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ABSTRACT

Thermodynamics of the Hard Tetrahedron System
by
Amir Haji Akbari Balou

Chair: Sharon C Glotzer

The self-assembly of nanoparticles into ordered structures is governed by interaction
and shape anisotropy. Recent advancements in the synthesis of faceted nanoparticles
and colloids have spurred interest in the exclusive effect of shape anisotropy, which
manifests itself in phase behavior of polyhedral shapes. Among them, hard regular
tetrahedra have attracted particular attention because they prefer local symmetries
that are incompatible with periodicity. We study their thermodynamics using Monte
Carlo simulations and observe that they self-assemble into a a dodecagonal quasicrys-
tal, which is the first reported quasicrystal in hard particle systems. The quasicrystal
and its approximants pack very efficiently and can be compressed to unusually high
packing fractions. The densest quasicrystal-like phase is the (3.4.3%.4) approximant,
which can be compressed to a packing fraction of 85.03%. Using free energy cal-
culations, we confirm that this approximant is more stable than the densest known
packing of regular tetrahedra, a simple triclinic crystal with four particles in a unit
cell, at intermediate packing fractions. The solid-solid transition from the approxi-
mant to the dimer crystal occurs at extremely high packing fractions, and involves no

symmetry breaking, which is unusual in hard particle systems. The superior stability
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of the approximant at intermediate densities can be partly attributed to correlated
motion of particles that gives it some ‘fluid-like’ character. We also show that the
quasicrystal is robust to building block polydispersity and forms at polydisprsities as
large as 12%.

We also study the thermodynamics of hard triangular bipyramids— i.e. dimers of
tetrahedra— and observe the formation of a degenerate quasicrystal at ¢ > 54%. The
quasicrystal is similar to the quasicrystal formed by hard tetrahedra in the monomer
level but degenerate in pairing of tetrahedra into dimers. This pairing degeneracy has
never been observed for any quasicrystal before, and should not be confused with the
well-known notion of degeneracy that is associated with random tilings and phason
flips. We also construct the (3.4.3%.4) approximant of the degenerate quasicrystal and
compare it with the densest packing of dimers using free energy calculations. Like
the hard tetrahedron system, the quasicrystal approximant is more stable at densities
below 79.7%.

We also study the thermodynamics and dense packings of hard truncated trian-
gular bipyramids and observe that the degenerate quasicrystal forms for truncations
as high as 0.4. No other ordered structure forms in simulations of systems with larger
truncations except for a stretched hexagonally close packed phase that self-assembles
in systems with truncations % to 0.80. In isobaric simulations of small systems— i.e.
systems with as many as four particles in a box— we observe eight distinct families
of dense packings with two to four particles in the fundamental domain. Only one of
them forms in self-assembly simulations i.e. for truncations % —0.8.

Inspired by the possibility that hard tetrahedra form liquid crystalline phases as
most other hard particles do, we propose a simplified procedure for deriving suitable
order parameters for identifying and quantifying orientationally ordered structures
of particles with nontrivial symmetries. This procedure is based on identifying or-

bits of a particle and forming a suitable symmetric tensor from them. There is an
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isomorphism between these symmetric tensors- which we call strong orientational co-
ordinates (SOCs)- and distinct orientations of the symmetric particle. Orientationally
ordered structures are then described as idealized probability distributions in terms
of SOCs and the quantification of order is formulated as a constrained nonlinear opti-
mization problem. These SOCs can also be used to average rotational fluctuations in
inherent structure calculations as well as to quantify temporal and spatial correlations

of orientational order.
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CHAPTER I

Introduction

What are the building blocks of the universe and how do they come together to
make different forms of matter? These are among the most fundamental questions
that have intrigued humanity for millennia, and yet they are far from being fully
addressed despite all the groundbreaking advances in the natural sciences. Some
prominent Greek philosophers such as Plato and Democritus believed that matter is
composed of discrete indivisible entities i.e. atoms, but it was not until the early nine-
teenth century that the atomic theory of matter was fully confirmed in experiment.
Yet, this knowledge was far from sufficient for making sense of different states of
matter, their physical properties and how and why they transform into one another.
Thermodynamics and statistical mechanics were founded by giants such as Gibbs and
Boltzmann partly to address these questions.

Statistical mechanics was a huge success in bridging the microscopic world of
atoms and molecules to the macroscopic forms of matter. But like any other successful
endeavor in science, it posed more questions than it managed to answer. In the early
years of statistical mechanics, van der Waals produced an accurate equation of state
for gaseous and liquid states of matter by using a very simple (nonspecific) attractive
potential [1]. This led some to conjecture that the types of phases formed by a
particular system hardly depend on the details of the inter-particle potential, and
are instead determined by its general features such as the range and anisotropy of
interaction and depths and number of minima in the potential. If this is indeed true,

it is natural to ask:

1. What types of structures can arise from a given intermolecular potential?

2. What is the simplest potential that can give rise to a particular structure?

The history of theoretical and computational statistical mechanics is full of trial-

and-error-based attempts to answer these questions by exploring different types of



potentials and structures, yet a comprehensive theoretical framework for addressing
these questions is just being envisioned [2].

These questions are of more practical relevance today thanks to breakthroughs in
colloidal sciences and nanotechnology that has made possible the synthesis of a wide
range of nano- and colloidal particles of different shapes, sizes and surface patterns [3—
7]. The level of control that can be exerted on the way these particles interact (e.g.
range, directionality and specificity of interaction) is also unprecedented and cannot
be easily achieved at the Angstrom scales of atomic and molecular systems. Geometric
and interactional anisotropy of these new building blocks makes them suitable for
assembling complicated structures with interesting mechanical, optical and electric
properties [8].

The types of phases that could emerge in a system not only depends on features
of the inter-particle potential, but also on the shape of the building blocks. Hard
particles are suitable model systems for investigating the exclusive effect of building
block geometry on phase behavior. For a long time it was believed that hard particles
are not capable of forming any ordered structure since a decrease in entropy due to
ordering cannot be compensated by a decrease in internal energy due to the absence
of attractive interactions. It is therefore not surprising that Onsager’s prediction of
an isotropic-to-nematic transition in a system of infinitely thin hard rods [9], and
Kirkwood’s prediction of hard sphere crystallization [10] were calls for controversy at
their times; this issue was not settled until these phenomena were observed in simu-
lation [11-13] and even then there were skeptics. Since then, several ordered phases
have been observed in computational studies of several hard particle systems [14-21].

Studying hard particle systems is also interesting because of the intimate relation-
ship between the question of thermodynamic stability in hard particle systems and
the problem of packing in geometry. It follows from simple thermodynamic reasoning
that an arrangement of hard particles occupying the largest fraction of space is ther-
modynamically favored in the limit of infinite pressure. Solving the packing problem
for a given building block can therefore partially elucidate the phase diagram of the
corresponding hard particle system. In the meantime, thermodynamic simulations of
hard particles can give mathematicians hints on how to solve the otherwise difficult
packing problems.

The packing problem has dazzled the simplest and the most complicated minds
alike since the dawn of civilization. From the peasants trying to fit as many apples in a
box to great thinkers of all ages have attacked this problem from different perspectives.

Written accounts of studies of the face-centered cubic (f.c.c.) packings of spheres



can be found in Sanskrit works of 499 BCE [22]. Plato associated the five basic
elements of universe (earth, water, air, fire and cosmos) with the five regular polyhedra
i.e. Platonic solids that, according to him, pack together to form different forms of
matter [23]. As early as the seventeenth century, prominent thinkers such as Kepler
and Newton were in pursuit of the densest arrangements of congruent spheres. It
is however a prohibitively nontrivial task to solve packing problems for objects not
tiling the Euclidean space. The seemingly intuitive Kepler’s conjecture that an f.c.c.
arrangement of spheres is the densest was only proven recently [24]. Even the simpler
case of the hexagonal lattice packing of disks in two dimensions was not proven to
be optimal until 1892 [25]. It is thus not surprising that the problem of identifying
the densest packings of solids was included as a part of Hilbert’s 18th problem posed
in the beginning of the 20th century [26]. In the wake of resurgent interest in hard
particle systems, several unresolved packing problems are currently revisited mostly
for convex shapes such as ellipsoids, cylinders and tetrahedra [18, 23, 27-34]. No
mathematical theory exists for studying packings of concave objects.

The regular tetrahedron is the simplest of the five Platonic solids, and the only
Platonic solid that lacks central symmetry. Plato associated it with the element fire
and his student Aristotle erroneously thought that it tiles the Euclidean space [23]. It
almost took eighteen centuries for this assertion to be proven untrue [35]. Despite a
few studies of lattice packings of regular tetrahedra in the 1960’s [36, 37|, the problem
received little attention until recently when a number of surprisingly dense packinsg
of tetrahedra were introduced in a relatively short period of time [18, 27-32].

This drama started in 2006 with a paper by Conway and Torquato [27], who
constructed dense packings of tetrahedra with packing fractions as high 72%. Their
failure to surpass the sphere packing fraction of 7/v/18 ~ 74.04% led them to question
Ulam’s conjecture that all convex objects in R?® pack better than spheres. Their
speculation was debunked by Chen in 2008 [28] after she analytically constructed a
crystal with a 77.86% packing fraction.

In 2009, we observed that hard tetrahedra can spontaneously assemble into a
dodecagonal quasicrystal, which could be compressed to a packing fraction of 83.24%.
We also constructed a periodic approximant of the quasicrystal and compressed it to
a packing density of 85.03% [18]. The last two months of 2009 were the climax of
this drama, and the competition would become so intense that records would change
in a matter of days. After the discovery of the simple ‘dimer crystal’ by Kallus [30],
the densest known packing of tetrahedra was finally introduced by Chen et al. [31],

who obtained it by generalizing and optimizing the structure discovered by Kallus.



The whole drama was chronicled in an article entitled ”Packing Tetrahedrons, and
Closing In on a Perfect Fit” in The New York Times on January 4, 2010.

This thesis is devoted to the study of the thermodynamics of hard regular tetrahe-
dra and related systems using Monte Carlo simulations and free energy calculations,
and is organized as follows. In Chapter I a thorough overview of the relevant litera-
ture is presented. The basics and implementation details of the simulation methods
used in this dissertation are presented in Chapter III. Chapter IV outlines a general
scheme for identifying and quantifying orientational order in systems of symmetric
building blocks including tetrahedra. We present our self-assembly simulations of the
hard tetrahedron system, including the structural description of the quasicrystal, in
Chapter V while the thermodynamics and the phase diagram of the hard tetrahedron
system— including comparing the stability of the quasicrystal and the dimer crystal—is
thoroughly covered in Chapter VI. In Chapter VII, the thermodynamics of a related
system i.e. hard triangular bipyramids is thoroughly studied. Concluding remarks

and an overview for further research is given in Chapter VIII.
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CHAPTER 11

Background

This chapter is organized as follows. In Section 2.1, we present a historic overview
of the advancements in the synthesis of non-spherical nano- and colloidal particles
and discuss the key techniques in their fabrication. Section 2.2 is devoted to the
thermodynamics of hard particle systems. Key results in computational studies of
non-spherical hard particles are reviewed in Section 2.2.1. An overview of the packing
problem is presented in Section 2.3. The well-publicized example of the sphere packing
problem and the Kepler conjecture is presented in Section 2.3.1 while Section 2.3.2
is reserved for an overview of the regular tetrahedron packing problem, which is the

main subject of this dissertation.

2.1 Synthesis of Non-spherical Nano- and Colloidal Particles

Nanotechnology is as old as human history. Recent studies on the Lycurgus Cup?,
a glassy Roman artifact of 4th century AD, reveal that its exotic optical dichroism
is due to the presence of gold and silver nanoparticles that have been unintentionally
dissolved into its constituent glass [38]. The first scientific description of unusual
properties of nanometer-sized particles is given by the British scientist Michael Fara-

day [39], who is considered as the founder of the colloidal sciences. Here is how he

!The Website of British museum reads: ”This extraordinary cup is the only complete example
of a very special type of glass, known as dichroic, which changes colour when held up to the light.
The opaque green cup turns to a glowing translucent red when light is shone through it. .. The scene
on the cup depicts an episode from the myth of Lycurgus, a king of the Thracians (around 800 BC).
A man of violent temper, he attacked Dionysos and one of his maenads, Ambrosia. Ambrosia called
out to Mother Earth, who transformed her into a vine. She then coiled herself about the king, and
held him captive. The cup shows this moment when Lycurgus is entrapped by the branches of the
vine, while Dionysos, a Pan and a satyr torment him for his evil behaviour. It has been thought
that the theme of this myth - the triumph of Dionysos over Lycurgus - might have been chosen to
refer to a contemporary .political event, the defeat of the emperor Licinius (reigned 308-24 AD) by
Constantine in 324 AD.”


http://www.britishmuseum.org/explore/highlights/highlight_objects/pe_mla/t/the_lycurgus_cup.aspx

describes the phenomenon that we now know as the Tyndall effect in his famous
Bakerian Lecture [40] in 1857:

”...The latter, when in their finest state, often remain unchanged for
many months, and have all the appearance of solutions. But they never
are such, containing in fact no dissolved, but only diffused gold. The
particles are easily rendered evident, by gathering the rays of the sun (or
a lamp) into a cone by a lens, and sending the part of the cone near the
focus into the fluid; the cone becomes visible, and though the illuminated
particles cannot be distinguished because of their minuteness, yet the light
they reflect is golden in character, and is seen to be abundant in proportion

to the quantity of solid gold present.”
Reports of nanoparticle synthesis can be traced back to as early as the 1960’s [41].

However, the resulting spherically-shaped particles were of limited utility for self-
assembly purposes as traditional spherical colloids are only capable of forming simple-
symmetry phases such as face-centered cubic, hexagonally-closed-packed and body-
centered cubic [2]. With the help of techniques such as surface templating, incor-
poration of bimodal size and charge distribution, and application of external fields,
trigonal, tetragonal, simple cubic and ionic crystals can also be assembled by spher-
ical building blocks [2, 42, 43]. In order to assemble more complicated structures,
geometrical and/or interactional anisotropy of the building block is necessary.
Naturally occurring non-spherical colloids have been known for a long time. For
example swelling clays (such as montmorillonite) are of discotic shape [2]. Accounts
of the synthesis of artificial nonspherical nanoparticles can be found in an early
work of Matijevic in 1976 where he reports the production of monodispersed col-
loidal dispersions of varying shapes including cubes, cube-octahedra, needles and
ellipsoids [44]. By early 1990’s, methods were in place for the synthesis of cubes,
rods and discs from metals (such as gold and silver), and metal oxides (hematite,
boehmite, and gibbsite) [2]. For instance, Ozaki et al. used forced hydrolysis of ferric
chloride solutions at elevated temperatures to make spindle-type colloidal hematite
particles [45]. Buining et al. made boehmite colloidal particle via hyrdrothermal
treatment of an acidified aqueous alkoxide solution [46]. Keville et al. produced
prolate micro-spheroids by embedding poly(methyl methacrylate) (PMMA) micro-
spheres into a matrix of poly(dimethylsiloxane) (PDMS) and deforming the matrix
under uniaxial extension [47]. The majority of these unusually-shaped particles were
however of limited technological application due to low yields and insufficient shape

and size selectivity [2].



The prospect of bottom-up assembly of complex structures from anisotropic build-
ing blocks spurred a resurgent interest in the field and a variety of physical, chemical
and biosynthetic methods were developed in the last decade to allow for tighter control
of particle size and geometry. In the selective crystallization and deposition methods,
a class of solution-based bottom-up techniques that have become very popular re-
cently, an initial crystallite, which is usually spherical, is formed through a chemical
reaction. This crystallite is then preferentially grown along certain directions by the
aid of templates, stabilizers or capping agents [48-51]. The arising anisotropic parti-
cles can be subsequently combined to make other anisotropic particles. For instance,
nano-tetrapods can be obtained by growing rods in the [111] planes of zinc blend
tetrahedron cadmium selenide seeds [48]. In top-down lithography-based methods
such as selective deposition [52] and Particle Replication in Nonwetting Templates
(PRINT) [53], a reactive substrate is selectively molded into the desired morphology
using a beam of UV light or a nonwetting template respectively. A comprehensive
discussion of different nanoparticle synthesis methods can be found in [54].

The emergence of these novel techniques has made possible the synthesis of nano-
and colloidal particles of different shapes. The synthesized shapes include cubes [52,
55-61], rods [4, 56, 60, 62, 63], rings [52], dumbbells [58, 64, 65], decahedra [66-68],
octahedra [57, 60, 61, 67, 69-72], tetrahedra [57, 67, 73-76], icosahedra [57, 67, 77-79],
prisms [49, 80-85], disks [4, 86], triangular bipyramids [85, 87-89], stars [56, 90-92]
and multipods [56, 92, 93]. These particles are made of a variety of materials ranging
from noble metals [6] and metal oxides [5] to semiconductors [3] and polymers [4]. To
this, one should add the hybrid nanoparticles that contain more than one chemical
entity in their structure [7].

The availability of such a variety of nonspherical nano- and colloidal particles
paves the way for assembling complex structures. In general, the individual nanopar-
ticles can have opto-electrical, magnetic or catalytic properties that are different from
the bulk material that they are made of, due to their large surface area [54, 94]. The
structures assembled by these particles can in turn have interesting properties ema-
nating from those of the individual building blocks. However, these structures can
sometimes demonstrate collective physicochemical properties that are even different
from those of the individual constituent nanoparticles [95]. Theoretical and experi-
mental studies of self-assembly are further incentivized by these possibilities.

The phase behavior of these nano- and colloidal particles is not only determined
by the range and directionality of interactions between them, but also by their shape.

Hard core interactions are idealized models for studying the exclusive effect of the



shape of a building block on its phase behavior. We therefore follow by discussing the
thermodynamics of hard particle systems and how it is related to the phase behavior

of nano- and colloidal particles.

2.2 Thermodynamics of Hard Particles
For two arbitrary objects Ry and R, the hard potential is defined by:
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_ (2.1)
0 otherwise

UH(R1,R2) = {

If Ry and R, are congruent spheres of diameter o, Eq. (2.1) takes the following form:

+oo r<o
upgs(r) = { 0 e (2.2)

where r is the distance between the centroids of Ry and Ry. Eq. (2.2) is called the
hard sphere potential.

Hard core interactions are idealized representations of excluded volume effects
that are prevalent in dense states of matter such as liquids and solids, and have been
shown to approximate short-range repulsions [96]. In atomic and molecular systems,
such repulsions arise when atoms and molecules get so close to one another that
their electronic shells start to overlap and repel one another. That explains why
hard particle systems, especially hard spheres, have for decades been such successful
models of dense liquids and solids [11, 12, 97-99].

Likewise, hard core interactions can be used to explain the thermodynamic be-
havior of concentrated colloidal suspensions. What is remarkable however, is that
colloidal particles can, under certain circumstances, behave like hard particles. For
example, long-range electrostatic repulsions between charged nanoparticles can be
screened by ionic solutions, effectively becoming short-range repulsions [100], which,
as mentioned above, can be approximated with hard core interactions [96]. The qual-
itative phase behavior of such colloidal systems can therefore be predicted through
theoretical and/or computational studies of the associated hard particle system.

For a long time, it was believed that hard particles cannot form ordered phases,
as entropy was intuitively associated with ’lack of order’. A disorder-order transition
was thus perceived to involve a decrease in entropy, which, due to lack of attractive

interactions, could not be compensated by a decrease in a system’s energy. This widely



accepted belief was first challenged by Onsager, who showed that, at sufficiently large
number densities, an isotropic fluid of hard thin rods can undergo a weak first-order
transition to a nematic liquid crystal [9]. Onsager made this remarkable- and rather
counterintuitive- prediction by maximizing the virial expansion of the free energy

functional:
QU] = 8 |1+1os 3| - [ f@) osfins @i
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with respect to f(a), the orientational distribution function, with the constraint that
[ f(a)d2 = 1. Here N, is the number of particles in volume V and £;(-) is the first
cluster integral calculated for a fixed angle between the rods. It is argued that the
higher-order cluster integrals can be neglected since L > D. Onsager showed that
for sufficiently large ¢ = N,/V there exists a non-uniform f(a) that gives a higher

value of In @- and hence a lower value of the free energy- than f, and such a

1
=i
non-uniform distribution function describes a nematic liquid crystal.

It took more than thirty years before Frenkel and Eppenga confirmed the exis-
tence of the isotropic-nematic (I-N) transition in hard particle systems in a computer
simulation of hard thin platelets [13]. This phenomenon was experimentally observed
in a colloidal suspension of plate-like particles in the late 1990’s [101].

Perhaps the most well-known example of spontaneous ordering in hard particle
systems is the freezing of hard spheres into an f.c.c. crystal. Kirkwood was the first
to predict this, based on an approximate theoretical description of the hard sphere
model [10]. This prediction was very controversial and met widespread skepticism.
The issue was not settled until 1957 when Alder and Wainwright [11] and Wood
and Jacobson [12] observed the freezing transition in their MC simulations of hard
spheres. In recent decades, the transition has also been observed in experiments of
colloidal hard spheres [102, 103].

These theoretical predictions were based on several approximations, but they could
be qualitatively understood by making a distinction between the intuitive meaning of
entropy i.e. lack of order, and its thermodynamic meaning i.e. the accessible volume
of the phase space. In the case of hard rods for example, the nematic phase has
more entropy than the isotropic phase at the same density since thin rods can have
higher mobility by sliding past one another if they are on average aligned. In other

words, the decrease in rotational entropy is compensated by yet a larger increase in



translational entropy, making the nematic phase more stable. A similar argument can
be made for the freezing of hard spheres. Such transitions that involve an increase
in entropy are generally referred to as entropy-driven transitions and are thought to
occur in energetic systems as well [104].

The feasibility of disorder-order transitions can also be understood from a pack-
ing perspective as all permissible configurations of hard particle systems are packings
of the corresponding shape(s). (The packing problem is discussed in detail in Sec-
tion 2.3,). More particularly, the structure that is thermodynamically stable in the
limit of infinite pressure should be among the packing(s) with the largest possible
packing fraction. This can be seen by observing that the Gibbs free energy of a
hard particle system is given by G(P,T) = PV — ST. As the entropy of any phys-
ical system is bounded from below, the Gibbs free energy is dominated by the PV
term as P — oo and the structure with the smallest specific volume i.e. the largest
packing fraction will be eventually stable. Solving the packing problem is therefore
akin to identifying the high-pressure equilibrium structure of the corresponding hard
particle system. All known densest packings of two- and three-dimensional objects
are ordered [105], which necessitates a disorder-order transition at some intermediate

pressure/density.

2.2.1 Computational Studies of Hard Particles

Since Alder and Wainwright’s pioneering work in 1957, numerous Monte Carlo
(MC) and Molecular Dynamics (MD) studies of hard spheres have been performed.
(A detailed description of hard particle simulation methods is given in Chapter III.)
Different aspects of the hard sphere system have been considered including the equa-
tion of state [106], transport coefficients [97], nucleation rate [107], shear flow and
hydrodynamics [108], glass transition [109] and binary mixtures [110, 111]. Simu-
lation studies of non-spherical particles are however more recent and can only be
dated back to the last three decades. Furthermore, the overwhelming majority of
these studies are carried out using Monte Carlo due to computational difficulties of
implementing an efficient, and yet accurate, event-driven Molecular Dynamics code
for nonspherical hard particles. Here we go through the main results in this area.
Although there have been several studies of the equations of state of hard parti-
cle fluids [112-115], we confine our attention only to studies in which non-isotropic

portions of the phase diagram are also considered.
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2.2.1.1 Infinitely Thin Disks

Hard infinitely thin disks were the first hard particle system for which an isotropic-
to-nematic transition was observed by Frenkel and Eppenga [13, 116]. As circular
planes with zero volume, they can only form orientationally ordered structures since
translational order can only emerge for particles of nonzero volume [117]. In other
words hard infinitely thin disks are excellent nematic formers due to the suppression
of crystallization. This might have played a role in Frenkel and Eppenga’s decision
in using this particular system to demonstrate the possibility of an isotropic-nematic

transition.

2.2.1.2 Cut Spheres

Hard cut spheres are obtained by symmetrically intersecting a sphere of radius
D with two parallel planes distanced by L. Veerman and Frenkel have studied their
phase diagram for L/D < 0.4. Prior to crystallization, the isotropic fluid transforms
into a nematic and then a columnar phase for L/ D = 0.1. However the nematic phase
is no longer stable for L/D = 0.2, and is replaced by a cubatic liquid crystal; i.e. an
orientationally ordered fluid with overall cubic symmetry. And finally for L/D > 0.3,
only the isotropic phase and the solid phase are observed [118]. It has recently been
suggested that the cubatic phase might indeed be metastable with respect to the
columnar phase [119, 120].

In the limit of L/D — 0, there is no distinction between a cut sphere and an
infinitely thin cylinder of the same volume. Bates and Frenkel used this fact to study
the phase behavior of thin cut spheres by simulating thin cylinders, They observed
a nematic-to-columnar transition as had been observed for small- and yet nonzero—

values of L/D in the earlier work of Veerman and Frenkel [118].

2.2.1.3 Spherocylinders

There have been several studies of hard spherocylinders since 1990s [15, 121,
122]. The most comprehensive study is by Bolhuis and Frenkel [122] who provided a
complete picture of the phase diagram for all possible aspect ratios. For L/D — 0,
particles act as perfect spheres; a plastic phase is observed before crystallization to
f.c.c. The phasic phase disappears for intermediate values of L/D and the isotropic
fluid directly transforms into an f.c.c. crystal. At sufficiently large aspect ratios— i.e.
L/D > 3.0- a nematic and a smectic phase are also observed in addition to the the

solid. The f.c.c. phase is replaced by the AAA stacking for very large aspect ratios.
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2.2.1.4 Ellipsoids

Hard ellipsoids can be obtained from hard spheres through an affine transforma-
tion, and they have been extensively studied in recent decades. Frenkel et al. [14, 123]
studied the phase diagram of hard uniaxial ellipsoids— or as they call them ’ellipsoids
of revolution‘— of different aspect ratios and observed three distinct regions in the
phase diagram. Sphere-like ellipsoids— i.e. ellipsoids with aspect ratios between 0.80
and 1.25— assemble into a rotator plastic phase before crystallizing into f.c.c, while
prolate and oblate ellipsoids form a nematic liquid crystal instead before solidification.
There is an intermediate region, however, where the isotropic fluid transforms directly
into the crystal. Recently, Radu et al. demonstrated that the high-aspect-ratio stable
solid phase is not an extended f.c.c.— as Frenkel and coworkers had assumed- but is
a monoclinic phase with two ellipsoids of different orientation in a unit cell [124].
Hard biaxial ellipsoids however exhibit a richer phase behavior; two additional liquid
crystalline phases- namely the discotic phase and the biaxial phase- are also observed

in addition to the nematic liquid crystal [125].

2.2.1.5 Polyhedra

All previous simulations of hard polyhedra, in which the entire phase diagram has
been mapped, have been for space-filling ones [17, 20, 126, 127], which, as discussed
above, have a priori known stable solid phases. There are two approaches for sim-
ulating hard polyhedra; they are either represented perfectly with sharp edges and
vertices [17, 20], or they are replaced with rigid clusters of hard spheres mimicking
their shape [126, 127].

The simplest space-filling polyhedron is the hard cube. Hard cubes crystallize
into a simple cubic lattice with ¢ = 1 in the limit of infinite pressure. Simple cubic
lattice has indeed been shown to be more stable with respect to other space-filling
stacking variations [128]. Prior to that however, they form a liquid crystalline phase
with cubatic order [126]. Depending on their aspect ratio r = ¢/a, hard tetragonal
parallelepipeds tend to form various mesophases prior to crystallization [17, 127]. For
r < 1, a nematic liquid crystal and a columnar phase forms prior to crystallization.
At intermediate and high aspect ratios, a parquet phase and a smectic phase are
observed instead.

Agarwal and Escobedo studied five other space-filling polyhedra in their recent
work [20]. They observed hard triangular prisms and hard gyrobifastigia to directly

transform into their space-filling crystal, while hard truncated octahedra, rhombic
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dodecahedra and hexagonal prisms form rotator plastic phases before forming their
corresponding space-filling solids. Using these examples, alongside cubes, Agarwal
and Escobedo propose a general framework for predicting the type of mesophases
that a certain building block can form by looking into its asphericity and rotational
symmetry. They argue that high asphericity and low rotational symmetry leads to lig-
uid crystalline phase i.e. phases with long-range rotational order but no translational
order- while low asphericity and high rotational symmetry will lead to rotator phases—
i.e. phases with long-range translational order but no rotational order. Systems of
building blocks with Intermediate values of asphericity and intermediate rotational
symmetry are thought to directly transform into their respective solid without going

through any mesophases [20].

2.3 The Packing Problem

A family of objects {R;}22, C R? is called a packing if their interiors are disjoint. For
every packing, the packing density or the packing fraction is defined as:

6 = limsup m Zl Vol[R: M B(r)] (2.4)

with B(r) = {z € R? : ||z| < r}. For a periodic packing of congruent objects,
Eq. (2.4) takes the form:
NVgz

¢ = T (2.5)

where N is the number of particles in the unit cell, and Vx and Vg are the volumes of
the individual particle and the unit cell respectively. For congruent objects, the pack-
ing problem is to identify an arrangement with the largest possible packing fraction,

and is posed as a part of the 18th of Hilbert’s well-known Mathematische Probleme:

”...How can one arrange most densely in space an infinite number of equal
solids of a given form, e.g., spheres with given radii or regular tetrahedra
with given edges (or in prescribed position), that is, how can one so fit
them together that the ratio of the filled to the unfilled space may be as
large as possible?” [26]

A packing with ¢ = 1 is called a tiling of the d-dimensional space. The problem of

identifying bodies that tile the space is also of interest to mathematicians, and has
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received considerable attention in the literature [19, 23, 27, 129].

The packing problem is an optimization problem with infinite number of variables,
which makes it very difficult to solve. For certain classes of packings describable
by a finite number of parameters however, the local maxima of (2.4) can be easily
calculated. For instance, the densest lattice packings? of three-dimensional compact
convex sets can be obtained using the classical method of Minkowski [130], which
has been used to obtain the densest lattice packings of a number of objects such as
regular tetrahedra [37] and regular octahedra [130]. Betke and Henk have developed
an efficient computer algorithm for analytic calculation of dense lattice packings of
3-polytopes, and have used it to obtain the densest lattice packings of all Platonic and
Archimedean solids (Table. 2.1) [131]. Similar local maxima can be obtained for other
classes of periodic packings with a few particles in the unit cell and have been used to

obtain non-lattice dense packings of several three-dimensional objects [28, 30, 31, 105].

Table 2.1:
abie Densest lattice packings of Platonic and Archimedean solids compared to

the best known packing of the corresponding polyhedron.

# Body Lattice Packing  All Packings

1 Tetrahedron [31, 37, 131] 36.7346938% 85.634768%

2 Cube 100% 100%

3 Octahedron [130, 131] 94.7368421%  94.7368421%
4 Dodecahedron [131] 90.4508497%  90.4508497%
5 Icosahedron [131] 83.6357445%  83.6357445%
6  Cubeoctahedron [131] 91.8367346%  91.8367346%
7 Icosidodecahedron [131] 86.4720371%  86.4720371%
8 Rhombic cubeoctahedron [131] 87.5805666%  87.5805666%
9 Rhombic icosidodecahedron [131] 80.4708487%  80.4708487%
10 Truncated cube [131, 132] 97.3747688% 97.3747688%
11 Truncated octahedron [131] 100% 100%

12 Truncated dodecahedron [131] 89.7787626%  89.7787626%
13 Truncated icosahedron [131] 78.49877759%  78.49877759%
14  Truncated cubeoctahedron [131] 84.9373252%  84.9373252%
15 Truncated icosidodecahedron [131]  82.7213595%  82.7213595%
16 Truncated tetrahedron [19, 131] 68.0921053%  99.5192308%
17 Snub cube [131] 78.769996% 78.769996%

18 Snub dodecahedron [131] 78.8640117%  78.8640117%

Although such local optima can be obtained, it is far more difficult to establish
their global optimality. For instance, Lagrange (1773) and Gauss (1840) proved that

2Lattice packings are periodic packings with one particle per unit cell.
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the densest lattice packing of congruent circles in R? and congruent spheres in R? are
the hexagonal lattice and the f.c.c. lattice respectively [22]. But the optimality of
these solutions were not proven until 1892 for circles [25] and 2005 for spheres [24]. So
far, the packing problem is only solved for a few non-space filling convex objects in R?
including the infinite cylinder [133], rhombic dodecahedron with a clipped corner [134]
and spheres [24].

