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CHAPTER I

Introduction

1.1 Dissertation Objective

Finite element models (FEMs) are often used to predict vibration responses and stresses

to support design processes. Also, evaluating variations in structural responses caused by

design changes and damages (such as cracks and dents) is an important challenge in a

wide variety of applications. As computing capabilities increase, simulation techniques

replace experiments for testing designs, especially when the experiments are considerably

expensive or difficult to execute. However, the conventional design complexity can make

the analysis very slow when many substructure changes are needed during the iterative

process such as design, statistical analyses, and optimization problems. This issue is par-

ticularly important because usual industrial FEMs (such as automobile bodies and complex

airplane structural components) have millions of degrees of freedom (DOFs). These mod-

els, with very large numbers of DOFs, have to be used to ensure high accuracy. However,

the large computational cost of direct analyses based on these large models detrimentally

affects the design cycle. Thus, model reduction techniques such as those presented in this

work are necessary to reduce the computational cost.

An alternative to direct structural analysis of computationally expensive models is

based on component mode synthesis (CMS) because CMS can be combined with a wide

1
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variety of FEM-based methods. In the context of vibration analysis, CMS is used by first

dividing the global structure into components. Next, each component is projected onto a

very small truncated set of (component-level) basis vectors that approximately span the

space of the (component-level) response. As a result, the number of DOFs required to

model each component is considerably reduced compared to standard FEMs. Finally, the

models of each component are assembled, and a global reduced-order model (ROM) is

synthesized. As a result, the order of the global model is reduced significantly.

Although many CMS techniques have been developed for basic structural analyses,

they have not been constructed for design or damage detection in complex structures. The

key element that separates ROMs for design from those used for basic structural analysis,

is that usual ROMs cannot easily be re-constructed when changes are applied (by design

or through damage) in a few components of the overall system. Recently, design-oriented

ROMs have been developed to avoid prohibitively expensive reanalyses of complex struc-

tures. These recent models are referred to as parametric reduced-order models (PROMs).

These PROMs are global in nature, in that they require access to the full system model as

part of the process. To address this issue, design-oriented PROMs built in a component-

oriented framework are needed for design and damage modeling.

Design-oriented PROMs are important for vibration-based structural health monitoring

(SHM) and structural optimization. For example, vibration-based SHM techniques are

of current interest in identifying damage and assessing the integrity of structures such

as vehicles and airplanes. Predicting the dynamic characteristics of damaged (cracked)

structures is an important challenge for vibration-based SHM. For this challenge, PROMs

can be used to predict the mode shapes of a cracked structure at a dramatically reduced

computational cost. The characteristics of the dynamic response predicted by PROMs

provide useful signals for vibration-based SHM. However, not all of the signals obtained
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from PROMs can be used in practice due to limited accessibility constraints and cost of

the needed sensors. Thus, a methodology to select optimal sensor locations for SHM is

developed for the purpose of accurately capturing changes in mode shapes and identifying

the size of a crack.

Another use of PROMs is for structural optimization. Typically, mechanical structures

such as those found in automobiles and airplanes consist of multiple components which are

assembled using joints such as bolts, welds, rivets, etc. The locations (assembly points) of

these joints affect structural performance characteristics such as the static compliance, the

frequency response, and the durability. To achieve high performance, the joining locations

should be selected by a systematic approach rather than an experience-based approach.

However, this issue can be quite challenging because there are many joints (as many as

several thousand) and even more possible joining locations for large scale complex struc-

tures. Thus, a systematic approach to select optimal joining locations of components of

complex structures is necessary.

The primary objectives of this research are as follows:

• To develop efficient and accurate PROMs which can be used to predict the vibration

characteristics of complex structures for the purpose of design and damage model-

ing.

• To develop a robust signal processing technology for SHM based on PROMs.

• To develop an algorithm to identify the size of a crack in complex structures based

on a robust signal processing technology.

• To develop a structural optimization technique to select optimal joining locations for

the assembly of complex structures.
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1.2 Dissertation Background

1.2.1 Component mode synthesis and parametric reduced-order models

Structural dynamic analyses often have high computational costs because repetitive

calculations are needed in the processes of optimization, stochastic analysis , and statisti-

cal analysis. These repetitive calculations are very time consuming especially when con-

ventional complex and large models are used. One method to reduce the computational

cost is to use reduced-order models (ROMs). Such ROMs have been used in a variety

of applications. Yun and Masri [1, 2] developed a methodology for stochastic detection

of changes in uncertain nonlinear systems using ROMs. Chung and Fung [3] proposed

a nonlinear finite element model of piezoelectric tube actuators with hysteresis and creep

for control and design purposes. In their work, the operation of the actuators is simulated

using ROMs. Ashwin et al. [4] developed a finite element substructuring procedure for de-

sign analysis of large structural systems. Hartl et al. [5] also developed advanced methods

for analysis, design, and optimization which use ROMs for computational efficiency.

In the field of structural dynamic analysis, component mode synthesis (CMS) [6–12]

is well established as an alternative to conventional finite element models (FEMs) with

large numbers of degrees of freedom (DOFs). CMS belongs to a wide class of domain de-

composition techniques. CMS divides the global structure into several substructures, and

the DOFs of each individual substructure are reduced separately. Then, the substructure

are reconnected, and the dynamic response of the system is predicted very efficiently and

accurately. Applications of CMS include the work of Wang and Kirkhope [13] who ap-

plied CMS for multi-shaft rotors with flexible inter-shaft bearings. They also used CMS for

damped systems [14]. In addition, Liu and Zheng [15] proposed an improved CMS method

for nonclassically damped systems. Takewaki [16] proposed an inverse CMS method for

redesign of large structural systems. Matichard and Gaudiller [17] used CMS to develop
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a hybrid modal nodal method for model reduction and feedback control (of multi-body,

smart structures). Kim [18] also developed a recursive CMS method to solve large-scale

eigenvalue problems efficiently. Tran [19] developed and applied a CMS approach which

uses partial interface modes of cyclically symmetric structures. To enhance computational

efficiency for redesign of large damped structural systems, Takewaki and Uetani [20] used

a new formulation for an incremental inverse problem based on CMS. Elhami et al. [21]

proposed methods for repetitive symmetric structures by CMS. Farhat and Geradin [22]

developed a methodology which uses CMS for structures with incompatible substructures.

Also, many other methodologies based on CMS have been developed for structural analy-

ses [23–27].

The most common CMS approach is the fixed-interface Craig-Bampton CMS (CB-

CMS) method [7]. CB-CMS is well understood and frequently used because of its sim-

plicity and numerical stability. Herein, CB-CMS is used for substructuring analysis. How-

ever, existing CMS-based techniques were not originally constructed for design or dam-

age detection in complex structures. Thus, there are several studies focused on improving

CMS-based ROMs for these purposes. For example, Balmès et al. [28, 29] calculated sets

of modes for a few sample parameter values in the parameter space, and grouped them into

a fixed augmented basis for the modes of the nominal system. This augmented basis was

found to be suitable for a (parametric) family of models. However, the need for repeatedly

solving many sample eigenproblems makes the approach impractical for global paramet-

ric reduced-order models (PROMs) of realistic industrial FEMs. To accelerate solving

the sampled eigenproblems, this technique was combined with a component-based ap-

proach by Zhang and Park [30, 31] for large FEMs. As a by-product, the eigenproblems

of the sampled space are confined to one specific component, and the resulting global

model is reduced substantially. However, in the projection phase, the component basis
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has to be expanded back into the global coordinates. Hence, the approach does not lead

to true component-based PROMs. To address that issue, substructural analysis techniques

based on PROMs have been developed [32]. However, those PROMs can account for one

parametric variability in one substructure only. In contrast, the new component PROMs

developed herein allow several substructures to have parametric variability in character-

istics such as geometric parameters (e.g., thickness), or material properties (e.g., Young’s

modulus). These new multiple-component PROMs (MC-PROMs) are obtained by simply

managing the geometric compatibility conditions between substructures.

Geometric variations (e.g., dents or thickness variability due to manufacturing) can be

treated as parametric variability in the structure. Such an approach has been used for a

few years to investigate the vibration of turbo machinery bladed disks. For example, static

mode compensation has been used for global models [33, 34] to compute the vibration re-

sponse of a structure which has dents or missing material. By accounting for the effects of

geometric variability as though they are produced by external forces, a set of basis vectors

can be established using a combination of normal modes of the pristine structure com-

pensated by static modes. However, the static mode compensation method for geometric

variations has not been applied for substructuring. Herein, CMS with static mode com-

pensation is developed based on CB-CMS. When substructures have dents, component

mode synthesis with static mode compensation (SMC-CMS) is applied to obtain the vi-

bration response. Finally, the effects of parameter variations (e.g., thickness and geometric

variations) are analyzed by MC-PROMs and SMC-CMS [35].

For modeling cracks, Poudou and Pierre [36, 37] have developed a hybrid frequency-

time domain method. In that method, the resonant frequencies of the cracked structure

are found by a forced response analysis. That is a nonlinear problem whose solution

is complex and computationally intensive. To alleviate this issue, a bi-linear frequency
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approximation (which was first used to predict resonant frequencies of single-DOF piece-

wise linear systems [38]) is generalized to large dimensional models. The approach herein

builds on the early methods for studying the vibration of cracked beams and plates using

a multi-DOFs model. Chati et al. [39] have studied the bi-linear frequency approximation

for a two dimensional cracked beam, and Saito et al. [40] have used a bi-linear frequency

approximation for a three dimensional cracked plate. Note that the actual motion of the

crack surfaces can be quite complex, and there may be more than two crack states (open

and closed) when, for example, the crack closing proceeds gradually so that different re-

gions of the crack surfaces close at different times. Although the generalized bi-linear

frequency approximation cannot capture the effects of gradual opening and closing, it can

provide approximate values for the resonant frequencies of complex cracked structures

by employing linear analyses only. Also, the linear analyses required in a bi-linear fre-

quency approximation can be performed using MC-PROMs, and that further reduces the

computational cost.

1.2.2 Robust signal processing for damaged structure

Robust techniques for sensor placement and damage detection are of current interest

because of the increased need to reduce the time and the cost of examining the structural

integrity of ground vehicles and aircraft. To assess integrity, structural information must

be obtained using a variety of sensors. Both the number and the locations of sensors are

limited due to cost and accessibility constraints. There are many previous studies of sensor

placement for structural health monitoring. For example, Ansari [41] has implemented

SHM strategies which require selection and placement of sensors suitable for measuring

key parameters that influence the performance and health of civil structures. Flynn and

Todd [42] have proposed a novel approach for optimal actuator and sensor placement for
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SHM. Krommer et al. [43] have investigated a sensor network composed of strain-type

patch sensors with constant intensity designed to replace distributed strain-type sensors

for monitoring beam-type structures.

Herein, a novel robust signal processing technique is employed to find the optimal

number of sensor locations for gathering mode shape information of cracked structures.

The novel approach is developed starting from an algorithm based on the effective inde-

pendence distribution vector (EIDV) [44, 45]. The key idea of EIDV is to choose sensor

locations for measuring physical mode shapes as linearly independent as possible in the

frequency range of interest. Herein, the EIDV method is modified to select optimal sen-

sor locations for cracked complex structures. The number of selected locations based on

the modified EIDV method is not only limited to the frequency range of interest, but also

limited in the way which it can handle the effects of measurement noise. To address this

noise, over-sampling is often performed. EIDV cannot provide optimal locations for over-

sampling. Herein, a new signal processing technique is developed to select over-sampled

measurement locations.

In addition, novel robust signal processing techniques are applied to identify the size

of a crack. In particular, an approach to place sensors to optimally capture the variation of

mode shapes is developed and combined with the new algorithm for crack size detection.

1.2.3 Selection of optimal joining locations

The number of joining locations for assembled complex structure can be as many as

several thousand. The choice for joining locations in the assembly can be improved by

topology optimization approaches such as homogenization techniques [46] and density

methods [47–49]. Homogenization techniques compute an optimal distribution of micro-

structures in a given design domain. Density methods compute an optimal distribution
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of isotropic materials, where the material densities are design variables. Although single-

component topology design has been extensively studied during the past two decades [50],

the amount of research done for multiple-component topology optimization is relatively

small. In that area of research, Chirehdast and Jiang [51] extended the concept of topol-

ogy optimization to the design of spot-weld and adhesive bond patterns. Following that,

Jiang and Chirehdast [52] proposed a theoretical framework to determine which optimal

connection points minimize the static compliance of the given substructures. To solve the

coupled problem of component topology and joining location optimization, Chickermane

and Gea [53] proposed a methodology for a multiple-component structure as a whole, in

which the optimal topology and the joint locations were computed simultaneously. More

recently, Zhu and Zhang [54] did layout optimization of structural supports using a topol-

ogy optimization method for free vibration analyses. All these previous efforts employed

spring elements for modeling joints. In contrast, Li et al. [55] proposed a fastener lay-

out/topology that achieves an almost uniform stress level in each joint, and adopted evo-

lutionary structural optimization [56–61] to provide an alternative optimization strategy

to traditional gradient-based topology optimization approaches. In the context of these

past efforts, the focus of this work is on the development of an efficient framework for

determining improved/optimal joining locations so as to minimize the total energy input

into the structure and the strain energy in the joints of a complex structure with variability

using a density-based method.

1.3 Dissertation Overview

The main contributions of this dissertation are summarized briefly as follows:

(1) Novel multiple-component parametric reduced-order models are developed that more

directly and efficiently capture the influence of component-level design changes and
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damages (variabilities in geometrical and material properties) on the system-level

dynamic response.

(2) Next-generation parametric reduced-order models having a numerically stable for-

mulation are developed and used to analyze complex structures modeled with brick-

type finite elements.

(3) New robust signal processing and crack detection algorithms are extended and de-

veloped to identify the size of a crack

(4) Structural optimization techniques are developed in a unique workframe for joining

of components of complex structures for improved dynamic response

The remaining chapters of this dissertation are compiled from a collection of five

manuscripts submitted to archival journals (where they are either in review or in print).

Because of this, some of the background material is repeated in various chapters. The

remaining chapters in this thesis are summarized as follows.

Chapter II describes the development of multiple-component parametric reduced-

order models for design and damage detection (structural variability, dents and crack).

Chapter III describes the development of the next-generation parametric reduced-

order models which have a numerically stable formulation (a new transformation matrix

and a novel parameterization technique) and a local interface reduction technique.

Chapter IV describes robust signal processing for damaged vehicles with variability

to select the optimal sensor locations to capture the mode shapes of a cracked structure,

and to reduce the effects of measurement noise.

Chapter V describes a novel sensor placement for damage identification in a cracked

complex structure with structural variability. It is shown that the crack size is estimated
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very accurately by using a robust signal processing technology and Monte-Carlo simula-

tion techniques.

Chapter VI presents a modeling and joining location optimization methodology for

designing connections between components of assembled structures. New cost functions

developed include the external energy input into the structure with damping and the strain

energy of joints. The optimization techniques are applied to attach armor plate to a V-

shaped structure.

Chapter VII reviews the findings and contributions of this dissertation and proposes

future research topics.



CHAPTER II

Parametric Reduced-Order Models for Predicting the
Vibration Response of Complex Structures with

Component Damage and Uncertainties

2.1 Introduction

Structural analyses based on finite element models (FEMs) are often used to predict

vibration responses, stresses, and other structural characteristics to support design pro-

cesses. Also, evaluating the effects of possible damages (such as cracks and dents) on

the structural response is crucial in a wide variety of applications. As computing power

increases, simulation techniques replace experiments for testing designs, especially when

the experiments are considerably expensive or difficult to execute. However, the com-

plexity of the designs can make the analysis very slow when many component changes are

needed during the design process. This issue is particularly important because usual indus-

trial FEMs (such as automobile bodies and complex airplane structural components) have

millions of degrees of freedom (DOFs). These detailed models, with very large numbers

of DOFs, have to be used to ensure high accuracy. However, the large computational cost

of direct analyses based on these large models detrimentally affects the design cycle, es-

pecially when it is necessary to evaluate the effects of parametric variability and damages

on the structural response. Thus, model reduction techniques such as presented herein are

12
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necessary to reduce the computational cost.

An alternative to direct structural analysis of huge models is based on component mode

synthesis. Many component mode synthesis-based reduced-order modeling techniques

have been published [6–12] because component mode synthesis can be combined with

a wide variety of FEM-based methods. In the context of vibration analysis, component

mode synthesis is used by first dividing the global structure into components. Next, each

component is projected onto a very small truncated set of (component-level) basis vectors

that approximately span the space of the (component-level) response. As a result, the

number of DOFs required to model each component is considerably reduced compared

to standard FEMs. Finally, the models of each component are assembled, and a global

reduced-order model is synthesized. This last step can be performed in several ways. The

most common approach is the fixed-interface Craig-Bampton component mode synthesis

method [7]. Craig-Bampton component mode synthesis is well understood and frequently

used because of its simplicity and numerical stability. Herein, Craig-Bampton component

mode synthesis is used for the substructuring analysis.

Although many reduced-order models have been developed for structural analyses [18,

23–27], they are not constructed for design or damage detection in complex structures.

The key element that separates reduced-order models for design from the rest is that usual

reduced-order models cannot easily be re-constructed when changes are applied (by design

or through damage) in a few components of the overall system. Recently, design-oriented

reduced-order models have been developed to avoid prohibitively expensive reanalyses

of complex structures. These recent models are referred to as parametric reduced-order

models. For example, Balmes and co-workers [28, 29] calculated sets of modes for a

few sample parameter values in the parameter space, and grouped them into a fixed aug-

mented basis for the modes of the nominal system. This augmented basis was found to
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be suitable for a (parametric) family of models. However, the need for repeatedly solv-

ing many sample eigenproblems makes the approach impractical for global parametric

reduced-order models of realistic industrial FEMs. To accelerate solving the sampled

eigenproblems, this technique was combined with a component-based approach by Zhang

and Park [30, 31] for large FEMs. As a by-product, the eigenproblems of the sampled

space are confined to one specific component, and the resulting global system is reduced

substantially. However, in the projection phase, the component basis has to be expanded

back into the global coordinates. Hence, the approach does not lead to true component-

based parametric reduced-order models. To address that issue, substructural analysis tech-

niques based on parametric reduced-order models have been developed [32]. However,

those parametric reduced-order models can account for one parametric variability in one

substructure only. In contrast, the new component parametric reduced-order models pro-

posed herein allow several substructures to have parametric variability in characteristics

such as geometric parameters (e.g. thickness), or material properties (e.g. Young’s mod-

ulus). These new multiple-component parametric reduced-order models are obtained by

managing the geometric compatibility conditions between substructures.

Geometric variations (e.g. dents in the structure, or thickness variability due to man-

ufacturing) can be treated as parametric variability in the structure. Such an approach

has been used for a few years for investigating the vibration of turbo-machinery bladed

disks. For example, static mode compensation has been used for global models [33, 34]

to compute the vibration response of a structure which has dents or missing material. By

accounting for the effects of geometric variability as though they are produced by external

forces, a set of basis vectors can be established using a combination of normal modes of

the pristine structure compensated by static modes. However, the static mode compen-

sation method for geometric variations has not been applied for substructuring. Herein,
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component mode synthesis with static mode compensation is developed based on Craig-

Bampton component mode synthesis. When substructures have dents, component mode

synthesis with static mode compensation is applied to obtain the vibration response. Fi-

nally, the effects of parameter variations (e.g. thickness and geometric variations) are

analyzed by multiple-component parametric reduced-order models and component mode

synthesis with static mode compensation.

Typical FEM-based techniques for modeling cracks in complex structures lead to re-

markably large models. Also, it is well known that system-level response characteristics

(such as resonant frequencies) of cracked structures differ from their healthy counterparts.

Hence, models which are accurate yet reduced-order are highly desirable for complex

cracked structures. In general, a nonlinear analysis is needed to predict the vibration re-

sponse of a cracked structure because the periodic opening and closing of the crack sur-

faces leads to a (piece-wise linear) nonlinear response. For that, Poudou and Pierre [36,37]

have developed a hybrid frequency-time domain method. In that method, the resonant

frequencies of the cracked structure are found by a forced response analysis which is a

nonlinear problem whose solution is complex and computationally intensive. To alleviate

this issue, the bi-linear frequency approximation (which was first used to predict resonant

frequencies of single-DOF piece-wise linear systems [38]) is generalized to large dimen-

sional models. The approach herein builds on the early methods for studying the vibration

of cracked beams and plates using a multi-DOFs model. Chati et al. [39] have studied bi-

linear frequency approximation for a two dimensional cracked beam, and Saito et al. [40]

have used bi-linear frequency approximation for a three dimensional cracked plate. Note

that the actual motion of the crack surfaces can be quite complex, and there may be more

than two crack states (open and closed) when, for example, the crack closing proceeds

gradually so that different regions of the crack surfaces close at different times. Although
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the generalized bi-linear frequency approximation cannot capture the effects of gradual

opening and closing, it can provide approximate values for the resonant frequencies of

complex cracked structures by employing linear analyses only. Also, the linear analy-

ses required in bi-linear frequency approximation can be performed using Craig-Bampton

component mode synthesis, and that further reduces the computational cost.

The key novel contributions of this paper are as follows. First, the proposed multiple-

component parametric reduced-order models are developed for cases where parameter

variations occur simultaneously in multiple components by developing a novel transfor-

mation matrix. Second, the static mode compensation approach is adapted for use with

Craig-Bampton component mode synthesis to create a novel component-level analysis.

Third, the geometric compatibility conditions normally used in Craig-Bampton compo-

nent mode synthesis are generalized and adapted so that bi-linear frequency approxima-

tion can be implemented efficiently for crack analysis in conjunction with Craig-Bampton

component mode synthesis, component mode synthesis with static mode compensation

and multiple-component parametric reduced-order models.

This paper is organized as follows. In Sec. 2.2, bi-linear frequency approximation and

Craig-Bampton component mode synthesis for the cracked structure are discussed. Also,

multiple-component parametric reduced-order models for structures which have multiple

components with parametric variability, and component mode synthesis with static mode

compensation for components with geometric variations (such as dents) are formulated.

Next, the models for all substructures are assembled by using an effective computational

approach to implement geometric compatibility conditions. In Sec. 2.3, numerical simu-

lations are used to demonstrate the proposed methods for an L-shape structure which has

several substructures with thickness variation and also substructures with damage (dents).

Also, bi-linear frequency approximation is implemented for a cracked L-shape structure.
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Next, the novel reduced-order modeling techniques are applied to a real vehicle model in

Sec. 2.4. Finally, conclusions are summarized in Sec. 2.5.

2.2 Reduced-Order Modeling

2.2.1 Bi-linear frequency approximation and CB-CMS for cracked structures

Bi-linear systems are essentially nonlinear and the notions of natural frequencies and

normal modes are, strictly speaking, not applicable. In this study we focus on the many

cases where the forcing applied to the system is periodic and leads to a periodic response.

Herein, the frequency corresponding to the response with the largest amplitude is referred

to as a resonant response and its frequency is referred to as a resonant frequency. Note

that the systems where penetration is allowed or the crack is considered closed are linear.

In this work, we discuss a methodology to approximate the nonlinear resonant frequencies

based on resonant frequencies of systems where penetration is allowed, or the crack is

considered closed at all times. Herein, we consider bi-linear systems under harmonic

excitation which are assumed to produce a periodic response. While periodic responses are

certainly observed in many applications, they are not guaranteed to occur in all occasions.

Even when periodic solutions are possible, there can be complicating features such as

multiplicity of steady state responses and dependency on initial conditions. Such cases are

exciting but are beyond the scope of this work.

Bi-linear frequency approximation

In this section, the bi-linear frequency approximation (BFA) is generalized and used to

analyze three-dimensional cracked structures. Initially, BFA was used to provide approxi-

mate resonant frequencies for single-DOF piecewise linear (bi-linear) systems. In essence,
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BFA can be expressed as [38]

ωb =
2ω1ω2

ω1 + ω2

, (2.1)

where ωb is the approximate resonant frequency, ω1 is the resonant frequency of one of

the linear systems associated with the piecewise linear system, and ω2 is that of the other

linear system of the piecewise linear system. This expression is the exact solution for the

undamped oscillation of a piecewise linear (bi-linear) single-DOF oscillator. The applica-

tion of Eq. (2.1) is more complex for more general cases such as cracked plates because in

those cases multiple DOFs are located on the crack surfaces. Hence, the model involves

multiple piecewise linear systems. Nevertheless, for many cases one can assume that the

cracked system behaves as if it were defined by only two linear systems, corresponding to

two states: one when the crack is fully open, and for when the crack fully is closed. In the

following, these states are referred to as state 1 and state 2.

The definition of the states 1 and 2 can be extended to those proposed by Chati et

al. [39], who analyzed the in-plane bending vibrations of a cracked beam. Specifically,

state 1 (open crack) is defined by removing the constraint of no penetration of the crack

surfaces. That is, for state 1 there is no constraint applied on the relative motion between

the corresponding nodes (one on each crack surface) that are in contact when the crack is

closed. Hence, for state 1, inter-penetration is allowed. Similarly, state 2 (closed crack)

is defined by enforcing no penetration, but allowing sliding between the crack surfaces.

That is, for state 2 the relative motion between the nodes (which are located on each of

the two separate faces of the crack) is not allowed in the direction perpendicular to the

crack surface. Their motion in the plane tangent to the crack surfaces is allowed. Hence,

for state 2, sliding is allowed while inter-penetration is not allowed. The mathematical

representation of these two states is detailed in below section.
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CB-CMS for cracked structures

In this section, the fixed-interface Craig-Bampton CMS (CB-CMS) [7] method is used

to construct reduced-order models (ROMs). This modeling approach is used because of its

simplicity and computational stability. To apply CMS, the complex structure of interest is

partitioned into substructures. The DOFs of each substructure are further partitioned into

active DOFs on the interface (indicated by the superscript A), and omitted DOFs in the

interior (indicated by the superscript O). The mass and stiffness matrices for a component

i can then be partitioned to obtain

Mi =

⎡
⎢⎣ mAA

i mAO
i

mOA
i mOO

i

⎤
⎥⎦ , and Ki =

⎡
⎢⎣ kAA

i kAO
i

kOA
i kOO

i

⎤
⎥⎦ .

Next, the physical coordinates are changed to a set of coordinates representing the am-

plitudes of a selected set of fixed-interface component-level normal modes ΦN
i (indi-

cated by the superscript N), and the amplitudes of the full set of static constraint modes

ΦC
i = −kOO

i
−1
kOA
i (indicated by the superscript C). The transformed mass and stiffness

matrices for component i can be expressed as

M̂i =

⎡
⎢⎣ m̂C

i m̂CN
i

m̂NC
i m̂NN

i

⎤
⎥⎦ , and K̂i =

⎡
⎢⎣ k̂C

i k̂CN
i

k̂NC
i k̂NN

i

⎤
⎥⎦ . (2.2)

To model the dynamics of cracked structures and to apply BFA, the substructuring is

done such that all cracks are along boundaries between adjacent substructures. Hence, all

crack surfaces are boundaries between substructures. Thus, in Eq. (2.2), the DOFs marked

as C are obtained from interface DOFs (which are the interface DOFs for the ith substruc-

ture). The interface DOFs are further divided into constraint DOFs (shown by superscript

CC) and free DOFs (indicated by superscript FF ) for BFA. For example, for state 1 (open

crack), the DOFs on the crack surfaces are completely free (and the inter-penetration of
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Figure 2.1: Conceptual view of the groups of DOFs corresponding to superscripts A, O,
C, N , CC, and FF

crack surfaces is allowed). These DOFs on the crack surfaces (are free DOFs for state

1 and) are indicated by superscript FF in Eq. (2.3). For state 2 (closed crack), sliding

boundary conditions are applied at the crack surfaces. Thus, the constrained DOFs (for

sliding boundary conditions) are denoted by superscript CC in Eq. (2.3). Using these two

kinds of geometric compatibility conditions, the frequencies ω1 and ω2 in Eq. (2.1) are

obtained through two separate linear analyses. Thus, if component i has a crack surface,
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the component-level mass and stiffness matrices are partitioned as

M̂i =

⎡
⎢⎢⎢⎢⎢⎣

m̂CC
i m̂CF

i m̂CCN
i

m̂FC
i m̂FF

i m̂FFN
i

m̂NCC
i m̂NFF

i m̂NN
i

⎤
⎥⎥⎥⎥⎥⎦ and

(2.3)

K̂i =

⎡
⎢⎢⎢⎢⎢⎣

k̂CC
i k̂CF

i k̂CCN
i

k̂FC
i k̂FF

i k̂FFN
i

k̂NCC
i k̂NFF

i k̂NN
i

⎤
⎥⎥⎥⎥⎥⎦ .

The notation contains many superscripts such as A, O, C, N , CC, and FF . To clar-

ify the meaning of these superscripts, Fig. 2.1 provides a conceptual view of the groups

of DOFs corresponding to these superscripts. Since all crack surfaces are at interfaces

between components, the geometric compatibility conditions at the interfaces between

substructures are applied only for the DOFs marked as CC in Eq. (2.3). For example, if a

substructure does not have a crack surface, then there are no DOFs marked as FF , and all

DOFs are marked as CC. Hence, the geometric compatibility conditions are applied to all

DOFs marked as C in Eq. (2.2). In general, all DOFs on the boundaries are constrained

except the DOFs corresponding to the crack surfaces. The DOFs along crack surfaces (de-

noted by FF ) are not constrained. Also, note that all boundary DOFs are active DOFs,

and the geometric compatibility conditions used to assemble every substructure are applied

only to the DOFs marked as CC in Eq. (2.3).

2.2.2 Multiple-component parametric reduced-order models

Global Parametric reduced-order models (PROMs) [29] have been developed for fast

reanalyses of structures with parametric variability in their properties. An important draw-

back of existing global PROMs is that they require computationally expensive calculations

to determine multiple sets of system-level eigenvectors. These eigenvectors are needed
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when multiple parameters are considered. Thus, component-mode-based PROMs [30]

have been developed to adopt component normal modes and characteristic constraint modes

as projection basis instead of global modes. However, constructing component-mode-

based PROMs is also time consuming because the approach still requires the calculation

of system-level (global) interface modes. These interface modes are needed for the sec-

ondary modal analysis performed on the system-level matrix partitions (corresponding to

the interface DOFs) for all of the components in the global model. Thus, Park [32] intro-

duced truly component-level analysis for constructing PROMs, referred to as component-

PROMs. However, component-PROMs can be applied only to one component (and a sin-

gle parametric variability). This issue is addressed herein by developing novel component-

PROMs for multiple components. These new models can be used for cases where para-

metric variability (or damages) are present in several substructures simultaneously. For

each substructure, a single variation is considered in parameters such as Young’s mod-

ulus, or in geometric characteristics such as thickness. These models are referred to as

multi-component PROMs (MC-PROMs).

