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CHAPTER |

| ntroduction

1.1 Dissertation Objective

Finite element models (FEM's) are often used to predict vibration responses and stresses
to support design processes. Also, evaluating variationsin structural responses caused by
design changes and damages (such as cracks and dents) is an important challenge in a
wide variety of applications. As computing capabilities increase, simulation techniques
replace experiments for testing designs, especially when the experiments are considerably
expensive or difficult to execute. However, the conventional design complexity can make
the analysis very slow when many substructure changes are needed during the iterative
process such as design, statistical analyses, and optimization problems. Thisissueis par-
ticularly important because usual industrial FEM s (such as automobile bodies and complex
airplane structural components) have millions of degrees of freedom (DOFs). These mod-
els, with very large numbers of DOFs, have to be used to ensure high accuracy. However,
the large computational cost of direct analyses based on these large models detrimentally
affects the design cycle. Thus, model reduction techniques such as those presented in this
work are necessary to reduce the computational cost.

An dternative to direct structural analysis of computationally expensive models is

based on component mode synthesis (CMS) because CM S can be combined with awide



variety of FEM-based methods. In the context of vibration analysis, CMS is used by first
dividing the global structure into components. Next, each component is projected onto a
very small truncated set of (component-level) basis vectors that approximately span the
space of the (component-level) response. As a result, the number of DOFs required to
model each component is considerably reduced compared to standard FEMs. Finally, the
models of each component are assembled, and a global reduced-order model (ROM) is
synthesized. Asaresult, the order of the global model is reduced significantly.

Although many CMS techniques have been developed for basic structural analyses,
they have not been constructed for design or damage detection in complex structures. The
key element that separates ROMs for design from those used for basic structural analysis,
isthat usua ROMs cannot easily be re-constructed when changes are applied (by design
or through damage) in afew components of the overall system. Recently, design-oriented
ROM s have been developed to avoid prohibitively expensive reanalyses of complex struc-
tures. These recent models are referred to as parametric reduced-order models (PROMS).
These PROMs are global in nature, in that they require access to the full system model as
part of the process. To address this issue, design-oriented PROMs built in a component-
oriented framework are needed for design and damage modeling.

Design-oriented PROM s are important for vibration-based structural health monitoring
(SHM) and structural optimization. For example, vibration-based SHM techniques are
of current interest in identifying damage and assessing the integrity of structures such
as vehicles and airplanes. Predicting the dynamic characteristics of damaged (cracked)
structures is an important challenge for vibration-based SHM. For this challenge, PROMs
can be used to predict the mode shapes of a cracked structure at a dramatically reduced
computational cost. The characteristics of the dynamic response predicted by PROMs

provide useful signals for vibration-based SHM. However, not al of the signals obtained



from PROMs can be used in practice due to limited accessibility constraints and cost of
the needed sensors. Thus, a methodology to select optimal sensor locations for SHM is
developed for the purpose of accurately capturing changes in mode shapes and identifying
the size of a crack.

Another use of PROMsisfor structural optimization. Typically, mechanical structures
such asthose found in automobilesand airplanes consist of multiple componentswhich are
assembled using joints such as bolts, welds, rivets, etc. The locations (assembly points) of
these joints affect structural performance characteristics such as the static compliance, the
frequency response, and the durability. To achieve high performance, thejoining locations
should be selected by a systematic approach rather than an experience-based approach.
However, this issue can be quite challenging because there are many joints (as many as
several thousand) and even more possible joining locations for large scale complex struc-
tures. Thus, a systematic approach to select optimal joining locations of components of
complex structuresis necessary.

The primary objectives of this research are as follows:

e To develop efficient and accurate PROM s which can be used to predict the vibration

characteristics of complex structures for the purpose of design and damage model-
ing.
e To develop arobust signal processing technology for SHM based on PROMSs.

e To develop an agorithm to identify the size of a crack in complex structures based

on arobust signal processing technology.

¢ Todevelop astructural optimization technique to select optimal joining locationsfor

the assembly of complex structures.



1.2 Dissertation Background

1.2.1 Component mode synthesisand parametric reduced-order models

Structural dynamic analyses often have high computational costs because repetitive
calculations are needed in the processes of optimization, stochastic analysis, and statisti-
cal analysis. These repetitive calculations are very time consuming especially when con-
ventional complex and large models are used. One method to reduce the computational
cost is to use reduced-order models (ROMs). Such ROMs have been used in a variety
of applications. Yun and Masri [1, 2] developed a methodology for stochastic detection
of changes in uncertain nonlinear systems using ROMs. Chung and Fung [3] proposed
anonlinear finite element model of piezoelectric tube actuators with hysteresis and creep
for control and design purposes. In their work, the operation of the actuators is simulated
using ROMs. Ashwin et al. [4] developed afinite element substructuring procedure for de-
sign analysis of large structural systems. Hartl et al. [5] also devel oped advanced methods
for analysis, design, and optimization which use ROMs for computational efficiency.

In the field of structural dynamic analysis, component mode synthesis (CMS) [6-12]
is well established as an alternative to conventional finite element models (FEMs) with
large numbers of degrees of freedom (DOFs). CM S belongsto awide class of domain de-
composition techniques. CM S divides the global structure into several substructures, and
the DOFs of each individual substructure are reduced separately. Then, the substructure
are reconnected, and the dynamic response of the system is predicted very efficiently and
accurately. Applications of CMS include the work of Wang and Kirkhope [13] who ap-
plied CM Sfor multi-shaft rotorswith flexibleinter-shaft bearings. They also used CMSfor
damped systems|[14]. Inaddition, Liuand Zheng [15] proposed an improved CM S method
for nonclassically damped systems. Takewaki [16] proposed an inverse CM'S method for

redesign of large structural systems. Matichard and Gaudiller [17] used CMS to develop



a hybrid modal nodal method for model reduction and feedback control (of multi-body,
smart structures). Kim [18] also developed a recursive CM S method to solve large-scale
eigenvalue problems efficiently. Tran [19] developed and applied a CM S approach which
uses partial interface modes of cyclically symmetric structures. To enhance computational
efficiency for redesign of large damped structural systems, Takewaki and Uetani [20] used
a new formulation for an incremental inverse problem based on CMS. Elhami et al. [21]
proposed methods for repetitive symmetric structures by CMS. Farhat and Geradin [22]
devel oped a methodol ogy which uses CM Sfor structures with incompatible substructures.
Also, many other methodologies based on CM S have been developed for structural analy-
Ses [23-27].

The most common CMS approach is the fixed-interface Craig-Bampton CM S (CB-
CMYS) method [7]. CB-CMS iswell understood and frequently used because of its ssim-
plicity and numerical stability. Herein, CB-CM Sisused for substructuring analysis. How-
ever, existing CM S-based techniques were not originally constructed for design or dam-
age detection in complex structures. Thus, there are several studies focused on improving
CMS-based ROMSs for these purposes. For example, Bames et al. [28,29] calculated sets
of modesfor afew sample parameter valuesin the parameter space, and grouped them into
a fixed augmented basis for the modes of the nominal system. This augmented basis was
found to be suitable for a (parametric) family of models. However, the need for repeatedly
solving many sample eigenproblems makes the approach impractical for global paramet-
ric reduced-order models (PROMSs) of redlistic industrial FEMs. To accelerate solving
the sampled eigenproblems, this technique was combined with a component-based ap-
proach by Zhang and Park [30, 31] for large FEMs. As a by-product, the eigenproblems
of the sampled space are confined to one specific component, and the resulting global

model is reduced substantially. However, in the projection phase, the component basis



has to be expanded back into the global coordinates. Hence, the approach does not lead
to true component-based PROMs. To address that issue, substructural analysis techniques
based on PROMss have been developed [32]. However, those PROMSs can account for one
parametric variability in one substructure only. In contrast, the new component PROMs
developed herein allow several substructures to have parametric variability in character-
istics such as geometric parameters (e.g., thickness), or material properties (e.g., Young's
modulus). These new multiple-component PROMs (MC-PROMs) are obtained by simply
managing the geometric compatibility conditions between substructures.

Geometric variations (e.g., dents or thickness variability due to manufacturing) can be
treated as parametric variability in the structure. Such an approach has been used for a
few years to investigate the vibration of turbo machinery bladed disks. For example, static
mode compensation has been used for global models[33, 34] to compute the vibration re-
sponse of a structure which has dents or missing material. By accounting for the effects of
geometric variability asthough they are produced by external forces, a set of basis vectors
can be established using a combination of norma modes of the pristine structure com-
pensated by static modes. However, the static mode compensation method for geometric
variations has not been applied for substructuring. Herein, CMS with static mode com-
pensation is developed based on CB-CMS. When substructures have dents, component
mode synthesis with static mode compensation (SMC-CMYS) is applied to obtain the vi-
bration response. Finally, the effects of parameter variations (e.g., thickness and geometric
variations) are analyzed by MC-PROMs and SMC-CM S [35].

For modeling cracks, Poudou and Pierre [36, 37] have developed a hybrid frequency-
time domain method. In that method, the resonant frequencies of the cracked structure
are found by a forced response analysis. That is a nonlinear problem whose solution

is complex and computationally intensive. To alleviate this issue, a bi-linear frequency



approximation (which was first used to predict resonant frequencies of single-DOF piece-
wise linear systems[38]) isgeneralized to large dimensional models. The approach herein
builds on the early methods for studying the vibration of cracked beams and plates using
amulti-DOFs model. Chati et al. [39] have studied the bi-linear frequency approximation
for atwo dimensional cracked beam, and Saito et al. [40] have used a bi-linear frequency
approximation for a three dimensional cracked plate. Note that the actual motion of the
crack surfaces can be quite complex, and there may be more than two crack states (open
and closed) when, for example, the crack closing proceeds gradually so that different re-
gions of the crack surfaces close at different times. Although the generalized bi-linear
frequency approximation cannot capture the effects of gradual opening and closing, it can
provide approximate values for the resonant frequencies of complex cracked structures
by employing linear analyses only. Also, the linear analyses required in a bi-linear fre-
guency approximation can be performed using MC-PROMSs, and that further reduces the

computational cost.

1.2.2 Robust signal processing for damaged structure

Robust techniques for sensor placement and damage detection are of current interest
because of the increased need to reduce the time and the cost of examining the structural
integrity of ground vehicles and aircraft. To assess integrity, structural information must
be obtained using a variety of sensors. Both the number and the locations of sensors are
limited dueto cost and accessibility constraints. There are many previous studies of sensor
placement for structural health monitoring. For example, Ansari [41] has implemented
SHM strategies which require selection and placement of sensors suitable for measuring
key parameters that influence the performance and health of civil structures. Flynn and

Todd [42] have proposed a novel approach for optimal actuator and sensor placement for



SHM. Krommer et al. [43] have investigated a sensor network composed of strain-type
patch sensors with constant intensity designed to replace distributed strain-type sensors
for monitoring beam-type structures.

Herein, a novel robust signal processing technique is employed to find the optimal
number of sensor locations for gathering mode shape information of cracked structures.
The novel approach is developed starting from an algorithm based on the effective inde-
pendence distribution vector (EIDV) [44,45]. The key idea of EIDV is to choose sensor
locations for measuring physical mode shapes as linearly independent as possible in the
frequency range of interest. Herein, the EIDV method is modified to select optimal sen-
sor locations for cracked complex structures. The number of selected locations based on
the modified EIDV method is not only limited to the frequency range of interest, but also
limited in the way which it can handle the effects of measurement noise. To address this
noise, over-sampling is often performed. EIDV cannot provide optimal locationsfor over-
sampling. Herein, a new signal processing technique is developed to select over-sampled
measurement locations.

In addition, novel robust signal processing techniques are applied to identify the size
of acrack. In particular, an approach to place sensors to optimally capture the variation of

mode shapes is devel oped and combined with the new algorithm for crack size detection.

1.2.3 Selection of optimal joining locations

The number of joining locations for assembled complex structure can be as many as
several thousand. The choice for joining locations in the assembly can be improved by
topology optimization approaches such as homogenization techniques [46] and density
methods [47-49]. Homogenization techniques compute an optimal distribution of micro-

structures in a given design domain. Density methods compute an optimal distribution



of isotropic materials, where the material densities are design variables. Although single-
component topology design has been extensively studied during the past two decades [50],
the amount of research done for multiple-component topology optimization is relatively
small. In that area of research, Chirehdast and Jiang [51] extended the concept of topol-
ogy optimization to the design of spot-weld and adhesive bond patterns. Following that,
Jiang and Chirehdast [52] proposed a theoretical framework to determine which optimal
connection points minimize the static compliance of the given substructures. To solve the
coupled problem of component topology and joining location optimization, Chickermane
and Gea [53] proposed a methodology for a multiple-component structure as a whole, in
which the optimal topology and the joint locations were computed simultaneously. More
recently, Zhu and Zhang [54] did layout optimization of structural supports using a topol-
ogy optimization method for free vibration analyses. All these previous efforts employed
spring elements for modeling joints. In contrast, Li et al. [55] proposed a fastener lay-
out/topology that achieves an ailmost uniform stress level in each joint, and adopted evo-
lutionary structural optimization [56—61] to provide an alternative optimization strategy
to traditional gradient-based topology optimization approaches. In the context of these
past efforts, the focus of this work is on the development of an efficient framework for
determining improved/optimal joining locations so as to minimize the total energy input
into the structure and the strain energy in the joints of a complex structure with variability

using a density-based method.

1.3 Dissertation Overview

The main contributions of this dissertation are summarized briefly asfollows:

(1) Novel multiple-component parametric reduced-order models are devel oped that more

directly and efficiently capture the influence of component-level design changes and
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damages (variabilities in geometrical and material properties) on the system-level

dynamic response.

(2) Next-generation parametric reduced-order models having a numerically stable for-
mul ation are devel oped and used to analyze complex structures model ed with brick-

type finite elements.

(3) New robust signal processing and crack detection algorithms are extended and de-

veloped to identify the size of a crack

(4) Structural optimization techniques are developed in a unique workframe for joining

of components of complex structures for improved dynamic response

The remaining chapters of this dissertation are compiled from a collection of five
manuscripts submitted to archival journals (where they are either in review or in print).
Because of this, some of the background material is repeated in various chapters. The
remaining chaptersin thisthesis are summarized as follows.

Chapter 11 describes the development of multiple-component parametric reduced-
order models for design and damage detection (structural variability, dents and crack).

Chapter 111 describes the development of the next-generation parametric reduced-
order models which have a numerically stable formulation (a new transformation matrix
and anovel parameterization technique) and alocal interface reduction technique.

Chapter 1V describes robust signal processing for damaged vehicles with variability
to select the optimal sensor locations to capture the mode shapes of a cracked structure,
and to reduce the effects of measurement noise.

Chapter V describes anovel sensor placement for damage identification in a cracked

complex structure with structural variability. It is shown that the crack size is estimated
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very accurately by using a robust signal processing technology and Monte-Carlo simula-
tion techniques.

Chapter VI presents a modeling and joining location optimization methodology for
designing connections between components of assembled structures. New cost functions
developed include the external energy input into the structure with damping and the strain
energy of joints. The optimization techniques are applied to attach armor plate to a V-
shaped structure.

Chapter VII reviews the findings and contributions of this dissertation and proposes

future research topics.



CHAPTER 11

Parametric Reduced-Order Modelsfor Predicting the
Vibration Response of Complex Structureswith
Component Damage and Uncertainties

2.1 Introduction

Structural analyses based on finite element models (FEMs) are often used to predict
vibration responses, stresses, and other structural characteristics to support design pro-
cesses. Also, evaluating the effects of possible damages (such as cracks and dents) on
the structural response is crucia in a wide variety of applications. As computing power
increases, simulation techniques replace experiments for testing designs, especially when
the experiments are considerably expensive or difficult to execute. However, the com-
plexity of the designs can make the analysis very slow when many component changes are
needed during the design process. Thisissueis particularly important because usual indus-
trial FEM's (such as automobile bodies and complex airplane structural components) have
millions of degrees of freedom (DOFs). These detailed models, with very large numbers
of DOFs, have to be used to ensure high accuracy. However, the large computational cost
of direct analyses based on these large models detrimentally affects the design cycle, es-
pecially when it is necessary to evaluate the effects of parametric variability and damages

on the structural response. Thus, model reduction techniques such as presented herein are

12
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necessary to reduce the computational cost.

An alternativeto direct structural analysisof huge modelsis based on component mode
synthesis. Many component mode synthesis-based reduced-order modeling techniques
have been published [6-12] because component mode synthesis can be combined with
awide variety of FEM-based methods. In the context of vibration analysis, component
mode synthesisis used by first dividing the global structure into components. Next, each
component is projected onto avery small truncated set of (component-level) basis vectors
that approximately span the space of the (component-level) response. As a result, the
number of DOFs required to model each component is considerably reduced compared
to standard FEMs. Finally, the models of each component are assembled, and a global
reduced-order model is synthesized. This last step can be performed in several ways. The
most common approach is the fixed-interface Craig-Bampton component mode synthesis
method [7]. Craig-Bampton component mode synthesisiswell understood and frequently
used because of its simplicity and numerical stability. Herein, Craig-Bampton component
mode synthesisis used for the substructuring analysis.

Although many reduced-order models have been devel oped for structural analyses[18,
23-27], they are not constructed for design or damage detection in complex structures.
The key element that separates reduced-order modelsfor design from the rest isthat usual
reduced-order model s cannot easily be re-constructed when changes are applied (by design
or through damage) in afew components of the overall system. Recently, design-oriented
reduced-order models have been developed to avoid prohibitively expensive reanalyses
of complex structures. These recent models are referred to as parametric reduced-order
models. For example, Balmes and co-workers [28, 29] calculated sets of modes for a
few sample parameter values in the parameter space, and grouped them into a fixed aug-

mented basis for the modes of the nominal system. This augmented basis was found to
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be suitable for a (parametric) family of models. However, the need for repeatedly solv-
ing many sample eigenproblems makes the approach impractical for global parametric
reduced-order models of redlistic industrial FEMs. To accelerate solving the sampled
eigenproblems, this technique was combined with a component-based approach by Zhang
and Park [30, 31] for large FEMs. As a by-product, the eigenproblems of the sampled
space are confined to one specific component, and the resulting global system is reduced
substantially. However, in the projection phase, the component basis has to be expanded
back into the global coordinates. Hence, the approach does not lead to true component-
based parametric reduced-order models. To address that issue, substructural analysistech-
niques based on parametric reduced-order models have been developed [32]. However,
those parametric reduced-order models can account for one parametric variability in one
substructure only. In contrast, the new component parametric reduced-order models pro-
posed herein allow several substructures to have parametric variability in characteristics
such as geometric parameters (e.g. thickness), or material properties (e.g. Young's mod-
ulus). These new multiple-component parametric reduced-order models are obtained by
managing the geometric compatibility conditions between substructures.

Geometric variations (e.g. dentsin the structure, or thickness variability due to man-
ufacturing) can be treated as parametric variability in the structure. Such an approach
has been used for a few years for investigating the vibration of turbo-machinery bladed
disks. For example, static mode compensation has been used for global models [33, 34]
to compute the vibration response of a structure which has dents or missing material. By
accounting for the effects of geometric variability as though they are produced by external
forces, a set of basis vectors can be established using a combination of normal modes of
the pristine structure compensated by static modes. However, the static mode compen-

sation method for geometric variations has not been applied for substructuring. Herein,
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component mode synthesis with static mode compensation is devel oped based on Craig-
Bampton component mode synthesis. When substructures have dents, component mode
synthesis with static mode compensation is applied to obtain the vibration response. Fi-
naly, the effects of parameter variations (e.g. thickness and geometric variations) are
analyzed by multiple-component parametric reduced-order models and component mode
synthesis with static mode compensation.

Typical FEM-based techniques for modeling cracks in complex structures lead to re-
markably large models. Also, it iswell known that system-level response characteristics
(such as resonant frequencies) of cracked structures differ from their healthy counterparts.
Hence, models which are accurate yet reduced-order are highly desirable for complex
cracked structures. In general, a nonlinear analysis is needed to predict the vibration re-
sponse of a cracked structure because the periodic opening and closing of the crack sur-
faces|eadsto a (piece-wiselinear) nonlinear response. For that, Poudou and Pierre [36,37]
have developed a hybrid frequency-time domain method. In that method, the resonant
frequencies of the cracked structure are found by a forced response analysis which is a
nonlinear problem whose solution is complex and computationally intensive. To aleviate
thisissue, the bi-linear frequency approximation (which was first used to predict resonant
frequencies of single-DOF piece-wise linear systems [38]) is generalized to large dimen-
sional models. The approach herein builds on the early methods for studying the vibration
of cracked beams and plates using a multi-DOFs model. Chati et al. [39] have studied bi-
linear frequency approximation for atwo dimensional cracked beam, and Saito et al. [40]
have used bi-linear frequency approximation for a three dimensional cracked plate. Note
that the actual motion of the crack surfaces can be quite complex, and there may be more
than two crack states (open and closed) when, for example, the crack closing proceeds

gradually so that different regions of the crack surfaces close at different times. Although
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the generalized bi-linear frequency approximation cannot capture the effects of gradual
opening and closing, it can provide approximate values for the resonant frequencies of
complex cracked structures by employing linear analyses only. Also, the linear analy-
ses required in bi-linear frequency approximation can be performed using Craig-Bampton
component mode synthesis, and that further reduces the computational cost.

The key novel contributions of this paper are as follows. First, the proposed multiple-
component parametric reduced-order models are developed for cases where parameter
variations occur simultaneously in multiple components by developing a novel transfor-
mation matrix. Second, the static mode compensation approach is adapted for use with
Craig-Bampton component mode synthesis to create a novel component-level analysis.
Third, the geometric compatibility conditions normally used in Craig-Bampton compo-
nent mode synthesis are generalized and adapted so that bi-linear frequency approxima-
tion can be implemented efficiently for crack analysisin conjunction with Craig-Bampton
component mode synthesis, component mode synthesis with static mode compensation
and multiple-component parametric reduced-order models.

This paper is organized as follows. In Sec. 2.2, bi-linear frequency approximation and
Craig-Bampton component mode synthesis for the cracked structure are discussed. Also,
multiple-component parametric reduced-order models for structures which have multiple
components with parametric variability, and component mode synthesis with static mode
compensation for components with geometric variations (such as dents) are formulated.
Next, the models for all substructures are assembled by using an effective computational
approach to implement geometric compatibility conditions. In Sec. 2.3, numerical simu-
lations are used to demonstrate the proposed methods for an L-shape structure which has
several substructures with thickness variation and also substructures with damage (dents).

Also, bi-linear frequency approximation is implemented for a cracked L-shape structure.
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Next, the novel reduced-order modeling techniques are applied to areal vehicle model in

Sec. 2.4. Findly, conclusions are summarized in Sec. 2.5.

2.2 Reduced-Order Modeling

2.2.1 Bi-linear frequency approximation and CB-CM Sfor cracked structures

Bi-linear systems are essentially nonlinear and the notions of natural frequencies and
normal modes are, strictly speaking, not applicable. In this study we focus on the many
cases where the forcing applied to the system is periodic and leads to a periodic response.
Herein, the frequency corresponding to the response with the largest amplitude is referred
to as a resonant response and its frequency is referred to as a resonant frequency. Note
that the systems where penetration is allowed or the crack is considered closed are linear.
In thiswork, we discuss a methodol ogy to approximate the nonlinear resonant frequencies
based on resonant frequencies of systems where penetration is allowed, or the crack is
considered closed at al times. Herein, we consider bi-linear systems under harmonic
excitation which are assumed to produce a periodic response. While periodic responsesare
certainly observed in many applications, they are not guaranteed to occur in all occasions.
Even when periodic solutions are possible, there can be complicating features such as
multiplicity of steady state responses and dependency on initial conditions. Such casesare

exciting but are beyond the scope of this work.
Bi-linear frequency approximation

In this section, the bi-linear frequency approximation (BFA) is generalized and used to
analyze three-dimensional cracked structures. Initially, BFA was used to provide approxi-

mate resonant frequencies for single-DOF piecewise linear (bi-linear) systems. In essence,
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BFA can be expressed as [38]
2(4)1&)2

)
w1 + wa

(2.1)

Wy =

where wy, is the approximate resonant frequency, w; is the resonant frequency of one of
the linear systems associated with the piecewise linear system, and w, isthat of the other
linear system of the piecewise linear system. This expression is the exact solution for the
undamped oscillation of a piecewise linear (bi-linear) single-DOF oscillator. The applica-
tion of EQ. (2.1) ismore complex for more general cases such as cracked plates becausein
those cases multiple DOFs are located on the crack surfaces. Hence, the model involves
multiple piecewise linear systems. Nevertheless, for many cases one can assume that the
cracked system behaves asif it were defined by only two linear systems, corresponding to
two states: one when the crack isfully open, and for when the crack fully is closed. In the
following, these states are referred to as state 1 and state 2.

The definition of the states 1 and 2 can be extended to those proposed by Chati et
al. [39], who analyzed the in-plane bending vibrations of a cracked beam. Specifically,
state 1 (open crack) is defined by removing the constraint of no penetration of the crack
surfaces. That is, for state 1 there is no constraint applied on the relative motion between
the corresponding nodes (one on each crack surface) that are in contact when the crack is
closed. Hence, for state 1, inter-penetration is allowed. Similarly, state 2 (closed crack)
is defined by enforcing no penetration, but allowing sliding between the crack surfaces.
That is, for state 2 the relative motion between the nodes (which are located on each of
the two separate faces of the crack) is not allowed in the direction perpendicular to the
crack surface. Their motion in the plane tangent to the crack surfacesis allowed. Hence,
for state 2, dliding is alowed while inter-penetration is not alowed. The mathematical

representation of these two statesis detailed in below section.
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CB-CM Sfor cracked structures

In this section, the fixed-interface Craig-Bampton CM S (CB-CMS) [7] method is used
to construct reduced-order models (ROMs). This modeling approach is used because of its
simplicity and computational stability. To apply CMS, the complex structure of interest is
partitioned into substructures. The DOFs of each substructure are further partitioned into
active DOFs on the interface (indicated by the superscript A), and omitted DOFs in the
interior (indicated by the superscript O). The mass and stiffness matrices for acomponent
1 can then be partitioned to obtain

AA AO kA4 AO

M,; = , and K;=
00 0A 1,00
i k; k;

miOA m
Next, the physical coordinates are changed to a set of coordinates representing the am-
plitudes of a selected set of fixed-interface component-level normal modes ®2 (indi-
cated by the superscript N), and the amplitudes of the full set of static constraint modes
®C = —k90 k04 (indicated by the superscript C). The transformed mass and stiffness
matrices for component ; can be expressed as

- C ~ CN f{zc l;ZCN

M, = , and K;= . (2.2)

SNC A NN KNG |NN
{2 {2

To model the dynamics of cracked structures and to apply BFA, the substructuring is
done such that al cracks are along boundaries between adjacent substructures. Hence, all
crack surfaces are boundaries between substructures. Thus, in Eq. (2.2), the DOFs marked
as C' are obtained from interface DOFs (which are the interface DOFs for the i*" substruc-
ture). The interface DOFs are further divided into constraint DOFs (shown by superscript
C'(C') and free DOFs (indicated by superscript F'F') for BFA. For example, for state 1 (open

crack), the DOFs on the crack surfaces are completely free (and the inter-penetration of
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®: 4 DOFs
O: 0 DOFs

5 JAN O: FF DOFs
- @®: CCDOFs

Substructuring in reduced order domain

Sort for CC and FF DOFs

Figure2.1: Conceptual view of the groups of DOFs corresponding to superscripts A, O,
C,N,CC,and F'F

crack surfaces is allowed). These DOFs on the crack surfaces (are free DOFs for state
1 and) are indicated by superscript F'F' in Eq. (2.3). For state 2 (closed crack), sliding
boundary conditions are applied at the crack surfaces. Thus, the constrained DOFs (for
dliding boundary conditions) are denoted by superscript CC' in Eq. (2.3). Using these two
kinds of geometric compatibility conditions, the frequencies w, and w- in Eq. (2.1) are

obtained through two separate linear analyses. Thus, if component i has a crack surface,



21

the component-level mass and stiffness matrices are partitioned as

ﬁliCC mzCF l’fll-CCN
M, = m’C  mff mlry and
meCC rh;NFF rh;NN
_ - (2.3)
. CC L.CF 1,.CCN
ki kz’ ki
. — LFC  FF  1FFN
K; k! kP K
LNCC 1.NFF T{.NN
kz’ ki ki

The notation contains many superscriptssuch as A, O, C, N, CC, and F'F. To clar-
ify the meaning of these superscripts, Fig. 2.1 provides a conceptual view of the groups
of DOFs corresponding to these superscripts. Since all crack surfaces are at interfaces
between components, the geometric compatibility conditions at the interfaces between
substructures are applied only for the DOFs marked as C'C' in Eq. (2.3). For example, if a
substructure does not have a crack surface, then there are no DOFs marked as F'F, and all
DOFs are marked as C'C'. Hence, the geometric compatibility conditions are applied to all
DOFs marked as C' in Eg. (2.2). In general, al DOFs on the boundaries are constrained
except the DOFs corresponding to the crack surfaces. The DOFs aong crack surfaces (de-
noted by F'F) are not constrained. Also, note that al boundary DOFs are active DOFs,
and the geometric compatibility conditions used to assembl e every substructure are applied

only to the DOFs marked as C'C' in Eq. (2.3).

