Effects of Fluid Shear on Endothelial Cell Response to Inflammation

by

Ryan B. Huang

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering) in The University of Michigan 2012

Doctoral Committee:

Assistant Professor Omolola E. Adefeso, Chair Professor Jennifer J. Linderman Professor Shuichi Takayama Assistant Professor Peter J. Woolf

Acknowledgements

The author would like to thank his advisor, Dr. Omolola Eniola-Adefeso, for her guidance and motivation throughout his candidacy at the University of Michigan. The author would also like to thank his thesis committee Drs. Jennifer Linderman, Peter Woolf, and Shuichi Takayama for their outside perspectives; his fellow graduates Phapanin Charoenphol and Michael Heslinga for their support, and other members of the Eniola Lab, Peter Onyskiw, Alex Thompson, Bill Grier, Taylor Lebeis, Eric Mastria, and army of undergraduates. Additionally, the author would like to thank Dr. Supriya Mocherla for her wise guidance and Rosemary Lemons for her technical expertise.

Table of Contents

Acknow	ledgements	ii
List of F	igures	v
List of A	bbreviations	vi
Abstract		vii
Cleanter		
Chapter 1 0	Endothelium and Inflammation Response	1
1.0	Increasing Prevalence of Cardiovascular Diseases	і Л
1.1	Treating Chronically Inflamed Endothelium	47
1.2	Literature Review of In Vitro Inflammation Models	9
1.5	Thesis Aims	18
1.7		10
2.0	Materials and Methods	21
2.1	Endothelial Cell Source and Cell Culture Methods	22
2.2	Parallel Plate Flow Chamber	24
2.3	IL-1ß Concentration	28
2.4	Calculating Shape Factor	30
2.5	Activation of Endothelial Cells	31
2.6	E-selectin Site Density Quantification	32
2.7	Neutrophil Binding Assays	36
2.8	Treating Neutrophils with Synthetic Cannabinoid CP55,940	37
2.9	Statistical Methods	40
3.0	<i>In Vitro</i> Model of IL-1β Shear-Cytokine Activation of Naïve Endothelial Cells	41
3.1	IL-1β Static Activation or Shear-Only Stimulation of Naive Endothelial Cell	43
3.2	IL-1β Shear-Cytokine Activation of Naïve Endothelial Cells	48
3.3	Mechanism of Shear-Influenced E-selectin Synthesis	53
3.4	Endothelial Morphology	55
3.5	Endothelial Functionality	58
3.6	Discussion	60
3.7	Conclusion	64
4.0	Increasing Physiological Relevance of the <i>In Vitro</i> Model	65
4.0 4.1	IL-16 Activation of Preconditioned Endothelial Cells	67
4 2	Fluid Shear Effects on Redosed Endothelial Cells	71
43	Discussion	76
44	Conclusion	82

5.0	Comparing TNF α and IL-1 β Activation	84
5.1	TNFα Activation of Naïve Endothelial Cells	86
5.2	TNFα Activation of Preconditioned Endothelial Cells	89
5.3	TNF α and IL-1 β Co-Stimulation	92
5.4	Discussion	96
5.5	Conclusion	103
6.0	Potential Applications in Therapeutic Treatment	104
6.1	Anti-Inflammatory Effects of Cannabinoids	106
6.2	CP55,940 Concentration	109
6.3	CP55,940 Effect on Neutrophils in Buffer and Whole Blood	112
6.4	Discussion	118
6.5	Conclusion	121
7.0	Conclusion	123
7.1	Future Direction	127
References		132

List of Figures

Figure		
l.l 1.2	Schematic of leukocyte recruitment	3
1.2	Time frame of shear-cytokine based experimental protocols	14
2.1	Parallel plate flow chamber (PPFC)	26
2.2	Schematic of in vitro setup	27
2.3	IL-1β saturating concentration	29
2.4	Immunofluorescence microscopy of HUVEC monolayers	34
2.5	RFI calibration	35
2.6	Neutrophil interaction with endothelial monolayer	39
3.1	E-selectin expression density of static or shear-only activated endothelial	
	cells	45
3.2	E-selectin and PECAM-1 site densities	46
3.3	Cell morphology under shear flow	47
3.4	E-selectin expression on 10 dyn/cm ² shear-cytokine activated ECs	50
3.5	E-selectin expression on 0-20 dyn/cm ² shear-cytokine activated	
	monolayers	51
3.6	24 hrs comparison for shear-cytokine activated monolayers	52
3.7	E-selectin expression on CHX-treated monolayers	54
3.8	Endothelial cell shape factors	57
3.9	Neutrophil binding assay for activated monolayers	59
4.1	E-selectin expression on preconditioned monolayers	69
4.2	Timeline of exposure to fluid shear	70
4.3	E-selectin expression on redosed monolayers	74
4.4	Comparing redosing methods	75
4.5	Shear-cytokine experimental protocols	77
5.1	E-selectin site density of TNF α or IL-1 β activation	88
5.2	E-selectin site density of TNF α or IL-1 β activation of preconditioned cells	91
5.3	E-selectin site density of combined and individual TNF α or IL-1 β	
	activation	95
5.4	Additive E-selectin site density of combined TNF α or IL-1 β activation	102
6.1	Distribution of THC in the body	111
6.2	CP55,940-treated neutrophil interaction in buffer perfusion	115
6.3	Varying shear rates in buffer perfusion	116
6.4	CP55,940-treated neutrophil interaction in whole blood perfusion	117