A family of models can be defined as all models which differ only through a single

parameter. Herein, we focus on families of component-level models first. Consider a

family of models for parameter p for the ith component of a (global) structure. The mass

and stiffness matrices of the ith component for this family of models can be approximated

by using Taylor series. For example, for a linear thin plate element, the modification of the

stiffness matrix due to variations in the thickness of the plate can be accurately represented

by a Taylor series up to the third order, while the mass matrix can be approximated by

a Taylor series up to first order, neglecting the rotary inertia [32]. The first and the third

order Taylor series approximations about the nominal parameter value p0 can be expressed
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as follows

Mi(p) ≈ Mi(p0) +
∂Mi

∂p
(p− p0),

Ki(p) ≈ Ki(p0) +
∂Ki

∂p
(p− p0) (2.4)

+
1

2

∂2Ki

∂p2
(p− p0)

2 +
1

6

∂3Ki

∂p3
(p− p0)

3.

Computationally, the partial derivatives in Eq. (2.4) can be approximated using standard

finite differences for a small parameter variation Δp as follows

M1
FD =

∂Mi

∂p
≈ Mi(p0 +Δp)−Mi(p0)

Δp

K1
FD =

∂Ki

∂p
≈ Ki(p0 +Δp)−Ki(p0)

Δp

(2.5)
K2

FD =
∂2Ki

∂p2
≈ Ki(p0 +Δp)− 2Ki(p0) +Ki(p0 −Δp)

Δp2

K3
FD =

∂3Ki

∂p3
≈ Ki(p0 + 2Δp)− 3Ki(p0 +Δp) + 3Ki(p0)−Ki(p0 −Δp)

Δp3

Then, the parameterized component matrices can be obtained by substituting Eq. (2.5) into

Eq. (2.4) to obtain

Mi(p) ≈ Mi(p0) +M1
FD(p− p0),

Ki(p) ≈ Ki(p0) +K1
FD(p− p0) (2.6)

+
1

2
K2

FD(p− p0)
2 +

1

6
K3

FD(p− p0)
3.

To obtain a ROM for a ith component, each parametric family of component models

is projected onto a (constant) component-level modal basis Φ̂i. This basis is calculated

(for each component) at a few given (perturbed) sets of parameter values. This basis is

used for all configurations in the parameter space of the corresponding component. The

component-level modal basis Φ̂i for ith component can be expressed as

Φ̂i =

⎡
⎢⎣ I I 0

Ψ0
i ΨU

i Φaug
i

⎤
⎥⎦ , (2.7)
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where Φaug
i is referred to as the matrix of augmented fixed-interface normal modes

Φaug
i =

[
Φ0

i Φ1
i Φ2

i Φ3
i

]
, (2.8)

and the superscript 0 indicates quantities computed for the nominal parameter values,

while the superscript U , 1, 2 and 3 indicate quantities computed for perturbed parame-

ter values (which can be, for example, p + Δp, p + 2Δp, and p + 3Δp). Vectors Φi and

Ψi in Eq. (2.7) represent fixed-interface normal modes and static constraint modes.

When the stiffness matrix is represented by a third order Taylor series, then the fixed-

interface normal modes for three perturbed structures are computed to form a transfor-

mation matrix. In general, taken all together, the modes in Φaug
i are not orthogonal. For

numerical stability, an orthogonal basis for the space spanned by these modes is used. To

that aim, the left singular vectors of Eq. (2.8) are computed, and the left singular vector

U corresponding to singular values larger than 0.01% of the maximum singular values are

selected. Next, U is used to construct a transformation matrix (instead of the augmented

fixed-interface normal modes Φaug
i ). The final transformation matrix can be expressed as

Φ̂i =

⎡
⎢⎣ I I 0

Ψ0
i ΨU

i Ui

⎤
⎥⎦ , (2.9)

Using Eq. (2.9) into Eq. (2.6), the physical coordinates are transformed to coordinates

along the collected set of modes Φ̂i for the ith component. The transformed mass and

stiffness matrices can be expressed as

M̂i(p) ≈ Φ̂T
i Mi(p0)Φ̂i + Φ̂T

i M
1
FDΦ̂i(p− p0),

K̂i(p) ≈ Φ̂T
i Ki(p0)Φ̂i + Φ̂T

i K
1
FDΦ̂i(p− p0)

+
1

2
Φ̂T

i K
2
FDΦ̂i(p− p0)

2 +
1

6
Φ̂T

i K
3
FDΦ̂i(p− p0)

3.

The modal basis consists of internal and interface DOFs for each substructure. Thus,
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the mass and stiffness matrices for the ith component used for MC-PROM can be parti-

tioned as follows

MPROM
i =

⎡
⎢⎢⎢⎢⎢⎣

mC00
i mC0U

i mCN00
i

mCU0
i mCUU

i mCNUU
i

mNC00
i mNCUU

i mNd
i

⎤
⎥⎥⎥⎥⎥⎦ , (2.10)

KPROM
i =

⎡
⎢⎢⎢⎢⎢⎣

kC00
i kC0U

i kCN00
i

kCU0
i kCUU

i kCNUU
i

kNC00
i kNCUU

i kNd
i

⎤
⎥⎥⎥⎥⎥⎦ . (2.11)

In addition, the interface DOFs are also divided into constrained DOFs (denoted by super-

script CC) and free DOFs (denoted by superscriptFF ) to apply open and sliding boundary

conditions for BFA as in Eq. (2.3). Thus, the interface DOFs marked as C can also be di-

vided into CC and FF DOFs. Then, the MC-PROM mass and stiffness matrices can be

partitioned as

MPROM
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mCC00
i mCF00

i mCC0U
i mCF0U

i mCCN00
i

mFC00
i mFF00

i mFC0U
i mFF0U

i mFFN00
i

mCCU0
i mCFU0

i mCCUU
i mCFUU

i mCCNUU
i

mFCU0
i mFFU0

i mFCUU
i mFFUU

i mFFNUU
i

mNCC00
i mNFF00

i mNCCUU
i mNFFUU

i mNd
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.12)

KPROM
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kCC00
i kCF00

i kCC0U
i kCF0U

i kCCN00
i

kFC00
i kFF00

i kFC0U
i kFF0U

i kFFN00
i

kCCU0
i kCFU0

i kCCUU
i kCFUU

i kCCNUU
i

kFCU0
i kFFU0

i kFCUU
i kFFUU

i kFFNUU
i

kNCC00
i kNFF00

i kNCCUU
i kNFFUU

i kNd
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.13)
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2.2.3 Component mode synthesis with static mode compensation

In this section, a novel, component-based modeling technique for systems containing

dents is formulated using a mode-acceleration method based on static mode compensa-

tion (SMC). Lim et al. [34] used this modeling technique for structures with geometric

variation. However, that SMC technique was applied to global structural analysis and

not to substructural analysis. Herein, an SMC technique is developed for substructural

analysis. The resulting reduced-order modeling method is referred to as component mode

synthesis with static mode compensation (SMC-CMS). Note that, although this procedure

is formally similar to CB-CMS, the bases used are distinct.

The mass and stiffness matrices of the ith dented substructure can be expressed as

MD
i =

⎡
⎢⎣ mAA

i
D

mAO
i

D

mOA
i

D
mOO

i
D

⎤
⎥⎦ , and KD

i =

⎡
⎢⎣ kAA

i
D

kAO
i

D

kOA
i

D
kOO
i

D

⎤
⎥⎦ ,

where the DOFs of each substructure have been partitioned into active DOFs on the inter-

face (indicated by the superscript A), and omitted DOFs in the interior (indicated by the

superscript O).

In the CB-CMS method, a selected set of fixed-interface component-level normal

modes ΦN
i are obtained using the component-level mass and stiffness matrices Mi and Ki.

In contrast, in the SMC-CMS method, a truncated/selected set of fixed-interface normal

modes calculated using SMC are used. Hence, the normal modes of the pristine / healthy

substructure are compensated by using static modes. To that aim, the changes in the mass

and stiffness matrices due to the presence of the dent are expressed as Mδ
i = MD

i −MH
i ,

and Kδ
i = KD

i −KH
i , where the superscripts D and H indicate dented and healthy sub-

structures.

The active DOFs (which are interface DOFs between substructures) are needed for

applying the geometric compatibility conditions. In addition to those DOFs, there are
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other active DOFs which have to be considered. These other active DOFs (indicated by the

subscript Γ) are DOFs affected the dent. These DOFs are needed to model the attachment

modes used in the SMC-CMS method. The attachment modes ΨH are obtained using the

DOFs marked as Γ together with the omitted DOFs.

One physical interpretation of SMC is that an equivalent force is applied to the struc-

ture to account for the changes in dynamics due to the dent. This equivalent force [33,34]

can be expressed as

fij =
(
−ωH

ij

2
MOO

i

D
+KOO

i

D
)
ΦH

ij =

⎡
⎢⎣ 0(

−ωH
ij

2
MOO

i
δ
+KOO

i
δ
)
ΦH

Γ,ij

⎤
⎥⎦ ,

where ωH
ij and ΦH

ij are the jth natural frequency and mode shape of the ith healthy sub-

structure, and ΦH
Γ,ij are the portions of ΦH

ij which correspond to the DOFs where a dent

is present (i.e. the DOFs marked as Γ). The static modes used in SMC are defined by

KD
i
−1
fij , and can be obtained using the following relation [33, 34]

KD
i

−1
fij = KH

i

−1
(
I+Kδ

iK
H
i

−1
)−1

fij = KH
i

−1
gij , (2.14)

where

gij =
(
I+Kδ

iK
H
i

−1
)−1

fij .

Eq. (2.14) shows that the static modes can be obtained by a static analysis where the

(static) forces fij are applied to the dented substructure, or the (static) forces gij are applied

to the healthy substructure. Also, these static modes can be computed as a linear combina-

tion of healthy-structure attachment modes with the coefficients being the corresponding

forces, that is

KD−1
fij = KH−1

gij = ΨHgΓ,ij.
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Finally, the truncated set of component-level normal modes for the healthy substructure

(compensated by static modes) can be obtained as

ΦSMC
i = ΦH

i −ΨH
i GΓ,i.

This set of modes is used in SMC-CMS to construct ROMs. The resulting ROMs are

similar to the ones obtained using fixed-interface normal modes in CB-CMS.

Using the truncated set of normal modes ΦSMC
i , the reduced mass and stiffness matri-

ces can be expressed as follows

MSMC
i =

⎡
⎢⎣ mC

i mC,SMC
i

mSMC,C
i mSMC

i

⎤
⎥⎦ , (2.15)

KSMC
i =

⎡
⎢⎣ kC

i kC,SMC
i

kSMC,C
i kSMC

i

⎤
⎥⎦ , (2.16)

where the superscript C refers to constraint modes, and

mC
i = mAA

i

D
+ΨC

i m
OA
i

D
+ΨC

i

T
mOO

i

D
ΨC

i

T
,

mC,SMC
i = mAO

i

D
ΦSMC

i +ΨC
i

T
mOO

i

D
ΦSMC

i ,

mSMC,C
i = MC,SMC

i

T
,

mSMC
i = ΦSMC

i

T
mOO

i

D
ΦSMC

i , (2.17)

The formulas for the stiffness matrices are similar to those for the mass matrices (and are

omitted here for the sake of brevity).

Similar to the CB-CMS and MC-PROM matrices used for BFA, the DOFs marked as

C can be partitioned into CC and FF DOFs. One obtains

MSMC
j =

⎡
⎢⎢⎢⎢⎢⎣

mCC
j mCF

j mCC,SMC
j

mFC
j mFF

j mFF,SMC
j

mSMC,CC
j mSMC,FF

j mSMC
j

⎤
⎥⎥⎥⎥⎥⎦ , (2.18)
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Figure 2.2: Conceptual diagram depicting the process of building a PROM

KSMC
j =

⎡
⎢⎢⎢⎢⎢⎣

kCC
j kCF

j kCC,SMC
j

kFC
j kFF

j kFF,SMC
j

kSMC,CC
j kSMC,FF

j kSMC
j

⎤
⎥⎥⎥⎥⎥⎦ . (2.19)

2.2.4 Geometric compatibility conditions for MC-PROM, CB-CMS and SMC-CMS

In MC-PROM, the component-level mass and stiffness matrices are spanned by ma-

trices corresponding to the nominal and the perturbed parameters. Hence, the interface

DOFs (indicated by the superscript C) of the substructure are not the same in MC-PROM
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as in CB-CMS and SMC-CMS.

The component-level matrices used in CB-CMS and SMC-CMS (given in Eqs. (2.2),

(2.15) and (2.16)) have single interface parts, so in this Section, CMS indicates both CB-

CMS and SMC-CMS. However, in Eqs. (2.10) and (2.11), one may note that the interface

parts of the PROM matrices are twice as many as those of the mass and stiffness matrices

used in CB-CMS and SMC-CMS. Thus, geometric compatibility conditions are enforced

to assemble these matrices (CB-CMS, SMC-CMS and MC-PROM), as described next.

Fig. 2.2 shows the procedure used to construct a PROM. In particular, reduced-order

modeling techniques are applied to each substructure, and then geometric compatibility

conditions are enforced. The process may be summarized as follows: (a) the system ma-

trix is divided into components according to the type of parameter variation and/or dam-

age, (b) a ROM is constructed for each substructure, (c) the constrained (CC) and free

(FF ) DOFs are assigned for the substructures which have crack surfaces at their interface

with other components, (d) substructures modeled using the CB-CMS or the SMC-CMS

approach are assembled, (e) substructures modeled using the PROM approach are assem-

bled, and (f) the partially assembled structure modeled using CB-CMS or SMC-CMS, and

the partially assembled structure modeled using PROM are assembled together. Note that

when each substructure is assembled, the geometric compatibility conditions are applied

to the DOFs marked as CC. A more detailed description of this procedure is as follows.

MC-PROM is applied for the design of the parts of the structure which have parametric

variability, and CB-CMS is applied for the remainder of the structure. This remainder

is the full structure minus the parameterized components (which are the components of

interest in the design process, referred to as design components). In addition, SMC-CMS

is applied for dented components.

Recall that the SMC-CMS method is similar to CB-CMS except that it uses a different
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truncated set of (component-level) normal modes. Hence, the interface parts for SMC-

CMS and CB-CMS have the same meaning. Thus, dented components can be grouped

together with the remainder of the structure for the purpose of applying geometric com-

patibility conditions.

In general, a complex structure has remainder substructures and substructures which

have parameter variability. First, CB-CMS is applied for the nominal components, and

SMC-CMS is applied for the dented components. Next, consider that a crack exists be-

tween substructure i (a reminder substructure where CMS is applied) and substructure j (a

substructure which has parameter variability and where MC-PROM is applied). Then, the

DOFs marked as FF are assigned only for matrices of substructures i and j for the pur-

pose of applying BFA. The complete, reduced-order, component-level equations of motion

for each component based on CB-CMS, SMC-CMS and MC-PROM can be expressed as

follows

MCMS
i q̈CMS

i +KCMS
i qCMS

i = FCMS
i , (i = 1, 2, · · · ) ,

...

MPROM
j q̈PROM

j +KPROM
j qPROM

j = FPROM
j , (j = 1, 2, · · · ) .

To apply the interface compatibility conditions, the equations above are grouped into

one global equation of motion. The resulting mass and stiffness matrices, and the forcing

vector can be expressed as

M̂ = Bdiag

[
MCMS

1 MCMS
2 · · · MPROM

1 MPROM
2 · · ·

]
, (2.20)

K̂ = Bdiag

[
KCMS

1 KCMS
2 · · · KPROM

1 KPROM
2 · · ·

]
, (2.21)

F̂ =

[
FCMS

1
T

FCMS
2

T · · · FPROM
1

T
FPROM

2
T · · ·

]T
, (2.22)

where Bdiag[.] denotes a block-diagonal matrix.



32

The first set of geometric compatibility conditions for CMS and MC-PROM are ex-

pressed (separately) as

qCCr = qCCr
1 + qCCr

2 + · · · ,
qCCd

00
= qCCd

1

00
+ qCCd

2

00
+ · · · , (2.23)

qCCd
UU

= qCCd
1

UU
+ qCCd

2

UU
+ · · · ,

where the subscript r indicates components of the remainder of the structure, and the

superscript 0 indicates quantities computed for the nominal parameter values, while the

superscript U indicates quantities computed for perturbed parameter values (which can

be, for example, the upper limits for the parameters of interest). Note that the geometric

compatibility conditions are applied only for the constrained DOF.

Eq. (2.23) are applied into Eqs. (2.20) - (2.22) to assemble the matrices for CMS and

MC-PROM, one part at a time. Then, these mass and stiffness matrices are assembled to

obtain the full system-level matrices and forcing vector as

¯̂
M = Bdiag

[
MCMS MPROM

]
, (2.24)

¯̂
K = Bdiag

[
KCMS KPROM

]
, (2.25)

¯̂
F =

[
FCMS

T FPROM
T

]T
, (2.26)

where

MCMS =

⎡
⎢⎢⎢⎢⎢⎣

MCCr
CMS MCFr

i MCCNr
CMS

MFCr
i MFFr

i MFFNr
CMS

MNCCr
CMS MNFFr

CMS MNNr
CMS

⎤
⎥⎥⎥⎥⎥⎦ ,
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KCMS =

⎡
⎢⎢⎢⎢⎢⎣

KCCr
CMS KCFr

j KCCNr
CMS

KFCr
j KFFr

j KFFNr
CMS

KNCCr
CMS KNFFr

CMS KNNr
CMS

⎤
⎥⎥⎥⎥⎥⎦ , FCMS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fCCr
1 + fCCr

2 + · · ·
fFFr
i

fNNr
1

fNNr
2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

MPROM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MCC00
PROM MCC0U

PROM MCF00
j MCF0U

j MCCN00
PROM

MCCU0
PROM MCCUU

PROM MCFUO
j MCFUU

j MCCNUU
PROM

MFC00
PROM MFC0U

PROM MFF00
j MFF0U

j MFFN00
PROM

MFCU0
PROM MFCUU

PROM MFFU0
j MFFUU

j MFFNUU
PROM

MNCC00
PROM MNCCUU

PROM MNFF00
j MNFUU

j MNNd
PROM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

KPROM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KCC00
PROM KCC0U

PROM KCF00
j KCF0U

j KCCN00
PROM

KCCU0
PROM KCCUU

PROM KCFUO
j KCFUU

j KCCNUU
PROM

KFC00
PROM KFC0U

PROM KFF00
j KFF0U

j KFFN00
PROM

KFCU0
PROM KFCUU

PROM KFFU0
j KFFUU

j KFFNUU
PROM

KNCC00
PROM KNCCUU

PROM KNFF00
j KNFUU

j KNNd
PROM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

FPROM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fCC00
1 + · · ·+ fCC00

N

fCCUU
1 + · · ·+ fCCUU

N

fFF00
j

fFFUU
j

fNNd
1

fNNd
2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



34

Although the boundary DOFs in the MC-PROM matrices are duplicated for the nom-

inal and perturbed parameter parts, each relative displacement between DOFs of adjacent

substructures is still the same for CMS and MC-PROM. Therefore, a second set of geo-

metric compatibility conditions is given by

qCCr
1 + qCCr

3 + · · ·+ qCCr
L = qCC00

2 + qCCUU
2 + · · ·+ qCC00

N + qCCUU
N , or

qCCr = qCC00 + qCCUU = qCCd .

By applying this second set of geometric compatibility conditions into Eqs. (2.24) - (2.26),

the CMS and MC-PROM matrices and forcing vector can be rearranged to obtain the full

system-level matrices as

Msys =

⎡
⎢⎢⎢⎢⎢⎣

MCC MCF MCCN

MFC MFF MFFN

MNCC MNFF MNN

⎤
⎥⎥⎥⎥⎥⎦ , (2.27)

Ksys =

⎡
⎢⎢⎢⎢⎢⎣

KCC KCF KCCN

KFC KFF KFFN

KNCC KNFF KNN

⎤
⎥⎥⎥⎥⎥⎦ , (2.28)

Fsys =

[
fCCT

fFFT
fNNT

]T
, (2.29)

where

MCC =

⎡
⎢⎣ MCC

00 MCC
0U

MCC
U0 MCC

UU

⎤
⎥⎦ ,

MCF =

⎡
⎢⎣ MCF

i MCF00
j MCF0U

j

MCF
i MCFU0

j MCFUU
j

⎤
⎥⎦ ,
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MCCN =

⎡
⎢⎣ mCrNr

1 mCrNr
2 · · · mC0Nd

1 mC0Nd
2 · · ·

mCrNr
1 mCrNr

2 · · · mCUNd
1 mCUNd

2 · · ·

⎤
⎥⎦ ,

MFC = MCF T
,

MFF =

⎡
⎢⎢⎢⎢⎢⎣

MFF
i 0 0

0 MFF00
j MFF0U

j

0 MFF0U
j MFFUU

j

⎤
⎥⎥⎥⎥⎥⎦ ,

MFFN =

⎡
⎢⎢⎢⎢⎢⎣

mFFNr
i 0 · · · 0 0 · · · 0

0 0 · · · 0 MFFN00
j · · · 0

0 0 · · · 0 MFFNUU
j · · · 0

⎤
⎥⎥⎥⎥⎥⎦ ,

MNCC = MCCNT
, MNFF = MFFNT

,

MN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mNNr
1 0 0 0 0 0

0 mNNr
2 0 0 0 0

0 0
. . . 0 0 0

0 0 0 mNNd
1 0 0

0 0 0 0 mNNd
2 0

0 0 0 0 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

KCC =

⎡
⎢⎣ KCC

00 KCC
0U

KCC
U0 KCC

UU

⎤
⎥⎦ ,

KCF =

⎡
⎢⎣ KCF

i KCF00
j KCF0U

j

KCF
i KCFU0

j KCFUU
j

⎤
⎥⎦ ,
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KCCN =

⎡
⎢⎣ kCrNr

1 kCrNr
2 · · · kC0Nd

1 kC0Nd
2 · · ·

kCrNr
1 kCrNr

2 · · · kCUNd
1 kCUNd

2 · · ·

⎤
⎥⎦ ,

KFC = KCF T
,

KFF =

⎡
⎢⎢⎢⎢⎢⎣

KFF
i 0 0

0 KFF00
j KFF0U

j

0 KFF0U
j KFFUU

j

⎤
⎥⎥⎥⎥⎥⎦ ,

KFFN =

⎡
⎢⎢⎢⎢⎢⎣

kFFNr
i 0 · · · 0 0 · · · 0

0 0 · · · 0 KFFN00
j · · · 0

0 0 · · · 0 KFFNUU
j · · · 0

⎤
⎥⎥⎥⎥⎥⎦ ,

KNCC = KCCNT
, KNFF = KFFNT

,

KN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kNNr
1 0 0 0 0 0

0 kNNr
2 0 0 0 0

0 0
. . . 0 0 0

0 0 0 kNNd
1 0 0

0 0 0 0 kNNd
2 0

0 0 0 0 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

FCC =

⎡
⎢⎣ fCCr

1 + fCCr
2 + · · ·+ fCC0

1 + fCC0
2 + · · ·

fCCr
1 + fCCr

2 + · · ·+ fCCU
1 + fCCU

2 + · · ·

⎤
⎥⎦ ,
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FFF =

⎡
⎢⎢⎢⎢⎢⎣

fFF
i

fFF00
j

fFFUU
j

⎤
⎥⎥⎥⎥⎥⎦ , and FNN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fNNr
1

fNNr
2

...

fNNd
1

fNNd
2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Eqns. (2.27) - (2.29) represent the assembled system matrices and forcing vector for

the global ROM. However, the system matrices are (in general) singular due to the trans-

formation matrix used for PROM in Eq. (2.9). There, the constraint modes Ψ0
i for the

nominal parameter values (indicated by superscript 0) and the constraint modes ΨU
i for a

perturbed parameter value can be linearly dependent. Thus, to numerically stabilize the

system, the modal assurance criterion (MAC) for Ψ0
i and ΨU

i is used when the ith compo-

nent PROM matrices are obtained. The MAC is given by

MACi =
Ψ0

i
T
ΨU

i√
Ψ0

i
T
Ψ0

i

√
ΨU

i
T
ΨU

i

, eijj(MACi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 MAC ≥ ε

1 MAC < ε

,

where subscript j in ejj indicates the jth static constraint mode, and ε is a constant close

to 1 which is used to distinguish linearly dependent modes among all the static constraint

modes. Note that only the counterpart modes for the perturbed parameter case need to be

checked against those of the nominal parameter case. Here, eijj is a vector used to decide

whether to keep or to eliminate the static constraint mode j of the PROM substructure

i. The entries of the eliminating vector consist only of 0 or 1. Using the eliminating

vector eijj , the system matrices are reduced by eliminating DOFs which correspond to the

perturbed parameter case.



38

Table 2.1: Thickness variations in substructures 1, 6 and 7

Substructure Thickness, Case 1 Thickness, Case 2

1 0.4 mm → 0.473 mm 0.4 mm → 0.435 mm

6 0.4 mm → 0.422 mm 0.4 mm → 0.491 mm

7 0.4 mm → 0.493 mm 0.4 mm → 0.481 mm

2.3 Results for a Moderately Complex Structure: L-Shape Structure

To demonstrate the proposed MC-PROM, SMC-CMS and BFA methodologies, an L-

shaped structure (shown in Fig. 2.3) with various parameter variations and dents has been

investigated numerically. The left side of Fig. 2.3 is the pristine structure, and the right

side of Fig. 2.3 shows the damaged structure. The forced response of the L-shape structure

is computed, and resonant frequencies are identified. The structure consists of eight sub-

structures. Substructures 1, 6 and 7 have thickness variations as shown by Case 1 and Case

2 in Tab. 2.1. Moreover, substructures 3 and 5 have geometric variations (dents). The CB-

CMS method is applied for the remainder of the structure (the part of the structure which

does not have any thickness or other geometric variations). Those are substructures 2, 4,

Sub 01

Sub 02
Sub 03

Sub 04
Sub 05

Sub 06Sub 07

Sub 08

 Force

Force

Dents
Sub 01

Sub 02Sub 03

Sub 04
Sub 05

Sub 06Sub 07

Sub 08

Force

Force

Figure 2.3: Healthy structure and damaged structure with thickness variations
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Figure 2.4: Forced response predictions provided by a full finite element model and a
PROM for the healthy and damaged structures with thickness variations for
Case 1 and Case 2

and 8. The remainder substructures are healthy and have nominal thickness of 0.4 mm.

The MC-PROM and SMC-CMS methods are implemented for thickness and geometric

variations respectively. Fig. 2.4 shows the system-level forced response for the healthy

structure and the two cases of thickness variation. The response predicted by the PROM

agrees well with the response proved by the full order model. On the left in Fig. 2.4,

the dotted line represents the vibration response for the healthy structure, and the solid

line is the response of the damaged structure with thickness variation (Case 1) and dents.

Both these results are obtained using a full finite element model and response calcula-

tions performed using NASTRAN. Also, NASTRAN was used to obtain the finite element

mass and stiffness matrices and force vectors. Using that information from NASTRAN,

an in-house code was used to compute the structural vibration response.

The dashed line shows results obtained using a PROM based on CB-CMS, SMC-CMS,

and MC-PROM. The results provided by the full model agree very well with those ob-

tained using the novel PROM. In addition, on the right in Fig. 2.4, the dotted line is the

response of the healthy structure, and the dashed line and the solid line are those for Case
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Figure 2.5: Cracked structure with geometric and thickness variations, and resonant fre-
quencies predicted using BFA for the first 10 modes
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Figure 2.6: Shifts of resonant frequencies for cases 1 and 2 for the 6th and 8th modes

1 and Case 2, respectively. These results show that the example considered is a challeng-

ing one because even small structural variations in one component affect the system-level

vibration response.

The left side of Fig. 2.5 shows the structure which has not only a dent and thickness

variations as in Case 1 and Case 2, but also a crack between substructures 7 and 8. This

structure has the same dents and thickness variations as in cases 1 and 2. The resonant

frequencies of the first 10 modes are shown on the right in Fig. 2.5. The solid line and
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the dashed line are the resonant frequencies for cases 1 and 2, respectively. The right

side of Fig. 2.5 shows that the frequencies of the higher modes are shifted (compared to

the healthy structure) more than frequencies of the lower modes. Fig. 2.6 shows the shift

of the resonant frequency for the 6th and 8th modes respectively. The crack length varies

from 20% to 80% (of structure’s width). Note that the resonant frequencies are also shifted

due to the thickness variations.

2.4 Results for a Complex Structure: HMMWV frame

In Sec. 2.3, the PROM method is applied to a moderately large model which consists of

eight substructures. The total number of DOFs of the L-shape structure is not huge, so the

analysis time using the full order and reduced-order models are not dramatically different.

In this section, the PROM method is used to predict the dynamic response of a realistic

vehicle model which is the base frame of a high mobility multipurpose wheeled vehicle

(HMMWV). The finite element model for the HMMWV is a conventional model used to

examine its dynamic response. Fig. 2.7 shows the finite element model of the HMMWV

frame, and Fig. 2.8 shows each substructure of the HMMWV frame for constructing a

PROM. The substructure which represents the reinforcement frame of the back and front

left-rails have thickness variations, and the engine cradle has a dent. Tab. 2.3 shows two

123456

123456

123456

Figure 2.7: HMMWV frame FE model



42

123456

123456

123456

123456

Lrear

Lfront Reinforcement frame

(thickness variation)

Engine cradle (dent)

Figure 2.8: Substructuring for HMMWV frame

Table 2.2: Comparison of the full order model and the PROM

Types Full Order Model PROM

System DOFs 119,808 2,420

Initial Analysis Time 60,125 (sec.) 21,955 (sec.)

Reanalyses Time 60,125 (sec.) 595 (sec.)

cases of thickness variation of the reinforcement frames. The total number of DOFs of

the HMMWV model is 119,808, and the calculation time for one full order analysis takes

more than 6 hours. However, the PROM approach reduces the number of DOFs of the

system and lowers the calculation time dramatically. Not only the time needed for the

initial calculation is shortened, but also the time for subsequent analyses is drastically

decreased. In Tab. 2.2, the number of DOFs and the computational time required for the

initial analysis and for the reanalyses are shown. The number of DOFs of the PROM is

much lower than that for the full order finite element model. Note that natural frequencies

are needed for BFA. If natural frequencies are obtained from the full order finite element

model which has 119,808 DOFs, the calculation time is much longer than that required by

PROM because PROM requires fewer than 2000 DOFs. In addition, the initial analysis
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Table 2.3: Thickness variations for the HMMWV frame in substructures Lfront and Lrear

Substructure Thickness, Case 1 Thickness, Case 2

Lfront 3.0378 mm → 4.6268 mm 3.0378 mm → 5.5788 mm

Lrear 3.0378 mm → 5.3838 mm 3.0378 mm → 4.0908 mm
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Figure 2.9: Forced response predictions provided by a full finite element model and a
PROM for the healthy and damaged structures with thickness variations for
cases 1 and 2 of the HMMWV frame

time needed for the PROM approach is 3 times shorter than that required by the full order

finite element model. Also, the reanalysis time is 100 times faster than the time required

by the full order finite element model. The time savings are not as large for the initial

analysis as they are for reanalyses because of the need for an eigenanalysis to form the

transformation matrix for each damage type.

