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Preface 

 
This thesis is a compilation of published and unpublished work investigating the 

mechanism of sulfonucleotide reductases (SRs) and the identification of SR inhibitors.  

Sulfur catalysis by metabolic pathways are essential for the de novo biosynthesis of 

cysteine in human pathogens, including Mycobacterium tuberculosis.  SRs catalyze the 

first committed step in the generation of reduced sulfur for cysteine and are a validated 

target for the development of antitubercular agents, particularly for the treatment of latent 

infection.   

 

In Chapter 1, we discuss the urgent need to discover new antibacterial targets for 

multidrug resistant and latent tuberculosis infection.  I explore different methods of 

identifying small-molecule inhibitors against the SR known as, adenosine-5’-

phosphosulfate (APS) reductase (APR), which is an essential enzyme for mycobacterial 

survival. 

 

In Chapter 2, we identify the first non-phosphate-based inhibitors of APR using virtual 

ligand screening and experimental validation of in silico hits.  This work has been 

published as Cosconati, S.*, Hong, J.A.*, Novellino, E., Carroll, K.S., Goodsell, D.S. and 

Olson, A.J., “Structure-based virtual ligand screening and biological evaluation of 
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Mycobacterium tuberculosis adenosine 5’-phosphosulfate reductase inhibitors,” J. Med. 

Chem. (2008) Oct;51(21):6627-30.  * Co-first authors. 

 

In Chapter 3, we investigate the molecular determinants that underlie substrate binding 

and, specificity of APR.  This study presents the structural and functional features 

required for APR-ligand interaction of APR and provides the pharmacological roadmap 

for future rational inhibitor design.  These data are published as Hong, J.A., Bhave, D.P. 

and Carroll, K.S., “Identification of critical ligand binding determinants in Mycobacterium 

tuberculosis adenosine-5’-phosphosulfate reductase,” J. Med. Chem. (2009) 

Aug;52(17):5485-95. 

 

Chapter 4 details the role of a conserved active site residue, His252, in APR catalysis.  

Our biochemical and biophysical data demonstrate that His252 enhances substrate 

affinity via interaction with the substrate !-phosphate and endoxyclic ribose oxygen.  

This work has been published as Hong, J.A. and Carroll, K.S., “Deciphering the role of 

His252 in mycobacterial APS reductase catalysis,” J. Biol. Chem. (2011) 

Aug;286(32):28567-73. 

 

In Chapter 5, we probe the role of the iron-sulfur cluster cofactor in APR through EPR 

and kinetic studies.  We identify Lys144 as a “bridge” linking the iron-sulfur cluster and 

substrate and that this network ultimately tends to transition state stabilization. The 

citation for this article is Bhave, D.B., Hong, J.A., Lee, M., Jiang, W., Krebs, C., and 

Carroll, K.S., “Spectroscopic studies on the [4Fe-4S] cluster in adenosine 5’-phosphate 
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reductase from Mycobacterium tuberculosis,” J. Biol. Chem. (2011) Jan;286(2):1216-26. 

 

Chapter 6 demonstrates that protein redesign is a powerful tool to examine substrate 

discrimination in family of SRs.  Although it has been proposed that SR substrate 

specificity is dictated by an active site phosphate-binding loop, our studies reveal that 

the iron sulfur cluster in APR is the major determinant of substrate specificity, thereby 

extending the known functions of protein-bound iron sulfur clusters.  This work has been 

accepted as Bhave D.B., Hong, J.A., Keller, R., Krebs, C., and Carroll, K.S., “Iron-sulfur 

cluster engineering provides insight into the evolution of substrate specificity among the 

family of sulfonucleotide reductases,” ACS Chem. Biol. (2011). 

 

Finally, Chapter 7 is a discussion of future directions toward the development and 

evaluation of APR inhibitors.  
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ABSTRACT 
 

Toward the Discovery of Small Molecules that Target Adenosine 5’-

Phosphosulfate Reductase  

by 

Jiyoung A. Hong 

Co-chairs: Kate S. Carroll and John Montgomery 

Adenosine-5’-phosphosulfate reductase (APR) is an iron-sulfur protein that catalyzes the 

first committed step in the de novo biosynthesis of cysteine in mycobacteria.  APR is a 

validated target for the development of new antitubercular agents, particularly for the 

treatment of latent infection.  The goal of this research is to develop small-molecule 

inhibitors of APR that serve as tools for biological discovery or as leads for drug 

discovery.  Toward this end, we have combined virtual ligand screening (VLS), rational 

structure-based design, and enzyme mechanism analysis. Through VLS and 

experimental testing, we have identified the first nonphosphate-based inhibitors of APR 

and discovered an additional ligand-binding site, which could be exploited for the design 

of bifunctional small-molecules.  To facilitate the development of potent and specific 

inhibitors of APR, we have also probed the molecular determinants that underlie binding 

and specificity via a series of substrate and product analogs.  Our findings reveal a 

critical role for the !-phosphate group and provide evidence for ligand-specific 

conformational states within the C-terminal domain.  In addition, we demonstrate that a 

conserved histidine within the flexible segment plays an essential role in substrate 
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binding and in closure of the active site lid.  Subsequently, a structure-based approach 

was utilized in the design and synthesis of an irreversible cysteine-targeted inhibitor of 

APR, which locks the enzyme in its closed, inactive state.  Finally, we have investigated 

the function of the iron-sulfur cluster in APR and provide kinetic evidence that the 

cofactor plays an essential role in substrate specificity of sulfonucleotide reductases.  

Collectively, these data further our understanding of the APR reaction mechanism and 

pave the way for development of new inhibitors to target this therapeutically important 

class of enzymes. 
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Chapter 1 

Strategies for discovering inhibitors against adenosine 5’-phosphosulfate 

reductase 

 

1.1 Abstract 

Even today tuberculosis remains a deadly infectious disease.  The current 

chemotherapy is resulting in poor patient compliance and the emergence of drug 

resistance strains.  In addition to toxic side effects, the TB drugs target biological 

processes required for bacterial growth and are less effective against latent tuberculosis 

infection.  With new advances in mycobacterial genomic and metabolic studies, new 

drug targets have been identified.  Adenosine 5’-phosphosulfate reductase (APR), an 

enzyme involved in mycobacterial sulfate assimilation is one of the validated drug 

targets against latent tuberculosis.  Herein, we outline a combination of computational 

and rational design strategies to identify small molecule inhibitors of APR that may 

represent new leads for drug development. !

 

1.2 The current TB epidemic and chemotherapy 

The history of Tuberculosis (TB) reveals that the disease has been a great threat to 

human health since ancient times.  Definite signs of TB were identified as early as 2400 

BC, in the spinal column of Egyptian mummies.  Physicians in ancient Greece called this 

disease "phthisis" (consumption) to reflect its wasting nature and considered it as the 

most widespread and fatal disease of their time.  This trend continued during the 17th 

and 18th centuries, when 25% of all deaths in Europe were related to TB (1).  It was in 
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1720 that a physician, Benjamin Marten, first suggested in his “A Theory of 

Consumption” that TB might be caused by small living creatures that are transmitted 

through the air to other patients.  Then, in 1882, Robert Koch discovered Mycobacterium 

tuberculosis as the bacterium that causes TB (2, 3).  However, it was almost a century 

later, in 1944 when Selman Waksman introduced Streptomycin purified from 

Streptomyces griseus as the first effective antibiotic against TB.  Following this 

breakthrough in drug discovery, a cocktail of four drugs, including isoniazid, rifampin, 

pyrazinamide and ethambutol were discovered during the 1950s and '60s and are still in 

use today (4, 5).   

 

Today, Tuberculosis remains one of the deadliest infectious diseases and major 

challenges in global health.  More than one-third of the world population is infected with 

TB, and one in every ten of these individuals develop TB at some point in their lifetime.  

In fact, in 2009, 1.7 million people died of TB including 380,000 people with HIV, a 

number equal to 4,700 deaths a day (6).  Most casualties are in developing countries 

including Southeast Asia, Africa and Western pacific regions where TB is still endemic 

and sufficient treatment is not available (7-9).  In 1993, the World Health Organization 

(WHO) declared TB as a global emergency and developed a strategy to control TB 

globally (10).  Following proper treatment, most cases of TB were curable.  However, the 

typical treatment regime for TB takes 6-9 months with 4-5 different antibiotics. The 

requirements of extensive chemotherapy have resulted in poor compliance leading to 

the emergence of drug resistant strains of TB.  Currently, 50 million people are 

estimated to be infected with multi-drug resistant (MDR) stains of M. tuberculosis, only 

50-70 % of which are curable.  In addition, extensively-drug resistant (XDR) strains are 

emerging with very high mortality rates (11).  In addition to the toxic side effects of the 

aggressive antibiotic therapy, most of the current drugs target only biological processes 
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required for bacterial growth such as cell wall biosynthesis, protein and DNA/RNA 

synthesis (5)  However less active subpopulations of TB also exist in a dormant or 

persistent phase and are not effectively killed by the current treatment.  Taken together, 

the problem of MDR-TB and the lack of effective treatment against persistent bacteria, 

stress the urgent need for identification of novel antibacterial targets.  In 2006, WHO 

launched a new ‘Stop TB’ strategy which called for immediate attention to identify new 

chemical scaffolds for possible drug candidates against TB, supported by an increase in 

research funds (12).  This significant step toward TB eradication promise to accelerate 

the understanding of the fundamental aspects of mycobacterial metabolism, 

pathogenesis and the discovery of potential drugs.   

 

1.3 Life cycle of TB infection 

M. tuberculosis infection is a complex process that initiates with aerosol inhalation to the 

host lung (13, 14).  Therein, the mycobacteria are engulfed by host immune cells known 

as macrophages.  By a complex mechanism that is not fully understood, the bacteria 

prevent maturation of the phagosome and its fusion with lysosomes.  In response to the 

infection, macrophages produce pro-inflammatory signals – cytokines and chemokines – 

that recruit additional host immune cells (T-cells and neutrophils) to the infected tissue 

(14, 15). These immune cells enclose the infected macrophage and segregate it from 

the surrounding tissue in a structure called the granuloma, which is the defining 

pathological feature of this disease.  By unknown mechanisms, the infection can be 

reactivated after many years or decades to produce active, infectious TB.  This event is 

often associated with a reduction in immune function due to co-infection with HIV, drug 

use, or aging.  Reactivated granuloma cracks and spills thousands of viable, infectious 

bacilli into the airway, resulting in lung tissue damage.  Coughing is induced by this 

damage and provides an exit strategy for the bacteria to spread to another host (9).  
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1.4 Survival strategy of M. tuberculosis   

M. tuberculosis has to survive within the hostile environment of the macrophage, where 

superoxide and nitric oxide are generated in response to infection.  Once the granuloma 

is formed, mycobacteria enter a persistent or “latent” state characterized by lack of cell 

division and induction of metabolism.  These latent mycobacteria are difficult to eradicate 

since they are not reliant on machinery targeted by conventional antibiotics.  A better 

understanding of bacterial survival within the granuloma and/or the seeking of efficacy 

against latent M. tuberculosis is required for effective treatment (16).   

 

Recently, bacterial genes involved in sulfur metabolism have been shown to be up-

regulated in response to the oxidatively hostile environment (17, 18).  Sulfur is an 

essential element for life (9, 19), is used mainly in cysteine biosynthesis.  Cysteine is 

one of amino acids, and also serves as a building block for the biosynthesis of reduced 

sulfur containing metabolites such as methionine and mycothiol (9).  These reduced 

sulfur-containing biomolecules are known to be involved in antioxidant defense.  For 

instance, mycothiol (MSH) is the major low-molecular mass thiol in most action-mycetes, 

including mycobacteria.  MSH is the equivalent of glutathione in mycobacteria and is 

associated with the protection of M. tuberculosis from toxic oxidants and antibiotics.  

Another reduced sulfur-containing metabolite, coenzyme A (CoA), is utilized for lipid 

metabolism, which plays an important role in the unique cell wall structure and virulence 

of bacteria by inducing cytokine mediated events (20).  Moreover, the sulfuryl moiety can 

be transferred to proteins, polysaccharides and lipids for regulating cell-to-cell 

communication (21).  Hence, the pathway used for the production of reduced sulfur, 

known as the sulfate assimilation pathway, is paramount to mycobacterial virulence and 

survival.   
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1.5 Sulfate assimilation pathway in mycobacteria 

Sulfate assimilation begins with the active transport of inorganic sulfate (SO4
2–) across 

the mycobacterial cell membrane (Figure 1.1).  Imported sulfate is activated by 

adenylation to form adenosine 5’-phosphosulfate (APS) using ATP sulfurylase.  APS lies 

at a metabolic hub where in one pathway it can be phosphorylated at the 3’-hydroxy 

position on the ribose ring by APS kinase and ATP to form 3’-phosphoadenosine 5’-

phosphosulfate (PAPS).  PAPS can later transport the sulfate to hydroxyl or amide 

moieties of metabolites involved in cell-cell communication (21). In the other reductive 

pathway, the terminal sulfate group of APS is reduced to sulfite (SO3
2–) by APS 

reductase (APR).  In this reaction, APS is reduced to SO3
2– and adenosine 5’-phosphate 

(AMP).  Thioredoxin (Trx), a 12.7 kDa protein with a redox active disulfide bond, serves 

as a cofactor and supplies the reducing potential necessary for this two electron 

reduction.  The sulfite is further reduced to sulfide, which is used for the biosynthesis of 

reduced sulfur-containing metabolites such as cysteine, methionine, CoA, iron-sulfur 

clusters and MSH (Figure 1.1).  Interestingly, not all microorganisms that assimilate 

sulfate use APS as the source of sulfite.  Instead, some organisms such as E. coli and S. 

cerevisiae reduce the related metabolite PAPS, using PAPS reductase (PAPR).  Both 

enzymes, APR and PAPR belong to the family of sulfonucleotide reductases (SR) and 

share the structural and sequence homology, and a conserved reaction mechanism.  

SRs are highly significant with respect to primary metabolism in prokaryotes, have 

enormous antimicrobial potential and carry out an unusual chemical reaction (22).  

Furthermore, SRs can be studied in order to elucidate mechanistic details and 

fundamental evolutionary relationships.  The strategies to develop the small molecule 

inhibitors shed light into the mechanism, targeting and therapeutic potential of APR.  
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1.6 Strategies to identify small molecule inhibitors of APR 

In this study we present an overview of the process of drug discovery and highlight the 

combination of strategies that we have employed towards identifying potential small 

molecule inhibitors of APR.  In general, drug discovery is a challenging process that can 

take decades and consume over a billion dollars in resources (23-25).  Figure 1.2 

outlines the workflow of the process of drug discovery.  The process of drug discovery 

involves the identification of candidates, characterization, screening and assays for 

therapeutic efficacy.  After the identification and validation of a biological target protein, 
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Figure1.1.  The sulfate assimilation pathway in mycobacteria (9)  
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the process of finding a new inhibitors against the target, usually involves high 

throughput screening (HTS) using large libraries of chemical compounds.  Recently, 

computational-aided screening is used to dock virtual libraries to a target.  Another 

method for drug discovery is drug design, whereby the biochemical and biophysical 

properties of the target are studied and prediction is made to fit into active site.  Once a 

lead compound is identified the compound is optimized for its selectivity and 

pharmacokinetic properties.  Even though the process was shown as a linear workflow in 

Figure 1.2, it is actually an iterative process.  Herein, we focus on developing strategies 

to discover small molecule inhibitors, which can eventually become lead candidates for 

drug design (26). 

 

1.6.1 Target identification 

The complete genome sequence of M. tuberculosis (27) and functional studies provide 

an opportunity to identify novel drug targets.  Molecular profiling using genomic 

knowledge has been recognized as a well-established strategy for identifying drug 

targets.  This technique correlates changes in gene (genomics) and protein (proteomics) 

expression in response to varying environmental conditions.  An obvious example is 

mRNA expression profiling using DNA microarrays for large-scale analysis of cellular 

Target Identification
Target 

Verification

Lead

optimization
Lead Inhibitor Identification

Genetics

Gene expression profiling

Chemical proteomics

Bioinformatics: in silico modeling

Disease relevant-cells

Model organisms

High throuput screening (HTS)

Computational-aided screening

Rational design 

Homology modeling

Virtual ligand screening

SAR (potency and selectivity)

Fragment-based lead discovery

Protein interaction mapping

Mechanism based inhibitor

Druglikeness or ADME properties 

!
 
Figure1.2.  The process of drug discovery phase with various methods.  
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transcripts by comparing expression levels of mRNAs (28).  Using microarray technology 

in a transposon site hybridization (TraSH) assay, Sassetti and coworkers identified the 

compete set of genes required for the growth of mycobacteria under different conditions 

(17, 29).  From this assay, APR was identified in a screen for essential virus genes in M. 

bovis (29), consistent with its important metabolic role.  Moreover, the gene encoding 

APR was actively expressed during the dormant phase of M. tuberculosis in the 

environment of the macrophage (9).  Although these techniques identify large numbers 

of targets including APR, the correlative nature of the data they generate means that it is 

not possible to determine whether changes in gene protein expression are a cause or 

effect of the disease and it is necessary to validate the functional role of potential targets 

in the disease phenotype (28). 

 

1.6.2 Target validation 

Once a protein target has been identified, it has to undergo a validation process wherein 

its role in the disease is clearly defined. Target validation is required when the target is 

expressed in the disease-relevant cells and target modulation in model organisms 

improves the disease phenotype (30).  Genetically modified transgenic or knockout 

animals are extremely useful in the target validation.  Recently, Senaratne and 

coworkers demonstrated the attenuation of an APR mutant in a murine model of M. 

tuberculosis infection (31).  Moreover, the authors established that APR plays a central 

role in protecting M. tuberculosis against the effects of reactive nitrogen species and is 

critical for bacterial survival during the adaptive phase of the immune response of TB 

infection (31).  Notably, APR is not found in humans and therefore represents an 

attractive therapeutic target.  

 

1.6.3 Lead inhibitor identification 
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Traditional methods for drug discovery have mainly relied on trial-and-error via high 

throughput screening (HTS) of large chemical compound libraries.  Since the technology 

was introduced in 1984, the field of HTS has evolved the process of lead drug discovery 

(32).  Even though there has been an increase in the library of available screening 

compounds and the time for screening has been shortened by automation of technology, 

a disadvantage of HTS remains and the number of newly discovered drugs via HTS has 

been relatively low (33).  To apply HTS for the discovery of inhibitors to APR, we need to 

develop a robust, efficient and economical biochemical assay.  In the past, several 

assays, including a coupled enzyme assay and sulfite detection methods, have been 

proposed, but selectivity and the high cost of reagents have limited the use of these 

assays for HTS.  Our lab has undertaken the development of a fluorophore to detect the 

release of sulfite by APR.  This represents a promising approach toward the 

development of assays for HTS and is currently under way.  As discussed above, For 

the HTS method, serendipity plays an important role in finding new drugs.  However, 

current trends in drug discovery have shifted from discovery to design, which means that 

understanding the biochemistry of the proteins that cause the disease is necessary prior 

to designing compounds that are capable of modulating the role of these proteins (34).  

Furthermore, the advances in new technologies have fueled the development of new 

methods for drug design such as computer-aided screening and rational design (35-38). 

 

1.6.3.1 Virtual ligand screening   

Computer-aided drug design has become an essential technique used in the 

pharmaceutical industry, and capitalizes on the availability of structural information of the 

target protein.  For instance, a well-developed strategy known as Virtual ligand 

screening (VLS) involves in silico screening of the chemical compound databases to 

identify small molecules inhibitors of enzyme targets (39, 40).  In order to employ VLS 
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for the discovery of inhibitors for APR, we have exploited Autodock, one of the most 

widely used docking programs that has been used to identify inhibitors (41).  Autodock 

uses a fast conformational search method based on genetic algorithms, along with an 

empirical free energy force field calibrated against a large set of diverse ligand-receptor 

complexes.  This combination allows Autodock to find an optimal docked conformation 

with modest computational effort, while predicting free energies of binding leads to VLS 

(42).  Molecular docking is performed with the crystal structure of the target and the 

!
 
Figure 1.3.  Strategies to develop the small molecular inhibitors against APR, A. Virtual ligand screening  
(VLS) and B Rational design.  
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virtual ligand library as shown in Figure 1.3A.  Using the x-ray crystal structure of 

Pseudomonas aeruginosa APR (PaAPR), we have initiated small scale screening of the 

NCI (National Cancer Institute) diversity set library.  The results are filtered based on the 

docking score, which consists of the lowest free binding energy and cluster size as well 

as compounds identified from the screen and investigated experimentally for their 

potency. These lead compounds will serve as a starting point for structure activity 

relationship (SAR) studies and provide scaffolds for the construction of potent inhibitors 

(41, 43).  There are several advantages of the application of VLS for our study.  First, 

VLS does not require small molecule compound collections, synthesized ligand libraries 

or a purified target receptor.  Second, this process is fast, economical and does not rely 

on the availability of chemical compounds.  Finally, VLS avoids the need to consider 

influences that could possibly interfere with experimentally applied assay conditions 

such as limited solubility, aggregate formation and side interactions (33). 

 

1.6.3.2 Rational drug design 

Rational drug design is based on the lock and key analogy first postulated in 1894 by 

Emil Fischer (44).  This analogy helps explain the specific interaction between an 

enzyme and its substrate if we consider the enzyme as the lock and its substrate as the 

key.  It has also been observed that enzymes are rather flexible structures, in which the 

active site amino acid residues position themselves to make optimum contacts with the 

substrate.  Extending the idea that the enzyme and the substrate possess specific 

complementary geometric shapes that fit exactly into one another, an induced fit model 

has been proposed for rational drug design wherein small molecules are designed such 

that they complementary in shape and charge to the active site of the enzyme.  This 

powerful technique that has now come to dominate the drug discovery process.  In fact, 

the discovery of drugs for HIV infection and AIDS was performed entirely via a rational 
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drug design approach targeting HIV protease binding sites (45, 46).   

 

For our study, the crystal structure of PaAPR bound to APS serves as a starting point to 

identify functional groups on the substrate that are likely to contribute favorably to ligand 

binding (Figure 1.3B).  The protein monomer has a Rossmann-like fold with a central six-

stranded !-sheet interleaved with seven "-helices that create a deep active site pocket.  

The enzyme coordinates a [4Fe-4S] cluster via four cysteine residues.  The substrate 

APS extends across the C-terminal ends of the ! strands such that its phosphosulfate 

moiety is positioned toward the [4Fe-4S] cluster (47).  Using chemically synthesized 

substrate/product analogs of APR, we can perform functional experiments to investigate 

the contacts between APR and its substrate.  Analyses of the energetic contribution of 

individual portions of APS to the enzyme-binding interaction will offer valuable insights 

into substrate recognition of APR.  Furthermore, the mapping of interactions 

(electrostatic, hydrogen bonding, hydrophobic and charged) in the active site will provide 

a pharmacology roadmap for future inhibitor design.  Active site interactions are defined 

by the residues where the substrate binds.  In the case of APR, it involves positively 

charged Lys and Arg residues, which make contacts with the phosphosulfate moiety and 

the phosphate-binding loop, which interacts with the ribose sugar of APS.  In addition, 

there are two dynamic elements, the C-terminal peptide that bears the catalytically 

essential cysteine residue and the Arg-loop.  These dynamic features of the enzyme 

suggest that APR can undergo conformational rearrangement at the catalytic step and 

adopt either an ‘open’ or a ‘closed’ conformation depending on the position of the C-

terminal peptide over or out of the active site, respectively (47).  Exploring the dynamics 

of the C-terminal peptide would provide clues for designing effective inhibitors that trap 

certain conformations and deactivate the enzyme.  Additionally, the exact role of the 
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[4Fe-4S] cluster in catalysis and the binding determinants for the interaction of SRs with 

Trx need to be elucidated to understand the mechanistic details of SRs.  These 

investigations would facilitate the design of inhibitors that target the iron-sulfur cluster or 

disrupt protein-protein interactions.   

 

One of the probable reasons for why most experimental compounds entering clinical 

trials fail is a lack of mechanistic knowledge of the biological target (25).  Rational design 

approach can help bridge this gap as it not only helps to understand the molecular 

interactions between ligands and enzymes, but also facilitates elucidation of the enzyme 

mechanisms using biochemical and biophysical analysis.  Our understanding of 

biological ligand-receptor systems leads the way to applications in the drug discovery 

process and the successful design of efficient, specific, and non-toxic small-molecule 

therapeutics.   Other chapters in this thesis describe our efforts towards the identification 

of APR inhibitors, leading to new fundamental insights in bacterial sulfur metabolism that 

could have a major impact on human health. 
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Chapter 2 

Structure-based virtual ligand screening and biological evaluation of 

Mycobacterium tuberculosis Adenosine 5’-phosphosulfate reductase inhibitors 

 

This work has been published as “Structure-based virtual ligand screening and biological 

evaluation of Mycobacterium tuberculosis adenosine 5’-phosphosulfate reductase 

inhibitors.” J. Med. Chem. 2008, 51, 6627-6630.  I performed all biological testing of hits 

identified from the virtual ligand screen. 

 

2.1 Abstract 

Tuberculosis is among the world’s deadliest infectious diseases.  Adenosine 5’-

phosphosulfate reductase (APR) catalyzes the first committed step in bacterial sulfate 

reduction and is a validated drug target against latent tuberculosis infection.  We 

performed a virtual screening to identify APR inhibitors.  These inhibitors represent the 

first non-phosphate-based molecules to inhibit APR.  Common chemical features lay the 

foundation for the development of agents that could shorten the duration of 

chemotherapy by targeting the latent stage of TB infection.   

 

2.2. Introduction 

Despite advances in chemotherapy and the Bacillus Calmette-Guérin (BCG) vaccine, 

tuberculosis (TB) remains a leading infectious killer worldwide (1, 2).  Although drugs 

exist to treat TB, they are not effective against bacilli that persist in a dormant or latent 

state within host lesions (3, 4).  As a result, current treatments for TB require a cocktail 
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of three to five drugs for at least 6 months, a regime that many patients are unable or 

unwilling to follow (5).  The lengthy and complex therapy also contributes to the 

development of drug-resistant TB, which is even more difficult and expensive to treat.  

Of the 9 million known cases of TB worldwide, as many as 2% could be extensively 

drug-resistant (6).  This statistic raises the specter of virtually untreatable strains of TB 

and represents a severe public health problem.  For these reasons, there is an urgent 

need for drugs that target the latent phase of TB infection.  

 

To this end, microbial sulfate metabolism represents a promising new area for TB 

therapy (7).  Reduction of inorganic sulfate is the means by which bacteria produce 

sulfide, the oxidation state of sulfur required for the synthesis of essential biomolecules 

including amino acids, proteins, and metabolites (7-10).  Adenosine 5’-phosphosulfate 

reductase (APR, encoded by cysH) catalyzes the first committed step in bacterial sulfate 

reduction.  In this reaction adenosine 5!-phosphosulfate (APS) is reduced to sulfite and 

adenosine 5!-phosphate (AMP) (11).  Consistent with its important metabolic role APR 

was identified in a screen for essential genes in M. bovis BCG and cysH is actively 

expressed during the dormant phase of M. tuberculosis and in the environment of the 

host macrophage (7).  Most recently, Senaratne et al. demonstrated that APR is required 

for survival in the latent phase of TB infection (12).  APR is not found in humans and 

thus represents a unique target for antibacterial therapy.  Recognizing its value as novel 

antibiotic target, in 2006 Chartron et al. reported the three-dimensional (3D) crystal 

structure of Pseudomonas aeruginosa APR in complex with APS substrate (13).  P. 

aeruginosa and M. tuberculosis APR are related by high sequence homology (27.2% of 

sequence identity and 41.4% of sequence similarity), particularly in residues that line the 

active site (Appendix 3.7.2).  In this structure, APS is situated in a deep active site cavity 

with the phosphosulfate extending toward the protein surface.! 
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Conserved and semiconserved residues 

participate in four main-chain hydrogen bonds 

with adenine and the ribose O2!hydroxyl 

(Figure 2.1).  Interaction between the 

phosphosulfate and APR occurs via strictly 

conserved residues Lys144, Arg242, and 

Arg245 (Figure 2.1).  The phosphosulfate is 

also positioned opposite an [4Fe-4S] cofactor 

and Cys140.  However, the substrate is not in 

direct contact with the [4Fe-4S] cluster; the 

sulfate oxygens are 7 Å from the closest iron 

atom and 6 Å from the closest cysteine sulfur 

atom.  

 

To date, only nucleotide-based inhibitors have been reported for APR, and these are 

expected to have limited bioavailability (14).  Solution of the P. aeruginosa APR structure 

in complex with substrate affords a new opportunity for the discovery of inhibitors, 

particularly in the application of high-throughput docking of molecular databases to 

identify lead compounds.  To this end, we have taken an approach that combines 

computational docking methods with biochemical evaluation.  

 

2.3 Results and Discussion 

2.3.1 Virtual ligand screening of NCI diversity set 

!
 
Figure 2.1.  Experimental binding 
conformations of APS in APR structure. 
Substrate is displayed with carbon atoms in 
green, and key binding site residues are 
labelled.  Hydrogen bonds are represented 
with dashed yellow lines. 
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The new version of AutoDock (AD4) (15) was used to conduct virtual ligand screening 

(VLS) of the National Cancer Institute (NCI) Diversity Set (16) against the P. aeruginosa 

APR crystal structure (PDB code 2GOY).  Initial docking calculations were performed 

using APS substrate to evaluate APR as a structural model for VLS.  The docked 

conformation determined by AD4 with the lowest predicted binding energy (-9.46 

kcal/mol, "GAD4) was in excellent agreement with the bound conformation observed for 

APS in the crystal structure (rmsd 0.7 Å); the calculated positions of the adenine ring, 

ribose sugar, and phosphosulfate group were 

almost identical to those found in the crystal 

structure.  On the basis of these encouraging 

results, VLS calculations were performed with 

the APR crystal structure using the database 

of compounds in the NCI Diversity Set.  The 

VLS results were sorted on the basis of their 

predicted binding free energies ("GAD4), 

which ranged from -3.16 to -13.76 kcal/mol, 

and according to the cluster size for each 

docking conformation.  Solutions with a 

predicted binding free energy greater than -

8.0 kcal/mol and a cluster size lower than 20 

out of 100 individuals were discarded. 

 

 

 

Figure 2.2.  Results of the VS (using AD4) of 
the NCI Diversity Set against APR. a) Bars 
represent numbers of Diversity Set 
compounds with predicted free energies of 
binding in the indicated 1 kcal/mol bins.  Red 
bars highlight the energies of those 
compounds having a "GAD4 lower than -8 
kcal/mol.  b) Bars represent the population of 
the frequency of occurrence of the largest 
cluster for each docked ligand.  Red bars 
highlight a frequency of occurrence higher 
than 20 out of 100. 
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Cluster size is included in these 

criteria as an empirical measure of the 

configurational entropy, as shown in 

previous work (14).  On the basis of 

these criteria, 14.8% of the solutions 

had energies lower than -8.0 kcal/mol, 

43.3% had a cluster population higher 

than 20 individuals, and 10.0% (192 

compounds) met both these criteria  

(Figure 2.2).  The predicted binding 

conformations for these 192 solutions 

were visually inspected.  Compounds 

that were not predicted to interact with 

important residues such as Lys144, 

Arg242, or Arg245 were removed from 

consideration.  After this final step, 42 

compounds corresponding to 2% of 

the original NCI Diversity Set were 

selected for further analysis.  When 

ordered from NCI (The NCI/DTP Open 

Chemical Repository), three of these 

compounds were not available, so 39 compounds were obtained for biochemical testing.  

Assessment of the 39 top-ranked compounds from the VLS as potential inhibitors of 

APR was performed using a standard radioactive assay, measuring APR reduction of 

35S-labeled APS substrate.  The compounds that exhibited significant inhibitory activity 

(more than 50% inhibition) are listed in Table 1, along with the AD4 binding energies and 

Table 2.1.  Structures, AutoDock Binding Energies and 
Activities of APR First Generation Inhibitor 
Compounds. 
!

Chemical  
Structure 

NSC 
Number 

#GAD4 
(kcal/mol) 

Kd 
(µM) 

O

S
O

COO-

!
16211 -8.72 180.35 

O

NO2

NO2 !
133896 -8.75 37.11 

N
N
N

COO- !

327704 -8.21 46.85 

N
O N

S

N

N N

N
HH2N

NO2

!

348401 -9.63 15.19 

O

COO-

COO-
H

OH

!

9746 -9.34 127.19 

!
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measured activities.  Three compounds from this set, tested at 100 µM, inhibited APR 

activity by more than 50%: 133896, 327704, and 348401 (Table 2.1).  In particular, 

348401 resulted in more than 90% inhibition (Table 2.1).  Compounds listed in Table 1 

were predicted to have the similar affinities for APR (see Table 1, "GAD4); however, the 

experimental binding constants span a range of 6.81-48.11 µM.  This is not unexpected, 

since the computed binding energies in calibration experiments typically have errors in 

the range of 2 kcal/mol, which corresponds roughly to a 30-fold difference in predicted 

binding constants.  The above-mentioned compounds, representing the most potent 

inhibitors from our screen, were investigated further and were found to produce 

concentration-dependent inhibition of APR activity without promiscuous inhibition.  Data 

were fit to a competitive inhibition model (R2 # 0.98), and the inhibition constant (Ki) was 

determined for each compound in Table 2.1.  Under the conditions employed for these 

assays the Ki was equal to the dissociation constant (Kd) of each compound.  

Dissociation constants for the most potent inhibitors in Table 1 ranged from 15 to 50 µM. 

 

2.3.2 Virtual ligand screening of NCI similarity database 

Second-generation lead compounds were identified by docking and assaying 

compounds from similarity searches, based on chemical structures and substructures of 

the Diversity Set leads.  This search was performed using the Enhanced NCI Database 

Browser, a Web-based graphical user interface with a large number of possible query 

types and output formats.  The 890 out of 250 000 compounds were identified in the 

Open NCI database with at least 80% Tanimoto similarity and docked.  The 40 highest-

scoring solutions, ranked according to the criteria outlined above, were experimentally 

evaluated using our biochemical assay.  Five compounds were identified with 

dissociation constants less than 50 µM, with four similar to primary lead 133896 (60826, 

55545, 57476, and 23180) and one similar to primary lead 348401 (228155).   
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The similarity search based on the 

parent compound 133896 identified 

three new leads (60826, 55545, and 

57476) with a 9-fluorenone core 

structure and activity against APR and 

the 9-fluorenone core structure (Table 

2.2).  The dihydrophenanthrendione 

23180 was the most potent inhibitor 

identified in this study, with a 

dissociation constant of less than 10 

µM.  Visual inspection of the predicted 

binding pose for 23180 (Figure 2.3a) 

reveals that the aromatic polycyclic 

scaffold inserts into a profound gorge 

(referred to as L1) and makes 

favorable hydrophobic contacts with 

the side chains of residues Leu90 and Ile98.  Additional interactions include the nitro 

functional group in proximity to positively charged active site residues Lys144 and 

Arg245 (referred to as P1) as well as hydrogen bonding from the carbonyl oxygens in 

the aromatic moiety to the backbone amide of Leu85 and side chain of Ser62.   

 

Similar binding poses and interactions are predicted for compounds 133896, 60826, 

55545, and 57476.  However, these molecules have one less carbonyl oxygen in the 

aromatic moiety relative to the dihydrophenanthrendione chemical scaffold.   

 

Table 2.2.  Structures, AutoDock Binding Energies and 
Activities of APR Second Generation Inhibitor 
Compounds. 
!
Chemical Structure NSC 

Number 
#GAD4 

(kcal/mol) 
Kd 

(µM) 
O

NH

NO2

O

 

60826 -8.46 31.79 

O

NO2

O2N  

55545 -8.23 48.11 

O

NO2

F

F

 

57476 -8.60 44.59 

O
O

NO2  

23180 -8.94 6.81 

N
O

N

S

N+

NO2

O-  

228155 -8.7 19.51 

!
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As a result, the 9-fluorenone-derived compounds 

are not predicted to form a hydrogen bond with 

Ser62 and could account for the difference in 

potency between the two structural cores.  We 

also note that neither 9-fluorenone nor 2-nitro-9-

fluorenone, which are closely related to 133896, 

exhibited significant activity against APR.  Rather, 

our data indicate that a H-bond acceptor group is 

required at position 3 or 4 of the 9-fluoronone 

scaffold to acquire inhibitor potency (Table 2.2 

and Figure 2.3).   