The difficulties of obtaining exact analytical solutions of packing problems on one
hand, and the recent increase in the available computational power on the other hand
has made numerical studies of packing more popular. The most commonly used nu-
merical method is the Monte Carlo method in which the local maxima of the packing
fraction are obtained through stochastic evolution of a periodic packing according
to the laws of statistical mechanics [18]. (The technical details of the Monte Carlo
approach is given in Chapter I11.) Another method that has been recently used for ob-
taining dense packing of tetrahedra is the periodic divide and concur (PDC) algorithm
which is based on the dynamics of the difference map on a constraint satisfaction iter-
ative search algorithm and on the divide and concur constraint framework [135]. The
main advantage of this method is its ability to evade local minima using a difference
map; however since the number of constraints grows exponentially with the number

of particles, its utility is confined to unit cells with a small number of particles only.

2.3.1 Sphere Packing

Perhaps no problem other than the packing of congruent spheres in three dimen-
sions has exposed how little we know about solving packing problems. Studies of
f.c.c. packings of spheres can be dated back to a Sanskrit work of 499 AD [22]. The
first study of sphere packing in the modern era is due to T. Harriot who was in-
terested in obtaining formulas for the number of cannonballs that can be stored in
regularly stacked piles. Kepler’s involvement in this problem came about through his
correspondence with Harriot. In his 1611 essay Strena seu de Nive sexangula (New
Year’s Gift Concerning Snowflakes), he asserts that the f.c.c. packing is the densest

arrangement of spheres:

... the packing will be the tightest possible, so that in no other arrange-

ment could more pellets be stuffed into the same container,”

This is widely known as Kepler’s conjecture. In 1840 Gauss proved that the f.c.c.
packing is the densest lattice packing of spheres. The two-dimensional analog of

Kepler’s conjecture was proven in 1892 [25]. Several upper bounds were obtained for
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the sphere packing in R3 between 1919 and 1993 [136-142]. L Fejes-Téth was the first
to suggest that this infinite-variable optimization problem might be mappable onto
a simpler finite-variable optimization problem. In particular, he attempted to obtain
tight upper bounds for ¢ by minimizing the weighted volumes of thirteen neighboring
Voronoi cells of a typical sphere packing. He also speculated that computers can be
used in solving this optimization problem [143]. There were a series of unsuccessful
attempts by Hsiang to solve the Kepler conjecture [144]. The final proof however came
from Thomas Hales in the late 90’s and early 2000’s. He mapped the packing problem
onto a number of finite-variable optimization problems by considering the weighted
volumes of Voronoi cells, simplices and quarters. These problems were solved by the
aid of a computer. A complete proof can be found in [24].

Not surprisingly, little success has been made in solving the sphere packing prob-
lem in higher dimensions. The densest lattice packings are, however, calculated for
dimensions 4 and 5 [145, 146], 6 — 8 [147] and 24 [148]. For dimensions beyond 8
no solution exists for the densest lattice packings except for d = 24 [148]. One re-
markable fact about higher-dimensional spheres is that their apparent densest lattice
packings might no longer be optimal; counterexamples can be found for dimensions
10,11, 13,18,20 and 22 [149]. It has indeed been conjectured that the densest pack-
ings are not lattice packings for sufficiently large dimensions [150]. There are several
numerical results on the packing and thermodynamics of hyperspheres in the litera-
ture [135, 151-153].

2.3.2 Packing of Regular Tetrahedra

Platonic solids® were sources of fascination for ancient Greeks who were the first to
identify and enumerate them. In his final book of Elements, Euclid gives a complete
mathematical description of the five Platonic solids. They also play a central role
in Plato’s philosophy, and are associated with the five elements that mix together to
form the universe?.

The regular tetrahedron is the only self-dual Platonic solid, it is also the only
Platonic solid that lacks central symmetry. Although Aristotle correctly identified

the other three non-space-filling Platonic solids, he erroneously claimed that regular

3In Platonic solids, all faces are congruent regular polygons which the same number of faces
coming together at each vertex. All vertices are therefore equivalent in the sense that they can be
mapped into one another via symmetry operations.

4In his dialogue Timaeus c. 360 BC, Plato associates air with octahedron, water with icosa-
hedron, earth with hexahedron (cube), and fire with tetrahedron. Dodecahedron is saved for the
COSMOS.
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tetrahedra tile Euclidean space. This led to an error that persisted for almost two
millennia, and several thinkers after Aristotle tried to find the number of tetrahe-
dra that can pack around a point. Only in the 15" century AD, Johannes Mriller
(1436-1476) managed to spot the flaw in Aristotle’s claim in his lost manuscript ” On
the five like-sided bodies, that are usually called regular, and which of them fill their
natural place and which of them not, in contradiction to the commentator on Aris-
totle, Averroés”. The first existing written account of this problem can be found in
the book of the Polish mathematician, J. Broscius (1591-1652) where he explicitly
calculates the dihedral angle of a corner of a tetrahedron, showing that no integer
multiple of it equals 47 [23].

The search for lattice packings of tetrahedra started by Minkowski, who used his
method to find the densest lattice packing of tetrahedra [130]. He however made
a mistake in identifying its difference polyhedra® and obtained an exceedingly low
packing fraction of & ~ 23.684211% [31]. The densest lattice packing with ¢ = 33 ~
36.734694% was first proposed by Gromer in 1962 [36]; Hoylman proved its optimality
in 1970 using Minkowski’s method [37].

In 2006, Conway and Torquato proposed several dense packings and performed
numerical compressions to obtain densities as high as 72% [27]. They obtained their
‘reformed Scottish packing® from replacing each icosahedron with twenty tetrahedra
in the densest lattice packing of icosahedra calculated by Betke and Henk [131].
The other dense arrangement— the Welsh bubbles— were based on polytetrahedral
networks of clathrate hydrates. (The structural details of these packings are discussed
in Chapter V.) Their failure to obtain packings denser than the sphere packing led
them to question the validity of Ulam’s conjecture which asserts that all convex bodies
in R? can pack better than spheres [154] (As will be seen in Chapter V, our numerical
compression of the reformed Scottish and the Welsh packings leads to packings denser
than spheres.)

In 2008, Chen debunked Conway and Torquato’s doubts about Ulam’s conjecture
by proposing a packing with ¢u.x = 77.86% which packed significantly better than
spheres [28]. The unit cell contained 18 tetrahedra that were arranged into two
nonamers that were related to each other by inversion. Each nonamer contained
nine tetrahedra forming two pentagonal bipyramids sharing a central tetrahedron. In
2009, Torquato and Jiao numerically compressed this packing to ¢max = 78.20% [29].

The last few months of 2009 witnessed a flurry of activity on this problem. These

2

5For a convex set K, the difference set DK is defined as DK = {x y;:m Yy € K}.
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Table 2.2: Dense packings of regular tetrahedra.

Type Reference Date Packing Fraction
18
Lattice Packing Gromer [36], Hoylmann [37] 1970 9"~ 36.73%
Reformed Scottish Bubble Conway, Torquato [27] 2006 71.66%
Welsh Bubble Conway, Torquato [27] 2006 71.74%
Nonamer Crystal Chen [28§] 2008 77.86%
Disordered Haji-Akbari et al. [18] 2009 78.56%
Quasicrystal Haji-Akbari et al. [18] 2009 83.24%
Approximant Haji-Akbari et al. [18] 2009 85.03%
100
Dimer crystal, monoclinic ~ Kallus et al. [30] 2009 m ~ 85.47%
0
Dimer crystal, triclinic Chen et al. [31] 2010 sl 85.63%

attempts will be fully discussed in Chapters V and VI of this thesis. In Novem-
ber 2009, we reported the spontaneous formation of a dodecagonal quasicrystal in
a system of hard tetrahedraledra and compressed the quasicrystal and its first-order
approximant to a maximum packing fractions of ¢ = 83.24% and ¢ = 85.03%
respectively [18]. Shortly after, Kallus et al reported a double dimer lattice with
four particles in a monoclinic unit cell with ¢ .« = %2 ~ 85.470085%, slightly bet-
ter than the approximant [30]. This current world record belongs to Chen, En-
gel and Glotzer [31], who optimized Kallus’s packing to obtain a triclinic cell with
o = % ~ 85.634782%. Numerical simulations of the unit cells with 16 tetrahedra
and less confirmed the optimality of Chen’s structure. In 2010, Gravel et al. obtained
a nontrivial upper bound for the packing density of regular tetrahedra [32]. Major

milestones in solving the packing problem for tetrahedra are given in Table 2.2.
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CHAPTER III

Methods

In this chapter, we discuss the technical details of various computational meth-
ods that will be used in the remainder of this thesis. This chapter is organized as
follows. Section 3.1 provides a brief overview of the statistical mechanical principles
used in this chapter and the rest of this dissertation. In Section 3.2, conventional
methods used for sampling the configurational space of hard particles are discussed.
This includes Monte Carlo and Molecular Dynamics simulations in different ensem-
bles. Section 3.3 gives a general overview of free energy calculation methods, and is
concluded by a detailed discussion of the Frenkel-Ladd method that we use for cal-
culating the free energies of crystalline phases of hard tetrahedra and hard triangular
bipyramids. Section 3.4 is dedicated to the discussion of the concept of free volume,
and the methods with which it can be calculated. And finally, Section 3.5 gives a

short description of the major analysis tools used in the thesis.

3.1 Statistical Mechanics Principles

All thermodynamic properties of a physical system are fully specified by its par-
tition function §, which, in the classical treatment, is a multi-dimensional integral of

a weight function w(I") over all degrees of freedom of a system:

5= /w(F)dF (3.1)

The probability that the system visits a certain configuration is given by w(I")dI'/§.
This probability can be used to calculate the ensemble average of a given mechanical

property X:

1
(X) = 2 / X (D)w(T)dD (3.2)
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Furthermore, the underlying thermodynamic potential that is maximized or mini-
mized in a particular ensemble is proportional to the logarithm of F. Therefore every
thermodynamic property can be calculated with the knowledge of F. The mathemat-
ical form of w(-) and § depends on the thermodynamic ensemble; w and § are given
for several ensembles in Table. 3.1. In the thermodynamic limit, where all fluctuations
become vanishingly small, all ensembles become equivalent.

The canonical (NVT) ensemble is arguably the most widely used ensemble in
statistical mechanics, and will be used extensively in the remainder of this disserta-
tion. We therefore introduce the notations that will be used for the NVT ensem-
ble here. The weight function in the canonical ensemble is the famous Boltzmann
factor which is w = e PHEYPY) with 8 = 1/kpgT, H(xY,p") the Hamiltonian
of the system; x = (x;,Xs, -+ ,Xy) the configurational degrees of freedom and
p" = (
thus given by':

P1; Py -+, Py) the conjugate momenta. The partition function Q(N,V,T) is

1

/eﬁH(xN’pN)dede (3.3)
The thermodynamic potential that is minimized in equilibrium is the Helmholtz free
energy and is given by A = —kgTInQ(N,V,T). Momentum contributions to the
partition function— and the free energy— can be calculated analytically; they will
therefore be included only if they are different for two different systems or state

points. We will otherwise be dealing with the configurational partition function Z:
Z(N,V,T) = / e PUCN) g N (3.4)

with A = —kgT'In Z. The ensemble average of any mechanical observable that only
depends on the positions (and orientations) of particles— and not their momenta— is

therefore given by:
(X) = % / X (xM)e PV gxN (3.5)

In the quantum treatment of statistical mechanics, all integrals turn into sums over
discrete microstates of the system, that are eigenfunctions of the Schrodinger equa-
tion. For instance Q(N,V,T) =Y e PP The classical and quantum treatments can

be reconciled if the energy difference between the micorstates is < kgT. Throughout

!The N! that appears in the denominator appears only if particles are indistinguishable. and is
absent in systems where particles are distinguishable, like a crystal.
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Table 3.1: w,I" and § for different ensembles.

Ensemble r w In§
NVE (x",p") §[H(T) — E] S/kp
NVT (xN, p™) e PHT) —A/kpT
NPT xN,pN,V) e PPV-BH@@"PY) _q/kpT
uVT (N;xN pN)  efuN-BH@"PY)  py/keT

this dissertation, we will only use the classical treatment.

Unlike momentum contributions that can be calculated analytically, it is not pos-
sible to obtain analytical expressions for Z except for very few systems with simple
potentials. Direct numerical integration of (3.4) or (3.5) is also not feasible as the
amount of discretization needed for an accurate estimate of the integral is orders of
magnitude beyond what can be handled with the existing computing power. These
integrals can however be calculated indirectly. We will discuss the methods used for
direct or indirect calculation of (3.4) in Section 3.3, but before that we discuss the

numerical techniques used for indirect evaluation of (3.5).

3.2 Conventional Sampling Techniques

The success of statistical mechanics in explaining the macroscopic behavior of
many-body systems by replacing time averages with ensemble averages lies in the
fundamental assumption that most physical systems are ergodic; i.e. the likelihood
that any particular configuration is visited by a typical sufficiently long trajectory in
the configuration space is constant and independent of the trajectory. If a system
is ergodic, the time average of any mechanical observable can be obtained from a
stochastic trajectory provided that the stochastic process used for generating it has
the same stationary (i.e. equilibrium) distribution as the physical system. The whole
class of Monte Carlo (MC) methods employ this to study the equilibrium properties
of many-body systems. Eq. (3.5) is therefore taken as its average over a sufficiently

large stochastic trajectory i.e.:

n

.1
(X) = lim =2 X
j=1
with X := X(x}'), the value of X in the jth snapshot of the stochastic trajectory.

Another alternative is to evolve the system according to its underlying Newtonian
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Table 3.2: Acceptance probabilities of MC simulations in different ensembles.
Ensemble  P,..(T+D|0()

NVT min {1, e FUnr1-Un)1
NPT min 4 1, (Vg1 / Vi)™ e*ﬁP(VnH*Vn)*ﬁ(UnH*Un)}

dynamics and replace (3.5) with the actual time average (X); = limy_,o fg X(1)dr.
This is what is done in Molecular Dynamics (MD) simulations. In the following
sections, we provide a brief description of these two classes of methods, and outline
their special application to hard particle systems. We also outline the technical details

of the MC algorithm used in this dissertation

3.2.1 Monte Carlo

The conventional Monte Carlo algorithm that is widely used in numerical studies
of condensed matter was first proposed in 1953 by Metropolis [155], who used it
calculate the equation of state of two-dimensional hard disks. The success of his
method can be attributed to his careful selection of the Markov process, which is still
in use today. A particular trial move I'™*1 is generated from I'™ according to the
distribution a(I'™|P™+1). The trial move is then accepted or rejected according to

the following acceptance probability:

P(T+D)
(n+1) ()Y — i A
Pacc(l" T ) = mln{l. PT) } (3.6)

ie. T is always accepted if it is more probable than I'™: otherwise it is ac-
cepted with the probability P(I'"*+1) /P(T'™). It can be easily shown that P(-) is the
stationary distribution of this Markov chain if a(A|l") = «(T'|A) for every I', A. The
condition P(I")a(A|l") = P(A)a(T'|A), which is satisfied in the Metropolis algorithm, is
called detailed balance and is a sufficient condition for the convergence of the Markov
chain to the equilibrium distribution.

The Metropolis algorithm allows the system to evolve through the important re-
gions of the configuration space without visiting the (high energy) low probability
regions that contribute little to (3.4) and (3.5). Table. 3.2 summarizes the accep-
tance probabilities for MC simulations at different ensembles.

Monte Carlo simulations are very popular in studies of nonspherical hard particles.
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This can be partly attributed to their relative ease of implementation, as the problem
of calculating the internal potential is reduced to detecting collisions between rigid
geometric objects. The acceptance criterion is usually very simple. For instance, in
the canonical ensemble, all moves that do not generate an overlap are accepted. All
the findings of this dissertation are obtained from MC simulations. We discuss the

technical details of our implementation in the following sections.

3.2.1.1 Representation of Particles

We represent tetrahedra and triangular bipyramids in their full geometrical details,
and do not adopt the convention of approximating them with rigid clusters of hard
spheres. The orientation of each particle is described by a unit quaternion q =
(9tsqzs @y, ¢=). The reference orientation, which corresponds to q = (1,0,0,0), for
each shape is given in the chapter dedicated to its study. Further details about

quaternions and their relationship with rotation are given later in Section 4.3.3.2.

3.2.1.2 Units

MC simulations are performed in both NVT and NPT ensembles. Observe that
Z(N,V,T) is not a function of T" and only depends on the number density N/V.
The same assertion is true in the NPT ensemble where the configurational part of
A(N, P,T) is a function of P/T only. We therefore choose the energy scale so that
T* = kgT/e is unity. A characteristic length of the system— e.g. the edge length of
a tetrahedron or a triangular bipyramid— is also taken as the length scale o. The

dimensionless pressure therefore takes the form P* = Po®/kpT.

3.2.1.3 Thermodynamic Ensembles

Isochoric MC simulations are routinely used in studies of hard particles. Isobaric
and the closely related isotensio MC simulations are also very common, much more
so than in the soft particle systems where they are discouraged over NVT simulations
due to their higher computational cost. This can be partly attributed to the difficulty
of calculating pressure in isochoric simulations of nonspherical hard particles?; unlike
soft particles where instantaneous pressure can be easily computed from the virial

theorem [156]. In addition, it is easier for a periodic structure to find the appropriate

2There are several method for calculating pressure in NVT simulations of hard particles; one
such approach is presented in Section 3.5.1; however these methods are usually so computationally
costly that the additional computational overhead for using NPT instead of NVT is justified.
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box dimensions in an isobaric simulation. This is particularly important for hard
particles where no attractive potential exists to guide the formation of the crystal
with the right spacing, e.g. by arranging the particles to reside at the minima of the
interparticle potential.

In conventional NPT MC, the simulation box is isotropically resized along all
directions. However, there are other variants of NPT MC where both the size and
the shape of the simulation box are altered. This can help a crystalline structure
to find the optimal strain for a given external pressure by getting rid of its internal
stresses. A similar method, known as the Variable-Shape NVT MC, exists where the
shape of the simulation box is altered while its volume is kept constant [157].

We use all four ensembles for self-assembly simulations, while equations of state
are calculated using isobaric and isotension simulations. Simulations that are used
for calculating quantities such as free volume, mean-square displacement or autocor-

relation functions are exclusively carried out in the canonical ensemble.

3.2.1.4 Trial Moves

The trial moves used in our simulations are local in nature, and do not involve

3. They can be classified into particle sweeps and box sweeps.

any unphysical moves
Particle sweeps include trial translations and trial rotations, and are performed in all
ensembles. Box sweeps are however performed in isobaric, isotension, and variable-
shape isochoric simulations only. Each MC cycle includes N particle sweeps; each
being a trial translation or a trial rotation with equal probability. An additional
box sweep is carried out per cycle in isobaric, isotension and variable-shape isochoric
simulations. Implementation details of each trial move are presented in Table 3.3. It
is necessary to note that trial rotations are performed using the procedure given by
Vesley [158].

AZmax, Agmax and Aby., are the maximum step sizes for different trial moves.
They only affect the efficiency with which the configurational space is sampled with-
out changing the asymptotic properties of the Markov chain (such as its stationary
distribution). If these step sizes are too small, most trial moves will be accepted, but
the system will hardly change since each trial move will only bring about a very small
change to the configuration. On the other hand, too large step sizes will cause the
majority of trial moves to be rejected, which will also lead to inefficient sampling. It

is therefore customary to adjust the values of these parameters dynamically so that

3The compression method used for obtaining dense packings is an exception, and involves un-
physical compression moves that generate unphysical overlapping configurations.
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Table 3.3:
abie Implementation details for different MC trial moves. r and q stand for the

position and the quaternion of the particle randomly selected for transla-
tion or rotation. B is the box matrix having as its columns the vectors
that span the simulation box. S% = {x € R?: ||x|| = 1} is the unit sphere
in RY and Ul(a,b) is a random variable uniformly distributed on [a, b].

Trial Move  Ensemble Implementation

11
Translation All Tnew = Told + ATmax, u; ~ U (2, 2)
Aol T Aqrnauxqu

Rotation All Qpew = ,q, ~ U(5%)
quld + AQJmaquu|| 11
Box Sweep NPT Bhew = (1 + Abpaxw)Boa, w ~ U <2, B
y . 11
Box Sweep NoT Bl = Bl 4+ Abmaxwij, wij ~ U (—2, 2>

Vol(Bga) \ /* s 11
Box SWeep VSNVT Bnew = <W M/, W = Bo{d + Abmaxwij, Wsj ~ U _5, 5

a certain fraction of moves are accepted. We use a target acceptance probability of
30% for the majority of our simulations. However we occasionally fix the maximum
step sizes in simulations used for calculating dynamical properties such as mean-
square displacements and autocorrelation functions. This is to assure the temporal

equivalence of MC cycles in a simulation.

3.2.1.5 Collision Detection

The most time-consuming part of a hard particle MC simulation is the collision
detection. For hard spheres, this task is as straightforward as checking their distances;
there are more sophisticated formulae for other shapes including ellipsoids [159], sphe-
rocylinders [15], or thin disks [116]. In this section, we mention the three different
algorithms that we used to detect overlaps between two convex polyhedra.

The simplest algorithm is based on the observation that two convex polyhedra
overlap if an edge of one polyhedron is totally or partially located inside the other
polyhedron. Since the interior of a convex polyhedron is below all its faces, this can
be checked for each edge by intersecting it with the planes specifying those faces, and
identifying the parts of an edge that lies below all those planes. The two polyhedra
overlap if such a line segment is nonempty for at least one edge. This algorithm was
used in some of our preliminary runs; it is also used to verify the densest packings
obtained from simulations that use other collision detection algorithms.

For most of our production runs, we use the separating axis theorem [160], which
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states that two convex sets do not intersect if and only if a plane can be found that
completely separates them. In other words, the vertices of one convex polyhedron
must lie on one side of the plane and the vertices of the other polyhedron on the other
side. Taking two vertices of one polyhedron and one vertex of the other polyhedron
defines a trial candidate for a separating plane. If none of these trial candidates is
a separating plane, two polyhedra must intersect. For symmetric polyhedra such as
tetrahedra, this algorithm can be further optimized by sorting the vertices of one
polyhedron according to their distance to the other polyhedron and discarding the
irrelevant trial candidates.

Another collision detection algorithm that is used for some production runs is the
well-known Gilbert-Johnson-Keerthi (GJK) algorithm [161]. For a pair of convex sets
Cy and Csy, the Minkowski difference is defined as C; — Cy = {z —y : z € Cy,y €
Cy}. Observe that C; and Cy intersect if 0 € C) — Cy. The GJK algorithm checks
this condition using an iterative algorithm, which is well optimized for polytopes
in R3. This method can also be used to determine the minimum distance of two

nonintersecting convex polytopes.

3.2.1.6 Compression Algorithm*

The densest packing that can be attained from a given configuration is thermody-
namically achieved at P — oo. This can be done by gradually increasing the pressure
up to a sufficiently large value in the course of an isobaric MC simulation. Although
this scheme works perfectly for small systems; i.e. systems with a few particles in a
periodic box, it is very inefficient in compressing large systems. Note that a compres-
sion box sweep will be discarded even if it only generates one overlap. At a given
density /pressure, the likelihood that a compression generates new overlaps is higher
in larger systems. This in turn leads to a large number of volume moves to be re-
jected, and hence a smaller value of Aby,.y, and less efficient compression. In order
to overcome this difficulty, we develop a modified compression Monte Carlo scheme
which allows for a few minor overlaps during compression. It should be emphasized
that our modified scheme is only used to obtain high density results; the conventional
isochoric and isobaric Monte Carlo methods are used to produce all thermodynamic
information, such as equations of state and phase transitions [18].

In our method, all expansion/compression moves are accepted even if they result

in new overlaps and a different criterion is used to ensure that the number and amount

4This section is partly based on the following manuscript: Amir Haji-Akbari, Michael Engel,
et al. Nature 462: 773-777 (2009) [18].
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of overlaps remain small. We monitor p, the fraction of trial translations accepted
since the previous volume move, and compare it to a target acceptance probability p;.
If p < ps, the volume of the box is increased by a random factor f uniformly chosen
from the interval [1, 1+ 0.002Az,,] while for p > p;, a compression is attempted by
a random factor uniformly distributed in [1 —0.002AZyay, 1]. Between volume moves,
the system evolves through conventional trial translations and trial rotations and the
moves that do not generate new overlaps are accepted.

AZmax, the maximum step size for a trial translation is the control parameter
in this method and is inversely related to pressure in the conventional isobaric MC
algorithm. In a compression run, Az, is exponentially decreased until the densest
packing is obtained. A few hundred cycles of conventional NVT MC are carried out

at the end to get rid of all minor overlaps generated by this method.

3.2.2 Molecular Dynamics

In a Molecular Dynamics simulation, the system evolves according to Newtonian
dynamics. It therefore not only can be used for estimating (3.5), but also is the
method of choice for studying dynamical phenomena such as diffusion [97] or gran-
ular flow [162]. Furthermore, it is more efficient in equilibrating systems of high
densities [163].

A Molecular Dynamics simulation of soft particles— i.e. particles interacting
through continuous potentials— is equivalent to solving a system of ordinary differ-
ential equations; a task that can be done by proper discretization of time. At each
time step At, the force (and the torque) that is exerted on each particle is calculated,
which is then used to update its position (and orientation). However, if there are
discontinuities or singularities in the inter-particle potential, this scheme is no longer
usable since the behavior of the system will heavily depend on collision events; i.e.
events at which the relative positions (orientations) of a pair of particles coincides a
discontinuity or singularity of the inter-particle potential. If such a system is evolved
in constant time steps, some collisions are inevitably going to be missed, leading to a
misrepresentation of the true physics of the system. An MD simulation of such sys-
tems should therefore involve a sequential processing of all collision events in addition
to gradual evolution of the system according to continuous parts of their potential.
This is in contrast to the inherently parallel scheme used for soft particles.

Hard particles can be considered on a free flight mode between successive collisions
i.e. they will maintain their linear and angular momenta as no force (or torque)

is exerted on them by other particles unless a collision occurs. Therefore an MD
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simulation of hard particles only involves identifying and processing the collision
events, and fast-forwarding the system between successive collisions. Although the
problem of detecting collisions is mathematically well defined there is no unique recipé
for processing collision events. Both the linear and angular momenta are conserved in
a collision event. The total kinetic energy of the colliding particles is also conserved
in elastic collisions. (Inelastic collisions are not very common and are mostly used
in simulations of granular flow.) Additional assumptions are however needed for
processing collisions. For instance, it is usually assumed that the change in the linear
momentum of each colliding particle is perpendicular to the plane that is tangent to
colliding particles in the point of contact [163, 164].

Determining collision times between spheres that move with constant velocities
is as easy as solving a quadratic equation. It is therefore straightforward to use this
event-driven approach for implementing efficient MD computer programs for hard
spheres. For nonspherical particles however, collision times cannot be calculated
analytically, and numerical solutions are only possible for very simple shapes. The
only alternative is to fast-forward the system in small increments of time At until
an overlap is detected, collision time can then be precisely calculated by an iterative
process that involves going backwards and forward in time within the last timestep.
Apart from the uncertainties in the estimates of the collision times, some sliding
collisions might also be missed in this process. This could lead to an unphysical
dynamics or an incorrect estimate of properties such as pressure.

Considering these limitations and the relative ease of implementing MC, MD is
rarely used for nonspherical hard particles. Indeed all the examples mentioned in Sec-
tion 2.2.1 are carried out using MC simulations. For the same reason, we did not use
MD in any of our simulations, and this short discussion is included for completeness

only.

3.3 Enhanced Sampling Techniques and Free Energy Calcu-
lation Methods

In this section, we present a brief overview of the free energy calculation methods
suitable for studying phase equilibrium. In Section 3.3.1, the importance of free
energy calculation methods is discussed. In Section 3.3.2, a short description will be
given on conventional free energy calculation methods. And Section 3.3.4 is devoted
to the adaptation of thermodynamic integration for calculating the free energy of

crystals in hard particle systems.
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3.3.1 Why Calculate Free Energy?

The 279 law of thermodynamics states that the entropy of an isolated system that
is not in equilibrium will tend to increase over time, approaching a maximum value in
equilibrium i.e. dS/dt > 0 in the NVE ensemble. This inequality, along with the 15
law of thermodynamics, can be used to derive similar inequalities for other ensembles.
In the canonical ensemble, for example, the Helmholtz free energy A = E — ST is

minimized in equilibrium. As mentioned in Section 3.1 we have:

S = kglnQ(N,V,E) (3.7)
A = —kgThQ(N,V,T) (3.8)

The problem of identifying the most stable phase at a given state point is therefore
reduced to calculating the types of integrals given in Eq. 3.3. In the following section,
we go through several approaches used for estimating/comparing 3.3 for different

structures.

3.3.1.1 Limitations of Conventional Sampling Techniques

Historically, methods such as Molecular Dynamics and Monte Carlo have been
successfully used to predict the types of phases that a particular system can form
under different conditions. Indeed if a physical system is ergodic, these sampling
methods are guaranteed to reproduce the true equilibrium structure for sufficiently
long times, or sufficiently large numbers of MC cycles. In the real world however,
simulations are finite; the true equilibrium phase will therefore not be isolated if
the simulation time is shorter than the decorrelation time of the system. This can
typically arise if the pathway that connects the starting configuration to the true
equilibrium structure travels through regions of configuration space that have a low
probability of being visited in the corresponding thermodynamic ensemble.

Such kinetic traps can exist in all parts of the phase diagram especially at low
temperatures (or high pressures); they however become particularly problematic in
the vicinity of coexistence manifolds®. For instance, the driving force for a first-
order phase transition is the difference between the chemical potential of two phases.
This thermodynamic driving force can become vanishingly small in the vicinity of a
coexistence manifold, which can, in turn, lead to diverging relaxation times. The co-

existence manifolds of a phase diagram can therefore not be precisely determined with

®Coexistence manifold is the generalization of a coexistence curve for systems with more than
two intensive degrees of freedom, such as multicomponent systems.
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conventional sampling methods such as MD or MC; instead the conditions of thermo-
dynamic equilibrium i.e. the equality of chemical potentials should be explicitly or
implicitly imposed. In general, the methods described in Section 3.3.2 can be used to
determine the free energy potentials of the competing phases, which can in turn be
used to equate their chemical potentials. Implicit methods explained in Section 3.3.3
however work by satisfying the conditions of phase equilibrium by exchanging work

and particles between two phases.