Next, forces and moments are applied as excitations in several nodal points of the

structure. Force and moments can be applied by the tires, the engine, and several other

external factors such as the aerodynamics. Herein, forces and moments from the engine

are considered. The Fig. 2.9 shows the response of the the HMMWV frame for cases 1

and 2 of thickness variation respectively. The dotted line shows the forced response of the
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11.11%

88.89%

Crack length varying

along the surface

Figure 2.10: Cracked base frame component

healthy HMMWV structure, and the dashed line and the solid line show the response of

the damaged HMMWV frame. Results obtained using a PROM and the full order model

are shown.

Fig. 2.10 shows the finite element model of the cracked cross frame for the HMMWV

frame. The crack length varies across the frame component from 11.11% to 88.89%. BFA

is used to compute the resonant frequencies of the cracked HMMWV frame model. Note

that the other damages (such as dents and thickness variations) are as in the cases 1 and 2.

The resonant frequencies for cases 1 and 2 of thickness variation of the cracked and dented

HMMWV frame model are shown in Fig. 2.11. These figures show the modes from the

1st mode to the 5th mode, the 11th mode to the 15th mode, and the 26th mode to the 30th

mode, respectively. The lower frequencies shown in Fig. 2.11 do not shift much as the

crack length increases. However, the mid-range resonant frequencies shift much more as

the crack length increases, as shown in Fig. 2.11. Note that several modes switch when the

crack length is around 40%. For the higher modes shown in Fig. 2.11, the frequencies shift

more than those in lower modes, but the mode switching does not take place. Fig. 2.12



45

0 10 20 30 40 50 60 70 80 9024

26

28

30

32

34

36

38

40

42

B
ili

ne
ar

 fr
eq

ue
nc

y 
(H

z)

Crack length ratio (%)

Case 1
Case 2

The 1st to 5th modes

0 10 20 30 40 50 60 70 80 90
64

66

68

70

72

74

76

B
ili

ne
ar

 fr
eq

ue
nc

y 
(H

z)

Crack length ratio (%)

Case 1
Case 2

The 11th to 15th modes

0 10 20 30 40 50 60 70 80 90105

110

115

120

125

130

135

B
ili

ne
ar

 fr
eq

ue
nc

y 
(H

z)

Crack length ratio (%)

Case 1
Case 2

The 26th to 30th modes

Figure 2.11: Resonant frequencies predicted using BFA for the first 5 modes, for the 11th

to 15th mode, and for the 26th to 30th mode

shows the 14th and 25th resonant frequency of the cracked and dented HMMWV frame

for cases 1 and 2 of thickness variations. These figures show that the resonant frequencies

decrease significantly, once the crack length is larger than about 60%.

2.5 Conclusions and Discussion

Novel multiple-component parametric reduced-order models (MC-PROMs) for pre-

dicting the vibration response of complex structures have been developed. These models

are able to handle simultaneously with very high efficiency both parametric variability

in multiple components as well as damage. Also, the parametric reduced-order mod-
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Figure 2.12: Resonant frequencies predicted using BFA for the 14th mode and the 25th

mode

els (PROMs) developed are agile and easy to construct, which makes them particularly

useful for analyses required in design processes.

In addition, the reanalysis time for parametric reduced-order models (PROM) is sig-

nificantly shorter than that for the full order model. For example, to perform reanalyses

which account for thickness variations (such as the ones in case 2 for the high mobility

multipurpose wheeled vehicle (HMMWV) model) or new types of dents, the paramet-

ric reduced-order models (PROM) approach needs only a few simple matrix calculations

(without the need for eigenanalyses) to construct the transformation matrix for each dam-

age type. The appropriate transformation matrix to reduce the DOFs of the structure has

been already constructed in the initial analysis. Hence, the recalculation of the transfor-

mation matrix is not needed. That is one of the core advantages of the parametric reduced

order models (PROM) approach proposed herein.

The models developed are a viable, more efficient alternative to other component-

mode-based parametric reduced-order models (PROMs). Although those models also

require a reduced computation time compared to full finite element models, that com-

putational time is still long. In particular, those models are hard to use for the analysis
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of huge models. These issues can be overcome by the use multiple-component paramet-

ric reduced-order models (MC-PROMs) as described herein. The key characteristic of

multiple-component parametric reduced-order models (MC-PROMs) is that parameteriza-

tion is applied at the component-level rather than at the system-level. As a consequence,

low order approximations of the variability in the mass and stiffness matrices is effective

and accurate. Note that, in general, that is not the case for system-level matrices.

To manage the geometric variations created by dents, a methodology based on com-

ponent mode synthesis with static mode compensation has been developed. Furthermore,

to avoid the fully nonlinear analyses, a generalized bi-linear frequency approximation has

been employed for predicting resonant frequencies of complex cracked structures. The

predictions of full finite element models have been shown to agree very well with the

predictions obtained using (dramatically lower-dimensional) reduced-order models.

The novel parametric reduced-order models (PROMs) approach provides smaller sys-

tem matrices and shorter analysis and reanalysis time to predict the vibration response

of complex structures. These advantages are particularly useful for optimization prob-

lems because parameter variations such as thickness variations, geometric deformations

(dents), and interfaces (cracks) can easily be considered as design cases. Thus, the search

for the optimal structure can be done effectively by using fast reanalyses based on para-

metric reduced-order models (PROMs). In contrast, conventional reduced-order modeling

techniques cannot provide fast reanalyses because those reduced-order modeling are not

constructed for that purpose. Instead, conventional reduced-order models reduce the size

of the system matrices for a single set of values for the structural parameters and the ge-

ometry.

Model order reduction in general may use approximations which interfere with gen-

uine changes in response caused by the damage. A key advantage of this work is that it
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is designed to address precisely this issue. Specifically, the proposed approach focuses

on accurately capturing the effects of small parameter variations on the overall system re-

sponse. That contrasts other existing model order reduction techniques which often turn

out to be robust to such variability.



CHAPTER III

Next-Generation Parametric Reduced-Order Models

3.1 Introduction

Generally, most research related to structural dynamic analysis are in need of save

computational cost saving because of the repetitive nature of optimization, stochastic, and

statistical analyses. Even considering computing power increases, these repetitive pro-

cesses are very time consuming due to the conventional complex and large model. One

method to save computational time is the use of reduced-order models (ROMs). There

are a significant number of existing research studies about ROMs. Yun and Masri [1, 2]

developed a methodology for stochastic detection of changes in uncertain nonlinear sys-

tems using ROMs. Chung and Fung [3] proposed a nonlinear finite element model of

piezoelectric tube actuators with hysteresis and creep for control and design purposes. In

their work, the operation of the actuators is simulated using ROMs. Ashwin et al. [4]

developed a finite element based substructuring procedure for design analysis of large

structural systems. Hartl et al. [5] also developed advanced methods for analysis, design,

and optimization which use ROMs for computational efficiency.

In the field of structural dynamics, component mode synthesis (CMS) techniques [6–

12] are well established as an alternative to conventional finite element models (FEMs)

with large numbers of degrees of freedom (DOFs). CMS belongs to a wide class of do-

49
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main decomposition techniques. CMS is a substructural based technique, which divides

the global structure into several substructures. The DOFs of those substructures can be

reduced significantly. Then, each individual substructure in the CMS domain is recon-

nected, and the system dynamic responses are predicted very efficiently and accurately.

Applications of CMS include the work of Wang and Kirkhope [13] who applied CMS for

multi-shaft rotors with flexible inter-shaft bearings. They also developed CMS for damped

systems [14]. In addition, Liu and Zheng [15] proposed the improved component mode

synthesis for nonclassically damped systems. Takewaki [16] proposed the inverse com-

ponent mode synthesis method for redesign of large structural systems. Matichard and

Gaudiller [17] developed the hybrid modal nodal method for multi-body smart structure

model reduction and feedback control development by CMS. Kim [18] also developed

a recursive component mode synthesis method to solve large-scale eigenvalue problems

efficiently. Tran [19] developed and applied component mode synthesis using partial in-

terface modes to a cyclically symmetric structure. To enhance computational efficiency

for redesign of damped large structural systems, Takewaki and Uetani [20] used a new for-

mulation for an incremental inverse problem based on component mode synthesis. Elhami

et al. [21] proposed methods for repetitive symmetric structures using CMS. Farhat and

Geradin [22] developed a methodology for applying CMS to structures with incompatible

substructures.

In general, CMS has become a very popular numerical tool in aerospace and automo-

tive engineering because it usually meets high standards of computational efficiency. Com-

putational efficiency is illustrated by significant cost saving when remeshing is needed,

since this task can be done locally, i.e. on each substructure separately. However, the

remeshing process might also be time consuming computationally and manually for design

purposes such as structural optimization, and for damage modeling for structural health
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monitoring. Therefore, ROMs for design and damage modeling purposes are needed.

The ROMs for design and damage modeling were introduced almost fifteen years ago

by Balmés et al. [28,29] to avoid the relatively expensive process of reanalysis of complex

structures. In addition, several other ROMs referred to as parametric reduced-order mod-

els (PROMs) have been developed [30–32, 35]. In particular, multi-component PROMs

(MC-PROMs) have been developed recently by Hong et al. [35]. For robust substruc-

ture (re)analysis, MC-PROMs are advantageous because they allow several substructures

to have parametric variability in characteristics such as geometric parameters (e.g., thick-

ness), or material properties (e.g., Young’s modulus). MC-PROMs are perfectly suited

for predicting the vibration response of structures modeled with shell-type finite elements

which can have thickness variations. However, if the structure is modeled with brick-type

finite elements, and if the brick-type elements require local volume changes during reanal-

ysis, then MC-PROMs cannot be effectively used to predict the dynamic response. This

is because MC-PROMs use third-order Taylor series for parameterization. These Taylor

series do not capture accurately the variation of the mass and stiffness matrices for brick-

type finite elements because the volume of local finite elements can change during the

reanalysis. Consequently, some entries of the mass and stiffness matrices for brick-type

finite elements vary highly nonlinearly with respect to geometric variations in the struc-

ture. Herein, a novel parameterization technique is proposed to capture these element-level

nonlinearities.

Another challenge for MC-PROMs is that they can be numerically not stable due to

the transformation matrix they employ. Specifically, the transformation matrix consists of

static constraint modes and fixed interface normal modes computed for a set of nominal

parameters, and a few sets of perturbed parameter values (typically up to 3 sets per param-

eter) [35]. If all static constraint modes are kept and many normal modes are included,



52

then the size of the system-level mass and stiffness matrices can be nearly singular (and

can even be larger than that of the full-order models). This is because the transformation

matrix can contain vectors which are nearly linearly dependent. These vectors are usually

normal modes for substructures where the parametric variation (e.g., modulus of elasticity)

does not affect the component-level normal modes. Moreover, the transformation matrix

used in MC-PROMs was designed for small parameter variations which ensures that the

space spanned by the basis vectors at a component-level does not depend nonlinearly on

parameter variations. That approach can break down because of the volume variations

which can occur when brick elements are used.

Another challenge of CMS methods and MC-PROMs is that they often require an

excessively large number of interface DOFs because (often) these DOFs are many and

are hard (or impossible) to reduce. To address this issue, Castanier et al. [11] proposed

that the physical interface DOFs be replaced by global interface modes, which were also

called characteristic constraint (CC) modes. However, this concept is not optimal for

substructural-based techniques because CC modes are system-level interface modes, not

substructural -level interface modes. Thus, a new technique to reduce the interface DOFs

locally is proposed herein and referred to as local-interface reduction.

This paper is organized as follows. In Sec. 3.2, the element-level nonlinearity due to

the volume variations of finite elements of brick or other type is evaluated, and a novel pa-

rameterization technique is proposed to capture this nonlinearity. Next, in Sec. 3.3, CMS

is briefly reviewed, and next-generation parametric reduced-order models (NX-PROMs)

are proposed. In Sec. 3.4, to locally reduce the interface DOFs, a local-interface reduction

technique is presented. Section 3.5 discusses the procedure to assemble substructural mass

and stiffness matrices (with and without implementing the local-interface reduction tech-

nique). In Sec. 3.6, numerical examples such as a plate structure, an L-shaped structure,
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and a realistic vehicle model (a high mobility multipurpose wheeled vehicle, HMMWV)

modeled with brick-type finite elements are used to demonstrate the proposed methods.

Finally, conclusions are summarized in Sec. 3.7.

3.2 Robust Parameterization Techniques for Element-Level Nonlin-
earity

For structural design and damage modeling purposes, the parameterization of the mass

and stiffness matrices can be the most important step. This is because the parameterization

techniques enable capturing mass and stiffness variations due to design changes or damage

in the structure. Thus, the reanalysis time can be significantly reduced because the finite

element mesh does not need to be modified and remodeled. The parameterization tech-

nique has to be adapted for the different characteristics of each type of finite element used.

For example, the thickness, Young’s modulus, and material density variations of shell-

type elements can be captured well by third-order Taylor series [28, 29, 32, 35]. However,

we found that the thickness variations for a brick and other types of finite elements such

as hexagonal and tetrahedron elements cannot be captured well by Taylor series of low

order due to an element-level nonlinear characteristics caused by volume variations. For

elements which have volume, local thickness variations induce volume variations in the

elements. In contrast, Taylor series works well for parameterizing shell-type elements be-

cause these do not have actual volume. In this section, a parameterization technique that

captures thickness variations of brick and other types of finite elements is the focus.

Fig. 3.1 shows an 8-node brick-type element which uses first-order (linear) shape func-

tions. Coordinates x, y, and z are global, and coordinates ξ, η, and ζ are local. As a

conceptual example, consider that the four nodes on the top surface in Fig. 3.1 move by a

distance Δt. The brick-type element has a volume, so when each node moves, the volume
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Figure 3.1: Sample 8-node brick element with global and local coordinates

of the brick-type element varies. Thus, the parameterization technique has to account for

these volume variations. To that aim, let us first revisit the formulation used to derive stiff-

ness matrices for brick-type elements [62, 63]. The equation used to obtain the stiffness

matrix can be expressed as

K =

∫
V

BTDBdV

=

∫ ζ=1

ζ=−1

∫ η=1

η=−1

∫ ξ=1

ξ=−1

BTDBdξdηdζ (3.1)

=
8∑

i=1

8∑
j=1

8∑
k=1

WiWjWkB
T (ξi, ηj, ζk)DB(ξi, ηj, ζk)det(J(ξi, ηj , ζk)),

where B is a strain matrix (which contains derivatives of the linear shape functions in

global coordinates), and D is an elasticity matrix (which contains Poisson’s ratio ν, and

the elastic modulus E). The determinant of the Jacobian in Eq. (3.1) is obtained from

the coordinate transformation of the strain matrix B. The determinant contains in its de-

nominator a cubic polynomial of ξ, η and ζ , which reflects volume variations. Thus, the

parameterization should also contain a cubic polynomial in the denominator. To establish

the coefficients of this cubic polynomial, the volume variations of brick-type elements are

considered. As shown in Fig. 3.1, one or several nodes on the top surface move to capture
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thickness variations. The resulting volume can be expressed as

V = V0

[
1 + d

p− p0
p0

]
= V0

(
1 + d

Δp

p0

)
,

where V and V0 are the final and the initial volume of the brick-type element, and p and

p0 are the target parameter value (thickness) and the initial parameter value. When only

one node on the top surface moves, the coefficient d is 1/3. Similarly, when two nodes

move, d = 1/2. Also, when three nodes move, d = 1. Finally, when four nodes move,

the volume variation is proportional to Δp, i.e. V = V0
Δp
p

. This last type of variation,

proportional to Δp, is very well captured by a regular interpolation. The other three cases,

however, are not. To address this issue, a cubic polynomial which considers the volume

variation of brick-type elements with a target parameter variation Δp is defined as

D(Δp) =

(
1 +

Δp

p0

)(
1 +

1

2

Δp

p0

)(
1 +

1

3

Δp

p0

)
. (3.2)

The new parameterization equation consists of a fourth-order interpolation in the numera-

tor and the cubic polynomial in Eq. (3.2) in the denominator, which yields the new param-

eterization as

K(p0 +Δp) ≈ K0 +K1Δp+K2(Δp)2 +K3(Δp)3 +K4(Δp)4

D(Δp)
. (3.3)

To calculate the matrices K0, K1, K2, K3 and K4 in Eq. (3.3), five equations are needed.

For that, stiffness matrices for five parameter values are computed. First, consider the case

where Δp = 0. One obtains

K(p0) ≈ K0. (3.4)

Next, consider Δp = iδp (with i = 1, 2, 3, 4), one obtains

K(p0 + iδp) ≈ K0 +K1(iδp) +K2(iδp)
2 +K3(iδp)

3 +K4(iδp)
4

D(δp)
. (3.5)
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Rearranging Eqs. (3.4) and (3.5) into matrix form, for each entry e,q of the matrices K1,

K2, K3 and K4, one obtains

C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K0,eq

K1,eq

K2,eq

K3,eq

K4,eq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(p0)eq

K(p0 + δp)eq

K(p0 + 2δp)eq

K(p0 + 3δp)eq

K(p0 + 4δp)eq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.6)

where

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1
D(δp)

δp
D(δp)

(δp)2

D(δp)
(δp)3

D(δp)
(δp)4

D(δp)

1
D(2δp)

(2δp)
D(2δp)

(2δp)2

D(2δp)
(2δp)3

D(2δp)
(2δp)4

D(2δp)

1
D(3δp)

(3δp)
D(3δp)

(3δp)2

D(3δp)
(3δp)3

D(3δp)
(3δp)4

D(3δp)

1
D(4δp)

(4δp)
D(4δp)

(4δp)2

D(4δp)
(4δp)3

D(4δp)
(4δp)4

D(4δp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Equation (3.6) can be easily solved by simply inverting the 5 × 5 matrix on the left hand

side. This matrix is non-singular and very well behaved for inversion. Also, note that this
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inversion has to be done only once (for a given δp). Let us denote by A this inverse matrix,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1
D(δp)

δp
D(δp)

(δp)2

D(δp)
(δp)3

D(δp)
(δp)4

D(δp)

1
D(2δp)

(2δp)
D(2δp)

(2δp)2

D(2δp)
(2δp)3

D(2δp)
(2δp)4

D(2δp)

1
D(3δp)

(3δp)
D(3δp)

(3δp)2

D(3δp)
(3δp)3

D(3δp)
(3δp)4

D(3δp)

1
D(4δp)

(4δp)
D(4δp)

(4δp)2

D(4δp)
(4δp)3

D(4δp)
(4δp)4

D(4δp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Re-arranging Eq. (3.6) using the entries in A, one obtains

K(p0 +Δp) ≈ b0K(p0) + b1K(p0 + δp) + b2K(p0 + 2δp)

(3.7)

+ b3K(p0 + 3δp) + b4K(p0 + 4δp),

where

b0 = (A11 + A21Δp+ A31Δp2 + A41Δp3 + A51Δp4),

b1 = (A12 + A22Δp+ A32Δp2 + A42Δp3 + A52Δp4),

b2 = (A13 + A23Δp+ A33Δp2 + A43Δp3 + A53Δp4),

b3 = (A14 + A24Δp+ A34Δp2 + A44Δp3 + A54Δp4),

b4 = (A15 + A25Δp+ A35Δp2 + A45Δp3 + A55Δp4).

Equation (3.7) shows thatK(p0+Δp) is simply a linear combination of five (pre-computed)

matrices. The coefficients in the linear combination depend very nonlinearly on Δp. That
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is the key factor which ensures the high accuracy of the new parameterization. Note that

the computational cost of the new parameterization is the same as that for a regular fourth-

order interpolation. The accuracy, however, is higher (as shown on Sec. 3.6.1).

3.3 Reduced-Order Models

The parameterization techniques proposed in Sec. 3.2 are for the full-order finite ele-

ment model. However, the main objective of this work is to predict vibration responses

using ROMs (as opposed to full-order models) to reduce the calculation time. To detail

the construction of ROMs, the fixed-interface Craig-Bampton component mode synthe-

sis (CB-CMS) [10] is reviewed briefly. Next, a new transformation matrix is presented

and used in conjunction with the new parameterization technique discussed in Sec. 3.2.

Finally, NX-PROMs are constructed.

3.3.1 Brief review of Craig-Bampton component mode synthesis

In this section, the fixed-interface CB-CMS [7] method is reviewed. This modeling

approach is broadly used because of its simplicity and computational stability. To apply

the CB-CMS, the complex structure of interest is partitioned into substructures. The DOFs

of each substructure are further partitioned into active DOFs on the interface (indicated by

the superscript A), and omitted DOFs in the interior (indicated by the superscript O). The

mass and stiffness matrices for a component i can then be partitioned to obtain

Mi =

⎡
⎢⎣ mAA

i mAO
i

mOA
i mOO

i

⎤
⎥⎦ , and Ki =

⎡
⎢⎣ kAA

i kAO
i

kOA
i kOO

i

⎤
⎥⎦ .

Next, the physical coordinates are changed to a set of coordinates representing the am-

plitudes of a selected set of fixed-interface component-level normal modes ΦN
i (indi-

cated by the superscript N), and the amplitudes of the full set of static constraint modes
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ΦC
i = −kOO

i
−1
kOA
i (indicated by the superscript C). The transformed mass and stiffness

matrices for component i can be expressed as

MCBCMS
i =

⎡
⎢⎣ m̂C

i m̂CN
i

m̂NC
i m̂N

i

⎤
⎥⎦ , and KCBCMS

i =

⎡
⎢⎣ k̂C

i k̂CN
i

k̂NC
i k̂N

i

⎤
⎥⎦ .

In this work, the CB-CMS method is used only for the substructures which do not have

any parameter variation or damage.

3.3.2 Next-generation parametric reduced-order models

In this section, MC-PROMs are improved to be more robust and mathematically stable.

The resulting models are referred to as NX-PROMs.

Transformation matrix for NX-PROMs

The transformation matrix for NX-PROMs is constructed somewhat similar to MC-

PROMs (which was constructed by using the idea behind CB-CMS). It also has a set of

static constraint modes ΨC and a set of fixed-interface normal modes ΦN . However, the

transformation matrix for NX-PROMs has a different set of static constraint modes and a

different set of fixed-interface normal modes compared at CB-CMS and MC-PROM. This

transformation matrix can be written for component i as

Ti =

⎡
⎢⎣ I 0

ΨC
aug,i ΦN

aug,i

⎤
⎥⎦ ,

where ΨC
aug is referred to as the matrix of augmented constraint modes

ΨC
aug,i =

[
ΨC

0,i ΨC
1,i ΨC

2,i ΨC
3,i ΨC

4,i

]
,

and ΦN
aug is referred to as the matrix of augmented fixed-interface normal modes

ΦN
aug,i =

[
ΦN

0,i ΦN
1,i ΦN

2,i ΦN
3,i ΦN

4,i

]
.
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Matrices ΨC
0,i and ΦN

0,i correspond to the nominal parameter values, whereas matrices ΨC
l,i

and ΦN
l,i (l = 1, 2, 3, 4) correspond to four other parameter values.

In general, the columns of ΦN
aug are not orthogonal. Therefore, for numerical stabil-

ity, an orthogonal basis for the space spanned by these modes is computed. This basis

is obtained by a truncated set of left singular vectors UN of ΦN
aug [35]. Thus, the new

transformation matrix can be expressed as

T̃i =

⎡
⎢⎣ I 0

ΨC
aug,i UN

i

⎤
⎥⎦ . (3.8)

The transformation matrix in Eq. (3.8) can be used to project the physical domain onto

the NX-PROM domain. The stiffness matrix KNXPROM
i = T̃T

i K
FEM
i T̃i for component i

(where KFEM
i represents the stiffness matrix of the full-order model of component i) can

be partitioned to obtain

KNXPROM
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KC
00,i KC

01,i KC
02,i KC

03,i KC
04,i KCN

00,i

KC
10,i KC

11,i KC
12,i KC

13,i KC
14,i KCN

11,i

KC
20,i KC

21,i KC
22,i KC

23,i KC
24,i KCN

22,i

KC
30,i KC

31,i KC
32,i KC

33,i KC
34,i KCN

33,i

KC
40,i KC

41,i KC
42,i KC

43,i KC
44,i KCN

44,i

KNC
00,i KNC

11,i KNC
22,i KNC

33,i KNC
44,i KN

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A similar relation is obtained for the mass matrix of component i. Here, the DOFs corre-

sponding to the constraint part (superscript C) are repeated for the five parameter values

(denoted by subscript 0, 1, 2, 3 and 4). Note that in such an approach, the size of the

mass and stiffness matrices can be quite large. Also, these matrices may be ill-conditioned

because the columns of ΨC
aug,i are not necessarily linearly independent.

To address this issue, a new method to account for the static constraint modes is de-

veloped. This new method avoids duplicating the interface DOFs (C) and captures the
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Figure 3.2: The case where the value of parameter p is between p0+lδp and p0+(l + 1)δp
for some l value between 0 and 3

interface effects more accurately. The approach reduces the number of sets of static con-

straint modes (used to obtain MNXPROM
i and KNXPROM

i ) from five sets to just one set.

Consider that the actual value p of the parameter where the reanalysis is needed exists

between the lth and (l + 1)th parameter values (l = 0, 1, 2, 3 or 4) which were used to

construct MNXPROM
i . In that case (described in Fig. 3.2), a new static constraint mode

can be generated by linearly interpolating between the static constraint modes for the lth

and the (l + 1)th parameter values to obtain

Ψ̃C
i =

(
pl+1 − p

pl+1 − pl

)
ΨC

l,i +

(
p− pl

pl+1 − pl

)
ΨC

l+1,i = αiΨ
C
l,i + βiΨ

C
l+1,i. (3.9)

This new static constraint mode Ψ̃C
i replaces all five static constraint modes used to con-

struct T̃i in Eq. (3.8).

Note that this reduction can be implemented without re-constructing T̃i for each case

of parameter variation. Instead, only simple linear combinations of partitions of the ma-

trices MNXPROM
i and KNXPROM

i , are needed. Details are given in below section. In the

end, the final NX-PROM mass and stiffness matrices have only a single set of constraint

modes Ψ̃C
i which always has linearly independent columns.
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Parameterization for NX-PROMs

The new interpolation presented in Sec. 3.2 is applied to NX-PROMs. To that aim,

five mass and five stiffness are constructed for each component i (for l = 0, 1, 2, 3, 4) as

follows

MNX
l,i = T̃T

i M(p0 + lδp)T̃i and KNX
l,i = T̃T

i K(p0 + lδp)T̃i.

These matrices are not all used independently to form NX-PROMs. Instead, they are

linearly combined to implement the single set of static constraint modes Ψ̃C
i in Eq. (3.9).

Thus, conceptually, T̃i is replaced by T̂i, given by

T̂i =

⎡
⎢⎣ I 0

ΨC
aug,i UN

i

⎤
⎥⎦ (αiRl,i + βiRl+1,i) = T̃ (αiRl,i + βiRl+1,i) ,

where Rl,i and Rl+1,i are masking matrices of zeros and ones. The matrix Rl,i is a 6 × 2

block matrix where the blocks (l, 1) and (6, 2) are unit matrices, while all other blocks

are zero. The first five rows correspond to ΨC
l,i (l = 0, 1, 2, 3, 4) and the last row corre-

sponds to UN
i . This new transformation matrix T̂i is applied to the mass and stiffness

matrices of component i to construct NX-PROMs. First, five mass and stiffness matrices

are constructed for each parameter variation sδp (for s = 0, 1, 2, 3, 4) as follows

M̂NX
s,i =

(
αiR

T
l,i + βiR

T
l+1,i

)
MNX

s,i (αiRl,i + βiRl+1,i) ,

K̂NX
s,i =

(
αiR

T
l,i + βiR

T
l+1,i

)
KNX

s,i (αiRl,i + βiRl+1,i) .

Next, the new interpolation discussed in Sec. 3.2 is applied using M̂NX
s,i and K̂NX

s,i .

Eq. (3.7) is used to obtain

M(p0 +Δp)NX
i ≈ b0M̂

NX
0,i + b1M̂

NX
1,i + b2M

NX
2,i + b3M̂

NX
3,i + b4M̂

NX
4,i

K(p0 +Δp)NX
i ≈ b0K̂

NX
0,i + b1K̂

NX
1,i + b2K

NX
2,i + b3K̂

NX
3,i + b4K̂

NX
4,i
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where bs (s = 0, 1, 2, 3, 4) are computed for each Δp by using the matrix A and the

expression in Eq. (3.7). Note that the five coefficients bs which depend on the actual Δp

are easily calculated because they are just five scalars that depend only on Δp and δp

irrespective of the size of the finite element mesh.

Finally, the mass and stiffness matrices for the ith component of the NX-PROMs can

be partitioned as follows

M(p0 +Δp)NX
i =

⎡
⎢⎣ MC

Δp,i MCN
Δp,i

MNC
Δp,i MN

Δp,i

⎤
⎥⎦ ,

(3.10)

K(p0 +Δp)NX
i =

⎡
⎢⎣ KC

Δp,i KCN
Δp,i

KNC
Δp,i KN

Δp,i

⎤
⎥⎦ ,

where superscript C indicates a constraint partition, and superscript N indicates a nominal

mode partition.

3.4 Local-Interface Reduction

If the finite element mesh used is very fine, the size of the reduced system-level ma-

trices is dominated by the constraint DOFs corresponding to the C partition in Eq. (3.10).

The constraint DOFs of matrices constructed by CMS-based techniques are difficult to re-

duce. This is an important issue because, if the constraint DOFs cannot be reduced, then

the overall structure cannot be efficiently divided into many substructures. To address

this issue, Castanier et al. [11] suggested the use of characteristic constraint (CC) modes.

This technique is based on performing a secondary eigenanalysis of the constraint parti-

tion (C) of the system-level mass and stiffness matrices constructed by CB-CMS. This

technique is applied after the system-level matrices are constructed. However, the core

idea of NX-PROMs is that all analyses are accomplished at the substructure-level, and not

at the system-level. Thus, an alternate interface reduction technique is proposed next. The
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new approach is applied at the substructure-level, and it is referred to as local-interface

reduction (LIR).