2.2.2 Multiple-component parametric reduced-order models

Global Parametric reduced-order models (PROMSs) [29] have been developed for fast
reanalyses of structureswith parametric variability in their properties. An important draw-
back of existing global PROMsisthat they require computationally expensive calculations

to determine multiple sets of system-level eigenvectors. These eigenvectors are needed
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when multiple parameters are considered. Thus, component-mode-based PROMs [30]
have been devel oped to adopt component normal modes and characteristic constraint modes
as projection basis instead of global modes. However, constructing component-mode-
based PROMs is also time consuming because the approach still requires the calculation
of system-level (global) interface modes. These interface modes are needed for the sec-
ondary modal analysis performed on the system-level matrix partitions (corresponding to
the interface DOFs) for all of the componentsin the global model. Thus, Park [32] intro-
duced truly component-level analysis for constructing PROMSs, referred to as component-
PROMSs. However, component-PROM s can be applied only to one component (and a sin-
gle parametric variability). Thisissueisaddressed herein by devel oping novel component-
PROMSs for multiple components. These new models can be used for cases where para-
metric variability (or damages) are present in several substructures simultaneously. For
each substructure, a single variation is considered in parameters such as Young's mod-
ulus, or in geometric characteristics such as thickness. These models are referred to as
multi-component PROMs (MC-PROMS).

A family of models can be defined as all models which differ only through a single
parameter. Herein, we focus on families of component-level models first. Consider a
family of models for parameter p for the i*" component of a (global) structure. The mass
and stiffness matrices of the i** component for this family of models can be approximated
by using Taylor series. For example, for alinear thin plate element, the modification of the
stiffness matrix due to variationsin the thickness of the plate can be accurately represented
by a Taylor series up to the third order, while the mass matrix can be approximated by
a Taylor series up to first order, neglecting the rotary inertia[32]. The first and the third

order Taylor series approximations about the nominal parameter value p, can be expressed
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asfollows

oM,
M;(p) ~ Mi(po) + 8—(p — Do),
p
0K,
Ki(p) ~ Ki(po) + a—p(P—Po) (2.4)
+1 ’K, 183KZ-
2 apQ 6 @pg

(p—po)* + (p—1po)*.
Computationally, the partial derivativesin Eg. (2.4) can be approximated using standard
finite differences for a small parameter variation Ap asfollows

OM;  M;(po + Ap) — M;(po)

My, = ~
K. — IOK; _ Ki(po + Ap) — Ki(po)
FD = ~
op Ap
K2 _ I’K,; ~ Ki(po + Ap) — 2K(po) + Ki(po — Ap) (2.5)
FD 8p2 ApQ
K3 _ PK;  Ki(po +2Ap) — 3K;(po + Ap) + 3K;(po) — Ki(po — Ap)
FD — ap3 ~ Ap?)

Then, the parameterized component matrices can be obtained by substituting Eg. (2.5) into

Eq. (2.4) to obtain

M;(p) =~ M;(po) + Mpp(p — po),
Ki(p) ~ Ki(po) +Kpp(p—po) (2.6)
L o |

+§KFD(p —po)® + EKFD(p —po)°.

To obtain a ROM for ai*® component, each parametric family of component models
is projected onto a (constant) component-level modal basis ®,. This basis is calculated
(for each component) at a few given (perturbed) sets of parameter values. This basisis
used for all configurations in the parameter space of the corresponding component. The

component-level modal basis ®; for i component can be expressed as

P; = : (2.7)
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where @ isreferred to as the matrix of augmented fixed-interface normal modes

7 = | B0 B @7 B, (2.8)

and the superscript 0 indicates quantities computed for the nominal parameter values,
while the superscript U, 1, 2 and 3 indicate quantities computed for perturbed parame-
ter values (which can be, for example, p + Ap, p + 2Ap, and p + 3Ap). Vectors ®; and
W, in EqQ. (2.7) represent fixed-interface normal modes and static constraint modes.

When the stiffness matrix is represented by athird order Taylor series, then the fixed-
interface normal modes for three perturbed structures are computed to form a transfor-
mation matrix. In general, taken al together, the modesin ®;* are not orthogonal. For
numerical stability, an orthogonal basis for the space spanned by these modesis used. To
that aim, the left singular vectors of EQ. (2.8) are computed, and the left singular vector
U corresponding to singular valueslarger than 0.01% of the maximum singular values are
selected. Next, U is used to construct a transformation matrix (instead of the augmented

fixed-interface normal modes ®;“¢). Thefinal transformation matrix can be expressed as

. I I O
) ol U,
Using Eq. (2.9) into Eq. (2.6), the physical coordinates are transformed to coordinates

along the collected set of modes &, for the i*" component. The transformed mass and

stiffness matrices can be expressed as

Mi(p) ~ ®TM;(po)®; + ML, ®;(p — po),

Ki(p) ~ ®TK,(p)®; + /KL, ®:(p — po)

1. A 1. A
+§<I’¢TK%D‘I’1'(]9 —po)® + E‘I'iTK%D‘I'i(P —po)>.

The modal basis consists of internal and interface DOFs for each substructure. Thus,
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the mass and stiffness matrices for the i*" component used for MC-PROM can be parti-

tioned asfollows

PROM __
MPHOM —

PROM __

miCOO miCOU mZC Noo
méve ;v ¢ CNuu
T T K
NCoo NCyu Ng
m; m; m;
Coo Cou CNoo
Cuo Cuu CNyu

(2.10)

(2.12)

In addition, the interface DOFs are also divided into constrained DOFs (denoted by super-

script C'C) and free DOFs (denoted by superscript F'F') to apply open and sliding boundary

conditionsfor BFA asin Eq. (2.3). Thus, the interface DOFs marked as C' can aso be di-

vided into CC and F'F DOFs. Then, the MC-PROM mass and stiffness matrices can be

partitioned as

[ miCCoo mZCFoo mZCCOU miCFOU mZCCNoo
l’nZFCOO mfFoo l,nZFCOU mfFOU mfFNoo
MZPROM = miCCUO miCFUO miCCUU miCFUU miCCNUU
meUO mfFUo mZFCUU 1,anUU ZFFNUU

mZ{VCCoo mZNFFoo m’fVCCUU m;NFFUU sz
[ kiCCoo kiCFOO kiCCOU kiCFOU kiCCNOO ]

kZFCOO kf’Foo kZFCOU kZFFOU kf’FNoo

KZPROM = kiCCUO kiCFUO kiCCUU kiCFUU kiCCNUU

kzFCUO kfFUo kiFCUU kZFFUU kZFFNUU
i k;VCCOO kaFFOO kﬁVCCUU k;VFFUU kﬁvd |

, (2.12)

(2.13)
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2.2.3 Component mode synthesiswith static mode compensation

In this section, a novel, component-based modeling technique for systems containing
dents is formulated using a mode-accel eration method based on static mode compensa-
tion (SMC). Lim et al. [34] used this modeling technique for structures with geometric
variation. However, that SMC technique was applied to globa structural analysis and
not to substructural analysis. Herein, an SMC technique is developed for substructural
analysis. The resulting reduced-order modeling method is referred to as component mode
synthesis with static mode compensation (SMC-CMS). Note that, although this procedure
isformally smilar to CB-CMS, the bases used are distinct.

The mass and stiffness matrices of the i'" dented substructure can be expressed as

D D D D
mAP mao kAP 40

MP = , and KP =

) )
D D D D
z'OA ZOO k?A kZOO

m m

where the DOFs of each substructure have been partitioned into active DOFs on the inter-
face (indicated by the superscript A), and omitted DOFs in the interior (indicated by the
superscript O).

In the CB-CMS method, a selected set of fixed-interface component-level normal
modes &} are obtained using the component-level mass and stiffnessmatrices M ; and K ;.
In contrast, in the SMC-CM S method, a truncated/selected set of fixed-interface normal
modes calculated using SMC are used. Hence, the normal modes of the pristine / healthy
substructure are compensated by using static modes. To that aim, the changes in the mass
and stiffness matrices due to the presence of the dent are expressed asM? = MP — M#,
and K¢ = KP — K, where the superscripts D and H indicate dented and healthy sub-
structures.

The active DOFs (which are interface DOFs between substructures) are needed for

applying the geometric compatibility conditions. In addition to those DOFs, there are
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other active DOFswhich have to be considered. These other active DOFs (indicated by the
subscript I') are DOFs affected the dent. These DOFs are needed to model the attachment
modes used in the SMC-CMS method. The attachment modes ¥ # are obtained using the
DOFs marked as I" together with the omitted DOFs.

One physical interpretation of SMC is that an equivalent force is applied to the struc-
ture to account for the changes in dynamics due to the dent. This equivalent force [33, 34]

can be expressed as

0
H2y ro0D ooPD H
fi; = <_Wz'j M; + K; ) q)ij = ) 5 5 )
(~wt*MPO + KOO @l
where w/l and ®;7 are the j*" natural frequency and mode shape of the i healthy sub-
structure, and q){{ ;; are the portions of @fj which correspond to the DOFs where a dent
is present (i.e. the DOFs marked as I'). The static modes used in SMC are defined by
KP'f,

ij»

and can be obtained using the following relation [ 33, 34]

_ _ —1\ 1 _
KP'f, = KI 1(I+K§K§f 1) f, =K' g, (2.14)

(]

where
!
gy = (T+ KK,

Eq. (2.14) shows that the static modes can be obtained by a static analysis where the
(stetic) forcesf;; are applied to the dented substructure, or the (static) forces g;; are applied
to the healthy substructure. Also, these static modes can be computed as alinear combina-
tion of healthy-structure attachment modes with the coefficients being the corresponding

forces, that is

-1 -1
K" f;; = K" 'g;; = ®gp ;.
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Finally, thetruncated set of component-level normal modesfor the healthy substructure

(compensated by static modes) can be obtained as
;M = @ — WGy,

This set of modes is used in SMC-CMS to construct ROMs. The resulting ROMs are
similar to the ones obtained using fixed-interface norma modesin CB-CMS.
Using the truncated set of normal modes ®54¢, the reduced mass and stiffness matri-

ces can be expressed as follows

m-C mC,SMC
MSMC — ' ' , (2.15)
SMC,C SMC
i m;
(] 7
KMCO = e : (2.16)
) SMC
kz‘ ki
where the superscript C' refers to constraint modes, and
D D T D T
m¢ = mM” 4+ Wm0’ 4 e MO0 "
D T D
miC,SMc _ miAO <I>fMC+\IIZ-C mZOO (I);SMC’
sMc,c c,smcT
i = Mi )
T D
m; "¢ = @M mPOT @M (217)

The formulas for the stiffness matrices are similar to those for the mass matrices (and are
omitted here for the sake of brevity).
Similar to the CB-CMS and MC-PROM matrices used for BFA, the DOFs marked as

C' can be partitioned into C'C' and F'F' DOFs. One obtains

m¢¢ mCSF mCC,SMC
J J J

SMC _ FF.SMC

MME = | pre FE ! : (2.18)

mSMC,CC mSMC,FF mSMC
J J J
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(2.19)

2.2.4 Geometric compatibility conditionsfor MC-PROM, CB-CMSand SMC-CM S

In MC-PROM, the component-level mass and stiffness matrices are spanned by ma-

trices corresponding to the nominal and the perturbed parameters. Hence, the interface

DOFs (indicated by the superscript C') of the substructure are not the same in MC-PROM
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asin CB-CMS and SMC-CMS.

The component-level matrices used in CB-CM S and SMC-CMS (given in Egs. (2.2),
(2.15) and (2.16)) have single interface parts, so in this Section, CM S indicates both CB-
CMS and SMC-CMS. However, in Egs. (2.10) and (2.11), one may note that the interface
parts of the PROM matrices are twice as many as those of the mass and stiffness matrices
used in CB-CM S and SMC-CMS. Thus, geometric compatibility conditions are enforced
to assembl e these matrices (CB-CM S, SMC-CM S and MC-PROM), as described next.

Fig. 2.2 shows the procedure used to construct a PROM. In particular, reduced-order
modeling techniques are applied to each substructure, and then geometric compatibility
conditions are enforced. The process may be summarized as follows: (a) the system ma-
trix is divided into components according to the type of parameter variation and/or dam-
age, (b) a ROM is constructed for each substructure, (c) the constrained (C'C) and free
(F'F) DOFs are assigned for the substructures which have crack surfaces at their interface
with other components, (d) substructures modeled using the CB-CMS or the SMC-CM S
approach are assembled, (e) substructures modeled using the PROM approach are assem-
bled, and (f) the partially assembled structure modeled using CB-CM S or SMC-CMSS, and
the partially assembled structure modeled using PROM are assembled together. Note that
when each substructure is assembled, the geometric compatibility conditions are applied
to the DOFs marked as C'C'. A more detailed description of this procedure is as follows,

MC-PROM isapplied for the design of the parts of the structure which have parametric
variability, and CB-CMS is applied for the remainder of the structure. This remainder
is the full structure minus the parameterized components (which are the components of
interest in the design process, referred to as design components). In addition, SMC-CMS
isapplied for dented components.

Recall that the SMC-CM S method issimilar to CB-CM S except that it uses a different
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truncated set of (component-level) normal modes. Hence, the interface parts for SMC-
CMS and CB-CMS have the same meaning. Thus, dented components can be grouped
together with the remainder of the structure for the purpose of applying geometric com-
patibility conditions.

In general, a complex structure has remainder substructures and substructures which
have parameter variability. First, CB-CMS is applied for the nominal components, and
SMC-CMS is applied for the dented components. Next, consider that a crack exists be-
tween substructure i (areminder substructure where CM Sis applied) and substructure j (a
substructure which has parameter variability and where MC-PROM is applied). Then, the
DOFs marked as F'F' are assigned only for matrices of substructures: and j for the pur-
pose of applying BFA. The complete, reduced-order, component-level equationsof motion

for each component based on CB-CMS, SMC-CM S and MC-PROM can be expressed as

follows
M?N[ngN[S+K$MngN[S — FiC’MS’(Z' — 172’...)7
MfROMCifROM + KfROquROM — FfROM, (] — 1’ 2’ . ) )

To apply the interface compatibility conditions, the equations above are grouped into
one global equation of motion. The resulting mass and stiffness matrices, and the forcing

vector can be expressed as

M = Bdiag [ MOMS  MGMS ... NPROM \PROM ] : (2.20)
K= Bdiag [ K¢MS K§MS ... KPROM gPROM . ] , (2.21)
T
o T T T T
F— l pousT pomsT - prromT prromT } ’ (2.22)

where Bdiag|.| denotes a block-diagonal matrix.
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The first set of geometric compatibility conditions for CMS and MC-PROM are ex-

pressed (separately) as
qCCr — quT + ngr _|._ SN
qCCdOO = qudOO + ngdOO + - ’ (223)
qCel" qlcchU I q2CCdUU N

where the subscript » indicates components of the remainder of the structure, and the
superscript 0 indicates quantities computed for the nominal parameter values, while the
superscript U indicates quantities computed for perturbed parameter values (which can
be, for example, the upper limits for the parameters of interest). Note that the geometric
compatibility conditions are applied only for the constrained DOF.

Eq. (2.23) are applied into Egs. (2.20) - (2.22) to assemble the matrices for CMS and
MC-PROM, one part at atime. Then, these mass and stiffness matrices are assembled to

obtain the full system-level matrices and forcing vector as

M = Bdiag [ Mcms Mprom } ; (2.24)
K = Bdiag [ Kens Kprow ] ; (2.25)
_ T
F = l Fous' Frrou' } ’ (2.26)

where

cC CF: CCN;
MC]V[S Mz MC]V[S

= FC FFy FFN,
Mers M! M MEEN: |

NCCy NFF, NN,
MCMS MC]V[S MC]V[S
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flccr + fQCCT + ...

cc, CF.  pcCCN, FF,

Kews  Kj7 Keys f;
_ FC, FF, FFN, — NN,

Keowms K; K; Kivs | > Fous f,
NCC, 1NFF. 1NN, NN,

Keows Keows Ko £

CCoo CCou CFoo CFou CC Noo
MPROM MPROM Mj Mj MPROM
CCrupo CCuyu CFyo CFyu CCNyy
MPROM MPROM Mj Mj MPROM

M — FCoo FCoyy FFoo FFyuy FFNoo
PROM MPROM MPROM Mj Mj MPROM )

FCuo FCuu FFyo FFyy FFNyy
Mprov Mprou Mj Mj Mp o

NCCoo NCCUU NF Fyo NFyu NNd
Mproyr Mpron Mj Mj Mp RO M

CCoo CCou CFoo CFou CC Noyo
KPROM KPROM K] K] KPROM

K¢Cuo KC¢Cvu K]CFUO K]CFUU KCCNuu

PROM PROM PROM
K — FCoo FCou F Foo FFou FF Noo
PROM Krron Kprow K; K; Kprrow |

FCUO FCUU FFyo FFyu FFNyy
Kpron Kprowm Kj Kj Kpron

NCCoo NCCyy NFFp NFyy NN,
Kprron Kpron Kj Kj Kprom

flccoo N fﬁcoo

fICCUU N fSCUU
ijFoo

Fprom = ffFUU

£,V N

NNy
f,
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Although the boundary DOFs in the MC-PROM matrices are duplicated for the nom-
inal and perturbed parameter parts, each relative displacement between DOFs of adjacent
substructures is till the same for CMS and MC-PROM. Therefore, a second set of geo-

metric compatibility conditionsis given by

qgcr + qgcr _'_ s _'_ qgc'r — ngOO + q2CCUU _'_ s _'_ q]C\;COO _'_ q]c\}CUU’ or

qCC = ¢CC0 4 qCCuu — CCa,

By applying this second set of geometric compatibility conditionsinto Egs. (2.24) - (2.26),
the CMS and MC-PROM matrices and forcing vector can be rearranged to obtain the full

system-level matrices as
MCC MCF MCCN |
]_\/_[Sys = MFC MFF  M\MFFN , (227)
MNCC MNFF MNN

KCC KCF KCCN

Koy = KFC KFF KFFN |, (2.28)

KNCC KNFF KNN

T
Fsys = fCCT fFFT fNNT ) (229)

where

MGE M§S
00 oUu

MY =
ccC cc

MES MG

MEF MEFe M Fou
MCF — J J

MEF Mo M§TY
¢ J J
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CoN,
m,°

CuN
m,"Y !

0 0

0 MIFN
J

0 MFPFN
J

0 0
0 0
0
0 m]lv Na
0 0
0 0

cC ccC
KOO I<OU

cC cc
KUO I{UU

miVNT 0
0 m)
0 0
MY =
0 0
0 0
0 0
KCC —
KCF —

KCF KCFOO KCFOU
? J J
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con kIC’rNr k2C'rN7‘ kaNd kgONd
K =
kerr kngr kaNd ngNd
KFC KCFT
KZFF 0 0
KFF = 0 KFFOO KFFOU ,
J J
0 KFFOU KFFUU
J J
kN0 0 0 0
KN — 0 0O --- 0 KfFNOO e 0
0 0O --- 0 KfFNUU e 0

NCC _ 1rCCNT NFF _ 3-FFNT
K =K , K =K ,

K0 0 0 0 o0

o KX™ o o o0 o0

s 0 0o . 0 0 0
- 0 0 o0 k™ o o0 |
0 0 0 0 kK™ o
0 0 0 0 0
o _ FPOr £ o 7O 0

ffcr+fgcr+...+ffCU _|_f2CCU_|_...
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£
_ - NN,
f2 r
£FF
1
Frf = | ¢FFo | | and FYV =
J ffVNd
fFFUU
L/ i fQJVNd

Eqgns. (2.27) - (2.29) represent the assembled system matrices and forcing vector for
the global ROM. However, the system matrices are (in general) singular due to the trans-
formation matrix used for PROM in Eq. (2.9). There, the constraint modes ¥¢ for the
nominal parameter values (indicated by superscript 0) and the constraint modes ¥ for a
perturbed parameter value can be linearly dependent. Thus, to numerically stabilize the
system, the modal assurance criterion (MAC) for ¥9 and ¥V is used when the i*" compo-
nent PROM matrices are obtained. The MAC is given by

—— , €;;(MAGC;) =

T T
Ve w0\ /oy 1 MAC < ¢

Y

where subscript j in e;; indicates the j* static constraint mode, and ¢ is a constant close
to 1 which is used to distinguish linearly dependent modes among all the static constraint
modes. Note that only the counterpart modes for the perturbed parameter case need to be
checked against those of the nominal parameter case. Here, e§ ; iIsavector used to decide
whether to keep or to eliminate the static constraint mode j of the PROM substructure

i. The entries of the eliminating vector consist only of 0 or 1. Using the eliminating

%
vector €

the system matrices are reduced by eliminating DOFs which correspond to the

perturbed parameter case.
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Table 2.1: Thickness variationsin substructures 1, 6 and 7

Substructure  Thickness, Case 1 Thickness, Case 2
1 0.4mm— 0473 mm 0.4 mm — 0.435 mm
6 0.4 mm— 0.422mm 0.4 mm — 0.491 mm
7 0.4mm— 0.493 mm 0.4 mm — 0.481 mm

2.3 Resultsfor aModerately Complex Structure: L-Shape Structure

To demonstrate the proposed MC-PROM, SMC-CMS and BFA methodologies, an L-
shaped structure (shown in Fig. 2.3) with various parameter variations and dents has been
investigated numerically. The left side of Fig. 2.3 is the pristine structure, and the right
side of Fig. 2.3 showsthe damaged structure. The forced response of the L-shape structure
is computed, and resonant frequencies are identified. The structure consists of eight sub-
structures. Substructures 1, 6 and 7 have thickness variations as shown by Case 1 and Case
2inTab. 2.1. Moreover, substructures 3 and 5 have geometric variations (dents). The CB-
CMS method is applied for the remainder of the structure (the part of the structure which

does not have any thickness or other geometric variations). Those are substructures 2, 4,

Force Force

st
pasities
R
uattiye=t¥ool
sttt
[l

Figure 2.3: Healthy structure and damaged structure with thickness variations
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Figure 2.4: Forced response predictions provided by a full finite element model and a
PROM for the healthy and damaged structures with thickness variations for
Case 1 and Case 2

and 8. The remainder substructures are healthy and have nominal thickness of 0.4 mm.
The MC-PROM and SMC-CMS methods are implemented for thickness and geometric
variations respectively. Fig. 2.4 shows the system-level forced response for the healthy
structure and the two cases of thickness variation. The response predicted by the PROM
agrees well with the response proved by the full order model. On the left in Fig. 2.4,
the dotted line represents the vibration response for the healthy structure, and the solid
lineis the response of the damaged structure with thickness variation (Case 1) and dents.
Both these results are obtained using a full finite element model and response calcula
tions performed using NASTRAN. Also, NASTRAN was used to obtain the finite element
mass and stiffness matrices and force vectors. Using that information from NASTRAN,
an in-house code was used to compute the structural vibration response.

The dashed line showsresults obtained using a PROM based on CB-CMS, SMC-CMS,
and MC-PROM. The results provided by the full model agree very well with those ob-
tained using the novel PROM. In addition, on the right in Fig. 2.4, the dotted line is the

response of the healthy structure, and the dashed line and the solid line are those for Case
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Figure 2.5: Cracked structure with geometric and thickness variations, and resonant fre-
quencies predicted using BFA for the first 10 modes
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Figure 2.6: Shifts of resonant frequencies for cases 1 and 2 for the 6" and 8" modes

1 and Case 2, respectively. These results show that the example considered is a challeng-
ing one because even small structural variations in one component affect the system-level
vibration response.

The left side of Fig. 2.5 shows the structure which has not only a dent and thickness
variations as in Case 1 and Case 2, but also a crack between substructures 7 and 8. This
structure has the same dents and thickness variations as in cases 1 and 2. The resonant

frequencies of the first 10 modes are shown on the right in Fig. 2.5. The solid line and
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the dashed line are the resonant frequencies for cases 1 and 2, respectively. The right
side of Fig. 2.5 shows that the frequencies of the higher modes are shifted (compared to
the healthy structure) more than frequencies of the lower modes. Fig. 2.6 shows the shift
of the resonant frequency for the 6'* and 8** modes respectively. The crack length varies
from 20% to 80% (of structure’swidth). Note that the resonant frequencies are also shifted

due to the thickness variations.

2.4 Resultsfor a Complex Structure: HMMWYV frame

In Sec. 2.3, the PROM method is applied to amoderately large model which consists of
eight substructures. The total number of DOFs of the L-shape structureis not huge, so the
analysistime using the full order and reduced-order models are not dramatically different.
In this section, the PROM method is used to predict the dynamic response of a realistic
vehicle model which is the base frame of a high mobility multipurpose wheeled vehicle
(HMMWYV). The finite element model for the HMMWYV is a conventional model used to
examine its dynamic response. Fig. 2.7 shows the finite element model of the HMMWV
frame, and Fig. 2.8 shows each substructure of the HMMWYV frame for constructing a
PROM. The substructure which represents the reinforcement frame of the back and front

left-rails have thickness variations, and the engine cradle has a dent. Tab. 2.3 shows two

Figure2.7. HMMWYV frame FE model
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Figure 2.8: Substructuring for HMMWYV frame

Table 2.2: Comparison of the full order model and the PROM

Types Full Order Model PROM

System DOFs 119,808 2,420

Initial Analysis Time 60,125 (sec.) 21,955 (sec.)

Reanalyses Time 60,125 (sec.) 595 (sec.)

cases of thickness variation of the reinforcement frames. The total number of DOFs of
the HMMWYV model is 119,808, and the calculation time for one full order analysis takes
more than 6 hours. However, the PROM approach reduces the number of DOFs of the
system and lowers the calculation time dramatically. Not only the time needed for the
initial calculation is shortened, but also the time for subsequent analyses is drastically
decreased. In Tab. 2.2, the number of DOFs and the computational time required for the
initial analysis and for the reanayses are shown. The number of DOFs of the PROM is
much lower than that for the full order finite element model. Note that natural frequencies
are needed for BFA.. If natural frequencies are obtained from the full order finite element
model which has 119,808 DOFs, the calculation time is much longer than that required by

PROM because PROM requires fewer than 2000 DOFs. In addition, the initial analysis
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Table2.3: Thickness variations for the HMMWYV frame in substructures L ¢,,,; and L,

Substructure Thickness, Case 1 Thickness, Case 2

L ¢ront 3.0378 mm — 4.6268 mm  3.0378 mm — 5.5788 mm

Lyear 3.0378 mm — 5.3838 mm  3.0378 mm — 4.0908 mm

«+ov Healthy ' Healthy
3 < |'= = Case 2 for ROM|
- Case 2 for FEM

3 | = = Case 1 for ROM
Case 1 for FEM

Amplitude of velocity (mm/sec)
Amplitude of velocity (mm/sec)

1
52 54 56 58 60 62 64 66 68 70 &2 54 56 58 60 62 64 66 68 70
Frequency (Hz) Frequency (Hz)

Figure 2.9: Forced response predictions provided by a full finite element model and a
PROM for the healthy and damaged structures with thickness variations for
cases 1 and 2 of the HMMWYV frame

time needed for the PROM approach is 3 times shorter than that required by the full order
finite element model. Also, the reanalysistime is 100 times faster than the time required
by the full order finite element model. The time savings are not as large for the initial
analysis as they are for reanalyses because of the need for an eigenanalysis to form the
transformation matrix for each damage type.