3.3.2 Conventional Free Energy Calculation Methods

The outcome of every free energy calculation method is the free energy difference
between two different systems, or two different structures of a given system. In
density-of-states methods, this is done through equilibrium simulations while in the
work-based methods, the work performed along an irreversible path is used to estimate
the free energy difference. It is however noteworthy that the change in the free energy
within a single phase can be easily calculated from mechanical observables and no

specialized method is necessary. For instance:

A(Vz) — A1) = —/PdV (3.9)
ATy AT) B
2 -s - - / T (3.10)

3.3.2.1 Density-of-states (Equilibrium) Methods

The excess free energy difference between two systems with interparticle potentials
Up(+) and Ui(+) is given by:

In the density-of-states methods [165], the ratio Z;/Z, is calculated through equi-
librium simulations of systems with potentials ranging from Uy to U;. There are
three types of density-of-states methods: free energy perturbation (FEP) methods,
the histogram methods and thermodynamic integration; they differ in the amount of

discretization used for interpolating between Uy(-) and U, ().
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Free Energy Perturbation (FEP) Methods One can rearrange Eq. (3.11) to

obtain:

[ exp[—BU; (x)]dx
[ exp[—BU(x)]dx

= g7t ln/exp[—ﬂ(U1(X) — Up(x))]Po(x)dx
= —B 'In{exp[—B(Ui(x) — Up(x)])o (3.12)

AA = —B'In

where P, (x) is the probability density of configuration xV for a system with the
interparticle potential U,(-). Eq. 3.12 is the basis for FEP methods [166, 167].
Sampling is performed in system 0, the reference or the unperturbed system, and
exp[—B(Ur(x) — Up(x))] values are used for estimating the free energy difference be-
tween system 1, the perturbed system, and system 0.

Many well-known methods fall into FEP category. Perhaps the most well known
example is the Widom particle insertion [168]. In this method, a ghost particle is
added to the system and the change in the potential energy of the system is used to

calculate the chemical potential:

J expl—BU (V1)
T exp[—B0 (M) [dx™

= 5! ln/exp[—ﬁAU]PN(X)dXNJrl (3.13)

= —37'In

In the context of FEP methods, system 0 has N + 1 particles where the (N + 1)-
th particle does not interact with the other N particles, while system 1 has N + 1
interacting particles. The actual simulation is done on system 0- i.e. the system
with N interacting particles— and the ghost particle is removed after AU has been

calculated.

Histogram Methods Suppose that system 0 can be transformed into system 1
by changing a parameter A from Ay to A;. A can be a macroscopic state variable, a
parameter that transforms Hy to H; or a generalized coordinate that allows different
structural states to be distinguished. An extended ensemble can thus be defined with

the partition function N. The probability of observing the system in macrostate 7 is
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therefore given by:

= J exp[=BH]I(X (x,p) — \i)dxdp
N

Note that $ and H can also depend on A. In histogram methods [169], the interval

[Ao, A1] is partitioned into a number of finite subintervals, and the number of times the

Pi=P(\) (3.14)

system visits each macrostate is counted to estimate P;. The free energy difference
is therefore calculated from AA = —kgTIn 7?;—[1). In general, it is computationally
inefficient to estimate P;’s in an unbiased simulations since P;’s might be orders of
magnitude different for different \;’s. To overcome this difficulty, it is customary to
bias the system potential energy to allow low probability regions of the configuration
space to be visited more frequently. More precisely, the probability of visiting the

macrostate ¢ is biased by introducing the bias factor ;:

P(x,p; Ai) = Po (x,p) exp [=/n,] (3.15)

where Py refers to the unbiased probability distribution and IP refers to the biased dis-
tribution. Sampling is performed according to P while the averages of all observables
are calculated in terms of Py.

There is no unique way of determining the value of n;’s. In the most widely
used approach, known as flat histogram methods, n;’s are chosen so that P ()\;) =
[ P (x, p; \i) dxdp is uniform in );. There are different schemes for adjusting the 7,’s
to reach a flat distribution in \;, among them are themulticanonical method [170]
and the Wang-Landau method [171, 172].

A good example of histogram methods applicable to hard particle systems is the
lattice switch Monte Carlo method [173], which is used for calculating the free energy
difference between two crystals. The position of a particle is decomposed into a lattice
component R;, and a displacement component u;. In addition to conventional trial
moves that change u;, the lattice type— and therefore the set of all R;’s— are also oc-
casionally changed. For each lattice type, a bias factor is assigned, which is calculated
in the course of simulation. The unbiased probability of visiting each crystal type is
then calculated upon the convergence of bias factors. Histogram methods have also

been used in free energy calculations of hard particles [17, 124].
Thermodynamic Integration In thermodynamic integration (TI) methods, the

system is transformed from a macrostate 0 to a macrostate 1 through a reversible

change in A, a reaction coordinate or an order parameter. A can be explicitly present

32



in the Hamiltonian, or be a generalized reaction coordinate, such as a torsional angle.

In either case, it is easy to show that [174]:

A1

AA = /<%—7:\[>Ad/\ (3.16)

Ao

Thermodynamic integration is relatively easy to implement if the Hamiltonian ex-
plicitly depends on \; the integral in Eq. (3.16) can then be numerically estimated
by choosing a sufficiently large number points in [A\g, \;] and estimating (9H /ON), at
each point in constant-\ simulations. It is however less straightforward to perform
constant-\ simulations and estimate dA/d\ if A\ is a generalized coordinate of the
system. More details on this latter case can be found in [174].

The most well-known example of thermodynamic integration is the method used
for calculating the free energies of solids by reversibly transforming them to an Ein-
stein crystal i.e. a group of independent Harmonic oscillators. The method was first
used for continuous potentials by Broughton and Gilmer [175] and for discontinuous
potentials by Frenkel and Ladd [176]. In the case of continuous potentials, the ac-
tual interparticle potential is gradually turned off and replaced by Harmonic springs
that tether each particle to its average lattice position (and orientation). More pre-
cisely, the potential energy takes the form U(\) = (1 — X\)Uosiginal + AUnarmonic; A = 0
corresponds to the original system while at A\ = 1, the system is fully composed of
independent Harmonic springs. It is however not possible to turn off the hard core
interaction gradually; the system potential is therefore changed along a path param-
eterized by A € [0, Apax] With U(X) = Unard + AUnarmonic. For sufficiently large Apax’s,
the mobility of particles will be so restricted that the probability of an interparti-
cle collision will be vanishingly small. The details of thermodynamic integration for

nonspherical hard particles are presented at the end of this section.

It is noteworthy that these three categories differ in the level of discretization in
interpolating between system 0 and system 1. In FEP methods, this transformation
is instantaneous, and it is the equilibrium distribution of system 0 that is sampled,
while in TT methods a reversible continuous path connects the two systems. Histogram
methods are somewhere in between, with a few intermediate states also being sampled.
It is however necessary for all these methods that the system that is sampled is always

in local equilibrium.
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3.3.2.2 Work-based (Non-equilibrium) Methods

In work-based methods, free energy differences are calculated from the work per-
formed during an irreversible process. The Hamiltonian of system 0 is transformed in
a finite time to the Hamiltonian of system 1 according to H[\(¢)] with H[A\(0)] = Ho
and H[\(T)] = H,. Jarzynski [177, 178] showed that the AA = A; — Ay is given by:

exp|—BAA] = (exp[—PW(T)])o (3.17)

where W (7) is the work performed in the irreversible process. Configurations sampled
from the equilibrium distribution of system 0 are transformed into system 1 according
to H[A(t)] and W (1) is calculated for each of them. Eq. (3.17) is then used to estimate
AA. Although each configuration is initially in equilibrium, the irreversible process
turns it into a non-equilibrium configuration of system 1. It can be shown that TI
and FEP methods are indeed limiting cases of work-based methods when 7 — oo and

T — 0 respectively. (See Appendix A.)

3.3.3 Implicit Methods

The methods discussed in this section are modified sampling methods optimized
for studying first-order phase transitions and are not free energy calculation methods
per se. Nevertheless they are still discussed due to their relevance to the problem of
mapping phase diagrams. These methods are called implicit since the condition of
the equality of chemical potentials between coexisting phases is implicitly imposed

during a simulation.

Isolation of A Single Point on the Phase Boundary In thermodynamic equi-
librium, the temperature, the pressure and the chemical potential of every component
in the system should be the same in all coexisting phases. The exchange of heat, work
and matter that leads to these equalities occurs through the interfaces. However, there
is a free energy penalty associated with every interface. Such penalties are vanish-
ingly small in real systems, but in simulations where the number of particles are in
the range of 102 — 10, these interfaces are thermodynamically more expensive and
hence difficult to form.

In order to study the coexistence problem in simulation, a class of methods have
been developed in which the coexisting phases are allowed to exchange heat, work and
particles without having a real interface. The most well-known of them is the Gibbs
Ensemble Monte Carlo (GEMC) method developed by Panagiotopoulos [179]. Two
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(or more) independent simulation boxes are simultaneously simulated. These boxes
do not interact; i.e. every particle interacts with the particles within its own box.
The conditions of thermodynamic equilibrium are enforced by allowing the boxes to
exchange volume or particles with the constraint that the total volume of the system
V and the total number of particles NV are fixed. The acceptance probability of every

trial move is determined from the following probability distribution:

Plny, Vi, s, sV ™) = G vTT)VF?)N ‘/121(1‘(/]\71/17131”1 ~BUE+UE (3 18)
where (g, the Gibbs ensemble partition function, is given by:
N, V,T) = Y ! Vdvvm V-V m
Qe(NV.T) = 1;)\/1“3Nn1!(N—n1)!0/ Vv =1)
X / dsire UG / dsy e Ve (3.19)

The coexistence densities are thus calculated from the densities of two boxes after
equilibration. GEMC is a powerful tool for studying fluid /fluid coexistence problems.
It is however less efficient when one of the coexisting phases is a crystal, a liquid
crystal, or a dense fluid since it will take much longer to achieve chemical equilibrium
due to relatively low probabilities of accepting particle exchange trial moves. Specific
methods such as semigrand ensemble Monte Carlo [180] have been developed for dense

systems.

Gibbs-Duhem Integration: Computing an Entire Coexistence Curve If a
single point on a coexistence curve is known from explicit free energy calculation or
a GEMC simulation, the Gibbs-Duhem integration method proposed by Kofke [181]
is an elegant way of calculating the rest of the coexistence curve through iterative
integration of the Clasius-Clapyron equation (Eq. 3.21). For a pure substance the

Gibbs-Duhem equation can be expressed as:
d(Bu) = hdp + pvdP (3.20)

For two coexisting phases of « and ~, the chemical potential is identical along the

coexistence curve and du® = du”. Using Eq. 3.20 for both phases and after some
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rearrangements one obtains:

dP h" — h*

(3), = He 320
The subscript ¢ means that differentiation is performed along the saturation curve.
Eq. 3.21 can be integrated from (S, Fp), an arbitrary point on the saturation line,
to obtain the entire saturation curve. Since every quantity on the right hand side
of Eq. 3.21 can be accurately obtained from simulation, two independent (N PT)
simulations of two coexisting phases can be started from (5y, Py), and the values of
P and ( can be adjusted accordingly. Although the simulations are independent, the
condition of chemical equilibrium is implicitly enforced by iterative integration of the

Clasius-Clapyron equation.

3.3.4 Frenkel-Ladd Method for Anisotropic Hard Particles®

The free energy of a (quasi-)crystal is calculated using the Frenkel-Ladd method [176,
183] by transforming it reversibly into an Einstein crystal, which serves as a reference
structure with known free energy. In the Einstein crystal, each particle is tethered to
its average lattice position via harmonic springs. Although originally developed for
spherical particles, this method can be extended to particles with rotational degrees of
freedom, such as tetrahedra. Additional springs are needed to tether the orientations
of the particles to their average orientations in the lattice. Alternative extensions of
the Frenkel-Ladd method to systems of particles with rotational degrees of freedom
can be found in the literature [184].

We describe the configuration of a tetrahedron by (r,q), with r being its center
of mass position and q the unit quaternion describing its orientation. The potential

energy of of the corresponding Einstein crystal can then be expressed as:

Z/(I‘N,qN) N HI‘Z _r'iOH2 a 2
: ) y 3-22
knT ;1 2 6;1 qu qz,OH ( )

where ;5 and q; ; are the reference position and the reference orientation of the i-th
particle in the crystal. The constant ¢ allows us to adjust the relative strength of the
rotational springs and does not affect the computed free energy differences. All the

results in this study are obtained using a value of ¢ = 1/2; we tested that using other

SThis section is partly based on the following manuscript: Amir Haji-Akbari, Michael Engel and
Sharon C. Glotzer, J. Chem. Phys. 135: 194101 (2011) [182].
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values of ¢ does not affect the outcome of the calculations.
Each system is transformed to the Einstein crystal along a reversible path pa-
rameterized by v € [0, Ymax| using the isochoric-isothermal (NVT) ensemble and the

Hamiltonian
H(EY, dV;v) = Hiaa(®™, ™) + U (Y, q") (3.23)

The hard particle system with Hamiltonian Hy,.q corresponds to v = 0, while in
the limit v — oo the Einstein crystal is obtained. In practice, we can stop at a
sufficiently large value of 7. when the springs are strong enough to suppress any
particle collisions. The Helmholtz free energy difference AA = Agjn — Anara between

the reference Einstein crystal and the hard particle system is given by:

AA = :7“<87;_§7)>7de = :7&X<U>7dfy (3.24)

Note that the Frenkel-Ladd method can only be used if there is no translational or
rotational diffusion in the system; otherwise the ensemble average (U)., will not be
well defined for small values of 7.

In our simulations of hard tetrahedra and hard triangular bipyramids, the system
is held for 2 x 105 Monte Carlo cycles at each « value during which (U), is evaluated.
The integral in equation (3.24) is then computed numerically. This allows us to
determine the Gibbs free energy G = A+ PV of different crystals in a pressure range
where no configurational rearrangements are observed in any of crystals. The free
energy difference AG = Gx — Gy is extrapolated to pressures outside this range

using thermodynamic integration in addition to the Frenkel-Ladd method [185]:

.
AGP*)  AGR) W [ 11 }
NkgT —  NkgT = P/ ox(p)  ov(p) a (3.25)

where X and Y are the crystal structures that are compared using this method, and

V, is the volume of an individual particle.

3.3.4.1 Fluid-solid Transition

We determine the melting pressure P;; by calculating the absolute free energies

of the solid and fluid. For sufficiently large values of ~, the Helmholtz free energy of
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the Einstein crystal is given by [183]:

Agin SN—-1_. 7 3 = N—-1 A
_ _° In——=In— —In Ny + 3 In — 3.26
NEgT 2 N nfy 2n0'y 7 Neym + N 5 ( )

where A = h/(2rmkpT)"/? is the de Broglie wavelength. Ny, is the number of
quaternions corresponding to orientations that are symmetry-equivalent, which is
twice the order of the rotation group of the particle. The factor 2 arises from the fact
that quaternions are inherently degenerate in describing the orientation; i.e. q and —q
correspond to the same rotation matrix. For a non-symmetric particle, the rotation
group will have one element (identity) only and Ny, = 2. Here, for tetrahedra, the
rotation group has twelve elements, so Ny, = 24. For triangular bipyramids, the
rotation group has six elements and Ny, = 12. The first and the second terms are
configurational contributions resulting from the translational and rotational springs.
The last term corresponds to momentum contributions due to translational degrees of
freedom. Momentum contributions due to rotational degrees of freedom are identical
for the fluid and the solid and are therefore not included here.
The Gibbs free energy of an ideal gas, which approximates a real gas in the limit
of infinite dilution, is
Gia P* In(27N)

—1
NigT Mo T T an

A
+3In= (3.27)
g

The free energy of the fluid phase is then obtained from thermodynamic integration
of the equation of state [186]:

pP*

Gauia(P") _ Gia(P7) Jr/ P/T/U3 1

NkgT  NkpT (p) _5} I (3.28)

3.4 Free Volume Calculation’

The free volume of a hard sphere is the volume of the region of space in which
the sphere can be moved continuously without overlapping with its neighbors while
keeping all the other particles fixed [187]. The definition generalizes to anisotropic
particles with rotational degrees of freedom where free volume vy is now the volume

of the largest subset of configurational space connected to the origin that can be

"This section is partly based on the following manuscript: Amir Haji-Akbari, Michael Engel and
Sharon C. Glotzer, J. Chem. Phys. 135: 194101 (2011) [182].
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accessed by a given particle while fixing the positions and orientations of all other
particles [188]:

v = /I(r,q)d3rd3q (3.29)

Here, I(r,q) is the indicator function of motions (r,q) consisting of a translation by
r and a rotation by q and connected to the origin. [ is unity if the particle does not
overlap with any other particle and zero otherwise. Due to the inherent periodicity
of rotational motion, the free volume of an anisotropic particle has generally a more
complicated topology compared to the free volume of a sphere. Here we calculate free

volumes at high densities where the free volume is simply connected.

3.4.1 Shooting Method

We calculate the free volume of a particle using a new method we call the shooting
method [182]. Let (u,v) correspond to a unit vector in the six dimensional configu-
ration space and suppose that particle ¢ is ‘shot’ in this direction until it hits another
particle. The ‘shooting distance’ is the smallest value of « for which the particle
first overlaps with its neighbors if translated by au and oriented according to the
quaternion (q; + av)/||q, + avl||.

A lower bound for the free volume can be obtained by averaging over a sufficiently

large number N, of shots with shot distances a; along randomly chosen directions:
vy 2 lim — Z —a’ (3.30)

Here 73/6 is the volume of the six-dimensional unit sphere. Note that the periodic
topology and the curvature of the six-dimensional configuration space are ignored,
which is acceptable at high packing densities because ||Aq|| < 1.

Eq. (3.30) is a lower bound for concave free volumes, because shooting only
allows access to the parts of the free volume connected to the origin by a straight
line. Non-convex free volumes can arise from sliding collisions which, however, become
increasingly rare at high packing densities. In fact, as we will show now for tetrahedra,

the shooting method is accurate for high enough packing densities.
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3.4.2 Binning Method

To estimate the amount of error in the shooting method introduced by non-
convexity, we using the alternative binning method which corresponds to a Monte
Carlo integration of the free volume. The configuration space of a given particle is
partitioned into Ny small radial bins of volume VP™. We perform N, random ghost
trial moves per bin to average out the orientational degrees of freedom and determine
the number NNO of trial moves not leading to an overlap. Free volume can then be

estimated from:
1 Nbins
bin ATNO
vEN > VRN, (3.31)
j=1

Binning is much slower than shooting and might overestimate the free volume, if a
trial move discovers an area of configuration space without overlap, but not connected
to the original particle position. We find that the average of the logarithms of the free
volumes calculated from the shooting method and the binning method agree within

a relative error of 1072 for all densities ¢ > 70%.

3.4.3 Mean-field Approximation

The distribution of free volumes is related to the entropy of a hard particle sys-
tem in the mean-field approximation. If we assume that free volumes of neighboring
particles are uncorrelated, then the partition function of the system is expressed as
Qums = Hfil vs; and the Helmholtz free energy as Apns/NkpgT = —(lnvg). The ther-

modynamically relevant quantity is therefore the mean-log average of free volumes:

vevL = exp(lnoy) (3.32)

which will be used in the rest of this study instead of the simple average (vy).

3.5 Analysis Tools

3.5.1 Pressure Estimation®

The acceptance probability of trial volume changes is an estimator of the pressure

in Monte Carlo simulations [183]. Consider a trial expansion that increases the volume

8This section is partly based on the following manuscript: Amir Haji-Akbari, Michael Engel and
Sharon C. Glotzer, J. Chem. Phys. 135: 194101 (2011) [182].
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from V to V + AV. To fulfill detailed balance, the acceptance probability of the

volume change is given by the Boltzmann factor,
P*AV AV
P = exp {— = + Nln <1 + 7) } (3.33)

On the other hand, a trial compression that decreases the volume from V to V — AV

is accepted if and only if no overlap is generated by the trial volume change. Let
Pxo be the probability to generate an overlap in the trial compression. For small AV
and in equilibrium the probabilities are equal, Pyo = Py, and we can solve for the

pressure:

. ) No3 AV 1

Here, pno = PfI/ON is the probability of a single particle not having any overlap with

any other particle after the trial compression that decreases the volume by AV.

3.5.2 Diffraction Patterns®

Diffraction images are powerful tools for studying periodic and quasiperiodic struc-
tures and will be extensively used in this dissertation. In the real world, diffraction
images are obtained from small angle scattering experiments, where the transferred
wave is perpendicular to the incoming and outgoing waves if the scattering angle is
too small. For instance, if the incoming wave is in the z direction, the diffraction
image on the zy plane is given by |S(q.,¢q,)[* with S(¢.,q,), the structure factor,
given by:

S(qz,qy) = /p(m,y,z)e‘i(q”_qyy)d:cdydz (3.35)

where p(x,y,z) is the density function. For a set of n discrete point particles,
Eq. (3.35) takes the form:

S(qe,qy) = Y e et (3.36)
p=1

9Diffraction pattern and bond order diagram calculation algorithms are incorporated by Dr.
Michael Engel to the visualization code injavis.
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The diffraction images presented in this study are all calculated by assuming that
scatterers are point particles. The positions of these scatterers are projected onto a
two-dimensional plane perpendicular to the viewing direction z. The plane is then
sheared to obtain a square grid, which is then fast-Fourier-transformed to get the
sheared structure factor. The shear is undone before calculating the diffraction image

from the structure factor [189].

3.5.3 Bond Order Diagrams

Bond order diagrams will be extensively used in the remainder of this thesis. Here
is the precise mathematical definition of a bond order diagram. Let P = {r;} C R?
be a countable set of points in the three-dimensional Euclidean space, and let f :
7Z? — {0,1} be a given function with the property that f(i,j) = 1 if i and j are
connected with a bond and zero otherwise. The bond order diagram is then obtained
by calculating u;; = (r; —r;)/ ||r; — r;|| for each connected pair (¢, 7) and projecting
it onto the surface of S?, the three-dimensional unit sphere. The bond order diagram
is the intensity function ¢ : S? — R=" which can be approximated by discretizing S?
into bins and dividing the number of projections onto a certain bin by its surface area.
A smooth function 1 can be obtained, if the surface area of each bin is sufficiently
small, and the number of pairs in P is sufficiently large. For all bond order diagrams
presented in this dissertation, P is the positions of centers of mass particles in a
simulation. Usually, particles are defined neighbors if their distance lies within a

certain range, different connectivity criteria will, however, be used occasionally.
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CHAPTER IV

Quantification of Rotational Order For Systems of

Symmetric Objects!

4.1 Introduction

Rotational order can in general arise in arrangements of nonspherical molecules or
particles. It can be accompanied by translational order— as in crystals, quasicrystals
and smectic liquid crystals— or it can be stand-alone— e.g. in nematic liquid crystals.
Identifying and quantifying rotational order is of immense interest for condensed
matter physicists. There are standard tools for detecting and quantifying translational
order [190-192], while identifying rotational order is more challenging and the existing
tools are far too complicated and confusing to be used in general [193, 194].

The orientation of an arbitrary object is fully determined by one polar angle in two
dimensions and three Fuler angles in three dimensions, This representation becomes
degenerate for symmetric objects; i.e. objects with nontrivial rotation groups as the
symmetry operations that keep the orientation of the object intact might change the
values of these angles. (This is schematically depicted in an example in Fig. 4.1.)

Historically, the orientations of symmetric objects or symmetric phases have been
described by the smallest non-vanishing symmetric traceless tensor that is invariant
under the action of its rotation group [193]. A list of these tensors for some major
symmetry groups in three dimensions is given in Table 1 of [194]. Such a tensor will
not necessarily be a rotational coordinate, however. As an example, consider a square
slab in three dimensions, which has a rotation group of D4 (Fig. 4.2). The traceless
symmetric tensor S¥ = z'z7 + y'y? — (2/3)6Y = (1/3)6% — 2'27 is invariant under D,
but it is not a rotational coordinate since any rotation around z leaves S¥ invariant

while changing the orientation of the slab.

!The content of this chapter is based on a manuscript that is under preparation.
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Figure 4.1: L . . .
Degeneracy of polar angles for describing the orientation of a square in

two dimensions.

Figure 4.2: A square slab in three dimensions.
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In this chapter, a general procedure is proposed for deriving rotational coordinates
for symmetric objects. These coordinates, which are tensors with ranks depending
on the type of symmetry, are bijective; i.e. each coordinate is associated with one
and only one distinct rotation. Rotationally ordered phases of symmetric building
blocks are then described using probability distributions of these rotational coordi-
nates and order parameters are obtained as expected values of suitable moments of
such coordinates. The extent and the geometry of order can be determined by solving
a generalized optimization problem.

This chapter is organized as follows. We introduce the utilized notations and
conventions in Section 4.2. We define the notion of strong orientational coordinate
(SOC) In Section 4.3.1. In Section 4.3.2, we use the machinery of strong orientational
coordinates and group theory to derive rotational coordinates for symmetric objects.
We then derive the corresponding SOCs for all two- and three-dimensional rotation
groups. In Section 4.3.3, we use distribution functions of SOCs to quantify different
types of rotational order. We then use this framework to define orientational order pa-
rameters for several liquid crystalline phases. Finally in Section 4.4 we discuss further
potential applications of SOCs other than the quantification of global orientational
order.

Before closing the introduction, it is necessary to note that our approach is purely
geometrical; i.e. we are not concerned about the physical realizability of the described
structures; however our goal is to develop computational tools for quantifying such
structures in the event that they form. Finally, since these tools will be used to
quantify structures formed by systems of particles, we will use the terms 'object’ and

‘particle’ interchangeably.

4.2 Notations And Definitions

Rotational coordinates derived in this chapter are contravariant tensors of different
ranks. All tensors of rank 2 and higher will be denoted in capitalized italics (i.e. S, T)
irrespective of their rank. Vectors, however, will be depicted as italicized small letters
ie. v,w etc. In all linear algebraic operations, vectors will always be considered
‘column vectors’. The conventional Einstein notation will also be used for vectors
and tensors frequently throughout this work. Finally, all scalars will be denoted by
Greek letters (v, 8, etc) respectively.

We denote the r-adic power of vector v € R? as v" i.e. (v7)iizwir = gitgiz ... i,

Similarly, the r-adic product of r distinct vectors vy, vs,--- , v, will be denoted by
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vivg -+ - v..  For every set of vectors V. = {vy,v9,---,v,}, a rank r homogeneous

tensor is defined by:
H (V) = > v (4.1)

For two arbitrary-rank tensors S and T, a generalized inner product S ® T is defined

as the full contraction between them given by:
S @ T = S/[:1>/L'27"' ,irTi17i27"' ai'r (42)

® reduces to the Euclidean inner product for » = 1 i.e. when S and T are both
vectors. Associated with this inner product, a generalized Frobenius norm of a rank

r tensor is defined as:
IS|l- = (S ® )" (4.3)

Note that the Frobenius norm reduces into the Euclidean norm for » = 1; i.e. vectors

and the matrix Frobenius norm for r = 2.

4.3 Tensor Order Parameters- General Construction

We derive proper orientational order parameters for arrangements of symmetric
particles as follows. In Section 4.3.1, we develop the machinery of homogeneous
tensors as tools of describing the orientation of an an arbitrary set of vectors in R?
and define the notion of strong orientational coordinate of a set. We then map the
orientation of a symmetric object to a set of equivalent vectors in Section 4.3.2 and
use the SOCs derived in Section 4.3.1 as rotational coordinates of symmetric objects.
Finally in Section 4.3.3 we use distribution functions of these SOCs to identify and

quantify order in orientationally ordered arrangements of symmetric objects.

4.3.1 Homogeneous Tensors

Let V = {vy,va,--- ,v,} be a finite set of unit vectors in R? and let W = {Qu :
v € V} with @ € O(d) an orthogonal transformation. A function H (V) is called a
strong orientational coordinate of V if H(QV') = H(V') implies QV = V. Since a set
has no particular ordering, such a function should be invariant under permutations of

elements of V| a property satisfied by homogeneous tensor forms defined in Eq. (4.1).
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With the following chain of theorems, we establish that for any V', there exists an
even number 2¢ < p and an odd number 2r — 1 < p so that V = QV if and only if
ng(V) = ng(QV) and Hzrfl(V) = HQrfl(QV).

Lemma 1. Letay,ag, -+ ,apn,b1,by, -+ b, € R, Then {ay,as, - ,a,} = {b1,ba,- -+ ,bp}
(up to multiplicities) if and only if S i a¥ =>"" bF for 1 <k <n.

i=1""
Proof. Form the polynomials p(z) =[], (¢ —a;) and ¢(z) = [[_,(#—b;) and expand
them to obtain p(z) = 2"+ >0 | (=1)'a;2" and q(z) = 2"+ >, (—1)"5;z" where the

coefficients are given by:
TS Z(_l)iilai¢k7’i + (=D kay,

Yy = Z(_l)i_lﬂi¢k—i‘f‘(_l)k_lkﬁk

i=1

where ¢ = > a¥ and ¢ = Y7 bF. Note that ¢; = ¢ if and only if oy = 3,

and by induction oy = S for every 1 < k < n. Thus p(z) and ¢(z) have the same

coefficients, and thus the same roots. O

Theorem 2. Let V = {vy,vy,-++ ,v,} be an arrangement of p unit vectors in R?
and let W = {Qu : v € V'} where Q € O(d) is an orthogonal transformation. Then
V =W if and only if Hi(V) = Hi(W) for every k < p.

Proof. 'V = W, Hp(V) = Hp(W) for every k including k¥ < p. Now suppose
Hi (V) = He(W) for 1 < k < p, which implies that [Hy(V) — Hx(W)] ©® S = 0 for
any S. Set S = vF and obtain:

vf O [H(V) = He(W)] = Z (0] )" = (v] w;)*]
= 2 [u —&]

where p;; = vlv; and &; = vlw;. Applying Lemma 1 yields {&, - ,&,} =
{pi, -+ s pip} for every i. We therefore have {&;;}7,_, = {ui;}i =, which is only
possible if V=W, O

This means that the p—tuple (H1, Hz, - -+ , H,) uniquely specifies the orientation
of V; however we are interested in a single orientational coordinate. The following

results refine the scope of our search.
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Theorem 3. Let V and W as defined in Theorem (2) and let H, (V) # H,.(W) for
some integer r. Then H,o(V) # Hpga(W).

Proof. From the properties of the norm it follows that:

p
(V) = HeW)llp = D i — €51 >0
ij=1
Let Stttz ire2 = guiz(H (V) —H,.(W))@4ir+2 and calculate (H,yo(V)—Hpa(W)®
S to get:

p
(Hri2(V) = Hra(W) © 5 = Z [(U?]Ui)vf ©Hy — (wi Twi)w] & Hr]
i=1

= 2H, OH, >0

since vl Tv; = wl' Tw; = 1. [l

Corollary 4. Let V and W be as defined in Theorem (2) then there exists integers
g, with 2g < p and 2r —1 < p so that V. =W if and only if Hoy(V') = Haq(W) and
%27«71(‘/) = HQrfl(W)-

Proof. Let @ € O(d) so that QV # V. According to Theorem 2, there exists s < p
so that Hs(V) # Hs(QV). Pick the smallest such integer and denote it sg. Define
E = {Q;sqg iseven} and O = {Q;sq is odd}. Taking ¢ = %maXQeE sg and r =
%(1 + maxgeo Sg) completes the proof. Note that if either £ or O is empty, one can

pick any even or odd integer and the proof follows. m

This allows us to refine the search for even arrangement of vectors for which every

odd-rank homogeneous form vanishes.

Definition 1. A set V is even if for every v € V, —v € V and odd if for every
veV,—vegV.

For arrangements of vectors which are neither even nor odd, both an odd and even
homogeneous form is needed for specifying their orientation since an even symmetric
tensor form will be invariant under inversion which will change the orientation of V'
while an odd symmetric tensor form will be invariant under any orthogonal transfor-
mation which changes the orientation of the even subset while keeping the odd subset
invariant. Intuitively, one expects the SOC of an even set to be even-ranked and the

SOC of an odd set to be odd-ranked. This is proven in the following theorems.
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Corollary 5. Let V and W be as defined in Theorem (2). If V and W are even, then
there ezists an integer 2q < p so that V= QV if and only if Hay(V') = Hay(QV').

Proof. Applying Corollary (4) and note that Ha,,1 (V) = 0 for every r. ]

Lemma 6. Let x1,--- ,Z,, 91, - ,Yn € R with the property that for every distinct
Z.uj S n, Zf X 7é O; then o +x] # 0. Then {‘rh'” 7ITL} - {y17"' 7y’n} (Up to
multiplicities) if and only if Y0 a7t = 3"y for every k < n.