The local-interface reduction technique is also based on a secondary eigenanalysis of

the constraint partition. However, the secondary eigenanalysis is executed on the con-

straint partitions (C) of the substructural matrices, not the system-level matrices. The

secondary eigenanalyses on constraint DOFs (C) of the mass and stiffness matrices of

component i constructed by either CB-CMS or the NX-PROM approach are given by

KC
Δp,iΦ

CC
Δp,i −MC

Δp,iΦ
CC
Δp,iΛΔp,i = 0,

where ΛΔp,i is a diagonal matrix which contains the eigenvalues, and ΦCC
Δp,i are the charac-

teristic constraint (CC) modes of the ith substructure. They are truncated for the frequency

range of interest by using the eigenvalues in ΛΔp,i. The rows of the CC modes indicate

the constraint DOFs of the substructure, and the columns represent the set of truncated

CC modes. The CC modes for each substructure are used to reduce the interface DOFs

for each boundary locally . Note that joining all CC modes for each interface between

different components may lead to vectors which are not necessarily linearly independent.

However, they span the adequate space. Thus, the left singular values of the CC interface

modes may have to be used for certain interfaces. To demonstrate the LIR procedure, a

simple plate model is used in Sec. 3.6.2.

The set of orthogonal basis vectors used for all interfaces that a component i has with

other components are grouped in a block diagonal matrix which contains the entire inter-

face component i has. The number of blocks is equal to the number of components that are

connected to component i. These matrices are denoted by UΔp,i. Of course, if component

i connects to only one other component, then there is only one block in UΔp,i. Next, the
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mass and stiffness matrices in Eq. (3.10) are projected using UΔp,i as follows

MCC
Δp,i = UT

Δp,iM
C
Δp,iUΔp,i, MCCN

Δp,i = UT
Δp,iM

CN
Δp,i, MNCC

Δp,i = MCN
Δp,iUΔp,i,

(3.11)

KCC
Δp,i = UT

Δp,iK
C
Δp,iUΔp,i, KCCN

Δp,i = UT
Δp,iK

CN
Δp,i, KNCC

Δp,i = KCN
Δp,iUΔp,i.

Thus, the final mass and stiffness matrices with reduced constraint DOFs are given for

component i by

MLIR
Δp,i =

⎡
⎢⎣ MCC

Δp,i MCCN
Δp,i

MNCC
Δp,i MN

Δp,i

⎤
⎥⎦ , KLIR

Δp,i =

⎡
⎢⎣ KCC

Δp,i KCCN
Δp,i

KNCC
Δp,i KN

Δp,i

⎤
⎥⎦ ,

where superscript LIR indicates that the matrices are constructed using local-interface

reduction. An example is provided in Sec. 3.6.2.

3.5 Assembly

To predict the system-level dynamics, the mass and stiffness matrices obtained in Sec-

tions 3.3 and 3.4 for each substructure have to be assembled. To do that, geometric com-

patibility conditions must be enforced. In the following, we discuss separately the case

where LIR is not used and the case where it is used.

Let us consider the case where the geometric compatibility conditions are used for

models without LIR. In this case, the constraint partitions (C) of component-level matri-

ces keep the meaning of the physical interface DOFs of matrices obtained from FEMs.

This means that the geometric compatibility conditions between interface DOFs (con-

straint DOFs) can be applied directly to construct the system-level matrices. The com-

plete component-level equations of motion for component i based on CB-CMS or the

NX-PROM approach can be expressed as

MROM
i q̈ROM

i +KROM
i qROM

i = FROM
i , (3.12)
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where ROM indicates component-level matrices obtained using either CB-CMS or the

NX-PROM approach. The stiffness matrices in Eq. (3.12) obtained for components with-

out parameter variability can be expressed as

KROM
i = KCBCMS

i =

⎡
⎢⎣ KC

i KCN
i

KNC
i KN

i

⎤
⎥⎦

CBCMS

. (3.13)

For component with parameter variability, the stiffness matrices in Eq. (3.12) can be ex-

pressed as

KROM
i = KNX

i =

⎡
⎢⎣ KC

Δp,i KCN
Δp,i

KNC
Δp,i KN

Δp,i

⎤
⎥⎦

NXPROM

. (3.14)

The formulas for the mass matrices are similar to those for the system matrices in Eqs.

(3.13) and (3.14) (and are omitted here for the sake of brevity).

Next, the matrices in Eq. (3.12) are grouped for all i to obtain

M̂ = Bdiag

[
MROM

1 · · · MROM
n

]
,

K̂ = Bdiag

[
KROM

1 · · · KROM
n

]
, (3.15)

F̂ =

[
FROM

1
T · · · FROM

n
T

]T
,

where n is the number of components, and Bdiag[·] denotes a block-diagonal matrix.

The geometric compatibility condition for the ROM is expressed as

qC
i = qC

j , (3.16)

where, qi and qj are the generalized coordinates for the constraint partitions (C for CB-

CMS or NX-PROMs) that correspond to the interface between components i and j. Of

course, there is no compatibility condition to be enforced for two components which do

not have a common interface.
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Equation (3.16) is used to transform the matrices in Eq. (3.15) similar to the assem-

bly process in all finite element modeling methods. The final assembled, reduced-order,

system-level matrices are given by

MROM
sys =

⎡
⎢⎣ MC MCN

MNC MN

⎤
⎥⎦ ,KROM

sys =

⎡
⎢⎣ KC KCN

KNC KN

⎤
⎥⎦ ,

FROM
sys =

⎡
⎢⎣ FC

FN

⎤
⎥⎦ ,

where

KCN =

[
KCN

1 KCN
2 · · · KCN

n

]
, KNC = KCNT

,

KN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

KN
1 0 · · · 0

0 KN
2 · · · 0

...
...

. . . 0

0 0 · · · KN
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and KC is a matrix which is obtained by the assembly of each interface. In general, KC is

a matrix which has a smaller size than the C partitions in K̂. The same process is applied

to obtain FC . Also, similar relations are obtained for the mass matrix MROM
sys (and are

omitted here for the sake of brevity).

Finally, the compatibility conditions for models constructed using LIR can be ex-

pressed almost identically to those for models without LIR. The only difference is that

the generalized coordinates in Eq. (3.16) represent amplitudes of characteristic constraint

modes or amplitudes of the basis vectors used to capture the space spanned by the charac-

teristic constraint modes.
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Figure 3.3: Simple plate structure modeled with shell-type elements
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Figure 3.4: The 32nd diagonal entries of the exact and the parametrized mass and stiffness
matrices obtained by using a classic cubic interpolation for shell-type elements

3.6 Numerical Results

3.6.1 Element-level nonlinearity of brick and other types of finite elements

Figure 3.3 shows a simple plate structure modeled with a shell-type finite elements,

where t is the thickness of the plate (t = 0.2mm). To examine the variation in the entries

of the finite element mass and stiffness matrices for this substructure, the thickness t is

varied by increments of Δt = 0.01mm.

The size of the mass and stiffness matrices of the simple structure shown in Fig. 3.3

is 15, 582×15, 582. As an example, the 32nd diagonal entries of the mass and stiffness

matrices, M32,32 and K32,32, are shown in Fig. 3.4 as the thickness varies (approximated

matrices are shown by a dash-dot line, and the actual matrices are shown by a solid-line for
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Figure 3.5: Simple plate structure modeled with brick-type elements

various values of Δp). One may observe that those entries of the mass and stiffness matri-

ces vary almost linearly. To capture these variations very accurately, a cubic interpolation

is used as follows

K(p0 +Δp) ≈ K̃0 + K̃1Δp + K̃2Δp2 + K̃3Δp3. (3.17)

The matrices K̃0, K̃1, K̃2, and K̃3 are computed by using the stiffness matrices evaluated

at three parameter values. These values are the reference value p0, the first perturbed value

p1 = p0 + δp, the second perturbed value p2 = p0 + 2δp and the third perturbed value

p3 = p0 + 3δp. The procedure is standard and similar to the one used in Sec. 3.2, so its

details are omitted here for the sake of brevity. A similar interpolation is used for the mass

matrix. Note that, in contrast to Taylor series, the cubic interpolation does not require the

calculation of derivative terms.

Next, to examine the variations in the entries of the mass and stiffness matrices for

brick-type elements, the same plate structure is modeled with brick-type elements. The

nominal thickness of the plate is (the same) 0.2mm and is varied by (the same) increments

of Δt = 0.01mm, as shown in Fig. 3.5. The thickness is varied in a region near the center

of the plate. The entries of the mass and stiffness matrices near the DOFs where the

thickness is varied are affected. A sample DOF affected is the 645th. The 645th diagonal

entry of the mass matrix varies linearly (and is omitted for the sake of brevity). The same

entry of the stiffness matrix, however, does not vary linearly, as shown in Fig. 3.6 (left),
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Figure 3.6: The 645th diagonal entry of the exact and the parametrized stiffness matrices
obtained by using a classic cubic interpolation (left) and an classic fourth order
interpolation (right) for brick-type elements

where exact values are shown by a solid-line. To capture this nonlinear variation, the cubic

interpolation function in Eq. (3.17) is used. The approximate values obtained are shown

by a dash-dot line. These results show that Eq. (3.17) is not good enough to capture the

highly nonlinear variation of the stiffness matrix. Therefore, a fourth-order interpolation

is used as follows

K(p0 +Δp) ≈ K̃0 + K̃1Δp+ K̃2Δp2 + K̃3Δp3 + K̃4Δp4. (3.18)

This fourth-order interpolation captures well the nonlinear variation in the entries of the

stiffness matrix as shown in Fig. 3.6 (right).

Based on the results in Fig. 3.6, one may assume that the errors obtained based on

Eq. (3.18) are negligible. However, that is not correct, as demonstrated by the forced

response of the plate calculated using exact and approximated matrices. Figure 3.7 shows

the forced response at one of the DOFs on the plate for excitation frequencies near the

first resonance. The solid-line represents the response computed by the actual mass and

stiffness matrices, and the dash-dot line indicates the response computed by the mass and

stiffness matrices parametrized using Eq. (3.18) for the case of Δt = 0.37 mm. Clearly,
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Figure 3.7: Forced responses calculated for Δp = 0.37 mm using the exact and
parametrized mass and stiffness matrices obtained based on a fourth-order in-
terpolation for brick-type elements
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Figure 3.8: The 645th diagonal entry of the exact and the parametrized stiffness matrices
obtained by using the new interpolation for brick-type elements

the forced response computed by the parametrized mass and stiffness matrices does not

agree with that computed by the actual matrices. This means that the errors in the entries

of the stiffness matrix from the fourth-order interpolation are not small enough to capture

accurately the dynamic response of the structure with a modified thickness. Note that,

the errors in the dynamic response are induced by inaccuracies in the stiffness matrix,

not in the mass matrix. These results demonstrated that a new parameterization technique

focused on capturing element-level nonlinear variations in the stiffness is needed for brick-

type finite elements.

The parametrized stiffness matrix was calculated using Eq. (3.7) for Δp = 0.37 mm.
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Table 3.1: 10 lowest natural frequencies for exact and parametrized matrices with volume
variations

Mode Exact Approximated

1 4278.24 4278.24

2 9024.39 9011.52

3 9068.45 9053.21

4 14323.12 14323.11

5 24952.70 24952.34

6 25024.01 25023.94

7 27463.11 27460.10

8 27656.15 27654.70

9 36098.49 36098.51

10 41275.58 41262.95

As a sample of results, Fig. 3.8 shows that the 645th diagonal entry of the exact and the

approximated stiffness matrices match extremely well. Similar matches are observed for

all entries of the matrices. Next, forced responses were calculated using these matrices.

The results are shown in Fig. 3.9. The solid-line indicates the response computed using

the exact matrices, and the dash-dot line indicates the response computed by using the new

parametrized matrices. The results closely match. Moreover, the natural frequencies for

the exact matrices and the new parametrized matrices, match also, as shown in Tab. 3.1.

3.6.2 Example of local-interface reduction

Consider a structure composed of 5 substructures and 3 boundaries as shown in Fig. 3.10.

Γj represents the jth boundary. First, using the constraint partitions (C) of the reduced
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Figure 3.9: Forced response calculated for Δp = 0.37 mm using the exact and the
parametrized mass and stiffness matrices obtained based on the new interpola-
tion for brick-type elements
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5Г1 Г2 Г3

Figure 3.10: A simple structure used to demonstrate the local-interface reduction

mass and stiffness matrices, the CC modes are computed. These are ΦCC
Δp,1, Φ

CC
Δp,2, Φ

CC
Δp,3,

ΦCC
Δp,4 and ΦCC

Δp,5. Φ
CC
Δp,1 has interface DOFs for boundary Γ1 and Γ2, while ΦCC

Δp,2 has in-

terface DOFs for Γ2 and Γ3. Substructures 3, 4 and 5 each have one boundary Γ1, Γ2, and

Γ3, respectively. The mathematical representation for these partitions for each CC mode

can be expressed as
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ΦCC
Δp,1 =

⎡
⎢⎣
(
ΦCC

Δp,1

)Γ1

(
ΦCC

Δp,1

)Γ2

⎤
⎥⎦ , ΦCC

Δp,2 =

⎡
⎢⎣
(
ΦCC

Δp,2

)Γ2

(
ΦCC

Δp,2

)Γ3

⎤
⎥⎦ ,

ΦCC
Δp,3 =

(
ΦCC

Δp,3

)Γ1
, ΦCC

Δp,4 =
(
ΦCC

Δp,4

)Γ2
, ΦCC

Δp,5 =
(
ΦCC

Δp,5

)Γ3
.

By using each boundary partition of the CC modes, the augmented set of CC modes for

each boundary is constructed as

ΦΓ1
Δp,aug =

[ (
ΦCC

Δp,1

)Γ1
(
ΦCC

Δp,3

)Γ1

]
,

ΦΓ2
Δp,aug =

[ (
ΦCC

Δp,1

)Γ2
(
ΦCC

Δp,2

)Γ2
(
ΦCC

Δp,4

)Γ2

]
, (3.19)

ΦΓ3
Δp,aug =

[ (
ΦCC

Δp,2

)Γ3
(
ΦCC

Δp,5

)Γ3

]
.

Equation (3.19) describes the augmented CC bases for boundaries Γ1, Γ2, and Γ3. How-

ever, the augmented bases ΦΓ1
Δp,aug, ΦΓ2

Δp,aug, and ΦΓ3
Δp,aug are not guaranteed to be linearly

independent. Thus, they cannot be directly used to reduce the constraint DOFs because of

lack of numerical stability. Thus, an orthogonal basis for the space spanned by the aug-

mented CC basis is used. Specifically, the left singular vectors ŨΓ1
Δp, ŨΓ2

Δp and ŨΓ3
Δp of

the three augmented CC bases ΦΓ1
Δp,aug, ΦΓ2

Δp,aug, and ΦΓ3
Δp,aug in Eq. (3.19) are computed

for each substructure, and the left singular vector corresponding to singular values larger

than 0.01% of the maximum singular value are selected for each boundary. The rows of

the orthogonal bases ŨΓ1
Δp, ŨΓ2

Δp and ŨΓ3
Δp are (re)sorted for each substructure to match

the interface DOFs for each boundary. The resorted matrices are denoted by UΓ1
Δp, UΓ2

Δp

and UΓ3
Δp. The (re)sorted matrices are grouped for each component i to obtain matrices

UΔp,i which UΔp,i are used to project the interface DOFs onto the secondary generalized

coordinates (CC domain). For example, substructure 1 includes the Γ1 and Γ2 boundaries.

To reduce the interface DOFs of substructure 1, the orthogonal bases UΓ1
Δp and UΓ2

Δp are
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Figure 3.11: An L-shaped plate shown without thickness variation (left) and with thickness
variation (right); interfaces between components are denoted by Γi

grouped in a matrix UΔp,1 given by

UΔp,1 =

⎡
⎢⎣ UΓ1

Δp 0Γ1

0Γ2 UΓ2
Δp

⎤
⎥⎦ . (3.20)

The orthogonal basis for substructure 2 is constructed in the same way, to obtain

UΔp,2 =

⎡
⎢⎣ UΓ2

Δp 0Γ2

0Γ3 UΓ3
Δp

⎤
⎥⎦ . (3.21)

For some of the substructures, the grouping of UΓ
Δp matrices is not necessary. For

example, the bases used for substructures 3, 4 and 5 are simply given by

UΔp,3 = UΓ1
Δp, UΔp,4 = UΓ2

Δp, and UΔp,5 = UΓ3
Δp (3.22)

Next, the orthogonal basis for each substructure is constructed using Eqs. (3.20), (3.21)

and (3.22), and the interface DOFs (C) of the NX-PROMs generalized coordinates are

projected into the secondary generalized CC coordinates as shown in Eq. (3.11).

3.6.3 L-shaped plate modeled with brick-type finite elements

To demonstrate the proposed NX-PROM and LIR methodologies, an L-shaped struc-

ture modeled with brick-type elements (shown in Fig. 3.11) and containing thickness varia-

tions is investigated numerically. Figure 3.11 shows the pristine structure and the structure
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Figure 3.12: Forced response predictions of the L-shaped plate for the nominal structure
and for cases 1, 2 and 3 computed using full-order models, MC-PROMs and
the novel NX-PROMs

with thickness variations. The structure consists of eight substructures. Substructures 7

and 8 have three cases of thickness variations, as given in Tab. 3.2. The nominal thickness

of the structure is 1 mm and the elemental thickness is 0.2 mm. The thickness varia-

tions applied are very large compared to the nominal elemental thickness considered. This

causes the entries of the mass and stiffness matrices to vary nonlinearly. CB-CMS is ap-

plied for the 1st to the 6th substructure, and the NX-PROM approach is applied for the 7th

and the 8th substructures.

Figure 3.12 shows the system-level forced responses of the nominal structure and the

three cases of thickness variation. The dotted lines represent the vibration response of

the nominal structure. The crosses and circles represent the responses of the structure
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Table 3.2: Thickness variations in substructures 7 and 8 of the L-shaped plate

Substructure Thickness, case 1 Thickness, case 2 Thickness, case 3

7 1.00mm → 1.22 mm 1.00mm → 1.42 mm 1.00mm → 1.81 mm

8 1.00mm → 1.22 mm 1.00mm → 1.42 mm 1.00mm → 1.81 mm

with thickness variations predicted using NX-PROMs and full-order models, respectively.

To reveal the enhanced performance of the NX-PROMs, the vibration response predicted

by MC-PROMs is also shown by the stars in Fig. 3.12. For all three cases, the forced

response predicted by the full-order models and the NX-PROMs show excellent matching.

However, the forced responses predicted by MC-PROMs are not accurate compared to the

full-order models. This is due to the fact that MC-PROMs cannot capture the volume

variation of brick-type finite elements, which leads to poor predictions of the vibration

response. Note also that the thickness variations affect significantly the structure, as shown

by the significant differences between the response of the nominal structure and the other

responses.

The number of DOFs of the full-order model and the NX-PROMs are 18,300 and

3,502, respectively. The system-level DOFs of the NX-PROMs include 3,000 interface

DOFs and 502 generalized internal DOFs. The number of generalized internal DOFs is

small. However, the number of interface DOFs is large, and should be reduced. Thus, the

LIR technique described in Sec. 3.4 was applied. Fig. 3.11 shows the interfaces which are

reduced, where Γm indicates the mth interface. Fig. 3.13 shows the forced responses for

the nominal structure and the three cases of thickness variations. The dotted lines represent

the response of the nominal structure. The crosses and circles indicate the responses of the

structure with thickness variations predicted using NX-PROMs with full interface DOFs
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Figure 3.13: Forced response predictions of the L-shaped plate for the nominal structure
and for cases 1, 2 and 3 computed using full-order models, NX-PROM, and
NX-PROM with LIR

and full-order models, respectively. The squares represent the responses predicted using

NX-PROMs with LIR. These latter models use only 533 interface DOFs, reduced by LIR

from 2,498. The response predicted by NX-PROMs with LIR agree very well with the

responses of the full-order model.

3.6.4 Results for a high mobility multipurpose wheeled vehicle model

In this section, NX-PROMs are used to predict the dynamic response of a realistic

vehicle model. We consider the base frame of a high mobility multipurpose wheeled

vehicle (HMMWV). The finite element model for the HMMWV is a conventional model

used to examine its dynamic response [30–32, 35, 64]. Figure 3.14 shows the system-

level and substructure-level finite element models of the HMMWV frame. The cross-

bar structure is composed of substructures CL and CR, which are modeled with solid-
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Figure 3.14: System-level and substructure-level finite element models of the frame of a
high mobility multipurpose wheeled vehicle

Table 3.3: Thickness variations in substructures CL and CR of the HMMWV frame

Substructure Thickness, case 1 Thickness, case 2

CL 5 mm → 20 mm 5 mm→ 32mm

CR 5 mm → 20 mm 5 mm→ 32mm

type finite elements, as shown in Fig. 3.15. The marked region in Fig. 3.15 indicates the

nodes which move due to thickness variation. Tab. 3.3 indicates two cases of thickness

variation for CL and CR. The thickness variations applied are much larger than those used

in the L-shaped example. We chose these large variations to demonstrate that the proposed

methods are very accurate even when the thickness variations are very large. Such large

variations are encountered in practice especially when components are re-designed. The

structural and the elemental thicknesses of the CL and CR substructures are 5 mm and

2.5 mm, respectively. NX-PROMs were created for the CL and CR substructures, and

CB-CMS was applied to the remaining substructures. Next, forces and moments were

applied to the engine cradle, and the resulting forced response were computed. Figure

3.16 shows the response of the HMMWV frame for cases 1 and 2. The measured point is
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CR

CL

Figure 3.15: Nominal and re-designed cross-bar composed of CL and CR

shown in Fig. 3.14. The dotted line shows the forced response of the nominal HMMWV

structure. The circles and crosses indicate the responses of the re-designed HMMWV

frame predicted by full-order models and NX-PROMs, respectively. The stars show the

responses predicted by MC-PROMs. Results obtained using the full-order models and the

NX-PROMs show excellent agreement for both cases 1 and 2, but the results predicted

by MC-PROMs do not agree well with the response obtained using the full-order models.

Also, note that the re-design has important effects on the structure, as demonstrated by the

significant difference between the responses of the nominal and the re-designed structures.

The full-order model of the HMMWV has 123,201 DOFs. The NX-PROMs have

2,683 DOFs, of which 1,473 are constraint DOFs and 1,210 are fixed-interface generalized

DOFs. To reduce the number of constraint DOFs, LIR was applied. Figure 3.14 shows

the interfaces of the substructures in the HMMWV frame. Tab. 3.4 shows what are the
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Table 3.4: Interfaces between substructures in the HMMWV model

����������������
Interface

Substructure
1 2 3 4 5 6 7 8 9 10

Γ1 O O

Γ2 O O

Γ3 O O

Γ4 O O

Γ5 O O

Γ6 O O

Γ7 O O

Γ8 O O

Γ9 O O

Γ10 O O

Γ11 O O

Γ12 O O

Γ13 O O

Γ14 O O
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Figure 3.16: Forced response predictions for the HMMWV frame for the nominal struc-
ture and for cases 1 (top) and 2 (bottom)

interface DOFs for each substructure. Figure 3.17 shows the response of the HMMWV

model predicted by NX-PROMs for cases 1 and 2 using different levels of reduction of

the overall interface DOFs. Magnified plots near the resonant frequencies are included

also. Note that the accuracy of the response predicted by LIR depends on the number of

remaining interface DOFs. In these two cases, an acceptable accuracy is obtained when

the remaining interface DOFs are not fewer than approximately 1,000.

3.7 Conclusions and Discussion

The key contributions of this paper are as follows. The proposed next-generation para-

metric reduced-order models (NX-PROMs) were developed by using a new parameteriza-

tion technique to capture the element-level nonlinearity due to volume variations of finite

elements of brick or other types. In addition, to establish a mathematically stable formu-

lation for NX-PROMs, a new transformation matrix was developed using a novel interpo-

lation of static constraint modes. Finally, a local-interface reduction (LIR) technique was

proposed for further enhancing the computational efficiency of the NX-PROMs.

Novel, next-generation parametric reduced order models (NX-PROMs) for predicting
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Figure 3.17: Forced response predictions for the HMMWV frame obtained using NX-
PROMs with LIR for different levels of reduction; the total number of DOFs
obtained for each model using LIR are indicated for case 1 (left) and 2 (right)

the vibration response of complex structures have been presented. These models address

two main drawbacks of MC-PROMs. The first is that the parameterization techniques used

in MC-PROMs cannot capture the thickness variation of brick and other types of finite el-

ements due to element-level nonlinearity of the stiffness matrix. The second drawback

is that the transformation matrix for MC-PROMs is not numerically stable. Thus, a new

parameterization technique was developed to capture the nonlinearity of the stiffness ma-

trix, and a new transformation matrix was proposed to make the NX-PROMs more stable

numerically and more accurate compared to MC-PROMs.

To reduce the interface DOFs, a new method called local-interface reduction (LIR) was

developed. NX-PROMs were developed for realistic substructural analysis. In such cases,

the interface DOFs should be reduced before the system-level matrices are constructed.
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The LIR technique uses characteristic constraint modes computed for each substructure

by using the constraint partition of the reduced mass and stiffness matrices constructed

by CB-CMS or the NX-PROM approach. By using these characteristic constraint modes,

orthogonal bases were defined to reduce the interface DOFs of each substructure. That is a

key advantage of this reduction technique, and it is very useful for substructural analysis.

Similar to MC-PROMs, the novel NX-PROMs also provide smaller system matrices

and shorter analysis and reanalysis time to predict the vibration response of complex struc-

tures. This means that NX-PROMs are especially useful for the repetitive analyses needed

in optimization problems where geometric changes are applied in the design cycle for

structures modeled with brick and other types of finite elements.



CHAPTER IV

Robust Signal Processing for Damaged Vehicles with
Variability

4.1 Introduction

Vibration-based structural health monitoring (SHM) techniques are of current interest

in identifying damage and assessing the integrity of structures such as ground vehicles.

Predicting the dynamic characteristics of damaged structures is an important challenge for

vibration-based SHM. The numbers of degrees of freedom (DOFs) of the finite element

models used to predict the dynamic response of complex structures are prohibitively large,

so conventional finite element analysis are hard to employ. Thus, alternative techniques

have been developed recently to predict the dynamic response of complex structures with

models having a dramatically lower number of DOFs [6–10]. These reduced-order models

(ROMs) are increasingly used to predict the vibration response of the structures, especially

their resonant frequencies and mode shapes, using a short computational time and a low

computational cost. One method for constructing ROMs is based on the fixed-interface

component mode synthesis (CB-CMS) [7]. That well known approach is employed herein

for a few portions of the model. Specifically, CB-CMS is useful and applied only to the

invariant components of overall/entire structures. A component is considered invariant

if it does not have any geometrical or structural variations. However, for the vibration-

85
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based SHM, the challenge is to predict the vibration characteristics of damaged structures,

not those of pristine structures. If one attempts to use standard reduced order modeling

techniques when parametric changes (such as thickness and geometrical variations) are

applied by design or exist through damage, the finite element model has to be modified,

and new ROMs have to be reconstructed (through a reanalysis) to predict the structural

vibration response. That is a manual and a very costly process computationally. Recently,

design oriented ROMs have been developed to avoid such prohibitively expensive reanal-

yses of complex structures. These models are parametric reduced order models (PROMs).

Initially, global PROMs have been developed (see e.g. the work of [28, 29]). However,

global PROMs are impractical because they require one to repeatedly solve many sample

eigenproblems for the entire structure. Thus, component-mode-based PROMs [30] have

been developed to adopt component normal modes and characteristic constraint modes as

projection basis instead of global modes. However, constructing component-mode-based

PROMs as done in [30] is also time consuming because the approach still requires the cal-

culation of system-level (global) interface modes. Thus, [32] introduced truly component-

level analysis for constructing PROMs, referred to as component-PROMs. However, in

their approach, component-PROMs can be applied only to one component. Thus, the

multiple-component PROMs (MC-PROMs) have been developed by the authors [35] and

are adopted herein to allow complex structures to be divided into several, much simpler,

substructures. Each substructure can have variability in characteristics such as geometric

parameters (e.g. thickness) or material properties (e.g. Young’s modulus).

In this work, PROM techniques employing CB-CMS and MC-PROM are applied to

analyze the vibration response of a cracked complex structure. Also, note that the cracked

structure generates a nonlinear dynamic problem because of the nonlinear contact force

between the crack surfaces. One approach to handle this nonlinear contact force is to use
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a hybrid frequency-time domain (HFT) method developed by [36], [37], and [65]. In that

method, a forced response analysis is applied to determine the resonant frequencies of the

cracked structure. While powerful, that approach is computationally intensive, and diffi-

cult to use to predict resonant responses (due to the nonlinearity). Thus, an alternate ap-

proach (based on linear analyses) has been developed for predicting resonant frequencies.

The alternate approach builds on earlier work on the bilinear frequency approximation

(BFA) [39]. The resonant frequencies predicted by the generalized BFA have been shown

to agree very well with those obtained using nonlinear HFT analyses for applications such

as cracked turbine bladed disks [40]. Herein, the concept of BFA is adopted together with

the bilinear mode approximation (BMA) [66]. BMA is introduced to approximate the

mode shapes of cracked structures. In addition, to reduce computational cost for BMA,

PROM techniques based on CB-CMS and MC-PROMs are used.

The characteristics of the dynamic response obtained using PROMs technique are use-

ful signals for vibration-based SHM. However, all signals obtained from PROM cannot

be used in practice due to limited accessibility constraints and cost of the needed sensors.

Thus, robust signal processing techniques to find the best sensor locations are an important

challenge. There are many previous studies of sensor placement for SHM. For example,

Ansari [41] has implemented SHM strategies which require selection and placement of

sensors suitable for measuring key parameters that influence the performance and health

of civil structures. Flynn and Todd [42] have proposed a novel approach for optimal ac-

tuator and sensor placement for SHM. Krommer et al. [43] have investigated a sensor

network composed of strain-type patch sensors with constant intensity designed to replace

distributed strain-type sensors for monitoring beam-type structures. Herein, a novel robust

signal processing technique is employed to find the optimal number of sensor locations

for gathering mode shape information of cracked structures. The novel approach is devel-
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oped starting from an algorithm based on the effective independence distribution vector

(EIDV) [44, 45]. The key idea of EIDV is to choose sensor locations for measuring phys-

ical mode shapes as linearly independent as possible in the frequency range of interest.

Herein, the EIDV method is modified to select optimal sensor locations for cracked com-

plex structures. The number of selected locations based on the modified EIDV method is

not only limited to the frequency range of interest, but also limited in the effects of mea-

surement noise. To address this noise, over-sampling is often performed. EIDV cannot

provide optimal locations for over-sampling. Herein, a new signal processing technique is

developed to select over-sampled measurement locations.