Next, forces and moments are applied as excitations in several nodal points of the
structure. Force and moments can be applied by the tires, the engine, and several other
external factors such as the aerodynamics. Herein, forces and moments from the engine
are considered. The Fig. 2.9 shows the response of the the HMMWYV frame for cases 1

and 2 of thickness variation respectively. The dotted line shows the forced response of the



. Crack length varying
“%&  along the surface

Figure 2.10: Cracked base frame component

healthy HMMWV structure, and the dashed line and the solid line show the response of
the damaged HMMWYV frame. Results obtained using a PROM and the full order model
are shown.

Fig. 2.10 shows the finite element model of the cracked cross frame for the HMMWV
frame. The crack length varies across the frame component from 11.11% to 88.89%. BFA
is used to compute the resonant frequencies of the cracked HMMWYV frame model. Note
that the other damages (such as dents and thickness variations) are asin the cases 1 and 2.
The resonant frequenciesfor cases 1 and 2 of thickness variation of the cracked and dented
HMMWYV frame model are shown in Fig. 2.11. These figures show the modes from the
1°* mode to the 5 mode, the 11** mode to the 15" mode, and the 26" mode to the 30"
mode, respectively. The lower frequencies shown in Fig. 2.11 do not shift much as the
crack length increases. However, the mid-range resonant frequencies shift much more as
the crack length increases, asshownin Fig. 2.11. Notethat several modes switch when the
crack lengthisaround 40%. For the higher modes shownin Fig. 2.11, the frequencies shift

more than those in lower modes, but the mode switching does not take place. Fig. 2.12
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Figure 2.11: Resonant frequencies predicted using BFA for the first 5 modes, for the 11"
to 15" mode, and for the 26" to 30*" mode

shows the 14" and 25" resonant frequency of the cracked and dented HMMWYV frame
for cases 1 and 2 of thickness variations. These figures show that the resonant frequencies

decrease significantly, once the crack length islarger than about 60%.

2.5 Conclusions and Discussion

Novel multiple-component parametric reduced-order models (MC-PROMSs) for pre-
dicting the vibration response of complex structures have been developed. These models
are able to handle ssimultaneously with very high efficiency both parametric variability

in multiple components as well as damage. Also, the parametric reduced-order mod-
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Figure 2.12: Resonant frequencies predicted using BFA for the 14 mode and the 25"
mode

els (PROMs) developed are agile and easy to construct, which makes them particularly
useful for analyses required in design processes.

In addition, the reanalysis time for parametric reduced-order models (PROM) is sig-
nificantly shorter than that for the full order model. For example, to perform reanalyses
which account for thickness variations (such as the ones in case 2 for the high mobility
multipurpose wheeled vehicle (HMMWYV) model) or new types of dents, the paramet-
ric reduced-order models (PROM) approach needs only a few simple matrix calculations
(without the need for eigenanalyses) to construct the transformation matrix for each dam-
age type. The appropriate transformation matrix to reduce the DOFs of the structure has
been aready constructed in the initial analysis. Hence, the recalculation of the transfor-
mation matrix is not needed. That is one of the core advantages of the parametric reduced
order models (PROM) approach proposed herein.

The models developed are a viable, more efficient alternative to other component-
mode-based parametric reduced-order models (PROMs). Although those models also
require a reduced computation time compared to full finite element models, that com-

putational time is still long. In particular, those models are hard to use for the analysis
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of huge models. These issues can be overcome by the use multiple-component paramet-
ric reduced-order models (MC-PROMS) as described herein. The key characteristic of
multi ple-component parametric reduced-order models (MC-PROMS) isthat parameteriza-
tion is applied at the component-level rather than at the system-level. As a consequence,
low order approximations of the variability in the mass and stiffness matrices is effective
and accurate. Note that, in general, that is not the case for system-level matrices.

To manage the geometric variations created by dents, a methodology based on com-
ponent mode synthesis with static mode compensation has been developed. Furthermore,
to avoid the fully nonlinear analyses, a generalized bi-linear frequency approximation has
been employed for predicting resonant frequencies of complex cracked structures. The
predictions of full finite element models have been shown to agree very well with the
predictions obtained using (dramatically lower-dimensional) reduced-order models.

The novel parametric reduced-order models (PROMS) approach provides smaller sys-
tem matrices and shorter analysis and reanalysis time to predict the vibration response
of complex structures. These advantages are particularly useful for optimization prob-
lems because parameter variations such as thickness variations, geometric deformations
(dents), and interfaces (cracks) can easily be considered as design cases. Thus, the search
for the optimal structure can be done effectively by using fast reanalyses based on para-
metric reduced-order models (PROMSs). In contrast, conventional reduced-order modeling
techniques cannot provide fast reanalyses because those reduced-order modeling are not
constructed for that purpose. Instead, conventional reduced-order models reduce the size
of the system matrices for a single set of values for the structural parameters and the ge-
ometry.

Model order reduction in general may use approximations which interfere with gen-

uine changes in response caused by the damage. A key advantage of this work is that it
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is designed to address precisely this issue. Specifically, the proposed approach focuses
on accurately capturing the effects of small parameter variations on the overall system re-
sponse. That contrasts other existing model order reduction techniques which often turn

out to be robust to such variability.



CHAPTER |11

Next-Gener ation Parametric Reduced-Order Models

3.1 Introduction

Generally, most research related to structural dynamic analysis are in need of save
computational cost saving because of the repetitive nature of optimization, stochastic, and
statistical analyses. Even considering computing power increases, these repetitive pro-
cesses are very time consuming due to the conventional complex and large model. One
method to save computational time is the use of reduced-order models (ROMs). There
are a significant number of existing research studies about ROMs. Yun and Masri [1, 2]
developed a methodology for stochastic detection of changes in uncertain nonlinear sys-
tems using ROMs. Chung and Fung [3] proposed a nonlinear finite element model of
piezoel ectric tube actuators with hysteresis and creep for control and design purposes. In
their work, the operation of the actuators is smulated using ROMs. Ashwin et al. [4]
developed a finite element based substructuring procedure for design analysis of large
structural systems. Hartl et al. [5] also devel oped advanced methods for analysis, design,
and optimization which use ROMs for computational efficiency.

In the field of structural dynamics, component mode synthesis (CMS) techniques [6—
12] are well established as an alternative to conventional finite element models (FEMs)

with large numbers of degrees of freedom (DOFs). CMS belongs to a wide class of do-
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main decomposition techniques. CMS is a substructural based technique, which divides
the global structure into several substructures. The DOFs of those substructures can be
reduced significantly. Then, each individual substructure in the CMS domain is recon-
nected, and the system dynamic responses are predicted very efficiently and accurately.
Applications of CM S include the work of Wang and Kirkhope [13] who applied CM S for
multi-shaft rotors with flexible inter-shaft bearings. They also developed CM S for damped
systems [14]. In addition, Liu and Zheng [15] proposed the improved component mode
synthesis for nonclassically damped systems. Takewaki [16] proposed the inverse com-
ponent mode synthesis method for redesign of large structural systems. Matichard and
Gaudiller [17] developed the hybrid modal nodal method for multi-body smart structure
model reduction and feedback control development by CMS. Kim [18] also devel oped
a recursive component mode synthesis method to solve large-scale eigenvalue problems
efficiently. Tran [19] developed and applied component mode synthesis using partial in-
terface modes to a cyclicaly symmetric structure. To enhance computational efficiency
for redesign of damped large structural systems, Takewaki and Uetani [20] used a new for-
mulation for an incremental inverse problem based on component mode synthesis. Elhami
et al. [21] proposed methods for repetitive symmetric structures using CMS. Farhat and
Geradin [22] developed a methodology for applying CM S to structures with incompatible
substructures.

In general, CM S has become a very popular numerical tool in aerospace and automo-
tive engineering because it usually meets high standards of computational efficiency. Com-
putational efficiency is illustrated by significant cost saving when remeshing is needed,
since this task can be done locally, i.e. on each substructure separately. However, the
remeshing process might al so be time consuming computationally and manually for design

purposes such as structural optimization, and for damage modeling for structural health
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monitoring. Therefore, ROMs for design and damage modeling purposes are needed.

The ROMs for design and damage modeling were introduced almost fifteen years ago
by Balmés et al. [28,29] to avoid the relatively expensive process of reanalysis of complex
structures. In addition, several other ROMs referred to as parametric reduced-order mod-
els (PROMs) have been developed [30-32,35]. In particular, multi-component PROMs
(MC-PROMSs) have been developed recently by Hong et al. [35]. For robust substruc-
ture (re)analysis, MC-PROMs are advantageous because they allow several substructures
to have parametric variability in characteristics such as geometric parameters (e.g., thick-
ness), or material properties (e.g., Young's modulus). MC-PROMs are perfectly suited
for predicting the vibration response of structures modeled with shell-type finite elements
which can have thickness variations. However, if the structure is modeled with brick-type
finite elements, and if the brick-type elements require local volume changes during reanal -
ysis, then MC-PROMSs cannot be effectively used to predict the dynamic response. This
is because MC-PROMSs use third-order Taylor series for parameterization. These Taylor
series do not capture accurately the variation of the mass and stiffness matrices for brick-
type finite elements because the volume of local finite elements can change during the
reanalysis. Consequently, some entries of the mass and stiffness matrices for brick-type
finite elements vary highly nonlinearly with respect to geometric variations in the struc-
ture. Herein, anovel parameterization techniqueis proposed to capture these element-level
nonlinearities.

Another challenge for MC-PROMSs is that they can be numerically not stable due to
the transformation matrix they employ. Specifically, the transformation matrix consists of
static constraint modes and fixed interface normal modes computed for a set of nominal
parameters, and afew sets of perturbed parameter values (typically up to 3 sets per param-

eter) [35]. If all static constraint modes are kept and many normal modes are included,
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then the size of the system-level mass and stiffness matrices can be nearly singular (and
can even be larger than that of the full-order models). Thisis because the transformation
matrix can contain vectors which are nearly linearly dependent. These vectors are usualy
normal modesfor substructureswhere the parametric variation (e.g., modulus of elasticity)
does not affect the component-level norma modes. Moreover, the transformation matrix
used in MC-PROMs was designed for small parameter variations which ensures that the
space spanned by the basis vectors at a component-level does not depend nonlinearly on
parameter variations. That approach can break down because of the volume variations
which can occur when brick elements are used.

Another chalenge of CMS methods and MC-PROMs is that they often require an
excessively large number of interface DOFs because (often) these DOFs are many and
are hard (or impossible) to reduce. To address this issue, Castanier et al. [11] proposed
that the physical interface DOFs be replaced by global interface modes, which were also
called characteristic constraint (C'C’) modes. However, this concept is not optimal for
substructural-based techniques because C'C' modes are system-level interface modes, not
substructural-level interface modes. Thus, a new technique to reduce the interface DOFs
locally is proposed herein and referred to as |ocal-interface reduction.

This paper is organized as follows. In Sec. 3.2, the element-level nonlinearity due to
the volume variations of finite elements of brick or other typeis evaluated, and anovel pa
rameterization technique is proposed to capture this nonlinearity. Next, in Sec. 3.3, CMS
is briefly reviewed, and next-generation parametric reduced-order models (NX-PROMSs)
are proposed. In Sec. 3.4, to locally reduce the interface DOFs, alocal-interface reduction
techniqueis presented. Section 3.5 discusses the procedure to assembl e substructural mass
and stiffness matrices (with and without implementing the local-interface reduction tech-

nique). In Sec. 3.6, numerical examples such as a plate structure, an L-shaped structure,
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and arealistic vehicle model (a high mobility multipurpose wheeled vehicle, HMMWYV)
modeled with brick-type finite elements are used to demonstrate the proposed methods.

Finally, conclusions are summarized in Sec. 3.7.

3.2 Robust Parameterization Techniques for Element-Level Nonlin-
earity

For structural design and damage modeling purposes, the parameterization of the mass
and stiffness matrices can be the most important step. Thisis because the parameterization
techniques enabl e capturing mass and stiffness variations due to design changes or damage
in the structure. Thus, the reanalysis time can be significantly reduced because the finite
element mesh does not need to be modified and remodeled. The parameterization tech-
nigue hasto be adapted for the different characteristics of each type of finite el ement used.
For example, the thickness, Young's modulus, and material density variations of shell-
type elements can be captured well by third-order Taylor series[28, 29, 32, 35]. However,
we found that the thickness variations for a brick and other types of finite elements such
as hexagonal and tetrahedron elements cannot be captured well by Taylor series of low
order due to an element-level nonlinear characteristics caused by volume variations. For
elements which have volume, local thickness variations induce volume variations in the
elements. In contrast, Taylor series works well for parameterizing shell-type elements be-
cause these do not have actua volume. In this section, a parameterization technique that
captures thickness variations of brick and other types of finite elementsis the focus.

Fig. 3.1 shows an 8-node brick-type element which usesfirst-order (linear) shape func-
tions. Coordinates x, y, and z are global, and coordinates &, n, and { are local. As a
conceptual example, consider that the four nodes on the top surface in Fig. 3.1 move by a

distance At. The brick-type element has a volume, so when each node moves, the volume
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Figure 3.1: Sample 8-node brick element with global and local coordinates

of the brick-type element varies. Thus, the parameterization technique has to account for
these volume variations. To that aim, let usfirst revisit the formulation used to derive stiff-
ness matrices for brick-type elements [62, 63]. The equation used to obtain the stiffness

matrix can be expressed as

K = / B"DBdV
Vv

¢=1 =1 pe=1
_ / / / BTDBdtdnd( (3.1)
¢=—1Jn=-1Je=—1

8 8 8

= > WW;WiB” (6,5, G DBy, Ge)det(T(,my, Ck)),

i=1 j=1 k=1

where B is a strain matrix (which contains derivatives of the linear shape functions in
global coordinates), and D is an elasticity matrix (which contains Poisson’s ratio v, and
the elastic modulus E). The determinant of the Jacobian in Eq. (3.1) is obtained from
the coordinate transformation of the strain matrix B. The determinant containsin its de-
nominator a cubic polynomial of £, n and ¢, which reflects volume variations. Thus, the
parameterization should also contain a cubic polynomial in the denominator. To establish
the coefficients of this cubic polynomial, the volume variations of brick-type elements are

considered. Asshownin Fig. 3.1, one or several nodes on the top surface move to capture
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thickness variations. The resulting volume can be expressed as

- A
V:VO{lerp po}:vo(ud—p),
Po Po

where V' and 1}, are the final and the initial volume of the brick-type element, and p and
po are the target parameter value (thickness) and the initial parameter value. When only
one node on the top surface moves, the coefficient d is /3. Similarly, when two nodes
move, d = 1/2. Also, when three nodes move, d = 1. Finally, when four nodes move,
the volume variation is proportional to Ap, i.e. V = VO%. This last type of variation,
proportional to Ap, isvery well captured by aregular interpolation. The other three cases,
however, are not. To address this issue, a cubic polynomia which considers the volume

variation of brick-type elements with atarget parameter variation Ap is defined as

B Ap 1Ap 1Ap

The new parameterization equation consists of a fourth-order interpolation in the numera-
tor and the cubic polynomial in Eq. (3.2) in the denominator, which yields the new param-

eterization as

Ko + KiAp + Ko (Ap)? + Ks(Ap)? + Ky (Ap)*

K(po+ Ap) = D(Ap)

(33)

To calculate the matrices K, K, K, K3 and K, in Eq. (3.3), five equations are needed.
For that, stiffness matricesfor five parameter values are computed. First, consider the case
where Ap = 0. One obtains

Next, consider Ap = idp (withi = 1,2, 3, 4), one obtains

Ko + Ki(idp) + Ka(idp)* + K3(idp)* + Ka(idp)*
D(4p) ’

K(po + idp) ~ (3.5



56

Rearranging Egs. (3.4) and (3.5) into matrix form, for each entry e,q of the matrices K1,

K,, K3 and K,, one obtains

KO,eq K(pO)eq
Kl,eq K(pO + 5p)eq
Cl Kooy | = | K(po+20p)eq | - (3.6)
K3 K(po + 30D)eq
K4,eq K(pO + 4(529)64
where
1 0 0 0 0
1 op (6p)? (6p)* (6p)*
D(@p)  D@p)  D@p)  D(p)  D(dp)
C = 1 (20p)  (20p)*  (20p)®  (20p)*
D(26p)  D(20p) D(26p) D(26p) D(20p)
1 (35p)  (3sp)2  (33p)*  (36p)*
D(@36p) D(3d6p) D(36p) D(36p) D(3dp)
1 (46p)  (4dp)?  (40p)®  (40p)*
| D(4dp) D(46p) D(4ép) D(46p) D(4dp)

Equation (3.6) can be easily solved by simply inverting the 5 x 5 matrix on the left hand

side. Thismatrix isnon-singular and very well behaved for inversion. Also, note that this



57

inversion hasto be done only once (for agiven dp). Let usdenote by A thisinverse matrix,

- 4 -1

1 0 0 0 0

1 5p (6p)? (dp)® (dp)*
D(p)  D@p)  D@p)  D(@p)  D(dp)

1 (25p)  (26p)2  (20p)®  (20p)*
D(26p) D(20p) D(26p) D(20p) D(2p)

1 (36p)  (3p)2  (36p)®  (36p)*
D(3dp) D(3ép) D@Bdép) D(3dp) D(30p)

1 (46p)  (48p)?  (40p)®  (4p)*

| D(4dp) D(46p) D(4ép) D(46p) D(4dp)

A51 A52 A53 A54 A55

Re-arranging Eq. (3.6) using the entriesin A, one obtains

where

bo
b1
by
bs

by

K(po+Ap) = bK(po) + biK(po + 6p) + 0K(po + 20p)

(3.7)

+  03K(po + 30p) + b4 K(po + 46p),

(A1 + AnAp + Azt Ap* + Ay Ap® + As1 Ap*),
(A1 + ApAp + Ao Ap® + ApAp® + AsAp?),
(A1s + AgsAp + AssAp® + AigAp® + AssAp?),
(Arg + A Ap + Asy Ap* + Ay Ap® + AsyAp?),

(A1s + Ags Ap + Ass Ap* + Az Ap® + A55Ap4)‘

Equation (3.7) showsthat K (po+Ap) issimply alinear combination of five (pre-computed)

matrices. The coefficients in the linear combination depend very nonlinearly on Ap. That



58

is the key factor which ensures the high accuracy of the new parameterization. Note that
the computational cost of the new parameterization isthe same asthat for aregular fourth-

order interpolation. The accuracy, however, is higher (as shown on Sec. 3.6.1).

3.3 Reduced-Order Modds

The parameterization techniques proposed in Sec. 3.2 are for the full-order finite ele-
ment model. However, the main objective of this work is to predict vibration responses
using ROMs (as opposed to full-order models) to reduce the calculation time. To detall
the construction of ROMs, the fixed-interface Craig-Bampton component mode synthe-
sis (CB-CMS) [10] is reviewed briefly. Next, a new transformation matrix is presented
and used in conjunction with the new parameterization technique discussed in Sec. 3.2.

Finally, NX-PROMs are constructed.

3.3.1 Brief review of Craig-Bampton component mode synthesis

In this section, the fixed-interface CB-CMS [7] method is reviewed. This modeling
approach is broadly used because of its simplicity and computational stability. To apply
the CB-CMS, the complex structure of interest is partitioned into substructures. The DOFs
of each substructure are further partitioned into active DOFs on the interface (indicated by
the superscript A), and omitted DOFs in the interior (indicated by the superscript O). The

mass and stiffness matrices for a component ¢ can then be partitioned to obtain

AA AO AA  1,A0
j k; k;
M,; = , and K;=
00 0A 1,00
i k; k;

Next, the physical coordinates are changed to a set of coordinates representing the am-
plitudes of a selected set of fixed-interface component-level normal modes ®2 (indi-

cated by the superscript N), and the amplitudes of the full set of static constraint modes
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¢ = kOO 'k04 (indicated by the superscript C'). The transformed mass and stiffness

matrices for component ; can be expressed as

mf mEN 1.C .CN
CBCMS i i CBCMS ki ki
M, = and K; =

(3 )

WY Y P

In thiswork, the CB-CM S method is used only for the substructures which do not have

any parameter variation or damage.

3.3.2 Next-generation parametric reduced-order models

In this section, MC-PROMs are improved to be more robust and mathematically stable.

The resulting models are referred to as NX-PROMSs.

Transfor mation matrix for NX-PROMSs

The transformation matrix for NX-PROMs is constructed somewhat similar to MC-
PROMSs (which was constructed by using the idea behind CB-CMYS). It also has a set of
static constraint modes ¥¢ and a set of fixed-interface norma modes ®~. However, the
transformation matrix for NX-PROMs has a different set of static constraint modes and a
different set of fixed-interface normal modes compared at CB-CM S and MC-PROM. This

transformation matrix can be written for component ; as

1 0
Ti = )
\Ilgug,i q)]a\lflg,i

where U¢ isreferred to as the matrix of augmented constraint modes

aug
¢ c c c c c
Wang,i |:\IIO,i vy, vy, vy, vy, |

and 2 isreferred to asthe matrix of augmented fixed-interface normal modes

aug

N
= N N N N N
(I'aug,z [ ‘I)o,z' ‘I’u (I)Q,z’ (I)S,i ‘1’4,i } )
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Matrices ¥§; and ®{; correspond to the nominal parameter values, whereas matrices ¥
and @} (I = 1,2,3,4) correspond to four other parameter values.

In general, the columns of @Y  are not orthogonal. Therefore, for numerical stabil-

aug

ity, an orthogonal basis for the space spanned by these modes is computed. This basis

is obtained by a truncated set of left singular vectors U™ of &% [35]. Thus, the new

aug

transformation matrix can be expressed as

- I 0
\Iigug,i va

The transformation matrix in Eq. (3.8) can be used to project the physical domain onto
the NX-PROM domain. The stiffness matrix K NXPROM — TTKFEMT, for component i
(where KI'EM represents the stiffness matrix of the full-order model of component i) can

be partitioned to obtain

KiG KNG KEC KYC KNG KD

A similar relation is obtained for the mass matrix of component i. Here, the DOFs corre-

sponding to the constraint part (superscript C') are repeated for the five parameter values
(denoted by subscript O, 1, 2, 3 and 4). Note that in such an approach, the size of the
mass and stiffness matrices can be quite large. Also, these matrices may beill-conditioned
because the columns of ¢, ; are not necessarily linearly independent.

To address this issue, a new method to account for the static constraint modes is de-

veloped. This new method avoids duplicating the interface DOFs (C') and captures the
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Figure 3.2: The case where the value of parameter p is between po+idp and po+(l + 1)dp
for some [ value between 0 and 3

interface effects more accurately. The approach reduces the number of sets of static con-
straint modes (used to obtain MYXPROM gnd KNXPROM) from five sets to just one set.
Consider that the actual value p of the parameter where the reanalysis is needed exists
between the I** and (I + 1) parameter values (I = 0,1, 2,3 or 4) which were used to
construct MNXPROM | that case (described in Fig. 3.2), a new static constraint mode
can be generated by linearly interpolating between the static constraint modes for the /"

and the (I + 1)*® parameter valuesto obtain

@?:<ﬂﬂfﬁ)wg+<i5§L)w&J:%@g+@m&¢ (3.9)
Pir1 — D Pi+1 — Di

This new static constraint mode W< replaces al five static constraint modes used to con-
struct T; in Eq. (3.8).

Note that this reduction can be implemented without re-constructing T; for each case
of parameter variation. Instead, only simple linear combinations of partitions of the ma-
trices MINXPROM gnd KNXFPROM " are needed. Details are given in below section. In the
end, the final NX-PROM mass and stiffness matrices have only a single set of constraint

modes \i,zc which always has linearly independent columns.
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Par ameterization for NX-PROMSs

The new interpolation presented in Sec. 3.2 is applied to NX-PROMs. To that aim,
five mass and five stiffness are constructed for each component i (for [ = 0,1,2,3,4) as

follows
M%X = TiTM(po +10p)T; and Kl]YiX = T?K(po + 16p)T;.

These matrices are not all used independently to form NX-PROMs. Instead, they are
linearly combined to implement the single set of static constraint modes ¥¢ in Eq. (3.9).

Thus, conceptually, T; is replaced by T;, given by

. I 0 N
T; = (a;Ry; + BiRig1,:) = T (iR + BiRig14)
we  UunN
aug,i )

where R, ; and R, ; are masking matrices of zeros and ones. The matrix R;; isa6 x 2
block matrix where the blocks (I, 1) and (6, 2) are unit matrices, while all other blocks
are zero. The first five rows correspond to \IIZCZ (l =0,1,2,3,4) and the last row corre-
sponds to UY. This new transformation matrix T; is applied to the mass and stiffness
matrices of component 7 to construct NX-PROMSs. First, five mass and stiffness matrices

are constructed for each parameter variation sop (for s = 0, 1, 2, 3, 4) asfollows

MéVzX = (@iqu:i + @'RZTH,Z‘) MiVZX (a;Ry; + BiRyta,)

KiVZX = (O‘iREz‘ + BiREH,i) Kf;VZX (iR + BiRig1s) -

Next, the new interpolation discussed in Sec. 3.2 is applied using MY and K.

ER

Eq. (3.7) isused to obtain

M(po + Ap)i™ & boMET + 0 MY + b M + b M + b MEY

K(po + Ap)NVY =~ bng{f + blKﬁX + 0K + bgKg,jiX + bJ{ijX
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where b, (s = 0,1,2,3,4) are computed for each Ap by using the matrix A and the
expression in Eq. (3.7). Note that the five coefficients b, which depend on the actual Ap
are easlly calculated because they are just five scalars that depend only on Ap and ip
irrespective of the size of the finite element mesh.

Finally, the mass and stiffness matrices for the i*" component of the NX-PROMs can

be partitioned as follows

MC ; MCNi

M(p0+Ap);-NX = o e )

Mggz Mgp,i

- (3.10)
C CN

Kiu+ Ap)f = | 0 B

Kggz Kgp,i

where superscript C' indicates a constraint partition, and superscript /V indicatesanominal

mode partition.

3.4 Local-Interface Reduction

If the finite element mesh used is very fine, the size of the reduced system-level ma-
trices is dominated by the constraint DOFs corresponding to the C' partition in Eg. (3.10).
The constraint DOFs of matrices constructed by CM S-based techniques are difficult to re-
duce. Thisis an important issue because, if the constraint DOFs cannot be reduced, then
the overal structure cannot be efficiently divided into many substructures. To address
thisissue, Castanier et al. [11] suggested the use of characteristic constraint (C'C') modes.
This technique is based on performing a secondary eigenanalysis of the constraint parti-
tion (C) of the system-level mass and stiffness matrices constructed by CB-CMS. This
technique is applied after the system-level matrices are constructed. However, the core
idea of NX-PROMsisthat all analyses are accomplished at the substructure-level, and not

at the system-level. Thus, an alternate interface reduction technique is proposed next. The
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new approach is applied at the substructure-level, and it is referred to as local-interface
reduction (LIR).