Proof. The proof follows from Proposition 4.1 in [195]. ]

Theorem 7. Let V and W- as defined in Theorem (2)- be odd sets, then their exists
q < p so that Hoq—1(V) = Hog—1(W) if and only if V. =W.

Proof. If V.= W, then Hay—1 = Hag—1(W) for every ¢ > 0. Now let Ha,—1(V) =
Hoy1 (W) for every ¢ < p, then for every i,q < p we have v © [Hag1(V) —
Hog—1(W)] = ?Zl(,u?]q_l — 1-2]-[1_1) = 0; however p;;’s and &;’s satisfy the conditions
specified in Lemma (6) since the odd-ness of V' implies that for every v; € V, —v; € V
and thus v} (—v;) will not be among p;;’s and so is true for &;’s. Thus according to
Lemma (6), {&;} = {wi;} (up to multiplicities) for every ¢, which implies that V = W.
The proof is closed by applying Theorem (3). [

Up to now, we have established upper bounds on the tensorial rank of strong
orientational coordinates of even and odd sets. These upper bounds are generic
since they only depend on the cardinality of the underlying set and not its structure.
In general, tensor SOCs of smaller ranks might be possible for sets with certain
symmetries. However, as it will be seen in Section 4.3.2, these bounds are still tight

for certain types of symmetries.

4.3.2 Symmetric Objects

The strong orientational coordinates developed in Section 4.3.1 are 'permutation-
invariant’; they can be used for describing the orientations of symmetric objects if a
bijection is established between the orientation of a symmetric object and a set of
‘equivalent’ vectors. We will do this by generating orbits of suitable vectors under the
action of the rotation group of the object. We are only using the rotation group since
in a physical system, the orientation of an object can only change through rotations.

A rigid body R C R? is symmetric if there is a non-identity @ € SO(d) that
®R = R. The rotation group of a rigid body R is defined as:

Gr = {Q € S0W): QR =R} (4.4)
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For every vector v € R, its orbit is defined as:

O, = {Qu:Q€gr} (4.5)
In Lie groups orbits can be uncountably infinite sets.

Theorem 8. G has the following properties:

1. Gr partitions R into equivalency classes i.e. O, = Oq, for every v € R and

Q € 0r.
2. O, is either even or odd.

Proof. (1) directly follows from group properties. If for every u € O,, —u € O,, then
O, is odd an (2) follows. Suppose there is some u € O, with —u € O, and let w € O,,
then there exist Q,Q_,Q € Gg with u = Q1 v, —u = Q_v and w = Qv. We thus

have:

—w=-Quv=-QQu=0QQ(~u) =QQLQ-v
but QQ*% Q- € Gr and hence —w € O, and (2) follows. ]

All vectors in an orbit are ’equivalent’ in the sense that they can be mapped onto
one another by rotations that leave the orientation of R unchanged. Each orbit can
therefore be uniquely described by a strong coordinate derived in Section 4.3.1 since
it is either an even or an odd set. A single orbit is not necessarily sufficient for
describing the orientation of R. We might therefore need to map the orientation of
a rigid body to a collection of distinct orbits Wgr = UXY | O; instead. We call such a
collection of orbits a symmetric descriptor of R. An irreducible symmetric descriptor
of R is defined as a symmetric descriptor that none of its subsets of constituent
orbits is sufficient to describe the orientation of R. Since each orbit in an irreducible
symmetric descriptor is uniquely specified by H;, a strong coordinate derived in 4.3.1,
the orientation of R can be uniquely specified by the N-tuple (H1, Ha, -+, Hn)-

There is no unique way of constructing an irreducible symmetric descriptor for a
symmetric object as the size and the structure of a given orbit will depend on the
vector that generate it. In general, one would prefer orbits with fewer vectors as their
associated strong coordinates will be of smaller ranks, and hence easier to handle.
The cardinality of an orbit is at most equal to the order of G, the rotation group

of R; however if the initial generating vector is chosen so that it is invariant under
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certain group elements, a smaller orbit will be obtained. (Such vectors are equivalent
to Wyckoff positions in a space group.) In general, the orientation of a rigid object
in R? can be uniquely specified by at most d — 1 linearly independent vectors. (This
number will be smaller if the rotation group of R is a Lie group.) A symmetric

descriptor should therefore have the following properties:
e [t should have a sufficient number of linearly independent vectors.
e [t is not invariant under any rotation that changes the orientation of R.

Here we derive irreducible symmetric descriptors and the associated SRCs for all two-

and three-dimensional rotation groups. The results are summarized in Table. 4.1.

4.3.2.1 Trivial Rotation Group

For a non-symmetric object, Gr = {I} and O, = {v} for every v € R. An irre-
ducible symmetric descriptor is therefore given by U?;ll O,, with v;’s being linearly in-
dependent. A strong coordinate is therefore given by a (d—1)-tuple (Hq, Ha, -+ , Ha—1)
= (v1,v9, "+ ,v4-1). For a non-symmetric object in two and three dimensions, this

will correspond, as expected, to one and two vectors.

4.3.2.2 (C, and D,

C,, is the only non-trivial rotation group in two dimensions and corresponds to the
symmetry of a regular n-gon. In three dimensions, C,, corresponds to the symmetry of
a pyramid with a regular n-gonal basis. D,, however corresponds to the symmetry of
a prism or a bipyramid with a regular n-gonal basis. A characteristic orbit of both C,
and D,,- denoted by O,- is generated by a arbitrary unit vector from within the plane
perpendicular to the n-fold rotation axis, and contains n vectors. In two dimensions,
O, is an irreducible symmetric descriptor of a C), object. In three dimensions however,
it is only an irreducible symmetric descriptor of an object with D,,(n > 3) rotation
symmetry and it is not sufficient to describe the orientation of an object with the
rotation group C,; since a 180° rotation around one of those vectors will change the
orientation of the object while leaving the orbit unchanged. An irreducible symmetric
descriptor of a C), object is therefore a union of the ’planar’ orbit of n vectors and
a single vector that is parallel to the axis of rotation. O, is also not an irreducible
symmetric descriptor of an object with Dy symmetry as it only contains two collinear

vectors. In that case, an irreducible symmetric descriptor can be constructed as the
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union of {2z} and O, where z is the rotation axis. With the following chain of
theorems, we show that H,, is the strong orientational coordinate for the planar orbit
O.

21(p — q)

Lemma 9. Let vy, vs,- -+ ,v, € R? be unit vectors so that vqu = CoS ; then

forn >3, v;’s span a two-dimensional subspace of RY,

Proof. Define unit vectors z,y,z € R? by v; = z,vy = cos %’rx + sin %ﬂy and v, =

cos WI + sin % (for k > 3). Use v{ vy = cos w to deduce z = y. O

Lemma 10. Let p,q be nonnegative integers and ¢ = 6 + % Then I,,(0) =
Zz;é cos? ¢ sin? ¢y, 1s independent of 6 for p + q < n, and is a function of 0 if
p+qg=n.

Proof. Note that:
cos? ¢, = —1 Ep P ex [igr (20 — p)] (4.6)
k 2 ] P [Pk .

sin ¢, = (%)q

I, ,(0) can therefore be written as:

n—1
[p,q = 2p+q ZZ ( ) ( ) 1)m 10(2l14+2m—p—q) Z 2mi(2l14+2m—p— q)/nj|

=0 m=0 k=0

<;>< 1)™ exp ign(2m — q)] (4.7)

For e2m(2l+2m—p—q)/n =% 1 we have:

—

— 27 (2l+2m—p—
|:€27ri(2l+2m—p—q)/n:|k _ 1 — g2mi(2l+ P—q) 0
1 — e2mi(2l4+2m—p—q)/n

£
I

0

Thus the sum over k survives only if 2] 4+ 2m — p — ¢ is a multiple of n. However
|20 +2m — p — q| < p+q. Thus if p 4+ ¢ < n, the only possibility is zero, which will
take away the 6 dependence of I,,(f). For p + ¢ = n, two #-dependent terms will

survive i.e. e and the proof follows. O

Theorem 11. H,, is a strong orientational coordinate of O,,.

Proof. Let V = O,, = {vx}}_,. Without loss of generality suppose vy = cos (9 + 27”“) (.

+ sin (9 + 2”’“) e, with e, and e, being the unit vectors along the x and y directions.

52



The components of H,, are therefore either zero or I, ,,—, which are always indepen-
dent of 6 for m < n according to Lemma 10. For even n, the proof follows from
Corollary 5. The proof for odd n is completed by noting that H,(QV) will have
some nonzero components that are zero for #, (V) if QV and V are not in the same

plane. O

Note that for even n, H,, and for odd n, H,, 1 are guarranteed to be strong

coordinates of @,,. The bound given in Corollary 5 is therefore tight for even n.

4.3.2.3 (4 and D,

(s is the symmetry of a cone with a circular base, while D,, corresponds to the
symmetry of a cylinder. For both symmetries, there are two types of orbits. One is
a finite set along the rotation axis which has one element for C,, and two elements
for D, and the other being an uncountably infinite set comprising one circle for C
and one or two parallel circles for Do,. The finite orbits Oy are irreducible symmetric
descriptors. The corresponding SOC will therefore be H; = 2 for C, and Hy = 22
for Do.

4.3.2.4 Tetrahedral Symmetry T’

T corresponds to the rotation group of a regular tetrahedron and has twelve
elements. A general orbit of T will therefore have twelve elements as well. The high
symmetry vectors that connect the centroid of a regular tetrahedron to its vertices
can however generate an orbit O; = {a,},_, that only has four elements. O, is an
irreducible symmetric descriptor of a regular tetrahedron, therefore its SOC will also
be the SOC of a regular tetrahedron.

Since O, is an odd set, Hi, Hsz, Hs, H7 are the candidate strong orientational

coordinates given by Theorem 7, but if a,’s are unit vectors, we have:

My = ) al=0 (4.8)

p=1
g 4 4
Hy = ;a;ag,:g(w (4.9)

We prove that Hs is the SOC for Or as follows. Let Or = {a,},_; and Op = {by},_,
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be the corresponding orbits for two tetrahedra T" and 1" and observe that:

|H3(Or) — Ha(Op)||7 = 2 [% - Z f;’q] (4.10)

p,g=1

with &, = a] by. Contracting (4.8) and (4.9) with b} and b}b? yields:

4
&g =0 g=1,--- .4

2y 5’2"1 A (4.11)

Zp:lgpq: 3 ¢=1,-,4

As shown in Appendix B.1, (4.10) can only be zero if &,,’s are the permutations of

(1, —%, —%, —%) for every q i.e. if O = Op.

4.3.2.5 Octahedral Symmetry O

O corresponds to rotational symmetry of a cube and an octahedron and has
twenty-four elements. Orbits containing as few as six elements can however be ob-
tained by choosing high-symmetry vectors, such as vectors connecting the center of a
regular octahedron to its vertices- or equivalently the center of a cube to the centers
of its faces. Such an orbit is an irreducible symmetric descriptor of a cube or an
octahedron and has the form O¢ = {#z,+y,+z} with x,y and z being mutually
orthogonal.

Being an even set, Corollary 5 implies that Ho, H4 and Hg are the candidate SOCs

for Oc. We however have:
HY = 2(a'a? +y'y + 2'27) = 20" (4.12)

We prove that H,4 is an SOC of O¢ similar to what was done for regular tetrahedron.
Let O¢ = {£ap}>_; and Ocr = {£b,}3_, with alal = bib = d,4 be the corresponding
orbits for two cubes C' and C” and note that:

|H4(Oc) — Ha(Ocr)||7 = 8 (4.13)

3
3—25;(1

p,q=1

with §,, = agbq. For every ¢ we have 22:1 g = 1. As shown in Appendix B.2, (4.13)

=
is zero only if §§q’s are a permutation of (1,0,0) for each ¢ i.e. only if Oc = Ocr.
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4.3.2.6 Icosahedral Symmetry [

I corresponds to the rotational symmetry of a regular icosahedron and a regular
dodecahedron, and has 60 elements. Orbits with as few elements as 12 can however
be obtained by using vectors connecting the center of an icosahedron to its twelve ver-
tices. The corresponding orbit denoted by O; = {#4a;}{_, is an irreducible symmetric
descriptor of an icosahedron (dodecahedron). A prototypical set of such unit a;’s are
given by (a, £8,0), (0, a, +8), (£8,0,a) with a = 1/\/1+ ¢, 8 = ¢/1/1 + ¢2 and

— (v/5+1)/2. The choice of a;’s are arbitrary in the sense that both +a; and —a;
are valid choices. Also note that a}a; = +1/v/5 for i # j.
As an even set, the SOC of O; will be amongst Ho, - -- , H12 according to Corol-

lary 5. However one can show that:
.. 6
HY = 2 Z aial = 46 (4.14)
4 .. ) oo
HiY = zz apaya,a, = = (6705 + 6%950 + 5157F) (4.15)
In an approach similar to what was done for the tetrahedral and octahedral symmetry,

we prove that Hg is the SOC for O;. Let O = {#a,}5_; and Op = {£b,}3_; be two
such orbits. We have:

o0 A0l = 5 [0 ) (1.16)

p,q=1

with &, = [alb,]?. Contracting Ho(Or) and H4(O;) with bib? and b:bIbEb, yields:
6
Z §pg = 2 (4.17)
p=1

6
DG = 3 (4.18)
p=1

(4.16) can only be zero if £,,’s are a permutation of (1,%,%,%, %, = ,£) for each ¢ i.c. if
O; = Op. (See Appendix B.3 for more details.)
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4.3.3 Ordered Arrangements and Order Parameters

To quantify any orientationally-ordered arrangement of symmetric particles, an
interrelation should be established between the particle-level orientational information
and the geometric description of order. To do this, we will characterize bulk order with
a probability distribution specifying the probability that a single particle will take a
certain orientation. The next step is to compare computationally-measured values of
certain moments of particle-level orientational coordinates with their expected values
calculated from the presumed rotational distribution function.

An arrangement of (symmetric) objects is called isotropic if each particle can
take all permissible orientations with equal probability. This can be characterized
by a uniform probability density function. However in an orientationally-ordered ar-
rangement of (symmetric) objects, orientational symmetry is broken and each particle
tends to preferentially take certain orientations more frequently. Such bias can be
characterized by a non-uniform probability density function which can be viewed as
the marginal probability density function for a single particle in such an arrangement.

Such a connection can allow us define a structure- or a phase- as follows.

Definition 2. A structure or phase of an object R is characterized by a probabil-
ity density function po(Hm,, - , Hmy; 2) where Q stands for all geometric features

needed for macroscopic characterization of the structure.

Example 1. Let R be a symmetric object with a normalized irreducible symmetric
descriptor containing a single equivalence class (N = 1) and let H,, be a strong
orientational coordinate constructed from ANz. The density function po(Hom; Hm) =
S(Hm — ’Hm) defines an arrangement of the object R where all objects have the same
orientation with R and Q = H,,,.

More precisely, let Hg = (Humy, -+, Hmy) be a strong orientational coordinate
for R and po(Hr;2) be a phase. Also let M(Hz) be a tensor function of Hg with
the property that 9M(Q) = (M(Hg))o:

1. is a strong descriptor of 2 i.e. 9y = I, if and only if 2 = Qs.
2. is invariant under transformations which preserve 2.

Property 1 is to assure that all distinct geometric instances of a phase are distinguish-
able by 901 and is necessary for a full description of the geometry of order; however
if one is not interested in all structural details, this condition can be relaxed so that

certain classes of structures are resolved by a single 1. The second condition is to
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ensure that 91 is unique for a certain instance of the phase and does not depend on
structurally-irrelevant parameters.
Now let Ry, Ro, -+, R, be an arrangement of (symmetric) particles and define

the experimental order estimator as:
M= L5 M) (4.19)
oo i=1 " '

The more perfect the ordering of Ri, Rs, -+ , Ry is, the closer will M be to M. (In-
deed perfect ordering for n — 400 implies that M — 91 or equivalently HM — DDT” P
0). Letting M; = (M )isotropic it immediately follows that M — 9T implies that
HM— £m||F = ||(M— M) — (M — iml)HF — 0. For an isotropic structure however
|M - 9)T||F = ||, — M. Hence one can formulate the problem of finding the

underlying geometric parameters of the phase as:

1M = 9Mal
min ————— 4.20
o0t — Ml 20
One can define scalar order parameter of the phase as:
— 2
M — M-

ko = 1— | e (4.21)

199, — M- F

where * is the minimizer in (4.20). Note that x = 0 for completely isotropic system
while ¥ = 1 when matching is perfect. For a certain subclass of phases where |9q||

is constant, one can simplify (4.20) to:
IHSXM © Ma (4.22)

In general if the conditions outlined above are established for a given 91, one can
use (4.20) or (4.22) to obtain Mg+ and ( 4.21) to calculate the scalar order parameter.
We will show the procedure of solving (4.20) or (4.22) in a few examples at the end
of this section, but before doing so, we give explicit formulae that can be used to

calculate 9; for M’s of the form introduced in this chapter.

Definition 3. Let vy, vs, - - - , v, € R? be arbitrary vectors and ay, as, - - - , a,, nonneg-
ative integers adding up to a, a symmetrized tensor polynomial &g, .. . . (v1,v2," -+,
Uy, ) is defined as the sum of all possible direct products of the form v, v;, - - - v;, where

exactly a; of i;’s are 1, ay of 7;’s two, etc. The number of distinct terms in such a
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polynomial is (a “ )

1,42, ,Gm

Proposition IV.1. The symmetrized tensor polynomial defined in Definition (3) is

given by:
o (00,02, o) = 6 an, ap_1.0iapp1.sam (VLo 5 Vk=1, Ukt 1,77, Um) - ap =0
b b b m - — .
aLoa2,mam Zkfl vk@alv‘l“7ak—lyak—l,ak+1a"‘,anz(vl7"' s Um) a; >0 for all i
‘ 0 _
with &g . o(v1, v, ,vm) = 1.

Proof. First assertion follows from definition. For the second assertion look at each

term of & . . . (v1,v2, -+, V) and group them based on their initial multiplier.
O

Proposition IV.2. Let t € R%, d = 2,3 be a unit vector and k € Z2°, then :

1. <t2k+1>isotmpic = 0.

k

(2k — 2p)
2. t2k zso ropic 6 d=2.
trop ; p'k" k’ p 2p,2k— 2p<X Y> fO’I”
k -m k
1 m n, k m— n)
3. <t2k>isotmpic = 62m 2n,2k—2m— (X, Y, 2).
2k + 1 m=0 n=0 (2m 2n, 2k 2m— 2n)

where (x,y) and (x,y,z) are orthogonal bases for R? and R? respectively.

Proof. Observe that (t") = (1/S4-1) [4it"dQ2 where Sy_; is the surface of the d-
sphere. Contributions from two hemispheres to the integral cancel out for odd n and

(1) follows. For n = 2k and d = 2 we have t = cosf x +sinf y and:
L&
) = o Z Lop o —2pS o o1—2, (X, ¥)
=0

where Ippop 2, = fo% cos? 0sin®*~% df. The odd terms vanish because Iy, 0,41 =
Iypi12q = Iopr12¢41 = 0 and (2) follows from Eq. (B.25). For d = 3, t(6,¢) =
sin # cos ¢x + sin # sin ¢y + cos 0z and:

k
1
2%k _ 2%k
<t >I = E E ]2pu2qJ2k—2p—2q,2P+2q+162p,2q,2k72p72q(x7y7Z)

@ w~vx (2)!(20)  4PF(p+ q)!(2k — 2p — 2¢)IK!
Z +q] gl ] _ 2p,2q,2k 2p— 2q(X Y,z )
— arraplgl(p+q)! (k—p—q)!(2k +1)!

(4.23)

29



(a) follows from (B.25) and B.28). Rearranging (4.23) completes the proof. O

Using this proposition, one can thus calculate 91; for any given tensor that is a
sum of n-adic products of unit vectors, including moments of homogeneous tensors
defined in this work. Omne can therefore always subtract 2t; in the definition of M
so that ||M]|, on its own can be used as a measure of how anisotropic a certain
arrangement of particles is. The rest of this section is devoted to some examples of
how (4.20) and (4.22) can be formulated and solved. But before doing so, we outline
the following useful result that can be used to calculate the expected value of a k-adic

power of a vector that can uniformly rotate around a rotation axis.

Proposition IV.3. Let v,z,t € R3 be unit vectors and let v = az + St and t is

uniformly distributed on the plane perpendicular to z. Then:

l
ot o (2m)1(21 — 2m)!
(). = 2 o Am!(1 —m)!

X Ggm,QZme,kf%(xa Y, %)

with © and y being a pair of orthonormal vectors perpendicular to z.

Proof. Expand v* in terms of ¢t and z and use case 2 of Proposition IV.2 to complete
the proof. O

4.3.3.1 Unixial Nematics

Rodlike molecules or nanoparticles can assemble into a rotationally ordered phase
known as the uniaxial nematic phase where the rotation axes of all particles are on
average aligned to a common vector called a director [9, 116, 117]. As explained in
Section 4.3.2.3, Ho({£z}) = 22 is the proper SOC for rods and Q = {u} i.e. the
director, In a perfect nematic all particles will align along the same director. This

perfectly fits into the type of structures described in Example 1. We therefore have:

MY = H — Hyy =2 — 2o

. o 1 ...
e
N
— 1 o 1 ...
2 E i )
M = N ZPZ; — §5j
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Since ||9Mq]|» is constant, we can use the optimization problem (4.22) which takes

the form:

max u” Mu
_ (4.24)
subject to ufu =1

which can be solved by using Lagrange multipliers:

L(u,\) = u"Mu— MNu"u—1)
VL = 2Mu—2 u=0 = (M - \)u=

i.e. u should be an eigenvector of M. The largest eigenvalue of M , A\; maximizes

u”Mu. The scalar order parameter is given by:
3 2\? 1\° N
nematic — 1— - A — — A — - _
e = 123 (0=5) + (er3) + (05)

with A\; > Xy > A3 being the eigenvalues of M. This formula penalizes any divergence

(4.25)

of A\;’s from their ’optimal’ values of (2/3,—1/3,—1/3) in a perfect nematic.

4.3.3.2 Cubatic Phase

At sufficiently large densities, hard cubes can assemble into the cubatic phase; a
structure in which all particles have almost the same orientations while no long-range
translational order exists [20]. The cubatic phase can therefore be described using
the general framework of Example 1. As H, is the proper SOC coordinate for cubes,
we therefore have:

Mijkl — QZU u] o (5@]5kl + 5zk5]l T 51[5]k)

ppp

2 ik o i ci
Mo = 221;@]@ p— 5 (0708 4+ 3% + 557)

9 3 N
——ijkl i
M - NE :§ :upqupqupqupq

p=1 q=1

—= (690" 4 5% 4 5" 67F) (4.26)

O‘ll\D
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where v,’s are the orthogonal vectors specifying (2 i.e. the average cubic orientation
that all particles align to, and u, ,’s are the corresponding orthogonal vectors describ-
ing particle ¢q. Since Mg, is constant, the following optimization problem should be

solved for quantifying cubatic order:

max M3 vkl (4.27)
subject to viv!) = dyq p,g=1,2,3
The constraints of (4.27) can however be easily shown to be equivalent to Zp L Upl) =

I. (Multiply both sides by v, and using the linear independence of v,’s to conclude
that vg vy = 0pq.) This Lagrangian of the optimization problem is therefore given by:
L SETTED o R

p=1 J=1

with p;; = pj. The derivative of the Lagrangian is given by:

0£ ——=sjk k l
81}3 = M —|—M qv —|—M q v,
+M quévq — ,usj uzs
(a) ———sijk
=AM quz . 2,usm
V,L = b,—Cu, (4.28)
with:
M N f; é f; Hi1 Hiz2 Hi3
by =4 Y ; évij , O=2 par pa2 pios (4.29)
IV Z vivk M31 P32 433

Note that (a) follows from that M is invariant under index permutation. V,L = 0

implies that b, = Cv,. Multiplying both sides by v, and summing over ¢ yields:

3
> by = szq = (4.30)
qg=1

Note that C' is not symmetric for an arbitrary set of orthogonal v,’s and its symmetry
is achieved if v,’s are amongst the Karush-Kuhn-Tucker solutions of (4.27). The global

maximum of (4.27) can only be obtained if all solutions of C' = CT are identified.
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We achieve this by adopting a Newton-Raphson iterative scheme for solving C' = C7;
and the global maximum will be achieved if a sufficient number of iterations using
different initial guesses are obtained. In particular, we propose a quaternion-based,
easy-to-implement Newton-Raphson scheme for this purpose. To do this, we define

(st = st — Mgs for s # t and observe that:

8Cst SFSMij 4 SFtmij ;i g
Gum = 12 (M ]vpvg)vfg - M jvpvgvp) (4.31)
P
We can therefore approximate ( as
3
Gt =~ Csto+ Z(chst)g(vp — Upo) - (4.32)

q=1

The Newton-Raphson iteration can therefore be carried out by simultaneously solving
the three equations given by (; = 0 and the six equations ensuring the orthonormality
of v,’si.e. 37 viv] = 6. We can however decrease the number of equations from nine
to four by using quaternions, which are widely used in simulations of nonspherical
particles. Described by the Irish mathematician William Rowan Hamilton in 1843 for
the first time, quaternions form a non-commutative algebra extending complex num-
bers. Unit quaternions are used to describe rigid-body rotations in three dimensions.
Rotating a rigid body R using a unit quaternion q = (g1, g2, g3, 1) maps every vector

v° € R to v = R(q)v°. The rotation matrix R(q) is given by:

G+3 -G -4 2ee—aw)  2(qg + ¢q4)
20u+ep) d-6+6 -4 2(6Gu— ae)
2(q2qs — 143) e +au) G¢-6G-¢G+4

One can thus consider v,’s- and (y’s- as implicit functions q. More specifically we

have:
O A
9q. = Oup dqy =T Da,
3
TaR(q) o
= pzzl(vpCst) o0,

where v correspond to a set of orthonormal vectors corresponding to q = 1. (In order

to solve C' = CT under the orthonormality constraint, on can solve the following four
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equations denoted by f(q) = 0):

Ci2
Gi3

flq) = o (4.33)

GH+a+a+ad-1

The Newton-Raphson iteration can therefore be carried out using the following for-

mula:

qn+1 = qn - (I)(qn)_lf(qn) (434)
with:

0C12/0q1 0Ci12/0qs 0C12/0q3 0C12/0qs

0C13/0q1 0C13/0q2 0Ci3/0q3 OCi13/0qs

0C23/0q1 0Ca3/0qa  0Ca3/0q3  0Ca3/Dqa
2q1 2q; 2q3 2q4

P(q) =

Iteration (4.34) can be carried out for a number of randomly-selected unit quaternions
as initial guesses. Once the global maximum is attained, Eq (4.21) can be used to cal-
culate the scalar cubatic order parameter. Neither the accuracy nor the convergence

rate depends on the selection of vy as they are benign parameters of f(q).

4.3.3.3 Tetrahedral Nematics

Regular tetrahedra can form a structure in which, on average, all particles have the
same orientation. Although its existence has been predicted in some theoretical works
of liquid crystals [194], it is yet to be observed in experiments or simulations. This
phase is sometimes referred to as the tetrahedral nematics, and like axial nematics of

rods and the cubatic phase, fall into the general category of structures outlined in
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Example 1. As Hj3 is the proper SOC for tetrahedral symmetry, we have:

MUk = E viviok

p’'p"p
p=1
4
A E wudu®
Q - P PP
p=1
- 1 N 3
AsY _ § :E : i .3 .k
M —_— N (UpJ,UpJ'U ,l (435)
=1 p=1

where u,’s are the four vectors specifying the high-symmetry orbit of the reference
tetrahedron corresponding to the average orientation of the particles; while v, ,’s are
the elements of the corresponding orbit for particle q. The following optimization

problem is therefore solved for quantifying the tetrahedral order:

i j
max r Zf_l upulpup (4.36)
subject to vy, = 30p; — 3 p,q=1,2,3,4

As for the cubatic phase we can replace the constraints of (4.36) with Z U uJ =

p=1"p
(4/3)6% and Zp Uy, = 0. (See Appendix B.5 for details.) The Lagrangian and its
derivatives are thus given by:

4
L = _”kZupu;,up - Z [Nl — pijuul
= p=1
V.,L = bq—c—C’uq
with:
— 1k . .
3M’ U u) A1 Mi1 o fi2 fa3
— 92k .
b, = |3M~ ugud | = Az O =21 pa2 i3
— 3k .
3M”’ ug ) A3 31 32 433

with C' = CT. Multiplying V,L by un on the right and summing over ¢ yields:

4

3

> b (4.37)
g=1

The symmetry of C' can be enforced using a method similar to that explained for the

cubatic phase and the scalar order parameter can be calculated accordingly.
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4.3.3.4 Tetrahedral Axial Nematics

We call an arrangement of regular tetrahedra a tetrahedral axial nematic if a
specific axis of each particle (modulo symmetry operations) aligns with a common
director on average. Here we consider three plausible axes for such an alignment
i.e. the normal to a face, an edge and the vector connecting the centers of two non-
adjacent edges and the corresponding phases will be called the ’face nematics’, the
"edge nematics’ and 'z nematics’ respectively. Considering the inversion symmetry of

these structures, the expected value of H, will be used as a measure of order:

MZ]k‘l — ) DO S A ij Skl ik sjl il Sjk
(H3) E v Vv —15((5(5 + 067 + 57 67")

p’p“pp
p=1
ikl 1 N2 4
gkl i gkl ij okl ik il il ¢k
M = NZZUPU;)UPUP—B((S](S + 06+ 6 63)
q=1 p=1

For each structure, Mg is calculated by decomposing v,’s to vectors along and per-
pendicular to the director z and calculating the corresponding expected values using

Proposition IV.3. More specifically, if v, = a,z + B,t,, we have:

4 4
zmg’“’ = Z aﬁzzzjzkzl + ] Z 5;1 [3xzxjxkxl + 3y Ry + iyt + yiyi et
p=1 q=1
+atydyfal + ylad afyt + atyi oyt + yixjyka:l} +
=
+§ Z %2;55 [a:zszkzl + yzy]zkzl + 2kt + zlzjykyl
p=1

gkl 4 iyl 4 gl gkl 4 yiad Ryl 4
2 Rt 4 ziyjzkyl + atak 4+ yizjykzl}
4

= (52‘]‘5’“ + gkl 5“5]‘k) (4.38)

M, clearly satisfies the properties outlined in Section 4.3.3. The extent of order can
therefore be quantified by solving the following associated optimization problem:
max WM i3

] - (4.39)
subject to z2'2' =1

where w = Z§=1 lap+328) —3a2(2]. (The derivation details can be found in Appendix

B.6.) Note that for negative values of the coefficient, solving (4.39) reduces to min-
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Table 4.2: Projection parameters and w for face, edge and z uniaxial nematics.

1 1 1
Phase ar B a P2 a3z Bz oau B Z of Z o3 B? Z Bl w
i=1 i=1 i=1
Face Nematics 1 0 % @ % g 7% @ g% 2% % g%
Edge Nematics @ § — % @ 0 1 0 1 % % % 118
2 nematics ? @ ? @ — @ % _ ? @ % % 196 = 1@4

1mizing M 229245 under the same constraints. Table 4.2 gives the corresponding
coefficients and OOPs for face, edge and z nematics. Unlike face and edge nematics,
for z nematics, the corresponding prefactor is negative and the associated minimiza-
tion problem is to be solved. The scalar order parameter can also be defined using

(4.21).

0.5

—————

Figure 4.3: i ) '
gu (1) calculated for a fluid of 4,096 hard tetrahedra at different packing

fractions.

4.4 Other applications of Strong Rotational Coordinates

So far, we have only used SOCs to quantify global orientational order in systems

of particles with non-trivial rotational symmetries. In this section, other potential
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Table 4.3: o
Expected values of Hy/, 3, and gy (r) for different layers of nearest neigh-
bors in the hard tetrahedron system

nth nearest neighbor Héjk”;‘—léjf gu(r)

U
32 T
1 8l 9
9 2464 T
2187 243
3 79072 2471
59049 6561

applications of SOCs in computational studies of soft condensed matter are discussed.

