norman sandbox whitepaper. http://download.norman.no/
whitepapers/whitepaper_Norman_SandBox.pdf, 2003.

[142] Inc. Nullriver. iphone installer.app. http://iphone.nullriver.com/, 2008.

[143] Inc Nullsoft. NSIS. http://nsis.sourceforge.net, 2009.

[144] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The eucalyptus open-source cloud-computing system. In Cluster
Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM International Sympo-
sium on, pages 124–131. IEEE, 2009.

[145] Markus Oberhumer. UPX. http://upx.sourceforge.net/, 2009.

134

[146] Federal Bureau of Investigation. Cyber attacks: Net jam. http:
//web.archive.org/web/20070326115414/http://www.fbi.gov/libref/
factsfigure/factsfiguresapri2003.htm.

[147] John Ogness. Dazuko: An open solution to facilitate on-access scanning. Virus
Bulletin, 2003.

[148] OpenBSD. ssh-add - adds private key identities to the authentication agent. http:
//www.openbsd.org/cgi-bin/man.cgi?query=ssh-add.

[149] Niels Provos. Spybye. http://www.monkey.org/˜provos/spybye, 2007.

[150] D. Quist and Valsmith. Covert Debugging: Circumventing Software Armoring. In
Proc. of Black Hat USA, 2007.

[151] M.A. Rajab, F. Monrose, and A. Terzis. On the effectiveness of distributed worm
monitoring. In Proceedings of the 14th conference on USENIX Security Symposium-
Volume 14, pages 15–15. USENIX Association, 2005.

[152] Mathias Rauen. madcodehook. http://madshi.net/, 2008.

[153] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond:
the oceanstore prototype. In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies, pages 1–14, 2003.

[154] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[155] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. Base: using abstraction
to improve fault tolerance. In Proceedings of the eighteenth ACM symposium on
Operating systems principles, New York, NY, USA, 2001.

[156] M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current technology and
future trends. Computer, 38(5):39–47, 2005.

[157] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee. PolyUn-
pack: Automating the Hidden-Code Extraction of Unpack-Executing Malware. In
The 22th Annual Computer Security Applications Conference (ACSAC 2006), Miami
Beach, FL, December 2006.

[158] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuenning. The
Remote Processing Framework for portable computer power saving. In Proceedings
of the ACM Symposium on Applied Computing, San Antonio, TX, February 1999.

[159] R. Sandhu, M. Bellare, and R. Ganesan. Password-enabled pki: Virtual smartcards
versus virtual soft tokens. In Proceedings of the 1st Annual PKI Research Workshop.
Citeseer, 2002.

[160] C. Shannon and D. Moore. The spread of the witty worm. Security & Privacy, IEEE,
2(4):46–50, 2004.

135

[161] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Automatic Reverse
Engineering of Malware Emulators. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland ’09), 2009.

[162] V. Shoup. Practical threshold signatures. In Advances in Cryptology–EUROCRYPT
2000, pages 207–220. Springer, 2000.

[163] S. Sidiroglou, J. Ioannidis, A.D. Keromytis, and S.J. Stolfo. An Email Worm Vaccine
Architecture. Proceedings of the 1st Information Security Practice and Experience
Conference (ISPEC), pages 97–108, 2005.

[164] Stelios Sidiroglou, Angelos Stavrou, and Angelos D. Keromytis. Mediated overlay
services (moses): Network security as a composable service. In Proceedings of the
IEEE Sarnoff Symposium, Princeton, NJ, USA, 2007.

[165] Matt “skape” Miller. Using dual-mappings to evade automated unpackers. In Unin-
formed Journal Vol 10, 2008.

[166] North Star Software. NsPack. http://www.nsdsn.com/eng/index.htm, 2009.

[167] D. Solo, R. Housley, and W. Ford. Internet x. 509 public key infrastructure certificate
and crl profile. 1999.

[168] Inc. Sourcefire. Clamav antivirus. http://www.clamav.net/, 2008.

[169] R.S.A.C. Standard. Pkcs #11 cryptographic token interface standard. RSA Labora-
tories.

[170] R.S.A.C. Standard. Pkcs #7: Cryptographic message syntax standard. RSA Labora-
tories.

[171] StarForce. ASpack. http://www.aspack.com/, 2009.

[172] B. T OGRAPH and Y.R. MORGENS. Cloud computing. Communications of the
ACM, 51(7), 2008.

[173] Symantec Security Response Team. Ms word exploit creation tool.
http://www.symantec.com/enterprise/security_response/weblog/
2007/04/ms_word_exploit_creation_tool.html, 2007.

[174] Toni Koivunen / Teamfurry.com. SigBuster. http://www.teamfurry.com, 2009.

[175] Bitsum Technologies. PECompact. http://www.bitsum.com/pecompact.php,
2009.

[176] Oreans Technology. Themida. http://www.oreans.com/, 2009.

[177] tHE EGOiSTE/TMG. tElock. http://programmerstools.org/node/164, 2009.

136

[178] K. Thomas and D.M. Nicol. The koobface botnet and the rise of social malware. In
Malicious and Unwanted Software (MALWARE), 2010 5th International Conference
on, pages 63–70. IEEE, 2010.

[179] L.M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the clouds:
towards a cloud definition. ACM SIGCOMM Computer Communication Review,
39(1):50–55, 2008.

[180] Kaushik Veeraraghavan, Ed Nightingale, Jason Flinn, and Brian Noble. qufiles: a
unifying abstraction for mobile data management. In The Ninth Workshop on Mobile
Computing Systems and Applications (HotMobile 2008), February 2008.

[181] Brian Walters. VMware virtual platform. j-LINUX-J, 63, Jul. 1999.

[182] Y.M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King. Au-
tomated web patrol with strider honeymonkeys. In Proceedings of the 2006 Network
and Distributed System Security Symposium, pages 35–49, 2006.

[183] Stephanie Wehner. Analyzing worms and network traffic using compression. Tech-
nical report, CWI, Amsterdam, 2005.

[184] P. Wohlmacher. Digital certificates: a survey of revocation methods. In Proceedings
of the 2000 ACM workshops on Multimedia, pages 111–114. ACM, 2000.

[185] T. Wu, M. Malkin, and D. Boneh. Building intrusion tolerant applications. In Pro-
ceedings of the 8th conference on USENIX Security Symposium-Volume 8, pages
7–7. USENIX Association, 1999.

[186] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global intrusion detection in
the DOMINO overlay system. In Proceedings of Network and Distributed System
Security Symposium (NDSS ’04), San Diego, CA, February 2004.

[187] Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, and Somesh Jha. An Ar-
chitecture for Generating Semantics-Aware Signatures. In Proceedings of the 14th
USENIX Security Symposium, pages 97–112, Baltimore, MD, USA, August 2005.

[188] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing system-
wide information flow for malware detection and analysis. In Proceedings of the
14th ACM conference on Computer and communications security, pages 116–127.
ACM New York, NY, USA, 2007.

[189] B. Zenel. A general purpose proxy filtering mechanism applied to the mobile envi-
ronment. Wireless Networks, 5(5):391–409, 1999.

[190] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

[191] P. Zheng. Tradeoffs in certificate revocation schemes. ACM SIGCOMM Computer
Communication Review, 33(2):103–112, 2003.

137