To approximate the mode shapes of cracked structures, BMA is formulated based on

PROM mode shapes. For completeness, this paper briefly describes also the PROMs ap-

proach to construct models for structures with parametric variabilities. Finally, robust

signal processing techniques are proposed to select the optimal and minimal sensor loca-

tions to capture the mode shapes of the structures. The technique to find optimal sensor

locations is specifically designed for cases where the structure has structural variability

and a crack.

4.2 Bilinear Mode Approximation

In this section, the mode shapes of a structure with a crack of various lengths are ex-

amined. When a structure has a crack, the resonant responses are hard to compute due to

the nonlinearity of dynamics. This dynamics is caused by the periodic opening and clos-

ing of the crack surface (which leads to a piece-wise linear dynamics). Hence, to predict

the mode shapes, standard modal analyses cannot be directly employed. To address this

challenge, a novel technique to characterize the spatial correlations among the vibration

of various points within the structure has been developed. These correlations are akin to
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mode shapes, but they characterize the dynamics of the cracked (nonlinear) structure. This

approach is based on the observation that, when the structure has a crack and vibrates at

some (nonlinear) resonant frequency, two states can be identified: crack open and crack

closed. These two states correspond to two shapes for the deformation of the structure at

that frequency. Next, we assume that all the shapes the structure takes during its nonlin-

ear vibration at a resonant frequency are linear combinations of these two shapes (open

and closed at that resonant frequency). Furthermore, the open and closed shapes are as-

sumed to be very similar to the shapes the structure would have if the crack surface were

permanently open (i.e., penetration would be allowed) or permanently closed (with slid-

ing occurring between DOFs within the crack surface). These linear modes can be easily

computed by standard linear techniques. This novel approach is referred to as BMA, and

complements BFA [39] originally developed for discrete low-dimensional systems and

later generalized for cracked structures. The bilinear (BL) modes ΦBL can be expressed as

ΦBL =

⎡
⎢⎣ Φopen

Φclosed

⎤
⎥⎦ , (4.1)

where Φopen are the mode shapes of the structure with a permanently open crack (penetra-

tion allowed) and Φclosed are the mode shapes of the structure with a permanently closed

crack (sliding allowed).

4.3 Parametric Reduced Order Models

In this section, the well known fixed-interface Craig-Bampton CMS (CB-CMS) method [7]

and multiple-component parametric reduced-order models (MC-PROM) [35] used to con-

struct PROMs for healthy substructures and substructures with parameter variations are

briefly reviewed.

First, the CB-CMS approach [7] is used to model only the substructures which do not
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have any structural variability. This modeling approach is used because it is very simple

and computationally stable. Also, this technique is derivable because it can be exploited

when modeling cracked structures by managing the geometric compatibility conditions

between substructures. To apply CB-CMS, the complex structure of interest is partitioned

into substructures, and the substructures have interface DOF and internal DOFs. The

physical coordinates of these interface and internal DOFs are projected onto the general-

ized coordinates by using the fixed-interface normal mode (ΦN
i ) and static constraint mode

(ΨC
i ). Then, the size of the mass and stiffness matrices, and force vector for substructure

i are significantly reduced.

Second, MC-PROMs [35] are adopted to manage the substructures with variability in

parameters such as Young’s modulus and thickness variations. One important advantage

of MC-PROMs is that the finite element mesh of the nominal structure does not need to be

modified, although the substructures have parametric variability. That is because the mass

and stiffness matrices are parameterized (by using Taylor series). For example, for a linear

thin plate element, the modification of the stiffness matrix due to variations in the thickness

of the plate can be accurately represented by a Taylor series up to third order within an

upper and a lower limit for the parameterization. In addition, similar to the CB-CMS, an

appropriate transformation matrix is constructed for converting from physical coordinates

to generalized coordinates by using fixed-interface normal modes and static constraint

modes. The distinct feature between CB-CMS and MC-PROM is that the transformation

matrix for MC-PROM is constructed for all configurations in the parameter space of the

corresponding component. In contrast, CB-CMS is applied only to components with no

parameter variability.

The ith and jth component mass and stiffness matrices for CB-CMS and MC-PROM

are partitioned as [35] and are explained as
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M̂CMS
i =

⎡
⎢⎢⎢⎢⎢⎣

mCC
i mCF

i mCCN
i

mFC
i mFF

i mFFN
i

mNCC
i mNFF

i mNN
i

⎤
⎥⎥⎥⎥⎥⎦ , K̂CMS

i =

⎡
⎢⎢⎢⎢⎢⎣

kCC
i kCF

i kCCN
i

kFC
i kFF

i kFFN
i

kNCC
i kNFF

i kNN
i

⎤
⎥⎥⎥⎥⎥⎦ , (4.2)

MPROM
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mCC00
j mCF00

j mCC0U
j mCF0U

j mCCN00
j

mFC00
j mFF00

j mFC0U
j mFF0U

j mFFN00
j

mCCU0
j mCFU0

j mCCUU
j mCFUU

j mCCNUU
j

mFCU0
j mFFU0

j mFCUU
j mFFUU

j mFFNUU
j

mNCC00
j mNFF00

j mNCCUU
j mNFFUU

j mNd
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4.3)

KPROM
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kCC00
j kCF00

j kCC0U
j kCF0U

j kCCN00
j

kFC00
j kFF00

j kFC0U
j kFF0U

j kFFN00
j

kCCU0
j kCFU0

j kCCUU
j kCFUU

j kCCNUU
j

kFCU0
j kFFU0

j kFCUU
j kFFUU

j kFFNUU
j

kNCC00
j kNFF00

j kNCCUU
j kNFFUU

j kNd
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the superscript 0 indicates the nominal parameter values, and the superscript U

indicate quantities computed for the upper limit parameter values in Eq. (4.3).

To model the dynamics of cracked structures and to apply BMA, the partitioning of

the structure is done such that all crack surfaces are along interfaces between adjacent

substructures. That way, the crack model can be obtained by simply managing the geo-

metric compatibility conditions. In Eqs. (4.2) and (4.3), the interface DOFs are divided

into constraint DOFs (superscript CC) and free DOFs (superscript FF ). For the open

crack case, the DOFs between the crack surfaces are completely free, which means that

those DOFs are allowed to inter-penetrate. These DOFs on the crack surfaces are free

DOF (superscript FF ) in Eqs. (4.2) and (4.3). For the closed crack case, sliding boundary
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conditions are applied at the DOFs on the crack surfaces. Hence, the DOFs on the crack

interface can slide, but they are not allowed to inter-penetrate. The constrained DOFs

which are not allowed to inter-penetrate are denoted by superscript CC in Eqs. (4.2) and

(4.3). The constrained (CC) and the free (FF ) DOFs for the open and closed states of

the cracked structure are different between shell-type and solid-type finite elements. That

is because the DOFs of a nodal point are different between shell and solid-type finite ele-

ments. Thus, the DOF which are constrained (CC) or free (FF ) for open and close state

should be chosen carefully for each type of finite element. Using these two kinds of geo-

metric compatibility conditions, the mode shapes of a cracked structure with an open crack

and separately a closed crack are obtained through two separate linear analyses. Note also

that, if component i has a crack surface, the component-level mass and stiffness matrices

are partitioned as in [35].

Since all crack surfaces are at interfaces between components, all boundary DOFs

are active DOFs. Finally, the geometric compatibility conditions used to assemble ev-

ery substructure are applied only to the DOFs marked as CC in Eq. (4.2). The detailed

formulation and description of PROMs technique are provided in [35].

4.4 Signal Processing for Cracked Structures

The objective of the signal processing technique is to select optimal sensor locations

to represent the mode shapes of structures with various crack lengths. These mode shapes

are useful in vibration-based SHM. An important related challenge is how to determine the

frequency range of interest together with the sensor locations as to capture the shapes of

the cracked structure during its vibration. Thus, a methodology to determine the sensitive

modes due to the crack is investigated first.
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4.4.1 Generalized modal assurance criterion

Some of the shapes of the resonant response of the healthy structure are similar to

those of the cracked structure, and some are different. For instance, when the structure

has a small crack, the mode shapes of the healthy structure are very similar to those of the

cracked structure. Such a resonant response is not good for detecting the location and size

of the crack. To address that, the most sensitive bilinear (BL) modes are used. To identify

these BL modes, a modal assurance criterion (MAC) [67, 68] has been generalized and

used to obtain the MAC matrix between the BL modes for the healthy and the cracked

structures. The new MAC matrix needs the BL mass matrix obtained separately using

ROMs for the open and closed crack vibration cases because the BL mode shapes for the

open and closed states are mass normalized, and their sizes are different due to the distinct

geometric compatibility conditions. The BL mass matrix can be expressed as

MBL =

⎡
⎢⎣ Mopen

ROM 0

0 Mclosed
ROM

⎤
⎥⎦ , (4.4)

where the two mass matrices for open and closed states are obtained from ROMs. Herein,

ROMs are obtained by using CB-CMS and MC-PROMs. This BL mass matrix is used

together with the BL modes to define a new MAC as

MACij =
[(Φh

BL,i)
TMBL(Φ

d
BL,j)]

2

[(Φh
BL,i)

TMBL(Φh
BL,i)][(Φ

d
BL,j)

TMBL(Φd
BL,j)]

, (4.5)

where the subscripts i and j indicate the ith and jth modes, and the BL mode shapes for the

healthy structure (indicated by the superscript h) are defined as in Eq. (4.1) but for a zero

crack length, while the BL modes for a non-zero crack are indicated by the superscript d.

The value MACij reflects how distinct is the ith BL mode of the healthy structure from

the jth BL mode of the cracked structure. Note that the MAC matrix can be computed

for structures with different crack lengths. The (diagonal) entries that correspond to non-
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sensitive BL modes are close to 1.0 because the BL modes are normalized by the BL mass

matrix. A specific example of selecting sensitive modes is shown in the next sections.

4.4.2 Modified effective independence distribution vector algorithm

In a practical implementation for structural inspection or damage identification, infor-

mation of the BL modes has to be obtained through measurements by using sensors. To

address that challenge, a signal processing algorithm for selecting the minimal and op-

timal locations to be measured or instrumented with sensors has been developed. This

algorithm is generalized from a derivative of the EIDV method [45]. Generally, the EIDV

method requires only a portion of the modal matrix of a structure in a frequency range of

interest. This portion is allocated based on the generalized MAC discussed in the previ-

ous section and is applied to the BL modes and not the usual linear modes. The portion

indicates also that the modal matrix has information of a set of candidate DOFs, not all

DOFs of the structure. The partial modal matrix is used to compute a Fisher (information)

matrix which, in turn, allows the computation of an effective independence distribution

vector. This vector identifies the DOFs that are best to measure in terms of ensuring the

linear independence of the measurements. To apply EIDV, the augmented bilinear modal

matrix ΦEIDV
aug of the cracked structure is used instead of real nonlinear mode shapes of

the cracked structure. ΦEIDV
aug is formed by grouping BL modes for the healthy structure

(without a crack) Φ̂h
BL and the BL modes for cracked structures with various crack lengths.

The matrix Φ̂h
BL and all mode shapes of various cracked structures are assembled in the

frequency range of interest as follows

ΦEIDV
aug = [ Φ̂h

BL Φ̂a%
BL Φ̂b%

BL · · · ], (4.6)

where Φ̂a%
BL and Φ̂b%

BL indicate the modal matrices of cracked structures with a crack length

of a% and b% of a reference length. This reference length can be interpreted as the largest
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crack length of interest. Also, each modal matrix for the cracked structures can correspond

to different frequency ranges because the sensitive modes can be different for each crack

length. For instance, if the sensitive mode shapes based on MAC are 3rd, 4th and 5th

for the cracked structure with a% crack length, then the Φ̂a%
BL modal matrix has only three

coherences with candidate DOFs. However, the sensitive modes for the cracked structure

with b% can be different and can contain more (or fewer) modes such as 4th, 5th, 6th and

7th.

If the number of sensors to be used are not sufficient and optimal to represent the

modes of interest for the structure with various crack lengths, then the selected signals

are very hard to use for vibration-based SHM. Hence, one must ensure that the sensors

are placed optimally despite the fact that not all vectors Φ̂a%
BL, and Φ̂b%

BL are necessarily

linearly independent. Thus, the EIDV methodology was generalized. A subset of the left

singular vectors UEIDV
aug of ΦEIDV

aug is used instead of the full augmented modal matrix in

Eq. (4.6). To select this subset, the singular values of ΦEIDV
aug are computed, and the left

vectors corresponding to the largest singular values are selected.

Using the resulting matrix UEIDV
aug , the generalized EIDV algorithm for establishing

locations for sensor placement can be summarized as follows.

(1) Calculate the BL modes for the healthy structure and cracked structures based on

PROM (with crack lengths in a range of interest).

(2) Calculate the generalized MAC matrix using Eq. (4.5) and select sensitive modes

for each crack length.

(3) Construct BL modes for the healthy and the cracked structures by selecting candi-

date measurement DOFs (by transforming PROM coordinates to physical coordi-

nates) with the sensitive modes chosen at step (2).
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(4) Construct the augmented BL modal matrix ΦEIDV
aug using Eq. (4.6).

(5) Apply singular value decomposition, and obtain the left singular vectors of ΦEIDV
aug .

Select the singular vectors UEIDV
aug corresponding to the largest singular values.

(6) Calculate the Fisher information matrix given by A = UEIDV
aug

T
UEIDV

aug .

(7) Calculate the effective independence distribution vector, defined as the diagonal of

the matrix E = UEIDV
aug A−1UEIDV

aug
T.

The number of significant (or nontrivial) singular values of ΦEIDV
aug are indicative of the

number of sensors needed for sensing and the generalized EIDV technique.

4.4.3 Over-sampled measurement locations

There are several possible criteria to assess the suitability of the selected measurement

locations. They include the modal assurance criterion, the modified modal assurance cri-

terion, the singular value decomposition, the measured energy per mode, and the Fisher

information matrix [45]. Herein, the singular value decomposition is used to assess the

suitability of selected measurement locations. The method simply evaluates the ratio of

the largest to the smallest singular value of the BL modal matrix based on the measure-

ment DOFs. If this ratio is close to unity, then the choice of measurement locations is

good. In contrasts, the larger the ratio, the worst the choice of locations. Thus, if the ratio

of the largest and smallest singular values of UEIDV
aug with selected measurement DOFs is

not close to 1.0, additional locations are likely necessary to guarantee linear independence

of UEIDV
aug , especially in the presence of measurement noise.

Note that the number of selection points is dominated by the number of singular values

of ΦEIDV
aug because the rank of the left singular vectors UEIDV

aug (from ΦEIDV
aug ) which guar-

antees linear independence is same as the number of selected singular values. Thus, addi-
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Figure 4.1: Substructuring of the HMMWV frame

tionally selected measurement locations based on the modified EIDV techniques cannot be

chosen based on linear independence. Assumption of that fact is that the most important

DOFs which are additionally selected are the DOFs nearest to the DOFs already selected.

For instance, consider that the size of the matrix UEIDV
aug is 300×5, where 300×5 indicates

the number of candidate DOFs and the number of modes respectively. Consider also that

number of modes (which is 5) is the same as the number of selected singular values. By

using the modified EIDV technique, a maximum 5 measurement DOFs can be selected

and the size of UEIDV
aug (with the selected DOFs) is 5×5. However, if the ratio of the maxi-

mum and the minimum singular values for the final UEIDV
aug (with the selected DOFs) is not

closed to 1.0, then the 5 selected measurement locations are not enough to guarantee linear

independence of the final UEIDV
aug . Thus, a new technique to select additional measurement

DOFs in addition to the ones selected based on singular values is necessary to guarantee

that the final augmented modal matrix has linearly independent columns (and thus, the

ratio of the maximum and the minimum singular values of the final UEIDV
aug is close to

1.0.). The additional measurement locations are referred to as over-sampled measurement

locations.

Herein, a new technique to select over-sampled measurement locations is proposed.
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Figure 4.2: Substructure for the cracked cross-bar

Table 4.1: Thickness variations in substructures

Substructure Case 1 Case 2

Lrear 3.038 mm → 5.562 mm 3.038 mm → 4.114 mm

Lfront 3.038 mm → 4.991 mm 3.038 mm → 3.552 mm

Specifically, denote by R the left eigenvectors of ΦEIDV
aug which contain the remainder

(unselected) DOFs, and denote by S the left eigenvectors of ΦEIDV
aug which contain the

selected DOFs. After the generalized EIDV technique is executed, the UEIDV
aug is divided

into S and R. The main idea is that R can be represented as a linear combination of the

columns of S as follows,

R = SC, (4.7)

where C is coefficient matrix which can be calculated using Eq. (4.7). By managing the

matrix C, the most important DOFs which should be added to previously selected DOFs

(based on the generalized EIDV) can be selected. This procedure is applied until the
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Figure 4.3: MAC between modes for healthy HMMWV and the structure with 24.24%
crack, with 30.30% crack, and with 39.39% crack

desired number of over-sampled measurement DOFs is reached. Following is the specific

procedure to select over-sampled measurement locations.

(1) The generalized EIDV technique is executed to select optimal measurement DOFs

by using UEIDV
aug with all candidate DOFs.

(2) The UEIDV
aug is divided into R and S.

(3) The coefficient matrix C is calculated by using Eq. (4.7).

(4) The standard deviation of the entries in each row of the matrix C is computed.

(5) The DOF which corresponds to the minimum standard deviation (computed at step

(4)) is selected as an additional DOF to measure.

(6) The additional DOF is added to S, and omitted from R.

(7) Steps (3) to (6) are repeated until the desired number of additional DOFs is reached.
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: Candidate measurement locations

Figure 4.4: Finite element model for a HMMWV frame

: Selected measurement locations

Figure 4.5: 4 optimal sensor locations based on the 30th mode by using the modified EIDV
method for cases 1 and 2 of thickness variation

4.5 Numerical Example

4.5.1 HMMWV models

In this section, we demonstrate the generalized EIDV techniques based on PROMs

for a high mobility multipurpose wheeled vehicle (HMMWV) base frame with a crack.

Figure 4.4 shows the finite element model along with the candidate measurement locations.

Figure 4.1 shows each substructure of the HMMWV frame used to construct PROMs. The

reinforcement frames in the rear and the front are attached to the leftrails and rightrails.

The reinforcement frames which are attached to the leftrails have thickness variations as

shown in Tab. 4.1. For example, a nominal thickness of Lrear of 3.038 mm (on the left of

the arrow) is considered in case 1 to change to 5.562 mm (on the right of the arrow). The

same nominal value of the thickness of Lrear is considered to change to 4.114 mm in case
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: Selected measurement locations

Figure 4.6: 10 optimal sensor locations based on the 30th mode by using the modified
EIDV method and the over-sampled algorithm for the case 1 of thickness vari-
ation

: Selected measurement locations

Figure 4.7: 10 optimal sensor locations based on the 30th mode by using the modified
EIDV method for the case 1 of thickness variation

2, and so on. The cross-member is considered to have a crack, as shown in Fig. 4.2. The

crack length varies (across the cross-member component) from 3.03% to 36.36%. The CB-

CMS method is applied for healthy substructures (the parts of the structure which do not

have any variations). The MC-PROM method is implemented for the substructures with

thickness variations. The BMA approach is implemented to approximate the BL modes of

the cracked HMMWV frame.

To select the frequency range of interest, the sensitive BL modes are identified by us-

ing the generalized MAC matrix in Eq. (4.5). The crack lengths of interest are 24.24%,

30.30%, and 39.39%. Fig. 4.3 shows the MAC matrices computed between the healthy

and the cracked structure with 24.24%, 30.30%, and 39.39% crack length. For these
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: Selected measurement locations

Figure 4.8: 10 optimal sensor locations based on the 30th mode by using the modified
EIDV method and the over-sampled algorithm for the case 2 of thickness vari-
ation

: Selected measurement locations

Figure 4.9: 10 optimal sensor locations based on the 30th mode by using the modified
EIDV method for the case 2 of thickness variation

cracked structures, the 30th mode is the most sensitive compared to the healthy struc-

ture. Thus, the 30th modes of the healthy and cracked structures are used to construct the

augmented modal matrix ΦEIDV
aug .

Next, the generalized EIDV technique is applied to obtain the optimal sensor locations.

Figure 4.5 shows the best four sensor locations to capture the 30th mode for the cases 1 and

2 of thickness variation. The BL mode shapes of the cracked structure are considered to be

measured only at those four locations. The selected sensor locations are identical for each

case of thickness variation. These results show that, for this structure, the optimal sensor

locations are affected much more by the crack length than by the thickness variations.

The ratio of the largest and the smallest singular values of the set of left singular vec-
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Table 4.2: The ratio of the largest and the smallest singular value

Case Type of selection method Ratio for singular value

1 Over-sampled 1.041

Modified EIDV 1.197

2 Over-sampled 1.024

Modified EIDV 1.212

Crack propagation

3.03%

36.36%
Crack location shifted from the first location

Figure 4.10: Cross-bar with a different crack location

tors (only with the selected measurement DOFs represented in Fig. 4.5) are not very close

to 1.0. For the cases 1 and 2 of thickness variation, the ratios are 1.41. Thus, additional

over-sampled measurement locations are needed. For that, 6 additional over-sampled mea-

surement DOFs can be selected by the algorithm for over-sampled measurement locations.

Figures 4.6 and 4.7 show these 6 additional over-sampled locations along with the 4 opti-

mal sensor locations based on the modified EIDV method. These figures show also the 10

optimal sensor locations obtained only from the modified EIDV method for the case 1 of
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Figure 4.11: MAC between modes for healthy HMMWV and the structure with 24.24%
crack, with 30.30% crack, and with 39.39% crack; crack is at a different
location compared to Fig. 4.2

thickness variation. The 10 sensor locations in Fig. 4.6 (from the over-sampled algorithm)

are well distributed. In contrast, some of the measurement locations in Fig. 4.7 (from the

modified EIDV only) are doubled selected. This result demonstrates that the additional

measurement locations above and beyond the number of selected singular values cannot

be selected well by the modified EIDV method. Figures 4.8 and 4.7 also show the 10 opti-

mal measurement locations for the case 2 of thickness variation by using the over-sampled

algorithm and the EIDV method respectively. The results are similar to the results of case

1 of thickness variation. Table 4.2 shows the ratio of the largest and the smallest singu-

lar values of UEIDV
aug with 10 measurement DOFs selected by generalized EIDV, and with

10 measurement locations selected by the generalized EIDV and over-sampled algorithm.

The ratio of UEIDV
aug with selected DOFs by using the over-sampled algorithm is closer to

1.0 because those 10 measurement locations are well distributed.
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: Selected measurement locations

Crack location changed

Figure 4.12: 4 optimal sensor locations based on the 30th mode by using the modified
EIDV method for cases 1 and 2 of thickness variation; crack is at a different
location compared to Fig. 4.2

: Selected measurement locations

Crack location changed

Figure 4.13: 10 optimal sensor locations based on the 30th mode by using the modified
EIDV method and the over-sampled algorithm for case 1 of thickness varia-
tion; crack is at a different location compared to Fig. 4.2

Additionally, we also investigated the sensor placement for a different crack location.

In Fig. 4.2, the crack is located closed to the center of the cross-bar. Now, the crack is

considered at a different location, as shown in Fig. 4.10. The crack lengths of interest are

24.24%, 30.30%, and 39.39% for the two cases of thickness variation listed in Tab. 4.1.

Figure 4.11 shows the MAC matrices computed between the healthy and the cracked

structure with the three crack lengths. For the shifted crack case, the 30th mode is also

the most sensitive compared to the healthy structure. Thus, the augmented modal matrix

ΦEIDV
aug is constructed by using the 30th mode.

Next, the generalized EIDV technique is applied to select the optimal sensor locations.
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: Selected measurement locations

Crack location changed

Figure 4.14: 10 optimal sensor locations based on the 30th mode by using the modified
EIDV method and the over-sampled algorithm for the case 2 of thickness
variation; crack is at a different location compared to Fig. 4.2

: Selected measurement locations

Figure 4.15: Statistically optimal sensor locations obtained from 400 cases of thickness
variation; crack is at the first location (shown in Fig. 4.2)

Figure 4.12 shows the four optimal sensor locations for cases 1 and 2 of thickness varia-

tion. The selected sensor locations are identical for the two cases of thickness variation.

That result is the same as for the first crack location considered. We also applied the

generalized EIDV technique and the over-sampled algorithm to obtain 10 optimal sensor

locations. Figures 4.13 and 4.14 indicate the 10 optimal sensor locations for cases 1 and

2 of thickness variation. The selected sensor locations for the case where the crack is at

the new location are different compared to the sensor locations obtained for the first crack

location considered. This indicates that the optimal sensor locations can be sensitive to the

crack locations.
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: Selected measurement locations

Crack location changed

Figure 4.16: Statistically optimal sensor locations obtained from 400 cases of thickness
variation; crack is at a different location compared to Fig. 4.2

4.5.2 Robust signal processing based on a Monte-Carlo technique

It is often desirable to select optimal and minimal sensor locations to capture the mode

shapes of cracked structures. However, when the thickness of some components of the

structure vary, the structural characteristics (especially mode shapes) are affected. Then,

the optimal sensor locations may also be affected by the change in the mode shapes. That

means that robust sensor locations are required to capture the mode shapes of the structures

in the presence of thickness variations. Herein, a Monte-Carlo technique is applied to

determine statistically optimal and robust sensor locations. To apply the Monte-Carlo

technique, a large number of possible thickness variations are considered, and optimal

sensor locations for the resulting mode shapes are obtained. To compute the mode shapes

for each thickness variation, PROM techniques are applied. One of the main advantages of

PROMs is that reanalysis (for each thickness variation) is almost 100 times faster because

any parameter value in the parameter range can be easily applied [35].

The reinforcement frames in the rear and the front (which are attached to the leftrails)

have thickness variations. For the Monte-Carlo technique, 400 separate cases of possible

thickness variations are applied to these reinforcement frames. Each of the two reinforce-

ment frames has been considered to have a thickness of a value randomly drawn from a
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Figure 4.17: Optimal sensor locations for the leftrail frame structure for all cases of thick-
ness variation; crack is at the first location (shown in Fig. 4.2)

uniform distribution between 3.038 mm and 6.038 mm. A total of 20 sample thicknesses

were randomly selected for each of the 2 substructures (Lfront and Lrear), and that leads

to a total of 400 samples. The 26th through the 30th modes are identified and selected

as sensitive modes (based on MAC matrices obtained using Eq. (4.5)) and are used for

sensor placement. The total number of modes for the augmented bilinear modal matrix

in Eq. (4.6) is 20. Then, the optimal number of measurement locations are decided based

on the selected number of singular value of ΦEIDV
aug for each case of thickness variation. For

instance, if all columns of ΦEIDV
aug in Eq. (4.6) are linearly independent, then the selected

number of singular values is 20. In contrast, if the columns of ΦEIDV
aug are not linearly

independent, then the selected number of singular values is smaller than 20. During the

Monte-Carlo simulations, 14 or 15 optimal measurement locations are selected for each

case of thickness variation. Then, only four measurement points are selected for all cases

of thickness variation. These four selected measurement locations are chosen to be the
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Figure 4.18: Optimal sensor locations for the leftrail frame structure for all cases of thick-
ness variation; crack is at a different location compared to Fig. 4.2

statistically optimal locations. Thus, they are the most robust when used to capture the

BL modes of the cracked structures for any thickness variation (in the range of interest).

Figures 4.15 and 4.16 show the four statistically optimal measurement locations obtained

for the first and the second crack locations. Figures 4.17 and 4.18 represent the distribu-

tion of optimal sensor locations chosen along the leftrail (i.e. along the x coordinate) for

all cases of thickness variation for the first and the second crack locations. Also, Figs.

4.19 and 4.20 show the distribution of the sensor locations chosen along the rightrail. The

distribution for all cases of thickness variation in Figs. 4.17-4.20 are slightly different for

the two crack locations. However, statistically optimal sensor locations (which are the 4

locations most often selected) are almost identical, as shown in Figs 4.15 and 4.16. That

indicates that the statistically optimal sensor locations are robust for the two cases of crack

locations considered.
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Figure 4.19: Optimal sensor locations for the rightrail frame structure for all cases of thick-
ness variation; crack is at the first location (shown in Fig. 4.2)

4.6 Conclusions and Discussion

Identifying structural inspection points or desired sensor locations for the purpose of

vibration-based structural health monitoring is an important challenge for cracked struc-

tures because of the nonlinearity created by the crack opening and closing. A new concept

of bilinear (BL) modes has been used to address this issue. The BL modes are obtained

using linear analysis techniques, and can be used to obtain BL mode approximations. To

alleviate high computational costs in design applications and to find statistical simula-

tion results based on Monte-Carlo simulations, a reduced order modeling method based

on Craig-Bampton component mode synthesis and multi-component parametric reduced-

order models was used. A generalized modal assurance criterion has been developed and

used to find the BL modes that are most sensitive to the presence of a crack. Using the

selected BL modes, an augmented BL modal matrix has been formed and used in an al-

gorithm based on a modified effective independence distribution vector (EIDV) method



111

1500 4000

x coordinate

: Selected measurement locations

X

Z

1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

350

400

x coordinate

N
u

m
b

e
r
 o

f 
se

le
c
ti

o
n

s

Figure 4.20: Optimal sensor locations for the rightrail frame structure for all cases of thick-
ness variation; crack is at a different location compared to Fig. 4.2

to select optimal inspection points (or measurement locations). When the selected op-

timal measurement locations based on the generalized EIDV method are not enough to

maintain the linear independence of the set of left singular vector, a novel over-sampled

algorithm was applied to select additional measurement locations. Finally, the optimal

set of measurement locations (for the cracked structure) was selected (by the generalized

EIDV method and the over-sampled algorithm), and the measurement locations were as-

sessed by the ratio of the largest and the smallest singular values of the set of the left

singular vectors. To select robust sensor locations for any thickness variation in a range of

interest, a Monte-Carlo technique was implemented based on PROMs to select statistically

optimal measurement locations. 400 cases of possible thickness variation were considered

for a HMMWV frame, and 4 statistically optimal and robust measurement locations were

selected. These four points are robust and statistically optimal to capture the mode shapes

of the cracked HMMWV structure.
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The approach proposed is not a novel statistical analysis. Rather, PROMs provide

a method to solve very quickly for samples rather than a method to choose parameter

values where samples are to be computed. The user of the proposed solver can choose the

statistical analysis method to be used. In this work, a Monte Carlo approach was used.

Any sampling method can be used to obtain a statistical solution. For example, Latin

Hypercube sampling can be used. Also, the number of samples to be used is a choice of

the user. In general, more or fewer samples may be necessary depending on the specifics

of the structure.

If one would choose to use a full-order model in the same statistical analysis (i.e.

the same number of samples), then the computational time would increase dramatically

compared to the computational cost of using PROMs. That is because each sample requires

a much longer computational time when using a full-order model compared to PROMs. In

addition, if a different method for statistical analysis is used (e.g., one that requires fewer

samples than a Monte-Carlo approach), then using PROMs is faster because each sample

is obtained faster.