4.4.1 Time-averaged Orientations

The machinery of strong orientational coordinates can be used to calculate the
average orientation of a particle in the course of a simulation. In general, this is
done to get rid of thermal fluctuations, and can be considered the equivalent of
determining inherent structures in energetic systems. More precisely, if M,(t) is
the strong orientational coordinate of particle p at time ¢, one can maximize 9%, ©
% fOT M, (t)dt to find for the best average orientation that matches the trajectory of

p. This problem also fits into the general class of problems outlined in Example 1.

4.4.2 Spatial Correlation of Local Rotational Order

Spatial correlation of orientations of particles in a simulation can also be quan-
tified using SOCs. We explain this through an example; i.e. a fluid of regular hard
tetrahedra. At low packing fractions, hard tetrahedra form a simple fluid where the
orientations of different particles are not correlated. This however changes as the
packing fraction increases, and a network structure emerges in which all neighboring
particles are in a face-to-face configuration. At sufficiently high densities, this net-
work transforms into a dodecagonal quasicrystal that is locally similar to the network
fluid preceding it but has long-range quasiperiodicity [18].

It was shown in Section 4.3.2.4 that H3(O;) is the strong orientational coordinate
for a regular tetrahedron. Now consider an arrangement of N tetrahedra and let
N(r) be the number of pairs whose center-to-center distance lies in the interval [r —
dr/2,r + dr/2] and define the following correlation function:

1

gu(r) = NV > My Hily (4.40)
(T’) || 3||F <p,q>,|d(p,q)—r|<dr/2
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We can quantify these differences using (4.40). We first analyze different scenarios
for the first shell of nearest neighbors. Geometrically, the smallest distance between
the centroids of two neighboring tetrahedra is achieved when their faces are touching
one another. At low densities, the two neighboring tetrahedra can freely rotate around
the axis perpendicular to this touching face, while at higher densities, rotation is
restricted and two faces tend to match perfectly. The value of gy (r) can be calculated
for these two idealized configurations. Let z be perpendicular to the common plane
of the two touching faces. The characteristic vectors of each tetrahedron can thus be

expressed as:

U, = =z
1 V8
U,p = —§Z —+ ?Sp
v, = —Z2
1 VB8
Up = gZ + ?tp
with:
2 —2 2 -2
S, = cos MZB + sin My
3 3
2 -2 2 —2
t, = cos (%%—9) x + sin (%%—9) y
and z and y two orthonormal vectors perpendicular to z. For a perfect non-rotating
face-to-face contact, § = 0 and ’Hg]ﬁ?—lgjff = —2: the corresponding value of gy (r) will
be —3 ~ —0.11111. For a freely-rotating face-to-face contact however, § ~ U(0, 2)
and <H§jﬁ gﬁ’j) = —1% which yields a gy (r) value of —3 ~ 0.5555. Investigating

the magnitude of the first valley of gy (r) will elucidate the type of the face-to-face
contact prevalent in that particular phase. Fig. 4.3 shows gy(r) vs. r for three

different packing fractions. At ¢ = 0.24, the first valley of gy (r) has a value of

5
9

freely rotating face-to-face configuration. At a packing fraction of 0.48 however, the

—0.503 which is very close to the calculated value of —2 which is expected in a
first valley value observed in simulation is around —0.15 which is also very close to
the theoretically predicted value of —% for the perfect face-to-face configuration. At
intermediate densities (the red curve), the first valley is in between as expected. This
analysis can be extended to second and third nearest neighbors. For perfect face-
to-face configurations, the corresponding values of ngﬁ ;j’; and gy (r) are given in

Table 4.3. The gg(r) values shown in Fig. 4.3 are consistent with these theoretically
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predicted values, which confirms the existence of the network structure where all

neighbors are in a perfect face-to-face contact.
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CHAPTER V

Hard Tetrahedra: Self-assembly Simulations!

This chapter is dedicated to studying dense packings of regular tetrahedra using
Monte Carlo simulations. In Section 5.1, some background information is provided as
well as the technical specifications of the performed simulations. Section 5.2 discusses
all dense packings of tetrahedra introduced prior to the completion of this project.
Thermodynamics of the hard tetrahedron fluid is discussed in Section 5.3, while a
discussion of the quasiperiodic phases formed by hard tetrahedra is given in Sec-
tion 5.4. The effect of polydispersity on the formation of the quasicrystal is discussed

in Section 5.5 and concluding remarks are reserved for Section 5.6.

5.1 Preliminaries

The regular tetrahedron is the Platonic solid P5 and the uniform polyhedron? Uj.
It is the only self-dual Platonic solid and lacks central symmetry. The vertices of
a prototypical tetrahedron, which we also use as a reference in our simulations by

assigning to it the quaternion q = (1,0, 0,0), are given by:

(+1,4+1,+1) (5.1a)
(+1,—1,—1) (5.1b)
(—1,+1,-1) (5.1c)
(—1,-1,+1) (5.1d)

!This chapter is partly based on the following manuscript: Amir Haji-Akbari, Michael Engel,
et al. Nature 462: 773-777 (2009) [18].

2Uniform polyhedra are the polyhedra with identical vertices. They include Platonic solids and
Kepler-Poinsot solids
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Table 5.1:  Geometric features of a regular tetrahedron with edge length o.

Property Value
2

Volume \1/—2— o

Surface area V302
o

Radius of Gyration

2V5

1
Dihedral Angle cos™! 3~ 70.53°
1
Solid Angle 3cos™! 3T 31.5863°

Order of Rotation Group 12
Order of Symmetry Group 24

Indeed this is the smallest regular tetrahedron with all its vertices having integer
coordinates, and has an edge length of ¢ = /8 and a volume of Vp = 8/3. Regular
tetrahedron has seven axis of rotation (four C5 axes and three C axes) and six mirror
planes. Its rotation group 7" and its symmetry group T, have twelve and twenty-four
elements respectively. Table 5.1 summarizes important geometric features of the
regular tetrahedron.

As explained in Section 2.3.2, the problem of packing tetrahedra has been exten-
sively studied. There have however been fewer studies of the thermodynamics of the
hard tetrahedron system. In 1970, Gibbons studied the equation of state of a fluid of
polydisperse hard regular tetrahedra— along with four other convex shapes— to assess
the applicability of the scaled particle theory to systems of nonspherical hard parti-
cles [196]. In 1995, Kolafa and Nezbeda used Monte Carlo simulations to compute
a low-density equation of state for the hard tetrahedron fluid, which they used as
a model of liquid water [114]. The fact that many hard particle systems form liq-
uid crystalline phases fueled the speculation that, at intermediate packing fractions,
hard tetrahedra might also form liquid crystalline phases such as the tetrahedratic
phase [194], which has been shown to have interesting hydrodynamic properties [197].

Studying the thermodynamics of the hard tetrahedron system is of more prac-
tical relevance today due to the recent synthesis of tetrahedrally-shaped nano- and
colloidal particles [57, 66, 67, 73-76, 198]. The nanoparticles are made of a wide
range of materials including platinum [73], gold [57, 66, 67], tin sulfide [74] and sil-
icon [75, 76]. Micron-size colloidal tetrahedra made of colloidal spheres have also
been reported [198]. As explained in Section 2.2, these particles can behave as hard

particles under certain circumstances.
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We use isobaric and isochoric Monte Carlo simulations with periodic boundary
conditions to study systems of N regular tetrahedra, with N ranging from 512 to
21,952. (General features of the applied Monte Carlo method is given in Section 3.2.1.)
Simulations are initialized at low packing fraction in a random configuration and
subsequently compressed to higher densities. The dodecagonal quasicrystals shown
in Figs. 5.10, 5.11, 5.12 and 5.13 are obtained in isochoric simulations at packing

fraction ¢ = 50%. Crystallization proceeds in three steps:

1. equilibration of the dense, metastable fluid. In a system of N = 8,000 particles,
this step takes < 12 x 10 MC cycles.

2. nucleation and growth, which takes between 12 — 23 x 10® MC cycles.
3. healing of defects, which starts after 23 x 10° Monte Carlo cycles.

The equation of state in Fig. 5.5a is calculated by increasing (or decreasing) the ex-
ternal pressure stepwise for compression (or expansion). Longer simulations facilitate
equilibration in the transition region. For P* > 120, compression with conventional
Monte Carlo is inefficient. Therefore we apply the alternative method described in
Section 3.2.1.6 to reach pressures as large as P* < 10° and obtain maximum density

packings.

5.2 Dense Packings of Tetrahedra

Regular tetrahedra do not tile the Euclidean space. However, if extra space is
allowed between tetrahedra, or between groups of tetrahedra, dense ordered structures
become possible. An ex novo approach for obtaining dense packings of tetrahedra
is to construct locally dense clusters of tetrahedra and use them to build periodic
dense superlattices. In this section, we introduce these locally dense clusters and the

packings that can be constructed from them.

5.2.1 Locally Dense Clusters of Tetrahedra

Imagine building a dense cluster by adding one tetrahedron at a time. A pnetago-
nal dipyramid (PD) (Fig. 5.1a) is easily built from five tetrahedra that share a common
edge. An internal gap of 2 —5cos™1(1/3) = 7.36° is introduced in this process. Two
pentagonal dipyramids can share a central tetrahedron to form a nonamer (Fig. 5.1b)
in which the principal axes of the two interpenetrating PDs are along the opposite

edges of the central tetrahedron, and are therefore perpendicular to one another.
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Figure 5.1:

Ideal local packing motifs built from tetrahedral dice stuck to-
gether with modeling putty. The pentagonal dipyramid (a), the non-
amer (b) and the icosahedron (c) maximize local packing density. The
icosahedron can be extended by adding a second shell (d), but then the
large gaps between the outer tetrahedra lower the density. The tetrahe-

lix (e) maximizes packing density in one dimension. (Images reproduced
from [18])
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Twelve interpenetrating pentagonal dipyramids define an icosahedron (Fig. 5.1c). It
has twenty tetrahedra with a gap of 247 —60 cos™!(1/3) ~ 1.54 steradians. A hezecon-
tahedron (Fig. 5.1d), a motif with 70 tetrahedra, is obtained by adding an additional
shell of tetrahedra to an icosahedron.

For later use, we introduce here a dense, one-dimensional packing given by a linear
arrangement of tetrahedra with touching faces. It is called a tetraheliz or a Bernal
spiral, and was first discovered by Hurley [199]. A tetrahelix has no internal gaps and
therefore maximizes the packing fraction in one dimensions. It is also not periodic
since the phase difference between two consecutive tetrahedra, 6y = cos™(2/3) is
not a rational multiple of 27. Periodic tetrahelices can however be constructed by
allowing minor gaps between consecutive tetrahedra.

In Fig. 5.1, tetrahedral dice are stuck together with modeling putty, which dis-
tributes the gap that would be present in each motif if most of the adjacent faces
were touching. Pentagonal dipyramids and icosahedra are locally dense, but exhibit
noncrystallographic symmetries. The problem of extending or arranging them into
space-filling bulk structures is nontrivial. For example, adding a second shell to the
icosahedron generates the hexecontahedron which has 70 tetrahedra, but decreases
the packing fraction. However several relatively dense packings were obtained by ar-

ranging these motifs into dense structures that are explained in the following section.

5.2.2 Existing Dense Packings of Tetrahedra

The dense packings presented here are obtained from the numerical compres-
sion of geometrically constructed ordered arrangements of tetrahedra. They are ei-
ther obtained by arranging the motifs shown in Fig. 5.1, or based on Frank-Kasper
phases [200].

5.2.2.1 Nonamers

The nonamer crystal proposed by Chen [28] has a fundamental domain with eigh-
teen tetrahedra, broken into two nonamers that are related to one another by inver-
sion. These ’positive’ and 'negative’ nonamers form two alternating layers that are
shown in ’blue’ and 'red’ in Fig. 5.2. The densest packing has a sheared tetragonal
lattice and a maximum packing fraction of 77.86%. Torquato and Jiao numerically
compress a unit cell to a packing fraction of 78.20% [29]. Using the compression

algorithm described in Section 3.2.1.6 however, we obtain packing fractions as high
as 78.38% (Appendix. C.2.1).
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Fi 5.2:
18U The nonamer crystal. 8 x 8 x 2 unit cells of the nonamer crystal

constructed by Chen [28]. Note the alternating layers of nonamers of
opposite orientations that are depicted in red and blue, respectively.

5.2.2.2 Icosahedra

The densest cluster that can be obtained by packing tetrahedra around a single
point is an icosahedron. There are two ways of arranging icosahedral clusters into
dense packings of tetrahedra. One way is to arrange non-interpenetrating icosahedral
clusters into the lattice packing of icosahedra proposed by Betke and Henk [131].
This structure was first proposed by Conway and Torquato [27], who called it the
reformed Scottish packing (Fig. 5.3a). The original structure had a packing fraction
of g ~ 70.3125. The authors achieved slightly higher packing fractions > 71.655%
by moving the tetrahedra slightly; they speculate that further optimization of the
same structure can give rise to packing fractions as high as 72%, but the arrangement
cannot surpass ¢ma. = 7/v/18 of the densest packing of congruent spheres. We
however compress this structure to a maximum packing fraction of 74.36%, which is
denser than the densest sphere packing (Appendix C.2.2).

The maximum packing fraction can be increased by forming logs of interpene-
trating icosahedral clusters and arranging them into a hexagonal lattice. Additional
particles can be added in the void area between logs to increase the packing fraction
even further. This is what we call the fivefold log packing (Fig. 5.3b), which can be
numerically compressed to a packing fraction of 76.73% (Appendix C.2.3).
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Figure 5.3:

Dense packings of regular tetrahedra with icosahedral motifs:
(a) a lattice packing of icosahedral motifs, (b) logs of interpenetrating
icosahedra forming a hexagonal lattice, blue interstitials are added for
increasing the packing fraction.

5.2.2.3 Frank-Kasper Phases

A different approach makes use of tetrahedrally close-packed structures, known
as Frank-Kasper phases in atomic crystals [200]. These phases have tetrahedral in-
terstices, which means that every vertex in their Voronoi decomposition is shared by
four Voronoi cells only. In other words, the dual tessellation of the Voronoi decom-
position is only made of irregular tetrahedra. A dense packing of regular tetrahedra
can therefore be obtained from a Frank-Kasper phase by largest tetrahedra that can
fit inside all its irregular interstices. Not all FK phases can be used for this purpose
as the amount of irregularity in the tetrahedron network might be too high, which
will make the corresponding packing very dilute, and practically uninteresting.

Conway and Torquato [27] utilized this approach to obtain dense packings of
tetrahedra (Fig. 5.4). They obtain the simplest phase from the Voronoi tessellation
of the body-centered cubic (BCC) lattice, and call it the Scottish bubbles packing
(Fig. 5.4a). The Voronoi cells are truncated octahedra (6%4°%). The original structure

is not particularly dense and has a packing fraction of = = 50% only. Using our
compression algorithm, we can compress it to ¢ = 60.36% (Appendix C.2.4).
They however obtain their densest Welsh bubbles packing (Fig. 5.4b) by decorating
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Figure 5.4: . .
Packings of tetrahedra obtained from Frank-Kasper phases: (a)

Scottish bubbles packing obtained from the Voronoi decomposition of
the BCC lattice, (b) Welsh bubbles packing based on Type II Clathrate

structure, (c) Irish bubbles packing based on Type I Clathrate structure.

a Type II clathrate structure, which have two types of Voronoi cells- which they call
bubbles- in its fundamental domain: sixteen small dodecahedra (5'%), and eight large
hexadecahedra (5'261); their centers form the C15 cubic laves structure, which is one
of the most common intermetallic phases. The structure is very complicated and has
136 particles in the unit cell. It was the densest structure discovered by Conway and
Torquato with ¢na, = 71.7455%. Using our compression algorithm, we were able to
compress this structure to ¢ = 76.87% (Appendix C.2.5).

They also applied the same procedure for the type I clathrate phase to obtain
Irish bubbles packing (Fig. 5.4) which is not particularly dense. There are two types
of Voronoi cells— bubbles— in the unit cell of the Irish bubbles packing. Smaller
bubbles are dodecahedra (5'%). There are two of them in the fundamental domain
and their centers lie on a BCC lattice. The bigger bubbles are tetradecahedra (5'%64).
Together the centers of the bubbles form form the A15 (Cr3Si) structure [201]. The

structure has 46 tetrahedra per unit cell.

5.3 The Hard Tetrahedron Fluid

The packings mentioned in Section 5.2.2 are obtained either from geometric con-
struction, or from numerical compression of geometrically constructed structures, and
none of them has ever been observed in simulation or experiment. In order to ob-

tain dense packings of tetrahedra, we follow a conceptually different approach i.e. we
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use Monte Carlo simulations to let the system find dense packings itself by evolving
it according to the rules of statistical mechanics. As mentioned in Section 2.2.1, a
disorder-order transition is observed in Monte Carlo simulations of most hard parti-
cle systems, and most often, the ordered phase can be compressed into the densest
known packing of that particular building block. In our Monte Carlo simulations of
hard tetrahedra, we observe a disorder-order transition at sufficiently high packing
fractions. A dodecagonal quasicrystal spontaneously assembles from the disordered
fluid at ¢ > 50%, which can then be compressed to a packing fraction of 83.24%, the
world record at the time of its discovery®. But before going through the properties
of the ordered phase, we discuss the thermodynamics of the disordered fluid.

Fig. 5.5a shows the equation of state ¢(P*) obtained from simulations of a small
system with 512 tetrahedra and a larger system with 4,096 tetrahedra. Here, P* =
Po3/kgT is the reduced pressure and o the edge length of a tetrahedron. The large
system undergoes a first-order transition on compression of the fluid phase and forms a
quasicrystal. For the small system however, the equilibrium packing fraction exhibits
an S-shaped transition at P* = 58 and ¢ = 47% from a simple fluid to a more
complex fluid, discussed below. The same complex fluid forms in larger systems if the
compression is too fast, i.e. if enough time is not given to the system for equilibration.
The disordered fluid jams at sufficiently high pressures, and when compressed to
nearly infinite pressure, attains packing fractions of > 78%.

Fig. 5.6a shows a system of NV = 8,000 tetrahedra rapidly compressed to a packing
fraction of ¢ = 78.58%. This configuration is the densest known packing of disordered
tetrahedra. We confirm the lack of global translational and orientational order in the
system by calculating diffraction images, bond order diagrams and third rank tensor
orientational order parameters derived in Chapter IV. The top row of Fig. 5.6b shows
bond order diagrams obtained by projecting the vectors connecting the centers of
nearest neighbor tetrahedra separated by < 0.550 on the surface of a sphere and the
bottom row depicts diffraction patterns. As it can be seen bond order diagrams are
uniform on S? and diffraction patterns are isotropic in all directions. Rotational order
parameters calculated from third-rank tensor SOCs are also very small, and within
the noise of a finite system.

In order to understand the structure of the complex fluid, we analyze the system
for the presence of locally dense motifs introduced in Fig. 5.1. In particular, we count
the PDs and the icosahedra that are visually observed in jammed configurations of the

disordered fluid. We identify these motifs using a shape-matching algorithm described

3Since then, we have obtained quasicrystals with packing fractions as high as 83.48%.
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Figure 5.5:

Thermodynamics of the hard tetrahedron fluid. (a) Equation of

state spanning the transition from the liquid to the solid state. Data are
shown for various system sizes. Decompression of both the quasicrystal
(N = 4,096) and the approximant (unit cell N = 82) shows a sharp melt-
ing transition. Hysteresis of the compression and decompression curves
for the quasicrystal further indicates a first-order transition. For the sys-
tem with N = 512, crystallization is inhibited in many runs, producing
a jammed, disordered glass. (b) Fraction of tetrahedra participating in
pentagonal dipyramids (PD, right inset) and icosahedra (Ico, left inset).
(Images reproduced from [18])
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Figure 5.6:

The densest known disordered arrangement of tetrahedra (a) In
short simulations or if the box is compressed too rapidly, crystallization
does not occur. The image shows a disordered arrangement of N = 8,000
tetrahedra, compressed to ¢ = 78.58%, the densest known packing of dis-
ordered tetrahedra (Appendix C.2.7). Local ordering of the tetrahedra is
visible. (b) Bond order diagrams (top) and diffractions patterns (bottom)
of the disordered glass. (Images reproduced from [18])
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by Keys et al. [191, 192]. The first step is to identify 'rough’ candidates of each motif.
For PDs, this is done by constructing the graph of nearest neighbors and isolating
all pentagons on that graph. We define two particles as nearest neighbors if their
distance is < 0.650. For icosahedra, we look for clusters of 20 tetrahedra packing
around a single point.

After identifying these candidates, we compare them with perfect PDs and icosa-
hedra using shape matching. For each motif, certain characteristic directions are
projected onto the surface of a unit sphere. For a PD, these are the vectors connect-
ing the center of the pentagon to its vertices, and for an icosahedron, the vectors
connecting the center of the icosahedron to the centers of its faces. Each unit vec-
tor u is then mapped onto spherical angles (6, ¢), which are then used to calculate
different spherical harmonic components Yy, (6, ¢). For a collection of characteristic
vectors {u;}, >, Yim(0;, ¢;)’s are calculated for a few values of [*. The corresponding
Y., spectrum of the candidate motfi is then compared to that of the reference motif—
i.e. the perfect motif- by measuring their scalar distance®. If the extent of match-
ing is higher than a certain threshold, the candidate motif is declared as a positive
match. The fact that each particle might be- and usually is— a member of several
interpenetrating motifs is also considered in our implementation.

Fig. 5.5b depicts the outcome of the shape-matching algorithm. We see that the
fraction of tetrahedra belonging to at least one pentagonal dipyramid increases well
before jamming or crystallization. With increasing pressure, interpenetrating pen-
tagonal dipyramids form icosahedra and finally merge into a percolating pentagonal
dipyramid network as the fraction of tetrahedra in pentagonal dipyramids approaches
unity. For the large system, the fraction of tetrahedra in icosahedra suddenly drops
at P* = 62, when crystallization occurs. Comparison with the glass shows that far
fewer icosahedra remain in the quasicrystal.

The fact that a single tetrahedron can be a part of several interpenetrating PDs can
be used to define clusters of interconnected PDs. Such clusters are small and isolated
at lower pressures, but as the simple fluid transforms into the complex fluid, they
become larger and larger, until they merge together to form a large cluster that spans

the entire system. This notion of clustering is the basis of the percolation analysis

4In order to detect a particular motif, it is necessary that Y;,,’s are calculated for select values
of [ only. For both PDs and icosahedra, we use [ = 5,6, --- , 10 since both these motifs have fivefold
symmetries. It should however be emphasized that optimal choices of [ might be different for other
motifs.

5We used the Euclidean 2-norm in the Hilbert space of spherical harmonics as the measure of
distance in this study.
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presented in Fig. 5.7. The size of a cluster is defined as the number of particles it
contains, and a spanning cluster is defined as a cluster that spans the simulation box
in all three directions. Our findings suggest a percolation transition of the PD network
in both the small and large systems at P; = 58 + 2, before both the jamming and
crystallization. Our free energy calculations suggest that the disorder-order transition
should occur at the same range (See Section 6.4). The formation of the PD network,
and the complex fluid, might therefore be a precursor to crystallization and not an
isolated thermodynamic event.

Structural changes in the fluid are revealed by the unusual behavior of its radial
distribution function ¢(r), as shown in Fig. 5.8a. We find that the first peak near
r = 0.750 disappears upon compression at low pressure, only to reappear for higher
pressure, splitting into two peaks at r = 0.550 and » = 0.800. The positions of these
peaks are characteristic of face-to-face and edge-to-edge arrangements, respectively,
within a single pentagonal dipyramid. This initial loss of structure with increasing
pressure or packing fraction is strikingly different from the well-known behavior of
the hard sphere system depicted in Fig. 5.8b, and underscores the influence of shape

in dense packings.

5.4 The Quasicrystal

Quasicrystals are ordered solids that lack periodicity. Therefore their structure
cannot be described with repeating unit cells. Aperiodic geometric patterns have
been known for a long time. For instance, quasiperiodic tilings of two-dimensional
space with polygons can be found in the Islamic decorations of mosques and shrines in
the medieval era [202] (Fig. 5.9). Rigorous construction of two-dimensional aperiodic
tilings can be traced back to 1960’s, the most notable being the infamous Penrose
tiling which only has two types of congruent tiles in it [203]. It was however inconceiv-
able that solids with aperiodic patterns could exist in nature. The first such solid was
discovered by Daniel Shechtman in 1981 [204]. It is a binary alloy of Al-Mn formed
from rapid cooling of the melt. Its diffraction pattern has sharp peaks like a crystal,
but contains long-range fivefold symmetry which is incompatible with periodicity. In
2011, Schechtman was awarded the Nobel Prize in Chemistry for discovering this
structure, but not surprisingly his discovery did not receive due enthusiasm back in
1980’s. Some famous scientists, such as the Nobel laureate Linus Pauling, questioned
the possibility of quasiperiodic phases and tried to explain Schechtman’s findings with

theories such as multiple twinning. Indeed the issue was not fully settled until high-
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Mean Cluster Size

Spanning Probability

Pressure

Figure 5.7: . . .
Percolation analysis of the PD network. (a) Mean cluster size of

interpenetrating pentagonal dipyramids. (b) Spanning probability of the
largest cluster of interpenetrating pentagonal dipyramids. (Images repro-
duced from [18])
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£(r) hard tetrahedra

£(r) hard spheres

Figure 5.8:

Comparison of radial distribution functions of the hard tetra-
hedron and the hard sphere fluids. (a) Radial distribution function
g(r) of regular tetrahedra for packing fractions ranging from ¢ = 29% to
¢ = 52%. Curves are vertically offset for clarity. (b) Radial distribution
function for the same densities as in (a) for a hard sphere system. (Images
reproduced from [18])
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Figure 5.9: L . .o . .
Islamic tilings with aperiodic patterns: (a) Darb-i Imam shrine,

Isfahan, Iran (1453 C.E.) (b) Gunbad-i Kabud tomb tower in Maragha,
Iran (1197 C.E.). (Images reproduced from [202])

resolution electron microscopy images of an Al-Mn-Pd alloy provided visual evidence
for quasiperiodic arrangements of atoms in an alloy.

Shortly after Schechtman’s groundbreaking discovery, quasicrystals with dodecago-
nal [205], decagonal [206] and eightfold [207] symmetries were also discovered. Since
then, hundreds of quasicrystals have been observed, most of which being metastable
states of binary and ternary alloys formed as a result of rapid quenching., there are
however stable quasicrystals as well [208]. The overwhelming majority of identified
quasicrystals are in atomic systems, and only a few quasicrystals have been recently
observed in micellar systems [209-212].

The spontaneous formation of a quasicrystal from the hard tetrahedron fluid is
remarkable since all previously observed crystalline structures of hard particles have
unit cells consisting of only a few particles. Furthermore most simulation studies
of quasicrystals employ exotic interparticle potentials with several minima [185, 213,
214], it is thus not expected a priori that interactions as simple as hard potentials can
lead to quasiperiodic order. The quasicrystal formation is indeed robust and occurs
for all systems with as few as 3,000 particles.

Fig. 5.10a depicts the quasicrystal that forms in a system of N = 13,824 tetrahe-
dra. From Fig. 5.10b it can be seen that the quasicrystal consists of a periodic stack of

corrugated layers with the spacing 0.930. The view along the direction of the stacking
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Fi 5.10:
e The dodecagonal quasicrystal of hard tetrahedra. A quasicrys-

tal with packing fraction ¢ = 83.24% obtained by first equilibrating an
initially disordered fluid of 13,824 hard tetrahedra using Monte Carlo
simulation and subsequent numerical compression. The images show an
opaque view of the system (a) and opaque and translucent views of two
rotated narrow slices (b) and (c¢). The white overlay in (c) shows the
distinctive twlvefold symmetry of the dodecagonal quasicrystal. Corru-
gated layers with normals along the z axis are apparent in (b). The
coloring of the tetrahedra is based on their orientation. (Images repro-
duced from [18])

vector (Fig. 5.10c) reveals details of the structure within the layers. Twelvefold sym-
metric rings formed by interpenetrating tetrahelices exist throughout the structure.
The helix chirality is switched by 30° rotations, lowering the symmetry and resulting
in a generalized point group of Dg,g [215].

The structure of the quasicrystal can be understood more easily by examining
the dual representation constructed by connecting the centers of mass of neighboring
tetrahedra; i.e. the tetrahedra distanced within the first peak of the radial distri-
bution function. In the dual representation, pentagonal dipyramids are represented
by pentagons. The mapping is applied to a layer of an 8 000-particle quasicrystal in
Fig. 5.11a. Recurring motifs are rings of twelve tetrahedra that appear as dodecagons
in the dual representation. Each ring is capped with a pentagonal dipyramid. These
PD-capped rings are stacked periodically to form logs (Fig. 5.11b), similar to the
hexagonal antiprismatic clusters in the tantalum—tellurium system [212]. As indi-
cated in Fig. 5.11a, the symmetry axes of the logs arrange into a non-repeating
pattern of squares and triangles (tile edge length 1.830)), an observation that we
confirm in systems with 13 824 and 21,952 particles. Note that additional interstitial
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particles are also needed to fill in the void that exists at the center of each triangle
and square. The diffraction pattern obtained by positioning scatterers at the centers
of tetrahedra shows rings of Bragg peaks, indicating the presence of long-range order
with twelvefold symmetry not compatible with periodicity. The effect of choosing
different scatterers e.g. vertices of tetrahedra rather than their centers is explained in
Appendix D.

Perfect quasicrystals are aperiodic while extending to infinity; they therefore can-
not be realized in experiments or simulations, which are, by necessity, finite. The
observed tilings and diffraction patterns with twelvefold symmetry are sufficient in
practice for the identification of our self-assembled structures as dodecagonal qua-
sicrystals. Such an identification is in agreement with previous theoretical analysis
of random square-triangle tilings [216] and findings of dodecagonal quasicrystals in
recent experiments [209-212] and simulations [185, 213, 214].

Further evidence for the quasiperiodicity of the assembled structure is obtained
by analyzing the tiling obtained in a system of 13,824 particles. There are three
types of tiles in a quasicrystal, most tiles are either squares S or triangles T, but
a few rhombi R are also present in the structure. A perfect— mathematical- qua-
sicrystal is self-similar i.e. the same tiling is obtained in different length scales; a
tiling should in principle be mappable to a tiling at a larger length scale by inflation
rules. This constrains the concentration of different types of tiles in a mathematically

perfect quasicrystal. For the dodecagonal quasicrystal for instance, the ideal ratio is
nr

n5+nR/2 - ﬁ

in the 13,824-particle system with the

~ 2.31. Fig. 5.12 depicts the full tiling for the quasicrystal forming

nr

—— = 2.33, which is very close to the
ng + nR/2

ideal ration in the perfect quasicrystal.
This inflation symmetry can be viewed more vividly in the quasicrystals formed at
bigger systems. Fig. 5.13 shows the transparent top view of the quasicrystal formed

in a system of N = 283 = 21,952 particles. Bigger rings R are related to smaller rings

T9 \/§+1

Ry by inflation symmetry. The ratio between the sizes of two rings is — = )

T1 \/§

Note that R; corresponds to twelvefold rings shown in Fig. 5.10b.