The local-interface reduction technique is also based on a secondary elgenanalysis of
the constraint partition. However, the secondary eigenanalysis is executed on the con-
straint partitions (C) of the substructural matrices, not the system-level matrices. The
secondary eigenanalyses on constraint DOFs (C') of the mass and stiffness matrices of

component 7 constructed by either CB-CMS or the NX-PROM approach are given by

C ccC C ccC _
KAp,'CI)Ap,i - MAP,‘CI)AP,Z‘AAW =0,

K3 3

where A »,,; isadiagonal matrix which containsthe eigenvalues, and @, are the charac-
teristic constraint (C'C') modes of the " substructure. They are truncated for the frequency
range of interest by using the eigenvaluesin A 5, ;. The rows of the C'C modes indicate
the constraint DOFs of the substructure, and the columns represent the set of truncated
C'C modes. The C'C' modes for each substructure are used to reduce the interface DOFs
for each boundary locally. Note that joining all CC' modes for each interface between
different components may lead to vectors which are not necessarily linearly independent.
However, they span the adequate space. Thus, the left singular values of the C'C' interface
modes may have to be used for certain interfaces. To demonstrate the LIR procedure, a
simple plate model isused in Sec. 3.6.2.

The set of orthogonal basis vectors used for al interfaces that a component  has with
other components are grouped in a block diagonal matrix which contains the entire inter-
face component ; has. The number of blocksisequal to the number of componentsthat are
connected to component <. These matrices are denoted by U »,, ;. Of course, if component

i connects to only one other component, then there is only one block in U 5, ;. Next, the
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mass and stiffness matrices in Eq. (3.10) are projected using U 4, ; asfollows

cc _ T C CCN _ T CN NCC __ CN
MAp,i - UAp,iMAp,iUAP,U MAp,i - UAp,iMAp,i7 MAp,i - MAp,iUAP,i7
(3.11)
cc _ 17T C ) CCN _ 11T CN NCC _ CN .
KAp,i —UAp,iKAp,iUAp,w KAp,i _UAp,iKAp,iv KAp,i —KAp,z‘UAp,Z~

Thus, the final mass and stiffness matrices with reduced constraint DOFs are given for

component i by

cC CCN cC CCN
) Ap,i )

NCC N NCC N
MAp,i MAp,i KAp,i KAp,i

LIR _

where superscript LI R indicates that the matrices are constructed using local-interface

reduction. An exampleis provided in Sec. 3.6.2.

3.5 Assembly

To predict the system-level dynamics, the mass and stiffness matrices obtained in Sec-
tions 3.3 and 3.4 for each substructure have to be assembled. To do that, geometric com-
patibility conditions must be enforced. In the following, we discuss separately the case
where LIR is not used and the case where it is used.

Let us consider the case where the geometric compatibility conditions are used for
models without LIR. In this case, the constraint partitions (C') of component-level matri-
ces keep the meaning of the physical interface DOFs of matrices obtained from FEMSs.
This means that the geometric compatibility conditions between interface DOFs (con-
straint DOFs) can be applied directly to construct the system-level matrices. The com-
plete component-level equations of motion for component ¢ based on CB-CMS or the

NX-PROM approach can be expressed as

MZRO]V[flfOM + KZRO]V[qRO]V[ — FfOM, (312)

1)
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where ROM indicates component-level matrices obtained using either CB-CMS or the
NX-PROM approach. The stiffness matricesin Eq. (3.12) obtained for components with-

out parameter variability can be expressed as

CBCMS

KO KOV
Kf%O]V[ _ KZCBCMS: ¢ ¢ ) (313)

KN KN
For component with parameter variability, the stiffness matrices in Eq. (3.12) can be ex-

pressed as

NXPROM
KROM  — KNX = K Kan . (3.14)
KN KX,
The formulas for the mass matrices are similar to those for the system matrices in Egs.
(3.13) and (3.14) (and are omitted here for the sake of brevity).

Next, the matricesin Eqg. (3.12) are grouped for al : to obtain

M = Bdiag[MffOM MffOM}a

K = Bdiag{K{?OM KgOM}, (3.15)
T

F = |:F{%OMT FROMT:| :

where n is the number of components, and Bdiag|-] denotes a block-diagonal matrix.

The geometric compatibility condition for the ROM is expressed as

q =qf, (3.16)

where, q; and q; are the generalized coordinates for the constraint partitions (C' for CB-
CMS or NX-PROMSs) that correspond to the interface between components i and j. Of
course, there is no compatibility condition to be enforced for two components which do

not have a common interface.
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Equation (3.16) is used to transform the matrices in Eq. (3.15) similar to the assem-
bly process in all finite element modeling methods. The final assembled, reduced-order,

system-level matrices are given by

MC MCN KC KCN
MM = KM = ,
Y MNC MN Y KNC KN
FC
ROM
Fsys = )
FN
where
KCN — K?N KQCN L KgN ’ KNC — ]E<CZ\7T7
KY 0o 0
N 0 KY 0
K" = ,
0
0 0 --- KV

and K¢ isamatrix which is obtained by the assembly of each interface. In general, K¢ is
amatrix which has a smaller size than the C' partitionsin K. The same process is applied
to obtain F©. Also, similar relations are obtained for the mass matrix M 2" (and are
omitted here for the sake of brevity).

Finally, the compatibility conditions for models constructed using LIR can be ex-
pressed almost identically to those for models without LIR. The only difference is that
the generalized coordinatesin Eqg. (3.16) represent amplitudes of characteristic constraint
modes or amplitudes of the basis vectors used to capture the space spanned by the charac-

teristic constraint modes.



68

Figure 3.3: Simple plate structure modeled with shell-type elements
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Figure 3.4: The 3274 diagonal entries of the exact and the parametrized mass and stiffness
matrices obtained by using aclassic cubic interpolation for shell-type elements

3.6 Numerical Results

3.6.1 Element-level nonlinearity of brick and other types of finite elements

Figure 3.3 shows a simple plate structure modeled with a shell-type finite elements,
wheret is the thickness of the plate (t = 0.2 mm). To examine the variation in the entries
of the finite element mass and stiffness matrices for this substructure, the thickness ¢ is
varied by increments of At = 0.01 mm.

The size of the mass and stiffness matrices of the ssmple structure shown in Fig. 3.3
is 15,582x15,582. As an example, the 32"¢ diagonal entries of the mass and stiffness
matrices, M3z 30 and K3, 30, are shown in Fig. 3.4 as the thickness varies (approximated

matrices are shown by adash-dot line, and the actual matrices are shown by asolid-linefor
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Figure 3.5: Simple plate structure modeled with brick-type elements

various values of Ap). One may observe that those entries of the mass and stiffness matri-
ces vary amost linearly. To capture these variations very accurately, a cubic interpolation

isused as follows
K (po + Ap) = Ko + K Ap + Ko Ap? + KsAp®. (3.17)

The matrices Ko, K, K», and K are computed by using the stiffness matrices eval uated
at three parameter values. These values are the reference value py, thefirst perturbed value
p1 = po + dp, the second perturbed value p, = py + 2d6p and the third perturbed value
p3 = po + 3dp. The procedure is standard and similar to the one used in Sec. 3.2, so its
details are omitted here for the sake of brevity. A similar interpolation is used for the mass
matrix. Note that, in contrast to Taylor series, the cubic interpolation does not require the
calculation of derivative terms.

Next, to examine the variations in the entries of the mass and stiffness matrices for
brick-type elements, the same plate structure is modeled with brick-type elements. The
nominal thickness of the plateis (the same) 0.2 mm and isvaried by (the same) increments
of At = 0.01 mm, asshownin Fig. 3.5. Thethicknessisvaried in aregion near the center
of the plate. The entries of the mass and stiffness matrices near the DOFs where the
thicknessis varied are affected. A sample DOF affected is the 645", The 645" diagonal
entry of the mass matrix varies linearly (and is omitted for the sake of brevity). The same

entry of the stiffness matrix, however, does not vary linearly, as shown in Fig. 3.6 (left),
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Figure 3.6: The 645" diagonal entry of the exact and the parametrized stiffness matrices
obtained by using aclassic cubic interpolation (left) and an classic fourth order
interpolation (right) for brick-type elements

where exact values are shown by a solid-line. To capture this nonlinear variation, the cubic
interpolation function in Eq. (3.17) is used. The approximate values obtained are shown
by a dash-dot line. These results show that Eq. (3.17) is not good enough to capture the
highly nonlinear variation of the stiffness matrix. Therefore, a fourth-order interpolation

isused as follows
K(po + Ap) ~ Ko + K1 Ap + Ko Ap® + K3 Ap® + KyAp™, (3.18)

This fourth-order interpolation captures well the nonlinear variation in the entries of the
stiffness matrix as shown in Fig. 3.6 (right).

Based on the results in Fig. 3.6, one may assume that the errors obtained based on
Eq. (3.18) are negligible. However, that is not correct, as demonstrated by the forced
response of the plate calculated using exact and approximated matrices. Figure 3.7 shows
the forced response at one of the DOFs on the plate for excitation frequencies near the
first resonance. The solid-line represents the response computed by the actual mass and
stiffness matrices, and the dash-dot line indicates the response computed by the mass and

stiffness matrices parametrized using Eqg. (3.18) for the case of At = 0.37 mm. Clearly,
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Figure 3.8: The 645" diagonal entry of the exact and the parametrized stiffness matrices
obtained by using the new interpolation for brick-type elements

the forced response computed by the parametrized mass and stiffness matrices does not
agree with that computed by the actual matrices. This means that the errorsin the entries
of the stiffness matrix from the fourth-order interpolation are not small enough to capture
accurately the dynamic response of the structure with a modified thickness. Note that,
the errors in the dynamic response are induced by inaccuracies in the stiffness matrix,
not in the mass matrix. These results demonstrated that a new parameterization technique
focused on capturing element-level nonlinear variationsin the stiffnessis needed for brick-
type finite elements.

The parametrized stiffness matrix was calculated using Eq. (3.7) for Ap = 0.37 mm.
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Table 3.1: 10 lowest natural frequencies for exact and parametrized matrices with volume
variations

Mode Exact  Approximated

1 4278.24 4278.24

2 9024.39 9011.52

3 9068.45 9053.21

4 14323.12 14323.11

> 24952.70 24952.34

6 25024.01 25023.94

7 27463.11 27460.10

8 27656.15 27654.70

9 36098.49 36098.51

10 4127558 41262.95

As a sample of results, Fig. 3.8 shows that the 645" diagonal entry of the exact and the
approximated stiffness matrices match extremely well. Similar matches are observed for
al entries of the matrices. Next, forced responses were calculated using these matrices.
The results are shown in Fig. 3.9. The solid-line indicates the response computed using
the exact matrices, and the dash-dot line indicates the response computed by using the new
parametrized matrices. The results closely match. Moreover, the natural frequencies for

the exact matrices and the new parametrized matrices, match also, as shown in Tab. 3.1.

3.6.2 Example of local-interface reduction

Consider astructure composed of 5 substructuresand 3 boundariesasshownin Fig. 3.10.

['; represents the ;™ boundary. First, using the constraint partitions (C') of the reduced
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Figure 3.10: A simple structure used to demonstrate the local-interface reduction

mass and stiffness matrices, the C'C' modes are computed. These are 5, K¢ ,, ®KS s,
®KC, and &K .. ®XC | hasinterface DOFs for boundary I'; and T'y, while 5S, hasin-
terface DOFsfor I'; and I's. Substructures 3, 4 and 5 each have one boundary 'y, I's, and
'3, respectively. The mathematical representation for these partitions for each C'C’ mode

can be expressed as
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(255 (®552)"
(®552)

®L0s = (BL0a) 1 R0 = (2K0) 7, @K0; = (@K75)

q)CC

_ cc
Ap,1 — 4

) Ap2 — )

)
(265,)"
By using each boundary partition of the C'C’ modes, the augmented set of C'C' modes for

each boundary is constructed as

CI)le,aug = (¢ggl)Fl (cbggg)“},
e = | (@507 (@550 (855)" | 319
DNy = | (S5, (q>gg5)F3}.

Equation (3.19) describes the augmented C'C' bases for boundaries 'y, I'y, and I's. How-

ever, the augmented bases & &2  and L3

Apangr P Ap augs Ap.ang &€ NOt guaranteed to be linearly

independent. Thus, they cannot be directly used to reduce the constraint DOFs because of
lack of numerical stability. Thus, an orthogonal basis for the space spanned by the aug-
mented CC' basis is used. Specifically, the left singular vectors U}, U2, and U, of

the three augmented C'C bases ®! &2 and &3

Ap,aug’ = Ap,aug’ Ap,aug

in Eq. (3.19) are computed
for each substructure, and the left singular vector corresponding to singular values larger
than 0.01% of the maximum singular value are selected for each boundary. The rows of
the orthogonal bases Uy, U2 and U} are (re)sorted for each substructure to match
the interface DOFs for each boundary. The resorted matrices are denoted by Uglp, UZQP
and U&;. The (re)sorted matrices are grouped for each component i to obtain matrices
U, Which Uy, ; are used to project the interface DOFs onto the secondary generalized
coordinates (C'C' domain). For example, substructure 1 includestheI'; and I'; boundaries.

To reduce the interface DOFs of substructure 1, the orthogonal bases Uglp and UZQP are
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grouped in amatrix Ua, 1 given by

UZl 0F1
Upp1 = "’ . (3.20)
0" U

The orthogonal basis for substructure 2 is constructed in the same way, to obtain

UFQ OFQ
Uppz = a7 . (3.21)
o' U

For some of the substructures, the grouping of ng matrices is not necessary. For

example, the bases used for substructures 3, 4 and 5 are simply given by
Upps = Uy, Upnpa=Uy, and Upps = Uy, (3.22)

Next, the orthogonal basis for each substructure is constructed using Egs. (3.20), (3.21)
and (3.22), and the interface DOFs (C') of the NX-PROMs generalized coordinates are

projected into the secondary generalized C'C' coordinates as shown in EQ. (3.11).

3.6.3 L-shaped plate modeled with brick-type finite elements

To demonstrate the proposed NX-PROM and LIR methodologies, an L-shaped struc-
ture model ed with brick-type elements (shownin Fig. 3.11) and containing thicknessvaria-

tionsisinvestigated numerically. Figure 3.11 shows the pristine structure and the structure
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Figure 3.12: Forced response predictions of the L-shaped plate for the nominal structure
and for cases 1, 2 and 3 computed using full-order models, MC-PROMs and
the novel NX-PROMs

with thickness variations. The structure consists of eight substructures. Substructures 7
and 8 have three cases of thicknessvariations, as given in Tab. 3.2. The nominal thickness
of the structure is 1 mm and the elemental thickness is 0.2 mm. The thickness varia-
tions applied are very large compared to the nominal elemental thickness considered. This
causes the entries of the mass and stiffness matrices to vary nonlinearly. CB-CMS is ap-
plied for the 1% to the 6*" substructure, and the NX-PROM approach is applied for the 7th
and the 8" substructures,

Figure 3.12 shows the system-level forced responses of the nominal structure and the
three cases of thickness variation. The dotted lines represent the vibration response of

the nominal structure. The crosses and circles represent the responses of the structure
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Table 3.2: Thickness variationsin substructures 7 and 8 of the L-shaped plate

Substructure Thickness, case 1 Thickness, case 2 Thickness, case 3
7 1.00mm — 1.22mm 1.00mm — 1.42mm 1.00 mm — 1.81 mm
8 1.00mm — 1.22mm 1.00mm — 1.42mm 1.00 mm — 1.81 mm

with thickness variations predicted using NX-PROMs and full-order models, respectively.
To reveal the enhanced performance of the NX-PROMSs, the vibration response predicted
by MC-PROMs is aso shown by the stars in Fig. 3.12. For al three cases, the forced
response predicted by the full-order models and the NX-PROMs show excellent matching.
However, the forced responses predicted by MC-PROMs are not accurate compared to the
full-order models. This is due to the fact that MC-PROMs cannot capture the volume
variation of brick-type finite elements, which leads to poor predictions of the vibration
response. Note also that the thicknessvariations affect significantly the structure, as shown
by the significant differences between the response of the nominal structure and the other
responses.

The number of DOFs of the full-order model and the NX-PROMs are 18,300 and
3,502, respectively. The system-level DOFs of the NX-PROMSs include 3,000 interface
DOFs and 502 generalized internal DOFs. The number of generalized internal DOFsis
small. However, the number of interface DOFs s large, and should be reduced. Thus, the
LIR technique described in Sec. 3.4 was applied. Fig. 3.11 showsthe interfaces which are
reduced, where I',,, indicates the m'" interface. Fig. 3.13 shows the forced responses for
the nominal structure and the three cases of thicknessvariations. The dotted lines represent
the response of the nominal structure. The crosses and circles indicate the responses of the

structure with thickness variations predicted using NX-PROMs with full interface DOFs
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Figure 3.13: Forced response predictions of the L-shaped plate for the nominal structure
and for cases 1, 2 and 3 computed using full-order models, NX-PROM, and
NX-PROM with LIR

and full-order models, respectively. The squares represent the responses predicted using
NX-PROMs with LIR. These latter models use only 533 interface DOFs, reduced by LIR
from 2,498. The response predicted by NX-PROMs with LIR agree very well with the

responses of the full-order model.

3.6.4 Resultsfor a high mobility multipur pose wheeled vehicle model

In this section, NX-PROMSs are used to predict the dynamic response of a readlistic
vehicle model. We consider the base frame of a high mobility multipurpose wheeled
vehicle (HMMWYV). The finite element model for the HMMWYV is a conventional model
used to examine its dynamic response [30-32, 35,64]. Figure 3.14 shows the system-
level and substructure-level finite element models of the HMMWYV frame. The cross-

bar structure is composed of substructures C';, and C'g, which are modeled with solid-
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Figure 3.14: System-level and substructure-level finite element models of the frame of a
high mobility multipurpose wheeled vehicle

Table 3.3: Thickness variationsin substructures C';, and C'r of the HMMWYV frame

Substructure Thickness, case 1l Thickness, case 2

Cr, 5mm — 20 mm 5 mm — 32 mm

Cr 5mm — 20 mm 5 mm — 32mm

type finite elements, as shown in Fig. 3.15. The marked region in Fig. 3.15 indicates the
nodes which move due to thickness variation. Tab. 3.3 indicates two cases of thickness
variation for C';, and C's. The thickness variations applied are much larger than those used
in the L-shaped example. We chose these large variations to demonstrate that the proposed
methods are very accurate even when the thickness variations are very large. Such large
variations are encountered in practice especially when components are re-designed. The
structural and the elemental thicknesses of the C';, and C'r substructures are 5 mm and
2.5 mm, respectively. NX-PROMs were created for the C', and C'r substructures, and
CB-CMS was applied to the remaining substructures. Next, forces and moments were
applied to the engine cradle, and the resulting forced response were computed. Figure

3.16 shows the response of the HMMWYV frame for cases 1 and 2. The measured point is
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Figure 3.15: Nominal and re-designed cross-bar composed of C';, and C'

shown in Fig. 3.14. The dotted line shows the forced response of the nominal HMMWV
structure. The circles and crosses indicate the responses of the re-designed HMMWV
frame predicted by full-order models and NX-PROMSs, respectively. The stars show the
responses predicted by MC-PROMs. Results obtained using the full-order models and the
NX-PROMs show excellent agreement for both cases 1 and 2, but the results predicted
by MC-PROMSs do not agree well with the response obtained using the full-order models.
Also, note that the re-design has important effects on the structure, as demonstrated by the

significant difference between the responses of the nominal and the re-designed structures.

The full-order model of the HMMWYV has 123,201 DOFs. The NX-PROMs have
2,683 DOFs, of which 1,473 are constraint DOFs and 1,210 are fixed-interface generalized
DOFs. To reduce the number of constraint DOFs, LIR was applied. Figure 3.14 shows

the interfaces of the substructures in the HMMWYV frame. Tab. 3.4 shows what are the
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I nterfaces between substructuresin the HMMWYV model

Interface

Substructure

10
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Figure 3.16: Forced response predictions for the HMMWYV frame for the nominal struc-
ture and for cases 1 (top) and 2 (bottom)

interface DOFs for each substructure. Figure 3.17 shows the response of the HMMWV
model predicted by NX-PROMs for cases 1 and 2 using different levels of reduction of
the overall interface DOFs. Magnified plots near the resonant frequencies are included
also. Note that the accuracy of the response predicted by LIR depends on the number of
remaining interface DOFs. In these two cases, an acceptable accuracy is obtained when

the remaining interface DOFs are not fewer than approximately 1,000.

3.7 Conclusions and Discussion

The key contributions of this paper are asfollows. The proposed next-generation para-
metric reduced-order models (NX-PROMSs) were devel oped by using a new parameteriza-
tion technique to capture the element-level nonlinearity due to volume variations of finite
elements of brick or other types. In addition, to establish a mathematically stable formu-
lation for NX-PROMSs, a new transformation matrix was devel oped using a novel interpo-
lation of static constraint modes. Finally, alocal-interface reduction (LIR) technique was
proposed for further enhancing the computational efficiency of the NX-PROMSs.

Novel, next-generation parametric reduced order models (NX-PROMSs) for predicting
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Figure3.17: Forced response predictions for the HMMWYV frame obtained using NX-
PROMswith LIR for different levels of reduction; the total number of DOFs
obtained for each model using LIR areindicated for case 1 (left) and 2 (right)

the vibration response of complex structures have been presented. These models address
two main drawbacks of MC-PROMSs. Thefirst isthat the parameterization techniques used
in MC-PROMSs cannot capture the thickness variation of brick and other types of finite el-
ements due to element-level nonlinearity of the stiffness matrix. The second drawback
is that the transformation matrix for MC-PROMSs is not numerically stable. Thus, a new
parameterization technique was devel oped to capture the nonlinearity of the stiffness ma-
trix, and a new transformation matrix was proposed to make the NX-PROMs more stable
numerically and more accurate compared to MC-PROMSs.

To reduce theinterface DOFs, anew method called local-interface reduction (LIR) was
developed. NX-PROMs were developed for realistic substructural analysis. In such cases,

the interface DOFs should be reduced before the system-level matrices are constructed.
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The LIR technique uses characteristic constraint modes computed for each substructure
by using the constraint partition of the reduced mass and stiffness matrices constructed
by CB-CMS or the NX-PROM approach. By using these characteristic constraint modes,
orthogonal bases were defined to reduce the interface DOFs of each substructure. That isa
key advantage of this reduction technique, and it is very useful for substructural analysis.
Similar to MC-PROMSs, the novel NX-PROMs aso provide smaller system matrices
and shorter analysisand reanalysistimeto predict the vibration response of complex struc-
tures. Thismeansthat NX-PROMs are especially useful for the repetitive analyses needed
in optimization problems where geometric changes are applied in the design cycle for

structures modeled with brick and other types of finite elements.



CHAPTER IV

Robust Signal Processing for Damaged Vehicleswith
Variability

4.1 Introduction

Vibration-based structural health monitoring (SHM) techniques are of current interest
in identifying damage and assessing the integrity of structures such as ground vehicles.
Predicting the dynamic characteristics of damaged structuresis an important challenge for
vibration-based SHM. The numbers of degrees of freedom (DOFs) of the finite element
model s used to predict the dynamic response of complex structures are prohibitively large,
so conventional finite element analysis are hard to employ. Thus, aternative techniques
have been devel oped recently to predict the dynamic response of complex structures with
models having adramatically lower number of DOFs [6-10]. These reduced-order models
(ROMs) areincreasingly used to predict the vibration response of the structures, especialy
their resonant frequencies and mode shapes, using a short computational time and a low
computational cost. One method for constructing ROMs is based on the fixed-interface
component mode synthesis (CB-CMYS) [7]. That well known approach is employed herein
for a few portions of the model. Specifically, CB-CMS is useful and applied only to the
invariant components of overal/entire structures. A component is considered invariant

if it does not have any geometrical or structural variations. However, for the vibration-
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based SHM, the challengeisto predict the vibration characteristics of damaged structures,
not those of pristine structures. If one attempts to use standard reduced order modeling
techniques when parametric changes (such as thickness and geometrical variations) are
applied by design or exist through damage, the finite element model has to be modified,
and new ROMs have to be reconstructed (through a reanalysis) to predict the structural
vibration response. That isamanual and avery costly process computationally. Recently,
design oriented ROM s have been devel oped to avoid such prohibitively expensive reanal -
yses of complex structures. These models are parametric reduced order models (PROMS).
Initially, global PROMs have been developed (see e.g. the work of [28, 29]). However,
global PROMs are impractical because they require one to repeatedly solve many sample
eigenproblems for the entire structure. Thus, component-mode-based PROMs [30] have
been devel oped to adopt component normal modes and characteristic constraint modes as
projection basis instead of global modes. However, constructing component-mode-based
PROMs asdonein[30] isalso time consuming because the approach still requires the cal-
culation of system-level (global) interface modes. Thus, [32] introduced truly component-
level analysis for constructing PROMSs, referred to as component-PROMs. However, in
their approach, component-PROMs can be applied only to one component. Thus, the
multi ple-component PROMs (M C-PROMS) have been developed by the authors [35] and
are adopted herein to allow complex structures to be divided into several, much simpler,
substructures. Each substructure can have variability in characteristics such as geometric
parameters (e.g. thickness) or material properties (e.g. Young's modulus).

In this work, PROM techniques employing CB-CMS and MC-PROM are applied to
analyze the vibration response of a cracked complex structure. Also, note that the cracked
structure generates a nonlinear dynamic problem because of the nonlinear contact force

between the crack surfaces. One approach to handle this nonlinear contact force is to use
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a hybrid frequency-time domain (HFT) method devel oped by [36], [37], and [65]. In that
method, aforced response analysisis applied to determine the resonant frequencies of the
cracked structure. While powerful, that approach is computationally intensive, and diffi-
cult to use to predict resonant responses (due to the nonlinearity). Thus, an aternate ap-
proach (based on linear analyses) has been developed for predicting resonant frequencies.
The dternate approach builds on earlier work on the bilinear frequency approximation
(BFA) [39]. The resonant frequencies predicted by the generalized BFA have been shown
to agree very well with those obtained using nonlinear HFT analysesfor applications such
as cracked turbine bladed disks [40]. Herein, the concept of BFA is adopted together with
the bilinear mode approximation (BMA) [66]. BMA is introduced to approximate the
mode shapes of cracked structures. In addition, to reduce computational cost for BMA,
PROM techniques based on CB-CM S and MC-PROMSs are used.

The characteristics of the dynamic response obtained using PROM s technique are use-
ful signals for vibration-based SHM. However, all signals obtained from PROM cannot
be used in practice due to limited accessibility constraints and cost of the needed sensors.
Thus, robust signal processing techniquesto find the best sensor locations are an important
challenge. There are many previous studies of sensor placement for SHM. For example,
Ansari [41] has implemented SHM strategies which require selection and placement of
sensors suitable for measuring key parameters that influence the performance and health
of civil structures. Flynn and Todd [42] have proposed a novel approach for optimal ac-
tuator and sensor placement for SHM. Krommer et al. [43] have investigated a sensor
network composed of strain-type patch sensors with constant intensity designed to replace
distributed strain-type sensors for monitoring beam-type structures. Herein, anovel robust
signal processing technique is employed to find the optimal number of sensor locations

for gathering mode shape information of cracked structures. The novel approach is devel-
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oped starting from an algorithm based on the effective independence distribution vector
(EIDV) [44,45]. The key idea of EIDV isto choose sensor locations for measuring phys-
ical mode shapes as linearly independent as possible in the frequency range of interest.
Herein, the EIDV method is modified to select optimal sensor locations for cracked com-
plex structures. The number of selected locations based on the modified EIDV method is
not only limited to the frequency range of interest, but also limited in the effects of mea-
surement noise. To address this noise, over-sampling is often performed. EIDV cannot
provide optimal locations for over-sampling. Herein, a new signal processing techniqueis
developed to select over-sampled measurement locations.