 

Previous studies show that compound 23180 can 

inactivate the tyrosine phosphatase CD45 via a 

catalytic and oxygen-dependent reaction 

(Kinactivation 4300 M-1s-1) (17).  Although the precise 

mechanism remains unknown, inactivation of 

CD45 by 23180 is correlated with oxidation of a 

catalytic cysteine residue to sulfinic and sulfonic 

acid.  To test whether 23180 inhibited APR in a 

similar fashion, control experiments were performed.  Unlike CD45, preincubation of 

APR with 23180 did not result in enzyme inactivation and Cys256 was not covalently 

modified. 

 

Compound 327704 is structurally unrelated to other inhibitor cores identified by these 

studies.  Nonetheless, this compound is also predicted to interact with the L1 pocket via 

!
 
Figure 2.3.  Docked conformations of 
NSC23180 (a) and NSC348401 (b) in 
APSR structure.  Ligands are displayed 
as in Figure 2.1.  Hydrogen bonds are 
represented with dashed yellow lines. 
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its polycyclic aromatic ring and the P1 region through the polar carboxylate group.   

 

Compounds 348401 and 228155 contain a benzoxadiazole moiety.  This functional 

group adopts the same binding pose in both compounds and is oriented in a way that 

maximizes electrostatic interactions with Arg242 and Lys144 (Figure 2.3b).  Each 

benzoxadiazole is distinguished by a pendent thioaryl group, which is embedded in a 

hydrophilic cleft (referred as L2) and forms two hydrogen bonds to the side chains of 

Asp66 and Glu65.  The low micromolar activity of 348401 and 228155, combined with 

the ability to chemically derivatize the purine scaffold, suggests that this compound class 

may be a promising lead.   

 

Interestingly, though compounds 

23180 and 348401 contain a 

polycyclic aromatic ring, they are 

not predicted to adopt the same 

binding position and interact with 

similar residues (Figure 2.4).  

Rather, 23180 is positioned deep 

inside the L1 cavity, flanked by the 

[4Fe-4S] cluster while 34801 

occupies the shallower and more 

polar L2 region of the active site, 

which is consistent with the more 

polar nature of the ring in this 

compound.  Nevertheless, both classes of inhibitors are predicted to interact with the 

conserved positively charged residues that border both clefts in the P1 site.  These 

!
 

Figure 2.4.  Binding pose of both NSC23180 and 
NSC348401 in the APSR binding site.  Ligands and 
residues belonging to the P1 site and are depicted in 
capped sticks colored by atom types.  Residues 
belonging to the L1 and L2 sites are depicted as MSMS 
surface colored with #G colors, the protein secondary 
structure (white ribbon) is also depicted. 
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observations suggest that a ligand, which can occupy both L1/L2 clefts and bears polar 

hydrogen bond accepting groups to interact with the P1 site, may exhibit higher activity 

against APR.  We are currently testing this model, and the results of these studies will be 

reported in due course.   

 

2.4 Conclusion 

In conclusion, we have applied virtual ligand screening of compounds from the NCI 

database to identify low micromolar inhibitors of M. tuberculosis APR, a validated target 

against latent TB infection.  The molecules described here are the first non-phosphate-

based inhibitors of this enzyme and may form the basis for development of an APR 

inhibitor pharmacophore.  Further studies on the inhibitors identified here should also 

shed light into the mechanism, targeting, and therapeutic potential of this enzyme. 

 

2.5 Experimental Procedure 

2.5.1 Virtual Screening Calculations  

The AutoDock 4.0 (AD4) (15, 18) software package, as implemented through the 

graphical user interface called AutoDockTools (ADT) (19), 

was used to dock small molecules to APR.  The enzyme 

file was prepared using published coordinates (PDB 

2GOY) (13).  The terminal residues were modified to 

charged quaternary amine and carboxylate forms.  The 

[4Fe-4S] cluster was retained with the protein structure.  

Charges of this group were manually assigned.  In our 

case, the cluster is believed to have two ferric (+3) and 

two ferrous (+2) irons (20).  Since the eight sulfur atoms (four belonging to the cluster 

and four belonging to the four cysteines) have a net charge of -1, the total net charge of 

Table 2.3. Calculated Charges 
for [Fe4S4(SCH3)4]2- 

!
Atom ESP Charges 

Feox  +0.642 ($2)  

Fered  +0.635 ($2)  

S*ox  -0.584 ($2)  

S*red  -0.580 ($2)  

Sox  -0.574 ($2)  

Sred  -0.571 ($2)  

!
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the system should be of -2.  Noodleman and co-workers calculated the ESP charges for 

models of the cluster in this oxidation state (21).  These charges were added to APR 

iron-sulfur cluster atoms and to the four sulfur of the coordinating cysteines (Table 2.3).   

 

All other atom values were generated automatically by ADT.  The docking area was 

assigned visually around the enzyme active site.  A grid of 80 Å x 80 Å x 80 Å with 0.375 

Å spacing was calculated around the docking area for 13 ligand atom types using 

AutoGrid4.  These atom types were sufficient to describe all atoms in the NCI database.  

For VS, compound structures of the NCI Diversity Set and the ones derived from the 

similarity search were prepared using the ZINC database server 

(http://zinc.docking.org/uploads.html) (22) to take into account the different protomeric 

and tautomeric states of each compound.  All the ligands were then converted in the 

AutoDock format file (.pdbqt).  For each ligand, 100 separate docking calculations were 

performed.  Each docking calculation consisted of 10 million energy evaluations using 

the Lamarckian genetic algorithm local search (GALS) method.  The GALS method 

evaluates a population of possible docking solutions and propagates the most 

successful individuals from each generation into the subsequent generation of possible 

solutions.  A low-frequency local search according to the method of Solis and Wets is 

applied to docking trials to ensure that the final solution represents a local minimum.  All 

dockings described in this paper were performed with a population size of 150, and 300 

rounds of Solis and Wets local search were applied with a probability of 0.06.  A 

mutation rate of 0.02 and a crossover rate of 0.8 were used to generate new docking 

trials for subsequent generations, and the best individual from each generation was 

propagated to the next generation.  The docking results from each of the eight 

calculations were clustered on the basis of rootmeansquare deviation (rmsd) between 

the Cartesian coordinates of the atoms and were ranked on the basis of free energy of 
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binding.  The top-ranked compounds were visually inspected for good chemical 

geometry.  Pictures of the modeled ligand/enzyme complexes were rendered with PMV 

(19).!
 

2.5.2 Preparation of NCI Compounds 

Compounds determined by AD4 to have low binding energies to APR were requested in 

groups of 40 and received from the Drug Synthesis and Chemistry Branch, 

Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, 

National Cancer Insititute (http://dtp.nci.nih.gov/branches/dscb/repo_request.html).  

Chemical compounds were dissolved in DMSO to 10 mM final concentration and stored 

at room temperature. 

 

2.5.3 Enzyme Purification 

Purification of APR was carried out as previously described (13).   

 

2.5.4 APS Reductase Activity Assay 

APR activity was assayed using a modification of an assay for monitoring 35SO4
2- release 

from ATP-sulfurylase as follows (20).  Reactions were performed in a final volume of 100 

µl.  At various time points, a 10 µl aliquot was removed from the reaction and added to 

0.5 ml of a 2% (w/v) charcoal solution containing 20 mM Na2SO3.  The suspension was 

vortexed, clarified by centrifugation and a 400 µl aliquot of the supernatant solution, 

containing the radiolabeled sulfite product, was counted in 10 ml of scintillation fluid.  

35S-labeled APS was synthesized and purified as previously described (23) with the 

inclusion of an additional anion exchange purification step (5 ml Fast Flow Q column 

(GE Healthcare) eluting with a linear gradient of ammonium bicarbonate, pH 8.0, from 

0.005 to 0.7 M. 
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2.5.5 General Kinetic Methods.  

Unless otherwise specified, the reaction buffer was 100 mM Bis-Tris pH 7.5, 5 mM DTT, 

and the temperature was 30 °C.  The auxillary protein reductant, thioredoxin was added 

at 10 µM. With the exception of slow reactions, the enzymatic reactions were monitored 

to completion (# 3 half lives) and rate constants were obtained by nonlinear least-

squares fit to a single exponential (Kaleidagraph).  To ensure single-turnover reactions, 

the concentration of APR was kept in excess of the concentration of labeled APS (~1 

nM).  Two or three concentrations of APR were chosen that were at least 10-fold below 

the KM value.  Under these conditions, the observed rate constant was linearly 

dependent on enzyme concentration.  Thus, reactions were first order in APS and APR 

in all cases.  Under subsaturing conditions, with [APS] << KM, the Michaelis-Menton 

equation (eq 1) simplifies to equation 2 (24).  The reaction progress curve was plotted as 

a function of time and the fractional extent of reaction, and fit by a single-exponential 

function (eq 3) to yield kobs, which is the product of enzyme concentration and the 

apparent second-order rate constant (eq 4).  Kinetic data were measured in at least two 

independent experiments and the standard error was typically less than 15%. 

Vobs = [E][S]kcat/(Km + [S])  (1) 

Vobs = (kcat/Km)[E][S]   (2) 

fraction product = 1 – e-kobst   (3) 

kobs = (kcat/Km)[E]   (4) 

 

2.5.6 Inhibitor Screening.  

For initial screening, compounds were tested in kinetic assays at 100 µM final 

concentration.  Compounds that inhibited more than 50% at this concentration were 

analyzed further as described below.   
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2.5.7 Analog Dissociation Constants.  

The standard assays and conditions described above were used to monitor the kcat/Km 

for reduction of APS in the presence and absence of inhibitor.  Values of Ki were 

determined from the dependence of the observed rate constant (kobs) on inhibitor 

concentration.  With subsaturating APS, the inhibition constant is equal to the 

dissociation constant (Ki = Kd).  Except in cases where solubility was a limiting factor, a 

range of inhibitor concentrations was employed from at least 5-fold below to 10-fold 

above the inhibition constant.  Nonlinear least-squares fits of the equation for 

competitive inhibition (eq 5) gave excellent fits in all cases, and the standard error was 

typically less than 15%.   

(kcat/Km)obs = (kcat/Km)/(1 + [I]/Ki) (5) 

 

2.5.8 Catalytic inactivation of APR by 2-nitro-9,10-phenanthrenedione. APR (9 µM) 

was incubated with compound 23180 (0.9 µM) or DMSO and enzyme activity was 

measured at 1, 15 and 30 min.  No statistical difference was observed in the activity of 

the enzyme in these experiments indicating that compound 23180 did not catalytically 

inactivate APR. 

 

2.5.9 Thiol Quantification. 

Labeling of APR by the thiol-reactive probe NBDCl was carried out using a modification 

of a following the published procedure (17).  Briefly, APR (10 µM) was incubated, at 

room temperature, in a final volume of 1 ml of buffer containing 50 mM BisTris (pH=7.5), 

1 mM EDTA, and 1 mM DTT with (a) DMSO or (b) 10 µM compound 23180.  NBDCl (50 

µM) was added to each of the resulting solutions and incubated for 30 minutes at room 

temperature.  Excess NBDCl was removed from the labeled APR by ultracentrifugation 
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prior to the UV-vis scan.  No loss in APR thiol labeling was observed in the presence of 

inhibitor. 

 

2.5.10 Promiscuous Inhibition.  

At the suggestion of one reviewer, we tested members of each structural class of 

inhibitor for promiscuous inhibition.  Assays were carried out as described above in the 

presence of 0.01% Triton, and showed no significant difference in Kd with the assay 

without detergent.  We also performed a gel shift assay of trypsin activity acting on APR 

in the presence of inhibitors. By this gel assay, none of the inhibitors at concentrations of 

50 !M changed the proteolysis pattern of trypsin and qualitatively indicates that the 

compounds are not inhibiting trypsin. 

 

2.6 Appendices  

Figure 2.6.1 Structure based sequence alignment of 17 APR from prokaryotes. 

The ClustalW Multiple Sequence Alignment program was used. Strictly conserved 

residues are outlined in red, red letters indicate conserved residues and conserved 

regions are boxed in blue.  Alignment pictures were rendered with the server ESPript 2.2 

(http://espript.ibcp.fr) 
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Figure 2.6.2 Structure based sequence alignment of PaAPR and MtAPR. 

The ClustalW Multiple Sequence Alignment program was used.  Strictly conserved 

residues are outlined in red, red letters indicate conserved residues and conserved 

regions are boxed in blue.  Residues flanking the active site are outlined in green.  

 

!
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Chapter 3 

Identification of critical ligand binding determinants in Mycobacterium 

tuberculosis adenosine-5’-phosphosulfate reductase 

 

This work has been published as “Identification of critical ligand binding determinants in 

Mycobacterium tuberculosis adenosine-5’-phosphosulfate reductase” J. Med. Chem. 

2009, 52, 5485-5495.  I purified the enzyme required for these experiments and 

conducted all subsequent kinetic and thermodynamic analyses.  I synthesized all 

analogs, with the exception of thio-APS, !-fluoro ADP, and compounds in Figure 3.6.  

 

3.1 Abstract 

Mycobacterium tuberculosis adenosine-5’-phosphosulfate (APS) reductase is an iron-

sulfur protein and a validated target to develop new antitubercular agents, particularly for 

the treatment of latent infection.  To facilitate the development of potent and specific 

inhibitors of APS reductase (APR), we have probed the molecular determinants that 

underlie binding and specificity through a series of substrate and product analogues.  

Our study highlights the importance of specific substituent groups for substrate binding 

and provides functional evidence for ligand-specific conformational states.  An active site 

model has been developed for M. tuberculosis APR that is in accord with the results 

presented here as well as prior structural data reported for Pseudomonas aeruginosa 

APR and related enzymes.  This model illustrates the functional features required for the 

interaction of APR with a ligand and provides a pharmacological roadmap for the rational 

design of small molecules as potential inhibitors of APR present in human pathogens, 
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including M. tuberculosis. 

 

3.2 Introduction 

Reduced sulfur appears in organic compounds essential to all organisms as constituents 

of proteins, coenzymes, and cellular metabolites (1-3).  In the amino acid cysteine, the 

thiol functional group plays important biological roles in redox chemistry, metal binding, 

protein structure, and catalysis (4).  In many human pathogens such as Mycobacterium 

tuberculosis and Pseudomonas aeruginosa, activation of inorganic sulfur for the 

biosynthesis of cysteine proceeds via adenosine 5$-phosphosulfate (APS) (5, 6).  This 

high-energy intermediate is produced by the action of ATP sulfurylase, which condenses 

sulfate and adenosine 5’-triphosphate (ATP) to form APS.  The iron-sulfur protein, APS 

reductase (APR) catalyzes the first committed step in sulfate reduction and is a validated 

target to develop new anti-tubercular agents, particularly for the treatment of latent 

infection (7-9). 
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Figure 3.1.  Sulfate assimilation pathway in M. tuberculosis.  The majority of sulfate reducing bacteria 
use APS as their source of sulfite.  In this reaction, APS is reduced to sulfite and adenosine-5!-
monophosphate (AMP) by APR.  Sulfite, in turn, is reduced by later enzymes in this metabolic pathway, 
forming first sulfide before incorporation into cysteine and, ultimately, to methionine and other essential 
reduced sulfur-containing biomolecules.!
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APR catalyzes the reduction 

of APS to sulfite (HSO3
–) and 

adenosine 5’-monophosphate 

(AMP) using reduction 

potential supplied by the 

protein cofactor, thioredoxin 

as shown in Figure 3.1.  

Functional and structural 

studies have been used to investigate the mechanism of APR from sulfate-assimilating 

bacteria (10-12).  The proposed mechanism in Figure 3.2 involves nucleophilic attack by 

cysteine 256 (Residue numbers throughout this chapter correspond to the APR 

sequence from P. aeruginosa (Appendix 3.6.1) on the sulfur atom in APS to form an 

enzyme S-sulfocysteine intermediate, E-Cys-S%–SO3
–, which is then reduced through 

intermolecular thiol-disulfide exchange with thioredoxin.  The iron-sulfur cluster in APR is 

essential for activity; however, it is not involved in redox chemistry and its exact role 

remains unknown (6, 10).  

 

Crystal structure determination at 2.7 Å of P. aeruginosa APR (PaAPR) in complex with 

APS provided the first insight into the molecular basis for substrate recognition (Figure 

3.3) (12).  M. tuberculosis APR (MtAPR) and PaAPR are related by high sequence 

homology (27.2% of sequence identity and 41.4% of sequence similarity), particularly in 

the residues that line the active site.  The protein monomer folds as a single domain with 

a central six-stranded ! sheet, interleaved with seven "-helices (Figure 3.3).  Opposite 

the nucleotide at one end of the active site is the [4Fe-4S] cluster.  Three additional 
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Figure 3.2.  Mechanism of sulfonucleotide reduction.  
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elements define the active site: the 

P-loop (residues 60-66), the LDTG 

motif (residues 85-88) and the Arg-

loop (residues 162-173).  APS fits 

into the active site cavity with the 

phosphosulfate moiety extending 

toward the protein surface and ten 

residues interact directly, via 

hydrogen bonding or hydrophobic 

interactions with the substrate.  The 

C-terminal segment of residues 250-

267, which carries the catalytically 

essential Cys256, is disordered in 

this structure, but would be 

positioned above the active site cleft.   

 

Not all organisms that assimilate sulfate reduce APS as the source of sulfite.  Through 

divergent evolution, some organisms, such as Escherichia coli and Saccharomyces 

cerevisiae reduce the related metabolite 3’-phosphoadenosine-5’-phosphosulfate 

(PAPS) (11), which is produced by APS kinase from ATP and APS (13).  PAPS 

reductases (PAPR) lack the iron-sulfur cofactor, but utilize the same two-step 

mechanism shown in Figure 3.2 (10, 11).  S. cerevisiae PAPR (ScPAPR), crystallized in 

the presence of the product, 3’-phosphoadenosine 5’-phosphate (PAP) (14) has a fold 

similar to APR (1.6-Å rms deviation over 117 residues).  In the structure of yeast PAPR, 

the Arg-loop and C-terminal segment are folded over the active site and this 

  
 
Figure 3.3.  The structure of P. aeruginosa APS 
reductase in complex with substrate, APS (PDB 2GOY).  
The C-terminal segment of residues starting at Glu249 
carries the catalytically essential Cys256 and is 
disordered. 
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conformation reveals additional enzyme-ligand contacts, which may also form between 

APR and its substrate, APS.  

 

Even though M. tuberculosis has plagued humans for millennia, the antibiotic regime is 

complex and effective drugs that specifically target latent TB infection are yet to be 

developed (15).  Novel targets (16, 17) and treatment strategies (18, 19) are emerging, 

but new avenues for therapeutic intervention must continue to be explored in order to 

combat multidrug-resistant strains of TB, which pose a significant threat to global human 

health (20).  To this end, APR represents an attractive target for therapeutic intervention 

because it is essential for mycobacterial survival in the latent phase of TB infection (9) 

and humans do not possess an analogous metabolic pathway.  Recently, we have 

discovered small-molecule inhibitors of APR through virtual ligand screening (21).  

However, the development of more specific and potent inhibitors will be greatly aided 

through knowledge of the functional importance of interactions between the substrate 

and enzyme at the active site, which have not yet been experimentally addressed. 

 

Herein, we probe binding determinants of the MtAPR active site using synthetic ligand 

analogs.  These studies define chemical groups that are essential for molecular 

recognition and reveal a network of electrostatic interactions, which play an important 

role in substrate discrimination.  An active site model has been developed for MtAPR 

that is in accord with the results presented here as well as prior structural data reported 

for PaAPR and related enzymes.  This model illustrates the functional features required 

for the interaction of APR with a ligand and provides a pharmacological road map for the 

rational design of small-molecules as potential inhibitors of APR present in human 

pathogens, including M. tuberculosis. 
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3.3 Results and Discussion 

The substrate and fragments studied and results obtained in these experiments are 

summarized in Tables 3.1-3 and Figures 3.4-9.   

 

3.3.1 Substrate Affinity   

As a starting point to explore the molecular recognition properties of APR, we 

determined the Kd value of substrate APS for MtAPR from the dependence of the 

observed rate constant for S-sulfocysteine formation (Appendix 3.6.2), as described in 

Experimental procedures.  The substrate APS binds to APR with a Kd value of 0.2 !M 

(Table 3.1), which is ~3-fold lower than the value of the reported substrate Km (22). 

 

3.3.2 Affinity of Substrate Fragments 

To gain further insight into substrate recognition of MtAPR, we analyzed the energetic 

contribution of individual portions of APS to the enzyme-binding interaction.  The results 

obtained in these experiments are summarized in Table 1.  The product AMP differs 

chemically from the natural substrate, APS, by the absence of the sulfate moiety.  The 

loss of sulfate from APS reduced binding to APR about 30-fold (2 kcal/mol), 

demonstrating that the AMP moiety makes a substantial contribution (7.3 kcal/mol) to the 

overall binding affinity (9.3 kcal/mol) of APS.  Deletion of the adenine or phosphate 

group from AMP decreased binding to APR by ~170-fold (3.1 kcal/mol) and ~550-fold 

(3.8 kcal/mol), respectively.  Fragments of adenosine – D-ribose and adenine – exhibited 

weak binding activity toward APR (0.2 and %1.5 kcal/mol).  The respective free energy of 

binding to sulfate and phosphate dianions was %0.7 and 1.6 kcal/mol.  Figure 3.4 

summarizes the binding properties of the substrate, APS and product, AMP for MtAPR 

as compared with those of the fragments obtained by cutting these ligands at several 

positions, including the glycosidic bond, and at &- or !-positions within the diester moiety.  
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In all cases, the Kd value of APS or AMP was lower than those of its pieces.  However, 

the free energies ('Gconn) associated with these connectivity effects for APR are modest 

(%2.2 kcal/mol), as compared to values that have been determined for adenosine (30) 

and cytidine deaminases (31) (~10 kcal/mol).  

 
Table 3.1. Ligand dissociation constants for substrate-fragments with APR. 

Ligand Structure Kd 
[µM][c] 

!!G 
[kcal/mol][d] pKa 

APS[a] 

N

NN

N

NH2

O

OHOH

OPO

O–

O

S–O

O

O

 

0.20 N/A ~2 (O)[e] 

AMP 

N

NN

N

NH2

O

OHOH

OP–O

O–

O

 

5.4 2.0 6.8 (O) (23) 

5'-
Phosphoribose 

O

OHOH

OP–O

O–

O

OH

 

93 5.1 ~6.8 (O)[f] 

Adenosine 

N

NN

N

NH2

O

OHOH

HO

 

3000 5.8 3.6 (N1), 12.4 (O) 
(24) 

Phosphate OHP–O

O–

O

 
66000 7.7 1.97 (O), 6.82 (O), 

12.5 (O) (25) 

Ribose 
O

OHOH

HO

OH

 
680000 9.1 12.22 (O) (26) 

Adenine[b] N

NN
H

N

NH2

 

# 90000 # 7.3 4.15 (N1), 9.80 (N9) 
(26) 
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Sulfate[b] O–S–O

O

O  

# 
310000 # 8.6 -3 (O), 1.89 (O) (27) 

[a] The Kd of APS was measured under single turnover conditions, in the absence of thioredoxin, as 
described in the methods section.  [b] Due to the limits of solubility or solution ideality the reported values are 
lower limits.  [c] For substrate-fragments in this table values of Ki were determined under single turnover 
conditions from the dependence of the observed rate constant at a given inhibitor concentration under 
conditions of subsaturating APS, such that Ki is equal to the Kd.  Each value reflects the average of at least 
two independent experiments, and the standard deviation was less than 15% of the value of the mean.  
Kinetic data were nonlinear-least squares fit to a model of competitive inhibition.   [d] Energetic difference in 
affinity of APS relative to inhibitor, ''G = -RTln(Kd

APS/Kd
Fragment).  [e] pKa estimated from value measured for 

2’-deoxy-5’-phosphoribose (28).  [f] pKa estimated from value measured for 3’-phospho-5’-
adenosinephosphosulfate (29).   
 

3.3.3 Affinity of Substrate Analogs 

3.3.3.1 !-Nucleotide Substitution  

The results above suggest that the !-sulfate group plays a modest role (%2.0 kcal/mol) in 

molecular recognition of APS.  To probe this observation in further detail, we 

investigated binding affinities for a panel of nucleotide analogs containing systematic 

modifications at the !-position (Table 3.2 and Figure 3.5).  A phosphate oxyanion has 

nearly the same size and shape as a sulfate oxyanion, four atoms arranged tetrahedrally 

around a sulfur instead of a phosphorous (32, 33).  However, the overall charge of these 

analogs differs since the !-sulfate is monoanionic, whereas the !-phosphate is dianionic.  

Replacement of the !-sulfate moiety with !-phosphate, as in adenosine 5’-diphosphate 

(ADP), diminished binding to APR about 20-fold (1.8 kcal/mol).  To determine whether 

this decrease in binding affinity is due to additional negative charge at the !-position of 

ADP, relative to APS, we examined sulfur (ADP!S), fluorine (ADP!F), or amine 

(AMPPN) substitution of the !-phosphate nonbridging oxygen atom in ADP (Table 3.2 

and Figure 3.5).  Sulfur substitution is considered to be a good mimic of the phosphate 

moiety since it is isosteric, pseudoisoelectronic, and has a similar charge distribution and 

similar net charge at physiological pH (34, 35).  Fluorine substitution replaces 
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an ionizable hydroxyl group, thereby mimicking the protonated nucleotide species in net 
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Figure 3.4.  Effects of cutting the substrate, APS and the product, AMP into fragments on ligand Kd 
values.  The energetic effect that results from connectivity was calculated based on the affinity of the 
parent ligand ‘XY’, compared with the affinities of its pieces, ‘X’ and ‘Y’: #Gconn = -RTln(KXY/KXKY), as 
previously reported (23). 
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charge at all pH values (36) and, at neutral pH, amine substitution neutralizes the -1 

charge at the !-position.  Compared to ADP, substitution by sulfur increased binding 

affinity by 2.0 kcal/mol, fluorine increased binding by less than two-fold (0.3 kcal/mol), 

and introduction of the amine group decreased the free energy of binding for APR by 2.8 

kcal/mol.   

 
Table 3.2. Ligand dissociation constants for substrate analogs with APR. 

Ligand Structure Kd 
[µM][a] 

!!G 
[kcal/mol][b] pKa 

ADP!S 

N

NN

N

NH2

O

OHOH

OPO

O–

O

P–O

O

S–

 

0.15 -0.17 5.2 (O) (34) 

ADP"S[c] 

N

NN

N

NH2

O

OHOH

OPO

O

S–

P–O

O–

O

 

0.80 0.83 6.8 (O) (37) 

ADP!F 

N

NN

N

NH2

O

OHOH

OPO

O–

O

PF

O–

O

 

2.5 1.5 N/A 

ADP 

N

NN

N

NH2

O

OHOH

OPO

O–

O

P–O

O–

O

 

4.3 1.8 6.4 (O) (37) 

AMPCF2P 

N

NN

N

NH2

O

OHOH

OPCF2

O–

O

P

O

–O

O–

 

13 2.5 ~5.7 (O)[d] 
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AMPCP 

N

NN

N

NH2

O

OHOH

OPCH2

O–

O

P

O

–O

O–

 

27 2.9 8.1 (O) (38) 

APS"S[c] 

N

NN

N

NH2

O

OHOH

OPO

O

S–

S–O

O

O

 

43 3.2 ~1.6 (O)[e] 

AMPNP 

N

NN

N

NH2

O

OHOH

OPNH

O–

O

P

O

–O

O–

 

260 4.3 7.7 (O), 8.25 (N) (39) 

AMPPN 

N

NN

N

NH2

O

OHOH

OPO

O–

O

PH2N

O–

O

 

410 4.6 3.0 (O), 8.15 (N)[f] 

APS!M 

N

NN

N

NH2

O

OHOH

OPCH2

O–

O

S

O

–O

O

 

700 4.9 ~3.7 (O)[g] 

[a] For substrate analogs in this table values of Ki were determined under single turnover conditions from the 
dependence of the observed rate constant at a given inhibitor concentration under conditions of 
subsaturating APS, such that Ki is equal to the Kd.  Each value reflects the average of at least two 
independent experiments, and the standard deviation was less than 15% of the value of the mean.  Kinetic 
data were nonlinear-least squares fit to a model of competitive inhibition.  [b] Energetic difference in affinity of 
APS relative to inhibitor, ''G = -RTln(Kd

APS/Kd
Analog).  [c] Kd value for the diastereoisomeric mixture of Rp and 

Sp isomers.  [d] pKa estimated from value for mono- and difluoro-substituted benzylphosphonic acid (40).  [e] 
pKa estimated from effect of thio-substitution on ADP"S (37).  [f] pKa estimated from value measured for 
phosphoramidic acid (41).  [g] pKa estimated from effect of !-methylene-substitution on AMPCP (38). 
 

Taken together, the above data suggest that a net charge of -2 correlates with potent 

enzyme-ligand interactions.  The negative charge can be localized entirely to the &-

position, as in AMP, or it can be distributed across the diester, as in ADP!F.  The 

similarity of Kd values for AMP and ADP could reflect different modes of nucleotide 

binding.  For example, the &-phosphate of AMP could occupy the same position as the 



! 47!

!-phosphate in ADP, thereby establishing key electrostatic interactions with Lys144, 

Arg242, and Arg245 (Figure 3.3).  However, an upward shift in the position of AMP 

would likely weaken important enzyme-binding contacts with the adenine ring and ribose 

sugar of AMP (Figure 3.3).  An alternative possibility is that the C-terminus and Arg-loop 

of APR could adopt different conformations, depending on whether ADP or AMP is 

bound at the active site.  In other words, binding energy gained through additional 

charge-charge interactions between the !-phosphate moiety of ADP, Lys144, Arg242 

and Arg245 could be cancelled by a decrease in favorable interactions with residues in 

the C-terminus and the Arg-loop.  Evidence in support for the latter proposal is provided 

in Section 3.3.5 below.   

 

Interestingly, oxyanion substitution of the fluorine group slightly decreased binding 

affinity, whereas thiolate substitution increased binding potency by almost 30-fold.  The 

larger size and polarizability of the sulfur atom could enhance binding affinity by: (i) 

shortening the distance to residues that directly contact the ligand, and/or (ii) enabling 

additional electrostatic or stacking interactions with APR (42).  Finally, we note that 

neutralizing the -1 charge of the !-phosphate, as in AMPPN, is clearly unfavorable.  This 

significant energetic penalty likely results from repulsive electrostatic interactions 

between the amine group, which is protonated at physiological pH (Figure 3.5), and 

adjacent positively charged residues (Figure 3.3).  In line with this hypothesis, the 

!
 
Figure 3.5.  Electrostatic potential surfaces of substrate, APS and related nucleotide analogs.  Color gradient: red 
corresponds to most negative and blue corresponds to most positive.   
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binding affinity of AMPPN for APS reductase increased at elevated pH (Appendix 3.6.5).  

 

3.3.3.2 "-!  Bridging Oxygen Substitution 

Interactions between the 5’-phosphate and two highly conserved residues – Arg171 and 

His259 – are observed in the structure of ScPAPR bound to PAP (14).  However, owing 

to the mobility of the Arg-loop and C-terminal residues, no direct contacts to the &-

phosphate are observed in the structure of APR (12) (Figure 3.3).  To gain insight into 

the functional importance of these contacts for MtAPR we examined the contribution of 

the &-( bridging oxygen to binding affinity (Table 3.2).  Replacing the P&-O-S( bridging 

oxygen in APS with a methylene group (P&-CH2-S() significantly decreased binding 

affinity by ~3,500-fold (4.9 kcal/mol).  Comparison of ADP with AMPNP (P&-NH–P(), 

AMPCF2P (P&-CF2-P(), and AMPCP (P&-CH2-P() shows that imino, difluoromethylene, 

or methylene substitutions reduced binding potency by approximately 60-fold (2.5 

kcal/mol), 3-fold (0.7 kcal/mol), and 6-fold (1.1 kcal/mol), respectively. 

 

The above findings demonstrate that the &-( bridging oxygen does contribute to ligand 

recognition.  Nonetheless, these data pose several questions: Why is the methylene 

substitution more detrimental for APS binding, relative to the energetic penalty paid for 

analogs modification of ADP?  And, why does AMPNP bind more weakly to APR 

compared to AMPCF2P?  Replacing the bridging oxygen with a methylene group 

decreases the S/P–X–P bond angle, increases S/P–X bond length, increases the 

negative charge density on nonbridging oxygens, but makes the phosphate and sulfate 

groups less acidic (43, 44).  It is possible that methylene subsitution of ADP is less 

detrimental to binding because (i) the phosphonate moiety has more torsional freedom, 

allowing the nucleotide to adopt an alternative favorable binding mode, and/or (ii) 

conformational differences in the C-terminal and Arg-loop segments minimize 
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unfavorable contacts to the &-( bridging position of AMPCP.  NMR studies show that 

AMPPNP and PNP exist in solution primarily as the imido tautomers (39).  Thus, the 

observed decrease in binding affinity could be due to restricted rotation about the P&-

NH–P( bonds.   

 

3.3.3.3 "-Nucleotide Substitution.   

Next, we examined the effect of sulfur substitution at the "-nonbridging oxygen atom 

using the analogs, APS"S and ADP"S (Table 2).  (In principle, APS"S could be utilized 

as a substrate by APR.  However, under saturating conditions, no evidence for formation 

of the S-sulfocysteine intermediate has been obtained (data not shown).  At present, it is 

not understand why APR does not effectively reduce APS"S.  One possible explanation 

is that the "-sulfur substitution disrupts contact with residues that could be important for 

stabilizing charge development in the transition state, such as Arg171 and His259.)  

Comparison of APS and APS"S shows that sulfur substitution for oxygen decreased 

binding by more than 200-fold (3.2 kcal/mol).  However, compared to ADP, the binding 

potency of ADP"S increased by approximately 5-fold (1 kcal/mol).  The larger energetic 

penalty for "-sulfur substitution of APS could result from ligand-related differences in 

enzyme conformation, analogous to the scenario presented in the subsection above. !
 

3.3.4. Affinity of Product AMP Analogs 

3.3.4.1 "-Nucleotide Substitution   

To probe the molecular binding determinants of APR at the "-position in greater detail, 

we compared the Kd value for the product, AMP to values measured for related analogs 

(Table 3).  The respective effects of substitution at the &-oxygen by sulfur (AMPS) or 

amine (AMPN) are -0.3 and +1.8 kcal/mol, compared to AMP.  The modest increase in 
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binding energy that results from sulfur modification is similar to the effect observed with 

ADP"S.  The reduction in binding affinity of AMPN also parallels the decrease in 

observed for AMPPN.   

 

In PAPR, residues in the P-loop interact with the 3’-phosphate of PAP (14, 46).  

However, in APR the acidic residue, Asp66, interacts with amide groups of the P-loop 

and thus, appears to mimic the interaction of the negatively charged 3’-phosphate group.  

To investigate the role of the 3’-hydroxyl group in ligand discrimination (see also Section 

3.3.4.2 below) we determined the binding affinity for 3’-AMP, which reverses the position 

of the 5’-phosphate and 3’-hydroxyl groups (Table 3).  Switching the position of the 

phosphate moiety decreased binding by ~600-fold (3.8 kcal/mol) indicating that, while 

the analog binds poorly, the 3’-phosphate does not impact binding to APR, as compared 

to adenosine.  By contrast, addition of a 3’-phosphate group to AMP, as in PAP, 

decreased binding affinity by 3.0 kcal/mol.  The energetic penalty for 3’-phosphate in 

PAP, but not 3’-AMP, likely reflects additional binding interactions to the 5’-phosphate, 

which could decrease conformational freedom and increase unfavorable protein-ligand 

contacts. 