Quasicrystal approximants are periodic crystals with local tiling structures iden-
tical to that in the quasicrystal [215]. Because they are closely related, and are often
observed in experiments, we consider them as candidates for dense packings. The
dodecagonal approximant with the smallest unit cell (space group P4n2) has 82 tetra-
hedra (Fig. 5.14b) and corresponds to one of the Archimedean tilings [217]. At each

vertex we see the logs of twelvefold rings (shown in red) capped by single pentagonal
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Figure 5.11:

>

B

4

Structural details of the quasicrystal. (a)Network of connected
tetrahedra in a slice through a quasicrystal with 8 000 tetrahedra, viewed
along the direction of the twelvefold axis. Lines connecting the centre
of mass of nearest neighbor tetrahedra form turquoise pentagons, which
correspond to the pentagonal dipyramid network. The tiling structure is
highlighted in yellow. A diffraction pattern indicating twelvefold symme-
try is shown in the inset. (b) The vertices of the tiling are formed by logs
comprised of rings of twelve tetrahedra, with neighboring rings enclos-
ing a pentagonal dipyramid. The packing fraction within the logs can be
increased by a tilt of the rings with respect to the log axis. This allows
neighboring pentagonal dipyramids to avoid each other, as indicated in
the figure, where two tetrahedra have been removed from the top ring
to expose pentagonal dipyramids. (Images reproduced from [18])

89



s s \ 2
r.-.‘l £ .
ar ." ',‘"'
= ('I‘J L 7
Wy S

Fi 5.12:
1BHe Analysis of the tiling substructure in the quasicrystal with

N = 243 = 13,824 particles shown in Fig. 5.10. (a) The gray lines
connect tetrahedra that are nearest neighbors. Pentagons in the neigh-
bor network correspond to PDs. Centers of logs are connected with or-
ange lines. (b) The diffraction pattern shows twelvefold symmetry. (c)
The square-triangle tiling contains ng = 23 squares, ny = 56 triangles
and ng = 2 thin rhombi. Their ratio ny/(ng + ngr/2) ~ 2.33 is close to
the ideal value for a mathematically perfect quasicrystal, 4/ V3 ~ 2.31.
For the first-order approximant the ratio equals 2. (Images reproduced
from [18])
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Inflation symmetry of the quasicrystal. Translucent view showing
a cut through a system with N = 283 = 21,952 tetrahedra. The viewing
direction is along the dodecagonal axis. Parts of the sample are still
in the fluid (F') state. Tetrahedra arrange into small rings (R1) and
large rings (R2). Their diameters have an irrational ratio of ry/r; =

(v/3+1)/v/2. (Images reproduced from [18])
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dipyramids (green). The logs pack well into squares and triangles with additional,
intermediary tetrahedra (blue). The vertex configuration of the tiling is (3.4.3%.4),
as shown in Fig. 5.14a. Interpenetrating tetrahelices can also be seen in the approx-
imant (Fig. 5.14c). Building and numerically compressing a unit cell of this ideal
structure achieves a packing fraction of ¢ = 84.79%. If we compress a 2 X 2 X 2 unit
cell, the packing fraction marginally increases to ¢ = 85.03% (Appendix C.2.6), the
densest packing of tetrahedra at the time of its discovery (Fig. 5.14d-e). Compressing
approximants with more complex unit cells, more faithful to an ideal quasicrystal,
does not further improve the packing (Fig. 5.15).

Why should square-triangle tilings be preferred for dense packings of tetrahe-
dra? First, we compare the packing fraction of the square tile with 22 tetrahedra

(Fig. 5.16a) to that of the triangle tile with 9.5 tetrahedra (Fig. 5.16b). Their ra-
tio ¢triangle _ 19
¢square 11\/3

equally well in both tiles. Second, we note that rings comprising the logs are tilted
(Fig. 5.11b) and the layers of the structure are corrugated (Fig. 5.10a). This is a

direct consequence of the face-to-face packing of tetrahedra where neighboring logs

~ 0.9972 is nearly unity, which suggests that tetrahedra pack

kiss. As a result, the square tile has a negative Gaussian curvature whereas the tri-
angle tile has a positive one. Alternating the two tiles produces a net zero curvature
in the layers, as observed in the quasicrystal and its approximant.

As shown in Fig. 5.17, the local structures of the (3.4.3%.4) approximant, the
dodecagonal quasicrystal and the disordered glass (as characterized by their radial
distribution functions) are very similar. The peak positions are identical: only the
peak heights differ. This implies that the local structure of the glass and quasicrystal
are only subtly different, and more sensitive measures of local order, as in Fig. 5.5b, are
required. The quasicrystal and the approximant can be also be distinguished by visual
inspection of the tiling, as well as comparison of diffraction patters (Fig. 5.18). The
crucial step during crystallization is the transformation of the percolating pentagonal
dipyramid network into layers, and the elimination of icosahedra. This intriguing

process will be investigated in subsequent studies.

5.5 The Effect of Polydispersity®

In Section 2.2, we discussed the predictive power of hard particle simulations in
forecasting the phase behavior of experimental systems of nano- and colloidal parti-

cles. This was indeed one of our main motivations of studying the self-assembly of

6This section will be part of a manuscript that is currently under preparation.
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Figure 5.14:

The (3.4.3%.4) approximant. The tiling (a) and the structure (b) of
the (3.4.3%.4) approximant. Colors are described in the text. (¢) Similar
to the quasicrystal, interpenetrating tetrahelices are present throughout
the approximant. Their chirality alternates between left (L) and right
(R) by 30° rotations. (d-e) Details of the high-density ¢ = 85.03%
packing of hard tetrahedra. This density was obtained by compressing
a2 x 2 x 2 cell of the (3.4.3%.4) approximant with 656 tetrahedra. (d)
For ease of viewing, the 2 x 2 x 2 cell has been periodically continued
into a 2 x 2 x 8 cell. (e) In the translucent image, the twelvefold logs
can be identified. (Images reproduced from [18])
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Figure 5.15:

Two higher approximants of the dodecagonal quasicrystal ob-
tained via geometric construction. Arrangements of tetrahedra
(left) and tilings (right) are shown. PDs capping the logs are not drawn
for ease of viewing. (a) The second approximant has a body-centered
tetragonal unit cell with 306 tetrahedra. Four unit cells form an or-
thorhombic box. (b) The third approximant has a primitive tetragonal
unit cell with 1,142 tetrahedra. As expected, the ratio of the number

of tetrahedra in successive approximants converges to the self-similarity

306
scaling factor of the square-triangle tiling, v/3 + 2 ~ 3.732051 : ) ~

1142
3.731707 (2nd vs. 1st), 306~ 3.732026 (3rd vs. 2nd). The approx-

imants compress to ¢ = 82.84% (a) and ¢ = 83.52% (b). (Images
reproduced from [18])
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Fi 5.16:
1B Decoration of individual tiles in the quasicrystal and the ap-

proximants: (a) a triangle with 9.5 tetrahedra, (b) a square with
22 tetrahedra. The ratio of the packing densities of the tiles is
Gtriangle/ Psquare = 19/ 11v/3 ~ 0.9972. (c) Thin rhombi are frequently
observed in connection with zipper motion, a dynamical mechanism to
rearrange squares and triangles [216]. A rhomb is a structural defect.
It consists of 11 tetrahedra and has half the volume of a square. As
can be seen in the image, tetrahedra in the middle form a spiral of two
interpenetrating logs (light red). (Images reproduced from [18])
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— Quasicrystal

— QGlass
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Figure 5.17: . L. . . .
Radial distribution functions for the approximant (N = 82),

quasicrystal (N = 8,000), and glass (N = 8,000). Curves are verti-
cally offset for clarity. (Images reproduced from [18])
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Figure 5.18:

Comparison of the diffraction patterns of the compressed qua-
sicrystal (Fig. 5.10) and the compressed (3.4.3%2.4) approximant
(Fig. 5.14d-e). While the Bragg peaks have perfect twelvefold symme-
try in the dodecagonal quasicrystal (a), the symmetry is broken to four-
fold symmetry in the approximant (b). As indicated by white dashed
lines and ellipsoids, weak Bragg peaks of the approximant are shifted
slightly from their positions in the quasicrystal. Such behavior can be
understood within the theory of quasicrystals [215]. (Images reproduced
from [18])
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hard tetrahedra, to be able to predict the types of phases that could emerge in sys-
tems of colloidal and nanotetrahedra. It should however be noted that real colloidal
particles are not perfect, and the fact that the quasicrystal forms in a system of per-
fect hard tetrahedra does not necessarily imply that it will also form in real colloidal
systems where the particles are polydispersed. It is therefore of great practical rele-
vance to investigate the robustness of the dodecagonal quasicrystal to polydispersity
of the building blocks.

In order to do this, we carry out simulations of polydisperse tetrahedra at pres-
sures/densities that perfect tetrahedra assemble into a quasicrystal. However, the
formation of the quasicrystal is a very slow process, and can take up to 3 x 10" MC
cycles even for perfect tetrahedra. In order to accelerate this, we focus our attention
on systems of N = 328 particles, which is the magic number for forming four unit cells
of the (3.4.32.4) approximant in a cubic box. In the case of monodisperse tetrahedra,
a system of 328 particles crystallizes an order of magnitude faster i.e. in 2 — 5 x 10°
MC cycles at 50% packing fraction. It is therefore reasonable to assume that the
approximant will form in much shorter times in polydisperse systems of N = 328
particles, if the system has the propensity to form the quasicrystal at all.

In order to study the effect of size polydispersity, we first generate a dilute ran-
dom configuration of perfect tetrahedra, we then set the edge length of each particle
to a number randomly selected from the distribution v8N(1,?) with v being the
percentage of polydispersity. We then run isobaric simulations of the resulting config-
uration at P* = 64, a pressure at which the approximant is routinely observed to form
in systems of perfect tetrahedra. We run simulations for polydispersities in the range
v = 1—19%, for each value of v, we run ten simulations, each randomly generated us-
ing the procedure described above. Fig. 5.19 shows the diffraction images calculated
for the densest packing obtained for each value of polydispersity. Diffraction patterns
are of superb quality for polydispersities as high as 8%, and of acceptable quality
for polydispersities as high as 12%. One can however observe traces of long-range
order for polydispersities as high as 15%. This is good news from an experimental
perspective, since the reported polydispersity of colloidal and nanotetrahedra are in
the range of 10% [66], which is less than the 12% threshold found in this study. This
keeps the hope of obtaining a dodecagonal quasicrystal of colloidal tetrahedra alive,
and well within rich in current experimental systems. We also consider calculate the
maximum density of the densest packing observed for polydispersities below 15% and
observe that ¢max(v) is monotonically decreasing function of v (Table 5.2).

It is also noteworthy that the formation of the quasicrystal in a system of poly-
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Figure 5.19: __, . . .
Diffraction images calculated for the polydisperse systems.

Each system is simulated for 102 MC cycles at P* = 64, and then quickly
compressed to its maximum packing fraction.
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Table 5.2: Maximum densities of the approximant for different polydispersities
Polydispersity (%) Maximum Packing Fraction

1 0.84697582
2 0.84544326
3 0.84339035
4 0.83890998
) 0.83553847
6 0.83003463
7 0.82358400
8 0.81634127
9 0.80990100
10 0.80330100
11 0.79151252
12 0.78462746
13 0.77818900
14 0.77407546

disperse tetrahedra is more robust than the formation of the fcc crystal in a system
of polydisperse hard spheres, where the solid phase cannot exist for polydispersities
beyond 5.7% [218]. This might be explained by the fact that the quasicrystal is more
similar to the hard tetrahedron fluid than is the fcc to the hard sphere fluid.

5.6 Conclusions

In conclusion, we report the spontaneous formation of a dodecagonal quasicrystal
by hard tetrahedra, which is the first quasicrystal to be formed by hard particles, as
well as the first quasicrystal formed by nonspherical building blocks. The quasicrys-
tal and its approximant can pack very efficiently, and the (3.4.3%.4) approximant was
the world record at the time of its discovery. This study clearly shows that shape
alone can produce remarkable structural complexity through solely entropic interac-
tions. We also show that the quasicrystal formation is very robust and occurs for
size polydispersities as high as 12 per cent. This last finding is important since it
encompassed the ranges of polydispersities reported for the synthesis of colloidal and
nanotetrahedra [66].

99



CHAPTER VI

Hard Tetrahedra: Phase Diagram'

Shortly after our reporting of the quasicrystalline phase and the then-record max-

imum packing density of 85.03% [18], Kallus et al. introduced a simple periodic struc-

100
ture with ¢ = 7~ 85.47% [30]. The unit cell is monoclinic and has four tetrahedra

grouped into pairs of triangular bipyramids (TBPs). This structure was slightly op-
12250

timized by Torquato and Jiao to ¢ = 11310 ~ 85.55% by breaking its monoclinic
symmetry [219]. A few days after Toquato and jiao, Chen et al. found the real lo-
cal optimum for the triclinic unit cell (Fig. 6.1), a structure with a packing density
O = % ~ 85.63% [31, 220]. They also isolated the same structure in NPT simula-
tions of small systems with 16 or fewer particles. Throughout this chapter, we will
call the densest known packing of tetrahedra the dimer crystal.

Since the dimer phase is denser than the (3.4.3%.4) approximant, it should be-
come thermodynamically stable in the limit of infinite pressure, however it is never
observed to form in our self-assembly simulations. In this chapter, we carry out a
detailed investigation of the phase behavior of hard tetrahedra from the fluid up to
the densest packing. In contrast to previously studied systems of hard particles, the
phase diagram of tetrahedra entails a non-symmetry-breaking solid-solid transition.
We confirm its existence by Monte Carlo simulation and free energy calculations and
discuss the origin of the transition. The present study complements previous works
on hard tetrahedra which studied some aspects of the equation of state [18, 114, 196]
as well as dense packings [30, 31], and extends those to provide a complete picture
of the phase diagram. By comparing the results of self-assembly simulations to those
obtained from free energy calculations, we assess the likelihood of various candidate

phases to be observed both in simulations and in experiments of hard tetrahedra.

IThis chapter is partly based on the following manuscript: Amir Haji-Akbari, Michael Engel
and Sharon C. Glotzer, J. Chem. Phys. 135: 194101 (2011) [182].
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The chapter is organized as follows. A detailed account of performed simulations
is given in Section 6.1. In Section 6.2, the thermodynamics of the dimer phase is
reported. The thermodynamics of the quasicrystal and its approximant follows in
Section 6.3. The results of free energy calculations are presented in Section 6.4. A
computer experiment in which the dimer crystal spontaneously transforms into the
quasicrystal at ¢ = 50% is reported in Section 6.5. The origin of the stability of the
approximant over the dimer crystal at experimentally realizable densities is discussed

in Section 6.5.1 and discussions and concluding remarks are provided in Section 6.6.

6.1 Technical Specifications of Performed Simulations

Equations of state, ¢(P*), are calculated with isobaric Monte Carlo simulations.
(Further details of Monte Carlo simulations can be found in Section 3.2.1.) Changes
in the Gibbs free energy within a single phase are obtained via thermodynamic inte-
gration:

Py
Gy — Gy Vr dp
N~ o7 ) o)

*

Py

(6.1)

where Vi = o3 V2 /12 is the volume of a tetrahedron.

Simulations are carried out in the pressure range 50 < P* < 4000 for the dimer
crystal (4x6x6x6 = 864 tetrahedra), quasicrystal (8,000 tetrahedra) assembled from
the fluid and compressed to a packing density up to 83.36%, and the approximant
(82 x 2 x 2 x 3 =984 tetrahedra).

We use a modified version of the Frenkel-Ladd method for free energy calculation.
Implementation details are given in Section 3.3.4. We use a maximum string constant
of Ymax = 4% 10°%. The interval [0, ymay] is discretized and the system is held for 2 x 10°
MC cycles at each y value. During this period, the value of (U), is evaluated. Explicit
free energy calculation is only done in the pressure range 250 < P* < 600 where no
configurational rearrangements are observed. The Gibbs free energy of each phase is

then extrapolated for higher/lower pressures from equation of state using Eq. (3.25).
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Figure 6.1: . . .
The dimer crystal. The densest known tetrahedron packing [31] is a

crystal with four particles per unit cell forming two triangular bipyramids
(or ‘dimers’) shown in green and blue. The unit cell breaks the threefold
symmetry of the dimers. (Images reproduced from [182])

6.2 Symmetrization of the Dimer Packing on Decreasing Pres-

sure

We construct the dimer crystal analytically [31] and slowly expand it by reducing
the pressure. The crystal remains stable during the simulation for pressures P* > 60
while at lower pressures it melts abruptly. No hysteresis is observed in the equation of
state (Fig. 6.2a), if the decompression is stopped before melting and the system is re-
compressed. This suggests that the system remains at least in metastable equilibrium
over this range of pressures and densities.

The compressibility k = (1/¢)(0¢/0P*) (Fig. 6.2b) reveals a complicated phase
behavior, with an anomalous peak indicative of a second-order phase transition ap-
pearing at around P* = 90. We verify that this is a displacive phase transition; i.e.
it only involves a lattice distortion and the particles in the lower density phase still
remain in dimers. Analyzing the lengths of the vectors spanning the simulation box
and the angles between them (Figs. 6.2c,d) indicates that the transition takes place
in two stages. While in the lower density phase D; (P* < 90) all lengths and angles
are equivalent, they are completely split only in the phase Dy (P* > 220). There
is also an intermediate phase Dy; (90 < P* < 220) in which only two of the lengths

and angles are still degenerate. The symmetrization of the lattice therefore follows
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the sequence: triclinic (Dy;p) — monoclinic (Dy;) — rhombohedral (Dy).

It is known that the threefold symmetry of the dimers must be broken to achieve
optimal bulk packing [30, 31], and we observe this in the sequence of transitions. We
note that Dy was initially reported by Kallus et al. as a candidate for the densest
packing of tetrahedra [30]. Its maximum packing density is only 0.2% lower than
the maximum packing density of Dy, the structure predicted by Chen et al. [31].
Note also that the integrated area under the peak is a measure of the difference
in packing densities. This explains the missing peak in the compressibility for the
transition Dy — Dy In contrast, the difference in maximum packing densities for

the transition Dy — Dy is much larger, and of the order of a few percent.

6.3 Comparison of the Quasicrystal and its (3.4.32.4) Approx-

imant

The equations of state of the quasicrystal, the approximant, and the dimer crystal
are presented in Fig. 6.3a. We observe that the approximant is not only denser than
the quasicrystal at all pressures above the melting transition, it also melts at lower
pressure. These observations together with Eq. (6.1) suggest that the quasicrystal is
generally less stable than the approximant.

Further evidence for the stability of the approximant over the quasicrystal is ob-
tained through constructing higher order approximants; i.e. approximants that have
larger unit cells than the (3.4.324) approximant, and comparing their equations of
state with the quasicrystal and the (3.4.3%.4) approximant. Fig. 5.15 depicts two such
approximants that we constructed using inflation operation [221]. The approximant
depicted in Fig. 5.15a is not particularly dense due to the presence of rhombi in
its tiling, and is therefore not considered here. The other approximant (Fig. 5.15b)
however has no rhombi in its tiling and is relatively dense. We therefore calculate its
equation of state in the transition region; we call the approximant with a 'rhomb-free
tiling the second-order approximant in the rest of this chapter.

As observed in Fig. 6.4, the second approximant is denser than the densest qua-
sicrystal that formed in our simulations but less dense than the first approximant.
Neither structure is expected to have a significant entropic advantage over others since
tetrahedra experience similar local environments in all these structures. It is therefore
safe to conclude that the first approximant is more stable than the quasicrystal and
the second approximant because of its higher density. Higher-order approximants can

be constructed similarly using inflation symmetry; however, such approximants will
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Figure 6.2:

Dimer 1, D; Dimer II, Dy Dimer III, Dy
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Symmetrization of the dimer crystal. (a) The equation of state
shows no hysteresis between compression and expansion. (b) A peak is
observed in the compressibility near pressure P* = 90 at a second order
displacive phase transition. The (c) three box angles and (d) box lengths,
obtained by sorting the angles and lengths and then averaging the sorted
values, are plotted as a function of pressure. We observe two transitions,
from triclinic (Dyy) to monoclinic (Dy) to rhombohedral (D;). The phase
Dypp is thermodynamically stable, Dy and D; are metastable. (Images
reproduced from [182])
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Thermodynamic stability of the dimer crystal. (a) The equa-
tion of state for the dimer crystal, the approximant, and the quasicrys-
tal shows that the dimer crystal is the densest packing for P* > 700.
The approximant is always denser than the quasicrystal. Error bars
are smaller than the size of the symbols. Insets show the equations
of state in the melting region as well as near P* = 700 where the
dimer crystal first becomes denser than the approximant. (b) The Gibbs
free energy difference between the dimer crystal and the approximant
AG/NEkgT = (Gp — G4)/NkgT calculated using thermodynamic inte-
gration and the Frenkel-Ladd method. The dimer crystal is stable only
at very high pressures.(Images reproduced from [182])
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1BHre Equations of state of the quasicrystal and the first and sec-

ond approximants computed from NPT simulations. The sec-
ond approximant (with a unit cell of 1,142 particles) is less dense than
the first approximant (with a 82-particle unit cell). (Images reproduced
from [182])

have very large unit cells with tens of thousands of particles. Based on the observed
trend, we expect higher order approximants to become successively less dense but
still denser than the quasicrystal.

The question of comparing the relative thermodynamic stability of quasicrystals
and their approximants plagues nearly all reports of new quasicrystals in the litera-
ture. The difficulty in obtaining perfect quasicrystals in experiments and simulations,
along with the slow kinetics that would be involved in the transformation of even an
imperfect quasicrystal to any of its approximants, confounds attempts to address
quasicrystal stability. In this spirit, we remark that the quasicrystal configuration
used in this study is obtained in simulation and an ideal, perfect quasicrystal might
be slightly denser. The structure of such an ideal quasicrystal, however, is unknown.
A denser quasicrystal would shift the curve in Fig. 6.3a slightly upwards, and hence
make the quasicrystal thermodynamically more stable than the approximant in a
narrow region close to melting. Based on all evidence however, we use the (3.4.3%24)
approximant as the most stable quasicrystal-like structure for free energy and free

volume calculation purposes.
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& The common tangent construction for the approximant-dimer

transition. The critical packing fractions for the approximant to dimer
transition can be calculated via the common tangent construction from
the Helmholtz free energies of the approximant (red) and the dimer crystal
(blue). (Images reproduced from [182])

6.4 Relative Thermodynamic Stability

The Gibbs free energy difference between the dimer and the approximant is cal-
culated using the method described in Sec. 3.3.4. We find that the dimer crystal is
stable only for pressures above P* = 3780 4+ 60 (Fig. 6.3b), while the approximant
is favored below PY. At the critical pressure, the approximant and the dimer crystal
have packing densities of (84.0 £0.1) % and (84.6 £ 0.1) % respectively. The tran-
sition densities can be alternatively calculated from the Helmholtz energy using the
common tangent construction (Fig. 6.5). P* is significantly higher than the melting
pressure for the approximant, Pf; = 55+ 1 (Fig. 6.6), which is determined using the
approach described in Section 3.3.4.1.

It is noteworthy that the above calculations are based on the assumption that
the dimer crystal of [31, 220] is the densest possible arrangement of hard tetrahedra.
Although we cannot rule out the possibility that an even denser arrangement of tetra-
hedra that is different from the approximant and the dimer crystal might exist, our
observation that the dimer crystal is the densest structure that forms in simulations

of 16 tetrahedra and fewer [31, 220] substantiates this assumption. The quasicrystal
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Gibbs free energies of the approximant and the fluid close to
the melting transition. The transition occurs at P;; = 55. (Images
reproduced from [182])

that we are using for comparison with the approximant has been assembled in sim-
ulations from the disordered fluid and therefore contains imperfections. We cannot
rule out that a perfect quasicrystal might be thermodynamically more stable than the
approximant at all pressures. If this were the case, then the transition between the
approximant and the dimer crystal reported above would be substituted by a transi-
tion between the quasicrystal and the dimer crystal in the phase diagram. Therefore,
while such a discovery could alter certain details of the phase transition, it will not

eliminate the existence of a solid-solid phase transition reported in this work.

6.5 Dimer-Quasicrystal Transformation

To compare the relative thermodynamic stability of the dimer crystal and the qua-
sicrystal in simulation, we set up a Monte Carlo simulation of a large dimer crystal
with 2,916(= 4 x 9 x 9 x 9) tetrahedra in the isochoric ensemble. To facilitate the
transformation, the box dimensions are occasionally distorted in a random direction
with the constraint that the total volume remains unchanged (variable-shape ensem-
ble, [157]). This distortion allows the system to adjust to arbitrary lattice symmetries
by relaxing shear stresses.

We choose a constant packing density of ¢ = 50%, because at this density the
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quasicrystal is routinely observed to form spontaneously from the fluid. Structural
changes are detected by counting the number of particles that form PDs and icosa-
hedra using a shape-matching algorithm [191]; icosahdral motifs vanish when the
quasicrystal forms [18]. Additionally, the pressure is determined from the acceptance
probability of trial volume changes [116, 222].

The pressure shows a sharp spike after 4 million MC cycles accompanying the
melting of the dimer crystal (Fig. 6.7a). The spike quickly decreases to a plateau,
which, after 15 — 20 million MC cycles, relaxes to its equilibrium value. PDs and
icosahedra form as the preferred local configurations in the melt (Fig. 6.7b). On
the other hand, in the final solid structure, most particles are members of PDs and
virtually no icosahedra remain. Diffraction images in Figs. 6.7c-f show that the final
solid structure is the dodecagonal quasicrystal. The fact that the quasicrystal forms
in the simulation with the melt as an intermediate state confirms that both the
quasicrystal and the melt are thermodynamically favored over the dimer crystal at
the packing density ¢ = 50%.

6.5.1 Origin of Stability of the Approximant

To investigate the superior stability of the quasicrystal approximant compared to
the dimer crystal over such a wide range of densities, we investigate the significance
of collective particle motions by comparing the free energy estimates obtained from
the mean-field approximation introduced in Section 3.4.3 with the exact free energy
differences. We also analyze the dynamics in the approximant by calculating the van
Hove correlation function [223] and visually inspecting the high-mobility particles

[224] in our simulations.

6.5.1.1 Free volumes

We calculate the mean-log average of the free volumes v vy, of tetrahedra (Eq. 3.32)
in the approximant, the dimer crystal, and the quasicrystal using the shooting method
described in Section 3.4.1. The results are presented in Fig. 6.8a. Whereas particles
in the quasicrystal generally have a smaller vy, than in the approximant, the curves
are shifted along the abscissa relative to one another by a fixed amount as indicated
with arrows in Fig. 6.8a. This implies an identical thermodynamics for the qua-
sicrystal and the approximant except for their different maximum packing densities.
Indeed, tetrahedra experience similar local environments in the quasicrystal and its

approximant.
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Transformation of the dimer crystal to the dodecagonal qua-
sicrystal in an isochoric simulation. (a) The pressure first spikes
after 4 million MC cycles and then relaxes during the melting of the
dimer crystal. Between 15 and 20 million MC cycles, the quasicrystal
forms from the melt. (b) The number of particles arranged in pentagonal
dipyramids (PDs) or icosahedra (ico) increases rapidly during melting. In
the quasicrystal essentially all particles form PDs while icosahedra dis-
appear. Diffraction patterns confirm the transformation from the dimer
crystal (c) to the melt (d,e) and then to the quasicrystal (f). (Images
reproduced from [182])
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In contrast, the mean log free volume of the dimer crystal decays much more slowly
with packing density and intersects the two other free volume curves. This finding
suggests that the approximant relaxes more efficiently during expansion, creating free
volume for the particles more readily. Note that the packing density where the two
curves cross is considerably below 84%, the density where the approximant becomes
thermodynamically unstable, which underscores the significance of collective motions
of particles in stabilizing the approximant even at very high densities.

The importance of collective motions may be further inferred by comparing the
free energy difference estimated from a mean-field approximation with the exact value.
As shown in Fig. 6.8b, the mean-field approximation underestimates the stability of
the approximant, which indicates that entropic contributions from collective motions
are significant. We suspect that slight rearrangements of particles in the approxi-
mant during expansion also increase its stability at lower packing densities. This is
confirmed by estimating AG from a cell model approximation. The cell model is
similar to the mean-field approximation except that free volumes are calculated for
a non-equilibrated structure obtained by isotropically expanding the densest packing
to a given packing density [188]. As shown in Fig. 6.8b, the cell-model approximation
underestimates the stability of the approximant even more than the mean-field ap-
proximation, which suggests the significance of small local rearrangements that occur

while the structure is equilibrated after expansion.

6.5.1.2 Dynamics in the Approximant

Correlated motions of tetrahedra are observed in long simulations of both the ap-
proximant and the quasicrystal at all densities. These motions are most apparent at
packing densities below 65% where they give rise to local structural rearrangements,
but they are still present at higher densities in the form of correlated vibrations of
clusters of tetrahedra. The fundamental mechanism through which these rearrange-
ments proceed is the rotation of single PDs around their principal axes by multiples of
72°. The particular lower asphericity of PDs allows an easy rotation even in relatively
dense configurations.

van Hove correlation functions are powerful computational tools for characteriz-

ing such dynamical heterogeneities. The full van Hove correlation function is given
by [223]:

G(r,t) = %< Zé[r+rj(t)—ri(0)]> (6.2)

i=1 j=1
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Figure 6.8:

Relative stability of the dimer crystal, quasicrystal, and qua-
sicrystal approximant. (a) Up to packing density 83% the dimer crys-
tal has lower average free volume per particle. This helps to stabilize
the approximant entropically. At high packing densities the dimer crys-
tal should eventually have the highest average free volume, because its
maximally achievable density is the highest of the three candidate struc-
tures. (b) Comparison of the Gibbs free energy differences between the
dimer crystal and the approximant using the exact Frenkel-Ladd method,
the mean-field approximation, and the cell-model approximations. The
transition is predicted with all three methods even though the critical
densities ¢4 (approximant) and ¢p (dimer crystal) vary slightly. (Images
reproduced from [182])
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with N the number of particles in the system. G(r,t¢) can be decomposed into the
self part G4(r,t) and the different part G(r,t):

Gy(r,t) = % <Z5 [r+ri(t) — rz(o)]> (6.3)

Ga(r,t) = %<Z > §[r—|—rj(t)—ri(0)}> (6.4)

i=1 j=1j#i

The function G4(r,t) measures any spatiotemporal correlations between distinct par-
ticles, and for t = 0, it simply is proportional to the pair distribution function i.e.
Ga(r,0) = pg(r). Gs(r,t) however measures the extent to which a single particle
is correlated to its own original position at a given time i.e. G(r,t)d’r is the in-
finitesimal probability that an arbitrary particle has moved by a vector falling into a
Ar-sided box centered at r. It is of particular interest to calculate its radially-averaged
version G,(r,t) and its associated probability density 47r?G(r,t). We calculate these
quantities in isochoric Monte Carlo simulations wherein average step sizes are fixed
throughout the simulation and not adjusted. This is done to make sure that each
MC cycle is equivalent to the same period of time if the real dynamics of the system
is considered.

The rotation of PDs is confirmed by observing several peaks in G(r,t), the self-
part of the van Hove correlation function [223], which implies that the tetrahedra
indeed move between discrete sites separated by geometric barriers (Fig. 6.9a,b).
As reported in our earlier work [18], each tetrahedron in the quasicrystal and the
approximant is part of a spanning network of interpenetrating PDs (that is, PDs
that share a tetrahedron). The locations of the peaks in G4(r,t) correspond to the
characteristic distances of the nearest neighbor distances in the spanning network.