To approximate the mode shapes of cracked structures, BMA is formulated based on
PROM mode shapes. For completeness, this paper briefly describes aso the PROMss ap-
proach to construct models for structures with parametric variabilities. Finally, robust
signal processing techniques are proposed to select the optimal and minimal sensor loca-
tions to capture the mode shapes of the structures. The technigue to find optimal sensor
locations is specifically designed for cases where the structure has structural variability

and a crack.

4.2 Bilinear Mode Approximation

In this section, the mode shapes of a structure with a crack of various lengths are ex-
amined. When a structure has a crack, the resonant responses are hard to compute due to
the nonlinearity of dynamics. This dynamicsis caused by the periodic opening and clos-
ing of the crack surface (which leads to a piece-wise linear dynamics). Hence, to predict
the mode shapes, standard modal analyses cannot be directly employed. To address this
challenge, a novel technique to characterize the spatial correlations among the vibration

of various points within the structure has been developed. These correlations are akin to
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mode shapes, but they characterize the dynamics of the cracked (nonlinear) structure. This
approach is based on the observation that, when the structure has a crack and vibrates at
some (nonlinear) resonant frequency, two states can be identified: crack open and crack
closed. These two states correspond to two shapes for the deformation of the structure at
that frequency. Next, we assume that all the shapes the structure takes during its nonlin-
ear vibration at a resonant frequency are linear combinations of these two shapes (open
and closed at that resonant frequency). Furthermore, the open and closed shapes are as-
sumed to be very similar to the shapes the structure would have if the crack surface were
permanently open (i.e., penetration would be allowed) or permanently closed (with dlid-
ing occurring between DOFs within the crack surface). These linear modes can be easily
computed by standard linear techniques. This novel approach is referred to as BMA, and
complements BFA [39] originally developed for discrete low-dimensional systems and

later generalized for cracked structures. The bilinear (BL) modes ®;, can be expressed as

q)open
@BL = 3 (41)
cI)closed
where @, are the mode shapes of the structure with a permanently open crack (penetra-

tion allowed) and ®,...q are the mode shapes of the structure with a permanently closed

crack (sliding allowed).
4.3 Parametric Reduced Order Models

In thissection, thewell known fixed-interface Craig-Bampton CM S (CB-CM S) method [ 7]
and multiple-component parametric reduced-order models (M C-PROM) [35] used to con-
struct PROMSs for healthy substructures and substructures with parameter variations are
briefly reviewed.

First, the CB-CMS approach [7] is used to model only the substructures which do not



90

have any structural variability. This modeling approach is used because it is very smple
and computationally stable. Also, this technique is derivable because it can be exploited
when modeling cracked structures by managing the geometric compatibility conditions
between substructures. To apply CB-CMS, the complex structure of interest is partitioned
into substructures, and the substructures have interface DOF and internal DOFs. The
physical coordinates of these interface and internal DOFs are projected onto the general-
ized coordinates by using the fixed-interface normal mode (®1¥) and static constraint mode
(P¢). Then, the size of the mass and stiffness matrices, and force vector for substructure
1 are significantly reduced.

Second, MC-PROMSs [35] are adopted to manage the substructures with variability in
parameters such as Young's modulus and thickness variations. One important advantage
of MC-PROMsisthat the finite element mesh of the nominal structure does not need to be
modified, although the substructures have parametric variability. That is because the mass
and stiffness matrices are parameterized (by using Taylor series). For example, for alinear
thin plate element, the modification of the stiffness matrix dueto variationsin the thickness
of the plate can be accurately represented by a Taylor series up to third order within an
upper and a lower limit for the parameterization. In addition, similar to the CB-CMS, an
appropriate transformation matrix is constructed for converting from physical coordinates
to generalized coordinates by using fixed-interface normal modes and static constraint
modes. The distinct feature between CB-CMS and MC-PROM s that the transformation
matrix for MC-PROM s constructed for all configurations in the parameter space of the
corresponding component. In contrast, CB-CMS is applied only to components with no
parameter variability.

The ™" and ;' component mass and stiffness matrices for CB-CMS and MC-PROM

are partitioned as [35] and are explained as
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where the superscript 0 indicates the nominal parameter values, and the superscript U
indicate quantities computed for the upper limit parameter valuesin Eq. (4.3).

To model the dynamics of cracked structures and to apply BMA, the partitioning of
the structure is done such that al crack surfaces are along interfaces between adjacent
substructures. That way, the crack model can be obtained by simply managing the geo-
metric compatibility conditions. In Egs. (4.2) and (4.3), the interface DOFs are divided
into constraint DOFs (superscript C'C') and free DOFs (superscript F'F'). For the open
crack case, the DOFs between the crack surfaces are completely free, which means that

those DOFs are alowed to inter-penetrate. These DOFs on the crack surfaces are free

DOF (superscript F'F) in Egs. (4.2) and (4.3). For the closed crack case, sliding boundary
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conditions are applied at the DOFs on the crack surfaces. Hence, the DOFs on the crack
interface can dlide, but they are not allowed to inter-penetrate. The constrained DOFs
which are not allowed to inter-penetrate are denoted by superscript C'C' in Egs. (4.2) and
(4.3). The constrained (C'C') and the free (F'F') DOFs for the open and closed states of
the cracked structure are different between shell-type and solid-type finite elements. That
is because the DOFs of anodal point are different between shell and solid-type finite ele-
ments. Thus, the DOF which are constrained (C'C') or free (£'F') for open and close state
should be chosen carefully for each type of finite element. Using these two kinds of geo-
metric compatibility conditions, the mode shapes of acracked structure with an open crack
and separately a closed crack are obtained through two separate linear analyses. Note also
that, if component : has a crack surface, the component-level mass and stiffness matrices
are partitioned asin [35].

Since all crack surfaces are at interfaces between components, all boundary DOFs
are active DOFs. Finally, the geometric compatibility conditions used to assemble ev-
ery substructure are applied only to the DOFs marked as C'C' in EqQ. (4.2). The detailed

formulation and description of PROMs technique are provided in [35].

4.4 Signal Processing for Cracked Structures

The objective of the signal processing technique is to select optimal sensor locations
to represent the mode shapes of structures with various crack lengths. These mode shapes
are useful invibration-based SHM. Animportant related challengeis how to determinethe
frequency range of interest together with the sensor locations as to capture the shapes of
the cracked structure during its vibration. Thus, a methodology to determine the sensitive

modes due to the crack isinvestigated first.
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441 Generalized modal assurancecriterion

Some of the shapes of the resonant response of the healthy structure are similar to
those of the cracked structure, and some are different. For instance, when the structure
has a small crack, the mode shapes of the healthy structure are very similar to those of the
cracked structure. Such aresonant response is not good for detecting the location and size
of the crack. To address that, the most sensitive bilinear (BL) modes are used. To identify
these BL modes, a modal assurance criterion (MAC) [67, 68] has been generalized and
used to obtain the M AC matrix between the BL modes for the healthy and the cracked
structures. The new MAC matrix needs the BL mass matrix obtained separately using
ROM s for the open and closed crack vibration cases because the BL mode shapes for the
open and closed states are mass normalized, and their sizes are different due to the distinct

geometric compatibility conditions. The BL mass matrix can be expressed as

Mg 0

Mg, = , (4.4)

where the two mass matrices for open and closed states are obtained from ROMs. Herein,
ROMs are obtained by using CB-CMS and MC-PROMs. This BL mass matrix is used

together with the BL modes to define anew MAC as

(L) ML (Ph,))?
[(q)}éL,i)TMBL((I)%L,i)] [(CI)%L,J’)TMBL(CI)%L,J’)] 7

MAC;; = (4.5)

where the subscripts: and j indicatethe i** and j** modes, and the BL mode shapesfor the
healthy structure (indicated by the superscript /) are defined asin Eq. (4.1) but for a zero
crack length, while the BL modes for a non-zero crack are indicated by the superscript d.
The value MAC; reflects how distinct is the i** BL mode of the healthy structure from
the j'" BL mode of the cracked structure. Note that the MAC matrix can be computed

for structures with different crack lengths. The (diagonal) entries that correspond to non-
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sensitive BL modes are close to 1.0 because the BL modes are normalized by the BL mass

matrix. A specific example of selecting sensitive modes is shown in the next sections.

4.4.2 Modified effective independence distribution vector algorithm

In a practical implementation for structural inspection or damage identification, infor-
mation of the BL modes has to be obtained through measurements by using sensors. To
address that challenge, a signal processing algorithm for selecting the minimal and op-
timal locations to be measured or instrumented with sensors has been developed. This
algorithm is generalized from a derivative of the EIDV method [45]. Generadly, the EIDV
method requires only a portion of the modal matrix of a structure in a frequency range of
interest. This portion is allocated based on the generalized MAC discussed in the previ-
ous section and is applied to the BL modes and not the usual linear modes. The portion
indicates also that the modal matrix has information of a set of candidate DOFs, not all
DOFs of the structure. The partial modal matrix is used to compute a Fisher (information)
matrix which, in turn, allows the computation of an effective independence distribution
vector. This vector identifies the DOFs that are best to measure in terms of ensuring the
linear independence of the measurements. To apply EIDV, the augmented bilinear modal
matrix ®EDV of the cracked structure is used instead of real nonlinear mode shapes of

aug

the cracked structure. @[V is formed by grouping BL modes for the healthy structure
(without a crack) fi)%L and the BL modesfor cracked structures with various crack lengths.
The matrix %, and all mode shapes of various cracked structures are assembled in the

frequency range of interest as follows

B = [ @, B ) 49

aug

where 2% and ®% indicate the modal matrices of cracked structureswith a crack length

of a% and b% of areference length. Thisreference length can be interpreted as the largest
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crack length of interest. Also, each modal matrix for the cracked structures can correspond
to different frequency ranges because the sensitive modes can be different for each crack
length. For instance, if the sensitive mode shapes based on MAC are 3¢, 4" and 5
for the cracked structure with a% crack length, then the &% modal matrix has only three
coherences with candidate DOFs. However, the sensitive modes for the cracked structure
with % can be different and can contain more (or fewer) modes such as 4", 5%, 6'* and
7th,

If the number of sensors to be used are not sufficient and optimal to represent the
modes of interest for the structure with various crack lengths, then the selected signals
are very hard to use for vibration-based SHM. Hence, one must ensure that the sensors
are placed optimally despite the fact that not all vectors i)“B?j, and i)%? are necessarily
linearly independent. Thus, the EIDV methodology was generalized. A subset of the left
singular vectors UEIDV of LDV s ysed instead of the full augmented modal matrix in

aug aug

Eq. (4.6). To select this subset, the singular values of ®} PV are computed, and the left
vectors corresponding to the largest singular values are selected.
Using the resulting matrix UEIPV | the generalized EIDV agorithm for establishing

aug !

locations for sensor placement can be summarized as follows.

(1) Calculate the BL modes for the healthy structure and cracked structures based on

PROM (with crack lengthsin arange of interest).

(2) Calculate the generalized M AC matrix using Eq. (4.5) and select sensitive modes

for each crack length.

(3) Construct BL modes for the healthy and the cracked structures by selecting candi-
date measurement DOFs (by transforming PROM coordinates to physical coordi-

nates) with the sensitive modes chosen at step (2).
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(4) Construct the augmented BL modal matrix ®FPV using Eq. (4.6).

aug

(5) Apply singular value decomposition, and obtain the left singular vectors of ® 1PV,

Select the singular vectors UV corresponding to the largest singular values.

aug

(6) Calculate the Fisher information matrix given by A = UEDV JEIDV

aug aug

(7) Calculate the effective independence distribution vector, defined as the diagonal of

the matrix E = UEIDV A -1UEDVT

aug aug

The number of significant (or nontrivial) singular values of ®EIDV areindicative of the

aug

number of sensors needed for sensing and the generalized EIDV technique.

4.4.3 Over-sampled measurement locations

There are several possible criteriato assess the suitability of the selected measurement
locations. They include the modal assurance criterion, the modified modal assurance cri-
terion, the singular value decomposition, the measured energy per mode, and the Fisher
information matrix [45]. Herein, the singular value decomposition is used to assess the
suitability of selected measurement locations. The method simply evaluates the ratio of
the largest to the smallest singular value of the BL modal matrix based on the measure-
ment DOFs. If this ratio is close to unity, then the choice of measurement locations is
good. In contrasts, the larger the ratio, the worst the choice of locations. Thus, if the ratio
of the largest and smallest singular values of UI>Y with selected measurement DOFs is
not closeto 1.0, additional locations are likely necessary to guarantee linear independence
of ULIVY, especially in the presence of measurement noise.

Note that the number of selection pointsis dominated by the number of singular values
of 1DV because the rank of the left singular vectors ULIPY (from @7PV) which guar-

antees linear independence is same as the number of selected singular values. Thus, addi-
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Rightrail

(has a crack)

L front

Reinforcement frame
(has thickness variation)

Figure 4.1: Substructuring of the HMMWYV frame

tionally selected measurement |ocations based on the modified EIDV techniques cannot be
chosen based on linear independence. Assumption of that fact is that the most important
DOFs which are additionally selected are the DOFs nearest to the DOFs already selected.
For instance, consider that the size of the matrix U1V is300x 5, where 3005 indicates
the number of candidate DOFs and the number of modes respectively. Consider aso that
number of modes (which is5) is the same as the number of selected singular values. By
using the modified EIDV technique, a maximum 5 measurement DOFs can be selected
and the size of UEIDV (with the selected DOFs) is 5x 5. However, if the ratio of the maxi-

aug

mum and the minimum singular values for the final UEIPV (with the selected DOFs) is not

aug
closed to 1.0, then the 5 selected measurement locations are not enough to guarantee linear
independence of thefinal UL PV Thus, anew technique to select additional measurement
DOFs in addition to the ones selected based on singular values is necessary to guarantee
that the final augmented modal matrix has linearly independent columns (and thus, the
ratio of the maximum and the minimum singular values of the final UJPY is close to
1.0.). The additional measurement locations are referred to as over-sampled measurement
locations.

Herein, a new technique to select over-sampled measurement locations is proposed.
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Figure 4.2: Substructure for the cracked cross-bar

Table 4.1: Thickness variationsin substructures

Substructure Cae1l Case 2

Lycor 3.038 mm — 5.562 mm 3.038 mm — 4.114 mm

L ¢ront 3.038 mm — 4.991 mm 3.038 mm — 3.552 mm

Specifically, denote by R the left eigenvectors of ®EIPV which contain the remainder

aug

(unselected) DOFs, and denote by S the left eigenvectors of ®F!PV which contain the

aug

selected DOFs. After the generalized EIDV technique is executed, the UL,V is divided

into S and R. Themain ideaisthat R can be represented as a linear combination of the

columns of S asfollows,

R = SC, 4.7)

where C is coefficient matrix which can be calculated using Eqg. (4.7). By managing the
matrix C, the most important DOFs which should be added to previously selected DOFs

(based on the generalized EIDV) can be selected. This procedure is applied until the
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Magnitude of MAC value
Magnitude of MAC value

30 10
5
Mode for 24.24% cracked structure 40 Mode for healthy structure  Mode for 30.30% cracked structure 40 Mgdc for healthy structure

Magnitude of MAC value

5
Mode for 39.39% cracked structure 40 Mode for healthy structure

Figure4.3: M AC between modes for healthy HMMWYV and the structure with 24.24%
crack, with 30.30% crack, and with 39.39% crack

desired number of over-sampled measurement DOFsis reached. Following is the specific

procedure to select over-sampled measurement locations.

(1) The generalized EIDV technique is executed to select optimal measurement DOFs

by using UEIDV with all candidate DOFs.

aug

(2) The UL DY isdividedintoR and S.
(3) The coefficient matrix C is calculated by using Eq. (4.7).

(4) The standard deviation of the entriesin each row of the matrix C is computed.

(5) The DOF which corresponds to the minimum standard deviation (computed at step

(4)) isselected as an additional DOF to measure.
(6) The additional DOF is added to S, and omitted from R..

(7) Steps (3) to (6) are repeated until the desired number of additional DOFs isreached.
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< : Candidate measurement locations

Figure 4.4: Finite element model for aHMMWYV frame

0: Selected measurement locations

Figure 4.5: 4 optimal sensor locations based on the 30" mode by using the modified EIDV
method for cases 1 and 2 of thickness variation

4.5 Numerical Example

451 HMMWYV models

In this section, we demonstrate the generalized EIDV techniques based on PROMs
for a high mobility multipurpose wheeled vehicle (HMMWYV) base frame with a crack.
Figure 4.4 showsthefinite element model along with the candidate measurement | ocations.
Figure 4.1 shows each substructure of the HMMWYV frame used to construct PROMs. The
reinforcement frames in the rear and the front are attached to the leftrails and rightrails.
The reinforcement frames which are attached to the leftrails have thickness variations as
shown in Tab. 4.1. For example, a nominal thickness of L., of 3.038 mm (on the |eft of
the arrow) is considered in case 1 to change to 5.562 mm (on the right of the arrow). The

same nominal value of the thicknessof L,.,, isconsidered to change to 4.114 mm in case
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0: Selected measurement locations

Figure4.6: 10 optimal sensor locations based on the 30*"" mode by using the modified
EIDV method and the over-sampled algorithm for the case 1 of thickness vari-
ation

O: Selected measurement locations

Figure4.7: 10 optimal sensor locations based on the 30" mode by using the modified
EIDV method for the case 1 of thickness variation

2, and so on. The cross-member is considered to have a crack, as shownin Fig. 4.2. The
crack length varies (across the cross-member component) from 3.03% to 36.36%. The CB-
CMS method is applied for healthy substructures (the parts of the structure which do not
have any variations). The MC-PROM method is implemented for the substructures with
thickness variations. The BMA approach isimplemented to approximate the BL modes of
the cracked HMMWYV frame.

To select the frequency range of interest, the sensitive BL modes are identified by us-
ing the generalized M AC matrix in Eq. (4.5). The crack lengths of interest are 24.24%,
30.30%, and 39.39%. Fig. 4.3 shows the M A C matrices computed between the healthy

and the cracked structure with 24.24%, 30.30%, and 39.39% crack length. For these
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O: Selected measurement locations

Figure4.8: 10 optimal sensor locations based on the 30" mode by using the modified
EIDV method and the over-sampled algorithm for the case 2 of thickness vari-
ation

O: Selected measurement locations

Figure4.9: 10 optimal sensor locations based on the 30" mode by using the modified
EIDV method for the case 2 of thickness variation

cracked structures, the 30" mode is the most sensitive compared to the healthy struc-
ture. Thus, the 30'" modes of the healthy and cracked structures are used to construct the
augmented modal matrix ® 10V

Next, the generalized EIDV techniqueis applied to obtain the optimal sensor locations.
Figure 4.5 showsthe best four sensor |ocationsto capture the 30" mode for the cases 1 and
2 of thickness variation. The BL mode shapes of the cracked structure are considered to be
measured only at those four locations. The selected sensor locations are identical for each
case of thickness variation. These results show that, for this structure, the optimal sensor

locations are affected much more by the crack length than by the thickness variations.

The ratio of the largest and the smallest singular values of the set of left singular vec-
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Table 4.2: Theratio of the largest and the smallest singular value

Case Typeof selection method Ratio for singular value

1 Over-sampled 1.041
Modified EIDV 1.197
2 Over-sampled 1.024
Modified EIDV 1.212

Crack propagation
36.36%

Crack location shifted from the first location

Figure 4.10: Cross-bar with a different crack location

tors (only with the selected measurement DOFs represented in Fig. 4.5) are not very close
to 1.0. For the cases 1 and 2 of thickness variation, the ratios are 1.41. Thus, additional
over-sampled measurement locations are needed. For that, 6 additional over-sampled mea-
surement DOFs can be selected by the algorithm for over-sampled measurement locations.
Figures 4.6 and 4.7 show these 6 additional over-sampled locations along with the 4 opti-
mal sensor |ocations based on the modified EIDV method. These figures show also the 10

optimal sensor locations obtained only from the modified EIDV method for the case 1 of
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Magnitude of MAC value
Magnitude of MAC value

30 10
30 10
Mode for 24.24% cracked structure - 40 Mode for healthy structure  Mode for 30.30% cracked structure 4OMode for healthy structure

Magnitude of MAC value

Mode for 39.39% cracked structure 40 Mode for healthy structure

Figure4.11: M AC between modes for healthy HMMWYV and the structure with 24.24%
crack, with 30.30% crack, and with 39.39% crack; crack is at a different
location compared to Fig. 4.2

thickness variation. The 10 sensor locationsin Fig. 4.6 (from the over-sampled a gorithm)
are well distributed. In contrast, some of the measurement locations in Fig. 4.7 (from the
modified EIDV only) are doubled selected. This result demonstrates that the additional
measurement locations above and beyond the number of selected singular values cannot
be selected well by the modified EIDV method. Figures 4.8 and 4.7 a so show the 10 opti-
mal measurement locationsfor the case 2 of thickness variation by using the over-sampled
algorithm and the EIDV method respectively. The results are similar to the results of case
1 of thickness variation. Table 4.2 shows the ratio of the largest and the smallest singu-
|lar values of UL,PV with 10 measurement DOFs selected by generalized EIDV, and with
10 measurement locations selected by the generalized EIDV and over-sampled algorithm.
The ratio of UV with selected DOFs by using the over-sampled algorithm is closer to

1.0 because those 10 measurement locations are well distributed.
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O: Selected measurement locations

Figure4.12: 4 optimal sensor locations based on the 30" mode by using the modified
EIDV method for cases 1 and 2 of thickness variation; crack is at a different
location compared to Fig. 4.2

O: Selected measurement locations

Figure4.13: 10 optimal sensor locations based on the 30" mode by using the modified
EIDV method and the over-sampled algorithm for case 1 of thickness varia-
tion; crack is at a different location compared to Fig. 4.2

Additionally, we also investigated the sensor placement for a different crack location.
In Fig. 4.2, the crack is located closed to the center of the cross-bar. Now, the crack is
considered at a different location, as shown in Fig. 4.10. The crack lengths of interest are
24.24%, 30.30%, and 39.39% for the two cases of thickness variation listed in Tab. 4.1.
Figure 4.11 shows the M AC matrices computed between the healthy and the cracked
structure with the three crack lengths. For the shifted crack case, the 30" mode is also
the most sensitive compared to the healthy structure. Thus, the augmented modal matrix
®FIDV s constructed by using the 30" mode.

aug

Next, the generalized EIDV techniqueis applied to select the optimal sensor |ocations.
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O: Selected measurement locations

Figure4.14: 10 optimal sensor locations based on the 30" mode by using the modified
EIDV method and the over-sampled agorithm for the case 2 of thickness
variation; crack is at a different location compared to Fig. 4.2

O: Selected measurement locations

Figure4.15: Statistically optimal sensor locations obtained from 400 cases of thickness
variation; crack is at the first location (shown in Fig. 4.2)

Figure 4.12 shows the four optimal sensor locations for cases 1 and 2 of thickness varia-
tion. The selected sensor locations are identical for the two cases of thickness variation.
That result is the same as for the first crack location considered. We also applied the
generalized EIDV technique and the over-sampled algorithm to obtain 10 optimal sensor
locations. Figures 4.13 and 4.14 indicate the 10 optimal sensor locations for cases 1 and
2 of thickness variation. The selected sensor |ocations for the case where the crack is at
the new location are different compared to the sensor locations obtained for the first crack
location considered. Thisindicatesthat the optimal sensor locations can be sensitiveto the

crack locations.
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O: Selected measurement locations

Figure4.16: Statistically optimal sensor locations obtained from 400 cases of thickness
variation; crack is at a different location compared to Fig. 4.2

4.5.2 Robust signal processing based on a Monte-Carlo technique

It is often desirable to select optimal and minimal sensor locationsto capture the mode
shapes of cracked structures. However, when the thickness of some components of the
structure vary, the structural characteristics (especialy mode shapes) are affected. Then,
the optimal sensor locations may also be affected by the change in the mode shapes. That
means that robust sensor |ocations are required to capture the mode shapes of the structures
in the presence of thickness variations. Herein, a Monte-Carlo technique is applied to
determine statistically optimal and robust sensor locations. To apply the Monte-Carlo
technique, a large number of possible thickness variations are considered, and optimal
sensor locations for the resulting mode shapes are obtained. To compute the mode shapes
for each thickness variation, PROM techniques are applied. One of the main advantages of
PROMs isthat reanalysis (for each thickness variation) is amost 100 times faster because
any parameter value in the parameter range can be easily applied [35].

The reinforcement frames in the rear and the front (which are attached to the | eftrails)
have thickness variations. For the Monte-Carlo technique, 400 separate cases of possible
thickness variations are applied to these reinforcement frames. Each of the two reinforce-

ment frames has been considered to have a thickness of a value randomly drawn from a
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O: Selected measurement locations
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Figure4.17: Optimal sensor locationsfor the leftrail frame structure for all cases of thick-
ness variation; crack is at thefirst location (shownin Fig. 4.2)

uniform distribution between 3.038 mm and 6.038 mm. A total of 20 sample thicknesses
were randomly selected for each of the 2 substructures (L f,n: and L,.,,), and that leads
to a total of 400 samples. The 26" through the 30" modes are identified and selected
as sensitive modes (based on M AC matrices obtained using Eqg. (4.5)) and are used for
sensor placement. The total number of modes for the augmented bilinear modal matrix
in Eq. (4.6) is 20. Then, the optimal number of measurement locations are decided based
on the selected number of singular value of ®“°V for each case of thickness variation. For

aug

instance, if all columns of @2V in Eq. (4.6) are linearly independent, then the selected

aug

number of singular values is 20. In contragt, if the columns of ® 1PV are not linearly
independent, then the selected number of singular values is smaller than 20. During the
Monte-Carlo simulations, 14 or 15 optimal measurement locations are selected for each
case of thickness variation. Then, only four measurement points are selected for all cases

of thickness variation. These four selected measurement locations are chosen to be the
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O: Selected measurement locations
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Figure 4.18: Optimal sensor locationsfor the leftrail frame structure for all cases of thick-
ness variation; crack is at a different location compared to Fig. 4.2

statistically optimal locations. Thus, they are the most robust when used to capture the
BL modes of the cracked structures for any thickness variation (in the range of interest).
Figures 4.15 and 4.16 show the four statistically optimal measurement |ocations obtained
for the first and the second crack locations. Figures 4.17 and 4.18 represent the distribu-
tion of optimal sensor locations chosen along the leftrail (i.e. along the = coordinate) for
all cases of thickness variation for the first and the second crack locations. Also, Figs.
4.19 and 4.20 show the distribution of the sensor locations chosen along therightrail. The
distribution for all cases of thickness variation in Figs. 4.17-4.20 are dlightly different for
the two crack locations. However, statistically optimal sensor locations (which are the 4
locations most often selected) are amost identical, as shown in Figs 4.15 and 4.16. That
indicates that the statistically optimal sensor locations are robust for the two cases of crack

locations considered.
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Figure4.19: Optimal sensor locationsfor therightrail frame structurefor all cases of thick-
ness variation; crack is at thefirst location (shownin Fig. 4.2)

4.6 Conclusionsand Discussion

Identifying structural inspection points or desired sensor locations for the purpose of
vibration-based structural health monitoring is an important challenge for cracked struc-
tures because of the nonlinearity created by the crack opening and closing. A new concept
of bilinear (BL) modes has been used to address thisissue. The BL modes are obtained
using linear analysis techniques, and can be used to obtain BL mode approximations. To
aleviate high computational costs in design applications and to find statistical ssmula-
tion results based on Monte-Carlo simulations, a reduced order modeling method based
on Craig-Bampton component mode synthesis and multi-component parametric reduced-
order models was used. A generalized modal assurance criterion has been developed and
used to find the BL modes that are most sensitive to the presence of a crack. Using the
selected BL modes, an augmented BL modal matrix has been formed and used in an a-

gorithm based on a modified effective independence distribution vector (EIDV) method
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O: Selected measurement locations
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Figure 4.20: Optimal sensor locationsfor therightrail frame structurefor all cases of thick-
ness variation; crack is at a different location compared to Fig. 4.2

to select optimal inspection points (or measurement locations). When the selected op-
timal measurement locations based on the generalized EIDV method are not enough to
maintain the linear independence of the set of left singular vector, a novel over-sampled
algorithm was applied to select additional measurement locations. Finaly, the optimal
set of measurement locations (for the cracked structure) was selected (by the generalized
EIDV method and the over-sampled algorithm), and the measurement locations were as-
sessed by the ratio of the largest and the smallest singular values of the set of the left
singular vectors. To select robust sensor locations for any thickness variation in arange of
interest, aMonte-Carlo technique was implemented based on PROMs to select statistically
optimal measurement locations. 400 cases of possible thickness variation were considered
foraHMMWYV frame, and 4 statistically optimal and robust measurement locations were
selected. These four points are robust and statistically optimal to capture the mode shapes

of the cracked HMMWYV structure.
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The approach proposed is not a novel statistical analysis. Rather, PROMs provide
a method to solve very quickly for samples rather than a method to choose parameter
values where samples are to be computed. The user of the proposed solver can choose the
statistical analysis method to be used. In this work, a Monte Carlo approach was used.
Any sampling method can be used to obtain a statistical solution. For example, Latin
Hypercube sampling can be used. Also, the number of samples to be used is a choice of
the user. In general, more or fewer samples may be necessary depending on the specifics
of the structure.