If one ignores the possible structural variability altogether, and selects sensor locations

based on a single calculation (for a single set of structural parameter values), then the

selected measurement locations can be inadequate. That is because structural character-

istics (such as mode shapes) are affected when there are changes in structural parameter

values. As a consequence, the optimal sensor locations may also be affected (e.g., by the

change in the mode shapes). The fact that the sensor locations are inadequate means that

the sensors will not provide signals that are optimally uncorrelated. To quantify the level

of correlation, one can use the singular values of matrix UEIDV
aug . If all these singular values

are of similar magnitude, then the signals are optimally uncorrelated. The smaller the ratio

σmax/σmin is, the more correlated the signals are (where σmin and σmax are the smallest
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and the largest singular values). For example, consider that the HMMWV structure has

geometrical parameters as the ones used to obtain the results shown in Fig. 4.6. The sensor

locations shown in Fig. 4.6 for that structure lead to σmax/σmin = 1.04. In contrast, if

one uses these same same sensor locations, but for a structure which has slightly different

geometrical parameters (e.g., the parameters used to obtain the results in Fig. 4.8), then

one obtains to σmax/σmin = 1.58. This latter set of singular values indicates that the

locations which are best for the structure with the first set of structural parameter values

are worse for the structure with the second set of structural parameter values. In general,

sensors selected for one set of structural parameter values are not necessarily adequate for

other structural parameter values. A statistically optimal choice for sensor locations has

to be made to reach a compromise between signal correlation and robustness to parame-

ter variability in the structure. PROMs are specifically designed to account for parameter

variability, and hence enable such desirable statistical analyses, which in turn allow one to

obtain the statistically robust/optimal sensor locations.

The structural variability considered in the numerical example is geometric (thickness

variations). Nonetheless, the proposed method applies to a much larger class of variability,

including material variability (such as variability in the modulus of elasticity, or other

parameters of the material). From a structural dynamics standpoint these cases are treated

the same way: as changes in the mass and stiffness matrices of the system. PROMs have

been applied because they provide a fast solution for systems where such variability can

be present and should be accounted for.



CHAPTER V

Novel Sensor Placement for Damage Identification in a
Cracked Complex Structure with Structural Variability

5.1 Introduction

Robust techniques for sensor placement and damage detection are of current interest

because of the increased need to reduce the time and the cost of examining the structural

integrity of military ground vehicles and aircraft. To assess integrity, structural information

must be obtained using a variety of sensors. Both the number and the locations of sensors

are limited due to cost and accessibility constraints. There are many previous studies of

sensor placement for structural health monitoring. Ansari [41] has implemented health

monitoring strategies which require selection and placement of sensors suitable for mea-

suring key parameters that influence the performance and health of civil structures. Flynn

and Todd [42] have proposed a novel approach for optimal actuator and sensor place-

ment for structural health monitoring. Krommer et al. [43] have investigated a sensor

network composed of strain-type patch sensors with constant intensity designed to replace

distributed strain-type sensors for monitoring beam-type structures.

Herein, a novel sensor placement technique is employed to find the optimal and mini-

mal number of sensor locations for gathering modal information. The novel approach uses

an algorithm similar to the effective independence distribution vector (EIDV) [44,45]. The

114
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EIDV approach is designed for selecting locations for measuring physical mode shapes.

The key idea of EIDV is to choose locations which make the measured partial eigenstruc-

ture as linearly independent as possible. Herein, the EIDV method is modified to select

optimal sensor location for cracked structures. The information collected is then used to

detect the crack length.

In addition to the need to determine the optimal locations for gathering structural infor-

mation, predicting the dynamic response of complex structures is another important chal-

lenge. The number of degrees of freedom (DOFs) of complex structures are prohibitively

large, and thus they are hard to use for solving inverse problems such as damage detection.

To alleviate this problem, techniques have been developed recently to predict the dynamic

response of complex structures with models employing a dramatically lower number of

DOFs [6–10]. These advanced reduced order models (ROMs) are increasingly used for

structural health monitoring because of the complexity of the structures of interest. One

method for constructing ROMs is based on the fixed-interface Craig-Bampton component

mode synthesis (CB-CMS) [7]. That well known approach is employed herein for a few

portions of the model. Specifically CB-CMS is useful and applied only to the invariant

components of overall/entire structures. A component is considered invariant if it does

not have any geometrical or structural variations. However, the overall/entire structure

can have such kinds of variations due to manufacturing or damage. If one attempts to use

standard reduced order modeling techniques when parametric changes are applied by de-

sign or exist through damage, the finite element model has to be modified, and new ROMs

have to be reconstructed to predict the structural vibration response. That is a very costly

process computationally. Recently, design oriented ROMs have been developed to avoid

such prohibitively expensive reanalyses of complex structures. These models are referred

to as parametric reduced order models (PROMs). Initially, global PROMs have been de-
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veloped [28, 29]. However, global PROMs are impractical because they require that one

repeatedly solves many sample eigenproblems for the entire structure. Thus, component-

mode-based PROMs [30] have been developed to adopt component normal modes and

characteristic constraint modes as projection basis instead of global modes. However,

constructing component-mode-based PROMs as done is also time consuming because the

approach still requires the calculation of system-level (global) interface modes. Thus,

Park [32] introduced truly component-level analysis for constructing PROMs, referred to

as component-PROMs. However, in their approach, component-PROMs can be applied

only to one component. Thus, the multiple-component PROMs (MC-PROMs) [35] have

been developed by the authors and are adopted herein to allow complex structures to be

divided into several, much simpler, substructures. Each substructure can have variability

in characteristics such as geometric parameters (e.g. thickness) or material properties (e.g.

Young’s modulus).

In this work, PROM techniques employing CB-CMS and MC-PROMs are applied to

analyze the vibration response of a cracked complex structure. Also, note that the cracked

structure generates a nonlinear dynamic problem because of the nonlinear contact force

between the crack surfaces. One approach to handle this nonlinear contact force is to

use a hybrid frequency-time domain (HFT) method developed by Poudou and Pierre [36],

Poudou [37], and Saito [40]. In that method, a forced response analysis is applied to

determine the resonant frequencies of cracked structures. While powerful, that approach

is computationally intensive, and difficult to use to predict resonant responses (due to the

nonlinearity). Thus, an alternate approach (based on linear analyses) has been developed

for predicting resonant frequencies. The alternate approach builds on earlier work on the

bilinear frequency approximation (BFA) [39]. The resonant frequencies predicted by the

generalized BFA have been shown to agree very well with those obtained using nonlinear
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HFT analyses for applications such as cracked turbine bladed disks [65]. Herein, the

concept of BFA is adopted together with the bilinear mode approximation (BMA) [66].

BMA is introduced to approximate the mode shapes of cracked structures. In addition,

to reduce computational cost for BMA, ROM techniques based on CB-CMS and MC-

PROMs are used. Finally, the bilinear mode shapes of cracked structures in the reduced

order domain are used to estimate the crack length.

This paper provides an algorithm to detect the crack length in the complex structures

with structural variations. A novel crack detection algorithm is obtained by using the

bilinear mode shapes of cracked complex structure in the reduced order domain together

with a method to select optimal sensor locations based on a modified EIDV algorithm.

The technique to find optimal sensor locations is specifically designed for cases where the

structure has structural variability and a crack. This technique is for estimating the size

of the crack, not for finding the crack location. To apply this technique, knowledge of the

hot spots in the structure is needed. Next, by using the algorithm proposed in this paper,

the presence of the crack can be detected. Then, the proposed approach can be applied to

estimate the size of the crack. However, herein, it is assumed that the presence and the

location of the crack are known. Of course, detecting the size, location and presence of the

crack are very important issues for structural health monitoring. These three features of

cracks are all significant. Here, the focus is to estimate the size of the crack, not to find the

location or the presence of the crack. An example application would be to monitor a crack

located in ground vehicle component that requires partial teardown to inspect visually.

5.2 Bilinear Mode Approximation

In this section, the shapes of the resonant responses of a structure with a crack of

various lengths are examined. When a structure has a crack, it also exhibits nonlinear dy-
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namics. This dynamics is caused by the periodic opening and closing of the crack surface

(which leads to a piece-wise linear dynamics). Hence, standard modal analyses cannot

be directly employed. To address this challenge, a novel technique to characterize the

spatial correlations among the vibration of various points within the structure has been

developed. These correlations are akin to mode shapes, but they characterize the dynam-

ics of the cracked (nonlinear) structure. This approach is based on the observation that,

when the structure has a crack and vibrates at some (nonlinear) resonant frequency, two

states can be identified: crack open and crack closed. These two states correspond to two

shapes for the deformation of the structure at that frequency. Next, we assume that all

the shapes the structure takes during its nonlinear vibration at a resonant frequency are

linear combinations of these two shapes (open and closed at that resonant frequency). Fur-

thermore, the open and closed shapes are assumed to be very similar to the shapes the

structure would have if the crack surface were permanently open (i.e. penetration would

be allowed) or permanently closed (with sliding occurring between DOFs within the crack

surface). These linear modes can be easily computed by standard linear techniques. This

novel approach is referred to as BMA, and complements BFA [39] originally developed

for discrete low-dimensional systems and later generalized for cracked structures. The

bilinear (BL) modes ΦΦΦBL can be expressed as

ΦΦΦBL =

⎡
⎢⎣ ΦΦΦopen

ΦΦΦclosed

⎤
⎥⎦ , (5.1)

where ΦΦΦopen are the mode shapes of the structure with a permanently open crack (penetra-

tion allowed) and ΦΦΦclosed are the mode shapes of the structure with a permanently closed

crack (sliding allowed). Note that the assumptions made in this section for the bilinear

approximation are not appropriate for the cases where the crack surface has intermediate

contact, when the impact between crack surfaces is not negligible, or when the crack opens
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and closes gradually [66].

5.3 Fixed-Interface Craig-Bampton Component Mode Synthesis (CB-
CMS)

In this section, the well known fixed-interface Craig-Bampton CMS (CB-CMS) [7]

method used to construct ROMs for healthy substructures is briefly reviewed. This ap-

proach is used to model only the substructures which do not have any structural variabil-

ity. This modeling approach is used because it is very simple and computationally stable.

Also, this technique can be exploited when modeling cracked structures by managing the

geometric compatibility conditions between substructures.

To apply CB-CMS, the complex structure of interest is partitioned into substructures,

and the DOFs of each substructure are further partitioned into active (A) DOFs on the

interface, and omitted (O) DOFs in the interior. Then, the mass and stiffness matrices of

the finite element model for a component i can be partitioned as follows

Mi =

⎡
⎢⎣ mAA

i mAO
i

mOA
i mOO

i

⎤
⎥⎦ and Ki =

⎡
⎢⎣ kAA

i kAO
i

kOA
i kOO

i

⎤
⎥⎦ .

Next, the physical coordinates are projected onto the generalized coordinates. In this con-

text, the generalized coordinates are a set of coordinates representing the amplitudes of a

selected set of fixed-interface component-level normal modes ΦΦΦN
i (indicated by the super-

script N) and the amplitudes of the full set of static constraint modes ΨΨΨC
i = −kOO

i
−1
kOA
i

(indicated by the superscript C). The transformed mass and stiffness matrices for compo-

nent i can be expressed as

M̂i =

⎡
⎢⎣ mC

i mCN
i

mNC
i mNN

i

⎤
⎥⎦ and K̂i =

⎡
⎢⎣ kC

i kCN
i

kNC
i kNN

i

⎤
⎥⎦ . (5.2)

To model the dynamics of cracked structures and to apply BMA, the partitioning of the
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structure is done such that all crack surfaces are along interfaces between adjacent sub-

structures. That way, the crack model can be obtained by simply managing the geometric

compatibility conditions. To apply geometric compatibility conditions in Eq. (5.2), the C

DOFs which represent interface DOFs are further divided into constraint DOFs (super-

script CC) and free DOFs (superscript FF ). For the open crack case, the DOFs between

the crack surfaces are completely free, which means that those DOFs are allowed to inter-

penetrate. These DOFs on the crack surfaces are free DOFs (superscript FF ) in Eq. (5.3).

For the closed crack case, sliding boundary conditions are applied at the DOFs on the

crack surfaces. Hence, the DOFs on the crack interface can slide, but they are not allowed

to inter-penetrate. The constrained DOFs which are not allowed to inter-penetrate are de-

noted by superscript CC in Eq. (5.3). Using these two kinds of geometric compatibility

conditions, the mode shapes of a cracked structure with an open crack and separately a

closed crack are obtained through two separate linear analyses. Thus, if component i has

a crack surface, the component-level mass and stiffness matrices are partitioned as [35]

M̂i =

⎡
⎢⎢⎢⎢⎢⎣

mCC
i mCF

i mCCN
i

mFC
i mFF

i mFFN
i

mNCC
i mNFF

i mNN
i

⎤
⎥⎥⎥⎥⎥⎦ , and K̂i =

⎡
⎢⎢⎢⎢⎢⎣

kCC
i kCF

i kCCN
i

kFC
i kFF

i kFFN
i

kNCC
i kNFF

i kNN
i

⎤
⎥⎥⎥⎥⎥⎦ . (5.3)

Since all crack surfaces are at interfaces between components, all boundary DOFs are

active DOFs. The geometric compatibility conditions used to assemble every substructure

are lastly applied only to the DOFs marked as CC in Eq. (5.3).

5.4 Multiple-Component Parametric Reduced-Order Models

MC-PROMs [35] are adopted to manage the substructures with parameter variability.

One important advantage of MC-PROMs is that the finite element mesh of the nominal

structure does not need to be modified despite parameter variability. That is because the
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mass and stiffness matrices are parameterized by using Taylor series within an upper and

a lower limit for the parameterization. For example, for a linear thin plate element, the

modification of the stiffness matrix due to variations in the thickness of the plate can be

accurately represented by a Taylor series up to third order, while the mass matrix can be

approximated by a Taylor series up to first order. Consider a parameter p. The first and

the third order Taylor series approximations about the nominal parameter value p0 can be

expressed as follows [35]

Mi(p) ≈ Mi(p0) +
∂Mi

∂p
(p− p0),

Ki(p) ≈ Ki(p0) +
∂Ki

∂p
(p− p0) (5.4)

+
1

2

∂2Ki

∂p2
(p− p0)

2 +
1

6

∂3Ki

∂p3
(p− p0)

3.

Computationally, the partial derivatives in Eq. (5.4) are approximated by using finite dif-

ferences (for a small parameter variation Δp). For example,

M1
FD =

∂Mi

∂p
≈ Mi(p0 +Δp)−Mi(p0)

Δp
,

K1
FD =

∂Ki

∂p
≈ Ki(p0 +Δp)−Ki(p0)

Δp
, (5.5)

K2
FD =

∂2Ki

∂p2
≈ Ki(p0 + 2Δp)− 2Ki(p0 +Δp) +Ki(p0)

Δp2
.

Following closely the approach in Hong et al. [35], the parameterized component matrices

can be obtained by substituting Eq. (5.5) into Eq. (5.4) to obtain

Mi(p) ≈ Mi(p0) +M1
FD(p− p0),

Ki(p) ≈ Ki(p0) +K1
FD(p− p0) (5.6)

+
1

2
K2

FD(p− p0)
2 +

1

6
K3

FD(p− p0)
3,

where K3
FD = ∂3Ki

∂p3
.
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Similar to the previous section, the concept of CB-CMS is used to construct an ap-

propriate transformation matrix for converting physical coordinates into generalized coor-

dinates. In the standard CB-CMS formulation, the fixed-interface normal modes ΦΦΦN
i and

static constraint modes ΨΨΨC
i of the nominal structure are used to construct the transforma-

tion matrix. However, for MC-PROMs, the mass and stiffness matrices are parameterized.

Thus, the transformation matrix is also constructed for all configurations in the parameter

space of the corresponding component. This approach is distinct from standard CB-CMS.

Herein, the component-level modal basis Φ̂ΦΦi for the ith component can be expressed as

Φ̂ΦΦi =

⎡
⎢⎣ I I 0

ΨΨΨ0
i ΨΨΨU

i ΦΦΦaug
i

⎤
⎥⎦ , (5.7)

where ΦΦΦaug
i is referred to as the matrix of augmented fixed-interface normal modes

ΦΦΦaug
i =

[
ΦΦΦ0

i ΦΦΦ1
i ΦΦΦ2

i ΦΦΦ3
i

]
, (5.8)

and the superscript 0 indicates the nominal parameter values, while the superscript U , 1,

2 and 3 indicate quantities computed for perturbed parameter values. These perturbed

parameter values can be same values as the ones used in Eq. (5.5) to approximate the mass

and stiffness matrices. Vectors ΦΦΦi and ΨΨΨi in Eq. (5.7) represent fixed-interface normal

modes and static constraint modes.

A third order Taylor series is used to represent the parameterized stiffness matrix.

Hence, the fixed-interface normal modes for three perturbed structures are computed to

form a transformation matrix. Note that, in general, taken all together, the modes in ΦΦΦaug
i

are not orthogonal. For numerical stability, an orthogonal basis for the space spanned by

these modes is used. To that aim, the left singular vectors of ΦΦΦaug
i are computed, and the

left singular vectors Ui corresponding to singular values larger than 0.01% of the maxi-

mum singular value are selected. Next, Ui is used to construct a transformation matrix
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(instead of the augmented fixed-interface normal modes ΦΦΦaug
i ). The final transformation

matrix can be expressed as

Φ̂ΦΦi =

⎡
⎢⎣ I I 0

ΨΨΨ0
i ΨΨΨU

i Ui

⎤
⎥⎦ . (5.9)

Using Eq. (5.9) into Eq. (5.6), the physical coordinates are transformed into general-

ized coordinates along the collected set of modes Φ̂ΦΦi for the ith component. The trans-

formed mass and stiffness matrices can be expressed as [35]

M̂i(p) ≈ Φ̂ΦΦ
T

i Mi(p0)Φ̂ΦΦi + Φ̂ΦΦ
T

i M
1
FDΦ̂ΦΦi(p− p0),

K̂i(p) ≈ Φ̂ΦΦ
T

i Ki(p0)Φ̂ΦΦi + Φ̂ΦΦ
T

i K
1
FDΦ̂ΦΦi(p− p0)

+
1

2
Φ̂ΦΦ

T

i K
2
FDΦ̂ΦΦi(p− p0)

2 +
1

6
Φ̂ΦΦ

T

i K
3
FDΦ̂ΦΦi(p− p0)

3.

The modal bases used in MC-PROMs and CB-CMS consist of internal and interface

DOFs for each substructure. Thus, the mass and stiffness matrices for the ith component

used for MC-PROMs can be partitioned as follows

MPROM
i =

⎡
⎢⎢⎢⎢⎢⎣

mC00
i mC0U

i mCN00
i

mCU0
i mCUU

i mCNUU
i

mNC00
i mNCUU

i mNd
i

⎤
⎥⎥⎥⎥⎥⎦ and

(5.10)

KPROM
i =

⎡
⎢⎢⎢⎢⎢⎣

kC00
i kC0U

i kCN00
i

kCU0
i kCUU

i kCNUU
i

kNC00
i kNCUU

i kNd
i

⎤
⎥⎥⎥⎥⎥⎦ ,

where superscript Nd refers to the interior generalized DOFs used in the MC-PROMs

approach.

Similar to CB-CMS, the interface DOFs (C) are also further divided into constrained

DOFs (superscript (CC)) and free DOFs (superscript FF ) to apply open and sliding

boundary conditions for BMA, as done in Eq. (5.3). Thus, the interface DOFs marked
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as C can also be divided into CC and FF DOFs. Then, the MC-PROMs mass and stiff-

ness matrices can be partitioned as [35]

MPROM
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mCC00
i mCF00

i mCC0U
i mCF0U

i mCCN00
i

mFC00
i mFF00

i mFC0U
i mFF0U

i mFFN00
i

mCCU0
i mCFU0

i mCCUU
i mCFUU

i mCCNUU
i

mFCU0
i mFFU0

i mFCUU
i mFFUU

i mFFNUU
i

mNCC00
i mNFF00

i mNCCUU
i mNFFUU

i mNd
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(5.11)

KPROM
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kCC00
i kCF00

i kCC0U
i kCF0U

i kCCN00
i

kFC00
i kFF00

i kFC0U
i kFF0U

i kFFN00
i

kCCU0
i kCFU0

i kCCUU
i kCFUU

i kCCNUU
i

kFCU0
i kFFU0

i kFCUU
i kFFUU

i kFFNUU
i

kNCC00
i kNFF00

i kNCCUU
i kNFFUU

i kNd
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The geometric compatibility conditions for the cracked structure are applied the same way

as for the components modeled with the standard CB-CMS.

Numerical results have shown the efficiency of MC-PROMs. The computational time

required by MC-PROMs for the reanalysis is approximately 100 times shorter than the

time required by full-order model analyses [35]

5.5 Generalized Modal Assurance Criterion (MAC)

Some of the shapes of the resonant response of the healthy and the cracked structures

are very similar, and some are not. For example, when the resonant response is not large

near the crack, the response of the cracked structure is very similar to the response of the

healthy structure. Such a resonant response is not very good for detecting the presence

and length of a crack. For detection, monitoring the modes most sensitive to the crack is

a better choice. Thus, the most sensitive bilinear (BL) modes are identified first. For that,
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a novel modal assurance criterion (MAC) [67, 68] has been developed and used to obtain

the generalized MAC matrix between the BL modes for the healthy and the cracked

structures. The new MAC needs the BL mass matrix obtained separately using ROMs

for the open and closed crack vibration cases because the mode shapes for the open and

closed states are mass normalized, and their sizes are different due to the distinct geometric

compatibility conditions. The BL mass matrix can be expressed as

MBL =

⎡
⎢⎣ Mopen

ROM 0

0 Mclosed
ROM

⎤
⎥⎦ , (5.12)

where the two mass matrices for open and closed states are obtained from ROMs. Herein,

ROMs are obtained by using CB-CMS and MC-PROMs. This BL mass matrix is used

together with the BL modes to define a new MAC as

MACij =
[(ΦΦΦh

BL,i)
TMBL(ΦΦΦ

d
BL,j)]

2

[(ΦΦΦh
BL,i)

TMBL(ΦΦΦ
h
BL,i)][(ΦΦΦ

d
BL,j)

TMBL(ΦΦΦ
d
BL,j)]

, (5.13)

where the subscripts i and j indicate the ith and jth modes, and the BL mode shapes for the

healthy structure (indicated by the superscript h) are defined as in Eq. (5.1) but for a zero

crack length, while the BL modes for a non-zero crack are indicated by the superscript d.

The value MACij reflects how distinct is the ith healthy BL mode from the jth cracked

BL mode. Note that the MAC matrix can be computed for structures with different crack

lengths. The (diagonal) entries that correspond to non-sensitive BL modes are close to

1.0 because the BL modes are normalized by the BL mass matrix. A specific example of

selecting sensitive modes is showed in the next sections.

5.6 Detection Algorithm for Crack Length

The MAC matrix in Eq. (5.13) quantifies the sensitivity of the bilinear (BL) modes

to the crack. Accordingly, a frequency range of interest is defined such that it includes
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the most sensitive BL modes. Based on this frequency range of interest, a new sensor

placement algorithm is applied to identify crack lengths. The procedure to estimate the

length of a crack can be summarized as follows.

(1) The mode shapes of the healthy and the cracked structures (with up to 3 crack

lengths) are obtained using ROMs (using methods such as CB-CMS and MC-PROMs).

(2) The candidate measurement DOFs are used to truncate the the full BL modes. The

resulting partial BL modes for the healthy and the cracked structures are denoted

by ΦΦΦh
BL,i and ΦΦΦd

BL,i. Each partial BL mode is normalized as follows

Φ̂ΦΦ
h

BL,i =
ΦΦΦh

BL,i

‖ ΦΦΦh
BL,i ‖2

and Φ̂ΦΦ
d

BL,i =
ΦΦΦd

BL,i

‖ ΦΦΦd
BL,i ‖2

. (5.14)

(3) The normalized (partial) BL modes are assumed to depend on the crack length (de-

noted by d) approximately as follows

Φ̂ΦΦ
d

BL,i = Φ̂ΦΦ
h

BL,i + δΦ̂ΦΦ
da

BL,i · d+ δΦ̂ΦΦ
db
BL,i · d2 + δΦ̂ΦΦ

dc

BL,i · d3. (5.15)

(4) The variations in the (partial) mode shapes δΦ̂ΦΦ
da

BL,i, δΦ̂ΦΦ
db
BL,i and δΦ̂ΦΦ

dc

BL,i are computed

using 3 separate ROMs for the same structure but with 3 distinct crack lengths. The

dependence of the partial BL modes on the crack length in Eq. (5.15) can be used

for the 3 lengths of the crack da, db, and dc to obtain

Φ̂ΦΦ
da

BL,i = Φ̂ΦΦ
h

BL,i + δΦ̂ΦΦ
da

BL,i · da + δΦ̂ΦΦ
db
BL,i · d2a + δΦ̂ΦΦ

dc

BL,i · d3a,

Φ̂ΦΦ
db
BL,i = Φ̂ΦΦ

h

BL,i + δΦ̂ΦΦ
da

BL,i · db + δΦ̂ΦΦ
db
BL,i · d2b + δΦ̂ΦΦ

dc

BL,i · d3b , (5.16)

Φ̂ΦΦ
dc

BL,i = Φ̂ΦΦ
h

BL,i + δΦ̂ΦΦ
da

BL,i · dc + δΦ̂ΦΦ
db

BL,i · d2c + δΦ̂ΦΦ
dc

BL,i · d3c .
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Rearranging Eq. (5.16), one obtains⎡
⎢⎢⎢⎢⎢⎣

...
...

...

Φ̂ΦΦ
da

BL,i − Φ̂ΦΦ
h

BL,i Φ̂ΦΦ
db

BL,i − Φ̂ΦΦ
h

BL,i Φ̂ΦΦ
dc

BL,i − Φ̂ΦΦ
h

BL,i

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

...
...

...

δΦ̂ΦΦ
da

BL,i δΦ̂ΦΦ
db
BL,i δΦ̂ΦΦ

dc

BL,i

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

da db dc

d2a d2b d2c

d3a d3b d3c

⎤
⎥⎥⎥⎥⎥⎦ (5.17)

= δΦ̂ΦΦBL,i

⎡
⎢⎢⎢⎢⎢⎣

da db dc

d2a d2b d2c

d3a d3b d3c

⎤
⎥⎥⎥⎥⎥⎦ ,

where δΦ̂ΦΦBL,i is referred to as the BL mode variation matrix (for mode i). For

example, we consider the structure with da = 5%, db = 7% and dc = 10% crack

lengths separately.

(5) Once, δΦ̂ΦΦ
da

BL,i, δΦ̂ΦΦ
db
BL,i and δΦ̂ΦΦ

dc

BL,i are obtained, they can be used into Eq. (5.15)

to identify the crack length. Specifically, one measures a partial BL mode Φ̂ΦΦ
d

i and

uses Eq. (5.15) to determine d. For each mode of index i, a value di is obtained

as an estimate for the crack length. Note that Eq. (5.15) can be interpreted as a

vector equation for a scalar unknown (d). To solve this vector equation, Eq. (5.15)

is projected along (Φ̂ΦΦ
d

BL,i − Φ̂ΦΦ
h

BL,i).

The algorithm requires the measurement of one or a few BL modes of the cracked

structure. These modes can be measured by separating physical measurements into two

groups. One group corresponds to maximum positive deformations in a given direction,

whereas the second group represents maximum (in absolute value) negative deformations.

The positive measurements are used to obtain one of the components of each BL mode



128

(e.g., the open crack linear mode). The negative measurements are used to obtain the other

component (e.g., the closed crack linear mode).

To apply this algorithm and to detect the size of the crack as precisely as possible,

it is best if the crack location is known. Nonetheless, the existence of the crack can be

detected by this technique also. In Eq. (5.15), the bilinear mode variation vectors δΦ̂ΦΦ
da

BL,i,

δΦ̂ΦΦ
db

BL,i and δΦ̂ΦΦ
dc

BL,i can be calculated separately for various possible/expected cracks at

specific locations (hot spots). Next, these mode variation vectors can be used to detect

the presence of a crack as follows. If a crack is not present in the structure, then the ith

measured bilinear mode shapes of the healthy and the cracked structures, Φ̂ΦΦ
h

BL,i and Φ̂ΦΦ
d

BL,i,

are the same. Then, the variable d in Eq. (5.15) is zero. In contrast, when a crack is

present in the structure, Φ̂ΦΦ
h

BL,i and Φ̂ΦΦ
d

BL,i are not the same, and the variable d is not zero.

A non-zero value for d indicates that a crack is present at the specific location where the

mode variation vectors were computed. Nonetheless, when d is not zero, its value is not

precisely the length of the crack. To accurately identify the size of the crack, its location

has to be known.

The polynomial dependence of Φ̂ΦΦ
h

BL,i on the crack length d described in Eq. (5.15) is

an appropriate functional dependence for small cracks. To construct the bilinear modal

matrix, two types of eigenvectors of the cracked structure are used. These eigenvectors are

computed from the mass and stiffness matrices for two states (open and closed). For the

case of small cracks, the mass and stiffness matrices vary smoothly as the crack increases

in size. Hence, the polynomial dependence is expected to be reasonable for small cracks.

Using this algorithm, the length of a crack can be estimated by using all candidate mea-

surement DOFs (locations). However, this total number of candidate measurement DOFs

is typically too large to instrument in a practical case. Thus, a new sensor placement algo-

rithm was developed based on the EIDV algorithm as discussed in the next section. This
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placement algorithm is designed to identify the minimum measurement DOFs (locations)

needed to identify the length of the crack.

5.7 Modified Effective Independence Distribution Vector (EIDV) Al-
gorithm

In a practical implementation of the proposed approach for structural inspection or

damage detection, partial information about the bilinear (BL) modes has to be obtained

through measurements. To address that challenge, an algorithm for establishing the min-

imal and optimal locations to be measured or instrumented with sensors has been de-

veloped. This algorithm is a derivative of the EIDV method [45]. Generally, the EIDV

method requires only a portion of the modal matrix of a structure. This portion corre-

sponds to the mode shapes of a structure (in a frequency range of interest allocated based

on the generalized MAC discussed in the previous section) and to a set of candidate DOFs.