 
Table 3. Ligand dissociation constants for product AMP analogs with APR. 

Ligand Structure Kd 
[µM][a] 

!!G 
[kcal/mol][b] pKa 

5'-AMPS 

N

NN

N

NH2

O

OHOH

OP–O

O

S–

 

3.3 -0.30 5.3 (O) (34) 
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5'-AMPN 

N

NN

N

NH2

O

OHOH

OP

O–

O

H2N

 

100 1.8 ~3.0 (N), ~8.15 (O)[c]  

3',5'-ADP 

N

NN

N

NH2

O

OHO

OP

O–

O

–O

P O–O

O–  

770 3.0 2.49 (O), 8.61(O) (45) 

3'-AMP 

N

NN

N

NH2

O

OHO

HO

P O–O

O–  

3200 3.8 5.92 (O) (23) 

[a] For analogs in this table values of Ki were determined under single turnover conditions from the 
dependence of the observed rate constant at a given inhibitor concentration under conditions of 
subsaturating APS, such that Ki is equal to the Kd.  Each value reflects the average of at least two 
independent experiments, and the standard deviation was less than 15% of the value of the mean.  Kinetic 
data were nonlinear-least squares fit to a model of competitive inhibition.  [b] Energetic difference in affinity of 
AMP relative to inhibitor, ''G = -RTln(Kd

AMP/Kd
Analog).  [c] pKa estimate from value measured for 

phosphoramidic acid (41). 
 

3.3.4.2 Purine and Ribose Substitution   

Next, we analyzed the relative energetic contributions of individual purine and ribose 

substituents to the enzyme-binding interaction.  Owing to the relative difficulties 

traditionally associated with the preparation of ADP analogs and the weak binding of 

adenosine, we determined affinities for a series of compounds derived from the AMP 

scaffold.  As shown in Figure 3.6, energetic penalties for individual substitutions ranged 

from 0.6 to 4.7 kcal/mol.  First, we probed interactions between the N6 amine and N1 of 

adenine and Leu85 (Figure 3.3), the first residue in the conserved LDTG motif.  Loss of 

the N6 amine from AMP reduced the free energy of binding to APR by 1.8 kcal/mol.  

Replacing hydrogen atoms with methyl groups at the N6 position of adenine decreased 
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binding affinity by 35-fold (2.1 

kcal/mol) per substitution.  

Inverting the hydrogen bond 

donor and acceptor, as in 

inosine 5’-monophosphate, 

was also disfavoured (4.7 

kcal/mol), presumably due to 

electrostatic repulsion between 

the O6-keto and the Leu85 

carbonyl, and the N1 by the 

Leu85 amine.  Likewise, 

introduction of an N1 amine 

markedly reduced the affinity 

of this analog for APR (4.7 

kcal/mol).  In subsequent 

experiments, we determined 

the binding potency of AMP analogs with substitutions at the 2, 7 and 8-positions of the 

purine ring.  Methylation at N2 had a detrimental effect on binding (3.4 kcal/mol), likely 

due to steric clashes with the surrounding adenine-binding pocket (Figure 3.3).  The 

structure of APR bound to APS shows that C8-H group is directed toward the 5’-

phosphosulfate moiety (Figure 3.3).  Not surprisingly then, amine substitution at this 

position decreased the free energy of binding by 3.7 kcal/mol.  No contacts are formed 

between N7 and APR (Figure 3.3).  Consistent with this observation, replacing N7 with a 

carbon atom had a relatively minor effect on binding affinity (0.6 kcal/mol).  Finally, we 

investigated the influence of modification at the 2’ and 3’-hydroxyl groups of the ribose 

sugar.  2’-deoxy and methoxy group substitutions reduced the free energy of binding by 
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Figure 3.6.  Free energy of binding for purine and ribose-
modified analogs of product, AMP.  Numbers represent the 
energetic effect of a given substitution in kcal/mol, relative to 
AMP (##G = -RTln(Kd

Analog/Kd
AMP).  Positive ##G’s indicate a 

penalty for substitution.   
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a respective 4.0 and 3.6 kcal/mol, whereas 3’-deoxy substitution had only a modest 

effect on binding affinity (0.9 kcal/mol).  This indicates that hydrogen bonds between the 

2’-hydroxy group and Ser60 and Gly161 residues (Figure 3.3) play a vital role in 

substrate recognition.   

 

3.3.5 pH Dependence of Ligand Binding   

The pH dependence for ligand binding provides information about the relative affinities of 

the different nucleotide ionization states, and thus provides information about the active 

site environment.  Initially, we investigated the pH dependence for APS binding.  

However, the substantial increase in reaction rate at higher pH precludes measurement 

by conventional kinetic methods (data not shown).  As an alternative, we determined the 

affinities of APR for the substrate analog, ADP, and product, AMP, as a function of pH to 

investigate whether ionizations at " and !-positions are important for binding affinity 

(Figure 3.7).  The pH dependence for ADP binding is best fit by a pKa of 6.4 ± 0.2, which 

could reflect ionizations of the free enzyme and ligand (Figure 3.7A).  The most likely 

candidate for this ionization is the ligand, as the second pKa values of phosphate esters 

fall in this region (37).  If this were true, the pH profile would be expected to shift to lower 

pH for an ADP analog with lower pKa values.  To test this, we determined the pH 

dependence for ADP!S, which differs in its respective pKa value by approximately one 

pH unit (34).  The pH dependence for ADP!S binding is best fit by a pKa of 5.8 ± 0.2 

(Appendix 3.6.4A).  The dependence of the pKa upon the identity of the ligand suggests 

that deprotonation of the ligand is responsible for the increase in binding at higher pH.   
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The pH dependence for AMP 

binding is best to best fit by a 

pKa of 8.1 ± 0.1 (Figure 6.7B), 

which could reflect ionizations 

of the free enzyme and ligand, 

as described above.  The 

simplest model to explain the 

weaker binding of AMP below 

pH 8 is that the dianion binds 

more tightly than the 

monoanion.  However, the 

apparent pKa for AMP differs 

from the expected pKa of 6.8 

by more than one unit.  The 

discrepancy between the 

experimental data and the 

simplest model is most likely 

due to concurrent ionization of 

the enzyme that affects ligand 

binding, leading to shift in the 

apparent pKa of AMP.  One 

model that could account for 

this upward deviation is that an 

enzymatic group with a pKa of 

~6 contributes slightly (~5-fold) 

to AMP binding when protonated.  The most likely residue to exert such an effect on 
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Figure 3.7.  pH dependence for ADP (A) and AMP (B) binding.  
The association equilibrium constant, (Ka = 1/Kd) is plotted as a 
function of pH.  Values of Kd were determined by inhibition of 
APS reductase (pH 6.0-9.5).  Buffers were as follows: MES (pH 
6.0-6.5), BisTris (pH 6.5-7.5), TrisHCl (pH 7.5-9.5), CAPS (pH 
9-9.5).  See Experimental procedures for additional details.  (A) 
The pH dependence for ADP binding.  Nonlinear-least-squares 
fit of the data to a model for a single ionization gave pKa values 
of 6.4 ± 0.2.  (B) The pH dependence for AMP binding.  The 
dashed line represents the best fit of a model for a single 
ionization and yields a pKa of 7.9 ± 0.1.  
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ligand binding is His259, which interacts with the 5’-phosphate of PAP in the structure of 

S. cerevisiae PAPR (14).  Since a stimulatory effect is not observed for ADP binding, the 

C-terminal segment containing His259, and possibly the Arg-loop, may adopt different 

conformations depending on whether ADP or AMP is bound at the active site.  To further 

confirm that the apparent pKa measured for AMP depends upon the identity of the ligand, 

we measured the pH dependence for AMPS binding (Appendix 3.6.4B).  The resulting 

data are best fit by a pKa of 7.7 ± 0.1.  The downward shift in apparent pKa suggests that 

deprotonation of the ligand is responsible for the increase in binding at higher pH.  

 

The observed pH dependence for ADP and AMP binding indicates that the dianion binds 

more tightly to APR than the monoanion.  These data seemingly contradict our earlier 

comparison between ADP and ADP!F, whose net charges differ by one unit, but bind to 

APR with similar affinity (Table 3.2 and Figure 3.5).  Indeed, fluorine modification is often 

used to determine whether binding of mono- or dianionic phosphate is favored (40).  

However, hydroxyl and fluorine groups are distinguished by unique chemical properties.  

For example, the high electron density of fluorine gives rise to the ability to act as an 

acceptor in hydrogen bonds (47).  By contrast, the hydroxyl group is a strong dipole, with 

spatially separated partial positive and negative charges that can donate as well as 

accept hydrogen bonds (Figure 3.5).  Hence, the weaker binding observed for the 

monoanion may not reflect a loss of charge-charge interactions, but rather an energetic 

penalty that results from unfavorable charge-dipole interactions with the hydroxyl group. 

 

3.3.6 Effect of Mg2+on Ligand Affinity   

In the absence of metal ions, APS binds ~20-tighter to APR, compared to ADP and AMP.  

However, the cellular concentrations of these nucleotides are higher than APS (48) and 

thus, raise an important question: How does APS compete against binding of ADP or 
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AMP to the active site of APR in the cell?  For the majority of biochemical reactions 

using ATP and, related nucleotides, the active species is the Mg2+ complex rather than 

the free nucleotide (49).  To gain insight into ligand discrimination by APR in vivo, we 

measured the Kd values for APS, ADP and AMP in the presence of Mg2+.  These studies 

show that the Kd value of APS was independent of Mg2+ concentration (data not shown).  

This observation is consistent with weak formation constants of APS with Mg2+ (50) and 

the general observation that other sulfonucleotide binding enzymes, such sulfokinases 

and sulfotransferases also do not require Mg2+ as a cofactor (10).  However, Mg•ADP 

and Mg•AMP complexes bind approximately 5-6 times weaker to APR, as compared to 

the free nucleotide (Appendix 3.6.6).  The observed reduction in binding energy is most 

likely due to repelling interactions with multiple positively charged amino acids in the 

enzyme active site, such as Lys144, Arg242 and Arg245 (Figure 3.3).  Together, these 

findings indicate that APR discriminates against noncognate adenosine nucleotides 

through favourable interactions with the sulfate moiety of APS and by disfavouring the 

binding of Mg2+-nucleotide complexes. 

 

3.4 Conclusion: Implications for Rational Inhibitor Design   

Given that APR is essential for mycobacterial survival during persistent infection (51), 

small-molecule inhibitors of APR might be a source for new drugs to treat latent 

tuberculosis infection.  The increasing number of antibiotic-resistant strains suggests 

that the availability of such compounds could play an important role in treating the 

disease and minimizing the negative impact on human health.  By defining chemical 

groups that are essential for molecular recognition, the work described here sets the 

stage for the development of such drugs.  Figure 3.8 summarizes the network of 

interactions predicted to occur between APR active site residues and substrate, APS.  

The structural model was constructed by homology to ScPAPR (14) and systematically 



! 57!

tested in the present study, from the perspective of the ligand.  The total binding energy 

!
!
Figure 3.8.  APS reductase interactions with substrate, APS inferred from P. aeruginosa APS reductase 
(PDB deposition 2GOY) and S. cerevisiae PAPS reductase (PDB deposition 2OQ2) structures and functional 
data obtained in the present study.  (A) Summary of proposed active site contacts to APS.  (B) Summary of 
proposed active site contacts to APS, plotted in two dimensions.  A total of nine protein residues are shown 
in proximity around the ligand, with hydrogen bonding interactions shown where detected.  Hydrogen bonds 
are draw as dotted lines with arrows denoting the direction of the bond.  Interactions from substrate or the 
residue backbones of the enzyme are distinguished from the interactions with residue side chains by a solid 
dot at the end of the interaction line.  Active site residues between P. aeruginosa and M. tuberculosis APS 
reductase are largely conserved, with the exception of residues implicated in hydrophobic interactions (Ser62 
to Met67, Ser84 to Phe87, Phe61 to Asn66).  The corresponding numbers for residues conserved between 
M. tuberculosis and P. aeruginosa APS reductase are: Ser65 (Ser60), Leu88 (Leu85), Lys145 (Lys144), 
Gly162 (Gly161), Arg171 (Arg171), Arg237 (Arg242), Arg240 (Arg245) Cys249 (Cys256), and His252 
(His259).  See also Appendix 3.6.1. 
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of APS resulting from these collective interactions is 9.3 kcal/mol and our data indicate 

several features that are essential for optimized substrate and inhibitor binding.  The 

hydrophobic adenine-binding pocket, pyrimidine ring, 2’-hydroxyl and the "-position are 

the main determinants for strong target affinity (Figure 3.9).  The significant losses of 

binding affinity that are found to result from apparently minor structural modifications of 

ligands at these key positions have encouraging implications for inhibitor design and 

suggests that, in some cases, the potency of a weak inhibitor might be greatly enhanced 

by one or two simple modifications.  Our studies also suggest that small-molecules that 

target dynamic elements within the active site – particularly Arg171, Cys256 and His259 

– may lead to inhibitors with improved binding affinity.  Alternatively, molecules that trap 

an inactive, “open” conformational state of APR may also represent new opportunities 

for inhibitor design (16). 

 

3.5 Experimental Procedures 

3.5.1 Materials 

Inosine, adenosine, 2-aminoadenosine, 3’-deoxyadenosine, 2’-deoxyadenosine and 1-

methyladenosine were purchased from Sigma.  5’-Phosphoribose, 3’-phosphoadenosine, 
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Figure 3.9.  Pharmacophore model of substrate, APS.  Chemical structure of APS highlighting key hydrogen bond 
accepting (HBA) and donating (HBD) interactions, ionic interactions, and van der Waals interaction, based on 
functional data obtained in the present study. 
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3’5’-diphosphoadenosine, adenine and ribose were also purchased from Sigma.  7-

Deazaadenosine-5-O-monophosphate and purine riboside-5’-O-monophosphate were 

from Biology Life Science Institute.  Nucleosides and other analogs were of the highest 

purity available, typically # 98%.  Additional reagents and solvents were purchased from 

Sigma or other commercial sources and were used without further purification. 

 

3.5.2 General Synthetic Methods 

Reactions that were moisture sensitive or using anhydrous solvents were performed 

under a nitrogen or argon atmosphere.  Analytical thin layer chromatography (TLC) was 

performed on pre-coated silica plates obtained from Analtech.  Visualization was 

accomplished with UV light or by staining with ethanolic H2SO4 or ceric ammonium 

molybdate.  Nucleosides were purified by flash chromatography using Merck silica gel 

(60-200 mesh).  

 

3.5.3 Preparation of Nucleoside and Nucleotide Analogs   

N6, N6-Dimethyl-5’-phosphoadenosine was prepared from inosine by the procedure 

described by Veliz and Beal (52) and purified by flash chromatography developed in 

60:40 ethyl acetate:hexanes.  N6-Methyl-5’-phosphoadenosine was prepared via 

reaction of 6-bromoinosine with methylamine as previously described (53).  8-Amino-5’-

phosphoadenosine was prepared by selective bromination of adenosine at the C8 

position, exchange of bromine for azide, followed by reductive hydrogenation to afford 

the amine, as previously described (54).  2’-Methoxy-5’-phosphoadenosine was 

prepared from adenosine, by reaction with methyl iodide under alkaline conditions as 

previously described (55).  Adenosine 5’-O-!,",-imidodiphosphate (AMPNP) was 

synthesized by reaction of 5’-tosyladenosine (56) with imidodiphosphate salt (56, 57).  

Adenosine 5’-O-!,"-difluoromethylenediphosphate (ADP!F) was prepared by coupling 
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5’-tosyladenosine to difluoro substituted methylenediphosphonic acid, as previously 

reported (56, 58).  Adenosine 5’-O-thiophosphosulfate (APS"S) was synthesized by 

reacting pyridine-N-sulfonic acid with adenosine 5’-O-thiopshophate (AMPS), as 

previously described (59).   

 

3.5.4 Nucleoside Phosphorylation 

Nucleotide analogs were synthesized by chemical phosphorylation of the corresponding 

adenosine analog, followed by purification via reversed phase HPLC. Nucleosides were 

phosphorylated by reaction of nucleoside with POCl3 as described (60).  The nucleoside 

(0.15 mmole) was suspended in triethylphosphate at 0 °C (0.65 ml).  Water (1 equiv) 

was added to the reaction.  Subsequently, POCl3 (3-5 equivalents) were added over a 

period of 30 min with constant stirring.  The suspension was kept stirring for an 

additional 1.5 h, when the white suspension became a clear solution.  Water (1 ml) was 

added to hydrolyze the phosphoryl chloride and terminate the reaction.  The pH was 

neutralized to ~7 by dropwise addition of NH4OH. The reaction was passed over a C18 

SPE column (Fisher) to remove the majority of the triethylphosphate.  Nucleotides were 

purified by reversed phase HPLC employing isocratic separation in 20 mM ammonium 

acetate, pH 7 on a semi-preparative C18 column.  The physical and spectral data for 

these analogs (confirmed by 1H, 13C and 31P NMR and mass spectrometry) were 

consistent with those previously reported for these compounds.  The concentrations 

nucleotide analogs was determined by absorbance at 260 nm, assuming &260 = 15,300 

M-1 cm-1 (23). 

 

3.5.5 Enzyme purification.   

Purification of APR was carried out as previously described (61). 
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3.5.6 General Kinetic Methods.   

35S-labeled APS was synthesized and purified as previously described (61) with the 

inclusion of an additional anion exchange purification step on a 5-ml FFQ column (GE 

Healthcare) eluting with a linear gradient of ammonium bicarbonate, pH 8.0.  The 

reduction of APS to sulfite and AMP was measured in a 35S-based assay as previously 

described (62).  Reactions were quenched by the addition of charcoal solution (2% w/v) 

containing Na2SO3 (20 mM).  The suspension was vortexed, clarified by centrifugation 

and an aliquot of the supernatant containing the radiolabeled sulfite product was counted 

in scintillation fluid.  APR activity was measured in single turnover reactions, with trace 

amounts of 35S-APS (~1 nM) and excess protein.  These reactions can typically be 

followed to #90% completion (Appendix 3.6.5), and the reaction time courses fit well to 

eq 1, in which Frac P is the fraction product, k is the observed rate constant, and t is 

time: 

! 

Frac P =1" exp"kobs t  (1) 

 

Unless otherwise specified, the standard reactions conditions were 30 °C with 100 mM 

bis-tris propane at pH 7.5, DTT (5 mM), and thioredoxin (10 !M).  Kinetic data were 

measured in at least two independent experiments and the standard error was typically 

less than 15%. 

 

The affinity of APR (E) for APS was determined from the dependence of the observed 

rate constant for S-sulfocysteine formation on protein concentration according to eq 2: 

! 

Kobs =Kmax "
[E]

K1/ 2 + [E]
# 

$ 
% 

& 

' 
(   (2) 
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In this equation, kobs is the observed rate constant at a particular protein concentration, 

kmax is the maximal rate constant with saturating protein, and K1/2 is the protein 

concentration that provides half the maximal rate.  To ensure that the chemical step was 

rate-determining, reactions were performed in NaMes (10 mM) at pH 5.5 and control 

experiments demonstrate that the enzyme is stable under these assay conditions (data 

not shown).  Because the chemical step is rate-determining for S-sulfocysteine formation 

(kst < , kmax is equal to the rate constant for the reaction of the E•APS complex, and K1/2 is 

equal to the dissociation constant (Kd) of APS for APR.  The concentration of active 

protein was determined by direct titration with a high concentration of APS (i.e. [APS] >> 

Kd).  In theory, the binding affinity of APS could increase at physiological pH.  However, 

several lines of evidence argue against this possibility.  First, the pKa of the !-sulfate 

moiety is less than 2 and thus, at pH 5.5, the sulfonucleotide is completely ionized.  

Second, the pH dependence of ADP binding (see below) reflects the pKa of this 

nucleotide in solution.  Finally, the Kd measured at pH 5.5 is in line with the apparent Km 

value measured at pH 8.0 (22). 

 

The affinity of various ligands for APR was determined by inhibition methods.  The 

observed rate constant of the reaction: E + 35S-APS ' products (kobs) was determined at 

varying inhibitor (I) concentrations (Appendix 3.6.4B), and the [I]-dependence was fit to a 

simple model for competitive inhibition (eq 3).  In eq 3, ko is the rate of the reaction in the 

absence of analog, and Ki is the inhibition constant of the analog.  With subsaturating 

APR, Ki is equal to the equilibrium dissociation constant (Kd) of the ligand. 

! 

kobs = ko "
Ki

[I] +  Ki

# 

$ 
% 

& 

' 
(   (3) 

 

3.5.7 pH Dependence of Inhibitor Binding.   
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Values of Ki were determined by inhibition of APS reduction (pH 6-9) with [35S-APS] << 

K1/2, such that Ki is expected to be the Kd.  The following buffers were used for the 

indicated pH ranges: NaMES (6.0-7.0), Bis-Tris (6.5-7.5), Tris (7.5-9.0) and CAPS (9.0-

9.5).  Reactions were typically carried out with 100 mM buffer and the standard assays 

and conditions described above were used to monitor kcat/Km for reduction of 35S-APS in 

the presence and absence of inhibitor.  The rate constants at each pH value for multiple 

reactions were averaged, and the standard deviations were %15% of the average.  pKa 

values were determined using eq 4, derived from a model where the binding of the 

ligand depends on a single ionizable group.  

! 

Kd ,app =Kd
HA "

Ka

Ka +  [H+]
+Kd

A# "
[H+]

Ka +  [H+]
  (4) 

 

3.5.8 Energetic Contribution of Ligand Substituents to Binding.   

The energetic contributions of individual ligand substitutents to APR binding were 

expressed as ''G = -RTln(Kd1/ Kd2) in which R is the gas constant, T is the temperature 

(303 K), and Kd is the equilibrium dissociation constant.  A negative value of ''G 

indicates that a given substitutent contributes to ligand binding by APR. 

 

3.5.9 Electrostatic Surface Potentials.   

The electrostatic surface potential was calculated using PM3 semi-empirical molecular 

orbital calculations implemented in SPARTAN software (Wavefunction, Inc) for the fully 

optimized structure.  
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3.6 Appendices  

Figure 3.6.1 Structure based sequence alignment of APR from Pseudomonas 

aeruginosa, Mycobacterium tuberculosis and Saccharomyces cerevisiae.   

The ClustalW Multiple Sequence Alignment program was used.  Strictly conserved 

residues are outlined in red, red letters indicate conserved residues and conserved 

regions are boxed in blue.  Alignment picture was rendered with the server ESPript 2.2 

(http://espript.ibcp.fr). 

                                                                      Pseudomonas_aeruginosa    

Pseudomonas_aeruginosa        1                 SA   QD   MSQ      LASSL  KS Q   K A E       ISFS AE V...MLPFATIPATERN  AQH  PSP   PFDLPA     AD  P DIL A F HFGDELW    G  D 
Mycobacterium_tuberculosis    1                 AA   AE   ATA      TDETF  IG A   V G R       VVAS MA AMSGETTRLTEPQLREL  RGA  LDG   TDMLRW     GD  G GGG S H GWTTCNY    N  D 
Saccharomyces_cerevisiae      1                 KT   NN   VTQ      NEQLI  ET Q   A S V       TTAF LT L...............M  YHL  DII   EQLDHW     KL  P EII W I TFPHLFQ    G  G 

                                                                      Pseudomonas_aeruginosa    

Pseudomonas_aeruginosa       68 V  D   K             DT      T          Y            P     E           LV MA  LN       VFSL       E Y  IDQVRE       IAI VLS D  LL    KEK   S      W   RN...VK      GRLHP   RF      H G....   D     PR   PLV   GLF 
Mycobacterium_tuberculosis   71 V  D   K             DT      T          Y            P     E           LV LA  VR       VIFL       E I  RDAIES       VRV NVT E  VA    ELL   L      A   PG...VP      GYHFV   GT      V D....   L     HT   .QD   GKD 
Saccharomyces_cerevisiae     56 V  D   K             DT      T          Y            P     E           TI ML  LS       LLFI       Q L  KNEIEK       QTI VYK D  ES    ASK   F      S   EKYYMPE      LHHFP   TL      K YQPKN   H     GC   ADF   YGD 

                                                   TTT                Pseudomonas_aeruginosa    

Pseudomonas_aeruginosa      131              K  P                RR      R        D           K NPL   F R    E   IR IE L RKLAGV A AT Q    QS  T SQV VLEI GAF      LY F   SS  Y DGHG CCG       K      R W  G .  D  PG     A        STPEKP         M
Mycobacterium_tuberculosis  133              K  P                RR      R        D           K NPL   F R    E   LR VV L KTLRGY A VT L    DA  T ANA LVSF ETF      LV V   AA  A NPH. CCR       G      S W  G .  V  P.     P        K.....         W
Saccharomyces_cerevisiae    126              K  P                RR      R        D           K NPL   L E    K   LA VE A RAYKEL I AV T    SQ  A SQL IIEI ELN      IL I   IN  W KDDD YDY       H      H S  F G  K  GS     S        G.....         W

                                     TT        TT                     Pseudomonas_aeruginosa    

Pseudomonas_aeruginosa      200 T   V  YI       N L   GY SIG    T         R GRW     T  ECG H            EE       LEL Y    ER           R  L  Q   E     EEA      L AGNL       S   WG  RM   P  S H    I   CEPC  PV PN HE     WW    HK         ISKA..
Mycobacterium_tuberculosis  195 T   V  YI       N L   GY SIG    T         R GRW     T  ECG H            QD       NDV V    RE           A  A  A   S     LAK      L ASLE       D   QE  AD   L  P V    P   CAPC  KP EG DP     QG    ..         ......
Saccharomyces_cerevisiae    191 T   V  YI       N L   GY SIG    T         R GRW     T  ECG H            EQ       NNV Y    DL           Q  K  E   A     KAK      I EASR       F   KQ  DA   P  E L    R   DYHS  PV EG DE     KG    ..         FAQFLK

                                                                      Pseudomonas_aeruginosa    

Pseudomonas_aeruginosa    ...                                                                   
Mycobacterium_tuberculosis ...                                                                   
Saccharomyces_cerevisiae    259 QDA                                                                   

!1 !2 "1 

!3 "2 !4 "3 !5 

!6 !7 !8 "4 #1 "5 "6 

!9 #2 #3 #4 

 



! 65!

Figure 3.6.2 The apparent affinity, K1/2, of APR in single turnover experiment.   

The affinity of APR (E) for APS was determined from the dependence of the observed 

rate constant for S-sulfocysteine formation on protein concentration according to: 

 

! 

Kobs =Kmax "
[E]

K1/ 2 + [E]
# 

$ 
% 

& 

' 
(  

 

In this equation, kobs is the observed rate constant at a particular protein concentration, 

kmax is the maximal rate constant with saturating protein, and K1/2 is the protein 

concentration that provides half the maximal rate.  Because the chemical step is rate-

determining for S-sulfocysteine formation, kmax is equal to the rate constant for the 

reaction of the E•APS complex, and K1/2 is equal to the dissociation constant (Kd) of APS 

for APR.  The concentration of active protein was determined by direct titration with a 

high concentration of APS (i.e. [APS] >> Kd). 

Figure S2
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Figure 3.6.3 pH dependence for ADP!S (A) and AMPS (B) binding.   

The association equilibrium constant, (Ka = 1/Kd) is plotted as a function of pH.  Values 

of Kd were determined by inhibition of APS reduction (pH 6.0-9.5).  See methods for 

details.  (A) The pH dependence for ADPbS binding.  Nonlinear-least-squares fit of the 

data to a model for a single ionization gave pKa values of 5.8 ± 0.15.  The pKa of AD 

Implications for rational inhibition design PbS in solution is 5.2 (34).  (B) The pH 

dependence for AMPS binding.  The dashed line represents the best fit of a model for a 

single ionization and yields a pKa of 7.7 ± 0.15.  The pKa of AMPS in solution is 5.3 (34).   
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Figure 3.6.4 The radioactive assay for APR.   

(A) The reaction progress curve for APR.  Under the subsaturating concentration of 

substrate, the reaction is described by the apparent second-order rate constant, kcat/Km, 

which under the conditions of this assay is ~2 $ 106 M-1s-1.  (B) AMP inhibits APR activity.  

Nonlinear least squares fit to a model of competitive inhibition gives a Kd value of 5.4 !M.  

Figure S4
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Table 3.6.5!Ligand dissociation constants for nitrogen-containing ligands at pH 7.5 

and pH 9.0 with APR.[a]!

Ligand Structure 
Kd pH 

7.5 
[µM] 

Kd pH 
9.0 

[µM] 
!!G 

[kcal/mol][b] pKa 

5'-
AMPN 

N

NN

N
NH2

O

OHOH

OPH2N
O

Oœ

 

100 82 -0.16 3.0 (O), 8.15 (N)[c] 

AMPNP 
N

NN

N
NH2

O

OHOH

OP
H
N

Oœ

O
PœO
O

Oœ

 

257 110 -0.53 7.7 (O), 8.25 (N) 
(39) 

AMPPN 
N

NN

N
NH2

O

OHOH

OPO
Oœ

O
PH2N
O

Oœ

 

410 56.8 -1.2 3.0 (O), 8.15 (N)[c] 

[a] For ligands in this table values of Ki were determined at pH 7.5 or 9.0 under single 

turnover conditions from the dependence of the observed rate constant at a given 

inhibitor concentration under conditions of subsaturating APS, such that Ki is equal to 

the Kd.  Each value reflects the average of at least two independent experiments, and 

the standard deviation was less than 15% of the value of the mean.  Kinetic data were 

nonlinear-least squares fit to a model of competitive inhibition.  [b] Energetic difference in 

affinity of ligand at pH 9.0 relative to pH 7.5, ''G = -RTln(Kd
9.0/Kd

7.5).  [c] pKa estimate 

approximated from value for phosphoramidic acid (41). 
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Table 3.6.6 Ligand dissociation constants for AMP and ADP with APR in the 

presence and absence of MgCl2.[a]!

Ligand MgCl2 [mM] Kd ["M] !!G 
[kcal/mol][b] 

AMP 0 5.4 N/A 

 0.5 21 0.82 

 2.0 31 1.0 

ADP 0 4.3 N/A 

 0.5 7.3 0.32 

 2.0 20 0.93 

[a] For ligands in this table values of Ki were determined at pH 7.5 and the concentration 

of MgCl2 indicated under single turnover conditions from the dependence of the 

observed rate constant at a given inhibitor concentration under conditions of 

subsaturating APS, such that Ki is equal to the Kd.  Each value reflects the average of at 

least two independent experiments, and the standard deviation was less than 15% of the 

value of the mean.  Kinetic data were nonlinear-least squares fit to a model of 

competitive inhibition.  [b] Energetic difference in affinity for ligand with magnesium 

relative to without metal ion, ''G = -RTln(Kd
+MgCl2/Kd

–MgCl2). 

 

Acknowledgements 

This work was supported by the National Institutes of Health (GM087638 to K.S.C.).  



! 71!

 
3.7 Reference 

1. Schelle, M. W., and Bertozzi, C. R. (2006) Sulfate metabolism in mycobacteria, 
Chembiochem 7, 1516-1524. 

2. Michell, S. (1996) Biological interractions of sulfur compounds, In Biology of 
sulfur (Michell, S., Ed.), pp 20-41, CRC Press, New York. 

3. Kredich, N. M. (1996) Escherichia coli and Samonella: Cellular and Molecular 
Biology, In Biosynthesis of cysteine (Niedhardt, F. C., and Curtiss, R., Eds.) 2nd 
ed., pp 514-527, ASM Press, Washington, D. C. . 

4. Giles, N. M., Watts, A. B., Giles, G. I., Fry, F. H., Littlechild, J. A., and Jacob, C. 
(2003) Metal and redox modulation of cysteine protein function, Chem. Biol. 10, 
677-693. 

5. Williams, S. J., Senaratne, R. H., Mougous, J. D., Riley, L. W., and Bertozzi, C. R. 
(2002) 5'-adenosinephosphosulfate lies at a metabolic branch point in 
mycobacteria, J. Biol. Chem. 277, 32606-32615. 

6. Kopriva, S., Buchert, T., Fritz, G., Suter, M., Benda, R., Schunemann, V., 
Koprivova, A., Schurmann, P., Trautwein, A. X., Kroneck, P. M., and Brunold, C. 
(2002) The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate 
reductase separates organisms utilizing adenosine 5'-phosphosulfate and 
phosphoadenosine 5'-phosphosulfate for sulfate assimilation, J. Biol. Chem. 277, 
21786-21791. 

7. Bhave, D. P., Muse, W. B., 3rd, and Carroll, K. S. (2007) Drug targets in 
mycobacterial sulfur metabolism, Infect. Disord. Drug Targets 7, 140-158. 

8. Mdluli, K., and Spigelman, M. (2006) Novel targets for tuberculosis drug 
discovery, Curr. Opin. Pharmacol. 6, 459-467. 

9. Senaratne, R. H., De Silva, A. D., Williams, S. J., Mougous, J. D., Reader, J. R., 
Zhang, T., Chan, S., Sidders, B., Lee, D. H., Chan, J., Bertozzi, C. R., and Riley, 
L. W. (2006) 5'-Adenosinephosphosulphate reductase (CysH) protects 
Mycobacterium tuberculosis against free radicals during chronic infection phase 
in mice, Mol. Microbiol. 59, 1744-1753. 

10. Carroll, K. S., Gao, H., Chen, H., Leary, J. A., and Bertozzi, C. R. (2005) 
Investigation of the iron-sulfur cluster in Mycobacterium tuberculosis APS 
reductase: implications for substrate binding and catalysis, Biochemistry 44, 
14647-14657. 

11. Carroll, K. S., Gao, H., Chen, H., Stout, C. D., Leary, J. A., and Bertozzi, C. R. 
(2005) A conserved mechanism for sulfonucleotide reduction, PLoS Biol. 3, e250. 

12. Chartron, J., Carroll, K. S., Shiau, C., Gao, H., Leary, J. A., Bertozzi, C. R., and 
Stout, C. D. (2006) Substrate recognition, protein dynamics, and iron-sulfur 
cluster in Pseudomonas aeruginosa adenosine 5'-phosphosulfate reductase, J. 
Mol. Biol. 364, 152-169. 

13. Chapman, E., Best, M. D., Hanson, S. R., and Wong, C. H. (2004) 
Sulfotransferases: structure, mechanism, biological activity, inhibition, and 
synthetic utility, Angew. Chem. Int. Ed. Engl. 43, 3526-3548. 



! 72!

14. Yu, Z., Lemongello, D., Segel, I. H., and Fisher, A. J. (2008) Crystal structure of 
Saccharomyces cerevisiae 3'-phosphoadenosine-5'-phosphosulfate reductase 
complexed with adenosine 3',5'-bisphosphate, Biochemistry 47, 12777-12786. 

15. Young, D. B., Gideon, H. P., and Wilkinson, R. J. (2009) Eliminating latent 
tuberculosis, Trends Microbiol. 17, 183-188. 

16. Lee, G. M., and Craik, C. S. (2009) Trapping moving targets with small molecules, 
Science 324, 213-215. 

17. Liu, Y., and Gray, N. S. (2006) Rational design of inhibitors that bind to inactive 
kinase conformations, Nat. Chem. Biol. 2, 358-364. 

18. Palomino, J. C., Ramos, D. F., and da Silva, P. A. (2009) New anti-tuberculosis 
drugs: strategies, sources and new molecules, Curr. Med. Chem. 16, 1898-1904. 

19. Hugonnet, J. E., Tremblay, L. W., Boshoff, H. I., Barry, C. E., 3rd, and Blanchard, 
J. S. (2009) Meropenem-clavulanate is effective against extensively drug-
resistant Mycobacterium tuberculosis, Science 323, 1215-1218. 

20. Nguyen, L., and Pieters, J. (2009) Mycobacterial subversion of chemotherapeutic 
reagents and host defense tactics: challenges in tuberculosis drug development, 
Annu. Rev. Pharmacol. Toxicol. 49, 427-453. 