List of Abbreviations

ACD Acetate-citrate-dextrose

- BAECs Bovine aortic endothelial cells
 - CAM Cell adhesion molecule
- CB1R, CB2R Cannabinoid Receptor 1 and Cannabinoid Receptor 2
 - CVD Cardiovascular Disease
 - CHX Cycloheximide
 - DPBS Dulbecco's phosphate buffered saline
 - EC Endothelial cells
 - FITC Fluorescein isothiocyanate
 - HAECs Human aortic endothelial cells
 - HSA Human serum albumin
 - HUVECs Human umbilical vein endothelial cells
 - I/R Ischemia/reperfusion
 - ICAM-1 Intercellular cell adhesion molecule-1
 - IL-1R Interleukin-1 receptor
 - IL-1β Interleukin-1beta
 - LPS Lipopolysaccharide
 - MMP Matrix metalloproteinase
 - NF-κB Nuclear factor kappa B
 - NK Natural killer
 - PECAM-1 Platelet-endothelium cell adhesion molecule-1
 - PPFC Parallel plate flow chamber
 - PS Preshear, or precondition
 - RBCs Red blood cells
 - RFI Relative fluorescent intensities
 - SF Shape factor
 - TNFR Tumor necrosis factor receptor
 - TNFα Tumor necrosis factor alpha
 - VCAM-1 Vascular cell adhesion molecule-1
 - Δ^9 -THC Delta-9-tetrahydrocannabinol

ABSTRACT

Effects of Fluid Shear on Endothelial Cell Response to Inflammation

by

Ryan B. Huang

Chair: Omolola E. Adefeso

The endothelium is a thin monolayer of cells (*e.g.* endothelial cells, ECs) that regulates several important processes including maintaining blood pressure, clotting, angiogenesis, barrier function, and inflammation. Inflammation, a natural process by which foreign particles are eliminated from vascular tissue, is of considerable importance due its prevalent role in a number of disease pathologies. Endothelial response to inflammation results in the differential expression of cell adhesion molecules, such as E-selectin, on the apical surface facing the bloodstream. Patterns and duration of adhesion molecule expression is critical to the balance between healthy and pathogenic inflammatory response. Chronic inflammation, due to endothelial dysfunction leads to a number of diseases, which include neurological disorders, cancers and metastatic tumor growths, and cardiovascular diseases. Despite its prominent roles in the disease pathogenesis, endothelial response has yet to be fully understood due to current *in vitro*

models failing to fully replicate relevant endothelial inflammatory response under human physiological conditions.

The influence of fluid shear stress on E-selectin expression due to inflammatory activation is investigated through simultaneous co-stimulation with fluid shear and cytokine interleukin-1 β of naïve and preconditioned ECs using a novel laminar flow apparatus designed to study the broader time frame over which chronic inflammation is relevant. Naïve cells exposed to shear-cytokine activation display high E-selectin expression for up to 24 hr with peak expression occurring after 8-12 hr of activation contrary to the commonly observed 4-6 hr peak in statically activated cells. High shear preconditioned cells exhibited either elevated or muted E-selectin expression during acute and chronic time frames, respectively, depending on the preconditioning and subsequent shear-cytokine activation durations. The 8-12 hr peak E-selectin expression time in shearcytokine activated cells coincides with the time frame observed for shear-exposed ECs to shift from a cobblestone to elongated morphology, highlighting a role for cell morphology determining EC response. Overall, the presented data suggest that a high laminar shear enhances acute EC response to interleukin-1ß in naïve ECs as may be found in the pathological setting of ischemia/reperfusion injury while in preconditioned ECs, high laminar shear confers rapid E-selectin downregulation to protect against chronic inflammation. However, high laminar shear is protective against TNFα-induced acute and chronic inflammatory response.