The partial modal matrix is used to compute a Fisher (information) matrix which, in turn,

allows the computation of an effective independence distribution vector. This vector iden-

tifies the DOFs that are best to measure in terms of ensuring the linear independence of

the measurements. To apply EIDV, the augmented bilinear modal matrix ΦΦΦEIDV
aug of the

cracked structure is formed instead of real mode shapes of the structure. ΦΦΦEIDV
aug is formed

by grouping BL modes for the healthy structure (without a crack) Φ̂ΦΦ
h

BL and the three mode

variation vectors δΦ̂ΦΦ
da

BL,i, δΦ̂ΦΦ
db
BL,i, and δΦ̂ΦΦ

dc

BL,i which are obtained from Eq. (5.17). The ma-

trix Φ̂ΦΦ
h

BL and all mode variation vectors in the frequency range of interest are assembled

as follows

ΦΦΦEIDV
aug = [ Φ̂ΦΦ

h

BL δΦ̂ΦΦ
da

BL,1 δΦ̂ΦΦ
db

BL,1 δΦ̂ΦΦ
dc

BL,1 · · · δΦ̂ΦΦ
da

BL,i δΦ̂ΦΦ
db

BL,i δΦ̂ΦΦ
dc

BL,i · · · ]. (5.18)

The sensors used in a measurement must be sufficient in number and placed optimally for

measuring the modes of interest for the structure with an unknown crack length. Hence,



130

one must ensure that the sensors are placed optimally despite the fact that not all vec-

tors δΦ̂ΦΦ
da

BL,i, δΦ̂ΦΦ
db

BL,i, and δΦ̂ΦΦ
dc

BL,i are necessarily linearly independent. Hence, the EIDV

methodology was generalized. A subset of the left singular vectors UEIDV
aug of ΦΦΦEIDV

aug is

used instead of the full augmented modal matrix. To select this subset, the singular values

of ΦΦΦEIDV
aug are computed, and the left vectors corresponding to the largest singular values

are selected. This process is similar to the one used in Eq. (5.8) for constructing PROMs.

Using the resulting matrix UEIDV
aug , the generalized EIDV algorithm for establishing loca-

tions for sensor placement can be summarized as follows.

(1) Calculate the BL modes for the healthy structure and three mode variation vectors

with all candidate measurement locations.

(2) Construct the augmented BL modal matrix ΦΦΦEIDV
aug as given in Eq. (5.18) in a fre-

quency range of interest based on the MAC in Eq. (5.13).

(3) Apply singular value decomposition, and obtain the left singular vectors of ΦΦΦEIDV
aug .

Select the singular vectors UEIDV
aug corresponding to the largest singular values.

(4) Calculate the Fisher information matrix given by A = UEIDV
aug

T
UEIDV

aug .

(5) Calculate the effective independence distribution vector, defined as the diagonal of

matrix E = UEIDV
aug A−1UEIDV

aug
T

.

The number of significant or nontrivial singular values of ΦΦΦEIDV
aug are indicative of the

number of sensors needed for identifying the crack length. After obtaining the optimal

number of measurement locations, the crack detection algorithm is implemented to detect

the crack length using only the optimal number of DOFs identified based on generalized

EIDV algorithm.
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5.8 Numerical Results

5.8.1 High mobility multipurpose wheeled vehicle model with shell-type elements

In this section, we demonstrate the new PROM and EIDV-based approach and the crack

detection algorithm presented above for a realistic vehicle model. The structure is a high

mobility multipurpose wheeled vehicle (HMMWV) base frame with a crack. The finite el-

ement model of the HMMWV frame is a conventional shell element model. Fig. 5.1 shows

this model along with the candidate measurement locations. Fig. 5.2 shows each substruc-

ture of the HMMWV frame used to construct ROMs. The reinforcement frames in the

rear and the front are attached to the leftrails. These reinforcement frames are considered

to have thickness variations. Tab. 5.1 shows the thickness variations in the reinforcement

frames. The cross-member is considered to have a crack, as shown in Fig. 5.3. The crack

length varies (across the cross-member component) from 3.03% to 36.36%. The CB-CMS

method is applied for the remainder of the structure (the part of the structure which does

not have any thickness variations or cracks). The MC-PROMs method and the BMA

approach are implemented for the substructures with thickness variations and for approx-

imate bilinear (BL) modeling of the response of the cracked HMMWV frame. Note that

the HMMWV model exhibits a particular behavior because it is constructed of shell ele-

123456

123456

: Candidate measurement locations

Figure 5.1: Finite element model for a high mobility multipurpose wheeled vehicle
(HMMWV) frame
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123456

123456

123456

123456

L rear

L front Reinforcement frame
(has thickness variation)

Cross member
(has a crack)

Rightrail 

Leftrail 

Figure 5.2: Substructuring of the high mobility multipurpose wheeled vehicle (HMMWV)
frame

Table 5.1: Thickness variations in substructures

Substructure Thickness variation

Lrear 3.0378 mm → 4.6268 mm

Lfront 3.0378 mm → 5.3838 mm

ments (with very small thickness). Specifically, the deformation of the structure is always

similar to an open crack motion and never similar to a closed crack vibration. Thus, only

open crack modes were needed in this computational example. Prior to calculating the

BL mode variation matrix δΦ̂ΦΦBL,i for mode i, the most sensitive BL mode is identified by

using the generalized MAC matrix. Fig. 5.4 shows the MAC matrices computed be-

tween the healthy and the cracked structures with 30.30% and 36.36% crack length. For

these 30.30% and 36.36% crack structures, the 30th mode is the most sensitive compared

to the healthy structure. Thus, i = 30 and the 30th mode of the healthy and cracked struc-

tures are used to identify the crack length. Fig. 5.5 and Fig. 5.6 show that the 30th mode

shapes of the healthy and the 36.36% cracked HMMWV models are significantly differ-

ent. Thus, the crack affects the 30th mode which is hence the best mode to use in the crack
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Crack propagation

3.03%

36.36%

Figure 5.3: Substructure for the cracked cross-member
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Figure 5.4: MAC between models for the healthy structure and the structure with a
30.30% crack and a 36.36% crack

detection algorithm. The crack detection algorithm is applied to calculate the BL mode

variation matrix δΦ̂ΦΦBL,30 for mode shapes of the structure with three distinct crack lengths:

da = 15.15%, db = 21.21%, and dc = 30.30%.

Next, the generalized EIDV algorithm is applied to obtain the optimal sensor loca-

tions. Fig. 5.7 shows the best four sensor locations to capture the 30th mode and identify

the crack length. The BL mode shapes of the cracked structure are considered to be mea-

sured only at those four locations. Using those measurements, the crack length is detected
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Figure 5.5: The 30th mode shape of the healthy high mobility multipurpose wheeled vehi-
cle (HMMWV) frame

Figure 5.6: The 30th mode shape of the high mobility multipurpose wheeled vehicle
(HMMWV) frame with a 36.36% crack

using Eq. (5.15). Thus, herein the assumption is that the BL mode shape Φ̂ΦΦ
d

BL,30 is well ap-

proximated by real open crack mode shapes of the structure. In Eq. (5.15), d is a variable

for crack estimation. Note that only Φ̂ΦΦ
d

BL,30 has to be measured. Vectors Φ̂ΦΦ
h

BL,30, δΦ̂ΦΦ
da

BL,30

, δΦ̂ΦΦ
db

BL,30 and δΦ̂ΦΦ
dc

BL,30 are calculated. Thus, d can be calculated and used as an estimated

crack length. The cases considered are 18.18% and 27.27% crack lengths. Tab. 5.2 shows

the results obtained for the estimated crack length d. The d values obtained in both crack

cases are very accurate.
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: Selected measurement locations

Figure 5.7: Optimal sensor locations based on the 30th mode

Table 5.2: Estimated crack length d for high mobility multipurpose wheeled vehicle
(HMMWV) modeled with shell-type elements

Actual crack length d (30th mode)

18.18% 18.97%

27.27% 27.41%

5.8.2 HMMWV model with solid-type elements

In the previous section, the sensor placement and crack length detection algorithm

have been applied to a HMMWV model which uses shell-type elements. An important

unanswered question is whether the in-plane motion of the two faces of the crack is very

small. The thickness of the shell elements is considered very small. Hence, such in-plane

motion cannot be modeled. Thus, only the open state motion of the structure is considered

for the bilinear mode approximations. However, BMA can compute the resonant response

of cracked structure by using both open and closed state motions. To demonstrate a more

challenging case of application of BMA, the type of finite element used to discretize the

structure was changed to solid elements. Specifically, the finite elements used to discretize

the cross-member frame in the HMMWV model were solid-type elements. Fig. 5.8 shows
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Figure 5.8: Substructure for the modified cracked cross-member modeled with solid-type
elements

the modified model of the cross-member frame. The thickness variations in the reinforce-

ment frame of the HMMWV model are the same as in the previous example. The crack

length also varies (across the cross-member component) from 3.03% to 36.36%. PROMs

were constructed and BMA was employed to approximate the response of the cracked

HMMWV frame. The in-plane motions of the solid elements are not small, so the mode

shapes of the open crack and the closed crack states are used to construct bilinear (BL)

modes. A similar procedure as in the previous section was employed to calculate the

generalized MAC matrix and to identify sensitive mode shapes for each crack length.

Figures 5.9 shows the MAC matrices calculated between the healthy and the cracked

structures with 30.30% and 36.36% crack length. The most sensitive and the second most

sensitive modes are the 30th and the 22nd modes. These modes of the healthy and the

cracked structures are used to identify the crack length separately. Using each of the two

modes, the BL mode variation matrix δΦ̂ΦΦBL,30 and δΦ̂ΦΦBL,22 were computed for structures

with three distinct crack lengths (same as in the previous section). However, when the
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Figure 5.9: MAC between modes obtained using solid-type elements for the healthy high
mobility multipurpose wheeled vehicle (HMMWV) and the structure with a
30.30% crack and 36.36% crack
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Figure 5.10: MAC between mode shapes with 4 measurement locations for the healthy
and 33.33%, 36.36%, and 39.39% cracked structure

30th mode is used to identify the crack length, the estimated crack length d calculated

from Eq. (5.15) and described in Tab. 5.3 is not accurate. The reason is that the 30th mode

is very sensitive to a small crack but not sensitive to the crack growth. That is, this mode

seems to be the most sensitive to the presence of the crack, but it does not vary much once

the crack grows. In contrast, the 22nd mode is less sensitive to small cracks, but varies as

the crack growth. Figure 5.10 shows the diagonal entries of MAC matrices computed by

using only the selected measurement DOFs. The MAC is between the healthy structure

and structures with 33.33%, 36.36%, and 39.39% crack lengths. Figure 5.10 indicates that

the MAC values for the 22nd mode change sensitively of the crack length increases, but
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: Selected measurement locations

Figure 5.11: Optimal sensor locations based on the 22th mode

Table 5.3: Estimated crack length d for HMMWV modeled with solid-type elements

Actual crack length d (22th mode) d (30th mode)

18.18% 18.91% 17.26%

27.27% 27.57% 27.57%

33.33% 33.75% 30.60%

the MAC values for the 30th mode do not change significantly. In addition, for the case

of 39.39% crack length, the 22nd mode is more sensitive than the 30th mode. Thus, for

the sensor placement and damage identification algorithm, the 22nd mode is employed.

Figure 5.11 shows the optimal sensor locations used to identify the crack length employed

the 22nd mode. Tab. 5.3 shows results for the estimated crack length. The estimated values

of the crack size variable d obtained for several crack cases agree very well with the actual

crack length for the 22nd mode.

5.8.3 Robust sensor locations based on Monte-Carlo technique

For identifying the crack length, mode shape information has been used. When the

thickness of some components of the structure vary, the structural characteristics, espe-

cially mode shapes, are affected. Then, the optimal sensor locations may also be affected
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Table 5.4: Several cases of thickness variations in substructures to identify crack length
with statistically optimal sensor locations

Case Substructure Thickness variation Case Substructure Thickness variation

1 Lrear 3.0 mm → 3.4 mm 2 Lrear 3.0 mm → 5.2 mm

Lfront 3.0 mm → 5.7 mm Lfront 3.0 mm → 5.8 mm

3 Lrear 3.0 mm → 3.7 mm 4 Lrear 3.0 mm → 5.5 mm

Lfront 3.0 mm → 4.2 mm Lfront 3.0 mm → 3.2 mm

by the change in the mode shapes. That means that robust sensor locations are required to

capture the damage level in the presence of thickness variations. Herein, a Monte-Carlo

technique is applied to determine statistically optimal and robust sensor locations. To ap-

ply the Monte-Carlo technique, several possible thickness variations are considered, and

optimal sensor locations for the resulting mode shapes are obtained. To compute the mode

shapes for each thickness variation, PROM techniques are applied. The main advantage

of PROMs is that reanalysis is almost 100 times faster because any parameter value in the

parameter range can be easily applied [35].

The reinforcement frames in the rear and the front (which are attached to the leftrails)

: Selected measurement locations

Figure 5.12: Statistically optimal sensor locations for 400 cases of thickness variations
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Figure 5.13: Optimal sensor locations distribution of leftrail frame structure for all cases
of thickness variation

have thickness variations. For the Monte-Carlo technique, 400 separate cases of possi-

ble thickness variations are applied to these reinforcement frames. Sensitive modes to be

used for sensor placement and the crack detection algorithm are selected from 20th to 24th

mode based on MAC matrices. The total number of modes for the augmented bilinear

modal matrix in Eq. (5.18) is 20. Then, the optimal number of measurement locations

are decided based on the selected number of singular value of ΦΦΦEIDV
aug for each case of

thickness variation. For instance, if all columns of ΦΦΦEIDV
aug in Eq. (5.18) are linearly in-

dependent, the selected number of singular values is 20. In contrast, if the columns of

ΦΦΦEIDV
aug are not linearly independent, then the selected number of singular values is smaller

than 20. By using the sensor placement algorithm for damage identification, 15 or 16

optimal measurement locations are selected for each case of thickness variation. Then,

only four measurement points are selected for all cases of thickness variation. These four

selected measurement locations are chosen to be the statistically optimal locations. Thus,
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Figure 5.14: Optimal sensor locations distribution of rightrail frame structure for all cases
of thickness variation

they are the most robust when used to identify the crack length. Figure 5.12 shows the

four statistically optimal measurement locations obtained. Figures 5.13 and 5.14 represent

the distribution of optimal sensor locations for the leftrail and the rightrail structure along

the x coordinate for all cases of thickness variation. Using these four statistically optimal

measurement locations, the crack length is identified for several cases of thickness varia-

tion described in Tab. 5.4. The damage identification algorithm is applied using the mode

shapes corresponding to those variations, and the variable d (the estimated crack length) is

estimated by solving Eq. (5.15). Tab. 5.5 provides a summary of the results obtained using

statistical optimal sensor locations. The estimated crack length d agrees very well with

the actual crack length for all cases of thickness variation. That indicating the statistically

optimal sensor locations are robust to identify the crack length for any possible thickness

variations.
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Table 5.5: Estimated crack length d obtained using statistically optimal sensor locations

Case Actual crack length d Case Actual crack length d

1 18.18% 18.52% 2 18.18% 18.49%

27.27% 27.62% 27.27% 27.55%

33.33% 33.41% 33.33% 33.79%

3 18.18% 18.61% 4 18.18% 18.37%

27.27% 27.63% 27.27% 27.66%

33.33% 33.39% 33.33% 33.36%

5.9 Conclusions

Identifying structural inspection points or desired sensor locations for the purpose of

damage detection is a complex issue for cracked structures because of the nonlinear dy-

namics created by the crack opening and closing. A new concept of bilinear (BL) modes

has been introduced. The BL modes are obtained using linear analysis techniques. To

alleviate high computational costs and to allow for use in design applications, a reduced

order modeling method based on Craig-Bampton component mode synthesis and multi-

component parametric reduced order models was used. A generalized modal assurance

criterion has been developed and used to find the BL modes that are most sensitive to

the presence of a crack. Using the selected BL modes, an augmented BL modal matrix

has been formed and used in an algorithm based on a modified effective independence

distribution vector (EIDV) method to select optimal inspection points or measurement lo-

cations. Finally, the optimal set of measurement locations (for the cracked structure) was

selected (by the modified EIDV algorithm) and the crack detection algorithm was applied

to estimate the crack length (based on the selected optimal sensor locations). The esti-
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mated crack length obtained was shown to agree well with the actual crack length. The

techniques proposed herein are based on linear analyses and thus are highly efficient com-

putationally. To select robust sensor locations for any thickness variation, a Monte-Carlo

technique was implemented based on PROMs to select statistically optimal measurement

locations. 400 cases of possible thickness variations were considered for the HMMWV

frame, and four statistically optimal measurement locations were selected and observed to

be robust to capture the crack length for in the presence of thickness variations.



CHAPTER VI

Joining of Components of Complex Structures for
Improved Dynamic Response

6.1 Introduction

Mechanical structures such as those found in automobiles and airplanes consist of mul-

tiple components which are assembled using joints such as bolts, welds, rivets, etc. The lo-

cations (assembly points) of these joints affect structural performance characteristics such

as the static compliance, the frequency response, and the durability. To achieve high per-

formance, the joining locations should be selected by a systematic approach rather than an

experience-based approach. However, this issue can be quite challenging because there are

many joints and even more possible joining locations for large scale complex structures.

The number of such joints can be as many as several thousand. The choice for joining

locations can be improved/optimized by topology optimization approaches such as ho-

mogenization techniques [46] and density methods [47–49]. Homogenization techniques

compute an optimal distribution of micro-structures in a given design domain. Density

methods compute an optimal distribution of isotropic materials, where the material densi-

ties are design variables. Although the single-component topology design has been exten-

sively studied during the past two decades [50], the amount of research done for multiple-

component topology optimization is relatively small. In that area of research, Johanson et

144
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al. [69] implemented the topology optimization techniques for multibody structural sys-

tems which possess joints between components. Chirehdast and Jiang [51] extended the

concept of topology optimization to the design of spot-weld and adhesive bond patterns.

A year later, Jiang and Chirehdast [52] proposed a theoretical framework to determine

which optimal connection points minimize the static compliance of the given substruc-

tures. To solve the coupled problem of component topology and joining location opti-

mization, Chickermane and Gea [53] considered a methodology for a multiple-component

structure as a whole, in which the optimal topology and the joint locations were computed

simultaneously. More recently, Zhu and Zhang [54] did layout optimization of structural

supports using a topology optimization method for free vibration analyses. All these pre-

vious efforts employed spring elements for modeling joints. In contrast, Li et al. [55]

proposed a fastener layout/topology that achieves an almost uniform stress level in each

joint, and adopted evolutionary structural optimization [56–61] to provide an alternative

optimization strategy to traditional gradient-based topology optimization approaches. In

the context of these past efforts, the focus of this work is on the development of an efficient

framework for determining improved/optimal joining locations as to minimize the total en-

ergy input into the structure and the strain energy in the joints of a complex structure with

variability using a density-based method.

For general optimization processes, finite element models (FEMs) are typically used to

evaluate the cost function. However, the number of degrees of freedom (DOFs) of FEMs

of complex structures are prohibitively large. So, conventional FEMs are hard to employ

due to the expensive time needed for each iteration. To reduce the computational cost,

Craig-Bampton component mode synthesis (CB-CMS) was employed by Ma et al. [70]

in a multi-domain topology optimization. The CB-CMS method is one of the most well-

established methods for constructing reduced-order models (ROMs) [6–10]. However, if
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one attempts to use CB-CMS techniques when parametric changes (such as thickness and

geometrical variations) are applied during the design or exist through damage, the ROMs

have to be reconstructed. This reconstruction requires other analyses in addition to the

repetitive calculation of the cost function. This is computationally expensive and requires

significant effort to prepare a FEM and a ROM for each reanalysis.

These challenges are addressed in this work as follows. First, the mean compliance

for the dynamic case with damping is derived, and the strain energy in the joints is added

to the cost function. Second, a novel approach to calculate the sensitivity of the strain

energy in the joints efficiently is proposed. Third, the cost function and its sensitivity are

computed in optimization process by using novel models which are able to manage struc-

tural variabilities. Recently, design oriented parametric reduced-order models (PROMs)

have been developed to avoid such prohibitively expensive reanalyses of complex struc-

tures [28–30, 32, 35]. Here, the next-generation PROMs (NX-PROMs) developed by the

authors in Chapter III are employed to allow complex structures to be divided into several

components when determining improved/optimal joining locations.

This paper is organized as follows. In Sec. 6.2, a design methodology for determin-

ing improved/optimal joining locations is defined, which includes models for the joints,

the definition of the associated cost function, and a computationally efficient method to

determine design sensitivities for the cost function. In Sec. 6.3, NX-PROMs used in the

calculations are reviewed. In Sec. 6.4, numerical simulations are used to demonstrate

the proposed approach for the problem of attaching an armor plate to a structure with a

V-shaped bottom. Finally, conclusions are summarized in Sec. 6.5
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6.2 Design Methodology for Optimal Joining Locations

In single-component topology optimization, the primary objective is to obtain the opti-

mal layout of the structure. When multi-component structures are considered, the problem

is extended to select the optimal joining locations between components. This is done not

only to optimize the layout of each of the subcomponents, but also because the joining

locations affect the structural performance. Herein, a density-based topology optimization

technique [47–49] is applied. Rozvany et al. [71] have defined this method as a modeling

technique based on solid isotropic material with penalization (SIMP), where the distribu-

tion of the joining stiffness is optimized to improve the static or dynamic structural perfor-

mance of the entire connected structure. The SIMP method has been developed to replace

the size and orientation variables (of the holes used in the homogenization method [46])

with a density variable (of the finite elements) in the design domain. Herein, the idea of

SIMP is employed to select optimal joining locations for the entire connected structure.

To improve/optimize the joining locations, the stiffnesses of the joints are designed using

density functions. Thus, the design variables are the densities (or stiffnesses) of the joints.

These densities are continuous variables varying between 0 and 1. A location where the

joint has a low density (close to 0) is not effective/adequate for joining, while a location

where the joint has a density close to 1 is best for joining.

6.2.1 Design region - models for joints

Being one of the controversial tasks in structural FE analysis, modeling methods for

joints have been extensively studied. Depending on the required accuracy and complexity

of the problem at hand, an appropriate modeling strategy can be adopted for the joints.

Several techniques for modeling joints were proposed in the literature [72–76]. For fatigue

analyses based on local stresses and the local strength of the material, a fine mesh of
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the structure and accurate joint models are required. For noise and vibration analysis of

complex structures, a moderate level of accuracy and complexity is required, which leads

to simple models for the joints. For a design optimization problem, and especially for a

preliminary design, the simple flexible bar models are preferred [51, 53, 74, 77] because

those joint models can be easily catered toward the iterative updating employed in design

optimization.

In this work, the joints are modeled as three rectilinear springs. Let the stiffness

associated with the motion of one of the two ends of a joint (of index i) be ks,i =

Diag

([
kx,i ky,i kz,i

])
, where kx,i, ky,i, and kz,i denote the stiffnesses of the spring

along the three directions of a local Cartesian reference system associated with joint i.

Here, Diag(v) represents a diagonal matrix with entries given by the vector v. The direc-

tional stiffnesses of a joint are often related to each other. In this work, it is assumed that

kx,i = kz,i = αiki and ky,i = ki. This is the case for joints such as bolts, rivets, spot welds,

etc, where y is the axis of the joint (e.g., the axis of a bolt). Thus, a joint is modeled as

having 6 DOFs linked by three springs. The stiffness matrix for the ith joint can thus be

written as

Ks,i =

⎡
⎢⎣ ks,i −ks,i

−ks,i ks,i

⎤
⎥⎦ ,

where ks,i = kiDiag

([
αi 1 αi

])
.

The joints (modeled as three rectilinear springs) are designed using density functions

in the SIMP method. According to the SIMP method, the design elements are written

using the densities ρi as

Kb,i = ρpi

⎡
⎢⎣ ks,i −ks,i

−ks,i ks,i

⎤
⎥⎦ = ρpiKs,i, (6.1)

where Kb,i represents the joining stiffness matrix for the ith candidate joining location.
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Thus, Kb,i is a density-based function. Intermediate values of ρi (0 < ρi < 1) are pe-

nalized compared to values of 0 or 1 by the use of the penalty exponent p. This exponent

is typically p = 3 for a structural optimization problem [78, 79]. Also, for simplicity, we

assume that αi has the same value for all joints. Thus, only one density variable is assigned

to a joint.

The system-level joining stiffness matrix Kb is given by

Kb = Bdiag

[
Kb,1 Kb,2 · · · Kb,g

]
, (6.2)

where Bdiag denotes a block-diagonal matrix, and g is the number of candidate joining

locations. Then, the system-level governing equation for the structural dynamic problem

with (structural) damping γ is

M0

⎡
⎢⎣ üb

ür

⎤
⎥⎦+ (1 + jγ)

⎛
⎜⎝K0 +

⎡
⎢⎣ Kb 0

0 0

⎤
⎥⎦
⎞
⎟⎠
⎡
⎢⎣ ub

ur

⎤
⎥⎦ =

⎡
⎢⎣ fb

fr

⎤
⎥⎦ , (6.3)

where j =
√−1, M0 and K0 are the system-level mass and stiffness matrices which do

not include the joining stiffness matrix Kb. Subscript b indicates the candidate joining

DOFs, and subscript r denotes the remaining DOFs. Note that a joining mass matrix Mb

does not exist because massless spring elements are used. Based on Eq. (6.3), the dynamic

response of all DOFs, ur (remainder) and ub (joint), are obtained.

6.2.2 Formulation of the optimization problem

The approach employed here is based on an energy criterion which is commonly used

in structural optimization problems. Two energies are used. The first is the total energy

input into the structure under dynamic loading. This total energy input is equal to the

external work done on the structure, which can be defined in function of the mean com-

pliance of the structure. For the dynamic case, the total work done on the structure by
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external forces is

Re

(∫
FTdu

)
= Re

(∫ T

0

FTdu

dt
dt

)
= Re

(∫ T

0

FTu̇dt

)
, (6.4)

where F = fejωt is the external harmonic forcing, and u is the displacement due to the

harmonic forcing. The phase reference for the calculation is chosen such that f is real. For

structures with damping, the response u is complex and can be expressed as

u = (uR + juI)e
jωt so that u̇ = (jωuR − ωuI)e

jωt, (6.5)

where subscripts R and I indicate real and imaginary parts. From Eq. (6.5), the real valued

portion of the velocity is

Re(u̇) = −ωuI cosωt− ωuR sinωt. (6.6)

Substituting Eq. (6.6) into Eq. (6.4) and (for convenience) using the fact that f is real, one

obtains

Re

(∫ T

0

FTu̇dt

)
= −

∫ T

0

fT cosωt(ωuI cosωt+ ωuR sinωt)dt

= −ωfTuI

∫ T

0

cos2 ωtdt = −ωT

2
fTuI

= −πfTuI = −π(fTu)I .

The resulting first component of the cost function c1 is thus

c1 = − (
fTu

)
I
, (6.7)

and contains the strain energy in the entire structure, including the joints. Note that

Eq. (6.7) holds also when ff is not real. However, focusing on the durability of the joints,

the strain energy in the joints should be taken into account. Thus, the second component of

the cost function is based on the strain energy in the joints. This energy can be expressed

as

c2 =
1

2
uH
b Kbub, (6.8)
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where the superscript H indicates the Hermitian operator. Then, by assembling the two

components c1 and c2 of the cost function from Eq. (6.7) and Eq. (6.8), the final cost

function for this optimization problem is

c = w1c1 + w2c2 = −w1

(
fTu

)
I
+ w2

1

2
ubK

H
b ub,

where w1 and w2 are weighting factors to control the relative importance of overall struc-

tural vibration and joint durability.

Naturally, the number of joints to be distributed in the design domain is limited. Thus,

the topology optimization problem associated with the joining location design can be

stated as

Minimize : c(ρρρ) = −w1

(
fTu

)
I
+ w2

1

2
ubK

T
b ub,

(6.9)

Subject to : g(ρρρ) =

g∑
i=1

ρi −N ≤ 0; 0 < ρmin ≤ ρi ≤ 1,

where N denotes the total number of joints allowed in the design, g is the total number

of candidate joint locations, and ρmin is a sufficiently small lower bound imposed to avoid

numerical instabilities (herein ρmin = 0.001).

To solve such optimization problems, specific methods have been developed to handle

a large number of design variables with a few constraints. Among these techniques, the

method of moving asymptotes (MMA) [80, 81] and the optimality criterion (OC) [46, 82]

methods are broadly utilized for their efficacy and generality. The MMA method is based

on the convex approximation method with the advanced feature of setting asymptotic mov-

ing limits to approximation variables. The OC makes use of the well-known Karush-Khun-

Tucker condition to satisfy a set of criteria related to the behavior of the structure. Even

though the OC method is well-convergent for static cases, it is not effective for the dy-

namic case. Thus, herein we use the modified optimality criterion (MOC) method [82],
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which is also a gradient-based optimizer.

6.2.3 Sensitivities of the cost function

The design domain for joining is modeled with the density-based three rectilinear

springs, each having a design variable ρi (density), as in Eq. (6.1). The variable ρi is varied

between 0 and 1 using the MOC method to select improved/optimal joining locations. For

any gradient-based optimizer, the design sensitivities of the cost function and of the con-

straints with respect to the design variables are required. For an efficient calculation of the

design sensitivities for the dynamic case discussed here, an adjoint variable method [83]

is applied. First, we consider the design sensitivities of c1 given by in Eq. (6.7). The

derivative of c1 with respect to the mth design variable ρm is

∂c1 (ρρρ)

∂ρm
= −

⎛
⎜⎜⎝
⎡
⎢⎣ fb

fr

⎤
⎥⎦

T ⎡
⎢⎣ ∂ub

∂ρm

∂ur

∂ρm

⎤
⎥⎦
⎞
⎟⎟⎠

I

= −

⎛
⎜⎜⎝
⎡
⎢⎣ fb

fr

⎤
⎥⎦

T

λλλ

⎞
⎟⎟⎠

I

.

The direct calculation of

⎡
⎢⎣ ∂ub

∂ρm

∂ur

∂ρm

⎤
⎥⎦ is cumbersome, so an adjoint variable λλλ is used. To

obtain λλλ, the equilibrium Eq. (6.3) is differentiated with respect to the design variable ρm

to obtain

∂G

∂ρm

⎡
⎢⎣ ub

ur

⎤
⎥⎦+G

⎡
⎢⎣ ∂ub

ρm

∂ur

∂ρm

⎤
⎥⎦ = 0, (6.10)

where

G = −ω2M0 + (1 + jγ)

⎛
⎜⎝K0 +

⎡
⎢⎣ Kb 0

0 0

⎤
⎥⎦
⎞
⎟⎠ .
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Multiplying Eq. (6.10) by

⎡
⎢⎣ ub

ur

⎤
⎥⎦

T

, one obtains

⎡
⎢⎣ ub

ur

⎤
⎥⎦

T

G

⎡
⎢⎣ ∂ub

ρm

∂ur

∂ρm

⎤
⎥⎦ =

⎡
⎢⎣ fb

fr

⎤
⎥⎦
T

λλλ = −

⎡
⎢⎣ ub

ur

⎤
⎥⎦
T ⎡
⎢⎣ ∂Kb

ρm
0

0 0

⎤
⎥⎦
⎡
⎢⎣ ub

ur

⎤
⎥⎦ .