21. Cosconati, S., Hong, J. A., Novellino, E., Carroll, K. S., Goodsell, D. S., and 
Olson, A. J. (2008) Structure-based virtual screening and biological evaluation of 
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase inhibitors, J. 
Med. Chem. 51, 6627-6630. 

22. Sun, M., and Leyh, T. S. (2006) Channeling in sulfate activating complexes, 
Biochemistry 45, 11304-11311. 

23. Dawson, R. M. C., Elliott, D. C., Elliott, W. H., and Jones, K. M. (1989) Data for 
Biochemical Research, 3 ed., Oxford University Press, Oxford. 

24. Chargaff, E., and Davidson, J. N. (1955) The Nucleic Acids I, Academic Press 
New York. 

25. Kumler, W. D., and Eiler, J. J. (1943) The acid strength of mono and diesters of 
phosphoric acid. The n-alkyl esters from methyl to butyl, the esters of biological 
importance, and the natural guanidine phosphoric acids, J. Am. Chem. Soc. 65, 
2355-2361. 

26. Isbell, H. S. (1973) Carbohydrate in Solution, American Chemical Society, 
Wachington, DC. 

27. Chang, R. (2005) Acids and bases, In General Chemistry 8 ed., McGraw-Hill.Inc, 
New York. 

28. Hirota, K., Inoue, Y., and Chujo, R. (1984) Effect of the base stacking association 
on the phosphate ionization of 2'-deoxyguanosine 5'-monophosphate, Bull. Chem. 
Soc. Jpn. 57, 247-250. 

29. Falany, C. N. (1997) Enzymology of human cytosolic sulfotransferases, Faseb. J. 
11, 206-216. 

30. Dzingeleski, G. D., and Wolfenden, R. (1993) Hypersensitivity of an enzyme 
reaction to solvent water, Biochemistry 32, 9143-9147. 



! 73!

31. Carlow, D., and Wolfenden, R. (1998) Substrate connectivity effects in the 
transition state for cytidine deaminase, Biochemistry 37, 11873-11878. 

32. Nikolic-Hughes, I., Rees, D. C., and Herschlag, D. (2004) Do electrostatic 
interactions with positively charged active site groups tighten the transition state 
for enzymatic phosphoryl transfer?, J. Am. Chem. Soc. 126, 11814-11819. 

33. (1994-1995) CRC Handbook of Chemistry and Physics, 75 ed., CRC Press, 
Boca Raton, FL. 

34. Jaffe, E. K., and Cohn, M. (1978) 31P nuclear magnetic resonance spectra of the 
thiophosphate analogues of adenine nucleotides; effects of pH and Mg2+ binding, 
Biochemistry 17, 652-657. 

35. Frey, P. A., and Sammons, R. D. (1985) Bond order and charge localization in 
nucleoside phosphorothioates, Science 228, 541-545. 

36. Satishchandran, C., Myers, C. B., and Markham, G. D. (1992) Adenosine-5'-O-
(2-fluorodiphosphate) (ADP-!-F), an analog of adenosine-5'-phosphosulfate, 
Bioorganic Chem. 20, 107-114. 

37. Cullis, P. M., Maxwell, A., and Weiner, D. P. (1992) Energy coupling in DNA 
gyrase: a thermodynamic limit to the extent of DNA supercoiling, Biochemistry 31, 
9642-9646. 

38. Vogel, H. J., and Bridger, W. A. (1982) Phosphorus-31 nuclear magnetic 
resonance studies of the methylene and fluoro analogues of adenine nucleotides. 
Effects of pH and magnesium ion binding, Biochemistry 21, 394-401. 

39. Reynolds, M. A., Gerlt, J. A., Demou, P. C., Oppenheimer, N. J., and Kenyon, G. 
L. (1983) N-15 and O-17 NMR-Studies of the Proton Binding-Sites in 
Imidodiphosphate, Tetraethyl Imidodiphosphate, and Adenylyl Imidodiphosphate, 
J. Am. Chem. Soc. 105, 6475-6481. 

40. Rye, C. S., and Baell, J. B. (2005) Phosphate isosteres in medicinal chemistry, 
Curr. Med. Chem. 12, 3127-3141. 

41. Chanley, J. D., and Feageson, E. (1963) A study of hydrolysis of 
phosphoramides .2. Solvolysis of phosphoramidic acid and comparison with 
phosphate esters, J. Am. Chem. Soc. 85, 1181-1190. 

42. Gregoret, L. M., Rader, S. D., Fletterick, R. J., and Cohen, F. E. (1991) Hydrogen 
bonds involving sulfur atoms in proteins, Proteins 9, 99-107. 

43. Yount, R. G., Babcock, D., Ballantyne, W., and Ojala, D. (1971) Adenylyl 
imidodiphosphate, an adenosine triphosphate analog containing a P--N--P 
linkage, Biochemistry 10, 2484-2489. 

44. Larsen, M., Willett, R., and Yount, R. G. (1969) Imidodiphosphate and 
pyrophosphate: possible biological significance of similar structures, Science 166, 
1510-1511. 

45. Singer, B. (1989) Nucleosides, nucleotides, and nucleic acids, In Practical 
Handbook of Biochemistry and Molecular Biology (Fasman, G. D., Ed.) 2 ed., pp 
392-393, CRC Press, Cleveland. 

46. Savage, H., Montoya, G., Svensson, C., Schwenn, J. D., and Sinning, I. (1997) 
Crystal structure of phosphoadenylyl sulphate (PAPS) reductase: a new family of 
adenine nucleotide alpha hydrolases, Structure 5, 895-906. 



! 74!

47. O'Hagan, D. (2008) Understanding organofluorine chemistry. An introduction to 
the C-F bond, Chem. Soc. Rev. 37, 308-319. 

48. Harris, D. A. (1996) Cell chemistry and physiology: part II, In Principles of 
Medical Biology (Bittar, E. E., and Bittar, N., Eds.), p 27, Elsevier, Conneticut. 

49. Storer, A. C., and Cornish-Bowden, A. (1976) Concentration of MgATP2- and 
other ions in solution. Calculation of the true concentrations of species present in 
mixtures of associating ions, Biochem. J. 159, 1-5. 

50. Yount, R. G., Simchuck, S., Yu, I., and Kottke, M. (1966) Adenosine-5'-
sulfatopyrophosphate, an analogue of adenosine triphosphate. I. Preparation, 
properties, and mode of cleavage by snake venoms, Arch. Biochem. Biophys. 
113, 288-295. 

51. Senaratne, R. H., De Silva, A. D., Williams, S. J., Mougous, J. D., Reader, J. R., 
Zhang, T., Chan, S., Sidders, B., Lee, D. H., Chan, J., Bertozzi, C. R., and Riley, 
L. W. (2006) 5'-Adenosinephosphosulphate reductase (CysH) protects 
Mycobacterium tuberculosis against free radicals during chronic infection phase 
in mice, Mol. Microbiol. 59, 1744-1753. 

52. Veliz, E. A., and Beal, P. A. (2000) C6 substitution of inosine using 
hexamethylphosphorous triamide in conjunction with carbon tetrahalide or N-
halosuccinimide, Tet. Lett. 41, 1695-1697. 

53. Veliz, E. A., and Beal, P. A. (2001) 6-bromopurine nucleosides as reagents for 
nucleoside analogue synthesis, J. Org. Chem. 66, 8592-8598. 

54. Townsend, L. B., and Tipson, R. S. (1978) Nucleic Acid Chemistry:Improved and 
New Synthetic Procedures, Methods, and Techniques, Vol. II, Wiley, New York. 

55. Yano, J., Kan, L. S., and Ts'o, P. O. P. (1980) A simple method for the 
preparation of adenosine with methyl iodide in anhydrous alkaline medium, 
Biochim. Biophys. Acta. 629, 178-183. 

56. Davisson, V. J., Davis, D. R., Dixit, V. M., and Poulter, C. D. (1987) Synthesis of 
Nucleotide 5'-Diphosphates from 5'-O-Tosyl Nucleosides, J. Org. Chem. 52, 
1794-1801. 

57. Ma, Q., Babbitt, P. C., and Kenyon, G. L. (1988) Adenosine 5'-[",!-
imido]triphosphate, a substrate for T7 RNA-polymerase and rabbit muscle 
creatine-kinase, J. Am. Chem. Soc. 110, 4060-4061. 

58. Mohamady, S., and Jakeman, D. L. (2005) An improved method for the synthesis 
of nucleoside triphosphate analogues, J. Org. Chem. 70, 10588-10591. 

59. Zhang, H. P., and Leyh, T. S. (1999) alpha-Thio-APS: A stereomechanistic probe 
of activated sulfate synthesis, J. Am. Chem. Soc. 121, 8692-8697. 

60. Yoshikawa, M., Kato, T., and Takenishi, T. (1967) A novel method for 
phosphorylation of nucleosides to 5'-nucleotides, Tet. Lett. 50, 5065-5068. 

61. Carroll, K. S., Gao, H., Chen, H., Stout, C. D., Leary, J. A., and Bertozzi, C. R. 
(2005) A conserved mechanism for sulfonucleotide reduction, PLoS Biol. 3, e250. 

62. Gao, H., Leary, J., Carroll, K. S., Bertozzi, C. R., and Chen, H. Y. (2007) 
Noncovalent complexes of APS reductase from M-tuberculosis: Delineating a 
mechanistic model using ESI-FTICR MS, J. Am. Soc. Mass Spectrom. 18, 167-
178. 



! 75!

 

Chapter 4 

Deciphering the role of histidine 252 in mycobacterial adenosine 5’-

phosphosulfate reductase catalysis 

 

This work has been published as “Deciphering the role of histidine 252 in Mycobacterial 

APS reductase catalysis.” J. Biol. Chem. 2011, 286, 28567-28573.  I prepared all 

materials used in these experiments and conducted all subsequent kinetic and 

thermodynamic analyses.  

 

4.1 Abstract 

Mycobacterium tuberculosis adenosine 5’-phosphosulfate reductase (APR) catalyzes the 

first committed step in sulfate reduction for the biosynthesis of cysteine and is essential 

for survival in the latent phase of TB infection.  The reaction catalyzed by APR involves 

the nucleophilic attack by a conserved cysteine residue, Cys249 on adenosine 5$-

phosphosulfate (APS), resulting in a covalent S-sulfocysteine intermediate that is 

reduced in subsequent steps by thioredoxin to yield the sulfite product.  Cys249 resides 

on a mobile active site lid at the C-terminus, within a ECG(L/I)H motif.  Owing to its strict 

conservation among sulfonucleotide reductases and its proximity to the active site 

cysteine, it has been suggested that His252 plays a key role in APR catalysis, 

specifically as a general base to deprotonate Cys249.  Using site-directed mutagenesis 

we have changed His252 to an alanine residue and analyzed the effect of this mutation 

on the kinetic parameters, pH-rate profile and ionization of Cys249 of APR.  These 
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findings were further supported by isothermal titration calorimetry (ITC) to provide a 

thermodynamic profile of ligand-protein interactions.  Interestingly, our data demonstrate 

that His252 does not perturb the pKa of Cys249 or play a direct role in rate-limiting 

chemical steps of the reaction.  Rather, we show that His252 enhances substrate affinity 

via interaction with the &-phosphate and the endocyclic ribose oxygen.  From an applied 

standpoint, this study suggests that small-molecules targeting dynamic elements within 

the active site, particularly His252, may lead to inhibitors with improved binding affinity. 

 

4.2 Introduction 

Tuberculosis (TB) remains a serious threat to public health, and new drugs are needed 

to simply and shorten treatment, and fight multi-drug resistant TB.  Toward this end, the 

inhibition of cysteine biosynthesis and, by extension, associated downstream 

metabolites represents fertile ground for the development of novel antibiotics (1, 2).  In 

mycobacteria, the enzyme adenosine 5$-phosphosulfate reductase (APR) catalyzes the 

committed step in the biosynthesis of cysteine (Scheme 4.1) and is a validated target to 

develop new anti-TB agents, particularly for the treatment of latent infection (3, 4).  APR 

lacks a human homolog, but is highly conserved across a wide range of bacterial 

species (5), raising the possibility that APR may also represent an attractive target for 

the discovery or rational 

design of broad-spectrum 

antibiotics.  Moreover, APR 

is also present in plants 

and is recognized as a 

potential target for 

herbicide development (6-

8).  

!
 
Scheme 4.1.  Reaction catalyzed by APR.  
!
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The importance of APR for microbial and plant survival has motivated investigations into 

its catalytic mechanism (9-12).  These studies provide support for the two-step 

mechanism shown in Scheme 4.2, which involves nucleophilic attack by conserved 

Cys2491 on adenosine 5$-phosphosulfate (APS) leading to the formation of a covalent 

enzyme S-sulfocysteine intermediate, E-Cys-S%–SO3
– bound to adenosine 5$-

monophosphate (AMP).  The sulfite product is then released via thiol-disulfide exchange 

with free thioredoxin in bacterial APR or via the action of the C-terminal thioredoxin-like 

protein domain in plant APR.  In addition, APR contains a [4Fe-4S] cluster (iron-sulfur 

cluster) 2  that is 

essential for catalytic 

activity (6, 13-15).  

However, it is not 

involved in redox 

chemistry and its role 

remains an active 

area of investigation 

(16, 17).  

 

In 2006, the crystal structure of Pseudomonas aeruginosa APR (PaAPR) was solved in 

complex with APS, providing direct insight into substrate recognition (18). PaAPR and 

Mycobacterium tuberculosis APR (MtAPR) are homologous proteins sharing 27% 

identity and 41% similarity (Appendix 4.6.1), particularly in residues that line the active 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Residue numbers in this manuscript correspond to the APR sequence from M. tuberculosis (Figure 4.6, 
Appendix 4.6.1). 
2 The only known exception is the enzyme from Physcomitrella Patens, which lacks the [4Fe-4S] cluster, but 
retains APR activity (16). 

!
 
Scheme 4.2.  Proposed mechanism of sulfonucleotide reduction. 



! 78!

site (84% identity and 92% similarity).  PaAPR and MtAPR have comparable reaction 

kinetics and ligand binding affinity (10, 19).  Likewise, the structure of PaAPR has been 

successfully employed in virtual ligand screening to identify low-micromolar chemical 

inhibitors of MtAPR (20). 

 

The structure of PaAPR shows that APS binds in a deep active site cavity with the 

phosphosulfate extending toward the protein surface (Figure 4.1A).  Conserved and 

semiconserved residues participate in four main-chain hydrogen bonds with adenine and 

the ribose O2! hydroxyl.  Interaction between the phosphosulfate and APR occurs via 

strictly conserved residues Lys145, Arg237, and Arg240.  The phosphosulfate is also 

positioned opposite the [4Fe-4S] cluster3.  The C-terminal 18 residues, carrying the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 APS is not in direct contact with the [4Fe-4S] cluster; the sulfate oxygens are 7 Å from the closest iron 
atom and 6 Å from the closest cysteine sulfur atom. 
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Figure 4.1.  (A) Structure of PaAPR in complex with substrate, APS (PDB 2GOY).  The C-terminal segment carries 
the catalytically essential cysteine is disordered.  (B) Structure superposition of PaAPR bound to APS (gold, PDB 
2GOY) and ScPAPR bound to PAP (orange, PDB 2OQ2).  Overall structures show the proteins adopt a Rossman-
like nucleotide binding fold with a central six stranded b-sheet and the substrates (APS and PAP) bind to active site 
in similar manner.  Shown is the [4Fe-4S] cluster present only in PaAPR but absent in ScPAPR.  The ScPAPR 
structure (orange) shows the complete intact C-terminal tail containing the strictly conserved active site ECG(I/L)H 
motif bound over the active site pocket. (C) A homology model of MtAPR was constructed using the Swiss Model 
server. The models were based upon ScPAPR (PDB 2OQ2) and the multiple sequence alignment from the 
sequence analysis step. The C-terminal segment of MtAPR shows direct interactions between the substrate (APS) 
and His252. The His252 is also 4.2 Å (magenta) from the Sg of Cys249 for plausible role in catalysis.!
!
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catalytically essential Cys249, were disordered in the structure of PaAPR.  The lack of 

electron density information, coupled with limited proteolysis studies, led to the proposal 

that Cys249 resides on a flexible “lid peptide” that closes over the active site pocket 

upon ligand binding (18).   

 

This hypothesis was later confirmed when Fisher and colleagues reported the crystal 

structure of the related enzyme, 3$-phosphoadenosine-5$-phosphosulfate (PAPS) 

reductase from Saccharomyces cerevisiae (ScPAPR) in complex with adenosine 3$,5$-

diphosphate (PAP) (21).  Although APS and PAPS differ by a 3$-phosphate and PAPR 

lacks the [4Fe-4S] cluster4, structural and functional studies show that the two-step 

mechanism for sulfite production in Scheme 2 is conserved among this family of 

enzymes, known collectively as sulfonucleotide reductases (SRs) (10, 18, 22, 23).  SRs 

share ~25% overall amino acid identity, including two highly conserved domains, the 

sulfonucleotide-binding pocket and C-terminal segment containing the K(R/T)ECG(L/I)H 

catalytic motif (Appendix 4.6.1; see also Ref. 18 for an alignment of 38 APR and 34 

PAPR amino acid sequences).  Likewise, SRs have virtually identical three-dimensional 

structures (superposition of 140 C& backbone atoms from PaAPR and ScPAPR yields 

an r.m.s. deviation of 0.98 Å; Figure 4.1B).  Significantly, the crystal structure of ScPAPR 

shows the flexible C-terminal segment folded over the active site pocket.  In this 

conformation, a strictly conserved histidine residue His252 within the K(R/T)ECG(L/I)H 

motif is in proximity to the active site ligand and Cys249 (Figure 4.1B).  These three-

dimensional relationships are recapitulated in the homology model of MtAPR, generated 

on the basis of sequence alignment and ScPAPR template structures (r.m.s. deviation of 

0.06 Å for C& backbone atoms; Figure 4.1C). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 The only known exception is the enzyme from Bacillus subtilis, which possess an [4Fe-4S] cluster, but can 
utilize both substrates (13). 
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On the basis of conservation and juxtaposition to the catalytic cysteine, it was recently 

proposed that His252 acts as a general base in SRs to deprotonate the Cys249 

nucleophile (21).  However, this hypothesis has not yet been directly tested and thus, the 

precise function of this active site residue remains unknown.  Herein, we have used site-

directed mutagenesis to change His252 in MtAPR to an alanine residue and analyzed 

the effect of this mutation on the kinetic parameters, pH-rate profile and ionization of 

Cys249 of APR.  These studies were further supported by isothermal titration calorimetry 

(ITC) to provide a thermodynamic profile of ligand-protein interactions.  Collectively, 

these data indicate that His252 does not perturb the pKa of Cys249 or play a direct role 

during chemical steps that lead to S-sulfocysteine formation.  Instead, we show that 

interactions with His252 increase substrate affinity, which might be used in further 

inhibitor design to trap the enzyme in a closed, inactive conformation. 

 

4.3 Results and Discussion 

4.3.1 Kinetic characterization of WT and His252Ala MtAPR 

To advance our understanding of the molecular recognition and catalytic mechanism of 

MtAPR, we used site-directed mutagenesis to change His252 to an alanine residue, and 

characterized single turnover kinetic parameters for wild-type and His252Ala.  Mutation 

of His252 to Ala reduced kcat/Km by 230-fold (Table 4.1), indicating that this residue 

contributes to catalytic efficiency by enhancing substrate affinity and/or stabilizing the 

catalytic transition state.  To gain further insight into the role of the conserved active-site 

histidine residue we compared the saturating single-turnover rate constant (kmax), the Km 

and the substrate dissociation constant (Kd) for wild-type and His252Ala MtAPR (Table 

1; see also Appendix 4.6.2-5 for representative data).  The results show that alanine 

substitution of His252 decreased the value of kmax by only two-fold, whereas Km and Kd 
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were both weakened by more than two orders of magnitude.  Additional control 

experiments showed that there was no difference in iron incorporation or [4Fe-4S] 

cluster stability between the wild-type and variant MtAPR (Appendix 4.6.6), consistent 

with the approximate distance (~10 Å) between His252 and the metallocenter. 

 

Table 4.1: Single-Turnover Rate and Equilibrium Constants for Wild-Type and 
His252Ala MtAPRa  

Enzyme 
kcat/Km 

(M-1 min-1)b 
(kcat/Km)rel 

kmax 

(min-1)c 
(kmax)rel 

Km
 

()M)d 
(Km)rel

 
Kd 

()M)e 
(Kd)rel 

Wild-type 3.0 x 106 230 2.8 2.0 0.2f >250 0.2 450 

H252A 1.5 x 104 (1) 1.4 (1) >50g (1) 90 (1) 

 
aMeasurements are the average of #3 independent determinations and the S.D. was %15% of the value in all 
cases.  Unless otherwise stated, reaction conditions are 100 mM Bis-Tris propane, pH 6.5, 5 mM 
dithiothreitol, and 10 )M thioredoxin at 30 °C (see Materials and Methods).  Values in parenthesis are 
references values (i.e., other values normalized to this rate).  bkcat/Km values were measured as described in 
Materials and Methods.  cSingle-turnover rate constants with saturating wild-type or His252Ala MtAPR.  dKm 
values for S-sulfocysteine formation were measured in the absence of thioredoxin by varying the 
concentration of wild-type or His252Ala MtAPR (see Materials and Methods).  eDissociation constants were 
measured using ultrafiltration at 30 °C (100 mM Bis-Tris propane, pH 6.5) as described in Materials and 
Methods.  fFrom Ref. (27).  gIn Bis-Tris propane at pH 7.5.  Due to technical limitations of the TLC-based 
assay only a lower limit could be obtained.  
 

4.3.2 pH dependence on catalysis of WT and His252Ala MtAPR 

To examine the role of His252 in greater detail and provide additional insight into the 

overall catalytic mechanism of APR, we measured the pH dependence of kcat/Km for the 

wild-type enzyme and the His252Ala mutant.  Figure 4.2 illustrates that the acidic limb 

for reaction of APS with wild-type or His252Ala has a first-order dependence on the 

proton concentration, consistent with a single inactivating protonation at acidic pH.  For 

kcat/Km, these kinetic pKa values could represent ionization of either free enzyme or 

substrate.  The data described below support the model with ionization of the Cys249 

nucleophile.   
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The acidic limb of the pH dependence 

for the APR-catalyzed reduction of 

APS is best fit by a pKa of 6.1 ± 0.1 

and 6.3 ± 0.1 for wild-type and 

His252Ala MtAPR, respectively 

(Figure 4.2).  The most likely 

candidate for this ionization is the 

enzyme – specifically of catalytic 

cysteine – since the substrate pKa falls 

significantly below this region.  To test 

this proposal, we determined the pKa 

of Cys249 by measuring the change in 

absorbance of ultraviolet (UV) light at 

240 nm resulting from formation of the thiolate anion, as previously described (23, 28, 

29).  For these studies, we utilized Cys59Ala MtAPR, which has identical kinetic 

properties to the native enzyme (10, 15), but eliminates a non-conserved cysteine that 

could confound the analysis.  

 

The pH dependence of the molar extinction coefficient of Cys59Ala MtAPR at 240 (&240) 

displays a transition with a pKa of 6.2 ± 0.1 (Figure 4.3A).  The change in &240 is most 

likely due to ionization of Cys249, as indicated by the absence of a pH-dependent 

transition for Cys59Ala Cys249Ala MtAPR (Figure 4.3A).  The pH dependence of the 

molar extinction coefficient of Cys59Ala His252Ala MtAPR at 240 (&240) shows a 

transition with a pKa of 6.0 ± 0.1 (Figure 4.3B).  For comparison, we evaluated the pKa of 
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Figure 4.2.  pH dependence for kcat/Km with APS 
substrate.  The dashed lines represent the best fit with 
a single rate-controlling ionization (eq 5).  (A) The pH 
dependence for reduction of APS yields a pKa value of 
6.1 ± 0.1 for wild-type (*) and 6.3 ± 0.1 for His252Ala 
(+) MtAPR.  The average of three independent 
determinations is shown, and the error bars indicate 
the standard deviations. 
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Cys249 within a synthetic peptide derived from the last 10 C-terminal residues of MtAPR 

(Appendix 4.6.5B).  The pKa of the thiol in the peptide segment was determined as 8.3, 

consistent with the pKa value of free cysteine solution (30).  Interestingly, our 

experiments indicate that thiolate formation at Cys249 correlates with decrease in signal 

at &240, as opposed to the increase that is normally observed.  Therefore, the ionization 

constant of Cys249 was verified by an independent method using the thiol-specific 

reagent, monobromobimane (mBBr) (24).  In this assay, the pKa value of Cys249 for 

Cys59Ala MtAPR was determined to be 6.0 ± 0.1 (Appendix 4.6.5A), which is within 

error of the UV-based method.  The similarity of the kinetic pKa and the pKa value for 

Cys249 deprotonation strongly suggest that the observed inflection in kcat/Km 

corresponds to the ionization of the active site cysteine to form the thiolate anion.   

 

To further investigate the molecular recognition properties for wild-type and His252Ala 

MtAPR, we compared the pH dependence for binding of the nucleotide product, AMP.  

As shown in Figure 4.4, the logarithm of the association constant (Ka = 1/Kd) shows a 

first-order dependence on the proton concentration.  The acidic limb for wild-type MtAPR 

binding to AMP has a pKa of 8.1 ± 0.1, as previously reported (19).  The pKa values 

observed in product affinity could reflect ionizations in either, or both, the ligand and the 

enzyme, analogous to the pH dependence for kcat/Km discussed above.  A likely 

explanation for the weaker binding of AMP below pH 8 is that the dianion binds more 

tightly than the monoanion.  However, the apparent pKa differs from the pKa of AMP in 

solution (~6.8) by more than one unit.  The discrepancy between the experimental data 

and this model is most likely due to concurrent ionization of the enzyme that affects 

ligand binding, leading to shift in the apparent pKa of AMP.  One model that could 

account for this upward deviation is that an enzymatic group with a pKa of ~6 contributes 

slightly (~5-fold) to AMP binding when protonated.  Given its proximity to the &-
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phosphate, the most likely residue to 

exert such an effect on ligand binding 

is His252.  Consistent with this 

proposal, the acidic limb for His252Ala 

MtAPR binding to AMP displays a pKa 

of 6.4 ± 0.1 (Figure 4.4).  An additional 

observation from these data is that 

binding of the nucleotide product to 

His252Ala is weaker at physiological 

pH and above, as compared to wild-

type MtAPR.  For example, at pH 7.5 

wild-type and His252Ala MtAPR bind 

to AMP with respective Kd values of 

5.4 ± 0.2 !M and 50.5 ± 3 !M. 

 

4.3.3 Binding interaction between 

His252 and substrate 

The crystal structure of scPAPR (21) 

and the model of MtAPR shown in 

Figure 4.1 indicate that the side chain 

of His252 is positioned within 

hydrogen bonding distance of the &-

phosphate and the endocyclic ribose 

oxygen of the active site ligand.  

Previous studies have demonstrated 
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Figure 4.3.  Determination of the pKa for MtAPR 
Cys249.  The pKa of Cys249 was determined by 
monitoring the change in the extinction coefficient at 
240 nm (#&240) as a function of pH, which monitors 
formation of the thiolate anion.  (A) Cys59Ala MtAPR 
(*) exhibits a #&240 transition corresponding to a pKa of 
6.2 ± 0.1, where mean data and associated standard 
deviations for triplicate measurements are shown.  The 
dashed line shows the nonlinear regression fit of eq 9 
to the measured data.  Cys59Ala Cys249Ala MtAPR 
(+) shows no transition, indicating that the ionization of 
Cys249 is solely responsible for the observed 
transition in APR.  (B) Cys59Ala His252Ala MtAPR 
exhibits a #&240 transition corresponding to a pKa of 6.0 
± 0.1, where mean data and associated standard 
deviations for triplicate measurements are shown.  The 
dashed line shows the nonlinear regression fit of eq 9 
to the measured data. 
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the relative importance of the &-

phosphate group for AMP binding to 

MtAPR (~3 kcal/mol) (19); however, 

the contribution of oxygen O4 in the 

ribose sugar has not been 

investigated.  To examine the 

importance of the hydrogen bond 

contact between His252 and the 

endocyclic ribose oxygen, we 

synthesized 5’-phosphoaristeromycin, 

which replaces O4 in AMP with a 

methylene unit.  Binding studies 

indicate that at pH 7.5 this analog 

binds to MtAPR with a Kd value of 25 

± 2.5 !M (Figure 4.5) or 5-fold more 

weakly than AMP.  These data 

indicate that the interaction of His252 

with the ribose O4 makes a modest 

contribution to ligand recognition (~1 

kcal/mol).  

 

To substantiate the role of His252 in 

substrate binding we performed 

additional biophysical experiments.  In 

initial experiments, we attempted to 
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Figure 4.4.  The pH dependence for AMP binding.  
The association equilibrium constant (Ka = 1/Kd) is 
plotted as a function of pH.  Values of Ki were 
determined by inhibition of APS reduction with [S] < 
KM, such that Ki is expected to be Kd.  The average of 
three independent determinations is shown, and the 
error bars indicate the standard deviations.  Nonlinear-
least-squares fit of the data to a model for a single 
ionization (eq 6) gave pKa values of 8.1 ± 0.1 for wild-
type MtAPR (*) and 6.4 ± 0.1 for His252Ala MtAPR 
(+).  

!"#$%&'(

)

)*+

)*,

)*-

)*.

) +)) ,)) -)) .))

(/012345236%"47&%389:";'<=>?

!
''
''
''
<8
";
''
?'
''
''

3
@
4

0+

!
!
Figure 4.5.  Binding of 5’-phosphoaristeromycin to 
MtAPR.  The average of three independent 
determinations is shown, and the error bars indicate 
the standard deviations.  Nonlinear-least-squares fit of 
the data to a model for simple competitive inhibition 
(eq 4) gave a dissociation constant (Kd) of 25 !M. 
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monitor the spectral perturbation of non-catalytic 2'(3')-O-(N-Methylanthraniloyl) (MANT) 

and N6-etheno substrate analogs.  However, the affinity of these ligands for wild-type 

MtAPR was extremely weak (Kd >1 mM) and associated signal changes were unreliably 

small (not shown).  As an alternative approach, we employed isothermal titration 

calorimetry (ITC) to measure affinities for wild-type and His252Ala MtAPR for substrate, 

APS and product, AMP (Appendix 4.6.7).  ITC offers a direct and complete 

characterization of the thermodynamic interaction whereby the ligand is titrated into the 

protein (31, 32).  This analysis indicates that APS binds to wild-type MtAPR with a Kd of 

0.6 ± 0.3 !M as compared to 42 ± 6.2 !M for His252Ala.  Furthermore, AMP binds to 

wild-type MtAPR with a Kd of 7.5 ± 1.4 !M compared to 67 ± 8.4 !M for His252Ala.  

These data are in excellent agreement with the other kinetic and thermodynamic values 

obtained from our radiolabeled biochemical assay (i.e., Table 4.1 and Figure 4.4).   

 

4.4 Conclusion 

Collectively, the data presented herein provide strong support for the existence of a 

direct interaction between His252 in the C-terminus with ligands including APS and 

nucleotide product, AMP.  The flexible C-terminal segment must fold over the active site 

upon substrate binding to bring Cys249 in proximity to the (-sulfate group.  In this 

context, our studies do not support a role for His252 as a general base that deprotonates 

the catalytic cysteine since: i) wild-type and His252Ala exhibit similar pKa values for both 

kcat/Km and Cys249 deprotonation, and ii) alanine substitution of His252 has an 

extremely modest affect on kmax.  Rather, our data show that His252 plays an important 

role in ligand binding and likely facilitates docking of the C-terminal residues.  These 

studies also reveal that the pKa value of the cysteine nucleophile is perturbed downward 

by more than two units (i.e., 6.2) relative to the value we obtained for this residue within 

a peptide (i.e., 8.3).  The low pKa value of Cys249 in MtAPR is consistent with the 
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essential catalytic function of this residue.  Positively charged amino acids in the active 

site, including Lys145, Arg242, and Arg245, are likely candidates for stabilization of the 

thiolate.   

 

A critical motivating factor for these studies is that APR is essential for mycobacterial 

survival during persistent infection (4).  This key discovery has led to the proposal that 

small-molecule inhibitors of APR might be a source for new drugs to treat latent 

tuberculosis infection (1, 33).  The increasing number of antibiotic-resistant strains 

suggests that the availability of such compounds could play an important role in treating 

the disease and minimizing the impact on human health.  Defining active site residues 

that are essential for molecular recognition in MtAPR sets the stage for the development 

of such drugs.  Toward this end, targeting dynamic elements within the active site, 

particularly Cys249 and His252, may increase the potency of APR inhibitors. 

 

4.5 Experimental Procedures 

4.5.1 Materials 

All chemicals, unless stated otherwise, were purchased from the Sigma Chemical 

Company and were of the highest purity available.  The C-terminal peptide 

(AKTECGLHASW) was synthesized by solid-phase peptide synthesis using Fmoc-based 

chemistry and HPLC purified to >98%.  The molecular weight of the peptide was 

confirmed by mass spectrometry (1202.4 Da).  Aristeromycin was synthesized from 

dimethyl-3-cyclopentene-1,1-dicarboxylate as previously described (24).  5'-

Phosphoaristeromycin was prepared by chemical phosphorylation of aristeromycin using 

established methods (25).  The physical and spectral data for 5’-phosphoaristeromycin 

were consistent with values reported in the literature for this nucleotide (25). 
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4.5.2. Mutagenesis and Protein Expression 

The construction of the expression vector encoding wild-type MtAPR cloned into the 

vector pET24b (Novagen) has been previously described (26).  The His252Ala mutant 

plasmid was prepared using Quik-change site-directed mutagenesis (Stratagene).  Wild-

type and mutant MtAPR were overexpressed and purified to homogeneity according to 

published procedures using Ni-affinity and gel filtration column chromatography (17). 

 

4.5.3 General APS Reductase Assay 

APR assays were performed as described previously (17, 19).  All assays were 

conducted at 30 °C.  Unless otherwise indicated, the reaction conditions included 100 

mM Bis-Tris propane (pH 6.5), supplemented with 5 mM dithiothreitol (DTT), and 10 )M 

Escherichia coli thioredoxin.  Production of 35SO3
2- from 35S-APS was monitored using 

charcoal-based separation and scintillation counting as previously reported (19).  For 

each time point, the fraction product was calculated according to eq 1. 

F = P/(P+S) (1) 

 

where F is the fraction converted to product, P is product, and S is intact substrate].  

Reactions progress curves were analyzed using Kalediagraph (Synergy Software), as 

described below. 

 

4.5.4 Single-Turnover Kinetics 

Single-turnover APR assays were performed in the standard reaction buffer, as 

described above.  To ensure single-turnover reactions, the concentration enzyme was 

kept in excess over the concentration of 35S-APS (typically 2.5 nM).  Reactions were 

followed to completion (# 5 half-lives) except for very slow reactions.  The reaction 

progress curve was plotted as the fraction of product versus time and was fit by a single 



! 89!

exponential using Kaleidagraph (eq 2) where F is the fraction product, A is the fraction of 

substrate converted to product at completion, kobs the observed rate constant, and t time. 

F = A[1 – exp(–kobst)] (2) 

kobs = kmax[E]/(K1/2 + [E]) (3) 

 

Under single-turnover conditions, the concentration dependence of the enzyme is 

hyperbolic (eq 3).  The maximal observed rate constant (kmax) corresponds to the rate of 

reaction at a saturating enzyme concentration, and the K1/2 value indicates the 

concentration at which half of the substrate is bound.  For K1/2 determinations, the APR 

concentration was varied over a wide range and reactions were carried out in the 

absence of thioredoxin, as described previously (19).  Although we refer to the K1/2 value 

for maximal activity as Km, the value could differ from the Km value for multiple turnover 

because the latter can be affected by product release.  At least two or more enzyme 

concentrations were averaged to obtain the kcat/Km value (kcat/Km = kobs/[E] for conditions 

in which [E] << K1/2).  Under these conditions, the observed rate constant is linearly 

dependent upon enzyme concentration, and independent of substrate across a 

concentration range of at least 4-fold, which demonstrated that substrate was not 

saturating.  The reported kcat/Km values are for single-turnover conditions, but are 

equivalent to steady-state kcat/Km (17). 