If one would choose to use a full-order model in the same statistical analysis (i.e.
the same number of samples), then the computational time would increase dramatically
compared to the computational cost of using PROMs. That isbecause each samplerequires
amuch longer computational time when using afull-order model compared to PROMSs. In
addition, if adifferent method for statistical analysisis used (e.g., one that requires fewer
samples than a Monte-Carlo approach), then using PROMs is faster because each sample
is obtained faster.

If oneignoresthe possible structural variability altogether, and sel ects sensor locations
based on a single calculation (for a single set of structural parameter values), then the
selected measurement locations can be inadequate. That is because structural character-
istics (such as mode shapes) are affected when there are changes in structural parameter
values. As a consequence, the optimal sensor locations may also be affected (e.g., by the
change in the mode shapes). The fact that the sensor |ocations are inadequate means that
the sensors will not provide signals that are optimally uncorrelated. To quantify the level
of correlation, one can use the singular values of matrix UL PV, If al these singular values
are of similar magnitude, then the signalsare optimally uncorrelated. The smaller theratio

Omax/Omin 1S, the more correlated the signals are (where o, and o,,. are the smallest
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and the largest singular values). For example, consider that the HMMWYV structure has
geometrical parameters as the ones used to obtain the results shown in Fig. 4.6. The sensor
locations shown in Fig. 4.6 for that structure lead t0 0,05 /0min = 1.04. In contrast, if
one uses these same same sensor |ocations, but for a structure which has slightly different
geometrical parameters (e.g., the parameters used to obtain the results in Fig. 4.8), then
one obtains to 0. /omin = 1.58. This latter set of singular values indicates that the
locations which are best for the structure with the first set of structural parameter values
are worse for the structure with the second set of structural parameter values. In general,
sensors selected for one set of structural parameter values are not necessarily adequate for
other structural parameter values. A statistically optimal choice for sensor locations has
to be made to reach a compromise between signal correlation and robustness to parame-
ter variability in the structure. PROMs are specifically designed to account for parameter
variability, and hence enable such desirable statistical analyses, which in turn allow oneto
obtain the statistically robust/optimal sensor locations.

The structural variability considered in the numerical example is geometric (thickness
variations). Nonethel ess, the proposed method appliesto amuch larger class of variahility,
including material variability (such as variability in the modulus of elasticity, or other
parameters of the material). From a structural dynamics standpoint these cases are treated
the same way: as changes in the mass and stiffness matrices of the system. PROMs have
been applied because they provide a fast solution for systems where such variability can

be present and should be accounted for.



CHAPTER YV

Novel Sensor Placement for Damage | dentification in a
Cracked Complex Structurewith Structural Variability

5.1 Introduction

Robust techniques for sensor placement and damage detection are of current interest
because of the increased need to reduce the time and the cost of examining the structural
integrity of military ground vehiclesand aircraft. To assessintegrity, structural information
must be obtained using a variety of sensors. Both the number and the locations of sensors
are limited due to cost and accessibility constraints. There are many previous studies of
sensor placement for structural health monitoring. Ansari [41] has implemented health
monitoring strategies which require selection and placement of sensors suitable for mea-
suring key parameters that influence the performance and health of civil structures. Flynn
and Todd [42] have proposed a novel approach for optimal actuator and sensor place-
ment for structural health monitoring. Krommer et al. [43] have investigated a sensor
network composed of strain-type patch sensors with constant intensity designed to replace
distributed strain-type sensors for monitoring beam-type structures.

Herein, a novel sensor placement technique is employed to find the optimal and mini-
mal number of sensor locationsfor gathering modal information. The novel approach uses

an agorithm similar to the effective independence distribution vector (EIDV) [44,45]. The
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EIDV approach is designed for selecting locations for measuring physical mode shapes.
The key idea of EIDV isto choose locations which make the measured partial eigenstruc-
ture as linearly independent as possible. Herein, the EIDV method is modified to select
optimal sensor location for cracked structures. The information collected is then used to
detect the crack length.

In addition to the need to determine the optimal locations for gathering structural infor-
mation, predicting the dynamic response of complex structures is another important chal-
lenge. The number of degrees of freedom (DOFs) of complex structures are prohibitively
large, and thusthey are hard to use for solving inverse problems such as damage detection.
To alleviate this problem, techniques have been devel oped recently to predict the dynamic
response of complex structures with models employing a dramatically lower number of
DOFs [6-10]. These advanced reduced order models (ROMSs) are increasingly used for
structural health monitoring because of the complexity of the structures of interest. One
method for constructing ROMs is based on the fixed-interface Craig-Bampton component
mode synthesis (CB-CMS) [7]. That well known approach is employed herein for a few
portions of the model. Specifically CB-CMS is useful and applied only to the invariant
components of overall/entire structures. A component is considered invariant if it does
not have any geometrical or structural variations. However, the overall/entire structure
can have such kinds of variations due to manufacturing or damage. If one attempts to use
standard reduced order modeling techniques when parametric changes are applied by de-
sign or exist through damage, the finite element model has to be modified, and new ROMs
have to be reconstructed to predict the structural vibration response. That is a very costly
process computationally. Recently, design oriented ROMs have been developed to avoid
such prohibitively expensive reanalyses of complex structures. These models are referred

to as parametric reduced order models (PROMs). Initially, global PROMs have been de-



116

veloped [28, 29]. However, global PROMs are impractical because they require that one
repeatedly solves many sample eigenproblems for the entire structure. Thus, component-
mode-based PROMs [30] have been developed to adopt component normal modes and
characteristic constraint modes as projection basis instead of global modes. However,
constructing component-mode-based PROMSs as done is also time consuming because the
approach still requires the calculation of system-level (global) interface modes. Thus,
Park [32] introduced truly component-level analysis for constructing PROMs, referred to
as component-PROMs. However, in their approach, component-PROMSs can be applied
only to one component. Thus, the multiple-component PROMs (MC-PROMSs) [35] have
been developed by the authors and are adopted herein to allow complex structures to be
divided into several, much simpler, substructures. Each substructure can have variability
in characteristics such as geometric parameters (e.g. thickness) or material properties (e.g.
Young's modulus).

In this work, PROM techniques employing CB-CM S and MC-PROMs are applied to
analyze the vibration response of acracked complex structure. Also, note that the cracked
structure generates a nonlinear dynamic problem because of the nonlinear contact force
between the crack surfaces. One approach to handle this nonlinear contact force is to
use a hybrid frequency-time domain (HFT) method devel oped by Poudou and Pierre [36],
Poudou [37], and Saito [40]. In that method, a forced response analysis is applied to
determine the resonant frequencies of cracked structures. While powerful, that approach
is computationally intensive, and difficult to use to predict resonant responses (due to the
nonlinearity). Thus, an aternate approach (based on linear analyses) has been developed
for predicting resonant frequencies. The alternate approach builds on earlier work on the
bilinear frequency approximation (BFA) [39]. The resonant frequencies predicted by the

generalized BFA have been shown to agree very well with those obtained using nonlinear
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HFT analyses for applications such as cracked turbine bladed disks [65]. Herein, the
concept of BFA is adopted together with the bilinear mode approximation (BMA) [66].
BMA isintroduced to approximate the mode shapes of cracked structures. In addition,
to reduce computational cost for BMA, ROM techniques based on CB-CMS and MC-
PROMs are used. Finaly, the bilinear mode shapes of cracked structures in the reduced
order domain are used to estimate the crack length.

This paper provides an agorithm to detect the crack length in the complex structures
with structural variations. A novel crack detection algorithm is obtained by using the
bilinear mode shapes of cracked complex structure in the reduced order domain together
with a method to select optimal sensor locations based on a modified EIDV agorithm.
The technique to find optimal sensor locationsis specifically designed for cases where the
structure has structural variability and a crack. This technique is for estimating the size
of the crack, not for finding the crack location. To apply this technique, knowledge of the
hot spots in the structure is needed. Next, by using the algorithm proposed in this paper,
the presence of the crack can be detected. Then, the proposed approach can be applied to
estimate the size of the crack. However, herein, it is assumed that the presence and the
location of the crack are known. Of course, detecting the size, location and presence of the
crack are very important issues for structural health monitoring. These three features of
cracks are al significant. Here, the focusisto estimate the size of the crack, not to find the
location or the presence of the crack. An example application would be to monitor a crack

located in ground vehicle component that requires partial teardown to inspect visually.

5.2 Bilinear Mode Approximation

In this section, the shapes of the resonant responses of a structure with a crack of

various lengths are examined. When a structure has a crack, it also exhibits nonlinear dy-
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namics. Thisdynamicsis caused by the periodic opening and closing of the crack surface
(which leads to a piece-wise linear dynamics). Hence, standard modal analyses cannot
be directly employed. To address this challenge, a novel technique to characterize the
spatial correlations among the vibration of various points within the structure has been
developed. These correlations are akin to mode shapes, but they characterize the dynam-
ics of the cracked (nonlinear) structure. This approach is based on the observation that,
when the structure has a crack and vibrates at some (nonlinear) resonant frequency, two
states can be identified: crack open and crack closed. These two states correspond to two
shapes for the deformation of the structure at that frequency. Next, we assume that all
the shapes the structure takes during its nonlinear vibration at a resonant frequency are
linear combinations of these two shapes (open and closed at that resonant frequency). Fur-
thermore, the open and closed shapes are assumed to be very similar to the shapes the
structure would have if the crack surface were permanently open (i.e. penetration would
be allowed) or permanently closed (with sliding occurring between DOFs within the crack
surface). These linear modes can be easily computed by standard linear techniques. This
novel approach is referred to as BMA, and complements BFA [39] originally developed
for discrete low-dimensional systems and later generalized for cracked structures. The

bilinear (BL) modes ® z; can be expressed as

Qopen
q)BL = ) (51)
chosed
where ®,,,.,, are the mode shapes of the structure with a permanently open crack (penetra-
tion allowed) and .. are the mode shapes of the structure with a permanently closed
crack (sliding allowed). Note that the assumptions made in this section for the bilinear

approximation are not appropriate for the cases where the crack surface has intermediate

contact, when the impact between crack surfacesisnot negligible, or when the crack opens
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and closes gradually [66].

5.3 Fixed-Interface Craig-Bampton Component Mode Synthesis (CB-
CMYS)

In this section, the well known fixed-interface Craig-Bampton CMS (CB-CMYS) [7]
method used to construct ROMs for healthy substructures is briefly reviewed. This ap-
proach is used to model only the substructures which do not have any structural variabil-
ity. Thismodeling approach is used because it is very simple and computationally stable.
Also, this technique can be exploited when modeling cracked structures by managing the
geometric compatibility conditions between substructures.

To apply CB-CMS, the complex structure of interest is partitioned into substructures,
and the DOFs of each substructure are further partitioned into active (A) DOFs on the
interface, and omitted (O) DOFs in the interior. Then, the mass and stiffness matrices of

the finite element model for a component ; can be partitioned as follows

AA AO AA AO
Mi = and Kz =
00 OA (0]

Next, the physical coordinates are projected onto the generalized coordinates. In this con-
text, the generalized coordinates are a set of coordinates representing the amplitudes of a
selected set of fixed-interface component-level normal modes " (indicated by the super-
script V) and the amplitudes of the full set of static constraint modes ¢ = —k90~'k0A
(indicated by the superscript C'). The transformed mass and stiffness matrices for compo-

nent ¢ can be expressed as

C CN . kC kCN
M, = and K;=| ' ' . (5.2)

NC NN kNC kNN
) )

To model the dynamics of cracked structures and to apply BMA, the partitioning of the
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structure is done such that all crack surfaces are along interfaces between adjacent sub-
structures. That way, the crack model can be obtained by simply managing the geometric
compatibility conditions. To apply geometric compatibility conditionsin Eq. (5.2), the C'
DOFs which represent interface DOFs are further divided into constraint DOFs (super-
script C'C') and free DOFs (superscript F'F'). For the open crack case, the DOFs between
the crack surfaces are completely free, which means that those DOFs are allowed to inter-
penetrate. These DOFs on the crack surfaces are free DOFs (superscript F'F) in EQ. (5.3).
For the closed crack case, sliding boundary conditions are applied at the DOFs on the
crack surfaces. Hence, the DOFs on the crack interface can slide, but they are not allowed
to inter-penetrate. The constrained DOFs which are not allowed to inter-penetrate are de-
noted by superscript C'C' in Eq. (5.3). Using these two kinds of geometric compatibility
conditions, the mode shapes of a cracked structure with an open crack and separately a
closed crack are obtained through two separate linear analyses. Thus, if component ¢ has

acrack surface, the component-level mass and stiffness matrices are partitioned as [35]

miCC mzCF iCCN kZCC szF kiCCN
M= | mfC mfF mfFY |, and K= | kF¢  kFFOKFFN | (53)
ZNCC mZ[VFF mzNN kiVCC kaFF kiVN

Since al crack surfaces are at interfaces between components, all boundary DOFs are

active DOFs. The geometric compatibility conditions used to assemble every substructure

are lastly applied only to the DOFs marked as C'C' in Eq. (5.3).

5.4 Multiple-Component Parametric Reduced-Order Models

MC-PROMs [35] are adopted to manage the substructures with parameter variability.

One important advantage of MC-PROM s is that the finite element mesh of the nominal

structure does not need to be modified despite parameter variability. That is because the
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mass and stiffness matrices are parameterized by using Taylor series within an upper and
alower limit for the parameterization. For example, for a linear thin plate element, the
modification of the stiffness matrix due to variations in the thickness of the plate can be
accurately represented by a Taylor series up to third order, while the mass matrix can be
approximated by a Taylor series up to first order. Consider a parameter p. The first and
the third order Taylor series approximations about the nominal parameter value p, can be

expressed as follows [35]

M) ~ M)+ 2y py).

dp
0K,
Ki(p) ~ Ki(po) + a—p(P—Po) (5.4
1 asz 2 1 83K’L 3

Computationally, the partial derivativesin Eq. (5.4) are approximated by using finite dif-

ferences (for asmall parameter variation Ap). For example,

OM;  Mi(po + Ap) — Mi(po)

M} = ~
FD op Ap ’
0K;  Ki;(po+ Ap) — Ki(po)
Kl — ~ 55
FD ap Ap ) ( )
K2 o 82Kz‘ - Ki(p() + QAP) - 2Ki(p0 + Ap) + Ki(po)
FD — 5 2 ’
op Ap

Following closely the approach in Hong et al. [35], the parameterized component matrices

can be obtained by substituting Eqg. (5.5) into Eq. (5.4) to obtain

M;(p) ~ M;(po) + Mpp(p — po),

Ki(p) ~ K;(po)+Kpp(p—po) (5.6)

1 1
+§K2FD(p - p0)2 + EK:}D(]? - p0)3,

PK;

3 —
where Ky, = 5%
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Similar to the previous section, the concept of CB-CMS is used to construct an ap-
propriate transformation matrix for converting physical coordinatesinto generalized coor-
dinates. In the standard CB-CM S formulation, the fixed-interface normal modes ®;" and
static constraint modes ¥ of the nominal structure are used to construct the transforma-
tion matrix. However, for MC-PROMS, the mass and stiffness matrices are parameterized.
Thus, the transformation matrix is also constructed for all configurations in the parameter
space of the corresponding component. This approach is distinct from standard CB-CMS.

Herein, the component-level modal basis ®, for the ;th component can be expressed as

. I I 0
b, = , (5.7)
A A

where ®;" isreferred to as the matrix of augmented fixed-interface normal modes

o =| 9" @ ¥ & |, (5.8)

and the superscript 0 indicates the nomina parameter values, while the superscript U, 1,
2 and 3 indicate quantities computed for perturbed parameter values. These perturbed
parameter values can be same values as the ones used in Eq. (5.5) to approximate the mass
and stiffness matrices. Vectors ®; and ¥, in Eq. (5.7) represent fixed-interface normal
modes and static constraint modes.

A third order Taylor series is used to represent the parameterized stiffness matrix.
Hence, the fixed-interface norma modes for three perturbed structures are computed to
form a transformation matrix. Note that, in general, taken all together, the modes in &
are not orthogonal. For numerical stability, an orthogonal basis for the space spanned by
these modes is used. To that aim, the left singular vectors of ®;“Y are computed, and the
left singular vectors U; corresponding to singular values larger than 0.01% of the maxi-

mum singular value are selected. Next, U; is used to construct a transformation matrix
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(instead of the augmented fixed-interface norma modes ®;*?). The final transformation

matrix can be expressed as

. I I o0

L Z A O
Using Eq. (5.9) into Eq. (5.6), the physical coordinates are transformed into general-
ized coordinates along the collected set of modes <i>i for the i*® component. The trans-

formed mass and stiffness matrices can be expressed as [35]

M, (po)®: + &, M, :(p — o).

K, (po)®: + &, Khpi(p — po)

K7 ,®i(p—po)® + %@?K%D‘i’i(p — po)°.

The modal bases used in MC-PROMs and CB-CMS consist of internal and interface

DOFs for each substructure. Thus, the mass and stiffness matrices for the ' component

used for MC-PROMSs can be partitioned as follows

[ miCOO miCOU miCNoo |
MZPRO]V[ miCUo miCUU miCNUU and
m£VCOO mﬁ\TCUU mz]'Vd
i - (5.10)
kiCoo kiCOU kiCNoo
KZPROM = kiCUO kiCUU kiCNUU ’
kZJ-VCOO kZZVCUU kﬁVd

where superscript Ny refers to the interior generalized DOFs used in the MC-PROMs
approach.

Similar to CB-CMS, the interface DOFs (C) are aso further divided into constrained
DOFs (superscript (C'C)) and free DOFs (superscript F'F) to apply open and sliding

boundary conditions for BMA, as done in Eqg. (5.3). Thus, the interface DOFs marked
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as C' can aso bedivided into CC and F'F' DOFs. Then, the MC-PROMs mass and stiff-

ness matrices can be partitioned as [35]

F{
miCCoo miCFoo mZCCOU mZC oU miCCNOO
F FF
mfcoo mfFoo m! Cou m! oU mfFNoo
PROM __
M; = miCCU 0 miCF vo miCCU v miCFUU miCCNU v,
F FF, F FF, FFN,
m! Cvo m! Uo m! Cuu m! vU m! vU
N NFF, N,
mﬁVCCoo mﬁVFFoo m’ CCyu m; vU m; d
- _ (5.11)
CCoo CFoo CCou CFou CCNoo
K¢ K¢ k¢ k; k;
kFCOO kFFoo kFCoU kFFoU kFFNOO
(3 T (3 (3 T
PROM __ CC CFy CC, CF, CCN,
KZ. = kz‘ vo kz‘ Uo kz‘ vu kz‘ vuU kz‘ uU
F FF, F FF; FFN,
ki Cvo kz’ Uo kz’ Cuu ki vuU ki vuU
N,
k;NCCOO k;NFFQQ k,fVCCUU kaFFUU kz d

The geometric compatibility conditionsfor the cracked structure are applied the same way
as for the components modeled with the standard CB-CMS.

Numerical results have shown the efficiency of MC-PROMSs. The computational time
required by MC-PROMs for the reanalysis is approximately 100 times shorter than the

time required by full-order model analyses [35]

5.5 Generalized Modal Assurance Criterion (MAC)

Some of the shapes of the resonant response of the healthy and the cracked structures
are very similar, and some are not. For example, when the resonant response is not large
near the crack, the response of the cracked structure is very similar to the response of the
healthy structure. Such a resonant response is not very good for detecting the presence
and length of a crack. For detection, monitoring the modes most sensitive to the crack is

a better choice. Thus, the most sensitive bilinear (BL) modes are identified first. For that,
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anovel modal assurance criterion (MAC) [67, 68] has been developed and used to obtain
the generalized M AC matrix between the BL modes for the healthy and the cracked
structures. The new MAC needs the BL mass matrix obtained separately using ROMs
for the open and closed crack vibration cases because the mode shapes for the open and
closed states are mass normalized, and their sizes are different due to the distinct geometric
compatibility conditions. The BL mass matrix can be expressed as

Mg = Miow 0 ) (5.12)
where the two mass matrices for open and closed states are obtained from ROMs. Herein,
ROMs are obtained by using CB-CMS and MC-PROMs. This BL mass matrix is used
together with the BL modes to define anew MAC as

(@) " MpL(®E, ;)
(@}, ™MpL(®%, )(®5,;) ™ MpL(®%, )]

where the subscripts: and j indicatethe i** and j** modes, and the BL mode shapesfor the
healthy structure (indicated by the superscript /) are defined asin Eq. (5.1) but for a zero
crack length, while the BL modes for a non-zero crack are indicated by the superscript d.
The value MAC,; reflects how distinct is the i healthy BL mode from the j* cracked
BL mode. Note that the ML A C matrix can be computed for structures with different crack
lengths. The (diagonal) entries that correspond to non-sensitive BL modes are close to
1.0 because the BL modes are normalized by the BL mass matrix. A specific example of

selecting sensitive modes is showed in the next sections.

5.6 Detection Algorithm for Crack Length

The MAC matrix in Eq. (5.13) quantifies the sensitivity of the bilinear (BL) modes

to the crack. Accordingly, a frequency range of interest is defined such that it includes
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the most sensitive BL modes. Based on this frequency range of interest, a new sensor
placement algorithm is applied to identify crack lengths. The procedure to estimate the

length of a crack can be summarized as follows.

(1) The mode shapes of the healthy and the cracked structures (with up to 3 crack

lengths) are obtained using ROM s (using methods such as CB-CM S and MC-PROMs).

(2) The candidate measurement DOFs are used to truncate the the full BL modes. The
resulting partial BL modes for the healthy and the cracked structures are denoted

by ®},,,; and ®},, ;. Each partial BL mode is normalized as follows

~h q’%L,i d <i>d ‘DCJlBL,z' (5.14)
BL,ji — h an BLi = T ad 1 - .
' || QBLZ ||2 ' || QBLZ H2

(3) The normalized (partial) BL modes are assumed to depend on the crack length (de-

noted by d) approximately as follows

B =By + 0By - d+ 6By, -+ 5By, - dP. (5.15)
(4) Thevariationsin the (partial) mode shapes 6@C§L7i, 6@C§L7i and 6@C§L7i are computed
using 3 separate ROMs for the same structure but with 3 distinct crack lengths. The
dependence of the partial BL modes on the crack length in Eq. (5.15) can be used

for the 3 lengths of the crack d,, dj, and d.. to obtain

adg ~h ~dg ~d ~d,
Qp; = Pppit+0PpL;cdat 5‘I>E;L,i cd2 4 6@y - d,

. dy “h

~dg ~d ~de
q)BL,i = (I)BL,Z‘ + 5<I)BL,Z‘ ’ db + 5(I)BbL,z‘ ' di + 5(I)BL,Z‘ ! di’, (5-16)

- de T > dg ~d ~de
q)BL,i = (I)BL,Z‘ + 5<I)BL,Z‘ ~de + 5<I)BbL,z‘ ’ di + 5¢BL,@‘ ) di-
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Rearranging Eq. (5.16), one obtains

~dg ~h ~dy ~h ~de ~h
q)BL,i - (I)BL,Z' q)BL,i - (I)BL,Z' (I)BL,Z' - (DBL,Z'

- 1 do dp de. -
- 5é?L,i (ﬁ’ch,i 5‘i>cllacL,z‘ dz dy d? (5.17)
BB
- d, dy d. -

where 6@ B 1S referred to as the BL mode variation matrix (for mode ). For
example, we consider the structure with d, = 5%, d, = 7% and d. = 10% crack

lengths separately.

(5) Once, 5@2}71., 6@2;71. and 6@%}71. are obtained, they can be used into Eq. (5.15)
to identify the crack length. Specifically, one measures a partial BL mode <I>j and
uses Eq. (5.15) to determine d. For each mode of index i, a value d; is obtained
as an estimate for the crack length. Note that Eq. (5.15) can be interpreted as a
vector equation for a scalar unknown (d). To solve this vector equation, Eg. (5.15)

is projected along (ti)cém - éf;w.

The agorithm requires the measurement of one or a few BL modes of the cracked
structure. These modes can be measured by separating physical measurements into two
groups. One group corresponds to maximum positive deformations in a given direction,
whereas the second group represents maximum (in absolute value) negative deformations.

The positive measurements are used to obtain one of the components of each BL mode
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(e.g., the open crack linear mode). The negative measurements are used to obtain the other
component (e.g., the closed crack linear mode).

To apply this algorithm and to detect the size of the crack as precisely as possible,
it is best if the crack location is known. Nonetheless, the existence of the crack can be
detected by this technique aso. In Eq. (5.15), the bilinear mode variation vectors 5@2;,“
5<i>dBfL7i and 5<i>dBCL7Z. can be calculated separately for various possible/expected cracks at
specific locations (hot spots). Next, these mode variation vectors can be used to detect
the presence of a crack as follows. If a crack is not present in the structure, then the i**
measured bilinear mode shapes of the healthy and the cracked structures, i)]; 1. and édB Lis
are the same. Then, the variable d in Eq. (5.15) is zero. In contrast, when a crack is
present in the structure, é]; 1 and édB 1. are not the same, and the variable d is not zero.
A non-zero value for d indicates that a crack is present at the specific location where the
mode variation vectors were computed. Nonetheless, when d is not zero, its value is not
precisely the length of the crack. To accurately identify the size of the crack, itslocation
has to be known.

The polynomial dependence of é]; 1. onthe crack length d described in Eq. (5.15) is
an appropriate functional dependence for small cracks. To construct the bilinear modal
matrix, two types of eigenvectors of the cracked structure are used. These eigenvectorsare
computed from the mass and stiffness matrices for two states (open and closed). For the
case of small cracks, the mass and stiffness matrices vary smoothly as the crack increases
in size. Hence, the polynomial dependence is expected to be reasonable for small cracks.

Using thisalgorithm, thelength of acrack can be estimated by using al candidate mea-
surement DOFs (locations). However, this total number of candidate measurement DOFs
istypically too large to instrument in a practical case. Thus, a new sensor placement algo-

rithm was developed based on the EIDV algorithm as discussed in the next section. This
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placement algorithm is designed to identify the minimum measurement DOFs (locations)

needed to identify the length of the crack.