Thus, the design sensitivity of c1 to ρm is given by

∂c1 (ρρρ)

∂ρm
= −

⎛
⎜⎜⎝
⎡
⎢⎣ fb

fr

⎤
⎥⎦
T

λλλ

⎞
⎟⎟⎠

I

= −
(
uT
b

∂Kb

∂ρm
ub

)
I

(6.11)

= −
(
uT
b,m

∂(ρpmKs,m)
∂ρm

ub,m

)
I

= − (
pρp−1

m uT
b,mKs,mub,m

)
I
.

Second, the sensitivity of c2 with respect to ρm is considered. One obtains

∂c2 (ρρρ)

∂ρm
=

1

2

[
2uH

b Kb
∂ub

∂ρm
+ uH

b

∂Kb

∂ρm
ub

]
, (6.12)

where the fact that Kb is a real, symmetric matrix was used. This sensitivity requires the

calculation of ∂Kb

∂ρm
and ∂ub

∂ρm
. The first term ∂Kb

∂ρm
can be easily calculated because it has a

simple analytical form. Next, from Eq. (6.10), one obtains⎡
⎢⎣ ∂ub

∂ρm

∂ur

∂ρm

⎤
⎥⎦ = − (1 + jγ)G−1

⎡
⎢⎣ ∂Kb

∂ρm
ub

0

⎤
⎥⎦ . (6.13)

This equation could, in principle, be used to compute ∂ub

∂ρm
once ∂Kb

∂ρm
is calculated. How-

ever, using Eq. (6.13) requires the inverse of G at each iteration. This matrix is very large

because it is a full-order, system-level matrix. Also, G depends on excitation frequency ω,

so this inversion has to be done at each frequency in the range of interest. To avoid such a

high computational effort, we propose a novel approach. To calculate ∂ub

∂ρm
, first, Eq. (6.3)
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is used to obtain

(−ω2M0 + (1 + jγ)K0

)
⎡
⎢⎣ ∂ub

∂ρm

∂ur

∂ρm

⎤
⎥⎦ + (1 + jγ)

⎡
⎢⎣ ∂Kb

∂ρm
0

0 0

⎤
⎥⎦
⎡
⎢⎣ ub

ur

⎤
⎥⎦

(6.14)

+ (1 + jγ)

⎡
⎢⎣ Kb 0

0 0

⎤
⎥⎦
⎡
⎢⎣ ∂ub

∂ρm

∂ur

∂ρm

⎤
⎥⎦ = 0.

Then, substituting Eq. (6.13) into Eq. (6.14), one obtains⎡
⎢⎣ Kb

∂ub

∂ρm

0

⎤
⎥⎦ = G0G

−1

⎡
⎢⎣ ∂Kb

∂ρm
ub

0

⎤
⎥⎦−

⎡
⎢⎣ ∂Kb

∂ρm
ub

0

⎤
⎥⎦

(6.15)

=
(
G0G

−1 − I
)
⎡
⎢⎣ ∂Kb

∂ρm
ub

0

⎤
⎥⎦ ,

where G0 = (−ω2M0 + (1 + jγ)K0). The quantity G0G
−1 in Eq. (6.15) can be written

as

G0G
−1 =

⎛
⎜⎝I+ (1 + jγ)

⎡
⎢⎣ Kb 0

0 0

⎤
⎥⎦G−1

0

⎞
⎟⎠

−1

. (6.16)

Then, substituting Eq. (6.16) into Eq. (6.15), one obtains

⎡
⎢⎣ Kb

∂ub

∂ρm

0

⎤
⎥⎦ =

⎡
⎢⎢⎣
⎛
⎜⎝I+ (1 + jγ)

⎡
⎢⎣ K0 0

0 0

⎤
⎥⎦G−1

0

⎞
⎟⎠

−1

− I

⎤
⎥⎥⎦
⎡
⎢⎣ ∂Kb

∂ρm
ub

0

⎤
⎥⎦ . (6.17)

The novel approach uses the assumption that the values of the (spring) stiffnesses of the

joints are much smaller than the values of the stiffnesses in the nominal structure. Thus,

we assume that, for all DOFs of indices i1 and i2,⎛
⎜⎝
⎡
⎢⎣ K0 0

0 0

⎤
⎥⎦G−1

0

⎞
⎟⎠

i1i2

	 1.
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Then, the inverse term in Eq. (6.17) can be written as

⎛
⎜⎝I+ (1 + jγ)

⎡
⎢⎣ K0 0

0 0

⎤
⎥⎦G−1

0

⎞
⎟⎠

−1

≈ I− (1 + jγ)

⎡
⎢⎣ K0 0

0 0

⎤
⎥⎦G−1

0 . (6.18)

Substituting Eq. (6.18) into Eq. (6.17), one obtains⎡
⎢⎣ Kb

∂ub

∂ρm

0

⎤
⎥⎦ =

⎛
⎜⎝− (1 + jγ)

⎡
⎢⎣ K0 0

0 0

⎤
⎥⎦G−1

0

⎞
⎟⎠
⎡
⎢⎣ ∂Kb

∂ρm
ub

0

⎤
⎥⎦ . (6.19)

Of course, Eq. (6.19) can be used to obtain ∂ub

∂ρm
. However, Eq. (6.19) requires the cal-

culation of the inverse of G0. Inverting G0 has to be done only once during the iterations

because G0 does not depend on Kb. However, G0 does depend on the excitation frequency

ω, which means that G0 has to be inverted at all frequencies in the range of interest. Also,

G0 is a large matrix because it is a full-order, system-level matrix. Thus, this calculation

is very time consuming. A new approach to address this issue is presented next. The key

term to be calculated in Eq. (6.19) is G−1
0

⎡
⎢⎣ ∂Kb

∂ρm
ub

0

⎤
⎥⎦. To compute this term, we consider

first that a unit force is applied at the mth joining location and to the ath DOFs (at that

location). The index a varies from 1 to the number L of DOFs used in the finite elements

which contain the joining node m. For example, L = 6 for shell-type elements, while

L = 3 for brick-type elements. Then, the resulting deformation ΨΨΨm,a can be expressed as

ΨΨΨm,a = G−1
0 ·

[
0 0 · · · 1m,a 0 0

]T
,

where ΨΨΨm,a indicates the deformation everywhere in the system due to the unit force ap-

plied at the ath DOFs of the mth joint location.
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Next, we express the difficult term as

G−1
0

⎡
⎢⎣ ∂Kb

∂ρm
ub

0

⎤
⎥⎦ =

L∑
a=1

G−1
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

1m,a

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
∂Kb,m

∂ρm
ub,m

)

=

L∑
a=1

ΨΨΨm,a
∂ (ρpmKs,m)

∂ρm
ub,m

=
L∑

a=1

pρp−1
m ΨΨΨm,a (Ks,mub,m)a .

Thus, the sensitivity of c2 in Eq. (6.12) can be expressed as

∂c2 (ρρρ)

∂ρm
=

1

2

(
−2

n∑
i=1

Ai + pρp−1
m uH

b,mKs,mub,m

)
, (6.20)

where

Ai = ρpiu
H
b,iKb,i (1 + jγ)

[
L∑

a=1

pρp−1
m (ΨΨΨm,a)i (Ks,mub,m)a

]
.

Finally, the design sensitivity of the entire cost function for the mth design variable is

obtained using Eqs. (6.11) and (6.20) as

∂c (ρρρ)

∂ρm
= − w1

(
pρp−1

m uT
b,mKsub,m

)
I

+ w2
1

2

(
−2

n∑
i=1

Ai + pρp−1
m uH

b,mKsub,m

)
.

Computing the sensitivities of the entire cost function based on this formulation is fast

especially because vectors ΨΨΨm,a have to be calculated only once. They remain unchanged

during the optimization iterations.
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6.3 Next-Generation Parametric Reduced-Order Models (PROMs)

The cost function and design sensitivities are presented in Sec. 6.2 as if they are cal-

culated based on full-order finite element models. However, if the structure has a huge

number of DOFs, the turn-around time of the optimization iteration process is very long.

This issue is particularly important when the design involves not only choosing joining

locations, but also modifications of various components of the structure. In that case, the

full-order model of the modified components changes, which requires additional compu-

tational effort. To address this issue, a new modeling approach is presented next. This ap-

proach is based on next-generation parametric reduced-order models (NX-PROMs) used

together with the well-known fixed-interface Craig-Bampton component mode synthe-

sis (CB-CMS) [7]. A review of this approach is provided next.

6.3.1 Modeling approach

CB-CMS [7] is used to model only the substructures which do not have any structural

variability. This modeling approach is used because it is very simple and computationally

stable. To apply CB-CMS, the complex structure of interest is divided into several sub-

structures, and their DOFs are partitioned into internal and interface DOFs. The interface

DOFs for a substructure (of index q) are projected onto the generalized coordinates by

using static constraint modes ΨΨΨC
q . The internal DOFs are projected onto fixed-interface

normal modes ΦΦΦN
q . Then, the size of the mass and stiffness matrices and the force vector

for substructure q is significantly reduced as follows

MCB
q =

⎡
⎢⎣ mC

q mCN
q

mNC
q mN

q

⎤
⎥⎦ ,KCB

q =

⎡
⎢⎣ kC

q kCN
q

kNC
q kN

q

⎤
⎥⎦ ,FCB

q =

⎡
⎢⎣ fCq

fNq

⎤
⎥⎦ ,

where the superscript C indicates generalized interface DOFs (i.e., constraint partitions).

These DOFs are used to assemble substructural matrices and obtain system-level reduced
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matrices. The superscript N indicates generalized internal DOFs. These DOFs are used to

reduce the number of internal DOFs.

The substructures which can have variability are modeled using NX-PROMs. One

important advantage of NX-PROMs is that the finite element mesh of the nominal structure

does not need to be modified although several substructures may have variability. That is

because the mass and stiffness matrices of these substructures are parameterized. The NX-

PROM approach resembles the CB-CMS approach. However, the transformation matrix

for NX-PROMs is constructed for all values of the variable parameters in the parameter

space of each component with variability. In contrast, components with no parameter

variability do not need a parameterization, so they are modeled by CB-CMS. By applying

the NX-PROM approach to the lth substructure with variation Δp in one of its parameters,

the mass and stiffness matrices and force vector are obtained as

MNX
l =

⎡
⎢⎣ mC

Δp,l mCN
Δp,l

mNC
Δp,l mN

Δp,l

⎤
⎥⎦ ,KNX

l =

⎡
⎢⎣ kC

Δp,l kCN
Δp,l

kNC
Δp,l kN

Δp,l

⎤
⎥⎦ ,

FNX
l =

⎡
⎢⎣ fCΔp,l

fNΔp,l

⎤
⎥⎦ ,

6.3.2 Geometric compatibility conditions

The complete, reduced-order component-level equations of motion for each compo-

nent l of the entire set of n components can be expressed as

MROM
l q̈ROM

l +KROM
l qROM

l = FROM
l , (6.21)

where the superscript ROM indicates that either CB-CMS or NX-PROM was used, with

ql being the generalized coordinates (l = 1, · · · , n).

The constraint partitions (indicated by superscript C) of component-level matrices re-

tain the physical meaning of the interface DOFs. This means that the geometric com-
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patibility conditions at the interfaces with no joints can be applied directly to construct

the system-level matrices. Consider, for example that an interface with no joints exists

between components l and d (d = 1, · · · , n, d 
= l). Then,

qC
l = qC

d , (6.22)

where qC
l and qC

d are the generalized coordinates for the constraint partitions that corre-

spond to the interface between substructures l and d. Of course, there is no compatibility

condition to be enforced for two components which do not have a common interface.

Equation (6.22) is used to transform the matrices in Eq. (6.21) in a manner similar to the

assembly process in all finite element modeling methods. Then, the system-level equation

of motion which does not include the joints is given by

MROM
sys q̈ROM

sys +KROM
sys qROM

sys = FROM
sys . (6.23)

Equation (6.23) is obtained after all geometric compatibility condition have been enforced,

except for the conditions present at the interfaces with joints. To tackle the joints, the

(remaining) constraint partitions corresponding to the joints are repartitioned in two pieces.

These pieces are indicated by superscriptC1 and C2. The C1 portion corresponds the DOFs

of one end of all joints and the C2 portion corresponds to the DOFs of the other end of all

joints. Thus, the matrices in Eq. (6.23) can be expressed as

Table 6.1: Thickness variation for substructure 5 and for the armor plate

Substructure Nominal Case 1 Case 2

6 (parameter h1) 6 mm 7.5 mm 8.5 mm

Armor plate (parameter h2) 10 mm 10.5 mm 11.1 mm
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Armor plate

Candidate joining locations

Substructuring

Figure 6.1: Structure with a V-shaped bottom; indices of the substructures are shown

5 5

excite symmetric modes excite asymmetric modes

Figure 6.2: Dynamic loads applied to substructure 5 to excite symmetric and asymmetric
modes of the entire structure

MROM
sys =

⎡
⎢⎣ MC̄ MC̄N

MNC̄ MN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

MC1 0 MC1N

0 MC2 MC2N

MNC1 MNC2 MN

⎤
⎥⎥⎥⎥⎥⎦ ,

KROM
sys =

⎡
⎢⎣ KC̄ KC̄N

KNC̄ KN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

KC1 0 KC1N

0 KC2 KC2N

KNC1 KNC2 KN

⎤
⎥⎥⎥⎥⎥⎦ , (6.24)

qROM
sys =

⎡
⎢⎣ qC̄

qN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

qC1

qC2

qN

⎤
⎥⎥⎥⎥⎥⎦ , FROM

sys =

⎡
⎢⎣ FC̄

FN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

FC1

FC2

FN

⎤
⎥⎥⎥⎥⎥⎦ ,

where superscript C̄ represents the constraint partition (for all components) that corre-

sponds to the joints.
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Armor plate
4

Three directional springs

Figure 6.3: Springs modeling joints between substructure 4 and the armor plate

Next, the joints (three rectilinear springs) are applied to connect the DOFs of C1 to

those of C2. First, the joining stiffness matrix in Eq. (6.2) and the physical coordinates of

all DOFs of all joints are partitioned similar to C1 and C2 to obtain

Kb =

⎡
⎢⎣ KC1

b KC1C2
b

KC2C1
b KC2

b

⎤
⎥⎦ and qb =

⎡
⎢⎣ qC1

b

qC2
b

⎤
⎥⎦ . (6.25)

The C1 and C2 partitions are the same in Eqs. (6.24) and (6.25). Thus,

qC1 = qC1
b and qC2 = qC2

b . (6.26)

Ultimately, Eq. (6.26) is used to obtain the final system-level equation of motion with

joints expressed as

M̂ROM
sys q̈ROM

sys + K̂ROM
sys qROM

sys = F̂ROM
sys , (6.27)

where

M̂sys = Msys, K̂sys =

⎡
⎢⎢⎢⎢⎢⎣

KC1 +KC1

b KC1C2

b KC1N

KC2C1
b KC2 +KC2

b KC2N

KNC1 KNC2 KN

⎤
⎥⎥⎥⎥⎥⎦ and

F̂sys = Fsys.
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Figure 6.4: (a) 10 optimal joining locations, (b) convergence history, and (c) natural fre-
quency variations for a 30 Hz excitation of the nominal structure

Note that all the design parameters are contained in the joints. Thus, the joining op-

timization has to reevaluate only the joints, and does not require a reevaluation of all

components. Moreover, all components (except for the joints) are reduced only once, at

the initial construction of NX-PROMs, before iteration. Thus, the joining design can be

very efficient by using NX-PROMs with the proper matrix partitioning. By using the sys-

tem matrices in Eq. (6.27) (based on NX-PROMs), the turn-around time of the iteration

process is much shorter than by using FEMs. Additionally, variations in any substructure

(where NX-PROM is used) can be handled efficiently in the new optimization processes.
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(a) (b)

(c)

Figure 6.5: Optimal joining locations for a 100 Hz excitation for (a) nominal structure, (b)
case 1 (c) case 2 of thickness variation

6.4 Numerical Example: V-Shaped Box Structure with Thickness Vari-
ation

To demonstrate the improved/optimal joining, a structure with a V-shaped bottom is

considered, as shown in Fig. 6.1. The focus of this example is to find joining locations

where to attach armor to the structure. Military vehicles are typically designed to resist

blasts caused by mines or improvised explosive devices and to increase survivability. For

that purpose, these vehicles have a V-shaped hull under the body. Of course, any type

of structure can be used to demonstrate the joining optimization. Hence, we chose to

focus on finding joining locations to attach armor to military vehicles with a V-shaped

hull. Fig. 6.1 shows all substructures and their number. The marked regions are candidate
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Figure 6.6: Convergence history for a 100 Hz excitation for (a) nominal structure, (b) case
1 (c) case 2 of thickness variation

joining locations. Harmonic loads are assumed to act on substructure 5 shown in Fig. 6.2.

Substructure 6 and the armor plate have thickness variation. Tab. 6.1 shows two cases

of thickness variation of each substructure. In Tab. 6.1, h1 and h2 indicate the parameter

number. NX-PROMs are constructed by parameterizing the thickness of substructure 6

and of the armor plate. CB-CMS is applied to all remaining substructures because they do

not have structural variations.

As an initial guess, all the candidate joining nodes on substructure 4 and on the armor

plate are connected by three rectilinear springs as shown in Fig. 6.3. For all joints, the max-

imum allowable stiffness of the spring in the (main) y direction is ky = k0 = 500 kN/m,

and the other directional stiffnesses are kx = kz = 0.5 k0. The total number of candidate
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Figure 6.7: Natural frequency variation for a 100 Hz excitation for (a) nominal structure,
(b) case 1 (c) case 2 of thickness variation

joints is 54, and the final desired number of joints N is 10 or 11. Note that the four edge

nodes highlighted in Fig. 6.3 are not considered candidate joining locations. The fact that

joints are present at those four locations is considered to be known.

The optimization starts with an initial guess, i.e. a given set of feasible design values

(ρi = 0.185 when N = 10, and ρi = 0.204 when N = 11). The structural damping is

γ = 0.03, and the weighting factors in Eq. (6.9) are w1 = 0.5 and w2 = 0.5. In general,

the choice of weights balances the importance of vibration throughout the vehicle with the

stresses in the joints. That balance is an application-dependent issue. For example, in a

durability analysis, one may consider that the strain energy of the joints is more important

than the total energy input into the structure. Thus, the weights can be distinct for each
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application. The values of 0.5 and 0.5 were chosen arbitrarily. Note that the overall energy

in the structure already includes the energy in the joints. Hence a weighting of 0.5 and 0.5

puts a little more emphasis on the joints than on the rest of the structure.

With the given initial guess, the excitation frequency was fixed at 30Hz for the nominal

structure. Fig. 6.4 shows the results of the optimization for the 30 Hz excitation and

N = 10. Figures 6.5, 6.6 and 6.7 show the results of the optimization for a 100 Hz

excitation for the nominal structure and for cases 1 and 2 of thickness variation. For the

nominal structure under the 100 Hz excitation, N = 11. For cases 1 and 2 of thickness

variation, N = 10.

The optimal joining locations described in Fig. 6.5 are selected differently for each

case, even though the thickness variations are not very large. However, the cost function

is minimized for all 3 cases, as shown in Fig. 6.6. Fig. 6.7 shows the changes in natural

frequencies at each iteration. Note that the various choices made during the iterations

affect significantly the dynamic response because some of the natural frequencies of the

overall structure change significantly.

The optimal joint locations are significantly different for the three structures consid-

ered: the nominal structure and the two structures with thickness variation. The optimal

joint locations for these three cases are quite different although the structural variations

are not large. That is because the different thicknesses affect the frequencies of the struc-

ture, which in turn affect the forced response. For the nominal case at 100 Hz excitation

frequency, the natural frequencies of the structure with the armor attached do not cross the

value of 100 Hz at any iteration. That translates in a smaller change in the value of the

cost function from iteration to iteration. That is because resonances are not close to 100

Hz at any of the iterations. For the other two cases, however, certain natural frequencies

cross the excitation frequency, and resonant (or near-resonant) responses occur. Conse-
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Figure 6.8: Probability distribution for the ith parameter of the (nominal) vehicle in a fleet.
In the numerical example, there are two such parameters (thicknesses shown
in Tab. 6.1)

quently, the values of the cost function vary much more than in the nominal case. This

ultimately leads to different optimal joining locations for each case. This phenomenon can

prove to be a challenge when multiple structures/vehicles (nominally identical, but practi-

cally different) have to be up-armored. For that case, the proposed method provides a very

good solution to the challenge of finding statistically (quasi-)optimal joint locations. To

obtain such locations, one could evaluate the increase in the cost function when the joints

are chose based on the nominal structure but they are applied to a structure with slightly

different properties. As a first alternative, joint locations can be found by a Monte Carlo

simulation (or other sample-based statistical methods). To do that, one would first use the

proposed method to construct a PROM. Next, one would choose samples the parameter

space (Monte-Carlo). The joint optimization can then be quickly applied using the PROM

for each of the samples. After all solutions (for the joint locations) are obtained, a prob-

ability distribution can be calculated for the chosen joint locations. The joint locations

with the highest probability to be chosen can then be used as candidate joint locations for
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Figure 6.9: (a) Optimal joining locations and (b) convergence history for 100 Hz excitation
for the fleet of 3 vehicles

one final optimization which would pick the final choice of joint locations. Finally, a sec-

ond (and perhaps best) alternative to find stable joint locations is to define an overall cost

function specifically for series of nominally identical structures. For example, consider a

case where a fleet of nv vehicles are to be armored. They are nominally identical, but in

reality they have distinct parameters (such as different material properties or thicknesses

in certain components). Thus, for one set of joint locations the value of the cost func-

tion is different for each vehicle. A cost function that is a sum of the cost functions for

each vehicle can easily be used in the optimization algorithm. That is because the use of

the proposed PROMs allows a very fast calculation of the cost and the sensitivity at each

iteration in the optimization algorithm.

Following the example of the fleet, consider that each vehicle can have variability in

np parameters denoted by h1, h2, · · · , hnp (e.g., the thickness of several components). The

variability in each parameter follows a given probability distribution, as schematically

shown in Fig. 6.8. Denote the actual value of hi for vehicle k as hk
i . The two weights

used in the cost function for parameter hi for vehicle k can be chosen to be proportional

to the probability pki of hi to have the value hk
i . This probability represents the likelihood
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of a vehicle in the fleet to have its parameter hi equal to hk
i . Hence, the weights in the

definition of the overall cost function can be chosen such that

wk
1 = α(

np∏
i=1

pki )w1 and wck
2 = α(

np∏
i=1

pki )w2 for (k = 1, 2, · · · , nv), (6.28)

where superscript k indicates vehicle k, and subscripts 1 and 2 indicate weights for the

energy input in the structure or energy in the joints. The values w1 and w2 reflect the

relative importance of vibration throughout the nominal vehicle and the stress in the joints

of the nominal vehicle (as done for the case of a single vehicle calculations). For the sum

of the weights to be one, the constant α is chosen as

α =
1[

nv∑
k=1

(
∏np

i=1 p
k
i )

]
(w1 + w2)

.

We implemented this calculation for the numerical example of a structure with a V-shaped

bottom. The three cases that we first considered individually, we now considered as a

set of nominally identical structures, nv = 3. We chose the relative importance of the

energy input in the structure and the energy in the joints the same way as in the individual

calculations (i.e., w1 = 0.5 and w2 = 0.5). We chose np = 2. The two parameters

h1 and h2 are same as the ones considered in cases 1 and 2 of parameter variation. The

probabilities used had values h1 are: p11 = 0.75, p21 = 0.714p11, and p31 = 0.7p11. The

probabilities used had values h2 are: p12 = 0.75, p22 = 0.2p12, and p32 = 0.5p12. All weights

are obtained by using Eq. (6.28). They have different values for each vehicle. Figure 6.9

shows the results of the optimization for a 100 Hz excitation for a fleet of nv = 3 vehicles

(i.e., the nominal structure and the structures with case 1 and 2 of thickness variation). The

overall cost function is

c = w1
1c

1
1 + w1

2c2
1 + w2

1c1
2 + w2

2c2
2 + w3

1c1
3 + w3

2c2
3.
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The number of desired joints N is 10. In Fig. 6.9, the minimum value of the cost function

is larger than its value for the nominal case shown in Fig. 6.6 (a), but smaller than its values

for two cases 1 and 2 of of thickness variation as shown in Figures 6.6 (b) and (c). That

is because weights w1
1 and w1

2 are considerably larger than w2
1, w2

2, w3
1, and w3

2. Thus, the

optimal design for the nominal structure is dominant for the entire fleet of 3 vehicles.

6.5 Conclusions

Several challenges of current methods for determining improved/optimal joining loca-

tions have been addressed. First, the mean compliance for the dynamic case with damping

was derived, and the strain energy in the joints was added to the cost function. Second, a

novel approach to calculate efficiently the sensitivity of the strain energy in the joints was

proposed. Third, the cost function and its sensitivities were computed in the optimiza-

tion process by using novel next-generation parametric reduced-order models to improve

computational efficiency and to manage structural variabilities in several substructures.

The approach to select improved/optimal joining locations uses a density-based topol-

ogy optimization method which employs solid isotropic material with penalization (SIMP)

modeling. Based on SIMP modeling, a three rectilinear springs (with density) is used to

model each joint. Also, a reliable cost function has been developed. It includes the en-

ergy input into the structure and the strain energy in all joints. By penalizing the density

of the springs between 0 and 1, the cost function is minimized while satisfying a con-

straint which enforces an upper limit for the number of joints in the design domain. To

solve this optimization problem, the modified optimality criterion method has been ap-

plied. To demonstrate the methodology, the problem of attaching armor to a structure

with a V-shaped bottom has been considered. By applying the proposed methodology,

improved/optimal joining locations have been selected.
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The improved/optimal joining locations (obtained for each structure individually) are

significantly different for the nominal structure and the two structures with thickness vari-

ation. In general, it can be challenging to find a unique set of joining locations which

are good for a series of (distinct in reality, but nominally identical by design) structures.

To overcome this challenge we devised an alternate approach to define overall cost func-

tion for the series of nominally identical structures. Each parameter variability occurs in

the vehicles in the fleet with a given probability. Thus, the weights used in the overall

cost function were chosen by taking into account these probabilities as well as the relative

importance of the vibration throughout the vehicle and the stress in the joints. To demon-

strate this approach, improved/optimal joining locations for a fleet of 3 vehicles have been

shown.



CHAPTER VII

Conclusions

7.1 Dissertation Contributions

The main contributions of this dissertation can be summarized as follows:

• In chapter II, a multiple-component parametric reduced order models (MC-PROMs)

was successfully developed. MC-PROMs enable a more direct and efficient capture

of the influence of component-level design changes, damages (geometrical or struc-

tural variabilities and a crack) on the system-level structural dynamic response. The

proposed MC-PROMs were developed for cases where parameter variations occur

simultaneously in multiple components by developing a novel transformation matrix

for model reduction. For efficient modeling of a crack, bilinear frequency approx-

imation was employed to approximate the resonant frequency of cracked complex

structures. The static mode compensation approach was adapted for use with Craig-

Bampton component mode synthesis to create a novel component-level analysis.

• In chapter III, next-generation parametric reduced-order models (NX-PROMs) were

developed to have enhanced numerical stability and to be used for complex struc-

tures modeled with brick-type finite elements. NX-PROMs have three main ad-

vancements compared to MC-PROMs: (1) a new parameterization technique for-
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mulated to capture the element-level nonlinearity due to volume variations of finite

elements of brick or other types, (2) a new transformation matrix developed using a

novel interpolation of static constraint modes, (3) a local-interface reduction (LIR)

technique proposed for further enhancing the computational efficiency

• In chapter IV, robust signal processing techniques were proposed for structural health

monitoring. The techniques were used to capture the mode shapes of a cracked struc-

ture with structural variability by selecting the optimal sensor locations. The bilinear

mode approximation (BMA) was developed in the PROMs domain to approximate

mode shapes of cracked structures to be used in novel sensor placement techniques.

The modal assurance criterion (MAC) was generalized to select sensitive modes of

cracked structures by using the bilinear mode shapes of the healthy structure and

structures with different crack lengths. Sensor placement technique based on effec-

tive independence distribution vector was employed and enhanced to select optimal

sensor locations. An over-sampled algorithm was developed to be used in conjunc-

tion with enhanced sensor placement technique to reduce the effects of measurement

noise. A Monte-Carlo technique was implemented to select statistically optimal and

robust sensor locations to capture the mode shapes of a cracked complex structure

with structural variabilities.

• In chapter V, the robust signal processing techniques were applied and modified to

identify the size of a crack in a complex structure. PROM-based robust signal pro-

cessing techniques were extended and used in a new crack detection algorithm. The

resonant shapes were shown to vary nonlinearly with the crack length. To capture

the nonlinear variations, a crack length identification algorithm was developed, and

the new sensor placement techniques were employed to capture these variations.
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Then, the signals obtained from the selected minimal/optimal sensors were used to

identify the size of a crack. A Monte-Carlo technique was also employed to select

statistically optimal sensor locations to identify the size of a crack.

• In chapter VI, structural optimization techniques were developed for joining of com-

ponents of complex structures for improved dynamic response. The mean compli-

ance for the dynamic case with damping was derived, and the strain energy in the

joints was added to the cost function. A novel approach to calculate efficiently the

sensitivity of the strain energy in the joints was proposed. The cost function and

its sensitivities were computed in the optimization process by using NX-PROMs to

improve computational efficiency and to manage structural variabilities in several

substructures.

7.2 Future Research

Next, based on the work reported in this dissertation, some suggestions for future re-

search are proposed. The novel reduced-order modeling technique and the sensor place-

ment algorithms used to identify damage, as well as the structural optimization techniques

have been developed and validated computationally. However, these techniques have not

been validated experimentally. Thus, experimental efforts should be concentrated on en-

hancing and experimentally testing the modeling, damage detection, and signal processing

methodologies developed in this research.

The key experimental validations to be performed can be summarized as follows:

• Validate the MC-PROMs and NX-PROMs themselves.

• Validate the signal processing methodology used for damage detection as well as the

algorithms used for detection. Specifically, the validation should focus on
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(a) the PROM-based approach for selecting sensors for damage detection,

(b) the algorithms and technology for damage detection in structures with variabil-

ity.

• Validate the nonlinear techniques and codes used to predict the nonlinear response

of cracked structures. Specifically, the validation should focus on

(a) the bi-linear frequency approximation,

(b) the novel bi-linear modal approximation.

• Validate the structural optimization methodology.
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