 

The single-turnover rate constant (kmax) was determined at saturating concentration of 

APR, and this was confirmed by the observation of the same rate constant at two 

different concentrations of APR.  Under these conditions, the observed rate constant is 

equal to the maximal single-turnover rate constant (kobs = kmax) and monitors steps after 

binding up to and including the chemical step (eq 3).  The inhibition constant (Ki) was 

measured for various ligands by inhibiting the APR reaction under kcat/Km conditions with 
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varying concentration of inhibitor (I).  The data were fit to a simple model for competitive 

inhibition (eq 4) and, with subsaturating APR, the Ki is equal to the equilibrium 

dissociation constant (Kd) of the inhibitor. 

(kcat/Km)obs = (kcat/Km)/(1+ [I]/Ki) (4) 

 

4.5.5 pH Dependence for kcat/Km 

The following buffers were used for the indicated pH range: NaMES (6.0-7.0), Bis-Tris 

Propane (6.5-7.5), Tris-HCl (7.5-9.0), and NaCAPS (9.0-9.5).  Reactions were carried 

out with 100 mM buffer.  The rate constants obtained at each pH value for multiple 

reactions were averaged, and the standard deviations were % 25% of the average.  The 

data was fit to a model for a single rate-controlling ionization as described by eq 5.   

(kcat/Km) = (kcat/Km)max/(1+ [H+]/Ka) (5) 

 

4.5.6 pH Dependence of Inhibitor Binding 

The following buffers were used for the indicated pH range: NaMES (6.0-7.0), Bis-Tris 

Propane (6.5-7.5), Tris-HCl (7.5-9.0), and NaCAPS (9.0-9.5).  Reactions were carried 

out with 100 mM buffer.  The conditions described above were used to monitor kcat/Km 

for reduction of 35S-APS in the presence and absence of inhibitor.  The rate constants at 

each pH value for multiple reactions were averaged, and the standard deviations were % 

25% of the average.  Ka values were determined using eq 6, derived from a model where 

the binding of the ligand depends on a single ionizable group.   

Kd
app = Kd/(1+ [H+]/Ka) (6) 

 

4.5.7 Determination of Substrate Affinity 

The Kd for 35S-APS from wild-type and His252Ala MtAPR-ligand complexes was 

measured using an ultrafiltration binding assay reported by Hernick and Fierke (27).  In 
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brief, the concentration of substrate was kept low (i.e., below the Kd) and constant, and 

the concentration of the enzyme was varied from 0 to 50 !M (wild-type) or 0 to 400 !M 

(His252Ala).  The enzyme was added to reaction buffer containing 100 mM Bis-Tris 

Propane, pH 6.5 with 5 nM APS at 30 °C and then transferred into ultrafiltration devices 

(Microcon 30 kDa cutoff, Millipore), and the free and bound ligand separated by 

centrifuging the samples at 3,000 rpm for 2.5 min.  Equal volumes of the filtrate and 

retentate were removed and quantified using scintillation counting.  The ratio of EL/Ltotal 

was determined as a function of [E]total, and the Kd value was obtained by fitting eq 7 to 

these data.  
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4.5.8 Spectrophotometric pKa Determination of Cys249 

Buffer exchange of APR was performed using a PD-10 column (GE Healthcare) that had 

been pre-equilibrated with degassed water.  Ionization of Cys249 was monitored by 

absorption of the thiolate anion at 240 nm (23) using a Cary 50 UV-visible spectrometer 

(Varian) and a 1 cm path length quartz cuvette.  APR was diluted to a final concentration 

of 20 !M in 10 mM MES buffers of various pH (5.0-8.0), and the absorption of the 

sample was monitored at 240 and 280 nm after correction for the absorption of the MES 

buffer alone.  The extinction coefficient at 240 nm (&240) was calculated using the ratio of 

absorbance at 280 and 240 nm (eq 8). 

&240  = &280 x (A240/A280) (8) 

 

A240/A280 is the ratio of the absorbance of the protein at 240 and 280 nm, &280 is the 

known extinction coefficient of APR at 280 nm (36815 M-1cm-1), and &240 is the extinction 
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coefficient at 240 nm (23).  The data were plotted as a function of pH, and the pKa was 

determined by fitting a version of the Henderson–Hasselbalch equation to the data (eq 

9). 

&240
O (pH) = &240

SH + (&240
S– – &240

SH)/(1 + 10pKa-pH) (9) 

 

4.5.9 Isothermal Titration Calorimetry (ITC) 

Wild-type and His252Ala MtAPR were exchanged into 100 mM BisTris propane buffer, 

pH 7.5.  ITC experiments were performed using an iTC200 calorimeter from MicroCal 

(Northhampton, MA).  Experiments were carried out by titrating wild-type MtAPR (50 !M) 

with APS or AMP (250 !M) and His252Ala MtAPR (50 !M) with APS or AMP (1 mM) at 

30 °C.  A total of 20 injections were performed with a spacing of 180 s and a reference 

power of 5 !cal/s.  Control experiments to determine the heat of dilution for each 

injection were performed by injecting the same volume of APS or AMP into the sample 

cell containing only buffer.  The heat of dilution generated by the compounds was 

subtracted, and the binding isotherms were plotted and fit (eq 10) to a single-site binding 

model using Origin ITC software.  

! 

q = " #$H # [E]# Ka[L]i
n

1+ Ka[L]i
n %

Ka[L]i%1
n

1+ Ka[L]i%1
n

& 

' 
( 

) 

* 
+  (10) 

 

where q is the directly measured amount of heat released during each injection, v is the 

volume of the reaction, Li is the ligand concentration at the ith injection.  The Kd was 

calculated as the inverse of the Ka. 
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4.6 Appendices  

Figure 4.6.1 Sequence alignment of APR from Pseudomonas aeruginosa, 

Mycobacterium tuberculosis and PAPR from Saccharomyces cerevisiae 

Sequence alignment of APR from Pseudomonas aeruginosa, Mycobacterium 

tuberculosis and PAPR from Saccharomyces cerevisiae generated by ClustalW (1) and 

rendered by ESPript 2.2 (http://espript.ibcp.fr).  Strictly conserved residues are boxed in 

red, similar residues are represented by red letters indicate conserved residues, and 

conserved regions are boxed in blue.  Residues flanking the active site are boxed in 

green.  
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Figure 4.6.2 Wild-type MtAPR (A) and His252Ala MtAPR (B) binding to substrate 

(APS) as measured by ultrafiltration assay.   

The lines indicate the best fit of eq 7 to the data and yield 0.2 mM for wild-type APR (pH 

6.5) and 90 mM for His252Ala APR (pH 6.5). 
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Figure 4.6.3 The C-terminal residue histidine 252 does not play a role in chemical 

catalysis.  

(A) The kmax for wild-type MtAPR measured under single turnover conditions was 2.8 

min-1.  (B) The kmax for the His252Ala variant measured under single turnover condition 

was 1.4 min-1.  
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Figure 4.6.4 The Km for S-sulfocysteine formation for wild-type (A) and His252Ala 

MtAPR (B) measured under single turnover conditions.   

Representative data are shown for reactions that were conducted in duplicate, and the 

error bars indicated the standard deviation (in many cases, the standard deviation is 

smaller than the symbol).  
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Figure 4.6.5  Determination of the pKa value for the Cys249 nucleophile in MtAPR.   

(A) The pKa of Cys249 as determined by monobromobimane (mBBr) labeling.  The 

fluorescent reaction product of mBBr and Cys249 was measured by incubating 

Cys59Ala MtAPR (200 )M) with mBBr (0.2 mM).  Nonlinear-least-squares fit of the data 

to eq 9 gave a pKa value of 6.0 ± 0.1.  (B) The pKa of cysteine in the C-terminal peptide 

was determined to be 8.3 ± 0.1. 
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Figure 4.6.6 Relative stability of the [4Fe-4S] cluster in wild-type (! ) and 

His252Ala MtAPR (" ). 

Proteins (10 )M) were stored under aerobic conditions at 4 ˚C for 2 days.  Enzyme 

activity and molar extinction coefficient (see inset for representative data at 0 (red 

circles) and 48 hours (black circles) were monitored during this period.  
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Figure 4.6.7 ITC binding curve for APS binding to wild-type (A) or His252Ala 

MtAPR (B), and AMP binding to wild-type (C) or His252Ala MtAPR (D).   

Representative plots from ITC experiments are illustrated with raw data in the upper 

panel and fitting curves in the lower panel.  The dissociation constant, Kd values 

calculated by curve fitting (eq 10) are: 0.6 )M (A), 42 )M (B), 7.5 )M (C), and 67 )M (D).   
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Chapter 5 

Spectroscopic studies on the [4Fe-4S] cluster in adenosine 5’-phosphosulfate 

reductase from Mycobacterium tuberculosis  

 

This work has been published as “Spectroscopic studies on the [4Fe-4S] cluster in 

adenosine 5’-phosphosulfate reductase from Mycobacterium tuberculosis.” J. Biol. Chem. 

2011, 286, 1216-1226.  My contributions to this work include generation of Lys144Ala 

APR by site-directed mutagenesis and measuring APR kinetic parameters. 

 

5.1 Abstract 

Mycobacterium tuberculosis adenosine 5$-phosphosulfate (APS) reductase (MtAPR) is 

an iron-sulfur protein and a validated target to develop new antitubercular agents, 

particularly for the treatment of latent infection.  The enzyme harbors a [4Fe-4S]2+ cluster 

that is coordinated by four cysteinyl ligands, two of which are adjacent in the amino acid 

sequence.  The iron-sulfur cluster is essential for catalysis; however, the precise role of 

the [4Fe-4S] cluster in APR remains unknown.  Progress in this area has been 

hampered by the failure to generate a paramagnetic state of the [4Fe-4S] cluster that 

can be studied by electron paramagnetic resonance spectroscopy.  Herein, we 

overcome this limitation and report the EPR spectra of MtAPR in the [4Fe-4S]+ state.  

The EPR signal is rhombic and consists of two overlapping S = , species.  Substrate 

binding to MtAPR led to a marked increase in intensity and resolution of the EPR signal, 

and to minor shifts in principle g values that were not observed among a panel of 

substrate analogs, including adenosine 5$-diphosphate.  Using site-directed mutagenesis, 
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in conjunction with kinetic and EPR studies, we have also identified an essential role for 

the active site residue, Lys144 whose side chain interacts with both the iron-sulfur 

cluster and the sulfate group of APS.  The implications of these findings are discussed 

with respect to the role of the iron-sulfur cluster in the catalytic mechanism of APR. 

 

5.2 Introduction 

In bacteria and plants, activation of inorganic sulfur is required for de novo biosynthesis 

of cysteine.  To this end, the metabolic assimilation of sulfate from the environment 

proceeds via adenosine 5$-phosphosulfate (APS) or 3$-phosphoadenosine-5$-

phosphosulfate (PAPS) (1).  These intermediates are produced by the action of ATP 

sulfurylase (EC 2.7.7.4), which condenses sulfate and ATP to form APS (2, 3), and by 

APS kinase (EC 2.7.1.25), which produces PAPS from ATP and APS (6).   

 

APS and PAPS are 

reduced by enzymes in the 

reductive branch of the 

sulfate assimilation 

pathway, producing sulfite 

and adenosine 5$-

monophosphate (AMP) or 

adenosine 3$,5$-

diphosphate (PAP) (see 

Scheme 5.1).  These 

enzymes can be 

subdivided into two groups 
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according to their substrate preference, the APS reductases (APR) and the PAPS 

reductases (PAPR) (EC 1.8.99.4).  Functional and structural studies have been used to 

investigate the chemical reaction mechanism of APR and PAPR enzymes (1, 7-10).  The 

mechanism involves nucleophilic attack by the active site cysteine on the sulfur atom of 

APS or PAPS to form an enzyme S-sulfocysteine intermediate (E-Cys-S%-SO3
–), which is 

cleaved by thiol-disulfide exchange with thioredoxin or glutaredoxin (Figure 5.1).  The 

sulfite product is then reduced to sulfide by sulfite reductase (EC 1.8.7.1) and utilized to 

synthesize cysteine and other essential sulfur-containing biomolecules (12).  In the 

human pathogen Mycobacterium tuberculosis, APR is a validated target against the 

latent phase of infection (13). 

 

Only a 3$-phosphate group distinguishes PAPS from APS.  Accordingly, APR and PAPR 

have nearly identical three-dimensional structures (1.6–Å rms deviation of backbone 

atoms) and share ~20% sequence identity, including the active site motif, ECG and the 

sulfonucleotide binding pocket (4, 7, 14).  However, a key difference between the two 

enzymes is that APR contains two conserved cysteine motifs, CXXC and CC.  These 

four additional cysteine residues coordinate a [4Fe-4S] cluster, which is essential for 

catalytic activity (1, 7, 15).  The only known exception is Physcomitrella patens 

sulfonucleotide reductase, PpAPR-B that lacks the cysteine pairs required to bind the 

cofactor, but can utilize both APS and PAPS as substrates (16).  However, PpAPR-B 

has to pay a significant penalty for the absence of the [4Fe-4S] cluster as evidenced by 

second-order rate constants (kcat/Km) of 3,520 and 37 M-1s-1 with APS and PAPS, 

respectively.  
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The 2.7 Å crystal structure of Pseudomonas aeruginosa APR (PaAPR) bound to 

substrate provides valuable insights into the arrangement of active site residues that are 

conserved among APRs5 (7).  The iron-sulfur cluster is coordinated by Cys228 and 

Cys231, positioned at the tip of a !-loop, along with the tandem pair, Cys139 and 

Cys140, within an "-helix (Figure 5.2A).  Coordination by sequential cysteines is highly 

unusual for [4Fe-4S] clusters and has been characterized in only one other crystal 

structure – the NuoB subunit of respiratory complex I (17).  There are four charged 

and/or polar NH(((S or OH(((S hydrogen bonds involving side-chains of absolutely 

conserved residues (Figure 5.2B and C).  In particular, the CysCys motif interacts with a 

pair of basic residues, Arg143 and Lys144.  Other interactions with the iron-sulfur cluster 

involve Thr87 and Trp246.  In the active site the phosphosulfate group of APS is 

positioned opposite the [4Fe-4S] cluster and, while no atoms intervene, the sulfate 

moiety is not in direct contact with the [4Fe-4S] cluster.  

 

Given the unusual CysCys dyad coordination and its requirement for catalytic activity, 

defining the function and properties of the iron-sulfur cluster in APR has generated 

considerable interest (1, 7, 9, 18, 19).  Most proteins containing [4Fe-4S] clusters are 

redox-active (20-23), however, the [4Fe-4S]2+ cluster in APR does not undergo redox 

changes during the catalytic cycle (1).  A purely structural role also appears unlikely, in 

light of biophysical data obtained on the apo form of APR (8, 15, 18) and the fact that 

APR and PAPR share a common protein fold (4, 7, 14).  Unfortunately, progress in this 

area has been hampered by the failure to generate a paramagnetic state of the [4Fe-4S] 

cluster that can be studied by electron paramagnetic resonance (EPR) spectroscopy and 

related methods (18, 19, 24).  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 Residue numbers in the text correspond to the PaAPR amino acid sequence.  The corresponding residue 
numbers in MtAPR can be identified from the sequence alignment depicted in Appendix 5.7.1. 
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Herein, we report the EPR 

spectra of MtAPR in the [4Fe-

4S]+ state.  The EPR spectrum 

of MtAPR displays a rhombic 

signal, but is complex and 

consists of at least two 

overlapping S = , species.  

Mössbauer studies of the 

native and reduced forms 

confirm the presence of a 

[4Fe-4S]2+/1+ cluster.  APS 

binding to MtAPR is 

accompanied by marked 

sharpening of the EPR signal 

and an increase in intensity, 

which is not observed among a 

panel of substrate analogs, 

including adenosine 5$-

diphosphate (ADP).  In 

addition, kinetic and EPR 

investigation of the Lys144Ala 

variant of MtAPR demonstrate 

a key function for this residue 

in catalysis and as a link 
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Figure 5.2.  The environment of the [4Fe-4S] cluster in PaAPR.  
A. The structure of PaAPR bound to substrate APS.  The [4Fe-
4S] cluster is ligated by four cysteine residues at positions 139, 
140, 228 and 231.  PDB code: 2GOY.  B. Four conserved 
residues participate in charged or polar NH-S or OH-S 
hydrogen bonds to inorganic S or cysteine S% atoms; Thr87, 
Arg143, Lys144 and Trp246 (yellow dashes).  PDB code: 
2GOY, chain A.  C. Conserved basic residues Lys144, Arg242 
and Arg245 in the active site interact with the phosphate and 
sulfate groups of APS (yellow dashes).  Residues that also 
interact with APS, but are not depicted in this Figure 6.are 
Arg171 and His259; these residues interact with the "-
phosphate group.  The shortest distance between a sulfate 
oxygen atom and a cysteine sulfur atom coordinated to the 
[4Fe-4S] cluster is 6.0 Å.  PDB code: 2GOY, chain B. 
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between APS and the iron-sulfur cluster.  These data, together with known functional 

and structural information, directly implicate the iron-sulfur cluster in the catalytic 

mechanism of APS.  

 

5.3. Results 

5.3.1 Purification and Spectroscopic Characterization of the [4Fe-4S]2+ Cluster in 

MtAPR. 

We have previously reported conditions for the purification of MtAPR (1).  However, 

yields from these preparations were low owing to the large quantity of MtAPR present in 

the insoluble protein fraction.  In order to improve the yield and stability of purified 

MtAPR, we co-expressed the MtAPR gene with the gene products of the isc operon 

required for iron-sulfur cluster biosynthesis in A. vinelandii (25).  Under these conditions 

the yield of MtAPR was typically 7 mg/L of culture, which represents an improvement 

over ~1 mg/L obtained when MtAPR is over-expressed in the absence of the isc proteins.  

The specific activity of the purified enzyme was 5 µM min-1 mg protein-1 with thioredoxin 

and DTT as reductants.  The UV-Vis absorbance spectrum of MtAPR showed a 

maximum in the visible range at 410 nm that is consistent with the presence of bound Fe 

(Appendix 5.7.2).  Analysis of Fe content by inductively coupled plasma resonance 

spectrometry for MtAPR indicated that each mole of protein contained 3.5 ± 0.4 mol of 

Fe, which is indicative of 4 Fe atoms in the cluster.  The intensity of the 410 nm peak 

was unaffected on addition of sodium dithionite (data not shown), but increased slightly 

on addition of APS (Appendix 5.7.2).  These results are analogous to those found for 

PaAPR (8).  The minor increase in absorption at 410 nm could reflect substrate-

dependent conformational changes within the C-terminal region and a concomitant 

alteration in cluster environment. 
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The 4.2-K/53-mT Mössbauer spectrum of 

MtAPR confirmed the presence of a [4Fe-

4S]2+ cluster (Figure 5.3).  The majority of the 

Fe ()90%) gives rise to a quadrupole doublet 

with parameters typical of [4Fe-4S]2+ clusters: 

isomer shift (*) of 0.45 mm/s and quadrupole 

splitting parameter (#EQ) of 1.09 mm/s.  The 

appearance of a small peak at )0.6 mm/s is 

indicative of a small amount of [2Fe-2S]2+ 

clusters (* = 0.25 mm/s, #EQ = 0.55 mm/s, 

)7% of total intensity).  The [2Fe-2S]2+ cluster 

form of MtAPR has also been observed by ESI-FT-ICR MS (15) and is most likely 

caused by aerobic degradation, analogous to other [4Fe-4S]2+ proteins.  On addition of 

APS, the Mössbauer spectrum of MtAPR was nearly identical to that in the absence of 

substrate (Appendix 5.7.3) and can be simulated as a superposition of two quadrupole 

doublets representing the [4Fe-4S]2+ clusters (* = 0.45 mm/s, 'EQ = 1.12 mm/s, 90%) 

and [2Fe-2S]2+ clusters (* = 0.25 mm/s, 'EQ = 0.55 mm/s, 10%).  

 

5.3.2 Photoreduction of the [4Fe-4S]2+ cluster in MtAPR.   

As-isolated APR from higher plants and P. aeruginosa exhibits weak isotropic signals at 

g = 2.01 attributed to a small proportion of [3Fe-4S]+ cluster and at g = 4.3 from high-

spin Fe(III) (18, 19, 24).  When MtAPR was prepared according to the previous method 

(15), similar resonances were observed (data not shown).  However, such EPR signals 

were not present in samples of MtAPR produced via the improved co-expression system.  

Earlier attempts to generate new EPR signals in assimilatory APR from higher plants 
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Figure 5.3.  4.2-K/53-mT Mössbauer spectra 
of 1 mM MtAPR.  Experimental spectra are 
shown as vertical bars.  The solid line is a 
quadrupole doublet simulation with the 
parameters quoted in the text.  The weak 
peak at )0.6 mm/s is indicative of a small 
amount of [2Fe-2S]2+ clusters (arrow).  
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and bacteria by titrating the enzyme with 

dithionite, Ti(III)citrate or photochemical 

reduction with the deazaflavin/oxalate 

system have proven unsuccessful (18, 19, 

24).  Similarly, our earlier studies of 

MtAPR found no evidence for the 

presence of [4Fe-4S]+ after treatment with 

dithionite (15).   

 

In the present study, we first explored 

reduction of the cluster in MtAPR using 

Ti(III)citrate.  New EPR signals were 

observed, however, interpretation of the 

spectra was confounded by 

nonspecifically bound Ti(III)citrate that 

gave rise to an isotropic signal at g = 1.94 

(data not shown).  Next, we tested 

photoreduction of the [4Fe-4S]2+ center in 

MtAPR in the presence of 

deazaflavin/oxalate.  The resulting EPR 

spectrum is broad, but shows rhombic 

symmetry with apparent g-values of 2.04, 

1.94 and 1.75 (Figure. 5.4A).  The EPR 

signal also gives evidence for a second 

component with apparent g-values at 2.13 
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Figure 5.4.  Experimental EPR spectra of 
photoreduced MtAPR.  Anaerobic 250 µM MtAPR 
alone or incubated with 1 mM ligand for 10 min at 
25 °C was then photoreduced as described in 
Experimental Procedures.  Samples: A. MtAPR 
alone.  B. Cys256Ser MtAPR bound to APS.  C. 
MtAPR incubated with APS to generate the S-
sulfocysteine intermediate bound to AMP.  D. 
MtAPR bound to AMP.  E. MtAPR bound to ADP.  
F. MtAPR bound to ADP!F.  The EPR spectra 
were recorded at 10 K and the instrument 
parameters were: microwave power, 10 mW; 
receiver gain, 2 x 104; modulation amplitude, 10 
G; microwave frequency, 9.43 GHz.  
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and 1.85; however, the broad resonances 

precluded an accurate simulation of the two 

paramagnetic species.  Spin quantitation of 

the EPR signals from g = 2.5 to 1.3 indicate 

0.3 equiv of spins per mole of enzyme.  On 

the basis of observed g-values, the 

resonances can be attributed to either an S = 

, [2Fe-2Fe]+ or [4Fe-4S]+ cluster.  The 

temperature dependence of the EPR signal 

(data not shown) indicated that it was 

maximal between 8-10 K and was no longer 

visible at temperatures above 12 K, using a 

microwave power of 10 mW.  This behavior 

suggests that the paramagnetic signal arises 

from a [4Fe-4S]+ cluster.  By contrast, [2Fe-

2S]+ clusters are slow relaxing and 

observable by EPR at temperatures above 70 

K (26).   

 

5.3.3 Interaction of the Photoreduced [4Fe-

4S]+ Cluster with Substrate and Analogs.   

The [4Fe-4S] cluster at the active site of APR 

is required for catalytic activity (1); however, 

the mechanistic details are unknown and 

remain a central question for this family of 
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Figure 5.5.  Simulated EPR spectrum of 
photoreduced wild-type MtAPR after addition 
of APS.  The bottom two spectra show how 
two separate species might combine to give 
the observed signal (top spectra, solid line; 
see also Figure 5.4C).  The dashed lines 
denote the simulated EPR spectrum, which is 
the sum of two components:  Component A is 
a spectral simulation of the narrow 
component using g = 2.04, 1.94, 1.76, g 
strain (+g) = 0.017, 0.022, 0.020, and a 
Gaussian line shape.  Component B is a 
spectral simulation of the broad component 
using g = 2.10, 1.88, 1.75, g strain (+g) = 
0.038, 0.036, 0.099, and a Gaussian line 
shape.  The ratio of Component A to 
Component B is 1:1.2.  Simulated instrument 
parameters are as reported in the legend of 
Figure 5.4. 
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enzymes.  While the iron-sulfur cluster in APR does not undergo redox activity during the 

catalytic cycle (1), the 1+ state of APR can serve as a useful tool for mechanistic studies 

analogous to other enzymes that harbor redox-inactive iron-sulfur clusters such as 

aconitase (27).  Therefore, to gain insight into the functional role of the cluster we next 

investigated whether substrate binding would perturb the EPR spectrum of reduced 

MtAPR.    Two types of protein-ligand complexes were prepared: (i) wild-type MtAPR 

treated with APS to afford the S-sulfocysteine intermediate form of the enzyme bound to 

AMP, and (ii) the catalytically inactive variant, Cys256Ser MtAPR bound to APS.  

Established procedures for complex formation were performed (1, 15) and the resultant 

samples were then subjected to photoreduction.  

 

Compared to wild-type MtAPR (Figure 5.4A), the EPR spectrum of Cys256Ser MtAPR 

bound to APS is markedly sharper in appearance with apparent g-values of 2.02, 1.91 

and 1.76 (Figure 5.4B).  The EPR signal of the enzyme S-sulfocysteine intermediate 

bound to AMP also exhibits increased resolution with apparent g-values of 2.03, 1.91 

and 1.75 (Figure 5.4C).  Additionally, both spectra (Figure 5.4B and C) indicate the 

presence of a second paramagnetic species.  Spin quantitation of EPR signals from g = 

2.7 to 1.6 indicate a respective 0.45 and 0.4 equiv of spin per mole for the Cys256Ser 

and wild-type MtAPR complexes.  The heterogeneity of these samples was essentially 

unaffected by the addition of 2.5 M urea, changes in sample pH between the ranges of 

7.5 and 9.5, variation in temperature or microwave power levels (data not shown).   

 

Simulation of the signal from wild-type MtAPR treated with APS suggests that it is the 

sum of at least two S = , components (Figure 5.5).  One species has narrow lines and 

g-values at 2.04, 1.94, and 1.76 (component A), whereas the other has broad lines and 

exhibits principle g-values at 2.10 and 1.88 (component B) with an intensity ratio of 1:1.2.  
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Although simulated and experimental spectra are in overall agreement, some 

discrepancies remain, particularly with respect to signal amplitudes.  The addition of a 

third spectral component did not improve the fit quality.  However, residual differences 

between the simulated and experimental spectra may result from weak signal intensity, 

minor fluctuations in temperature around 10 K, or the large number of variables required 

to simulate a [4Fe-4S]+ cluster. 

 

Next, we tested whether the observed APS-dependent changes in the EPR spectra of 

reduced MtAPR were specific to the substrate.  To investigate this possibility, we 

analyzed the spectra of photoreduced MtAPR bound to AMP, ADP and ADP!F.  The 

EPR signal of MtAPR bound to AMP (Figure 5.4D) was similar in shape and intensity to 

enzyme alone (Figure 5.4A).  By contrast, the spectrum in the presence of ADP (Figure 

5.4E) showed a significant reduction in signal intensity.  To determine whether the 

observed changes in the EPR spectrum were due to the additional negative charge at a 

!-phosphate group (i.e., ADP) relative to a !-sulfate group (i.e., APS), we examined 

fluorine substitution of a !-nonbridging oxygen atom.  Interestingly, however, the EPR 

spectrum of MtAPR bound to ADP!F (Figure 5.4F) was essentially the same as ADP 

(Figure 5.4E).  Spin quantitation of MtAPR bound to ADP or ADP!F indicate less than 

0.1 equiv of spins per mole of enzyme in each sample.  The marked increase in signal 

resolution and intensity in the presence of APS, but not upon addition of substrate 

analogs or product reflects a unique state of the active site and cluster environment, 

which might be related to catalytic activity.  

 

5.3.4 Characterization of Lys144Ala MtAPR.   



! 114!

The preceding EPR data support the existence of mid-range electrostatic interactions 

between the cluster and APS.  Given that the side chain of Lys144 is positioned between 

coordinating Cys140 and the !-sulfate group of APS (Figure 5.2C) we reasoned that this 

residue might help mediate this interaction.  To investigate this possibility, we generated 

the Lys144Ala MtAPR variant and characterized this protein through kinetic and EPR 

studies.  An effect of 63,000-fold on kcat/KM is observed upon mutation of Lys144 to Ala 

(Table 1; see also Appendix 5.7.4).  Since the chemical step (i.e., S-sulfocysteine 

formation) is rate limiting for the reaction of APS and MtAPR (5), this value represents 

the effect of removal of the Lys residue on the overall binding and chemical 

transformation.  The mutation decreases the value of kmax by 270-fold suggesting that 

the Lys side chain stabilizes the transition state relative to the ground state complex.  To 

further explore the molecular recognition of APS, we measured the Kd value of the 

substrate for Lys144Ala MtAPR.  Relative to wild-type MtAPR, the affinity of APS for 

Lys144Ala is decreased by 400-fold.   

 

Table 5.1: Effect of Lys144Ala Mutation on APR-Catalyzed Reduction and Binding of 
APSa 

 

 kcat/Km (M-1 s-

1)b 
fold 

reduction 
kmax (min-

1)c 
fold 

reduction 
Kd 

()M) 
fold 

reduction 

Wild-type 2.5 x 106 (1) 2.7 (1) 0.25d (1) 

Lys144Ala 40 6.3 x 104 0.01 270 #100e #400 
 

aRate constants for single-turnover reactions were determined at 30 °C in 100 mM bis-tris propane buffer, 5 
mM DTT, 10 )M Trx as described in Experimental Procedures.  In all cases, the protein was in excess over 
substrate, with at least 2.5-fold more protein than substrate.  bIn bis-tris propane at pH 7.5.  cIn bis-tris 
propane at pH 6.5.  dFrom Ref. (5).  eThe apparent Kd value was determined at 30 °C in 100 mM bis-tris 
propane pH 7.5 as described in Experimental Procedures.  
 

The UV-Vis absorbance spectrum of Lys144Ala MtAPR showed a maximum in the 

visible range at 410 nm that is consistent with the presence of bound Fe (data not 

shown).  Analysis of Fe content by inductively coupled plasma resonance spectrometry 
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for Lys144Ala MtAPR indicated that each mole of protein contained 3.3 ± 0.4 mol of Fe, 

which is consistent with 4 Fe atoms in the 

cluster.  Photoreduction of Lys144Ala 

MtAPR gave rise to a rhombic signal with 

resonances at g = 2.12, 1.99 and 1.82 

(Figure 5.6A and C).  However, the signal 

intensity was decreased relative to wild-

type MtAPR and spin quantitation 

accounted for less than 0.05 equiv of 

spins per mole of enzyme.  In the 

presence of saturating APS, the feature at 

g = 1.75 disappears and the remaining 

signal exhibits g-values at 2.12 and 1.99 

(Figure 5.6B and D).  A low-field isotropic 

Fe3+ signal accounting for less than 0.01 

equiv of spin per mole of enzyme was 

also observed in the presence of APS, 

consistent with a small degree of cluster 

degradation (data not shown).  Although 

the EPR spectra for both samples are 

relatively broad and weak, a modest 

reduction in the magnetic heterogeneity of 

MtAPR can be observed.  Together, the 

kinetic and EPR data indicate a key role 

for Lys144 in chemistry and substrate 
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Figure 5.6.  Experimental EPR spectra of 
photoreduced Lys144Ala MtAPR.  Anaerobic 250 
µM Lys144Ala MtAPR alone (A) and (C) or 
incubated with 1 mM APS (B) and (D) for 10 min 
at 25 °C was then photoreduced as described in 
Experimental Procedures.  In (A) and (B) EPR 
signal intensities have been scaled to match those 
in Figure 5.4.  In (C) and (D) the intensity of the 
EPR signals has been scaled 7.5-fold.  The EPR 
spectra were recorded at 10 K and the instrument 
parameters were: microwave power, 10 mW; 
receiver gain, 2 x 104; modulation amplitude, 10 
G; microwave frequency, 9.43 GHz.   
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binding, and that this residue helps modulate APS-dependent changes in the iron-sulfur 

cluster environment.  

 

5.3.5 Cryoreduction of the [4Fe-4S]2+ Cluster in MtAPR.   

Although the [4Fe-4S]+ cluster serves as a useful spectroscopic tool in the study of 

MtAPR and variants, we recognize that it is not the native form of the active enzyme.  

For this reason, we attempted to probe the interaction of substrate with the [4Fe-4S]2+ 

state of MtAPR through cryoreduction-EPR studies.  In principle, %-irradiation of the 

frozen [4Fe-4S]2+ cluster affords the reduced state [4Fe-4S]+ trapped in the geometry of 

the [4Fe-4S]2+ oxidized state (28, 29).  To this end, the 2+ state of MtAPR was incubated 

in the presence or absence of APS, frozen in liquid nitrogen and then exposed to high-

energy %-irradiation at 77 K to produce the [4Fe-4S]+ cluster.   

 

The resulting spectrum in the absence of substrate (Appendix 5.7.5) is ill defined and 

relatively broad.  However, the addition of substrate APS was accompanied by a marked 

increase in signal intensity and resolution with apparent g-values at 2.08, 2.04 and 2.02 

(Appendix 5.7.5).  The observation of substrate-dependent changes in the EPR 

spectrum is in qualitative agreement with our experimental results from photoreduction.  

However, we note that the EPR spectra of cryoreduced MtAPR are distinct from those of 

the photochemically reduced enzyme.  These findings may indicate that the substrate 

interacts differently with the cluster in the +2 and +1 states.  An alternative possibility is 

that the observed EPR signals correspond to a thiyl radical formed by homolytic scission 

of the S-sulfocysteine bond.  In support of this proposal, the relatively high g-values are 

consistent with literature data for a sulfur-centered species (30, 31). 
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In addition to the aforementioned g-values, the cryoreduced samples contained an 

extremely intense signal isotropic signal at g = 2, which could arise from other non-

specifically reduced organic radicals present in the sample (Appendix 5.7.5).  4.2-K/53-

mT Mössbauer spectra of samples recorded before and after cryoreduction (Appendix 

5.7.6) indicate that ~50% of the [4Fe-4S]2+ clusters were reduced to the +1 state under 

these conditions.  Thus, Mössbauer analysis confirms the presence of the [4Fe-4S]+ 

cluster in cryoreduced samples; however, the %-irradiation also appears to have 

generated extremely intense, new paramagnetic species that are distinct from a simple 

one-electron reduction of the +2 cluster.  Lastly, no significant changes in the Mössbauer 

spectra from substrate-bound and substrate-free cryoreduced MtAPR were observed 

(Appendix 5.7.6). 