We observe that not all PDs are equally likely to rotate. At high densities, the PDs
capping the twelvefold rings in the center of logs (shown in green in Fig. 5.14b)[18]
rotate more frequently as they are spatially separated from the rest of the structure.
This can be seen in the trajectories of the high-mobility particles in the approximant
at ¢ = 65% (Fig. 6.9¢). Close to melting, however, rotations involve the full network
of neighboring PDs, which allows the particles to diffuse over arbitrary distances
(Fig. 6.9d). The underlying dynamics is identical in the quasicrystal. However the
presence of defects leads to higher mobility in the quasicrystals that form in simulation
as compared with "perfect” quasicrystals. Both the quasicrystal and the approximant

exhibit some ’'liquid-like‘ behavior since unlike simple crystals, diffusion can take place

113



47 (r I6)? Gs(r,t)
N

— £ =40x10°

— £=20x10° » ,
— 1= 4x10° e ‘“

/ @ =65%

47 (r /6)? Gs(r,t)
N

Figure 6.9:

— t=180x%10°

— t=100x10°
— t=40x10°
— 1 =20%10°
— 1 =4x10°
/ —_—1=0.8%10°0 |
¢ =50%

0.5 1.0 15 20 25 30 35 40
r/o

Particle dynamics in the quasicrystal approximant. (a,b) The self-
parts of the van Hove correlation functions at ¢ = 65% (a) and ¢ = 50%
(b) show various peaks, which indicates that the particles do not move
continuously but have to overcome (geometric) barriers. The peak posi-
tions correspond to different levels of nearest neighbor distances in the
underlying PD network. (c,d) The trajectories of particles with the high-
est mobility are plotted. At high density, ¢ = 65% (c), tetrahedra move
along the edges of pentagons. This motion corresponds to rotations of the
PDs in log centers. At intermediate densities, ¢ = 50% (d), neighboring
PDs start to rotate and the tetrahedra are more mobile. In the infinite
time limit the tetrahedra can diffuse through successive PD rotations.
(Images reproduced from [182])
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Figure 6.10:

¢ =T75% ¢ = 80%

Correlated motion of clusters in a slab of the approximant at
(a) ¢ = 75% and (b) ¢ = 80%. Dark arrows correspond to the direc-
tion towards which each particle has moved after t = 5 x 10" MC cycles;
the length of each arrow is twice the distance the corresponding parti-
cle hard travelled. There are several clusters of neighboring tetrahedra
moving collectively. A few of these clusters are highlighted in blue. Not
surprisingly, the mobility is higher at ¢ = 75% as evidenced by longer
arrows. (Images reproduced from [182])
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in these systems even in the absence of defects.

At packing densities beyond 65%, PD rotations become extremely unlikely, but
clusters of tetrahedra, including PDs, can still vibrate collectively. Figs. 6.10a-b show
such correlated motions occurring in a time period of 50 million MC cycles in a layer of
the approximant at ¢ = 75% and ¢ = 80% respectively. The vibrations are extremely
slow, but their existence adds additional entropy to the system making the mean-field
approximation and the cell model inaccurate. No dynamics is observed in the dimer
crystal.

In general, thermodynamically equivalent local rearrangements are a character-
istic feature of quasicrystals and their approximants. The transformation among
these takes place via phason modes [225-227]. Elementary excitations are phason
flips, which previously have been observed with high-resolution transmission electron

microscopy [228] and in simulations of two dimensional model systems [229].

6.6 Discussion and Conclusion

In general one might expect a ‘simple’ structure like the dimer crystal to form
more easily than ‘complex’ structures like the quasicrystal or its approximant. The
observation that tetrahedra defy this expectation suggests that structural complexity
is not always a good indicator of thermodynamic stability. Indeed, although it has
been argued in the literature [230] that the dimer crystal first reported by [31, 220]
and studied here might be the stable phase even at densities where the quasicrystal
is reproducibly observed (down to densities of 50%), our free energy calculations
demonstrate that the dimer crystal is in fact preferred thermodynamically only at
very high densities (above 84%). On the other hand, insofar as structural complexity
increases a system’s entropy, structurally complex arrangements of hard particles may
be thermodynamically preferred over simpler ones.

Indeed, we have shown that the structural features of the quasicrystal and the
approximant allow for more complex dynamics than the dimer crystal at moderate
and high densities as manifested in the behavior of the free volume as a function
of packing density and the collective motions in the form of PD rotations. The
existence of the PD network facilitates collective particle motions at low densities.
Although rearrangements become vanishingly unlikely at higher densities, they appear
to contribute additional entropy to the system and stabilize it over the dimer crystal,
in which each particle can only ‘rattle’ independently in its own cage. Rearrangements

are impossible in the dimer crystal because no rearrangeable network exists there.
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The superior stability of the quasicrystal and its approximant relative to the dimer
crystal may also be attributed to the presence of almost-perfect face-to-face contacts
between tetrahedra. There is a natural tendency for hard polyhedra to optimize
face-to-face contacts at high densities in order to maximize configurational entropy.
For instance, there are uncountably infinite cubic arrangements of hard cubes with
packing fraction one, but among them the simple cubic lattice, where all cubes are
perfectly face-to-face, has the highest entropy and is thermodynamically stable [128].

Within the approximant, we observe that face-to-face contacts between neigh-
boring tetrahedra are nearly perfect in the sense that the touching faces are not
significantly shifted with respect to one another. This is not true in the dimer crystal
where inter-dimer face-to-face contacts are shifted and therefore not close to being
perfect. Abundance of strong face-to-face contacts makes the PD network more rear-
rangeable and collective motions of particles more feasible, which in turn leads to a
higher entropy and superior stability.

We summarize our findings in a schematic phase diagram in Fig. 6.11. We note
that hard tetrahedra are one of the few examples of hard particles with two distinct
solid phases not mutually related by symmetry breaking. Our results show that
entropic effects alone are sufficient for inducing highly nontrivial solid-solid phase
transitions.

Not all phase transformations are accessible in simulations on finite time scales.
The observation that simulations only form the quasicrystal but never the approx-
imant suggests that the quasicrystal is kinetically more easily accessible than the
approximant— independent of whether it is thermodynamically preferred or not. This
can be attributed to the fact that the transformation of a dodecagonal quasicrystal to
one of its approximants proceeds through a process called zipper motion [216], which
is extremely slow even in experiment [211]. Furthermore, transformation to the dimer
crystal at packing densities greater than 84% is not observable in simulations, and
may be unobservable in experiments, due to the extremely slow kinetics at such high
densities.

In conclusion, we have shown that the quasicrystal and its approximant are ther-
modynamically favored over the dimer crystal at all experimentally realizable packing
densities. We also observe a very rich dynamical behavior in the quasicrystal and its
approximant induced by rotations of pentagonal dipyramids within an interconnected
network. We have shown the significance of collective motions in stabilizing the ap-

proximant for a wide range of packing densities.
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Schematic phase diagram of hard tetrahedra summarizing our
findings. In thermodynamic equilibrium the Dimer III crystal and the
approximant are stable (Middle panel). In compression simulations the
approximant is never observed, and only the quasicrystal forms. If crys-
tallization is suppressed, then a jammed packing with local tetrahedral
order forms [18, 231] (Lower panel). The transformation of the approx-
imant or quasicrystal directly to and from the Dimer III crystal is not
observed in simulation. Instead, during expansion the Dimer III crystal
transforms into the Dimer II crystal, and then the Dimer I phase prior
to melting to the fluid (Upper Panel). (Images reproduced from [182])
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CHAPTER VII

Hard Triangular Bipyramids!'

In the densest known packing of regular tetrahedra, particles are paired into per-
fect triangular bipyramids. Despite being the densest— and hence the thermodynam-
ically stable phase in the limit of infinite pressure—, this structure does not form in
simulation. As explained in Chapter VI, quasicrystal-like phases are more efficient in
opening up rattling space for individual particles when expanded. This can be partly
attributed to the collective motions of tetrahedra in the quasicrystal and its approx-
imants helping the system explore more configurations than it would have otherwise
accessed. In a system of hard triangular bipyramids— i.e. dimers of hard tetrahedra—
the dynamics will be far more restricted due to rigid connections between tetrahe-
dra that are part of a single dimer. It is therefore reasonable to expect that the
quasicrystal-like phases be destabilized in that system, maybe to the extent that the
dense dimer crystal could become thermodynamically superior over them at interme-
diate densities as well. The dimer crystal will not be as adversely affected due to the
natural pairing of tetrahedra into dimers in the tetrahedron-based dimer crystal.

Motivated by this consideration, we studied the system of hard triangular bipyra-
mids (TBPs) using Monte Carlo simulation. To our surprise, the system still forms
a dodecagonal quasicrystal, which is identical to the quasicrystal formed by hard
tetrahedra in the monomer level. However it is characterized by an additional level
of randomness in the way individual tetrahedra are paired into TBPs on the network
of nearest neighbors. This pairing degeneracy leads to a nondeterministic decoration
of individual tiles, something that is observed for the first time for any quasicrystal.
Similar pairing degeneracy is observed in degenerate crystals formed by hard sphere

dimers. We therefore call this new phase a degenerate quasicrystal.

!This chapter is partly based on the following manuscript: Amir Haji-Akbari, Michael Engel,
Sharon C. Glotzer, Phys. Rev. Lett. 107: 215702 (2011) [21].
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This chapter is organized as follows. In Section 7.1, we mention the technical
specifications of the simulations performed in this study. Section 7.2 is dedicated
to the notion of degenerate phases. In Section 7.3, we report the formation of the
degenerate quasicrystal. In Section 7.4 different approximant phases are discussed.
The thermodynamic stability of different phases are discussed in Section 7.5. A brief
study of truncated TBP system is given in Section 7.6. And concluding remarks are

given in Section 7.7.

7.1 Technical Specifications of Performed Simulations

Isochoric and isobaric Monte Carlo simulations are used for self-assembly simula-
tions, while the isobaric Monte Carlo is used in calculating the equations of state of
different phases. For crystalline phases, the isotension MC is used wherein the shape
of the simulation box is also altered. Free energies of different phases are calculated
using the Frenkel-Ladd-based method described in Section 3.3.4. Table 7.1 gives the
technical specifications of all simulations performed in this study. The vertices of a
prototypical triangular bipyramid that corresponds to the quaternion q = (1,0,0,0)

are given by:

3
6
V34 = <_\/?—7:t\/§7 0)

21/6
Vs = (T\/_7070>

The dimensionless pressure is defined as P* = Po®/kgT with o being the edge length

43
Via = <0,0,ii>

of a single TBP. All simulations are carried out in boxes with periodic boundary

conditions.

7.2 Degenerate Phases

Hard disks and spheres order into hexagonal and face-centered cubic crystals,
respectively, above a certain packing fraction. A more complex phase behavior is
observed if the disks or spheres are rigidly bonded into dimers (dumbbells) [16, 184,
233, 234]. A solid phase, disordered in the orientation of dimers while ordered on the
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Figure 7.1:
& Degenerate crystals of hard sphere dimers. The structure is a

hexagonal lattice in the monomer level, but the orientations of dimers on
the lattice is random. (Images reproduced from [232])

monomer level, forms if the distance between monomers within a dimer is roughly the
diameter of a monomer (Fig. 7.1). This equilibrium solid phase can be alternatively
understood as a random pairing of neighboring monomers within the native monomer
crystal. The resulting thermodynamic ensemble of ground states is degenerate and
the structure is therefore called a degenerate crystal. As shown by Wojciechowski
et al. [16] for hard disks, every configuration of the degenerate crystal that is ob-
tained from a certain pairing pattern has less entropy than a regular arrangement of
dimers, but the degenerate crystal is stabilized due to the entropy associated with
different ways of pairing hard spheres into dimers. Other consequences of the pairing
of monomers into dimers include topological defects [235], a restricted, glassy dis-
location motion [236, 237], and unusual elastic properties [238]. Similar degenerate
phases have also been observed for freely-joined chains of hard spheres [239, 240].
Although degenerate crystals can potentially assemble from dimers of hard shapes
other than disks and spheres, few examples have been reported. One reason is the
competition between degenerate crystals and the liquid crystalline phases frequently
observed for particles with large aspect ratios. For example, elongated tetragonal
parallelepipeds, which for an aspect ratio of 2:1 can be viewed as dimers of face-sharing
cubes, form a degenerate parquet phase at intermediate densities before transforming
into a smectic liquid crystal that eventually crystallizes [17]. In the parquet phase,
the centers of monomers form a simple cubic lattice, but their pairing into dimers is

random.
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Figure 7.2:

Phases formed by (a) triangular bipyramids (TBPs): (b) TBP
crystal, (c) degenerate quasicrystal, (d) regular quasicrystal approximant,
(e) degenerate quasicrystal approximant. For visualization purposes, we
show member tetrahedra of most TBPs at 30% actual size and connect
their centers with bonds. In (c-e), tetrahedra and bonds are colored

according to their orientation projected on the plane. (Images reproduced
from [21])
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7.2.1 Feasibility of Degenerate Phases in the Hard Triangular Bipyramid
System

Another simple dimer is the triangular bipyramid (TBP), which consists of two
face-sharing, regular tetrahedra (Fig. 7.2a). The TBP is the simplest face-transitive
bipyramid and the twelfth of the 92 Johnson solids? [241]. The lack of inversion
symmetry of the TBP, however, makes lattice packings non-optimal [29], and thus it
is potentially more interesting as a dimer than dimers of spheres and cubes. Moreover,
the recent synthesis of TBP-shaped nanoparticles and colloids [85, 87-89] makes the
investigation of this building block of practical relevance.

In both of the known ordered phases of hard, regular tetrahedra, each tetrahe-
dron is in almost-perfect face-to-face contact with at least one other tetrahedron. The
densest known packing of tetrahedra (¢ = 739 ~ 85.63%) i.e. the dimer crystal is
a parallel arrangement of two dimers (four tetrahedra) — that is, two TBPs — in a
triclinic unit cell. We refer to this phase in the present chapter as the TBP crystal
(Fig. 7.2b). At lower packing fractions, hard tetrahedra assemble into a dodecagonal
quasicrystal [18], in which the tetrahedra form a decorated square-triangle tiling [216].
Degenerate phases are impossible in the TBP crystal because the contacts between
neighboring tetrahedra in different TBPs are highly imperfect [182], but are possi-
ble in the quasicrystal due to the almost perfect face-to-face contacts between all

neighboring tetrahedra.

7.3 Degenerate Quasicrystal

The dodecagonal quasicrystal of TBPs forms spontaneously from the equilibrium
fluid phase at packing fractions above 54%. Fig. 7.3a depicts a side view of the
quasicrystal formed in an isobaric simulation of 2,624 TBPs at reduced pressure
P* = Po3/kgT = 46 and subsequently compressed to a packing fraction of 81.34%.
TBPs arrange into layers (white lines), which stack on top of each other perpendicular
to the twelvefold symmetry axis (dark arrow). We confirmed that the formation of
the quasicrystal occurs reproducibly in systems with at least a few thousand particles
and does not depend on the shape of the simulation box. It even forms in the boxes
commensurate to the unit cell of a TBP crystal.

The quasicrystal structure can be best understood by replacing each bipyramid

2 A Johnson solid is a convex polyhedron whose faces are all regular polygons, but is not a Platonic
or Archimedean, prism or antiprism. They are called Johnson solids in the honor of Norman W.
Johnson who enumerated them and showed that there are only 92 polyhedra with this property [241].

124



Figure 7.3:

12-fold axis

Degenerate quasicrystal of hard TBPs: (a) TBPs assemble into a
dodecagonal quasicrystal in isobaric and isochoric Monte Carlo simula-
tions. (b) The square-triangle tiling obtained by connecting the centers
of twelvefold rings of member tetrahedra. Intra- and inter-TBP bonds are
depicted in black and gray respectively. (d,e) Diffraction patterns with
centers of member tetrahedra as scatterers calculated (c) perpendicular
to and (d) across the layers. (e) Intra-TBP and (f) total bond order
diagrams. (Images reproduced from [21])
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by its two member tetrahedra. Fig. 7.3b depicts the centroids of tetrahedra within
a few layers of Fig. 7.3a. Neighboring tetrahedra are connected with bonds. Two
tetrahedra are defined as neighbors if their distance lies within the first peak of g;(r),
the radial distribution function based on the centroids of the tetrahedra. Dodecagons
that are depicted in purple in Fig. 7.3b correspond to rings of twelve member tetra-
hedra (Fig. 5.11b), a structural motif characteristic of the tetrahedron-based qua-
sicrystal [18]. These rings are further capped with pentagonal dipyramids (PDs),
five tetrahedra sharing an edge (Fig. 5.1a), visible in the figure as pentagons (green)
within dodecagons. Additional member tetrahedra, referred to as interstitials, fill the
space between the rings and are depicted in dark blue. Together, dodecagons and
PDs form motifs whose centers are the vertices of square and triangle tiles. Their
mixing gives the square-triangle tiling its overall twelvefold symmetry as observed in
the diffraction pattern depicted in Fig. 7.3c. Layering along the twelvefold axis can
be seen in Fig. 7.3d. Overall, the arrangement of the member tetrahedra is identical
to that reported in the hard tetrahedron system [18].

In order to prove that the self-assembled structure is indeed quasiperiodic and
not a periodic arrangement of the six fold supercluster shown in Fig. 7.3b, we carry
out self-assembly simulations in larger systems. Fig. 7.4 shows the tiling for the
quasicrystal that we assembled in an NVT simulation of 8,000 hard TBPs—1i.e. 16,000
tetrahedra— at ¢ = 54%. The tiling is different from what is observed in the smaller
system and is in line with what is observed in large systems of hard tetrahedra. For
instance, it contains a few rhombi that are the defects of the quasicrystal formation
and are routinely observed in dodecagonal quasicrystals formed in experiments or
simulations.

To elucidate how the bipyramids are arranged within the quasicrystal, we compare
statistical distributions of intra-TBP bonds (bonds that connect member tetrahedra
within TBPs) and the set of all bonds in the quasicrystal by projecting both sets onto

the surface of a unit sphere?

. The resulting diagrams are referred to as intra-TBP
and total bond order diagrams, respectively, and are visualized using the Mollweide
projection with the twelvefold axis pointing in the vertical direction. Comparing these
bond order diagrams (Fig. 7.3e and Fig. 7.3f), we observe no significance difference
in the distribution of bond directions within the twelvefold layers. This suggests that
pairing of tetrahedra in the quasicrystal does not follow a predefined set of rules

and is instead random. However tetrahedra tend to pair more strongly within layers

3All bond order diagrams presented in this chapter are prepared using a Molleweide projection,
which maps the surface of S? onto a plane.
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Simulation snapshot of the elongated hexagonally close-packed structure formed in an isochoric simulation of $2,\protect \kern -.1667em\relax 048$ tTBP ($t=0.7$) at $\phi =61%$.

Figure 7.4:
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Tiling obtained for a slab of the degenerate quasicrystal formed
in an NVT simulation of 8,000 particles at ¢ = 54%. Like Fig. 7.3b,
the centers of member tetrahedra are depicted and they are colored
according to their environment: twelvefold ring (purple), capping PDs
(green) and interstitials (blue). Compared to the quasicrystal shown in
Fig. 7.3b, the assembled quasicrystal has more defects and is yet to fully
crystallize in the layers above and below the ones shown in the figure.
This explains the abundance of rhombs and zippers that have shown to be
important in the process of crystallization. (Images reproduced from [21])
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than between neighboring layers, a fact that can be explained by noting that face-
to-face contacts are more perfect within layers. Motivated by studies of hard sphere
dimers [16], we refer to the TBP quasicrystal as a degenerate quasicrystal (DQC).
The randomness can be seen clearly in Fig. 7.2c. The notion of degeneracy discussed
here should not be confused with the extensively studied degeneracy associated with
random tiling quasicrystals [242, 243] where tiles with unique decoration patterns mix
to form random tilings. We instead report a new type of randomness in the level of
decorating individual tiles, in addition to the degeneracy of the random tiling.

It is surprising that the structural quality of the DQC is not compromised despite
the additional geometrical constraints imposed on the system by pairing tetrahedra
into TBPs. For instance, we find that the maximum packing fraction achieved by
replacing the bipyramids with individual member tetrahedra and then compressing
is statistically identical to that obtained in simulations of hard tetrahedra.

The thermodynamics of hard TBP fluid is also very similar to its hard tetrahedron
counterpart. The simple fluid gradually transforms into a complex fluid prior to
crystallization. A kink is observed at P* = 46 in the equation of state of the fluid
(Fig. 7.5a), and so is an increase in the fraction of particles that are part of a PD or an
icosahedron (Fig. 7.5b). Fig. 7.6 shows g;(r), the radial distribution function based on
centers of tetrahedra, for different densities. In order to show the structural changes
in the fluid more clearly, we do not show the trivial Dirac peak at r = 0/v/6 =~ 0.410
which corresponds to intra-TBP bonds. There is a change in structure between
50% < ¢ < 56% wherein the second peak disappears and then reappears splitting
into two peaks, the same behavior observed in the hard tetrahedron fluid (Fig. 5.8a).
As in the hard tetrahedron system, the locations of the first three peaks in g;(r)
correspond to characteristic distances in a PD network. It is noteworthy that this
PD network exists in both the disordered fluid and the quasicrystal in both these

systems.

7.4 Quasicrystal Approximants

Due to the additional level of randomness in pairing tetrahedra into TBPs, con-
structing an approximant of the TBP quasicrystal involves not only choosing a pe-
riodic tiling and decorating it with tetrahedra, but also pairing the tetrahedra into
bipyramids. We choose the (3.4.32.4) Archimedean tiling which, in the case of hard
tetrahedra, gives rise to the densest approximant (Fig. 5.14). There is no unique way

of pairing tetrahedra into TBPs even within a single unit cell of the approximant due
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Figure 7.5:

Thermodynamics of the hard TBP fluid. (a) Equation of state, (b)
Fractions of constituent tetrahedra in PDs and icosahedra calculated in
isobaric simulations of a system of 2,624 particles.
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Figure 7.6:

Radial distribution function of the hard TBP fluid. ¢(r), the
radial distribution function based on centers of tetrahedra, calculated in
isobaric simulations of N = 2,624 TBPs in a cubic box. the trivial Dirac
peak at r/o = 1/+/6 is removed for clarity.
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to degeneracies associated with rotations of the capping PDs. In particular, it is not
possible to avoid breaking the fourfold symmetry of the approximant unit cell in the
pairing process. We constructed a reqular approximant by retaining as much of the
symmetry as possible. Top and bottom views of the constructed approximant are

depicted in Figs. 7.7a,b. There are six types of particles in the structure:

e Intra-PD Particles: Member tetrahedra are both part of one of the four PDs
that cap twelvefold rings. There are eight such pairs in the unit cell and are all

depicted in light green.

e PD-ring Particles: They connect a capping PD to a dodecagonal ring. There

are four such pairs in the unit cell, and they are depicted in dark green.

e Intra-ring Particles: The tetrahedra that are paired are part of the same
twelvefold ring. There are twelve such pairs in the unit cell, that are shown in

purple.

e Inter-ring Particles: They connect tetrahedra within neighboring rings. There

are five such pairs in the system and are depicted in red.

e Ring-Interstitial Particles: They connect twelvefold rings to one of the in-

terstitial tetrahedra. There are ten such pairs in the system colored in cyan.

e Interstitial-Interstitial Particles: The connect the two central tetrahedra
in the center of the two square tiles to one of its neighbors. Obviously there are

only two such pairs in the unit cell that are colored in blue.

A schematic of the unit cell is shown in Fig. 7.7c where the ring-ring and ring-
interstitial connections are highlighted in red and blue respectively. We find that the
regular approximant can be compressed to a maximum packing fraction of 83.39%
(Appendix C.3.1), a bit less than the maximum packing fraction of 85.03% achieved
for the quasicrystal approximant constructed of individual tetrahedra [18]. Com-
pressing a 2 X 2 x 2 unit cell of the approximant marginally improves the packing
t0 Pmax = 83.43%. The distinctive difference between the intra-TBP (Fig. 7.7d) and
the total bond order diagrams (Fig. 7.7e) is a result of this deterministic pairing
(Fig. 7.2d).

By expanding the regular approximant, we find that it melts at P* < 35 and pack-
ing fractions ¢ < 54%. But before melting, the crystal slowly transforms into a more

loosely packed structure in which tetrahedra are paired at random into TBPs, just as
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Figure 7.7:

Quasicrystal approximants: (a) Top and (b) bottom views of the reg-
ular approximant. The unit cell has 41 triangular bipyramids. Particles
are colored according to their environment: PD-PD (light green), PD-ring
(dark green), intra-ring (purple), ring-ring (red), ring-interstitial (blue),
interstitial-interstitial (cyan). (c) Schematics of the unit cell with connec-
tions between neighboring rings and between rings and central interstitials
shown with red and blue double-arrows, respectively. (d,f) Intra-TBP
and (e,g) total bond order diagrams for (d,e) the regular approximant
and (f,g) the degenerate approximant. In the legends, ‘int.” stands for
‘interstitial’. (Images reproduced from [21])

132



in the DQC, although their positions and orientations are unchanged (Fig. 7.2e). The
resulting structure is therefore degenerate to the tetrahedron-based approximant and
we refer to it as a degenerate approzimant (DA). The angular distribution of intra-
TBP bonds around the fourfold axis (Fig. 7.7f) is more similar to that of all bonds
(Fig. 7.7g) in the degenerate approximant than in the case of the regular approximant
(Figs. 7.7d,e), which again suggests random pairing. We find that the transforma-
tion from regular to degenerate approximant is irreversible on the time scale of our
simulations (& 108 MC cycles). Since the DA can only be recompressed to a density
of 82.88%, which is lower than the maximum density of the regular approximant,
the DA has to be stabilized by its pairing disorder close to melting. We refer to the
entropy associated with random pairing on a network as the pairing entropy.

To understand how the regular approximant transforms into the DA, we note
(Fig. 7.3b) that the arrangement of the member tetrahedra can be alternatively un-
derstood as a spanning network of interpenetrating PDs [18]. In the hard tetrahedron
system, PDs can easily rotate around their principal axes [182]. Such rotations are
also essential in understanding the local rearrangements of bipyramids at densities
below 60%. As shown in Fig. 7.8b, TBPs move very little at ¢ = 60%. Even af-
ter 250 million MC cycles only a small fraction of TBPs have moved as much as o.
Much faster dynamics occurs at ¢ = 57%. Particles at or near that density move
over discrete distances that are characteristic of a PD network (Fig. 7.8a). These
rearrangements change neither the tiling nor its decoration. Instead, they reshuffie
the pairing pattern by a sequence of PD rotations. After a sufficiently large number

of reshuffling moves the DA emerges from the regular approximant.

7.5 Thermodynamics

Next we study the relative thermodynamic stability of various phases. We first
compare the DQC obtained in simulation and its constructed approximants. As ob-
served in Fig. 7.10a, both the regular and the degenerate approximant are slightly
denser than the DQC at all pressures. The relation G(Py) — G(P;) fli:é‘ ¢~ rdP*
between the free energy and the equation of state then suggests that the approxi-
mants are thermodynamically preferred over the DQC at sufficiently high pressures
because their Gibbs free energies increase more slowly with pressure. Furthermore,
the approximants melt at lower pressures than the quasicrystal, which indicates that
they might even be more stable than the quasicrystal at all pressures. Nevertheless,

the DQC remains the only ordered phase that forms in our simulations. It is also
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Dynamics of the hard TBP system. The self part of the van Hove
correlation function G4(r,t) measures the particle motion in the approxi-
mant. The separation distance r(t) is calculated between centers of mass
of member tetrahedra. (a) Large rearrangements occur at ¢ = 57%. (b)
There is little motion present at ¢ = 60%. The observed dynamics is
similar to that observed in the hard tetrahedron system [182]. (Images
reproduced from [21])
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the only structure we expect to be observed in experiments of hard nanocolloidal
TBPs since the kinetic process of transforming from the DQC into the approximant
is extremely slow. Considering the local structural similarity of the DQC and the
fluid in terms of the PD network, the formation of the less stable DQC and not the
approximant in simulation may be another example of Ostwald’s rule [244].

The problem of comparing the relative thermodynamic stability of the regular
approximant and the degenerate approximant is however less conclusive. What we
know for certain is that the regular approximant will be more stable in the limit of
infinite pressure thanks to its higher packing fraction while the degenerate approxi-
mant is more stable at pressures close to melting since it spontaneously emerges in
simulations of the regular approximant. This transition is irreversible so its location
cannot be exactly determined from conventional simulations. Instead, the pairing
entropy must be determined and used, alongside thermodynamic integration of each
phase, to determine the pressure at which the degenerate approximant becomes less
stable. In principle, the number of different ways that a nearest-neighbor graph can
be partitioned into dimers can be determined from Wang-Landau type simulations,
but determining the pairing entropy is more tricky since different degenerate approx-
imants that can be obtained from different coverings of the network do not have
identical densities; each of them therefore has a different vibrational entropy. In
short, this question cannot be addressed with the tools that we currently have, and
can be the subject of future research.

Next we calculate the equation of state of the analytically constructed TBP crystal
using isotension Monte Carlo simulation (Fig. 7.9). The TBP crystal melts at P* =
32 which is lower than the melting pressure for the quasicrystal P* = 36 and the
approximant P* = 35. This is in contrast with the hard tetrahedron system where the
dimer crystal melts at higher pressures than the quasicrystal and its approximants.
We also monitor the equation of state carefully and observe the same anomalous
behavior explained in Section 6.2. A peak is observed in the compressibility curve at
P* ~ 60, which is indicative of a second-order transition (Fig. 7.9b). This is further
confirmed by re-compressing the TBP crystal relaxed right before melting to observe
that there is no hysteresis in the equation of state(Fig. 7.9a). As we did for the dimer
crystal in the hard tetrahedron system, we sort the box dimensions and box angles at
each snapshot, and average these sorted values (Fig. 7.9c—d). This reveals that the
transition at P* = 60 is a displacive transition from a high-density monoclinic phase
to a low-density rhombohedral phase. This analysis also reveals another displacive

transition at P* ~ 150 from the monoclinic phase to a triclinic phase. Inspired by

135



our notations in Chapter VI, we denote these three phases as T-I, T-1I and T-III
respectively.

Next, we compare the approximant with the TBP crystal by calculating the free
energy difference between them. As shown in Fig. 7.10b, the approximant has a
lower free energy than the TBP crystal for packing fractions below 79%. A phase
transition occurs at P = 356 & 50, corresponding to coexistence packing fractions
of ¢eapp = (79.7£0.8)% and ¢.rp = (80.7 £ 0.7)%. The thermodynamic stability
of the approximant at lower densities can be attributed to the additional configura-
tional entropy associated with collective motions of particles. Such motions are not
present in the TBP crystal. Their role in stabilizing the quasicrystal approximant has
been shown for the structurally and dynamically similar system of hard tetrahedra
(Section 6.5.1). The phase diagram of the hard TBP system is depicted in Fig. 7.10c.

It is necessary to mention that the dotted curves in Fig. 7.10b are the free energy
differences calculated using the regular and the degenerate approximant in Frenkel-
Ladd-type thermodynamic integration, and the solid curve is their average. We do
this simply because we are not aware of the precise pressure at which the degenerate
approximant becomes unstable. It is noteworthy that the lower dotted curve is only
obtained for one instance of the degenerate approximant, and no pairing entropy is
included in its calculation. Including the pairing entropy will stabilize the degenerate
approximant with respect to the TBP crystal, and will shift the dotted curve to the
right. This approach therefore gives us very conservative error-bars for the transition
pressure and coexistence densities. In the case of a disordered fluid however, this
approach cannot be used since inclusion of the pairing entropy will shift the error-bars
in the wrong direction. We therefore do no free energy calculation for determining
the melting pressure- as we did in Chapter VI and the reported coexistence densities

are from melting simulations only.

