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ABSTRACT 

NANOSTRUCTURED ORGANIC SOLAR CELLS: 
TOWARD HIGH EFFICIENCY, LARGE SCALE AND VERSATILITY 

 
by 

 
Hui Joon Park 

 
 
Chair: L. Jay Guo 

 

 

This dissertation is devoted to searching for solutions to realize low-cost, high 

efficiency and scalable organic solar cells (OSC), and their versatile application. For this 

purpose, my research has been focused on various nanostructures, which can be usable to 

maximize the performances of OSCs, and the effective fabrication processes to achieve 

those nanostructures. Furthermore novel device concepts based on those nanostructures 

have been introduced.  

First part of dissertation is about controlling the nanostructures in photoactive layers 

to develop more efficient OSC devices. A new process, named as ESSENCIAL, inducing 

superior bulk heterojunction (BHJ) morphology was developed. Compared with 

conventional annealing based-methods, the optimized BHJ morphology showing well-

organized charge transporting pathways with high crystallinity was achieved. Moreover, 

by controlling the interface of the photoactive layer, further improvement of power 
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conversion efficiency (PCE) was possible using BHJ structure. A new type of 

heterojunction nanostructure based on bilayer concept was also introduced. By 

maximizing interdiffusion of electron-donor and -acceptor, the optimized heterojunction 

morphology having internal quantum efficiency approaching about 100% was 

demonstrated. As another effort to realize the ideal interdigitated donor-acceptor 

structures, sub-20 nm scale nanopillars were prepared. Nanopillar and nanohole type 

nanoimprint lithography (NIL) molds were fabricated from a self-assembled block 

copolymer nanotemplate, and NIL-based nanopatterns are made in organic 

semiconductor. All these nanostructures could be realized by advanced processing that 

can be extended to high-speed manufacturing toward low-cost and high efficiency OSCs. 

Secondly, various nanostructures such as plasmonic nanostructures and light trapping 

structures were developed to enhance the absorption of light in OSC devices. NIL-based 

plasmonic nanostructures exhibit strong and tunable light extinction, and the enhanced 

electromagnetic field induces the increased photocurrent, leading to improved PCE. 

Moreover, by introducing periodic nanostructure at the metal electrode working as 

reflector in OSC, I could enhance the optical path length across a broad wavelength range 

of incident light. 

Lastly, the dual-function devices working as color filters and solar cells were 

demonstrated by applying photonic nanostructures to OSCs. This new conceptual device 

can recycle the wasted energy in color filter to generate the electricity for the 

revolutionary energy-saving e-media. 

 

 
 