5.7 Modified Effective Independence Distribution Vector (EIDV) Al-
gorithm

In a practical implementation of the proposed approach for structural inspection or
damage detection, partia information about the bilinear (BL) modes has to be obtained
through measurements. To address that challenge, an algorithm for establishing the min-
imal and optimal locations to be measured or instrumented with sensors has been de-
veloped. This algorithm is a derivative of the EIDV method [45]. Generally, the EIDV
method requires only a portion of the modal matrix of a structure. This portion corre-
sponds to the mode shapes of a structure (in a frequency range of interest allocated based
on the generalized MAC discussed in the previous section) and to aset of candidate DOFs.
The partial modal matrix is used to compute a Fisher (information) matrix which, in turn,
allows the computation of an effective independence distribution vector. This vector iden-
tifies the DOFs that are best to measure in terms of ensuring the linear independence of

the measurements. To apply EIDV, the augmented bilinear modal matrix ®%/PV" of the

aug

EIDV
q)aug

cracked structure is formed instead of real mode shapes of the structure. isformed
by grouping BL modes for the healthy structure (without a crack) é]; ;. and the three mode
variation vectors 6<i>dB“L7Z-, 6@2@-, and 6@C§L7i which are obtained from Eq. (5.17). The ma-
trix é]; ;. and all mode variation vectors in the frequency range of interest are assembled

asfollows

~dy ~de ~dg ~dy ~de

QLY = [ By, 0@y, 08y, 08y, oo 08y, 0@, 0y, - ] (5.18)

aug

The sensors used in a measurement must be sufficient in number and placed optimally for

measuring the modes of interest for the structure with an unknown crack length. Hence,
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one must ensure that the sensors are placed optimally despite the fact that not all vec-
tors 5<i>dB“L7i, 6@2@, and 6@2}71. are necessarily linearly independent. Hence, the EIDV

methodology was generalized. A subset of the left singular vectors UZIPV of @ZIPV g

aug aug

used instead of the full augmented modal matrix. To select this subset, the singular values

EID
@ 14

of ®,,,  arecomputed, and the |eft vectors corresponding to the largest singular values

are selected. This processis similar to the one used in Eq. (5.8) for constructing PROMSs.
Using the resulting matrix UZIPV the generalized EIDV algorithm for establishing loca-

aug

tions for sensor placement can be summarized as follows.

(1) Calculate the BL modes for the healthy structure and three mode variation vectors

with all candidate measurement locations.

(2) Construct the augmented BL modal matrix ®2’" as given in Eq. (5.18) in a fre-

aug

guency range of interest based on the M AC in Eq. (5.13).

(3) Apply singular value decomposition, and obtain the left singular vectors of &Z/°V

aug

Select the singular vectors UZIPV corresponding to the largest singular values.

aug

(4) Calculate the Fisher information matrix given by A = UZIDVIJEIDV,

aug aug

(5) Calculate the effective independence distribution vector, defined as the diagonal of

matrix E = UEIPV A-1gEIDvT

aug aug

The number of significant or nontrivial singular values of ®7”" are indicative of the
number of sensors needed for identifying the crack length. After obtaining the optimal
number of measurement locations, the crack detection algorithm isimplemented to detect
the crack length using only the optimal number of DOFs identified based on generalized

EIDV agorithm.
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5.8 Numerical Results

5.8.1 High mobility multipurpose wheeled vehicle model with shell-type elements

In this section, we demonstrate the new PROM and EIDV-based approach and the crack
detection algorithm presented above for arealistic vehicle model. The structure is a high
mobility multipurpose wheeled vehicle (HMMWYV) base frame with acrack. Thefinite el-
ement model of the HMMWYV frameisaconventional shell element model. Fig. 5.1 shows
thismodel along with the candidate measurement locations. Fig. 5.2 shows each substruc-
ture of the HMMWYV frame used to construct ROMs. The reinforcement frames in the
rear and the front are attached to the |eftrails. These reinforcement frames are considered
to have thickness variations. Tab. 5.1 shows the thickness variations in the reinforcement
frames. The cross-member is considered to have a crack, as shown in Fig. 5.3. The crack
length varies (across the cross-member component) from 3.03% to 36.36%. The CB-CMS
method is applied for the remainder of the structure (the part of the structure which does
not have any thickness variations or cracks).  The MC-PROMs method and the BMA
approach are implemented for the substructures with thickness variations and for approx-
imate bilinear (BL) modeling of the response of the cracked HMMWYV frame. Note that

the HMMWYV model exhibits a particular behavior because it is constructed of shell ele-

< Candidate measurement locations

Figure5.1: Finite element model for a high mobility multipurpose wheeled vehicle
(HMMWYV) frame
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Rightrail

~ Cross membe
(has a crack)

L front

Reinforcement frame
(has thickness variation)

Figure5.2: Substructuring of the high mobility multipurpose wheeled vehicle (HMMWV)
frame

Table5.1: Thickness variationsin substructures

Substructure Thickness variation

Lycar 3.0378 mm — 4.6268 mm

L ¢ront 3.0378 mm — 5.3838 mm

ments (with very small thickness). Specifically, the deformation of the structure is always
similar to an open crack motion and never similar to a closed crack vibration. Thus, only
open crack modes were needed in this computational example.  Prior to calculating the
BL mode variation matrix (SéBL,i for mode i, the most sensitive BL mode is identified by
using the generalized MAC matrix. Fig. 5.4 shows the M AC matrices computed be-
tween the healthy and the cracked structures with 30.30% and 36.36% crack length. For
these 30.30% and 36.36% crack structures, the 30** mode is the most sensitive compared
to the healthy structure. Thus, i = 30 and the 30" mode of the healthy and cracked struc-
tures are used to identify the crack length. Fig. 5.5 and Fig. 5.6 show that the 30" mode
shapes of the healthy and the 36.36% cracked HMMWV models are significantly differ-

ent. Thus, the crack affects the 30" mode which is hence the best mode to use in the crack
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Figure5.4: MAC between models for the healthy structure and the structure with a
30.30% crack and a 36.36% crack

detection algorithm. The crack detection algorithm is applied to calculate the BL mode
variation matrix 5 51,30 for mode shapes of the structure with three distinct crack lengths:
d, = 15.15%, dp, = 21.21%, and d. = 30.30%.

Next, the generalized EIDV agorithm is applied to obtain the optimal sensor loca-
tions. Fig. 5.7 shows the best four sensor locations to capture the 30" mode and identify
the crack length. The BL mode shapes of the cracked structure are considered to be mea-

sured only at those four locations. Using those measurements, the crack length is detected
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Figure5.5: The 30** mode shape of the healthy high mobility multipurpose wheeled vehi-
cle(HMMWYV) frame

Figure5.6: The 30" mode shape of the high mobility multipurpose wheeled vehicle
(HMMWYV) frame with a 36.36% crack

using Eq. (5.15). Thus, herein the assumption isthat the BL mode shape édB 130 iIswell ap-
proximated by real open crack mode shapes of the structure. In Eq. (5.15), d isavariable
for crack estimation. Note that only &', ,, has to be measured. Vectors &, L.301 6@2}730
, 5&)22730 and 6<i>dBfL,30 are calculated. Thus, d can be calculated and used as an estimated
crack length. The cases considered are 18.18% and 27.27% crack lengths. Tab. 5.2 shows
the results obtained for the estimated crack length d. The d values obtained in both crack

cases are very accurate.
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OZ Selected measurement locations

Figure 5.7: Optimal sensor locations based on the 30** mode

Table5.2: Estimated crack length d for high mobility multipurpose wheeled vehicle
(HMMWYV) modeled with shell-type elements

Actua crack length  d (30** mode)

18.18% 18.97%

27.27% 27.41%

582 HMMWYV model with solid-type elements

In the previous section, the sensor placement and crack length detection algorithm
have been applied to a HMMWYV model which uses shell-type elements. An important
unanswered question is whether the in-plane motion of the two faces of the crack is very
small. The thickness of the shell elementsis considered very small. Hence, such in-plane
motion cannot be modeled. Thus, only the open state motion of the structureis considered
for the bilinear mode approximations. However, BMA can compute the resonant response
of cracked structure by using both open and closed state motions. To demonstrate a more
challenging case of application of BMA, the type of finite element used to discretize the
structure was changed to solid elements. Specifically, the finite elements used to discretize

the cross-member frame in the HMMWYV model were solid-type elements. Fig. 5.8 shows
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Figure5.8: Substructure for the modified cracked cross-member modeled with solid-type
elements

the modified model of the cross-member frame. The thickness variationsin the reinforce-
ment frame of the HMMWYV model are the same as in the previous example. The crack
length al so varies (across the cross-member component) from 3.03% to 36.36%. PROMs
were constructed and BMA was employed to approximate the response of the cracked
HMMWYV frame. The in-plane motions of the solid elements are not small, so the mode
shapes of the open crack and the closed crack states are used to construct bilinear (BL)
modes. A similar procedure as in the previous section was employed to calculate the
generalized MAC matrix and to identify sensitive mode shapes for each crack length.
Figures 5.9 shows the M AC matrices calculated between the healthy and the cracked
structures with 30.30% and 36.36% crack length. The most sensitive and the second most
sensitive modes are the 30" and the 22°¢ modes. These modes of the healthy and the
cracked structures are used to identify the crack length separately. Using each of the two
modes, the BL mode variation matrix 5® BL,30 ahd 5® BL,22 Were computed for structures

with three distinct crack lengths (same as in the previous section). However, when the
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Figure5.9: M A C between modes obtained using solid-type elements for the healthy high
mobility multipurpose wheeled vehicle (HMMWYV) and the structure with a
30.30% crack and 36.36% crack
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Figure5.10: M AC between mode shapes with 4 measurement locations for the healthy
and 33.33%, 36.36%, and 39.39% cracked structure

30" mode is used to identify the crack length, the estimated crack length d calculated
from Eq. (5.15) and described in Tab. 5.3 is not accurate. The reason isthat the 30" mode
is very sensitive to a small crack but not sensitive to the crack growth. That is, this mode
seems to be the most sensitive to the presence of the crack, but it does not vary much once
the crack grows. In contrast, the 22"¢ mode is less sensitive to small cracks, but varies as
the crack growth. Figure 5.10 shows the diagonal entries of MAC matrices computed by
using only the selected measurement DOFs. The M AC is between the healthy structure
and structures with 33.33%, 36.36%, and 39.39% crack lengths. Figure 5.10 indicates that

the MAC values for the 22°¢ mode change sensitively of the crack length increases, but
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Oz Selected measurement locations

Figure 5.11: Optimal sensor locations based on the 22" mode

Table 5.3: Estimated crack length d for HMMWYV modeled with solid-type elements

Actua crack length  d (22 mode) d (30" mode)

18.18% 18.91% 17.26%
27.27% 27.57% 27.57T%
33.33% 33.75% 30.60%

the MAC values for the 30** mode do not change significantly. In addition, for the case
of 39.39% crack length, the 22" mode is more sensitive than the 30" mode. Thus, for
the sensor placement and damage identification algorithm, the 22*¢ mode is employed.
Figure 5.11 showsthe optimal sensor locations used to identify the crack length employed
the 222 mode. Tab. 5.3 showsresultsfor the estimated crack length. The estimated values
of the crack size variable d obtained for several crack cases agree very well with the actua

crack length for the 22"¢ mode.

5.8.3 Robust sensor locations based on Monte-Carlo technique

For identifying the crack length, mode shape information has been used. When the
thickness of some components of the structure vary, the structural characteristics, espe-

cially mode shapes, are affected. Then, the optimal sensor locations may aso be affected
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Table5.4: Several cases of thickness variations in substructures to identify crack length
with statistically optimal sensor locations

Case Substructure Thicknessvariation | Case Substructure Thickness variation
1 Lycar 3.0mm— 3.4 mm 2 Lycor 3.0mm— 5.2 mm
Ltront 3.0 mm — 5.7 mm L tront 3.0 mm — 5.8 mm

3 Lycar 3.0 mm — 3.7 mm 4 Lycar 3.0 mm — 5.5 mm
L ¢ront 3.0 mm — 4.2 mm L ¢yont 3.0 mm— 3.2 mm

by the change in the mode shapes. That means that robust sensor |ocations are required to
capture the damage level in the presence of thickness variations. Herein, a Monte-Carlo
technique is applied to determine statistically optimal and robust sensor locations. To ap-
ply the Monte-Carlo technique, several possible thickness variations are considered, and
optimal sensor locationsfor the resulting mode shapes are obtained. To compute the mode
shapes for each thickness variation, PROM techniques are applied. The main advantage
of PROMsisthat reanalysisis almost 100 times faster because any parameter valuein the
parameter range can be easily applied [35].

The reinforcement frames in the rear and the front (which are attached to the | eftrails)

d:/ Selected measurement locations

Figure 5.12: Statistically optimal sensor locations for 400 cases of thickness variations
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tf:/ Selected measurement locations
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Figure5.13: Optimal sensor locations distribution of leftrail frame structure for all cases
of thickness variation

have thickness variations. For the Monte-Carlo technique, 400 separate cases of possi-
ble thickness variations are applied to these reinforcement frames. Sensitive modes to be
used for sensor placement and the crack detection algorithm are selected from 20" to 24t
mode based on M AC matrices. The total number of modes for the augmented bilinear
modal matrix in Eg. (5.18) is 20. Then, the optimal number of measurement locations
are decided based on the selected number of singular value of @/, " for each case of

thickness variation. For instance, if all columns of ®2/PV in Eq. (5.18) are linearly in-

aug

dependent, the selected number of singular values is 20. In contrast, if the columns of

EIDV
Qaug

are not linearly independent, then the selected number of singular valuesis smaller
than 20. By using the sensor placement algorithm for damage identification, 15 or 16
optimal measurement locations are selected for each case of thickness variation. Then,
only four measurement points are selected for all cases of thickness variation. These four

sel ected measurement locations are chosen to be the statistically optimal locations. Thus,
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Figure5.14: Optimal sensor locations distribution of rightrail frame structure for all cases
of thickness variation

they are the most robust when used to identify the crack length. Figure 5.12 shows the
four statistically optimal measurement locations obtained. Figures 5.13 and 5.14 represent
the distribution of optimal sensor locations for the leftrail and the rightrail structure along
the x coordinate for al cases of thickness variation. Using these four statistically optimal
measurement locations, the crack length isidentified for several cases of thickness varia-
tion described in Tab. 5.4. The damage identification algorithm is applied using the mode
shapes corresponding to those variations, and the variable d (the estimated crack length) is
estimated by solving Eqg. (5.15). Tab. 5.5 provides a summary of the results obtained using
statistical optimal sensor locations. The estimated crack length d agrees very well with
the actual crack length for all cases of thickness variation. That indicating the statistically
optimal sensor locations are robust to identify the crack length for any possible thickness

variations.
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Table 5.5: Estimated crack length d obtained using statistically optimal sensor locations

Case Actual crack length d Case Actual crack length d
1 18.18% 18.52% 2 18.18% 18.49%
27.27% 27.62% 27.27% 27.55%
33.33% 33.41% 33.33% 33.79%
3 18.18% 18.61% 4 18.18% 18.37%
27.27% 27.63% 27.27% 27.66%
33.33% 33.39% 33.33% 33.36%

5.9 Conclusions

Identifying structural inspection points or desired sensor locations for the purpose of
damage detection is a complex issue for cracked structures because of the nonlinear dy-
namics created by the crack opening and closing. A new concept of bilinear (BL) modes
has been introduced. The BL modes are obtained using linear analysis techniques. To
aleviate high computational costs and to allow for use in design applications, a reduced
order modeling method based on Craig-Bampton component mode synthesis and multi-
component parametric reduced order models was used. A generalized modal assurance
criterion has been developed and used to find the BL modes that are most sensitive to
the presence of a crack. Using the selected BL modes, an augmented BL modal matrix
has been formed and used in an algorithm based on a modified effective independence
distribution vector (EIDV) method to select optimal inspection points or measurement |o-
cations. Finally, the optimal set of measurement locations (for the cracked structure) was
selected (by the modified EIDV algorithm) and the crack detection algorithm was applied

to estimate the crack length (based on the selected optimal sensor locations). The esti-
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mated crack length obtained was shown to agree well with the actual crack length. The
techniques proposed herein are based on linear analyses and thus are highly efficient com-
putationally. To select robust sensor locations for any thickness variation, a Monte-Carlo
technique was implemented based on PROMSs to select statistically optimal measurement
locations. 400 cases of possible thickness variations were considered for the HMMWV
frame, and four statistically optimal measurement |ocations were selected and observed to

be robust to capture the crack length for in the presence of thickness variations.



CHAPTER VI

Joining of Components of Complex Structuresfor
| mproved Dynamic Response

6.1 Introduction

Mechanical structures such asthose found in automobiles and airplanes consist of mul-
tiple components which are assembled using joints such as bolts, welds, rivets, etc. Thelo-
cations (assembly points) of these joints affect structural performance characteristics such
as the static compliance, the frequency response, and the durability. To achieve high per-
formance, the joining locations should be selected by a systematic approach rather than an
experience-based approach. However, thisissue can be quite challenging because there are
many joints and even more possible joining locations for large scale complex structures.
The number of such joints can be as many as several thousand. The choice for joining
locations can be improved/optimized by topology optimization approaches such as ho-
mogeni zation techniques [46] and density methods [47—49]. Homogeni zation techniques
compute an optimal distribution of micro-structures in a given design domain. Density
methods compute an optimal distribution of isotropic materials, where the material densi-
ties are design variables. Although the single-component topology design has been exten-
sively studied during the past two decades [50], the amount of research done for multiple-

component topology optimization is relatively small. In that area of research, Johanson et

144
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al. [69] implemented the topology optimization techniques for multibody structural sys-
tems which possess joints between components. Chirehdast and Jiang [51] extended the
concept of topology optimization to the design of spot-weld and adhesive bond patterns.
A year later, Jiang and Chirehdast [52] proposed a theoretical framework to determine
which optimal connection points minimize the static compliance of the given substruc-
tures. To solve the coupled problem of component topology and joining location opti-
mization, Chickermane and Gea [53] considered a methodology for a multiple-component
structure as awhol e, in which the optimal topology and the joint locations were computed
simultaneously. More recently, Zhu and Zhang [54] did layout optimization of structural
supports using a topology optimization method for free vibration analyses. All these pre-
vious efforts employed spring elements for modeling joints. In contrast, Li et al. [55]
proposed a fastener layout/topology that achieves an almost uniform stress level in each
joint, and adopted evolutionary structural optimization [56-61] to provide an aternative
optimization strategy to traditional gradient-based topology optimization approaches. In
the context of these past efforts, the focus of thiswork is on the devel opment of an efficient
framework for determining improved/optimal joining locations asto minimizethetotal en-
ergy input into the structure and the strain energy in the joints of acomplex structure with
variability using a density-based method.

For general optimization processes, finite element models (FEMs) aretypically used to
evaluate the cost function. However, the number of degrees of freedom (DOFs) of FEMs
of complex structures are prohibitively large. So, conventional FEMs are hard to employ
due to the expensive time needed for each iteration. To reduce the computational cost,
Craig-Bampton component mode synthesis (CB-CMS) was employed by Ma et al. [70]
in a multi-domain topology optimization. The CB-CM S method is one of the most well-

established methods for constructing reduced-order models (ROMs) [6-10]. However, if
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one attemptsto use CB-CM S techniques when parametric changes (such as thickness and
geometrical variations) are applied during the design or exist through damage, the ROMs
have to be reconstructed. This reconstruction requires other analyses in addition to the
repetitive calculation of the cost function. Thisis computationally expensive and requires
significant effort to prepare a FEM and a ROM for each reanaysis.

These challenges are addressed in this work as follows. First, the mean compliance
for the dynamic case with damping is derived, and the strain energy in the jointsis added
to the cost function. Second, a novel approach to calculate the sensitivity of the strain
energy in the joints efficiently is proposed. Third, the cost function and its sensitivity are
computed in optimization process by using novel models which are able to manage struc-
tural variabilities. Recently, design oriented parametric reduced-order models (PROMSs)
have been developed to avoid such prohibitively expensive reanalyses of complex struc-
tures [28-30, 32, 35]. Here, the next-generation PROMs (NX-PROMSs) developed by the
authors in Chapter |11 are employed to allow complex structures to be divided into several
components when determining improved/optimal joining locations.

This paper is organized as follows. In Sec. 6.2, a design methodology for determin-
ing improved/optimal joining locations is defined, which includes models for the joints,
the definition of the associated cost function, and a computationally efficient method to
determine design sensitivities for the cost function. In Sec. 6.3, NX-PROMs used in the
calculations are reviewed. In Sec. 6.4, numerical smulations are used to demonstrate
the proposed approach for the problem of attaching an armor plate to a structure with a

V-shaped bottom. Finally, conclusions are summarized in Sec. 6.5
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6.2 Design Methodology for Optimal Joining L ocations

In single-component topol ogy optimization, the primary objectiveisto obtain the opti-
mal layout of the structure. When multi-component structures are considered, the problem
is extended to select the optimal joining locations between components. This is done not
only to optimize the layout of each of the subcomponents, but also because the joining
locations affect the structural performance. Herein, a density-based topol ogy optimization
technique [47-49] is applied. Rozvany et al. [71] have defined this method as a modeling
technique based on solid isotropic material with penalization (SIMP), where the distribu-
tion of the joining stiffnessis optimized to improve the static or dynamic structural perfor-
mance of the entire connected structure. The SIMP method has been devel oped to replace
the size and orientation variables (of the holes used in the homogenization method [46])
with a density variable (of the finite elements) in the design domain. Herein, the idea of
SIMP is employed to select optimal joining locations for the entire connected structure.
To improve/optimize the joining locations, the stiffnesses of the joints are designed using
density functions. Thus, the design variables are the densities (or stiffnesses) of thejoints.
These densities are continuous variables varying between 0 and 1. A location where the
joint has alow density (close to 0) is not effective/adequate for joining, while a location

where the joint has a density close to 1 is best for joining.

6.2.1 Design region - modelsfor joints

Being one of the controversial tasks in structural FE analysis, modeling methods for
joints have been extensively studied. Depending on the required accuracy and complexity
of the problem at hand, an appropriate modeling strategy can be adopted for the joints.
Several techniques for modeling joints were proposed in the literature [ 72—76]. For fatigue

analyses based on local stresses and the local strength of the material, a fine mesh of
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the structure and accurate joint models are required. For noise and vibration analysis of
complex structures, a moderate level of accuracy and complexity is required, which leads
to simple models for the joints. For a design optimization problem, and especidly for a
preliminary design, the simple flexible bar models are preferred [51, 53, 74, 77] because
those joint models can be easily catered toward the iterative updating employed in design
optimization.

In this work, the joints are modeled as three rectilinear springs. Let the stiffness
associated with the motion of one of the two ends of a joint (of index :) be k,;, =
Diag ({ ki kyi Ko D,Where ks, kyi, @nd k. ; denote the stiffnesses of the spring
along the three directions of a local Cartesian reference system associated with joint i.
Here, Diag(v) represents adiagonal matrix with entries given by the vector v. The direc-
tional stiffnesses of a joint are often related to each other. In thiswork, it is assumed that
kyi = k.; = a;k; and k, ; = k;. Thisisthe case for joints such as bolts, rivets, spot welds,
etc, where y is the axis of the joint (e.g., the axis of a bolt). Thus, ajoint is modeled as
having 6 DOFs linked by three springs. The stiffness matrix for the ;" joint can thus be

written as

The joints (modeled as three rectilinear springs) are designed using density functions
in the SIMP method. According to the SIMP method, the design elements are written

using the densities p; as

ks,i _ks,i
K, = o — JK,,, (6.)
_ks,i ks,i

where K, ; represents the joining stiffness matrix for the i** candidate joining location.
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Thus, K, ; is a density-based function. Intermediate values of p; (0 < p; < 1) are pe-
nalized compared to values of 0 or 1 by the use of the penalty exponent p. This exponent
istypicaly p = 3 for a structural optimization problem [78, 79]. Also, for simplicity, we
assumethat «; hasthe samevaluefor al joints. Thus, only one density variableisassigned
toajoint.

The system-level joining stiffness matrix K, is given by

K, = Bdiag Kyi Kpo - Ky | (6.2

where Bdiag denotes a block-diagonal matrix, and ¢ is the number of candidate joining
locations. Then, the system-level governing equation for the structural dynamic problem

with (structural) damping v is

ﬁb Kb 0 Uy fb
M, +(1+j7) | Ko+ = ; (6.3)
i, 0 0 u, f,

where j = v/—1, M, and K, are the system-level mass and stiffness matrices which do
not include the joining stiffness matrix K,. Subscript b indicates the candidate joining
DOFs, and subscript » denotes the remaining DOFs. Note that a joining mass matrix M,
does not exist because massless spring elements are used. Based on Eqg. (6.3), the dynamic

response of all DOFs, u,. (remainder) and u, (joint), are obtained.

6.2.2 Formulation of the optimization problem

The approach employed here is based on an energy criterion which is commonly used
in structural optimization problems. Two energies are used. The first is the total energy
input into the structure under dynamic loading. This total energy input is equal to the
external work done on the structure, which can be defined in function of the mean com-

pliance of the structure. For the dynamic case, the total work done on the structure by
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externa forcesis

Re (/ FTdu) = Re (/OT FTi—ltldt) = Re </OT FTudt) , (6.4)

where F = fe/“! is the external harmonic forcing, and u is the displacement due to the
harmonic forcing. The phase reference for the calculation is chosen such that f isreal. For

structures with damping, the response u is complex and can be expressed as
u = (ug + ju;)e’" sothat = (jwug —wuy)e’" (6.5)

where subscripts R and I indicate real and imaginary parts. From Eq. (6.5), thereal valued

portion of the velocity is
Re(u) = —wuy coswt — wug sin wt. (6.6)

Substituting Eq. (6.6) into Eg. (6.4) and (for convenience) using the fact that f isreal, one

obtains
T T
Re (/ FTudt> = —/ T cos wt(wu; cos wt + wug sin wt)dt
0 0
T
T
= —wauI/ cos? wtdt = —w—fTuI
0 2
= —nftu; = —7(fTu);.

The resulting first component of the cost function c; isthus
= — (fTu)I, (6.7)

and contains the strain energy in the entire structure, including the joints. Note that
Eq. (6.7) holds aso when ff is not real. However, focusing on the durability of the joints,
the strain energy in the joints should be taken into account. Thus, the second component of
the cost function is based on the strain energy in the joints. This energy can be expressed
as

1
Cy = éu?Kbub, (68)
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where the superscript H indicates the Hermitian operator. Then, by assembling the two
components ¢; and ¢, of the cost function from Eq. (6.7) and Eq. (6.8), the fina cost

function for this optimization problemis

1
C = WiC1 + Wycs = —Wy (fTu)I + w2§ubK?ub,

where w; and wy are weighting factors to control the relative importance of overall struc-
tural vibration and joint durability.

Naturally, the number of jointsto be distributed in the design domainis limited. Thus,
the topology optimization problem associated with the joining location design can be

stated as

1
Minimize : clp) =-—w (fTu)I + wgéubeTub,

(6.9)

g
Subject to:  g(p) ZZpi—NSO; 0 < pmin < pi <1,
i=1

where N denotes the total number of joints allowed in the design, g is the total number
of candidate joint locations, and p,,.;,, isasufficiently small lower bound imposed to avoid
numerical instabilities (herein p,,;, = 0.001).