 

5.3.6 Ferricyanide Oxidation of the [4Fe-4S]2+ Cluster in MtAPR.   

The [4Fe-4S]2+ cluster in PaAPR is partially converted to the [3Fe-4S]+ form by treatment 

with the oxidant potassium ferricyanide (18).  To assess this possibility for MtAPR, a 

stoichiometric amount of potassium ferricyanide was added to the enzyme.  The 

resulting EPR signal shows a well-defined EPR resonance at g = 2.03 and a poorly 

resolved high-field component at g = 1.99 (Appendix 5.7.7).  This pattern of EPR signals 

is very similar to those of S = , [3Fe-4S]+ clusters in aconitase (27) and endonuclease 

III (32).  Spin quantitation of the EPR signals from g = 2.1 to 1.8 indicate less than 0.1 

equiv of spins per mole of enzyme.  The EPR spectrum of oxidized MtAPR also 

exhibited a signal accounting for less than 0.01 equiv of spins per mole of enzyme at g = 

4.3 that is characteristic of high-spin Fe(III).  When ferricyanide was added to MtAPR 

that had been pre-treated with APS, the intensity of the signal at g = 4.3 was increased 

by 3-fold (data not shown).  Attempts to purify the [3Fe-4S]+ cluster form of MtAPR were 

unsuccessful as the cluster rapidly decomposed upon oxidant removal.  Nonetheless, 
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these data are consistent with the existence of a labile Fe site within the [4Fe-4S]2+ 

cluster of MtAPR.  Given the constraints of tandem Cys coordination (7) and the 

proximity of Lys144, the Fe coordinated to Cys140 may correspond to the displaced 

atom. 

 

5.4 Discussion 

Iron-sulfur clusters are amazingly versatile cofactors with functions in electron transfer, 

Lewis acid-assisted enzyme catalysis, radical generation, oxidation of a wide variety of 

substrates under anaerobic conditions, and protein structure (33-38).  While numerous 

studies indicate that the iron-sulfur cluster is essential for APR activity (1, 7, 9, 15), the 

specific role of the iron-sulfur cluster has been elusive.  Progress on this front has been 

limited, in part, by the inability to generate a paramagnetic state of the [4Fe-4S] cluster 

that can be studied by EPR spectroscopy.  The present study is the first reported case in 

which the [4Fe-4S]2+ cluster of APR has been reduced to the S = , [4Fe-4S]+ form.  

 

Photoreduction in the presence of deazaflavin and oxalate turned out to be the most 

effective method to generate the paramagnetic 1+ state of MtAPR.  By contrast, 

attempts to photochemically reduce APR from plants and bacteria such as P. aeruginosa 

and B. subtilis have not been successful (15, 24).  Active site residues that interact with 

the iron-sulfur cluster and/or the substrate (e.g., Thr87, Arg143, Lys144, Arg242, Arg245, 

Trp246) are highly conserved among APRs and therefore, are unlikely to account for 

EPR behavioral differences.  On the other hand MtAPR is a monomer in solution while 

APR from other species exists as a homodimer or homotetramer (1, 19).  Along these 

lines, the structure of PaAPR shows that the face of the iron-sulfur cluster opposite the 

active site is buried at the interface between two monomeric subunits (7).  Studies on the 

effect of solvent on redox potentials of model clusters indicate that water raises the 
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reduction potential of the [4Fe-4S]2+/+ couple (39, 40).  Hence, increased solvent 

accessibility to the cluster of monomeric MtAPR may account for the ability to generate 

the 1+ state.   

 

The EPR signal of reduced MtAPR arises from a mixture of [4Fe-4S]+ clusters with S = 

,, possibly reflecting the existence of distinct conformational states.  Multiple S = , 

ground states have been observed for other [4Fe-4S] iron-sulfur enzymes such as the 

corrinoid protein from Clostridium thermoaceticum (41), human DNA primase (42), and 

the ribosomal RNA methyltransferase, RumA (43).  The apparent lack of changes in the 

EPR spectra between pH 6.5 and 9.5 suggests that the complexity does not result from 

differences in protonation state of residues near the iron-sulfur cluster.  Freezing of 

samples after photoreduction can also led to multiple signals from the same 

paramagnetic center – one from aggregated protein molecules and the other from 

dispersed molecules (44).  To investigate this possibility, we recorded the EPR spectrum 

for cryoreduced MtAPR.  In these experiments, the EPR signal that arises from the [4Fe-

4S]+ form of MtAPR is weak relative to other radical species generated during the %-

irradition process.  Nonetheless, magnetic heterogeneity is still apparent in the spectrum 

(Appendix 5.7.5).  Treatment with 1-2.5 M urea has also been reported to convert 

multiple isomeric states of an [4Fe-4S]+ cluster into a single one (41), but this was not 

the case with MtAPR.  This observation may indicate the existence of more subtle 

differences between cluster forms in MtAPR such as changes in the orientation of a Cys-

S%-Fe bond or in hydrogen bonding to a sulfur atom.   

 

Regarding possible conformational changes, PaAPR has been fortuitously crystallized 

with APS bound in two of the four monomeric subunits (7).  A comparison of bound and 
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unbound states reveals minor structural changes in residues adjacent to the iron-sulfur 

cluster (Figure 5.2B and C).  In the absence of substrate, Lys144 is present in an 

extended conformation such that the distance between the side chain and the S% atom of 

Cys140 is ~5 Å.  By contrast, the subunit with APS bound shows that the side chain of 

Lys144 adopts a bent rotamer conformation, which brings this residue within interaction 

range (i.e., 3.5 Å) of Cys140 S%.  In turn, the Cys140 side chain moves slightly upward 

(i.e., 5° rotation at the !-carbon).  It is possible then, that the heterogeneity observed in 

the EPR spectra may be related to conformational dynamics of Lys144, Cys140 and/or 

Cys256 within the C-terminus.  In support of this hypothesis, a decrease in EPR signal 

complexity was observed with Lys144Ala MtAPR (Figure 5.6).  Structural changes at 

these key residues may also account for the observation that the iron-sulfur cluster of 

APR is protected from oxidation on addition of APS (15) and that the resonance Raman 

spectra exhibit changes in Fe-S% stretching modes when substrate is bound (8).   

 

Previous models for the role of the iron-sulfur cluster in APR catalysis have postulated 

that one or two non-bridging sulfate oxygen(s) establish a direct interaction with an Fe 

atom (i.e., monodentate or bidentate coordination of the substrate) (45).  The interacting 

Fe atom could facilitate nucleophilic attack at the sulfate sulfur by acting as a Lewis acid, 

analogous to aconitase (27).  Since the cluster in APR is ligated to the protein via four 

cysteine residues the coordination number of the interacting Fe site would increase to 5 

or 6.  Based on studies of direct interaction between substrate or cofactor and [4Fe-4S]2+ 

clusters in aconitase (27), pyruvate formate-lyase activase (46), and biotin synthase (47) 

significant perturbation of the Mössbauer parameters for an interacting Fe site in MtAPR 

would be expected (46, 48, 49).  The present work, however, shows no discernable 

change in the Mössbauer spectrum upon addition of APS to MtAPR (Appendix 5.7.3), 
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suggesting that the cluster and the substrate do not establish a direct interaction.  This 

proposal is fully consistent with the crystal structure of PaAPR bound to APS, which 

shows that the sulfate oxygens are 7 Å from the closest Fe atom and 6 Å from the S% 

atom of Cys140 (Figure 5.2B) (7). 

 

On the other hand, substrate binding to MtAPR led to a marked increase in intensity and 

resolution of the EPR signal, and to minor shifts in principle g values that were not 

observed with closely related substrate analogs, ADP and ADP!F (Figure 5.4).  These 

findings correlate with observed differences in the dissociation constants (Kds) reported 

for these ligands (5) and can be rationalized on the basis of differences in anionic 

charges: !-sulfate has a net negative charge of one distributed over three oxygen atoms 

(i.e., -1/3 charge each; Kd = 0.25 !M), while !-phosphate has a net negative charge of 

two distributed over three oxygen atoms (i.e., -2/3 charge each; Kd = 5 !M) and !-

fluorophosphate has a net negative charge of one distributed over two oxygen atoms 

(i.e., -1/2 charge each; Kd = 2.5 !M).  By contrast, the similarity of EPR spectra obtained 

in the presence or absence of AMP (Figure 5.4A and D) suggests that the "-phosphate 

group is too distant from the cluster to exert any significant effect.  Taken together, these 

data are indicative of mid-range electrostatic interactions between the iron-sulfur cluster 

and the !-functional group of the ligand, which are finely attuned to the electrostatic 

properties of the sulfate in APS.  

 

In addition to differences in formal anionic charge, the sulfur atom of sulfate is larger, 

more electronegative and forms shorter bonds with oxygen relative to a phosphorous 

atom.  As a consequence, the oxygen atoms associated with a !-sulfate group are 

associated with less negative charge density, relative to oxygen atoms attached to 
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phosphate (50).  As compared to APS, the increase in negative charge density 

associated with !-non-bridging oxygen atoms of ADP and ADP!F might strengthen their 

interaction with the positively charged Lys144 side chain such that this residue moves 

away from the S% atom of coordinating Cys140.  Alternatively, or in addition, considering 

that the [4Fe-4S(Cys-S%)4] cluster has a net charge of -2 (11), repulsive electrostatic 

interactions could arise when ADP or ADP!F are bound in the active site.  Either 

scenario could account for the observed decrease in analog affinity and hamper the 

ability of the iron-sulfur cluster in MtAPR to accept an additional electron (i.e., adopt the 

reduced 1+ state).   

 

In general, spin quantitation of the EPR signals revealed less than 0.5 spin/mol MtAPR. 

These less than unitary values for the spin integration of the reduced spectra can be 

attributed to incomplete reduction of the [4Fe-4S]2+ cluster that may result from 

insufficient light intensity or illumination time.  However, changes in these parameters 

were accompanied by noticeable cluster degradation and were therefore not pursued 

further.  Despite the modest efficiency of reduction, variations in spin quantitation 

between substrate-bound (or substrate analog) and substrate-free states of MtAPR were 

observed.  These differences are likely due to ligand-dependent structural and 

electrostatic changes in cluster environment, as discussed above. 

 

The positively charged side chain of Lys144 interacts with both APS and coordinating 

Cys140, forming a link between the substrate and the iron-sulfur cluster.  Although strict 

conservation of Lys144 implies an important role, this study is the first to probe the 

precise function of this residue.  Using site-directed mutagenesis, we demonstrate that 

Lys144 is necessary for both substrate binding and transition state stabilization (Table 1).  
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Moreover, the significant decrease in EPR signal intensity for Lys144Ala MtAPR (Figure 

5.6) suggests that the proximity of the positively charged side chain of this residue may 

be an important factor in stabilizing the reduced state of the cluster.  Future 

measurements of midpoint reduction potentials could provide additional support for this 

proposal.  

 

Comparison of the EPR spectra between wild-type, Cys256Ser (Figure 5.4) and 

Lys144Ala MtAPR (Figure 5.6) shows that the Lys residue plays an important role in 

modulating substrate-dependent changes in signal resolution and intensity.  However, 

we note that the EPR spectrum of Lys144Ala still exhibits subtle differences in the 

presence or absence of APS.  In particular, the APS bound state shows small changes 

in signal intensity at g = 2.12 and 1.99, and a decrease in the spectral feature at g = 1.82.  

These differences in EPR spectra may be attributable to the intrinsic electrostatic 

interaction between the iron-sulfur cluster and the substrate.   

 

On the basis of the results reported herein, we propose a catalytic role for the iron-sulfur 

cluster in the mechanism of APS reduction, specifically in the sequence of events 

leading up to and through sulfuryl group transfer (Figure 6.7).  Prior to APS binding, the 

[4Fe-4S(Cys-S%)4]2– cluster may serve to pre-organize the positively charged side chain 

of Lys144 and possibly Arg245 (Figure 5.2B and C) within the active site, so that the 

substrate can establish interactions with these residues.  Based on the Mössbauer data 

and structural studies, APS binds to the [4Fe-4S]2+ state of APR, but does not appear to 

come into direct contact with the cluster.  Rather, EPR investigation of the [4Fe-4S]+ and 

[3Fe-4S]+ states indicate that mid-range electrostatic interactions arise between APS 

and the iron-sulfur cluster.  The charge from and polarization within the [4Fe-4S(Cys-

S%)4]2– cluster could serve to activate the sulfate group of APS, thereby facilitating S-OP 
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cleavage and S-S bond 

formation in the 

reaction.  In the 

absence of an iron-

sulfur cluster, PAPR 

may achieve something 

similar via repulsion 

between the extra 3’-

phosphate group of 

PAPS and the sulfate 

end of the 5’-

phosphosulfate.  The 

sulfate group would 

then be primed for 

nucleophilic attack by 

Cys256, leading to formation of the S-sulfocysteine enzyme intermediate.  In support of 

this proposal, experimental and theoretical studies of sulfuryl group transfer in sulfate 

esters (50, 51) indicate the need for a strong polarizing agent.  Regarding Lys144, our 

analysis demonstrates an essential role for this residue in enzyme catalysis.  Although 

only speculative at present, it is plausible that the active site Lys144 cation may orient 

the incoming Cys nucleophile with respect to the sulfate moiety and/or act as a 

“molecular guidewire” during sulfuryl transfer; either possibility could result in transition 

state stabilization.  Analogous functions for Lys and Arg residues in the active site of 

other enzymes that catalyze sulfuryl transfer have been described (52, 53). 
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Figure 5.7.  Possible reaction pathway for covalent S-sulfocysteine 
intermediate formation catalyzed by APR.  The C-terminal residues 250-
267, which carry the catalytically essential Cys256, are disordered in the 
structure of PaAPR, but can be modeled into the active site using the 
structure of S. cerevisiae PAPR (4).  In the homology-modeled structure 
(5), Cys256 is proximal to the sulfate group of APS as well as the side-
chains of Cys140 and Lys144.  Electrostatic destabilization of APS may 
arise from the juxtaposition of the electron density and partial negative 
charge that resides on the sulfide and cysteinyl sulfur atoms of the iron-
sulfur cluster (see Ref. (11) for theoretical treatment of charge 
distribution in iron-sulfur clusters).  Repulsion between APS and the iron-
sulfur cluster could be partially relieved in the transition state, thereby 
enhancing the reaction rate.  The charge build-up on the bridging sulfate 
oxygen could be stabilized by Arg171, Arg242 and His259, which are not 
indicated in this Figure 5.6.for the sake of simplicity.  
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In APR from Bacillus subtilis, on the basis of its short half-life (t1/2 ~12 min) an oxygen-

sensing function for has been proposed for the iron-sulfur cluster (24).  By comparison, 

the iron-sulfur in MtAPR is significantly more stable with a half-life of about 6 hrs (15).  

Nevertheless, it is important to note that the model we have proposed above does not 

preclude the possibility that the cluster plays a regulatory role.  Rather, the iron-sulfur 

cluster of APR may function both in a catalytic capacity and, in some organisms, as an 

oxygen-sensitive switch.  

 

5.5 Conclusion 

In summary, the data presented in this work are consistent with a catalytic function for 

the iron-sulfur cluster in APR.  On the basis of these data, we have proposed that the 

cofactor plays a role in pre-organizing active site residues and in substrate activation.  

Additional experimental and theoretical tests of these proposals are currently underway 

and will be reported in due course.  Moreover, the finding that MtAPR can be reduced to 

the [4Fe-4S]+ state opens the door for other forms of spectroscopy such as ENDOR and 

ESEEM that can provide further insight into the relationship between the substrate and 

iron-sulfur cluster. 

 

5.6 Experimental procedures 

5.6.1 Materials 

APS (#95%) was obtained from Biolog Life Sciences Institute.  ADP and AMP were 

purchased from Sigma Chemical Co.  ADP!F was synthesized as previously described 

(54).  The structure and purity (#98%) was confirmed by 1H and 31P NMR (data not 

shown).  10-Methyl-3-sulfopropyl-5-deazaisoalloxazine potassium salt (deazaflavin) was 

a generous gift from Prof. David Ballou (University of Michigan).  Titanium(III) citrate was 

prepared anaerobically from a 15% titanium(III) chloride solution in 1 M HCl with an 
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equimolar amount of citrate (trisodium salt), and neutralized to pH 7.0 with saturated 

sodium bicarbonate.  

 

5.6.2 Mutagenesis and Protein Expression 

The construction of the expression vector encoding wild-type and Cys256Ser APR from 

M. tuberculosis cloned into the vector pET24b has been previously described (55).  The 

Lys144Ala variant was generated from the wild-type MtAPR template using the Quik-

change site-directed mutagenesis kit (Stratagene) and the following primer sequence: 5$-

GCTGCCGGTTGCGCAAGGTCGTTCCCCTGGG-3$.  Plasmids encoding wild-type, 

Cys256Ser or Lys144Ala MtAPR pET24 and pACYC (containing genes encoding the isc 

operon of six accessory proteins required for Fe–S cluster biosynthesis in A. vinelandii 

under the control of an arabinose-inducible promoter) (25) were co-transformed into E. 

coli BL21(DE3) (Novagen) and plated on L-agar 50 !g/ml kanamycin and 100 !g/ml 

carbenicillin.  A single colony was picked and added to 5 ml of L-broth plus antibiotics 

and grown overnight with shaking at 37 °C.  This culture was used as a 0.5% 1 L of L-

broth plus antibiotics and grown with shaking at 37 °C until absorbance at 600 nm 

reached approximately 0.6.  Arabinose and iron citrate were added to final 

concentrations of 20 mM and 0.8 mM, respectively and the culture grown as above for 1 

hr.  At this point the flasks were removed from the incubator.  IPTG was added to a final 

concentration of 0.3 mM and the flasks were returned to the incubator and grown 

overnight at 18 °C with shaking at 200 rpm.  Cultures were harvested by centrifugation 

(4 °C, 4,300g).  After removal of the supernatant the pellets were stored at -80 °C until 

required.   
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All purification steps were carried out at 4 °C.  Cell pellets were resuspended in 30 ml 

Buffer A (20 mM sodium phosphate, 0.5 M NaCl, 10 mM imidazole; pH 7.4) 

supplemented with 0.1 mM PMSF, 10µg/ml DNase, 5 µg/ml lysozyme and lysed by 

sonication.  Lysates were centrifuged (20,000g, 15 min) and loaded onto a 5 ml HiTrap 

Chelating column (GE Healthcare, Piscataway, NJ) equilibrated in the same buffer.  

Unbound material was washed off with 50 ml of Buffer A and bound proteins then eluted 

with in Buffer B (20 mM phosphate, 0.5 M NaCl, 250 mM imidazole; pH 7.4).  Fractions 

containing wild-type or Lys144Ala were pooled, concentrated by centrifugation (Amicon 

10 kDa cutoff, Millipore, Billerica, MA) and loaded onto a 16/60 Superdex 200 size 

exclusion column previously equilibrated in Buffer C (50 mM Tris-HCl, 150 mM NaCl, 5 

mM DTT, 10% glycerol; pH 8.5 at 4 °C).  Fractions containing wild-type or Lys144Ala 

MtAPR were pooled, snap-frozen in liquid nitrogen, and stored at -80 °C.  Protein 

concentrations were determined using the extinction coefficient, &280=36,815 M-1cm-1, 

obtained from quantitative amino acid analysis (1).   

 

5.6.3 Preparation of MtAPR for EPR and Mössbauer Spectroscopy 

Samples of wild-type, Cys256Ser or Lys144Ala MtAPR suitable for Mössbauer or EPR 

spectroscopy were prepared inside of an anaerobic chamber with O2 levels % 1 ppm.  

Purified MtAPR was exchanged into anaerobic buffer containing 50 mM Tris–HCl, 150 

mM NaCl (pH 8.5 at 4 °C) and 10% glycerol.  To reduce the cluster in MtAPR, reactions 

contained 250 µM enzyme, 25 mM sodium oxalate, 250 µM deazaflavin in a total volume 

of 250 µL.  When included, substrate or other analogs were added to a final 

concentration of 1 mM and incubated with MtAPR for 10 min at 25 °C prior to 

photoreduction.  The reaction mixtures were transferred to EPR tubes, chilled in an ice-

salt bath (-6 °C) and irradiated with light from a 100 W quartz halogen lamp (Applied 
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Photophysics, Surrey, UK) for 30 min.  After illumination, samples were immediately 

frozen in liquid nitrogen and analyzed by low-temperature EPR.  Mössbauer spectra 

were recorded on proteins that contained 57Fe in place of natural-abundance iron.  57Fe 

was incorporated into MtAPR via supplementation of E. coli growth media, and samples 

contained 1 mM protein, and 2 mM APS when appropriate.  After 10 min incubation with 

substrate, samples were transferred to Mössbauer cups and frozen in liquid nitrogen. 

 

5.6.4 EPR Spectroscopy 

X-band EPR spectra of photoreduced samples were recorded on a Bruker EMX 

spectrometer (Billerica, MA) equipped with an Oxford Instruments ITC4 temperature 

controller, a Hewlett-Packard model 5340 automatic frequency counter and Bruker 

gaussmeter.  Figure legends contain relevant instrumental parameters.  The sample 

buffer was used to record baselines under conditions identical to those in which the 

sample spectra were obtained.  These baselines were subtracted from MtAPR spectra 

shown in the figures.  Spin concentrations in MtAPR samples were determined by 

double integration of the EPR signal over a range of 2 kgauss and comparison with 

double integrals of 1 mM Cu(ClO4)2 in sample buffer.  EPR spectra of cryoreduced 

samples were recorded on a Bruker ER-200DSRC spectrometer equipped with an 

Oxford Instruments ESR 910 continuous-flow cryostat.  Simulations of EPR spectra were 

performed using Spin Count (ver 2.6.7) created by Professsor M.P. Hendrich at 

Carnegie Mellon University.  Spin Count is available at 

http://www.chem.cmu.edu/groups/hendrich/.  

 

5.6.5 Mössbauer Spectroscopy 

Mössbauer spectra were recorded on a spectrometer from WEB research (Edina, MN) 

operating in the constant acceleration mode in transmission geometry.  Spectra were 
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recorded with the temperature of the sample maintained at 4.2 K in an externally applied 

magnetic field of 53 mT oriented parallel to the .-beam.  The quoted isomer shifts were 

relative to the centroid of the spectrum of a foil of &-Fe metal at room temperature.  Data 

analysis was performed using the program WMOSS from WEB research. 

 

5.6.6 Cryoreduction of MtAPR by Low-Temperature %-Radiolysis 

Samples containing 250 )M MtAPR were loaded into EPR tubes or Mössbauer cups and 

flash frozen in liquid nitrogen inside the glovebox.  When appropriate, APS was added to 

a final concentration of 1 mM and incubated with protein for 10 min at 25 °C prior to 

freezing.  Samples were %-irradiated (60Co; total dose of 4 Mrad) at the %-irradiation 

facility of the Breazeale nuclear reactor at the Pennsylvania State University.  During 

irradiation, samples were maintained at 77 K by immersion in liquid N2. 

 

5.6.7 MtAPR Activity Assay 

Reactions were carried out at 30 °C.  Unless otherwise indicated, the buffer consisted of 

100 mM bis-tris propane (pH 7.5) and 100 mM NaCl supplemented with 5 mM DTT and 

10 )M E. coli thioredoxin.  Production of 35SO3
2- from 35S-APS was monitored using 

charcoal-based separation and scintillation counting as previously reported (5).  The 

substrate was incubated with excess enzyme to ensure single-turnover conditions (>2.5-

fold molar excess of enzyme).  The reaction progress curve was plotted as the fraction 

of product versus time and was fit by a single exponential F = A[1–e(–kobst)], where F is 

the fraction product, A is the fraction of substrate converted to product at completion, kobs 

the observed rate constant, and t time.  Reactions were followed for #5 half-lives except 

for very slow reactions.  Under single-turnover conditions, it is expected that the 

concentration dependence of the enzyme will be hyperbolic (eq 1).   
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! 

kobs = kmax[E]K1/ 2 + [E] (1) 

 

To determine kcat/Km, a concentration of enzyme was chosen that was at least 5-fold 

below the Km value.  Although we refer to the K1/2 for maximal activity as Km, we note 

that the K1/2 for single turnover is not necessarily the same as the Km for the multiple 

turnover reaction since the latter can be affected by the rate of product release.  For 

conditions in which [E] << Km the second order rate constant, kcat/Km = kobs/[E].  We note 

that the reported values of kcat/Km are for single-turnover conditions, but the 

measurement is equivalent to steady state kcat/Km.  At a saturating concentration of 

enzyme, the observed single-turnover rate constant reaches a maximum, kmax.  To 

determine kmax, the concentration of enzyme was varied by at least 3-fold to establish 

that the observed rate was independent of the concentration of enzyme, indicating that 

the enzyme was in excess and at a saturating concentration (i.e., kobs = kmax).  The 

reported values of kcat/Km and kmax are the average of at least three independent 

determinations.  Unless otherwise indicated, the standard deviation was %15% of the 

value of the mean. 

 

5.6.8 Determination of Substrate Affinity  

The apparent dissociation constant (Kd) for 35S-APS from Lys144Ala MtAPR-ligand 

complexes was measured using an ultrafiltration binding assay reported by Hernick and 

Fierke (56).  Because the chemical step (i.e., S-sulfocysteine formation) is rate-limiting 

(5) the K1/2 is equal to Kd of APS for Lys144Ala MtAPR.  In brief, the concentration of 

substrate was kept low (i.e., below the Kd) and constant, and the concentration of the 

enzyme was varied (0 to 80 )M).  Lys144Ala MtAPR was incubated in 100 mM bis-tris 

propane, pH 7.5 at 30 °C for 15 min prior to the assay to allow for ligand equilibration.  
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Assay mixtures were then transferred into ultrafiltration devices (Microcon 30 kDa cutoff, 

Millipore, Billerica, MA), and the free and bound ligand separated by centrifuging the 

samples at 3,000 rpm for 2.5 min.  Equal volumes of the filtrate and retentate were 

removed and quantified using scintillation counting.  The ratio of EL/Ltotal was determined 

as a function of [E]total, and the Kd value was obtained by fitting eq 2 to these data.   

! 
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5.7 Appendix 

Figure 5.7.1 Structure based sequence alignment of PaAPR and MtAPR.   

The ClustalW Multiple Sequence Alignment program was used.  The bar graph indicates 

the degree of conservation per position.  Strictly conserved residues are outlined in red, 

red letters indicate conserved residues and conserved regions are boxed in blue.  

Alignment pictures were rendered with the server ESPript 2.2 (http://espript.ibcp.fr). 
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Figure 5.7.2 UV-vis absorption spectra of MtAPR.   

UV-vis absorption of 10µM MtAPR in 50 mM Tris–HCl, 150 mM NaCl (pH 8.5 at 4 °C) 

and 10% glycerol, before (––) and after (••••) the addition of 2-fold stoichiometric excess 

of APS.  Inset shows the corresponding difference spectrum resulting from complex 

formation between MtAPR and APS.  The difference spectrum is the spectrum of the 

mixture minus spectrum of enzyme alone. 
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Figure 5.7.3 4.2-K/53-mT Mössbauer spectra of 1 mM MtAPR in the absence 

(vertical bars) or presence of 2 mM APS (solid line) 
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Figure 5.7.4 Rate and equilibrium constants for MtAPR 

A. Single-turnover reduction of APS by Lys144Ala MtAPR performed under 

subsaturating conditions as described in Materials and Methods.  Single-turnover 

reaction to measure kcat/Km was performed with 5 nM wild-type MtAPR or 20 !M 

Lys144Ala MtAPR and 0.25 nM APS.  B. Single-turnover reduction of APS by wild-type 

(filled circles) and Lys144Ala (filled triangles) MtAPR performed under saturating 

conditions as described in Materials and Methods.  Single-turnover reactions to measure 

kmax were performed with 150 !M enzyme and 50 !M APS.  C. APS binding to 

Lys144Ala MtAPR measured by ultrafiltration as described in Materials and Methods. 
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Figure 5.7.5 EPR spectra of radiolytically cryoreduced 250 !M MtAPR in the 

absence (red) or pre-incubated with 1 mM APS (blue) as described in Materials 

and Methods.   

Conditions: temperature, 77 K; microwave frequency, 9.45 GHz; microwave power, 10 

mW; modulation frequency, 100 kHz; modulation amplitude, 10 G; scan time, 167 s; time 

constant, 167 ms.  Asterisks indicate the position of the intense signal at g = 2 

emanating from free radicals generated during cryoreduction and the position of the 

peaks of hydrogen atoms formed during cryoreduction. 
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Figure 5.7.6 4.2-K/53-mT Mössbauer spectra of 250 "M MtAPR in the absence (top) 

or pre-incubated with 1 mM APS (bottom) after #-irradiation (vertical bars) as 

described in Materials and Methods.   

In these experiments, 50% of the starting material is unchanged (red solid line).  

Spectral changes that result from different orientations of the externally applied 53-mT 

magnetic field are highlighted by the black and blue arrows. 
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Figure 5.7.7 EPR spectra of oxidized wild-type MtAPR   

A. Spectra of 250 µM MtAPR treated with a stoichiometric amount of ferricyanide in 

buffer containing 50 mM Tris–HCl, 150 mM NaCl (pH 8.5 at 4 °C) and 10% glycerol. B. 

Expanded version of panel A around g = 2.  Prior to freezing, samples with protein were 

incubated with ferricyanide for 5 min at rt.  Unreacted potassium ferricyanide is present 

in the sample.  However, controls reactions carried out in the absence of protein indicate 

that it does not contribute to features in the spectrum.  Conditions: temperature, 10 K; 

microwave frequency, 9.38 GHz; microwave power, 10 mW. 
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Chapter 6 

Iron-sulfur cluster engineering provides insight into the evolution of substrate 

specificity among the family of sulfonucleotide reductases 

 

This work has been published as “Spectroscopic studies on the [4Fe-4S] cluster in 

adenosine 5’-phosphosulfate reductase from Mycobacterium tuberculosis.” ACS 

Chemical Biology. 2011, in press.  My contributions to this work include generation of p-

loop mutants in PaAPR, MtAPR, and EcPAPR by site-directed mutagenesis and 

performing all kinetic experiments.  

 

6.1 Abstract 

Assimilatory sulfate reduction supplies prototrophic organisms with reduced sulfur that is 

required for the biosynthesis of all sulfur-containing metabolites, including cysteine and 

methionine.  The reduction of sulfate requires its activation via an ATP-dependent 

activation to form adenosine-5'-phosphosulfate (APS).  Depending on the species, APS 

can be reduced directly to sulfite by APS reductase (APR) or undergo a second 

phosphorylation to yield 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the substrate 

for PAPS reductase (PAPR).  These essential enzymes have no human homolog, 

rendering them attractive targets for the development of novel antibacterial drugs.  APR 

and PAPR share sequence and structure homology as well as a common catalytic 

mechanism, but the enzymes are distinguished by two features, namely, the amino acid 

sequence of the phosphate-binding loop (P-loop) and an iron-sulfur cofactor in APRs.  

Based on the crystal structures of APR and PAPR, two P-loop residues are proposed to 
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determine substrate specificity; however, this hypothesis has not been tested.  In 

contrast to this prevailing view, we report here that the P-loop motif has a modest effect 

on substrate discrimination.  Instead, by means of metalloprotein engineering, 

spectroscopic and kinetic analyses, we demonstrate that the iron-sulfur cluster cofactor 

enhances APS reduction by nearly 1000-fold, thereby playing a pivotal role in substrate 

specificity and catalysis.  These findings offer new insights into the evolution of this 

enzyme family, and extend the known functions of protein-bound iron-sulfur clusters. 

 

6.2 Introduction 

Assimilatory sulfate reduction supplies prototrophic organisms with reduced sulfur that is 

required for the biosynthesis of all sulfur-containing metabolites, including the amino 

acids cysteine and methionine (1, 2).  The reduction of sulfate requires its activation by 

an ATP-dependent activation to form adenosine-5'-phosphosulfate (APS).  For 

incorporation of sulfur into biomolecules, the sulfate in APS must be reduced to sulfite 

and finally into sulfide.  In 

plants, algae, and many 

bacteria, APS can be 

reduced directly to sulfite 

by APS reductase (APR); 

alternatively, in fungi, some 

cyanobacteria, and .-

proteobacteria, this 

compound requires a 

second phosphorylation 

step to yield 3'-

!
 
Scheme 6.1.  Reaction catalyzed by sulfonucleotide reductases.  
The reaction is catalyzed by APR when the substrate is APS (R = H) 
and by PAPR when the substrate is PAPS (R = PO3

2–).   
 

 
 
Scheme 6.2.  Mechanism of sulfonucleotide reduction. 
!
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phosphoadenosine-5'-phosphosulfate (PAPS), the substrate for PAPS reductase (PAPR; 

Scheme 6.1, Table 6.1 and Figure 6.1).  These essential enzymes, collectively known as 

sulfonucleotide reductases (SRs), have no human homolog, rendering them an attractive 

target for the development of novel antibacterial drugs and herbicides (3-6).   

 

The importance of SR for microbial and plant survival have motivated investigations of 

their catalytic mechanism and structure (6-14).  These studies support the mechanism 

shown in Scheme 6.2, which involves nucleophilic attack by a conserved C-terminal 

cysteine residue on the substrate leading to the formation of a covalent enzyme S-

sulfocysteine intermediate.  Sulfite is then released by thiol-disulfide exchange with free 

thioredoxin (Trx) in bacterial and fungal SRs or through the action of a C-terminal Trx-

like domain in plants.  Therefore, the general features of the thiol reaction chemistry are 

shared despite the differences in substrate.  SRs are homologous in sequence (~25% 

identity; Appendix 6.7.3), particularly within active site residues that line the active site 

(~50% identity and 75% similarity; Appendix 6.7.4) and share a common three-

dimensional structure (1.2 Å rms deviation; Figure 6.2, panel a) (8, 15). The SR 

monomer adopts a Rossman-like fold and is characterized by four conserved structural 

elements that define the active site: the LTDG motif, phosphate-binding loop (P-loop), 

Arg-loop, and C-terminal ECGLH segment with the catalytic cysteine (Appendix 6.7.3). 

 

Upon closer inspection sequence and structure alignments reveal two key differences 

between APR and PAPR, namely, the amino acid sequence of the P-loop and the 

presence of the cysteine motif, CC-CXXC, in APR.  The P-loop of APR is typically 

comprised of an SFS–GAED motif while the corresponding sequence in PAPR is 

SSSFGIQA (Figure 6.1, panels a and b).  In contrast to the typical role for the P-loop in 

binding a 5'-phosphate group, crystal structures show that the P-loop interacts with the 
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Figure 6.1.  Domain organization and phylogenetic classification within the sulfonucleotide reductase family.  
All SRs have a catalytic cysteine at the end of the C-terminus.  a) Bacterial APRs possess the cysteine motif 
-CC-X~80-CXXC- highlighted in blue that coordinates to a [4Fe-4S] cluster.  In PAPRs, conserved residues in 
yellow replace the cysteine motif.  The phosphate–binding loop in APR ends with two negatively charged 
residues (indicated in purple).  These residues preclude binding of the 3'-phosphate moiety of PAPS, which 
can be accommodated by the P-loop motif of PAPR as it bears residues (in green) with small and neutral 
side chains instead.  b) & c) Dendrograms illustrating the sequence homology between enzymes within the 
SR family.  The sequence alignment was performed using ClustalW (5) and the tree was constructed using 
the Geneious program (6).  Each of the three subclasses of SRs is clearly delineated: APRs from higher 
plants with their unique C-terminal domain (A. thaliana, P. patens-APR), bacterial APRs (P. aeruginosa, M. 
tuberculosis, B. subtilis) and PAPRs (E. coli, P. patens-APR-B and S. cerevisiae).  Differentiation in the P-
loop region (b) and iron-sulfur cluster coordinating residues (c) of the SRs is indicated by color: purple, 
reduce APS; green, reduce PAPS; blue, harbor a [4Fe-4S] cluster; yellow, lack the [4Fe-4S] cluster.  APR 
from B. subtilis and P. patens APR-B are unique and can reduce both APS and PAPS.!
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APS O3' hydroxyl or the PAPS 3'-phosphate (Figure 6.2, panels b and c).  The four 

additional cysteine residues in APR coordinate an iron-sulfur cluster, whereas the 

cofactor is replaced by the YN-DXXT motif in PAPR (Figure 6.1, panels a and c and 

Figure 6.2, panels d and e).  Functional analysis indicates that when the [4Fe-4S] 

cofactor is present, it is required for catalytic activity; however, the cluster is not involved 

in redox chemistry and does not bind directly to APS (6, 8, 16).  Two interesting 

exceptions exist in Bacillus subtilis, which harbors the cluster, but can utilize both APS 

and PAPS as substrates [Bs(P)APR] (17), and the moss Physcomitrella patens, which 

lacks the cysteine pairs and associated cofactor, yet can reduce APS (PpAPR-B) (18).  