To solve such optimization problems, specific methods have been developed to handle
a large number of design variables with a few constraints. Among these techniques, the
method of moving asymptotes (MMA) [80, 81] and the optimality criterion (OC) [46, 82]
methods are broadly utilized for their efficacy and generality. The MMA method is based
on the convex approximation method with the advanced feature of setting asymptotic mov-
ing limitsto approximation variables. The OC makes use of thewell-known Karush-Khun-
Tucker condition to satisfy a set of criteria related to the behavior of the structure. Even
though the OC method is well-convergent for static cases, it is not effective for the dy-

namic case. Thus, herein we use the modified optimality criterion (MOC) method [82],
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which is also a gradient-based optimizer.
6.2.3 Senditivities of the cost function

The design domain for joining is modeled with the density-based three rectilinear
springs, each having adesign variable p; (density), asin Eq. (6.1). Thevariable p; isvaried
between 0 and 1 using the MOC method to select improved/optimal joining locations. For
any gradient-based optimizer, the design sensitivities of the cost function and of the con-
straints with respect to the design variables are required. For an efficient calculation of the
design sengitivities for the dynamic case discussed here, an adjoint variable method [83]
is applied. First, we consider the design sensitivities of ¢; given by in Eq. (6.7). The

derivative of ¢; with respect to the m'" design variable p,, is

T T
ou
aCl (p) — fb le—:L — fb )‘
Opm || oo L
pm I I
Ouy
The direct calculation of | %™ | is cumbersome, so an adjoint variable A is used. To
ouy
Opm

obtain A, the equilibrium Eg. (6.3) is differentiated with respect to the design variable p,,,

to obtain
ouy,
Uy —
8_G +G | ™ =0, (6.10)
Ipm u duy
T Opm
where

) K, 0
G=—-wMy+ (1+j7v) | Ko+
0 O
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T
Multiplying Eq. (6.10) by , One obtains
u,
T T T
Uy G % fb I\ Uy % 0 uy
u, gﬁ f, u, 0 O u,
Pm
Thus, the design sensitivity of ¢, to p,, isgiven by
T
9c1 (p) = — f A - <uE—8K” ub)
pm £ Opm /)
I
(6.11)
0 gnKs,m —
= <ugm%ub’m) - (ppﬁ”b 1u;£mK57mub7m)I'
1
Second, the sensitivity of ¢, with respect to p,,, isconsidered. One obtains
802 (p) 1 H 811[) H 8Kb
=— [2u, K,— —_— 6.12
Oom 2 G0, T G, ) (612

where the fact that K, isareal, symmetric matrix was used. This sensitivity requires the
calculation of g5 and J%. The first term 5% can be easily calculated because it has a

simple analytical form. Next, from Eq. (6.10), one obtains

Ouy Ky

Ol = (14 jy) G| P (6.13)
Ouy 0

Opm

This equation could, in principle, be used to compute gp% once % is calculated. How-
ever, using Eq. (6.13) requires the inverse of G at each iteration. This matrix isvery large
becauseit isafull-order, system-level matrix. Also, G depends on excitation frequency w,
so thisinversion has to be done at each frequency in the range of interest. To avoid such a

high computational effort, we propose a novel approach. To calculate f%i’

first, EQ. (6.3)
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isused to obtain
o, _gﬁ u,
(—w’Mo+ (1+57)Ko) | 7 | + (I+4y) | ™"
oo 0 0| | u
_ (6.14)
K, 0 Ouy
+ (1447 =0,
Then, substituting Eq. (6.13) into EQ. (6.14), one obtains
ou, K oK
Koo | gugt | o™ | | o™
0 0 0
(6.15)
0Ky g,
= (GG 1) | |
0

where Gy = (—w?*M, + (1 + jv) Ky). The quantity GoG " in Eg. (6.15) can be written

as

-1

L | Ke 0|
GG '= [T+ (1+j7) G, : (6.16)

0 O

Then, substituting Eq. (6.16) into EQ. (6.15), one obtains

-1

I(bM KO 0 ‘?ﬁub
% =T+ (1 +47) Gy'| -1/ | 7|, (617

0 0 O 0

The novel approach uses the assumption that the values of the (spring) stiffnesses of the
joints are much smaller than the values of the stiffnesses in the nominal structure. Thus,

we assume that, for all DOFs of indicesi; and 5,

G,! < 1.

1112
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Then, the inverse term in EQ. (6.17) can be written as

-1

Ko 0 X Ko 0 X
I+ (14 57) G, ~T—(1+j7) Gy (6.18)
0 0 0 0

Substituting Eq. (6.18) into Eg. (6.17), one obtains

Kb% K, 0 %ub
Wl = =1+ Go'|| |- (6.19)
0 0 0 0

Of course, EQ. (6.19) can be used to obtain gp%i. However, Eq. (6.19) requires the cal-
culation of theinverse of G. Inverting G, has to be done only once during the iterations
because G does not depend on K. However, G, does depend on the excitation frequency
w, which meansthat G, hasto beinverted at al frequencies in the range of interest. Also,
G isalarge matrix because it is a full-order, system-level matrix. Thus, this calculation

is very time consuming. A new approach to address thisissue is presented next. The key
term to be calculated in Eq. (6.19) isG* Bpm . To compute this term, we consider
0

first that a unit force is applied at the m'™" joining location and to the ' DOFs (at that
location). The index a varies from 1 to the number L of DOFs used in the finite e ements
which contain the joining node m. For example, L = 6 for shell-type elements, while

L = 3 for brick-type elements. Then, the resulting deformation ¥,, , can be expressed as

T
ya=Gg |00 -+ 1,, 0 0] ;

where ¥,,, , indicates the deformation everywhere in the system due to the unit force ap-

plied at the o' DOFs of the m'" joint location.
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Next, we express the difficult term as

0
0K, L
Do _ 0Ky
G | "M = 6| | (G
0 a=1 m
0
Ksm
= Z\Dma pp ) Up.m
Opm
= prfn_l\llm,a (Ks,mub,m)a .
a=1

Thus, the sensitivity of ¢, in EQ. (6.12) can be expressed as

dez (p) 1 - ~1. H
Do =3 —2 Z A +poh Kty m | (6.20)

i=1

where

A= pu Ky (14 57)

L
prﬁ;l (\Ilm,a)i (Ks,mub,m)a] .
a=1
Finally, the design sensitivity of the entire cost function for the m ' design variableis
obtained using Egs. (6.11) and (6.20) as

dc (p)
0pm

= — w1 (ppfnilu;)l:mKsubvm)I

1 n
+ U)Qa <—2 Z A.Z +ppfn_1uEmKsub7m> .

Computing the sensitivities of the entire cost function based on this formulation is fast
especially because vectors ¥, , have to be calculated only once. They remain unchanged

during the optimization iterations.
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6.3 Next-Generation Parametric Reduced-Order Models (PROMs)

The cost function and design sensitivities are presented in Sec. 6.2 as if they are cal-
culated based on full-order finite element models. However, if the structure has a huge
number of DOFs, the turn-around time of the optimization iteration processis very long.
This issue is particularly important when the design involves not only choosing joining
locations, but also modifications of various components of the structure. In that case, the
full-order model of the modified components changes, which requires additional compu-
tational effort. To address thisissue, a new modeling approach is presented next. This ap-
proach is based on next-generation parametric reduced-order models (NX-PROMS) used
together with the well-known fixed-interface Craig-Bampton component mode synthe-

sis(CB-CMS) [7]. A review of thisapproach is provided next.

6.3.1 Modeling approach

CB-CMS[7] isused to model only the substructures which do not have any structura
variability. This modeling approach is used because it is very ssimple and computationally
stable. To apply CB-CMS, the complex structure of interest is divided into several sub-
structures, and their DOFs are partitioned into internal and interface DOFs. The interface
DOFs for a substructure (of index ¢) are projected onto the generalized coordinates by
using static constraint modes \Ilgj The internal DOFs are projected onto fixed-interface
normal modes <I>£IV . Then, the size of the mass and stiffness matrices and the force vector

for substructure ¢ is significantly reduced as follows

on ch quN on ch kqCN on ch
Mq = , Kq = , Fq = ,
NC N NC 1N N
m, m, kq kq fq

where the superscript C' indicates generalized interface DOFs (i.e., constraint partitions).

These DOFs are used to assemble substructural matrices and obtain system-level reduced



158

matrices. The superscript N indicates generalized internal DOFs. These DOFs are used to
reduce the number of internal DOFs.

The substructures which can have variability are modeled using NX-PROMs. One
important advantage of NX-PROMsisthat the finite element mesh of the nominal structure
does not need to be modified although several substructures may have variability. That is
because the mass and stiffness matrices of these substructures are parameterized. The NX-
PROM approach resembles the CB-CMS approach. However, the transformation matrix
for NX-PROMs is constructed for all values of the variable parameters in the parameter
gpace of each component with variability. In contrast, components with no parameter
variability do not need a parameterization, so they are modeled by CB-CMS. By applying
the NX-PROM approach to the I*" substructure with variation Ap in one of its parameters,

the mass and stiff ness matrices and force vector are obtained as

C CN C CN
m m k k
Ml = 5 Kl — y
NC N NC N
| mAp,l mAp,l kAp,l kAp,l
fC
Ap,l
FNX —
l )
N
| pr,l

6.3.2 Geometric compatibility conditions

The complete, reduced-order component-level equations of motion for each compo-

nent [ of the entire set of n components can be expressed as

ROM ;z ROM ROM _ ROM

q = FOY, (6.21)

where the superscript RO M indicates that either CB-CM S or NX-PROM was used, with
q; being the generalized coordinates (I = 1, - - - , n).
The constraint partitions (indicated by superscript C') of component-level matrices re-

tain the physical meaning of the interface DOFs. This means that the geometric com-
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patibility conditions at the interfaces with no joints can be applied directly to construct
the system-level matrices. Consider, for example that an interface with no joints exists

between components/andd (d = 1,--- ,n,d # [). Then,
q =9y, (6.22)

where q° and o are the generalized coordinates for the constraint partitions that corre-
spond to the interface between substructures [ and d. Of course, there is no compatibility
condition to be enforced for two components which do not have a common interface.
Equation (6.22) is used to transform the matrices in EqQ. (6.21) in a manner similar to the
assembly processin al finite element modeling methods. Then, the system-level equation

of motion which does not include the jointsis given by

ROM s ROM ROM _ROM __ 7nROM
Msys qsys +Ksys qsys - Fsys (623)

Equation (6.23) is obtained after all geometric compatibility condition have been enforced,
except for the conditions present at the interfaces with joints. To tackle the joints, the
(remaining) constraint partitions corresponding to the jointsare repartitioned in two pieces.
These pieces are indicated by superscript C; and C5. The C portion correspondsthe DOFs
of one end of all joints and the C, portion corresponds to the DOFs of the other end of all

joints. Thus, the matricesin Eqg. (6.23) can be expressed as

Table 6.1: Thicknessvariation for substructure 5 and for the armor plate

Substructure Nomina Casel Case 2

6 (parameter h;) 6 mm 75mm 85mm

Armor plate (parameter i)  10mm  10.5mm 11.1mm




160

Candidate joining locations

Global structure

Substructuring

Figure 6.1: Structure with a V-shaped bottom; indices of the substructures are shown

E -

excite symmetric modes excite asymmetric modes

Figure6.2: Dynamic loads applied to substructure 5 to excite symmetric and asymmetric
modes of the entire structure

) ) M% 0 M9
MC MCN
Mfng = . = 0 M MEN |,
MNC MN
MNCl MN02 MN
- K% 0 K9%
C CN
ROM __ K K — C Ca N
Ksys - - 0 K 2 K 2 ) (624)
KNC_' KN
L KNC1 KNCQ KN
_ qu FCu
c FC’
qSP;J(ZM = q — qCQ s FSPLy(zM = — FCQ s
qN FN
- N N
q F

where superscript C' represents the constraint partition (for all components) that corre-

sponds to the joints.
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Three directional springs

Figure 6.3: Springs modeling joints between substructure 4 and the armor plate

Next, the joints (three rectilinear springs) are applied to connect the DOFs of C'; to
those of C5. Firgt, the joining stiffness matrix in Eq. (6.2) and the physical coordinates of

all DOFsof al joints are partitioned similar to C'; and C5 to obtain

KC1 KC]CQ qC1
K, = ’ ’ and qu= | — |. (6.25)
KI?QCI KI?Q ql?Q

The C and C;, partitions are the same in Egs. (6.24) and (6.25). Thus,
q' = qbc1 and q“2 = qu2. (6.26)

Ultimately, Eq. (6.26) is used to obtain the final system-level equation of motion with

joints expressed as

"TROM . ROM cROM _ROM __ 1nROM
Msys qsys + Ksys qsys - Fsys ’ (627)

where

KCl + Kl?l Kgl Ca KC’1N

~ A

Msys = Msy57 Ksys = K?QCl KCQ + KI?Q KCQN and

KNCl KNCQ KN

Fsys = Fsys-
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Figure6.4: (a) 10 optimal joining locations, (b) convergence history, and (c) natural fre-
quency variations for a 30 Hz excitation of the nominal structure

Note that all the design parameters are contained in the joints. Thus, the joining op-
timization has to reevaluate only the joints, and does not require a reevaluation of all
components. Moreover, al components (except for the joints) are reduced only once, at
the initial construction of NX-PROMSs, before iteration. Thus, the joining design can be
very efficient by using NX-PROMs with the proper matrix partitioning. By using the sys-
tem matrices in EQ. (6.27) (based on NX-PROMSs), the turn-around time of the iteration
process is much shorter than by using FEMs. Additionally, variations in any substructure

(where NX-PROM is used) can be handled efficiently in the new optimization processes.
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Figure 6.5: Optimal joining locationsfor a 100 Hz excitation for (&) nominal structure, (b)
case 1 (c) case 2 of thickness variation

6.4 Numerical Example: V-Shaped Box Structurewith ThicknessVari-
ation

To demonstrate the improved/optimal joining, a structure with a V-shaped bottom is
considered, as shown in Fig. 6.1. The focus of this example is to find joining locations
where to attach armor to the structure. Military vehicles are typically designed to resist
blasts caused by mines or improvised explosive devices and to increase survivability. For
that purpose, these vehicles have a V-shaped hull under the body. Of course, any type
of structure can be used to demonstrate the joining optimization. Hence, we chose to
focus on finding joining locations to attach armor to military vehicles with a V-shaped

hull. Fig. 6.1 shows all substructures and their number. The marked regions are candidate
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Figure6.6: Convergence history for a 100 Hz excitation for (a) nominal structure, (b) case
1 (c) case 2 of thickness variation

joining locations. Harmonic loads are assumed to act on substructure 5 shown in Fig. 6.2.
Substructure 6 and the armor plate have thickness variation. Tab. 6.1 shows two cases
of thickness variation of each substructure. In Tab. 6.1, h; and h, indicate the parameter
number. NX-PROMs are constructed by parameterizing the thickness of substructure 6
and of the armor plate. CB-CM Sisapplied to all remaining substructures because they do
not have structural variations.

Asaninitial guess, all the candidate joining nodes on substructure 4 and on the armor
plate are connected by threerectilinear springsasshownin Fig. 6.3. For al joints, the max-
imum allowable stiffness of the spring in the (main) y directionisk, = k; = 500 kN /m,

and the other directional stiffnessesare k&, = k., = 0.5 ky. The total number of candidate



165

|

R
<

|

%
H
%
|

gg
hi
<

=
2

L o ot 0060000000000

MVt

7

106

104777

Natural frequency (Hz)
Natural frequency (Hz)

0 5 10 15 20 0 10 20 30 40 50
Iteration Number Iteration number

(€Y (b)

Natural frequency (Hz)
.
% |

5 10 15 20
Iteration number

(©

Figure6.7: Natural frequency variation for a 100 Hz excitation for (a) nominal structure,
(b) case 1 (c) case 2 of thickness variation

jointsis 54, and the final desired number of joints NV is 10 or 11. Note that the four edge
nodes highlighted in Fig. 6.3 are not considered candidate joining locations. The fact that
joints are present at those four locationsis considered to be known.

The optimization starts with an initial guess, i.e. a given set of feasible design values
(pi = 0.185 when N = 10, and p; = 0.204 when N = 11). The structural damping is
~ = 0.03, and the weighting factors in Eq. (6.9) are w; = 0.5 and wy = 0.5. In general,
the choice of weights balances the importance of vibration throughout the vehicle with the
stresses in the joints. That balance is an application-dependent issue. For example, in a
durability analysis, one may consider that the strain energy of the jointsis more important

than the total energy input into the structure. Thus, the weights can be distinct for each
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application. Thevauesof 0.5 and 0.5 were chosen arbitrarily. Note that the overall energy
in the structure already includes the energy in the joints. Hence aweighting of 0.5 and 0.5
puts a little more emphasis on the joints than on the rest of the structure.

With the giveninitial guess, the excitation frequency wasfixed at 30 Hz for the nominal
structure. Fig. 6.4 shows the results of the optimization for the 30 Hz excitation and
N = 10. Figures 6.5, 6.6 and 6.7 show the results of the optimization for a 100 Hz
excitation for the nominal structure and for cases 1 and 2 of thickness variation. For the
nominal structure under the 100 Hz excitation, N = 11. For cases 1 and 2 of thickness
variation, N = 10.

The optimal joining locations described in Fig. 6.5 are selected differently for each
case, even though the thickness variations are not very large. However, the cost function
isminimized for all 3 cases, as shown in Fig. 6.6. Fig. 6.7 shows the changes in natural
frequencies at each iteration. Note that the various choices made during the iterations
affect significantly the dynamic response because some of the natural frequencies of the
overall structure change significantly.

The optimal joint locations are significantly different for the three structures consid-
ered: the nominal structure and the two structures with thickness variation. The optimal
joint locations for these three cases are quite different athough the structural variations
are not large. That is because the different thicknesses affect the frequencies of the struc-
ture, which in turn affect the forced response. For the nominal case at 100 Hz excitation
frequency, the natural frequencies of the structure with the armor attached do not crossthe
value of 100 Hz at any iteration. That translates in a smaller change in the value of the
cost function from iteration to iteration. That is because resonances are not close to 100
Hz at any of the iterations. For the other two cases, however, certain natural frequencies

cross the excitation frequency, and resonant (or near-resonant) responses occur. Conse-
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Probability (p/)

Parameter value (h,-")

Figure 6.8: Probability distribution for the ;" parameter of the (nominal) vehiclein afleet.
In the numerical example, there are two such parameters (thicknesses shown
in Tab. 6.1)

quently, the values of the cost function vary much more than in the nominal case. This
ultimately leads to different optimal joining locationsfor each case. This phenomenon can
prove to be a challenge when multiple structures/vehicles (nominally identical, but practi-
cally different) have to be up-armored. For that case, the proposed method provides avery
good solution to the challenge of finding statistically (quasi-)optimal joint locations. To
obtain such locations, one could evaluate the increase in the cost function when the joints
are chose based on the nominal structure but they are applied to a structure with slightly
different properties. As afirst alternative, joint locations can be found by a Monte Carlo
simulation (or other sample-based statistical methods). To do that, one would first use the
proposed method to construct a PROM. Next, one would choose samples the parameter
space (Monte-Carlo). The joint optimization can then be quickly applied using the PROM
for each of the samples. After al solutions (for the joint locations) are obtained, a prob-
ability distribution can be calculated for the chosen joint locations. The joint locations

with the highest probability to be chosen can then be used as candidate joint |ocations for
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Figure 6.9: (a) Optimal joining locationsand (b) convergence history for 100 Hz excitation
for the fleet of 3 vehicles

one final optimization which would pick the final choice of joint locations. Finally, a sec-
ond (and perhaps best) alternative to find stable joint locations is to define an overall cost
function specifically for series of nominally identical structures. For example, consider a
case where a fleet of n, vehicles are to be armored. They are nominally identical, but in
reality they have distinct parameters (such as different material properties or thicknesses
in certain components). Thus, for one set of joint locations the value of the cost func-
tion is different for each vehicle. A cost function that is a sum of the cost functions for
each vehicle can easily be used in the optimization algorithm. That is because the use of
the proposed PROMs allows a very fast calculation of the cost and the sensitivity at each
iteration in the optimization agorithm.

Following the example of the fleet, consider that each vehicle can have variability in
n, parameters denoted by Ay, ho, - - -, h,, (€.9., the thickness of several components). The
variability in each parameter follows a given probability distribution, as schematically
shown in Fig. 6.8. Denote the actual value of h; for vehicle k as h¥. The two weights
used in the cost function for parameter h,; for vehicle k& can be chosen to be proportional

to the probability p¥ of h,; to have the value h¥. This probability represents the likelihood



169

of a vehicle in the fleet to have its parameter h; equal to kY. Hence, the weights in the
definition of the overall cost function can be chosen such that

w =a([[pH)wr and wg = a([[pHws for (k=1,2,---,n,),  (6.28)

=1 =1

where superscript £ indicates vehicle &, and subscripts 1 and 2 indicate weights for the
energy input in the structure or energy in the joints. The values w; and w, reflect the
relative importance of vibration throughout the nominal vehicle and the stressin the joints
of the nominal vehicle (as done for the case of asingle vehicle calculations). For the sum

of the weightsto be one, the constant « is chosen as

1
S| v

k=1

o =

We implemented this calculation for the numerical example of a structure with aV-shaped
bottom. The three cases that we first considered individualy, we now considered as a
set of nominally identical structures, n, = 3. We chose the relative importance of the
energy input in the structure and the energy in the joints the same way asin the individual
calculations (i.e,, w; = 0.5 and wy, = 0.5). We chose n, = 2. The two parameters
h, and h, are same as the ones considered in cases 1 and 2 of parameter variation. The
probabilities used had values i, are: p} = 0.75, p? = 0.714p}, and p? = 0.7p;. The
probabilities used had values h, are: pi = 0.75, p2 = 0.2p}, and p3 = 0.5pi. All weights
are obtained by using Eq. (6.28). They have different values for each vehicle. Figure 6.9
shows the results of the optimization for a 100 Hz excitation for afleet of n, = 3 vehicles
(i.e., the nominal structure and the structures with case 1 and 2 of thicknessvariation). The

overal cost function is

1.1 1.1 2,2 2., 2 3.3 3.3
C=wic] + Wyt +wicr” + wyce” + wic” + wycs”.
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The number of desired joints N is 10. In Fig. 6.9, the minimum value of the cost function
islarger thanitsvaluefor the nominal case showninFig. 6.6 (a), but smaller than itsvalues
for two cases 1 and 2 of of thickness variation as shown in Figures 6.6 (b) and (c). That
is because weights w1 and w3 are considerably larger than w?, w3, w?, and w3. Thus, the

optimal design for the nominal structure is dominant for the entire fleet of 3 vehicles.

6.5 Conclusions

Several challenges of current methods for determining improved/optimal joining loca-
tions have been addressed. First, the mean compliance for the dynamic case with damping
was derived, and the strain energy in the joints was added to the cost function. Second, a
novel approach to calculate efficiently the sensitivity of the strain energy in the joints was
proposed. Third, the cost function and its sensitivities were computed in the optimiza-
tion process by using novel next-generation parametric reduced-order models to improve
computational efficiency and to manage structural variabilitiesin severa substructures.

The approach to select improved/optimal joining locations uses a density-based topol-
ogy optimization method which employs solid isotropic material with penalization (SIMP)
modeling. Based on SIMP modeling, a three rectilinear springs (with density) is used to
model each joint. Also, areliable cost function has been developed. It includes the en-
ergy input into the structure and the strain energy in al joints. By penalizing the density
of the springs between 0 and 1, the cost function is minimized while satisfying a con-
straint which enforces an upper limit for the number of joints in the design domain. To
solve this optimization problem, the modified optimality criterion method has been ap-
plied. To demonstrate the methodology, the problem of attaching armor to a structure
with a V-shaped bottom has been considered. By applying the proposed methodology,

improved/optimal joining locations have been selected.
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The improved/optimal joining locations (obtained for each structure individually) are
significantly different for the nominal structure and the two structures with thickness vari-
ation. In genera, it can be challenging to find a unique set of joining locations which
are good for a series of (distinct in reality, but nominally identical by design) structures.
To overcome this challenge we devised an alternate approach to define overall cost func-
tion for the series of nominally identical structures. Each parameter variability occursin
the vehicles in the fleet with a given probability. Thus, the weights used in the overall
cost function were chosen by taking into account these probabilities as well asthe relative
importance of the vibration throughout the vehicle and the stressin the joints. To demon-
strate this approach, improved/optimal joining locations for afleet of 3 vehicles have been

shown.



CHAPTER VII

Conclusions

7.1 Dissertation Contributions
The main contributions of this dissertation can be summarized as follows:

e Inchapter I, amultiple-component parametric reduced order models (M C-PROMS)
was successfully developed. MC-PROM s enable a more direct and efficient capture
of the influence of component-level design changes, damages (geometrical or struc-
tural variabilities and a crack) on the system-level structural dynamic response. The
proposed MC-PROMSs were developed for cases where parameter variations occur
simultaneously in multiple components by devel oping anovel transformation matrix
for model reduction. For efficient modeling of a crack, bilinear frequency approx-
imation was employed to approximate the resonant frequency of cracked complex
structures. The static mode compensation approach was adapted for use with Craig-

Bampton component mode synthesis to create a novel component-level analysis.

e Inchapter |11, next-generation parametric reduced-order models (NX-PROMs) were
developed to have enhanced numerical stability and to be used for complex struc-
tures modeled with brick-type finite elements. NX-PROMs have three main ad-

vancements compared to MC-PROMSs:. (1) a new parameterization technique for-
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mulated to capture the element-level nonlinearity due to volume variations of finite
elements of brick or other types, (2) anew transformation matrix developed using a
novel interpolation of static constraint modes, (3) a local-interface reduction (LIR)

technique proposed for further enhancing the computational efficiency

In chapter IV, robust signal processing techniqueswere proposed for structural health
monitoring. The techniqueswere used to capture the mode shapes of acracked struc-
turewith structural variability by selecting the optimal sensor locations. The bilinear
mode approximation (BMA) was developed in the PROMs domain to approximate
mode shapes of cracked structures to be used in novel sensor placement techniques.
The modal assurance criterion (MAC) was generalized to select sensitive modes of
cracked structures by using the bilinear mode shapes of the healthy structure and
structures with different crack lengths. Sensor placement technique based on effec-
tive independence distribution vector was employed and enhanced to select optimal
sensor locations. An over-sampled algorithm was developed to be used in conjunc-
tion with enhanced sensor placement technique to reduce the effects of measurement
noise. A Monte-Carlo technique was implemented to select statistically optimal and
robust sensor locations to capture the mode shapes of a cracked complex structure

with structural variabilities.

In chapter V, the robust signal processing techniques were applied and modified to
identify the size of a crack in a complex structure. PROM-based robust signal pro-
cessing techniques were extended and used in a new crack detection algorithm. The
resonant shapes were shown to vary nonlinearly with the crack length. To capture
the nonlinear variations, a crack length identification algorithm was devel oped, and

the new sensor placement techniques were employed to capture these variations.
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Then, the signals obtained from the selected minimal/optimal sensors were used to
identify the size of a crack. A Monte-Carlo technique was also employed to select

statistically optimal sensor locations to identify the size of a crack.

e Inchapter VI, structural optimization techniques were developed for joining of com-
ponents of complex structures for improved dynamic response. The mean compli-
ance for the dynamic case with damping was derived, and the strain energy in the
joints was added to the cost function. A novel approach to calculate efficiently the
sensitivity of the strain energy in the joints was proposed. The cost function and
its sensitivities were computed in the optimization process by using NX-PROMs to
improve computational efficiency and to manage structural variabilities in several

substructures.

7.2 Future Research

Next, based on the work reported in this dissertation, some suggestions for future re-
search are proposed. The novel reduced-order modeling technique and the sensor place-
ment algorithms used to identify damage, aswell as the structural optimization techniques
have been developed and validated computationally. However, these techniques have not
been validated experimentally. Thus, experimental efforts should be concentrated on en-
hancing and experimentally testing the modeling, damage detection, and signal processing
methodol ogies devel oped in this research.

The key experimental validations to be performed can be summarized as follows:

e Vaidate the MC-PROMs and NX-PROM s themselves.

¢ Validate the signal processing methodology used for damage detection aswell asthe

algorithms used for detection. Specifically, the validation should focus on



175

(a) the PROM-based approach for selecting sensors for damage detection,
(b) theagorithmsand technology for damage detection in structureswith variabil-
ity.

¢ Validate the nonlinear techniques and codes used to predict the nonlinear response

of cracked structures. Specifically, the validation should focus on

(@) the bi-linear frequency approximation,

(b) the novel bi-linear modal approximation.

¢ Validate the structural optimization methodology.
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