Notably, these SR variants exhibit 100- to 1000-fold decreases in their second-order rate 

constants (kcat/Km) for substrate reduction (Table 6.1).  Based on the aforementioned 

observations, it has been proposed that the P-loop is the principle determinant of 

substrate specificity in these enzymes (7-10), and that the [4Fe-4S] cluster plays a 

structural and/or regulatory role (8, 16, 17). 

 

Table 6.1: Apparent second-order rate constants (kcat/Km) for assimilatory SRs.  
Activities were measured with purified recombinant enzymes, as production of sulfite 
from varying concentrations of [35S]-APS and [35S]-PAPS, in the presence of DTT and 
recombinant thioredoxin from E. coli as the electron donor.  
 

 Iron-sulfur 
cluster Substrate kcat/Km 

(M-1min-1) Preferencea  

P. aeruginosa APRb Yes APS 2.0 x 108 APS 

  PAPS 1.6 x 104  
 

M. tuberculosis APRb Yes APS 2.5 x 108 APS 

  PAPS 6.0 x 104  
 

B. subtilis APRc Yes APS 3.1 x 106 None 

  PAPS 1.6 x 106  
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A. thaliana APR2d Yes APS 3.8 x 108 APS 

  PAPSd 1.3 x 104  
 

P. patens APRd Yes APS 3.8 x 108 APS 

  PAPSd 3.8 x 104  
 

E. coli PAPRb No APS 7.2 x 102 PAPS 

  PAPS 2.3 x 108  
 

P. patens APR-Bd No APS 2.1 x 105 APS 

  PAPS 2.2 x 102  

 
aDefined as difference in substrate utilization of #102.  Values measured at bpH 8.0, cpH 8.0 (17), dpH 
9.0 (18).  eValue estimated as the higher limit from ref. (18).  
 

Much effort has been made to understand substrate specificity in enzymes and several 

attempts have been made to rationally alter the specificity of an enzyme with sequence 

and structural information as the blueprint for redesign (19).  One of the first successful 

examples was of changing the coenzyme specificity of Escherichia coli glutathione 

reductase from NADP to NAD (20).  Structurally, NADP and NAD differ by a phosphate 

group at the 3'-postition of the adenosine 5'-phosphate (AMP) moiety, reminiscent of 

APS and PAPS.  In glutathione reductase, the switch in coenzyme preference was 

accomplished by changing amino acids within the P-loop.  Similarly, protein engineering 

has been used successfully by Shokat and coworkers to alter the nucleotide specificity 

of the prototypical tyrosine kinase, Src, to accept non-native nucleotides (21).  This 

concept was subsequently extended to redesign kinase active sites to accept unique 

nucleotide inhibitors to facilitate direct identification of kinase targets (22).  Overall these 

studies demonstrate that enzyme redesign is a powerful tool in exploiting substrate 

recognition elements to elucidate the catalytic mechanism and function of an enzyme.   
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Although it has been proposed that SR substrate specificity is dictated by the P-loop, this 

hypothesis has not yet been tested and, moreover, does not address the potential role of 

the iron-sulfur cluster.  To gain insight into the forces driving specificity and catalytic 

efficiency of SRs we have employed metalloprotein engineering, spectroscopic and 

kinetic analyses.  On the basis of our findings, we propose that the iron-sulfur cluster is a 

major determinant of specificity in this family of enzymes, specifically by enhancing the 

efficacy of the chemical step of catalysis.  In this way, our findings offer new 

perspectives on the evolution of SRs, the function of protein-bound iron-sulfur clusters, 

and hold value for the development of inhibitors for SRs, a validated target for 

antibacterial therapy, including tuberculosis (5, 23, 24). 

!
 
Figure 6.2.  Comparison of putative substrate recognition elements in EcPAPR and PaAPR.  a) Superposition of the 
structures of EcPAPR in charcoal (PDB deposition 2O8V) and PaAPR in white (PDB deposition 2GOY) showing the 
positions of the [4Fe-4S] cluster, the P-loop region and APS bound in PaAPR.  The coordinates for PAPS bound to 
EcPAPR are assumed from ScPAPR (PDB deposition 2OQ2).  C and N indicate the carboxyl- and amino- termini of the 
proteins, respectively.  Comparison between the P-loop regions of b) PaAPR bound to APS (PDB deposition 2GOY) and 
c) EcPAPR bound to PAP (PDB deposition 2O8V, coordinates of PAP assumed from PDB deposition 2OQ2).  Hydrogen 
bonding interactions are indicated by yellow dashes.  In EcPAPR neutral Gln57 and Ala58 take the place of negatively 
charged Glu65 and Asp66 in PaAPR, respectively.  These substitutions allow hydrogen-bonding interactions with the 3'-
phosphate group of PAP and accommodate the bulkier moiety.  In PaAPR, Asp66 compensates for the charge, volume 
and hydrogen binding potential of the 3'-phosphate group.  Comparison between d) the iron-sulfur cluster coordinating 
region in PaAPR and e) the corresponding conserved residues in EcPAPR.  In PaAPR, the [4Fe-4S] cluster ligated by four 
cysteine residues at positions 139, 140, 228 and 231.  In EcPAPR, Tyr131, Asp214 and His216 have cross-linking 
hydrogen-bonding interactions.  
!
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6.3 Results  

6.3.1 P-loop Residues Have Limited Contribution to Substrate Recognition 

The P-loop residues in APRs 

have the SFS–GAED motif while 

the corresponding motif in PAPR 

consists of SSSFGIQA.  In APR, 

the glutamate and aspartate 

residues interact with three P-

loop amide groups and are 

positioned above the dipole of 

the &3 helix, as if they were 

mimicking the interaction of a 

negatively charged phosphate (Figure 6.2, panels b and c).  Conversely, the 

replacement of these acidic residues with Gln and Ala in PAPR would facilitate 

interaction of the amide groups with a 3'-phosphate and accommodate the bulkier moiety.  

To investigate this proposal, we generated E65Q, D66A and E65Q D66A variants of 

APR from Pseudomonas aeruginosa (PaAPR) as well as Q57E, A58D, and Q57E A58D 

variants of PAPR from Escherichia coli (EcPAPR).  Of note, the enzymes from these 

particular species were chosen on the basis of available structural and functional 

information.  We first tested the activity of the variants with native and non-native 

substrates.  Interestingly, none of these substitutions increased kcat/Km for the non-native 

substrate (Appendix 6.7.1).  In addition, the D66A and E65Q single substitutions in 

PaAPR had at most a 10-fold effect on APS reduction, whereas the Q65E and A58D 

replacements in EcPAPR exhibited a 1000-fold effect on the reduction of PAPS.  All 

double mutants were significantly impaired relative to their wild-type counterparts.  To 

!
 
Figure 6.3.  Changes in the equilibrium dissociation 
constants of the P-loop variants of APR and PAPR.  The 
ratios of Kd values relative to wild-type enzymes for the P-
loop variants are plotted.  Blue and green bars indicate 
inhibition by AMP and PAP, respectively. Details regarding 
the kinetic parameters of all variants are presented in 
Appendix 6.7.1. 
!
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complement this analysis, we measured the dissociation constants (Kd) for the reaction 

products AMP and 3'-phosphoadenosine-5'-phosphate (PAP) for the P-loop variants 

(Figure 6.3).  PaAPR variants showed at most a 2.5-fold enhancement in PAP binding, 

whereas no EcPAPR substitution enhanced association with AMP.  Analogous to kinetic 

studies, the binding of P-loop variants to the native ligand was diminished, relative to the 

wild-type enzyme.  Overall, this analysis shows that modification of the P-loop decreases 

binding and catalysis for the native ligand; however, the converse does not hold true as 

amino acid replacements do not correlate with enhancements for the non-cognate 

substrate or ligand.   

 

6.3.2 EcPAPR4cys Incorporates a [4Fe-4S] Cluster  

As the P-loop substitutions did not succeed in altering substrate specificity, a possible 

contribution of the iron-sulfur cluster was investigated.  Based on the similar three-

dimensional fold of APR and PAPR, we reasoned that EcPAPR residues (Y131, N132, 

D214, and T218) might be replaced by cysteine, and enable coordination of an iron-

sulfur cluster (Figure 6.2, panels d and e).  Thus, site-directed mutagenesis was 

employed and the resulting protein was co-expressed in bacteria with the pDB1282 

plasmid that harbors the isc operon for cluster assembly (25).  This approach afforded 

10 mg of protein per liter of culture.  The resulting enzyme, termed EcPAPR4cys, eluted 

as a dimer from the gel filtration column, analogous to wild-type EcPAPR, and the purity 

was estimated to be greater than 95% (Figure 6.4, panel a, inset).  The UV-Vis 

absorbance spectrum of EcPAPR4cys showed a maximum in the visible range at 410 

nm, which is similar to the [4Fe-4S] chromophore of PaAPR (Figure 6.4, panel a) (16).  

However, ICP analysis of EcPAPR4cys showed that each mole of protein contained only 

2.3 mole of iron.  The amount of iron could not be increased by reconstitution or 

anaerobic purification (data not shown).   
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To identify the types and relative amounts of the Fe/S clusters in EcPAPR4cys, we 

employed a combination of Mössbauer and EPR spectroscopies and analytical methods.  

ICP analysis of a sample of EcPAPR4cys enriched in 57Fe for Mössbauer spectroscopy 

reveals 2.0 Fe per polypeptide.  The 4.2-K/53-mT Mössbauer spectrum of this sample 

(Figure 6.4, panel b) shows that the majority (82%) of the iron associated with EcPAPR 

gives rise to a quadrupole doublet with parameters typical of [4Fe-4S]2+ clusters: isomer 

shift (*) of 0.45 mm/s and quadrupole splitting parameter (#EQ) of 1.03 mm/s.  The 

remaining iron (15%) exhibited properties reminiscent of a [2Fe-2S]2+ cluster (* = 0.27 

mm/s, #EQ = 0.57 mm/s).  The [2Fe-2S]2+ form is also observed in plant and bacterial 

APRs and most likely results from partial degradation of the [4Fe-4S] cluster (16, 17).  

An identical EPR sample does not reveal the spectroscopic signatures of paramagnetic 

Fe/S clusters with S = 1/2 ground state (data not shown). Taken together, Mössbauer 

and ICP analyses indicate that approximately half of all EcPAPR4cys monomers 

coordinate a [4Fe-4S] cluster. 

 

Although the iron-sulfur cluster in APR does not undergo redox chemistry during 

catalysis, the reduced form of the cluster can serve as a useful tool for characterization 

and mechanistic studies.  Along these lines, we have recently characterized the 1+ state 

of the [4Fe-4S] cluster in APR from Mycobacterium tuberculosis (MtAPR) using electron 

paramagnetic resonance (EPR) spectroscopy (16).  Like MtAPR, the EPR signal of the 

chemically reduced EcPAPR4cys is broad, but shows rhombic symmetry with apparent 

g-values of 2.07, 1.90 and 1.76, which are characteristic of a [4Fe-4S] cluster in the 1+ 

state (Figure 6.4, panel c).  Spin quantitation of the EPR signals from g = 2.33 to 1.58 

indicate low reduction efficiency (0.04 spins/mol compared to 0.4 spins/mol for MtAPR).  
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A likely explanation for the lower signal intensity is that the constellation of residues 

surrounding the EcPAPR4cys cluster differs between from MtAPR, resulting in distinct 

electronic environments and reduction potentials (Appendix 6.7.3).  Nonetheless, the 

overall similarity of Mössbauer and EPR parameters to those observed for MtAPR 

provides further support for the coordination of a [4Fe-4S]2+ cluster by EcPAPR4cys. 
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Figure 6.4.  Spectroscopic characterization of EcPAPR4cys.  a) UV-Vis absorption spectra of EcPAPR 
and EcPAPR4cys.  UV-Vis absorption of 10µM EcPAPR (!) or EcPAPR4cys (") in buffer containing 50 
mM Tris–HCl, 150 mM NaCl (pH 7.4 at 25 °C) and 10% (v/v) glycerol.  Inset, denaturing polyacrylamide 
gel with Coomassie staining displaying purified EcPAPR4cys at an apparent molecular mass of ~28 
kDa.  b) 4.2-K/53-mT Mössbauer spectra of 1 mM EcPAPR4cys.  Experimental spectra are shown as 
vertical bars.  The solid line is a quadrupole doublet simulation with the following parameters: (�) /1= 
0.45 mm/s, "EQ1= 1.03 mm/s (82%) and (� �) /2= 0.27 mm/s, "EQ2= 0.57 mm/s (15%).  The 
parameters for the majority species (� �) are consistent with a [4Fe-4S]2+ cluster and the parameters 
for the minor species (�) are consistent with a [2Fe-2S]2+ cluster.  The remaining area of the spectrum 
is a broad featureless absorbing species that accounts for approximately 3% of the total area of the 
spectrum.  c) EPR spectrum of photoreduced EcPAPR4cys.  Anaerobic EcPAPR4cys (250 )M) was 
photoreduced as described in Materials and Methods.  The EPR spectrum was recorded at 10 K and the 
instrument parameters were: microwave power, 10 mW; receiver gain, 2 x 104; modulation amplitude, 10 
G and microwave frequency, 9.43 GHz.  
!
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We next evaluated the effect of the 

[4Fe-4S] cluster in EcPAPR4cys 

on the ability of EcPAPR to use 

PAPS or APS as substrates.  To 

this end, we first monitored 

formation of the S-sulfocysteine 

intermediate, which is stable in 

plant and bacterial (P)APRs in the 

absence of Trx (6, 26).  

EcPAPR4cys was incubated in the 

presence or absence of APS or 

PAPS and the mass of the intact 

protein was analyzed by 

electrospray ionization mass 

spectrometry (ESI-MS).  The 

deconvoluted m/z values obtained 

from these experiments are listed 

in Appendix 6.7.2.  In the absence 

of substrate, the mass spectrum of 

EcPAPR4cys is consistent with the 

molecular weight of the apoenzyme (Figure 6.5, panel a, solid circles).  Incubation of 

EcPAPR4cys with PAPS resulted in formation of a new series of ions with a molecular 

weight 80 Da higher than enzyme alone, corresponding to the S-sulfocysteine adduct 

(Figure 6.5, panel b, asterisks).  In the presence of APS two series of ions were 

observed corresponding to molecular weight of the apoenzyme (Figure 6.5c, solid 
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Figure 6.5.  Mass spectrometric analysis of intact 
EcPAPR4cys.  ESI mass spectra of EcPAPR4cys (10 )M) 
without ligand (a), with PAPS (b) and with APS (c).  Ions 
correspond to the enzyme (E, !) and the covalent enzyme 
S-sulfocysteine intermediate (E-SO3

–, ,).  The calculated 
masses after deconvolution of m/z values are 28829.23 Da 
(a), 28908.55 Da (b), 28829.23 and 28909.54 Da (c).  See 
also Appendix 6.7.12. 
!



! 156!

circles) and to the S-sulfocysteine intermediate (Figure 6.5, panel c, asterisks).  

Quantitative adduct formation was likely limited by our finding that not all EcPAPR4cys 

monomers are associated with a [4Fe-4S] cluster.  Control experiments performed with 

wild-type enzymes and native substrates also showed the expected mass shifts 

(Appendix 6.7.2).  These data show that EcPAPR4cys can generate the adduct with 

PAPS or APS as a substrate. 

 

6.3.3 EcPAPR4cys can reduce APS as substrate   

As reported above, EcPAPR4cys forms an enzyme S-sulfocysteine intermediate with 

APS, which should be competent for reduction by Trx to generate sulfite.  To test this 

possibility, we performed gel-labeling experiments with [35S]-labeled PAPS or APS 

(Appendix 6.7.5).  Incubation of [35S]-PAPS or [35S]-APS with EcPAPR4Cys, and 

analysis of the reaction by nonreducing SDS-PAGE, showed a radioactive band at the 

molecular weight of EcPAPR indicating transfer of the [35S]-label to the enzyme.  

Addition of Trx to this enzyme intermediate resulted in the complete loss of radiolabeling, 

as expected for reduction of the thio-sulfate bond.  Analogous experiments were carried 

out using wild-type EcPAPR, which demonstrated comparable labeling with [35S]-PAPS; 

by contrast, only a faint band was seen in reactions that contained [35S]-APS.  Taken 

together, the MS and radiolabeling experiments demonstrate that EcPAPR4cys forms a 

catalytically competent S-sulfocysteine intermediate with PAPS or APS, and that the 

variant reacts with APS with an enhanced rate compared with wild-type protein. 

 

Having established that the EcPAPR4cys iron-sulfur protein exhibits activity, we 

proceeded to measure kinetic parameters for this variant.  Table 6.2 shows the resultant 

data and is presented alongside data obtained for wild-type EcPAPR and PaAPR (see 

also Appendix 6-11).  The second-order rate constant also known as the specificity 
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constant (kcat/Km; representing the reaction for free enzyme and substrate) demonstrates 

that EcPAPR4cys catalyzes APS reduction with approximately 600-fold less efficiency 

relative to PaAPR.  Importantly, however, that the rate of APS reduction by the variant 

protein is nearly 1000-fold increased compared to wild-type EcPAPR.  On the other hand, 

the kcat/Km for reaction of EcPAPR4cys with PAPS is almost the same as the native 

enzyme.   

 

Table 6.2: Single-turnover rate and equilibrium constants for PaAPR, EcPAPR and 
EcPAPR4cys.a  

Enzyme 

Iron 
content 

(mol 
Fe/mol 
protein) 

kcat/Km 
(M-1 min-1)b 

kmax 

(min-1)c 
K1/2 

("M) 
Kd

AMP 

("M)g 
Kd

PAP 

("M)g 

 
 APS PAPS APS PAPS APSd PAPSe   

PaAPR 3.5 2.2 x 107 1.2 x 103 3.1 %1 x 10-3 0.1 #100f 35 8.1 x 103 

EcPAPR %0.1 %40 3.2 x 106 %1 x 10-3 1.6 #100f 0.9 3.4 x 103 1.4 

EcPAPR
4cys 

2.3 3.9 x 104 6.8 x 106 0.1 1.8 #100f 0.1 5.6 x 103 4.3 

 

aMeasurements represent the average of three or more independent determinations and the S. D. was 
%15% of the value in all cases.  The concentration of protein was determined by quantitative amino acid 
analysis and further corrected by the amount of active enzyme present.  Unless otherwise stated, reaction 
conditions were 100 mM Bis-Tris propane, pH 6.5, 5 mM dithiothreitol, and 10 )M thioredoxin at 30 °C (see 
Materials and Methods).  bkcat/Km values were measured as described in Materials and Methods.  ckmax 
measured with saturating enzyme (see Materials and Methods).  d10 nM or e1 )M thioredoxin was used to 
measure K1/2 values for sulfite production, by varying the concentration of enzyme (see Materials and 
Methods).  fAt high concentrations of enzyme, the reactions became too fast to measure by hand.  gKd 
measured at pH 7.5 
 

The preceding data indicate that the iron-sulfur cluster in EcPAPR4cys contributes to 

catalytic efficiency by enhancing substrate affinity and/or stabilizing the catalytic 

transition state.  To gain further insight into the role of the iron-sulfur cluster in these rate 

enhancements, we evaluated the saturating single-turnover rate constant (kmax) and the 



! 158!

K1/2 for EcPAPR4cys and wild-type enzymes 

(Table 6.2).  These data reveal that 

EcPAPR4cys exhibits a 100-fold increase in 

the value of kmax for APS relative to EcPAPR, 

while the kmax for PAPS was the same within 

error.  A 9-fold enhancement in the K1/2 of 

PAPS was observed for EcPAPR4cys 

compared to wild-type, but differences in the 

K1/2 of APS could not be discerned due to the 

limitations imparted by the maximum 

achievable enzyme concentration.  As 

expected, the K1/2 values for all enzymes with 

cognate substrate were 102-103–fold greater 

relative to the non-cognate substrate.  The 

binding of AMP and PAP to the 

aforementioned enzymes was also examined.  

The resulting Kd values indicate that 

incorporation of the iron-sulfur cluster in 

EcPAPR diminishes ligand binding by 1.5 to 3-

fold (Table 6.2), suggesting that increased 

electrostatic repulsion from the negatively 

charged [Fe4S4(Cys)4]2- center may hamper 

binding of the 5'-phosphate dianion.  

Collectively, these results demonstrate that the 
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Figure 6.6.  Time-dependent inactivation of 
SRs.  Proteins (10 )M) were exposed to 
aerobic conditions at 4 °C over 2 days.  At 
the indicated times, each enzyme was 
analyzed for its ability to catalyze the 
reduction of APS or PAPS.  EcPAPR with 
PAPS (a), EcPAPR4cys with APS (b), inset 
shows the UV-vis absorption spectra of 
EcPAPR4cys at time 0 (black trace) and 48 
h (gray trace), and EcPAPR4cys with PAPS 
(c).!
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iron-sulfur cluster in EcPAPR enhances substrate binding and APS reduction. 

 

Finally, we evaluated the time-dependent inactivation of EcPAPR and EcPAPR4cys 

under prolonged exposure to aerobic conditions (Figure 6.6).  In the case of 

EcPAPR4cys, dissociation of the iron-sulfur cluster from the protein scaffold could also 

be monitored by loss of absorption at 410 nm.  Our data show that the half-life of 

EcPAPR, which lacks the cluster, was ~35 hours (Figure 6.6, panel a).  However, 

inactivation and concomitant cluster decomposition for EcPAPR4cys occurred at an 

enhanced rate, with a half-life of ~10 hours (Figure 6.6, panels b and c).  A strong 

correlation between an intact iron-sulfur cluster and catalytic activity is consistent with 

previous data obtained from plant and bacterial APRs (11, 17, 18, 27). 

 

6.4 Discussion 

Assimilatory sulfonucleotide reductases – APR and PAPR – exhibit similar sequences, 

structure, and thiol reaction chemistry (6-9).  Analysis of the phylogenetic distribution of 

SRs suggests that PAPR evolved from APR through a single horizontal gene transfer 

event (28).  The conserved reaction mechanism serves as a template for the divergent 

evolution of these two subclasses, which catalyze the reduction of substrates that differ 

by a single 3'-phosphate group.  There are over 15 such enzyme families with common 

reaction mechanisms despite differences in substrate utilization (29, 30).  In divergent 

evolution, protein folds and active site structural features are frequently reused amongst 

different family members and adapted to new catalytic purposes (31).  Indeed, a closer 

look at the active sites of PaAPR and EcPAPR reveals that several strictly conserved, 

positively charged lysine and arginine residues interact with the sulfate moiety or "-

phosphate (Figure 6.7 and Appendix 7.6.4).  Moreover, the C-terminal peptide segment 

bearing the ECGH motif, which includes the cysteine nucleophile, is also conserved.  
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However, two critical features distinguish APR and PAPR active sites: residues in the P-

loop region and the presence/absence of an iron-sulfur cluster.  These distinctions afford 

a unique opportunity to explore substrate recognition and identify underlying principles 

that govern specific features of APR that were targeted for alteration during the 

specialization of PAPR function. 

 

GTP/ATP-dependent proteins contain a glycine-rich motif with the sequence, 

GXXGXGKT/S, known as the P-loop (7, 32, 33).  This structural moiety forms a large 

anion hole that interacts with phosphates.  ATP pyrophosphatases (ATP PPases) harbor 

a modified P-loop, also known as the PP motif (34), with the fingerprint peptide 

SGGXDS/T.  A highly modified version of the PP motif was discovered in EcPAPR 

(SXG), which is also found in enzymes with homologous protein folds, including ATP 

sulfurylase and GMP synthetase (34-36).  Among ATP PPases, the P-loop interacts with 

the 5'-phosphates of ATP (36, 37).  Interestingly, however, structures of APR and PAPR 

co-crystallized with nucleotides show that the 3'-group on the ribose interacts with 

residues in the P-loop (8, 9).  In SRs, the motif is characterized by the hydrophobic !1-

strand and "3-helix that flank the N- and C-terminal sides of the SFS–GAED and 

SSSFGIQA sequences in PaAPR and EcPAPR, respectively.  Differences in the P-loop 

motif have also been observed in ATP synthases, wherein the sequence alterations 

have been suggested to imply diversity in nucleotide recognition and/or catalytic 

mechanism (38).  Since SRs share a common catalytic mechanism the change in P-loop 

sequences, particularly the acidic residues in APR, could be implicated in substrate 

discrimination.  
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In this study, site-directed mutagenesis of the P-loop entailed the replacement of 

negatively charged E65 and D66 PaAPR residues with corresponding neutral glutamine 

and alanine residues found in EcPAPR and visa versa.  Characterization of the resulting 

variants has led to two significant observations.  First, any change in P-loop residues 

had an adverse effect on catalytic efficiency, underscoring the essential nature of these 

highly conserved motifs in the two subclasses of catalysts.  Second, variants of APR 

exhibited only a modest enhancement in PAP binding.  This finding indicates that while 

neutral P-loop residues contribute somewhat to accommodating the 3'-phosphate group, 

they cannot account entirely for substrate specificity.  Moreover, P-loop variants of 

PAPR did not enhance binding to AMP, showing that the mere presence of a negatively 

charged residue in the P-loop sequence was insufficient.  Along these lines, it is possible 

that additional P-loop modifications are required to enhance the binding of PAPS.  For 

instance, EcPAPR S52 and S53 (of the SSFGIQA sequence) establish hydrogen bonds 

with the 3'-phosphate group of PAPS, whereas the corresponding residues in PaAPR (of 

the SFSGAED sequence) do not make any contact with the APS 3'-hydroxyl group.  

Future experiments will be required to delineate this and other possibilities. 

 

The second distinguishing feature among SRs is that APR contains the conserved 

cysteine sequence, CC-CXXC, which ligates an essential [4Fe-4S] cluster.  In place of 

this cofactor, PAPR possesses the semi-conserved motif, YN-DXXT that links the "7-

helix and C-terminal (-turn by hydrogen bond interactions.  In the course of our study, 

we attempted to substitute the cysteine pairs in PaAPR with the YN-DT motif; however, 

this variant failed to express in E. coli (data not shown).  As an alternative approach to 

investigate the role of this region, we engineered an iron-sulfur cluster into EcPAPR.  

Based on the high degree of sequence and structural homology between SRs an 

empirical approach was adopted to generate the new metal-binding site.  This strategy 
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has been employed to design novel metalloproteins, including the creation of a Mn(II)-

binding site in cytochrome c peroxidase based on structural homology with manganese 

peroxidase (39, 40).  Favorable protein folds such as the Trx scaffold have also been 

exploited to introduce a cofactor and alter enzyme function (41).  Assembly of a [2Fe-2S] 

cluster through directed evolution served to bridge two monomeric Trx subunits and 

enabled the resulting dimer to catalyze oxygen-dependent sulfhydryl oxidation (42, 43).  

In another instance, the second cysteine residue of the native CXXXCXXXC motif in the 

catalytic subunit of dimethyl-sulfoxide reductase (DmsA) was replaced leading to the 

assembly of a paramagnetic [3Fe-4S] cluster (44).   

 
In the case of EcPAPR, our goal was to introduce a [4Fe-4S] cluster in order to probe 

the role of the metallocenter in sulfonucleotide reduction.  Spectroscopy (UV-vis, 

Mössbauer, EPR, mass) and single turnover kinetic analysis were employed to 

characterize the resulting variant, termed EcPAPR4cys.  Though we did not identify 

conditions that permitted quantitative cluster incorporation into each protein monomer, 

our spectroscopic data provides strong support for the assignment of a [Fe4S4(Cys)4]2- 

center and compares favorably with studies of MtAPR (16). Comparison of kcat/Km 

between EcPAPR4cys with wild-type PaAPR and EcPAPR showed that the installation 

of an iron-sulfur cluster dramatically improved the ability to turnover the APS (~103-fold).  

Further studies revealed a minor role in substrate binding, with the majority of the rate 

enhancement stemming from the improvement in kmax, which reports on the rate of the 

chemical step.  Furthermore, time-dependent inactivation studies also showed that the 

cluster was required for catalytic activity.   

 

Previously, we have observed mid-range electrostatic interactions between the iron-

sulfur cluster and the ligand present within the APR active site (16).  These findings are 
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also supported by computational analysis (45).  Based on these data, we proposed that 

the cluster cofactor plays a role in pre-organizing positively charged active site residues 

and in substrate activation.  Specifically, that the charge from and polarization within the 

[Fe4S4(Cys)4]2– cluster could serve to activate the sulfate group of APS, thereby 

facilitating S-OP cleavage and S-S bond formation in the reaction.  In the absence of an 

iron-sulfur cluster, PAPR could achieve something similar via repulsion between the 

extra 3’-phosphate group of PAPS and the sulfate end of the 5’-phosphosulfate.  Our 
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Figure 6.7. Model for divergent evolution of PAPR from APR.  APR and PAPR can be considered to be 
at the margins of divergent evolution with optimum catalytic efficiency for APS (blue) and PAPS (green), 
as indicated by the color spectrum in the arrow.  A comparison of their active sites reveals two 
consistent features, namely, strictly conserved positively charged lysine and arginine residues (orange 
circles) that interact with the substrate, and the C-terminal peptide bearing the ECGH motif, which 
includes the cysteine nucleophile, is also conserved (pink circles).  The catalysts differ largely in their P-
loop sequence motifs and their ability to ligate a [4Fe-4S] cluster through four cysteine residues.  Based 
on the catalytic efficiencies for APS and PAPS, EcPAPR4cys and the P-loop variants appear to be 
intermediates in the evolutionary path of the functional divergence of PAPR from APR.  The catalytic 
efficiency of the P-loop variants of EcPAPR for PAPS is comparable to the wild-type enzyme and is 
therefore indicated by a break in the arrow.  Details regarding the kinetic parameters of all variants are 
presented in Table 2 and 7.6.1. 
!
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observation, that insertion of an iron-sulfur cluster in PAPR enhances the rate of APS 

reduction, is entirely consistent with this model.  In this regard, iron-sulfur clusters are 

extremely versatile cofactors with enzymatic functions in electron transfer, Lewis-acid 

assisted catalysis, radical generation, and source of sulfur during biosyntheses of 

cofactors (46-53).  This present study extends this list of functions to include substrate 

specificity.  

 

From our study and sequence analysis, it is clear that the natural evolution of PAPR 

from APR involved several iterations of mutations.  These factors are not easily 

recapitulated, and we note that none of the variants explored in this study resulted in a 

complete change of substrate specificity.  Functional studies of EcPAPR4cys and the P-

loop variants suggest that these enzymes may represent intermediates in the 

evolutionary pathway of SRs (Figure 6.7).  This proposal is based on two interesting 

observations related to the catalytic efficiency and relative stability.  First, is the striking 

similarity between (P)APR from B. subtilis and the P-loop variants of PaAPR.  These 

enzymes coordinate an iron-sulfur cluster, but also contain a neutral residue in the 

position equivalent to residue 66 of PaAPR (or position 58 of EcPAPR).  However, these 

catalysts all exhibit a significant reduction in catalytic efficiency with APS (#102), 

compared to wild-type PaAPR (Table 6.1).  Second, like APR-B from P. patens, the 

EcPAPR P-loop variants lack the iron-sulfur cluster and also display a decrease in 

enzyme activity relative to wild-type PaAPR (Table 1).  Interestingly, we note that both 

PpAPR-B and EcPAPR gain in stability by forfeiting the iron-sulfur cluster.  EcPAPR 

retains enzymatic activity over 2 days in contrast to APR, which loses activity within half 

a day.  Similarly, PpAPR-B remains active for 5 days compared to its homolog, PpAPR, 

which harbors a [4Fe-4S] cluster and is only active for 2 days under aerobic conditions 

(18).  Finally, we note that both BsAPR and PpAPR-B have markedly decreased 
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catalytic efficiency relative to other SRs (Table 6.1), indicating that these enzymes are 

not as specialized for the reductase function as the latter group of catalysts.  Taken 

together, these observations show how characteristics of our experimentally generated 

variants resemble those of SRs from naturally occurring species, corroborating our 

proposal that the variants are representative of intermediates in the path of divergent 

evolution of PAPR from APR (Figure 6.7). 

 

6.5 Conclusion 

In conclusion, the cysteine motif that coordinates the [4Fe-4S] cluster within APR can be 

accommodated by the PAPR scaffold and confers enhanced binding and catalytic 

activity for the APS substrate.  This work provides valuable insight into the contribution 

of the iron-sulfur cluster to catalysis, and a better understanding of the mechanisms 

involved in the divergent evolution of PAPR from APR. 

 

6.6 Experimental procedures 

6.6.1 Material 

APS (#95%) was obtained from Biolog Life Sciences Institute (Bremen, Germany).  

PAPS (#88%) was obtained from Calbiochem (La Jolla, CA). PAP, AMP, iron (III) 

chloride were purchased from Sigma-Aldrich (St. Louis, MO).  Fe-57 metal was 

purchased from Isoflex USA (San Francisco, CA) and micro bio-spin P30 columns were 

from Bio-Rad Laboratories (Hercules, CA).   

 

6.6.2 Cloning, Expression and Purification of SRs.  

Construction of the expression vectors encoding wild type PAPR from E.coli (EcPAPR), 

wild-type APR from M. tuberculosis (MtAPR) and wild-type APR from P. aeruginosa 

(PaAPR) cloned into the vector pET24b (Novagen) has been previously described (1, 2).  
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The EcPAPR4cys variant was generated from the EcPAPR template using the Quik-

change site-directed mutagenesis kit (Stratagene, La Jolla, CA) and the following primer 

sequences sequentially: YN131CC: 5$ 

CGTTGAAGGCATTGAAAAGTGCTGTGACATCAACAAAGTCGA ACC 3$, D214C: 5' 

GAAGGATATTTATCGGTGGGCTGCACC CATACAACCCGT AAATGG 3' and T217C: 

5' GGTGGGCTGCACCCATTGCACCCGTAAATGGG 3'.  Other PaAPR, MtAPR and 

EcPAPR variants using site-directed mutagenesis with the following primers: 5$ 

CAGCGGCGCCGAGGCTGTCGTCCTGGTAG 3$ for PaAPR D66A, 5$ 

CTTCAGCGGCGCCCAGGACGTCGTCCTG 3$ for PaAPR E65Q, 5$ 

CTTCCAACATGGCTGCGGCGGTGCTGGTGGATC 3$ for MtAPR D69A, 5$ 

GCTTTGGCATTCAGGATGCGGTGAGCCTGCATC 3$ for EcPAPR A58D, 5$ 

CTTTCTTCCAGCTTTGGCATTGAAGCGGCGGTGAGCCTGCATCTG 3$ for EcPAPR 

Q57E.  Successful cloning was confirmed by DNA sequencing analysis.  Plasmids 

encoding EcPAPR4cys, MtAPR or PaAPR pET24 and pACYC (containing genes 

encoding the isc operon of six accessory proteins required for Fe–S cluster biosynthesis 

in A. vinelandii under the control of an arabinose-inducible promoter) (27) were co-

transformed into E. coli BL21(DE3) (Novagen, San Diego, CA) and plated on L-agar 50 

)g/ml kanamycin and 100 )g/ml carbenicillin.  Plasmid encoding EcPAPR, EcPAPR 

A58D and EcPAPR Q57E pET24 was transformed into E. coli BL21(DE3) and plated on 

L-agar 50 )g/ml kanamycin.  A single colony was picked and added to 5 ml of L-broth 

plus antibiotics and grown overnight with shaking at 37 °C.  This culture was used as a 

0.5% 1 L of L-broth plus antibiotics and grown with shaking at 37 °C until absorbance at 

600 nm reached approximately 0.6.  For EcPAPR4cys, MtAPR and PaAPR arabinose 

and iron citrate were added to final concentrations of 20 mM and 0.8 mM, respectively 

and the culture grown as above for 1 hr.  At this point the flasks were removed from the 
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incubator.  IPTG was added to a final concentration of 0.3 mM and the flasks were 

returned to the incubator and grown overnight at 18 °C with shaking at 200 rpm.  For 

EcPAPR, EcPAPR A58D and EcPAPR Q57E after the culture reached an absorbance of 

0.6 at 600 nm, IPTG was added to a final concentration of 0.4 mM, the flasks returned to 

the incubator and grown for 5 hours at 30˚C.  Cultures were harvested by centrifugation 

(4 °C, 4,300 g).  After removal of the supernatant the pellets were stored at -80 °C until 

required.  All purification steps were carried out at 4 °C.  Cell pellets were resuspended 

in 30 ml Buffer A (20 mM sodium phosphate, 0.5 M NaCl, 10 mM imidazole; pH 7.4) 

supplemented with 0.1 mM PMSF, 10µg/ml DNase, 5 µg/ml lysozyme and lysed by 

sonication.  Lysates were centrifuged (20,000g, 15 min) and loaded onto a 5 ml HisTrap 

Chelating column (GE Healthcare, Piscataway, NJ) equilibrated in the same buffer.  

Unbound material was washed off with 50 ml of Buffer A and bound proteins then eluted 

with Buffer B (20 mM phosphate, 0.5 M NaCl, 250 mM imidazole; pH 7.4).  Fractions 

containing the desired protein were pooled, concentrated by centrifugation (Amicon 10 

kDa cutoff, Millipore, Billerica, MA) and loaded onto a 16/60 Superdex 200 size 

exclusion column previously equilibrated in Buffer C (50 mM Tris-HCl, 150 mM NaCl, 5 

mM DTT, 10% glycerol; pH 7.4 at 25 °C).  Fractions containing sulfonucleotide 

reductase were pooled, snap-frozen in liquid nitrogen, and stored at -80 °C.  Protein 

concentrations were determined by quantitative amino acid analysis (Molecular Structure 

Facility, UC-Davis, CA and Ref. (2) and corrected by the number of active molecules 

determined by the activity assay for sulfonucleotide reductases described below.  Iron 

content of each protein preparation was determined in duplicate by inductively coupled 

plasma (ICP) analysis.  

 

6.6.3 Chemical Reconstitution of EcPAPR4cys 
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Reconstitution experiments were performed in the glove box.  EcPAPR4cys desalted 

into 1.5 mL Buffer C using P30 columns, was successively incubated, with gentle stirring, 

with 5 mM DTT (30 min), 5 M equivalents of FeCl3 (added dropwise then incubated for 

45 min) and Na2S.9H2O (added dropwise then incubated for 2 h).  Excess ligand was 

removed from the reconstitution reaction by desalting the mixture using PD10-

Sepharose columns, GE Healthcare) into Buffer C. 

 

6.6.4 Gel-labeling of EcPAPR and EcPAPR4cys 

In this experiment, 5 )M EcPAPR (lanes 1-4) and EcPAPR4cys, (lanes 5-8) were 

incubated at room temperature in 50 mM bis-tris propane (pH 7.0), 100 mM NaCl with 

35S-PAPS only (lanes 1 and 5); with 35S-APS only (lanes 3 and 7); with 35S-PAPS for 10 

min followed by the addition of 10 )M thioredoxin (lanes 2 and 6) or with 35S-APS for 10 

min followed by the addition of 10 )M thioredoxin (lanes 4 and 8). SDS-PAGE load dye 

(without reductant) was added to terminate the reaction.  The samples were heated at 

60 ˚C for 3 min and size-fractionated by 12 % non-reducing SDS-PAGE.  The 

incorporation of radioactivity was analyzed with a Phosphorimager.  

 

6.6.5 Determination of active SR 

Reactions were carried out at 30 °C in 100 mM bis-tris propane (pH 6.5) buffer.  Non-

radioactive APS or PAPS was doped with a trace amount of [35S]-APS or [35S]-PAPS 

respectively, as previously described (6).  1 )M of sulfonucleotide reductase was 

incubated with 2 )M substrate.  The reactions were spotted on PEI-cellulose TLC plates, 

developed in 1M LiCl and analyzed using Typhoon Phosphorimager (GE Healthcare) 

analysis with Image Quant quantitation software.  Under conditions that had 

quantitatively produced the S-sulfocysteine intermediate, a new signal on the TLC plate 

was observed as a discrete spot that remained at the origin of the TLC plate.  For each 
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enzyme, the reaction endpoint was determined at the point where no further substrate 

was consumed or intermediate was formed.  The number of active molecules was 

calculated as the fraction A/(A+B), where A and B are signals quantified from the 

intermediate formed and the unused radioactive substrate, respectively. 

 

6.6.6 Preparation of EcPAPR4cys for EPR and Mössbauer Spectroscopy.   

Samples of EcPAPR4cys suitable for EPR spectroscopy were prepared inside of an 

anaerobic chamber with O2 levels % 1 ppm.  The procedure for photoreduction was 

carried out as previously described (16).  Briefly, purified EcPAPR4cys was exchanged 

into anaerobic buffer containing 50 mM Tris–HCl, 150 mM NaCl (pH 8.5 at 4 °C) and 

10% glycerol.  To reduce the cluster in EcPAPR4cys, reactions contained 250 )M 

enzyme, 25 mM sodium oxalate, and 250 )M deazaflavin in a total volume of 250 )L.  

The reaction mixtures were transferred to EPR tubes, chilled in an ice-salt bath (-6 °C) 

and irradiated with light from a 100 W quartz halogen lamp (Applied Photophysics, 

Surrey, UK) for 30 min.  After illumination, samples were immediately frozen in liquid 

nitrogen and analyzed by low-temperature EPR.  Mössbauer spectra were recorded on 

proteins that contained 57Fe in place of natural-abundance iron.  57Fe was incorporated 

into EcPAPR4cys by supplementation of E. coli growth media, and samples contained 1 

mM protein, were transferred to Mössbauer cups and frozen in liquid nitrogen. 

 

6.6.7 EPR Spectroscopy   

X-band EPR spectra of photoreduced samples were recorded on a Bruker EMX 

spectrometer (Billerica, MA) equipped with an Oxford Instruments ITC4 temperature 

controller, a Hewlett-Packard model 5340 automatic frequency counter and Bruker 

gaussmeter.  Figure 6.legend contains relevant instrumental parameters.  The sample 

buffer was used to record the baseline under conditions identical to those in which the 
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sample spectra were obtained.  The baseline was subtracted from the EcPAPR4cys 

spectrum shown in the figure.  Spin concentration in EcPAPR4cys samples was 

determined by double integration of the EPR signal over a range of 2 kgauss and 

comparison with double integrals of 1 mM Cu(ClO4)2 in sample buffer.  Figures were 

generated using Spin Count (ver 2.6.7) created by Professor M.P. Hendrich at Carnegie 

Mellon University.  Spin Count is available at http://www.chem.cmu.edu/groups/hendrich/.  

 

6.6.8 Mössbauer Spectroscopy 

Mössbauer spectra were recorded on a spectrometer from WEB research (Edina, MN) 

operating in the constant acceleration mode in transmission geometry.  Spectra were 

recorded with the temperature of the sample maintained at 4.2 K in an externally applied 

magnetic field of 53 mT oriented parallel to the .-beam.  The quoted isomer shifts were 

relative to the centroid of the spectrum of a foil of &-Fe metal at room temperature.  Data 

analysis was performed using the program WMOSS from WEB research. 

 

6.6.9 Mass Spectrometry 

For mass spectrometric analysis, samples were prepared by incubating 10 )M enzyme 

with 2 mM APS or PAPS, where appropriate, for 40 min at 30 °C to allow for formation of 

S-sulfocysteine intermediate.  Subsequently, the samples were exchanged into 0.1% 

formic acid using Micro Bio-Spin P30 columns (Bio Rad).  Intact proteins samples were 

analyzed on an electrospray linear ion trap mass spectrometer (LTQ-XL, Thermo 

Scientific) after separation on an Agilent Eclipse XDB-C8 2.1 mm x 15 mm trap with 

mobile phases A (0.1% formic acid in water) and B (0.1% formic acid in acetonitrile) 

which was used to trap, desalt and elute proteins onto a Varian 2.1 mm x 50 mm 5 )m 

PLRP-S C18 column with a gradient of 5% to 100% in 14 min at a flow rate of 200 

)L/min. 
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6.6.10 Kinetic assays 

Reactions were carried out at 30 °C.  Unless otherwise indicated, the buffer consisted of 

100 mM bis-tris propane (pH 6.5) supplemented with 5 mM DTT and 10 )M E. coli 

thioredoxin.  Production of [35]SO3
2- from [35S]-APS or [35S]-PAPS was monitored using 

charcoal-based separation and scintillation counting as previously reported (54).  The 

substrate was incubated with excess enzyme to ensure single-turnover conditions (>2.5-

fold molar excess of enzyme).  The reaction progress curve was plotted as the fraction 

of product versus time and was fit by a single exponential (eq. 1), where F is the fraction 

product, A is the fraction of substrate converted to product at completion, and t time.  

The observed rate constant (kobs) is the product of the enzyme concentration and the 

apparent second-order rate constant kcat/Km (eq. 2).  Under these conditions, the 

observed rate constant is linearly dependent upon enzyme concentration, and 

independent of substrate concentration, which demonstrated that substrate is not 

saturating.  The reported kcat/Km values are for single-turnover conditions, but are 

equivalent to steady-state kcat/Km (54).  Kinetic data were measured in at least two 

independent experiments and the standard error was typically less than 15%.  

F = A[1–e(–kobst)] (1) 

kobs = (kcat/Km)[E] (2) 

 

The maximal observed rate constant (kmax) was determined at a saturating concentration 

of enzyme ([E] >> Kd) and this was confirmed by the observation of the same rate 

constant at two different concentrations of enzyme (150 )M and 300 )M).  Because the 

observed rate constant is independent of the concentration of enzyme, this indicates that 

the observed rate constant is equal to the maximal single-turnover rate constant (kobs = 

kmax) and reports on the chemical steps after substrate binding (eq. 1).  



! 172!

 

Under single-turnover conditions, it is expected that the concentration dependence of the 

enzyme will be hyperbolic (eq. 3).  The K1/2 value indicates the protein concentration at 

which half of the substrate is bound.  For K1/2 determinations, the APR concentration 

was varied over a wide range in the presence of Trx. 

kobs = kmax[E]/(K1/2 + [E]) (3) 

 

The inhibition constant (Ki) was measured for ligands, AMP and PAP by inhibiting the 

APR reaction under kcat/Km conditions at pH 7.5 with varying concentration of inhibitor (I).  

The data were fit to a simple model for competitive inhibition (eq. 4) and, with 

subsaturating APR, the Ki is equal to the equilibrium dissociation constant (Kd) of the 

inhibitor. 

 (kcat/Km)obs = (kcat/Km)/(1+ [I]/Ki) (4) 
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6.7 Appendices 

Table 6.7.1 Appendix Table of P-loop variants kinetics  

Single-turnover rate and dissociation constants for PaAPR, MtAPR, EcPAPR and the 

respective P-loop variants.a  

 

Enzyme kcat/Km 
(M-1min-1)b

 

Kd AMP 
("M) 

Kd PAP 
("M) 

 APS PAPS   

PaAPR 1.8 x 108 3.5 x 104 35 ± 2 8.1 x 103 

PaAPR 
Asp66Ala 

2.5 x 107 9.6 x 103 57 ± 12 3.3 x 103 

PaAPR 
Glu65Gln 

7.2 x 106 3.5 x 103 1.2 x 103
 6.9 x 103 

PaAPR 
Glu65Gln, 
Asp66Ala 

5.0 x 105 2.5 x 103 2.8 x 103
 9.7 x 103 

EcPAPR 840 1.2 x 108 3.4 x 103 1.4 ± 0.6 

EcPAPR 
Ala58Asp 

720 1.3 x 105 1.4 x 104 8.0 x 103 

EcPAPR 
Gln57Glu 

420 1.7 x 105 7.6 x 103 1.0 x 103 

EcPAPR 
Gln57Glu, 
Ala58Asp 

420 2.6 x 104 1.8 x 104 2.4 x 103 

 

aMeasurements represent the average of two or more independent determinations and the S.D. was %25% 
of the value in all cases.  Unless otherwise stated, reaction conditions were 100 mM Bis-Tris propane, pH 
7.5, 5 mM dithiothreitol, and 10 )M thioredoxin at 30 °C (see Materials and Methods).  bkcat/Km values were 
measured as described in Materials and Methods.  
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Table 6.7.2 Appendix Table of mass measurements 

Mass measurements of EcPAPR, EcPAPR4cys and MtAPR and associated enzyme S-

sulfocysteine complexes. 

 

Enzymea Measured mass (Da)b !mc, d  

EcPAPR 28910.41 (28909.76) N/A 

EcPAPR + APS 28990.84 (28989.76) 80.43 

EcPAPR + PAPS 28989.97 (28989.76) 79.56 

EcPAPR4cys 28829.23 (28828.84) N/A 

EcPAPR4cys + APS 28909.54 (28908.84) 80.31 

EcPAPR4cys + PAPS 28908.55 (28908.84) 79.56 

MtAPR 28356.88 (28356.87) N/A 

MtAPR + APS 28437.45 (28436.87) 80.57 

MtAPR + PAPS 28436.29 (28436.87) 79.41 

 
aIn reactions that contained APS or PAPS, the enzyme was incubated with substrate prior to mass analysis, 
as described in Materials and Methods.  bThe average experimental value of the most abundant isotopic 
mass over the charge state distribution, calculated by deconvolution.  Theoretical values are shown in 
parenthesis and were calculated based on the amino acid sequence.  cThe mass differences in this table 
have been calculated with respect to the masses of the corresponding intact protein.  dWith the exception of 
EcPAPR + PAPS, EcPAPR4cys + PAPS and MtAPR + APS, two series of ions were observed 
corresponding to the enzyme alone and the enzyme S-sulfocysteine adduct.  Relative abundance of these 
species is provided in the text.  
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Figure 6.7.3 Primary sequence alignment of sulfonucleotide reductases from P. 

aeruginosa, M. tuberculosis, B. subtilis, A. thaliana, P. patens (two isoforms, APR and 

APR-B), E. coli, S. cerevisiae and P. patens.  The ClustalW2 (v2.1) Multiple Sequence 

Alignment program (5) was used to align all the sequences.  Strictly conserved residues 

are outlined in red, red letters indicate conserved residues and conserved regions are 

boxed in blue.  Residues flanking the active site are boxed in green.  Positions of 

cysteine residues that coordinate to the [4Fe-4S] cluster are indicated below the 

sequence with (").  Alignment pictures were rendered with the server ESPript 2.2 

(http://espript.ibcp.fr).  
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Figure 6.7.4 Comparison of key active site regions in PaAPR and EcPAPR 

Interactions are based on PaAPR (PDB deposition 2GOY) and EcPAPR (PDB 

deposition 2O8V), crystal structures, prior functional studies (6, 7) and the present study.  

Contacts of EcPAPR with PAPS have been assumed from the coordinates of PAP 

(ScPAPR, PDB deposition 2OQ2) and APS (PaAPR, PDB deposition 2GOY).  Active 

site contacts of (a) PaAPR and (b) EcPAPR with APS and PAPS respectively, plotted in 

two dimensions. Protein residues in proximity of the ligand are shown, with hydrogen 

bonding interactions indicated as dotted lines with arrows denoting the direction of the 

bond.  Interactions from the substrate or the residue backbones of the enzyme are 

distinguished from interactions with residue side chains by a solid dot at the end of the 

interaction line.  Interactions highlighted in red are unique between the two active sites.  

In both structures, P-loop residues reside at the opposite end of the active site cleft with 

respect to active site lysine and arginine residues that interact with the 5'-sulfate moiety 

(>7Å away).  (c) The environment of the [4Fe-4S] cluster in PaAPR.  The [4Fe-4S] 

cluster is ligated by four cysteine residues at positions 139, 140, 228 and 231.  Four 

conserved residues participate in charged or polar NH-S or OH-S hydrogen bonds to 

inorganic S or cysteine S% atoms; Thr87, Arg143, Lys144 and Trp246 (yellow dashes).  

Conserved basic residues Lys144, Arg242 and Arg245 in the active site interact with the 

phosphate and sulfate groups of APS.  (d)  Residues surrounding the YN..DXXT motif in 

EcPAPR.  In the absence of the iron-sulfur cluster in EcPAPR, Tyr131 has cross-linking 

interactions with His216 and Asp214 (yellow dashes).  Similar to PaAPR, positively 

charged Lys136 and Arg231 are poised to interact with the sulfate moiety of PAPS.  Arg 

231 and Glu228 are missing from the structure of EcPAPR therefore their position is 
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assumed from the coordinates of Arg231 and Arg233 (ScPAPR, PDB deposition 2OQ2).   
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Figure 6.7.5 Gel labeling of wild type EcPAPR and EcPAPR4cys 

Gel labeling of wild type EcPAPR (lanes 1-4) and EcPAPR4cys (lanes 5-8) with either 

[35S]-PAPS or [35S]-APS, with or without Trx, was carried out as described in the 

Materials and Methods.  
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Figure 6.7.6 The reaction progress curve for P-loop variants of PaAPR and 

EcPAPR 

Under subsaturating concentration of substrate, the reaction is described by the 

apparent second order rate constant, kcat/Km.  The enzyme concentration was varied as 

indicated due to the linear relationship between concentration and activity.  a) Reduction 

of APS with PaAPR (2 nM, "), D66A PaAPR (10 nM, #) and E65Q PaAPR (20 nM, $).  

b) Reduction of APS with EcPAPR (10 )M, "), A58D EcPAPR (10 )M, #) and Q57E 

EcPAPR (10 )M, $).  c) Reduction of PAPS with PaAPR (5 )M, "), D66A PaAPR (10 

)M, #) and E65Q PaAPR (10)M, $).  d) Reduction of PAPS as substrate with EcPAPR 

(2.5 nM, "), A58D EcPAPR (0.5 )M, #) and Q57E EcPAPR (0.5 )M,$). 
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Figure 6.7.7 Binding of AMP and PAP to P-loop variants of PaAPR and EcPAPR.   

Nonlinear-least-squares fit of the data to a model for simple competitive inhibition (eq. 2) 

gave the dissociation constant Kd.  a) Kd
AMP of PaAPR ("), D66A PaAPR (#) and E65Q 

PaAPR ($); inset, E65Q PaAPR scaled.  b) Kd
AMP of EcPAPR ("), A58D EcPAPR (#) 

and Q57E EcPAPR ($).  c) Kd
PAP of PaAPR ("), D66A PaAPR (#) and E65Q PaAPR 

($).  d) Kd
PAP of EcPAPR ("), A58D EcPAPR (#) and Q57E EcPAPR ($); inset, A58D 

EcPAPR scaled. 
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Figure 6.7.8 Reaction progress curves for PaAPR, EcPAPR and EcPAPR4cys at pH 

6.5  Under subsaturating concentration of substrate, the reaction is described by the 

apparent second-order rate constant, kcat/Km, for PaAPR (a), EcPAPR (b) and 

EcPAPR4cys (c) with APS (") and PAPS (#). 
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Figure 6.7.9 Maximal rate constant 

kmax, measured under single turnover conditions with saturating enzyme at pH 6.5 for 

PaAPR (a), EcPAPR (b), EcPAPR4cys (c) with APS, and for PaAPR (d), EcPAPR (e), 

EcPAPR4cys (f) with PAPS. 
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Figure 6.7.10 The apparent affinity 

K1/2, under single turnover conditions at pH 6.5 for PaAPR (a), EcPAPR (b) and 

EcPAPR4cys (c) with APS, and for PaAPR (d), EcPAPR (e) and EcPAPR4cys (f) with 

PAPS. 
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Figure 6.7.11 Binding of AMP and PAP to EcPAPR4cys measured at pH 7.5.   

The average of three independent determinations is shown, and the error bars indicate 

the standard deviations.  Nonlinear-least-squares fit of the data to a model for simple 

competitive inhibition (eq. 4) gave the dissociation constants Kd
AMP (a) and Kd

PAP (b) for 

EcPAPR4cys. 
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Chapter 7 

Conclusions and future directions 

 

7.1 Abstract 

The data presented in the previous chapters illustrate our effort towards elucidating 

mechanistic details of the APR reaction and identifying small molecule inhibitors.  The 

present Chapter summarizes the key findings and significance of this work.  In addition, I 

discuss future directions to modify the structures of hit compounds and overcome 

limitations inherent to current therapeutic strategies.  I also present an alternative 

experimental approach to discover APR inhibitors by targeting the [4Fe-4S] cluster of 

APR, protein-protein interaction interface with thioredoxin, and evaluation of compounds 

through cell-based assays. 

 

7.2 Conclusions: strategies to develop small molecule inhibitors of APR 

Recently, APR has been validated as a promising drug target against the latent phase of 

the tuberculosis-causing bacteria (1-3).  The overall aim of this thesis was to investigate 

the mechanism of APR and exploit this information in the design and discovery of small 

molecule inhibitors.  In Chapter 1, I first discussed the current TB epidemic and 

limitations of the current treatments.  APR, which catalyzes the first committed step in 

bacterial sulfate reduction, has been identified as drug target against latent TB infection.  

I illustrated briefly the overall drug discovery pipeline and introduced our strategies to 

discover APR inhibitors through VLS and rational design.  Chapter 2 describes VLS of 

APR using Autodock, followed by biological evaluation of in silico hits.  VLS successfully 
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identified the first non-phosphate based inhibitors against APR, which constitutes an 

essential step toward inhibitor discovery. 

 

The active site of a protein consists of pockets, dynamic regions and conserved motifs.  

These active site-defined elements are involved in substrate binding, catalysis or both.  

In Chapter 3, the molecular determinants of the APR active site that underlie binding and 

specificity are discussed through a series of substrate and product analogs.  This study 

afforded insight into the key interactions between the substrate and APR, thereby 

providing a pharmacological roadmap for rational inhibitor design.  In Chapter 4, 

biochemical and biophysical data are presented that indicate the essential role of the 

conserved residue, His252, in substrate binding.  In Chapter 5, kinetic and spectroscopic 

studies were used to identify Lys144 as a molecular bridge between the iron"sulfur 

cluster and APS.  This interaction network stabilizes the catalytic transition state and 

indicates a role for the iron"sulfur cluster in APS reduction.  Finally, in Chapter 6, we 

focused on substrate discrimination in the SR family was explored.  Using site-directed 

mutagenesis and metalloprotein engineering, we generated P-loop mutations in SRs and 

installed a [4Fe-4S] cluster in PAPR.  Kinetic and spectroscopic characterization of the 

variants provided insight into the switch in molecular recognition between APR and 

PAPR, and permitted a better understanding of evolution in this family of enzymes.  

 

7.3 Future directions  

7.3.1 Computational drug design 

VLS is a valuable tool to identify inhibitors that target APR (4).  We used the APR 

pharmacophore model, generated in Chapter 2, as a template to select promising 

candidates from the larger and more chemically comprehensive Maybridge database, 

consisting of 56,000 compounds.  We chose this database for its drug-like properties 
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(e.g., bioavailability and stability).  Thus, we expected that optimized compounds from 

this library would retain these properties and have activity in cell-based systems.  The 

VLS was conducted using the 

same method as in the 

previous NCI screen and 51 

compounds, corresponding to 

0.1% of the Maybridge 

database, were selected for further biological evaluation.  Surprisingly, only two 

compounds were identified to have 50% inhibition against APR with dissociation 

constants of 44 !M (HTS02996) and 101 !M (SEW04209) (Figure 7.1).  The failure to 

identify any potent inhibitors from this library may be an indicator that the P. aeruginosa 

crystal structure used in these studies does not sufficiently model interactions with M. 

tuberculosis APR. 

 

7.3.1.1 Structure activity relationship of current leads  

Through a combination of VLS and experimental testing, several chemical scaffolds from 

the NCI library emerged as possible leads, including 1, 2 and 3 (Figure 7.2).  We are 

planning to investigate SARs for these compounds and possible to synthesize a focused 

sub-library.  In initial studies, we analyzed a series of 9-fluorenone analogs of compound 
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Figure 7.2.  Possible lead compounds 1,2 and 3 identified from an NCI screen. 
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1.  In these studies, 2,3-nitro and/or fluoro disubstituted 9-fluorenones were all effective 

inhibitors.  Since compound 1 has electron-withdrawing groups at the 2 and 3 positions, 

we must investigate the importance of the ketone moiety and determine whether the 

carbonyl undergoes nucleophilic attack by cysteine.  Compound 2 is composed of a 

purine and benzooxadiazole moiety joined by a thioether bond.  The oxadiazole and 6-

nitro functional groups in compound 2 were essential for inhibitor potency; however, the 

purine could be replaced by other aromatic groups with potential for hydrogen bonding.  

Compound 3 exhibited the most drug-like properties in our series of inhibitors owing to 

the absence of nitro or benzooxadiazole functionalities.  Hydrogen bonding interactions 

between the thiocarbonate and critical active site residues such as Lys234, Arg242 or 

Arg245 are predicted to be required for binding.  To investigate the potential of this 

scaffold, we analyzed a related series of commercially available compounds in which the 

thiocarbonate was replaced by an aromatic thio group or thioamide (Figure 7.3A).  In 

parallel with these experiments, we also explored variations in the polycyclic moiety of 

the parent compounds such as 1,2,4-triazino[5,6-B]indole (Figure 7.3B).  However, none 

of these compounds exhibited more than 50% inhibition against APR by biological assay, 

whereas the free energy of binding calculated from docking studies (#GAD4) remained 

the same.  Although SAR of 1, 2 and 3 with commercially available compounds was not 
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successful identifying compounds with improved potency, these preliminary data should 

inform the direction of future studies.  

 

7.3.1.2 Solve the X-ray structure of MtAPR in the ‘open’ and ‘closed’ states 

Once VLS appeared as a tool on the drug discovery market, people predicted that HTS 

would be replaced by VLS due to its fast and cost effective approach.  In addition, the 

docking program predicts the binding mode of the ligand to the receptor as opposed to a 

random screen.  However, VLS requires knowledge about the spatial and energetic 

relationships between the receptor and ligand (5).  Most importantly, VLS heavily relies 

on the crystal structure of the receptor to predict binding (6, 7).  An HIV protease 

inhibitor is a successful example of using VLS for anti-AIDS drug design.  Behind this 

success, there were more than 130 crystal structures of HIV protease available through 

internet access databases (8).  In contrast, we have only one APR structure from P. 

aeruginosa species, which is also missing the final 15 residues including the catalytic 

cysteine.  Clearly, an essential step forward in this research area will be to obtain the 

structure of M. tuberculosis APR in different conformational states. 

 

Toward this end, we note precedent in this area for protein kinases, which transfer a 

phosphoryl group from ATP to the peptide substrate.  In recent studies, a covalently 

linked bisubstrate inhibitor of the insulin receptor tyrosine kinase was synthesized by 

linking ATP%S to a peptide substrate analog.  This mechanism-based inhibitor helped to 

determine the crystal structure complex with inhibitor (PDB 1GAG) and is also a 

promising candidate for therapeutic intervention (9).  Along these lines, a mechanism-

based inhibitor of APR, which irreversibly modifies the catalytic cysteine, could be used 

to trap the C-terminal tail in the active site of APR and facilitate structural studies.  A 

mechanism-based inhibitor was designed by taking a potent binding scaffold and 
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attaching a reactive warhead (10, 11).  The substrate analog, adenosine 5’-

monophosphate (AMP) binds to APR with a moderate Kd value of 5.4 )M.  Thus, AMP 

was used as a binding element in the APR active site pocket (3).  We conceived of a 

vinylsulfonamide as an acyladenylate surrogate that contains a Michael acceptor to 

covalently modify the catalytic cysteine.  The vinylsulfonamide was chosen as it is the 

least reactive member in the series of Michael acceptor to minimize off-target reactions 

(12).  Previously, Aldrich and co-workers had evaluated !-ketosulfonamide adenylation 

inhibitors against alicyl-AMP ligase as potential antitubercular agents (13, 14).  Similarly, 

we synthesized 5’-deoxy-5’-N-{[(ethenyl)sulfonyl]amino}adenosine (appendix 7.5.1) as 

an irreversible inhibitor of APR (Figure 7.4) (13-16).  Mass spectrometry (appendix 7.5.2), 

biochemical and kinetic analyses (not shown) demonstrate covalent modification of the 

catalytic cysteine, Cys249 of MtAPR.  Currently, we are focusing on crystallization of 

MtAPR using this first generation mechanism-based inhibitor in collaboration with Dr. 

Gunter Schneider and Dr. Ömer Poyraz at the Karolinska Institute.  If we surmount the 

formidable obstacle of crystallization, it would significantly facilitate inhibitor discovery. 
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Figure 7.4.  Strategy to trap the C-terminal segment of MtAPR, which carries catalytic cysteine using 
michael addition of synthesized MBI_1 compound.  
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7.3.2 Rational design 

In Chapters 2-6, we established the various interactions between SR and the substrate.  

Ligand binding involves many factors, including changes of interactions between the 

ligand, solvent and target protein, as well as conformational changes in the ligand or 

receptor (17).  Rational design of APR inhibitors was initiated from a spatial arrangement 

of atoms or functional groups of small molecule inhibitors believed to be responsible for 

interactions with the enzyme.  The crystal structure of PaAPR (PDB 2GOY) was solved 

in an open conformation and revealed the presence of a [4Fe-4S] cluster that has been 

shown to be essential for catalytic activity (18).  Subsequently, we reported the EcPAPR-

Trx structure (PDB 2O8V) in an open conformation depicting two distinct interaction 

interfaces (19).  It is important to emphasize that the closed conformation represents the 

bioactive conformation wherein the catalytic cysteine can commence nucleophillic attack.  

Based on these studies, inhibitors that stabilized a closed conformation, interacted with 

the [4Fe-4S] cluster or these protein-protein interfaces could represent important new 

strategies in inhibitor discovery. 

 

7.3.2.1 Design of inhibitors that target specific APR conformations 

We have focused on active site interactions based on the crystal structure of PaAPR 

detailed in Chapter 3.  However, conformational changes were observed upon substrate 

binding in the active site by a dynamic motif, as described in Chapter 4.  Biochemical 

data and structural data show that the C-terminal 15 residues and an Arg-rich loop in 

SRs fold over the active  site, establishing the closed conformation (Figure 7.5).    Using 

homology modeling and the structure of yeast PAPR in the closed conformation (from 

Chapter 3 and 4), one could rationally design inhibitors that target different 

conformational states of MtAPR.  This strategy to discover specific inhibitors intended for 
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different enzyme 

conformations has proven 

fruitful with kinases (20, 21).  

I envision that an APR 

inhibitor designed to stabilize 

the closed conformation 

would establish important 

interactions with the C-

terminal tail.  As outlined 

above, this general strategy 

could also facilitate 

stabilization of the MtAPR enzyme for crystallography. 

 

7.3.2.2 Iron-sulfur cluster targeted APR inhibitors 

As discussed in Chapter 5 and 6, the [4Fe-4S] cluster plays an essential role in 

substrate recognition.  Functional and structural analyses indicate that the terminal 5’-

!
 
Figure 7.5.  ‘Closed’ and ‘open’ conformation by an arginine-rich 
loop and C-terminal tail 

 
 
Figure 7.6.  Potential APR inhibitors with Fe-chelating groups (R).  
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sulfate moiety of APS is poised to interact with the [4Fe-4S] cluster. Compounds 

containing moieties that chelate the catalytic metal ion in APR may have potential as 

inhibitors.  This strategy has proven successful in the development of HDAC inhibitors.  

In our lab, we have devised a strategy to design bifunctional inhibitors that would interact 

with the [4Fe-4S] cluster as well as make contacts with the adenosine-binding pocket in 

the active site (Figure 7.6).  We are using combinatorial chemistry to synthesize a library 

of inhibitors from a solid supported adenosine scaffold.  We will then screen for inhibitors 

from this library using our established APR assay (see Chapter 2).  

 

7.3.2.3 Evaluating SR-Trx interaction interfaces 

Recently, the crystal structure of the EcPAPR-Trx complex (PDB 2O8V) revealed two 

interaction interfaces of ~800 Å each (Figure 7.7A) (19).  The first interface is 

established in the vicinity of the mixed protein disulfide between Cys32 in Trx and Cys 

239 in EcPAPR (Figure 7.7C).  Interaction of the C-terminus of PAPR and the 70s loop 

of Trx involves electrostatic and hydrophobic interactions (Figure 7.7C).  The second 

recognition interface involves the --loop of PAPR and the 30s loop of Trx (Figure 7.7B).  

Previously, Knaff and colleagues used NMR to investigate the interface interactions on 

PaAPR and Trx and successfully mapped the important plausible contacts of Trx 

residues around Cys 32 to PaAPR (22).  Surprisingly, however, alanine scanning of this 

region revealed no hotspot Trx residues that significantly reduced binding to PaAPR.  

Therefore we will investigate interface residues within EcPAPR for their potential 

contribution to Trx binding based on our crystal structure (19).  The elucidation of the 

protein-protein interactions will provide insights into the catalytic mechanism as well as 

assist in the design of inhibitors to block this interaction.  

 

7.3.2.4 Evaluate inhibitors in a secondary cell-based assay 
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Jumping over the gap between experiments within recombinant enzymes- to live cells- is 

important for inhibitor discovery.  Unlike radioactivity-based assays with recombinant 

enzyme, cell-based assays afford additional information on biological activity, toxicity, 

and off-target interactions.  We will employ M. smegmatis for these studies because it is 

a close genetic relative of M. tuberculosis.  Briefly, M. smegmatis cultures will be 

incubated with the compounds and their growth in minimal media with sulfate as the sole 

sulfur source will be monitored by turbidity.  The specificity of compounds for APR will be 

confirmed by control experiments in which growth is restored by methionine 

supplementation (23, 24).  
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Figure .7.7.  Overall view of the EcPAPR-Trx complex in the cocrystal structure (PDB entry 2O8V).  (A) 
Protein-protein interfaces suggested that conformational changes of PAPR associated with Trx binding 
involve residues in the C-terminal tail (highlighted as pink) and the --loop (highlighted as gray).  (B) 
Specific recognition of PAPR by Trx occurs via residues in the --loop and a7-helix of PAPR (shown in 
gray) and the 30s loop and "2-helix of Trx (shown in yellow).  The electrostatic potential map shows 
residue interactions involve hydrogen bonds (indicated by dashed line; Trx residues in italics), aromatic 
stacking, and hydrophobic interactions.  (C) The flexible C-terminal peptide of PAPR (residues 235-244; 
shown in pink) shows interactions with Trx residues comprised of 70s loop (Trx residues 71-77; Trx 
residues in italics); the mixed disulfide is formed between Cys239 of PAPR and Cys32 of Trx. 
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7.4 Concluding remarks 

TB remains a prominent health threat due to the shortcomings of the current treatment 

regimes.  Since pharmaceutical companies are driven by profit, our efforts in academic 

institutions will serve as the foundation to identify novel targets and hit compounds.  

Herein, I have described strategies to discover inhibitors against a newly validated TB 

target, APR.  Thorough studies of enzyme and ligand interactions not only help to 

identify inhibitors, but also promote an understanding of enzyme mechanism and 

biological function.  The aforementioned computational docking, biochemical and 

biophysical studies have led to many important new insights into the APR reaction 

mechanism and should accelerate inhibitor discovery for this medically important 

enzyme.  

 

7.5 Appendix  

Figure 7.5.1 Synthesis of 5’-Deoxy-5’-N-{[(ethenyl)sulfonyl]amino}adenosine 

(13,14) 
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Figure 7.5.2. Mass spectrometric analysis of intact MtAPR complex with MBI 

ESI mass spectra of MtAPR (10 )M) without ligand (a), with MBI (b).  Ions correspond to 

the enzyme (E, a) or the covalent enzyme-MBI intermediate (E-MBI, b).  The calculated 

masses after deconvolution of m/z values are 28357.0 ± 0.25 Da (a), 28711.9 ± 0.63 Da 

(b)  
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