7.6 Hard Truncated Triangular Bipyramids*

Motivated by a recent study of hard truncated tetrahedra by Damasceno et al. [19],
we study the self-assembly and dense packings of hard truncated triangular bipyra-
mids especially to explore the possibility of new non-quasicrystalline phases that are
degenerate to their corresponding truncated tetrahedra counterparts. We also want
to know how robust the quasicrystal is to the truncation of the building blocks. Below

we present the technical specifications of our simulations as well as our preliminary

4The content of this section is based on a manuscript that is under preparation.
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Figure 7.9:

Thermodynamics of the TBP crystal. (a) Equation of state ob-
tained by expanding the analytically constructed dense crystal, and re-
compressing the low-density crystal after proper relaxation. Compress-
ibility (b), sorted box angles (¢) and dimensions (d) vs. pressure.
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Thermodynamics and the phase diagram of the hard TBP sys-
tem. (a) Equation of state for the TBP crystal, the degenerate qua-
sicrystal, the regular and the degenerate approximants. (b) The free
energy difference between the TBP crystal and the approximant. (c)
Equilibrium phases of hard TBPs. (Images reproduced from [21])
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Figure 7.11: Truncated triangular bipyramids for different values of t.

results.
Let P be a perfect (non-truncated) triangular bipyramid centered at the origin

and having the vertices:

vi= (.00 (7.1a)

1 1
Vo3 = <_ﬁ7 :l:i’ 0) (71b)
Va5 = (0, 0, :l:@> (71C)

A truncated TBP with the truncation ¢ is then defined as the convex hull of {sz}f =1

with w;;’s given by:

wii(t) = v+ %(Vj - Vi>t (7.2)

with 1 <4,j < 5. The volume of this truncated TBP (tTBP) is given by:

Vi) =V, {1—3—t3} (7.3)

8
where V, = V/2/6 is the volume of a perfect non-truncated TBP. Fig. 7.11 depicts
truncated TBPs for different values of ¢.
In this study, we carry out two types of simulations. The densest packings of

hard tTBPs are obtained from isotension simulations of small unit cells i.e. boxes
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Figure 7.12: )
®max(t) vs. t for dense packings of truncated TBPs. The symbols

are the maximum packing densities obtained from Monte Carlo simu-
lations while the curves are calculated from the analytical expressions
given in Appendix E.

with as many as four particles. Each of these simulations start at a very low pressure
of P* = PV(t)/kgT = 1. The external pressure is then exponentially increased
to P* = 10”. Up to a hundred replica are performed for each truncation and the
densest packing is recorded. Self-assembly simulations are however all performed in
the isochoric ensemble for systems of N = 2,048 particles quickly compressed to a

packing fraction of 70%. These simulations are performed at ¢ = 55 — 69%.

7.6.1 Dense Packings

We perform isotension compressions of small unit cells for 0 < ¢ < 1 and observe
that ¢max(t) changes continuously with ¢, however there are six kinks in the ¢pax (%)
vs. t curve that separate eight distinct families of packings (Fig. 7.12). All these
packings have @p.,’'s that exceed 84%, which shows that truncated TBPs are efficient
packers. In particular, the tTBP corresponding to ¢t = % is a space-filling polyhedron,
previously indexed as 14-I11 by Goldberg [245].

Six of these eight packings have two particles per unit cell, and can be constructed

using the analytical formulae given in Appendix E°. Each is comprised of alternate lay-

5These analytical formulae are calculated by Dr. Elizabeth R. Chen, using the approach given
in [31].
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ers of particles that are related to one another by inversion. These packings however
differ on the types of contacts between neighboring particles. For small truncations
(0 <t < 0.25), the packing is structurally similar to the TBP crystal (Fig. 7.2b),
slightly sheared to optimize the packing of slightly truncated TBPs. In this packing
the triangular tips of tTBPs are not adjacent to one other, instead they touch the
hexagonal faces of the particles in the alternate layer (Fig. 7.13b). In the next two
families of packings, that are observed for 0.25 <t < % and % <t < 0.51 respectively,
triangular tips of particles in opposite layers touch each other, creating a star-like
pattern (Fig. 7.13d), while in the two families of packings observed for 0.59 <t < %
and % <t <0.95, the triangular tips of particles in identical layer touch one another
(Fig. 7.13f). For truncations beyond 0.95, a structure is observed wherein the identi-
cal layers do not touch one another at all, and triangular tips of particles touch the
associated tips on the alternate layers (Fig. 7.13h).

The two families of densest packing for 0.52 < t < 0.58 are however completely
different (Fig. 7.14b), and have four particles in the unit cell. The basic building
element of the packing is a dimer of two tTBPs with inverted orientations, and par-
tially sharing a hexagonal face (Fig. 7.14a). Each unit cell contains two such dimers,
rotated with respect to one another. No analytical expression could be obtained for
these packings although intersection equations can be solved numerically for arbitrary

precision. The numerically-compressed dense packings are given in C.4.

7.6.2 A Space-filling Packing of Truncated TBPs for ¢ = %

The unit cell of the space-filling packing shown in Fig. 7.13e is spanned by the

following vectors:

(7.4a)

by — ( %0) (7.4D)

by = (0, 0, %6) (7.4¢)

The corresponding particles are related to one another by inversion symmetry. The
particle Z, is obtained from truncating the TBP described by Eq. (7.1) and Z_ is
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Figure 7.13:

w
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d‘ f. h

Dense packings of tTBPs with two particles per unit cell. Dens-
est packings of truncated TBPs for (a) t = 1/10, (b) t =1/3, (¢c) t = 2/3
and (d) ¢t = 1. All these packings have two particles per unit cell. For
t = 1/10, the triangular tips of tTBPs touch the hexagonal faces of the
particles in the alternate layer. For ¢ = 1/3 however, triangular tips
of particles in alternate layers kiss one another to create star-like pat-
tens (d). The tTBP with ¢ = 2/3 is a space-filling polyhedron. In this
packing, tips of particles in identical layers touch one another (f). For
t = 1 however, layers with identical orientations do not touch at all, and
triangular tips partially match the corresponding tips in the alternate

layer (h).
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Figure 7.14:

The only dense packing of tTBPs with four particles in the unit
cell. (a) A dimer of tTBPs with ¢t = 0.55, which is the basic building
blocks in the densest packing given in (b). The blue and green tTBPs
belong to the same dimer while the red and yellow particles belong to
the other dimer in the unit cell.
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Table 7.2:
abie The properties of the Degenerate Quasicrystal of hard truncated

TBPs. ¢, corresponds to the smallest packing fraction at which the
quasicrystal forms from the disordered fluid, ¢, corresponds to the max-
imum packing fraction obtained from fast compression of the quasicrystal.
(Reproduced from [21])

Truncation ¢nin  MC Cycles  ¢nax

0.1 57% 4 x 107 81.21%
0.2 57% 6 x 107 80.93%
0.3 58% 9 x 107 79.74%

0.4 60% 15 x 107  81.31%

obtained by truncating its inverse. The positions of Z, and Z_ are given by:

As far as the centers of individual particles is concerned, this packing can be described

as an elongated hexagonally close-packed structure.

7.6.3 Self-Assembly Simulations

The hard tTBP system assembles far fewer ordered structures than the hard
truncated tetrahedron system. In particular we observe no ordering for 0.4 < ¢ < 0.7
and t > 0.8. The two ordered phase that form in our self-assembly simulations are
the degenerate quasicrystal formed for small truncations (¢t < 0.4) and the elongated
hep packing for 0.7 < t < 0.8. Except for the degenerate quasicrystal, we do not
observe any other ordered phase that is degenerate to the phases formed in the hard
truncated tetrahedron system.

Table. 7.2 shows the minimum density and the number of MC cycles needed to
form the quasicrystal . As expected, it is far more difficult for the truncated system
to form the degenerate quasicrystal than the perfect hard TBP system, and high
densities and longer simulation times are needed. Looking at diffraction patterns
(Fig. 7.15) and ¢max’s obtained from fast compressions (Table. 7.2) reveals that the
degenerate quasicrystal is of very superb structural quality.

The other ordered phase assembles for ¢t = 0.7 and ¢t = 0.8 at packing fractions
beyond 61%. It is structurally similar to the space-filling packing shown in Fig. 7.13d-

e, and is not degenerate. Fig. 7.16a shows a snapshot of an NVT simulation of
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Figure 7.15:

Diffraction images of the degenerate quasicrystals of hard
tTBPs: (a) t = 0.1, (b) t = 0.2, (¢) t = 0.3 and (d) ¢ = 0.4. Scat-
ters are placed at the centers of constituent truncated tetrahedra within
each tTBP.

2,048 truncated TBPs (t = 0.7) performed at ¢ = 61%, the layers with alternate
orientations are shown with yellow and cyan lines respectively. The diffraction image
calculated from above the layers, reveals sixfold symmetry which is consistent with

hexagonal arrangement of particles in each layer.

7.7 Conclusion

Remarkably, hard TBPs not only prefer a complex quasicrystal over the simpler
TBP crystal at intermediate packing fractions, but also form it on timescales compa-
rable to that previously observed in the hard tetrahedron system. This is surprising
because, in comparison to tetrahedra, the motion of the highly anisotropic bipyramids
is considerably more constrained. Nevertheless, the degeneracy of the quasicrystal
helps it form easily in simulation. Random pairing allows TBPs to join existing seeds
of the DQC without forming configurations that are kinetically trapped due to incor-
rect pairing. Particle rearrangements needed for the formation and growth of the seed
are also feasible due to the local similarity of the fluid and the quasicrystal [18, 214].
Finally, the degeneracy and the existence of ring-ring and ring-interstitial ’cross-links
adds rigidity to the TBP structures. This means that the TBP system might be su-
perior over the tetrahedron system in terms of its mechanical properties, just as for
crystals of hard sphere dimers compared to crystals of their monomers [238].

Despite similarities to the hard tetrahedron system in the types and order of
equilibrium phases appearing in the phase diagram, the hard TBP system is different
in several ways: All ordered phases melt at higher packing fractions in the hard TBP
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Figure 7.16:

WL T T A
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-

Simulation snapshot of the elongated hexagonally close-packed
structure formed in an isochoric simulation of 2,048 tTBP (¢ =
0.7) at ¢ = 61%. Layers with alternate orientations are shown with
yellow and cyan lines respectively. (b) Diffraction image calculated from
above the layers.
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system. The sequence at which these phases melt upon expansion is also different.
Unlike the hard tetrahedron system where the TBP crystal melts earlier, the QC
and the approximant tend to melt at higher pressures in the hard TBP system. The
approximant is also stable within a narrower range of packing fractions. All these
differences can be attributed to reduced stability of ordered phases in the hard TBP
system due to a decrease in the degrees of freedom accessible to the system. As
expected, the stability of the quasicrystal and its approximants is more adversely
affected since tetrahedra are naturally paired into dimers in the dimer crystal in the
hard tetrahedron system and pairing them into TBPs does not have any significant
effect on the packing and the entropy of the system. But this destabilization is not
big enough to discourage the formation of the quasicrystal.

The behavior of the hard truncated TBP system is however completely differ-
ent from the corresponding hard truncated tetrahedron system both in terms of the
densest packings, and the structures that form in self-assembly simulations. It is also
noteworthy that the degenerate quasicrystal still forms for truncations up to ¢t = 0.4.

In conclusion we have shown that hard triangular bipyramids form a degener-
ate dodecagonal quasicrystal. Our finding is only the second quasicrystal formed
with hard particles, the first reported degenerate quasicrystal, and one of only a few
quasicrystals formed in nonatomistic systems. Our results suggest that degenerate
phases are not restricted to simple close-packed crystals and might be common in

dimer systems.
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CHAPTER VIII

Conclusion and Outlook

8.1 Summary of Key Findings

In this dissertation we studied the thermodynamics of hard tetrahedra and hard
triangular bipyramids— dimers of hard tetrahedra. Both these building blocks are
simple polyhedra, and have the same densest packing which is a simple crystal with
four (two) particles in the unit cell and ¢ = % ~ 85.63%. Yet, they exhibit a
nontrivial phase behavior by preferring complex quasiperiodic arrangements over this
densest packing at intermediate densities. This shows that shape and entropy alone
is sufficient for promoting complex phases and unusual phase behaviors.

The dodecagonal quasicrystal formed by hard tetrahedra is the first quasicrystal
observed in hard particle systems. It forms at ¢ &~ 50% and its basic structural motifs
are twelvefold rings capped with pentagonal dipyramids that sit at the vertices of a
planar tiling of square, triangles and rhombs. Additional interstitial tetrahedra fill the
voids at the centers of squares and triangles. The quasicrystal can also be understood
as a network of interpenetrating PDs, a fact that is quantitatively verified. We also
observe this network in the disordered fluid prior to crystallization, a finding that
suggests the possibility of a second transition from a simple fluid in which particles
move independently, to a complex fluid where particles move collectively within the
network.

The quasicrystal and its approximants pack very efficiently and can be compressed
to very high packing fractions. In particular, the (4.3%.4.3) approximant can be
compressed to ¢ = 85.03%, which was the world record at the time of its discovery,
and we believe that it is the most stable form of the quasicrystal-like phases observed
in our simulations. The disordered complex fluid is also relatively dense, and can
be packed to a packing fraction of ¢ = 78.56%, which to date is still the densest
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known disordered arrangement of tetrahedra. It also exceeds all dense packings of
tetrahedra— ordered or otherwise— reported prior to the start of this project.

Using free energy calculation, we show that the (3.4.32.4) approximant of the qua-
sicrystal formed in our simulations is thermodynamically more stable than the simple
dimer crystal for ¢ < 84%. The thermodynamic transition from the approximant
to the dimer crystal does not involve any symmetry breaking. This is in contrast to
most hard particle systems where the densest known packing can be obtained by a
series of symmetry-breaking first- and second-order transitions.

In order to understand why the approximant is stable for such a wide range
of densities, we performed free volume calculations, and observed that the mean-log
average free volume grows more quickly in the approximant than in the dimer crystal.
Furthermore, tetrahedra were observed to move collectively in both the quasicrystal
and the approximant. Such correlated motions occurred in the form of PD rotations at
moderately high densities and led to particle rearrangements, but were still present
at dense packings and manifested themselves in correlated vibrations of groups of
particles, including PDs.

The thermodynamic behavior of hard triangular bipyramids— dimers of tetrahedra—
is qualitatively similar. They also form the same quasicrystal—in the level of monomers
— and the quasicrystal approximant is still more stable than the dimer crystal at inter-
mediate packings. The way that tetrahedra are paired into dimers is however random,
which adds some randomness to the way any particular tile (e.g. square, triangle) can
be decorated with triangular bipyramids. We are the first to observe such degeneracy
in any quasicrystal, and therefore call the structure a degenerate quasicrystal. This
degeneracy should however not be confused with the well-known notion of degeneracy

associated with random tilings and phason flips.

8.2 Future Work

Like any other endeavor in science, the effort presented in this thesis poses more
questions than it manages to answer. In this section, we pose some of these impending

questions that might one day be addressed by future generations of scientists.

1. How does the quasicrystal form? The fluid and the quasicrystal have very
similar local configurations as particles are a part of a PD network in both
structures. It is conceivable that the formation of the quasicrystal can pro-

ceed through some subtle changes in the PD network. This speculation is in
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line with recent simulation studies of model systems revealing that a quasiperi-
odic nucleus grows by incorporating into itself kinetically trapped particles by
minimal rearrangements [214]. The exact mechanism is however unknown for
the quasicrystal formed by hard tetrahedra and can be determined by enhanced
sampling techniques such as transition path sampling [246] or forward flux sam-
pling [247].

2. How robust is the quasicrystal formation? Our initial reporting of the
quasicrystal was in a system of perfect monodisperse tetrahedra and TBPs.
However real experimental systems are not perfect. For instance colloidal tetra-
hedra might not be completely regular, they might also be polydisperse, or with
rough edges and faces. It is therefore of practical relevance to understand the
effect of these imperfections of the quasicrystal formation. We have studied
some imperfections e.g. polydispersity and truncation in this dissertation. The
remainder is being studied by another member of the Glotzer Group and will

be presented in a separate publication.

3. Physical properties of the quasicrystal: Quasicrystals have been shown to
exhibit distinct, and potentially interesting, mechanical [248], electrical and op-
tical properties [249]. It is therefore interesting to study the physical properties
of the quasicrystal formed by hard tetrahedra. Particularly, physical properties
of the degenerate quasicrystal can in principle deviate from those of the orig-
inal tetrahedron-based quasicrystal. Identifying those differences can help us

understand the practical importance of pairing degeneracy in dimer systems.

4. Estimation of pairing entropy in the degenerate quasicrystal: If dif-
ferent ways of pairing monomers into dimers have the same maximum packing
fraction, the problem of identifying the pairing entropy is essentially a combi-
natorics problem, which is easy to solve for square or triangular lattices. In the
case of a complex network such as a quasicrystal, this enumeration is less triv-
ial. Furthermore, since not all configurations corresponding to different pairings
have the same ¢, in the hard tetrahedron system. It is therefore interesting
to identify the types of networks for which an analytical- or an asymptotically
analytical— solution exists for the pairing entropy. Developing efficient numer-
ical techniques for calculating pairing entropy in nontrivial networks is also

useful.

5. Possibility of degenerate phases in other systems: As mentioned in Chap-
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ter VII, the notion of degeneracy might be more commonplace than originally
thought. It will therefore be interesting to study other systems of dimers of
soft and hard monomers to explore the possibility of a new class of degener-
ate phases. Such structures might, for instance, be optically identical to the
original monomer-based ordered structure, but yet mechanically stronger. It
will also be informative to study how various physical properties are affected

by introducing pairing degeneracy.
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APPENDIX A

Limiting Behavior of Jarzynski’s Equality for 7 — 0

and 7 — o0

A.1 Limiting Behavior of Jarzynski’s Equality for 7 — 0 and

T — OO

Let the Hamiltonian of the system evolve according to H(t) so that H(0) = Ho
and H(7) = H;. According to Jarzynski’s equality 3.17:

exp[~BAA] = (exp [-BW (D))o = <e><p 4 / L > (A1)

For a finite 7, Eq. A.1 takes the form:

AA=—p In{exp {8 [Hi (xV(7),p (7)) — Ho (xV(0),p(0))]}) (A.2)

If 7 — o0, the transformation will be so slow that the process will essentially be
reversible and the system will be in equilibrium for every finite t. The only difference
with thermodynamic integration will be the fact that here, all samples are taken from
system 0, but one should remember that the initial equilibrium configuration taken
from system 0 always remains in local equilibrium for 7 — oo and the equivalence
with thermodynamic integration is established.

For 7 — 0, the transformation is almost instantaneous, so the initial configuration

taken from system 1 does not have enough time to evolve, and thus x(V)(7) = x(©(0)
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and pY(7) = p©(0). This is exactly equivalent to Free Energy Perturbation (FEP)
methods performed using Eq. 3.12.
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APPENDIX B

Derivation Details of Theorems and Lemmas of
Chapter IV

B.1 Derivation Details of Tetrahedral SOC

We need to solve the following optimization problem:

maximize Z?,m:l &
subject to >0 _ &2, =4 1=1,2,3,4 (B.1)
S &m=0 1=1,234

The form of (B.1) suggests that we can solve it by breaking into four independent
problems of the form:

maximize >;_, 7

subject to S+, x; =0 (B.2)

4
Zizl I? = %

We solve this problem by enumerating all solutions of Karush-Kuhn-Tucker crite-
ria [250, 251] and show that global maximum is attained if x is a permutation of
(1,—3,—3,—3). The Lagrangian for (B.2) is:

T30 3
4 4 4 4
L(z,v, = P4y T+ T — = B.3
(2, v, 1) ; ; u;( 5) (B.3)
oL
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KKT conditions requires that V,£ = 0. Eliminating i one easily obtains:

4
3 2
v o= —Zz.aji:—l (B.5)

Using this, one can obtain z; as:

r; =

—put\/p?+3
. (B.6)

Denote the roots of this equation with £, and £ and let n,(n_) be the number of

x;’s equalling £, (€_). Using ny &y +n_&_ = 0 one gets:

3m

S — B.7
a 3(16 — m?) (B.7)
mF4
= - B.8
S 3(16 — m?) (B8)
where m = ny —n_. The global maximum is thus obtained for m = —2,&, =1,{_ =

—z, for which Z?Zl 2} = 5. The global maximum of (B.1) is therefore 22.

B.2 Derivation Details of Octahedral SOC

Letting (pq = ff,q, we need to solve the following optimization problem:

3
max an:l gq
subject to 22:1 Ge=1 ¢=1,2,3 (B.9)
Cpqzo pqg=1,2,3

Observe that (B.9) can be broken into three independent and yet identical optimiza-
tion problems of the form:
max Z?:l x?
subject to S0 ;=1 (B.10)
x; >0,0=1,2,3
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which is solved by identifying x’s that satisfy Karush-Kuhn-Tucker solutions criteria.

The Lagrangian is given by:

3 3 3
L = Zx?—ZMimi—)\Zmi (B.11)
i=1 i=1

i=1
% = 2£Cj — le'j — )\l’j =0 <B12)
J

which yields z; = (v; + A)/2. Let n < 3 be the number of nonzero z;’s. For each

such z;, v; = 0 due to complementary slackness. We thus have A\ = % and z; =

3
$2

1
n
i=14i —

for nonzero z;’s. Choosing n = 1 maximizes the objective function with >
1. The global maximum for (B.9) is therefore 3 with ,,’s being a permutation of

(£1,0,0) for each q.

B.3 Derivation Details of Icosahedral SOC

We need to solve the following optimization problem:

6
max > pa—1 39
biect t 6 -9 :17...’6
subject to Zgzlfgq ) q (B.13)
szl png q:17-..’6
§pg 2 0 p,g=1,---,6

which can be broken into six independent and yet identical optimization problems of

the form:
max St
subject to Y. 2?7 = ¢
; (B.14)
D i1 Ti =2
zj >0 Jg=12,---.,6

In order to solve (B.14), we first solve the following optimization problem:

Y
subject to Y a7 =2 (B.15)
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using Lagrange multipliers. The Lagrangian is given by:

L(xy, T A\ p) = ix?—)\lz 3—2]
i=1

=1
[
=1

which can be differentiated to get:

o _

2 —
oz, 3rj — 21y —p =0 (B.16)

Summing over j yields pu = % [% - 4/\}. The roots of the quadratic equation (that
we denote by &, and £_) are thus given by:

Ai\/)\2+% (1—58—4A>] (B.17)

Let n4(n_) be the number of z;’s being equal to &, ({-) and let m =n, —n_. From

1
& = 5

nyé +n_& =2 we have:

6 [ 3n — 10
A= —|[1-— —_— B.18
n " 10(n? — m2)] ( )
2 [ 3n — 10
- Z1= e
$+ n (m ¥ n) 10(n? — m?)

(B.19)

which suggests that the problem is not feasible for n < 4. The value of the objective

function is given by:

36 16 sm(B3n—10) [ 3n—10
bn n? 5n? 10(n? — m?)

(B.20)
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Since d[m/v/n? — m?]/dm = n?/+/(n? — m?)? > 0, the function is maximized for the

smallest possible m i.e. m = 2 —n and the global maximum is given by:

@_1_64_4(71—2)(3'@—10) 3n — 10
Sn n? 5n? 10(n — 1)

fn) =
(B.21)

Now we solve (B.14) by identifying x’s that satisfy the Karush-Kuhn-Tucker criteria.

Its Lagrangian is of the form:

L= Z?:l T} — v — A [Z?:l x? - g] — M [E?:l z; — 2]

oL __
£—3IJQ—VJ—2)\SL’J—M
It can be easily shown that for every z; = 0, v; = —p and is independent of j. For

x; # 0, complementary slackness implies that v; = 0 and 9L/Jz; = 0 implies p # 0.
Note that non-zero z;’s are amongst the Karush-Kuhn-Tucker solutions of (B.15) for
n = 6 — ng with ny being the number of z;’s that are zero. Since f(4) < f(5) < f(6)
from Eq. (B.21), ng = 0 gives the global maximum with Z?:1 PN =1 =1

5
The value of the objective function of (B.13) is thus 22 which can be only achieved

Yo o : 11111
for &,,’s being permutations of (1, %, %, 5,5, %)

B.4 Some Useful Trigonometric Integrals

We are interested in integrals of the form:

2m

Lyn = /COSmQSiIln 6do (B.22)
0

Imn = /cosmﬁsin" 6do (B.23)

0
Note that Is,,_1 25, = lom 2n—1 = 0 since the integrand is odd around 6 = 7. Is;—12,-1 =

0 since:

™

Iyy—19n—1 =2 / cos®™ 1 sin®* "1 hdh = 0

0
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since the integrand is odd around 6 = 7. Iy, 2n(m,n > 0) can be calculated by
considering the identity:
27(2m)!
Lo, B.24
T gm(ml)2 (B.24)
and integration by part:
o am—1 g gin2n+1 972"
/ cos?™ fsin? fdf = |2 i
2n+1 0
0
2
2m — 1
m / cos?™ 2 fsin®" 2 0df
2n+1
0
~ 2m—1
- 2n+ 1 2m—2,2n+2
2w (2m)!(2n)!
_ _2r(@m)i2n) (B.25)

gmtnmlnl(m + n)!

(B.24) can be proven as follows:

21 21
Lo = /cost rdr = /COSQ’”_2 z(1 — sin’ x)dx
0 0

—
S]
N

_ . 27
cos?™ 1 rsinx
Iopm—20 — - 9 1
m 0

2
1
+2m — /cos2m xdm}

0

2m — (b 2m)!
Lmo = Lo a0 = IOOH Ly _(2m)

2m —22m(m))2

(a) follows from integration by part by setting v = sinx,dv = cos*™ ! x sin zdz and
(b) follows from Iy o = fo% dx = 2m. Note that Jo,+1, = 0 since the integrand is odd

around 7/2. For m = 2p,n = 2q both even we have:

™

1
Jop2g = / cos® zsin* xdx = 52024 (B.26)

0
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We also have:

s

Jom1 = /costxsin zdx =

0

™
— cos?mHl g 2

2m+1 |, 2m+1

(B.27)
Similar to what was done for Iy, 2, using integration by part we have:
2n
Jm n —Jm n—
2m,2n+1 o 1 2mH22n=1
B 2n  2n—2 2 2
C 2m+12m 43 2m+2n—12m+2n+1
220+ 1pl(2m)!(m + n)!
Jom,2n+1 (2m)! ) (B.28)

m!(2m + 2n + 1)!

B.5 Equivalency of Rigidity Constraints for the Regular
Tetrahedron

We need to show that the following set of constraints are equivalent:

- 4
Zu;u; = géij (B.29a)
p=1
4

> uh=0 (B.29D)

p=1

i 4 1
Uy Uy = gépq — 3 Pa= 1,2,3,4 (B.30)

To prove that (B.29) implies (B.30), multiply (B.29a) by u, and observe that:

4

4
T
Z(up Ug)a, = guq
p=1
which, after some rearrangement takes the form:

Z E‘i‘épq_éppl u = 0

P#q
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with &, = agaq. However since 22:1 upug is a full-rank matrix, any three of four
2

u,’s are linearly independent and &, — &, = 3. We also have ‘ 22:1 upul |l =16/3
F

which yields &g = 1,&,g = —3(p # ¢) and (B.30) follows.
To prove (B.29) from (B.30) take an arbitrary set of vectors satisfying (B.30)
and show that (B.29) holds; however since 0 and §’s are isotropic tensors, they are

invariant under any unitary transformation and the proof follows.

B.6 Derivation Details of Uniaxial Nematics Order Parame-
ter

i ki
The objective function of the associated optimization problem- i.e. fm] AT

can be simplified by observing that M is both invariant under index permutation and
traceless. More specifically:
bl 2yiyk) = Mﬂkaizl(ackxj + o7y

= Mijklzizj(ékl — 2R

M

—ijkl,
(

The same thing can be done for the six terms containing z, x and y. With a similar

argument one can verify that:

—ijkl

M wabat +atyiatyy = M

—ijkl,
(

o'ad (Skl — 22
The objective function can therefore be written as:

- 41,_]k‘ 202 i_j(skl kL 364 ij Kl ,l*ijkl
= Z z+3aﬁqzz((5 —2"2") + 3 —L(6 27)(6 2| M

q=1

mt] klﬂj kl

17kl
= w2l kM
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APPENDIX C

Numerically-Compressed Dense Packings

C.1 Data Format

The numerically compressed dense packings introduced in this thesis are presented
here. The data format used in this appendix is the .pos file format used in injavis,
the visualization software developed by Dr. Michael Engel in Glotzer’s Group and
used for visualization purposes in this thesis. The vectors spanning the simulation

box are given by the identifier boxMatrix. The line:
boxMatrix bll bl2 bl3 b21 b22 b23 b31 b32 b33

corresponds to the box spanned by the vectors by = (by1, b1, b31), ba = (b12, bag, bso)
and bs = (by3, bas, bsz). A convex polyhedron is defined by the identifier def:

def TAG "poly3d N v_1x v_1ly v_.1z --- v.Nx v.Ny v.Nz "

where N is the number of vertices of the convex polyhedron, and vy = (v14, v1y, v12),
-+, VN = (UNg, Uny, UN,) are its vertices. For instance, a tetrahedron can be defined

as:
def tetra "poly3d 41111-1-1-11-1-1-11"

A particle of the type TAG with the position r = (z,¥, z) and the quaternion q =
(9, Gz, Gy, ) is specified by:

TAG color x y z qt gx qy qz

with the quaternion q = (1,0,0,0) corresponding to the orientation specified in the

def command.
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C.2 Dense Packings of Hard Tetrahedra

C.2.1 Nonamer Packing

The packing presented below is a numerical compression of the unit cell introduced
by Chen [28] and has a density of ¢ = 78.38%. (Fig. 5.2).

boxMatrix 2.560259039 -0.447328826 -1.143405974 0.383685733 2.575659831 -1.154175128 0.207358905 0.154123516 8.887307999
def SO "poly3d 4 1.689459 -0.310541 -0.222021 -0.310541 1.689459 -0.222021 -0.467438 -0.467438 1.600938 -0.911479 -0.911479 -1.156897"
def S1 "poly3d 4 1.377833 -0.622167 0.8452716 -0.622167 1.377833 0.8452716 -1.223105 -1.223105 -0.089605 0.4674383 0.4674383 -1.600938"
def S2 "poly3d 4 0.5624301 -1.43757 0.7855349 -1.43757 0.5624301 0.7855349 -0.347965 -0.347965 -1.660675 1.223105 1.223105 0.08960497"
def S3 "poly3d 4 0.3304534 -1.669547 -0.321582 -1.669547 0.3304534 -0.321582 0.9911282 0.9911282 -1.017512 0.347965 0.347965 1.660675"
def S4 "poly3d 4 -1 -1 -1 11-1-1111-11"
def S5 "poly3d 4 -1.689459 0.3105412 0.2220205 0.3105412 -1.689459 0.2220205 0.4674383 0.4674383 -1.600938 0.9114793 0.9114793 1.156897"

4

4

4

4

-

-

def S6 "poly3d .377833 0.6221667 -0.845272 0.6221667 -1.377833 -0.845272 1.223105 1.223105 0.08960497 -0.467438 -0.467438 1.600938"
def S7 "poly3d 4 -0.56243 1.43757 -0.785535 1.43757 -0.56243 -0.785535 0.347965 0.347965 1.660675 -1.223105 -1.223105 -0.089605"

def S8 "poly3d 4 -0.330453 1.669547 0.3215816 1.669547 -0.330453 0.3215816 -0.991128 -0.991128 1.017512 -0.347965 -0.347965 -1.660675"
def S9 "poly3dd 4 111-1-111-1-1-11-1"

def S10 "poly3d 4 1.676411 0.3235889 0.2914379 -0.323589 -1.676411 0.2914379 -0.384973 0.3849733 -1.64426 -0.967849 0.967849 1.061384"
def S11 "poly3d 4 1.419762 0.5802377 -0.804736 -0.580238 -1.419762 -0.804736 -1.224498 1.224498 -0.034789 0.3849733 -0.384973 1.64426"
def S12 "poly3d 4 0.6034304 1.39657 -0.827928 -1.39657 -0.60343 -0.827928 -0.431359 0.4313586 1.621067 1.224498 -1.224498 0.03478902"
def S13 "poly3d 4 0.315858 1.684142 0.2527834 -1.684142 -0.315858 0.2527834 0.9369254 -0.936925 1.115501 0.4313586 -0.431359 -1.621067"
def S14 "poly3d 4 -1.676411 -0.323589 -0.291438 0.3235889 1.676411 -0.291438 0.3849733 -0.384973 1.64426 0.967849 -0.967849 -1.061384"
def S15 "poly3d 4 -1.419762 -0.580238 0.8047355 0.5802377 1.419762 0.8047355 1.224498 -1.224498 0.03478902 -0.384973 0.3849733 -1.64426"
def S16 "poly3d 4 -0.60343 -1.39657 0.8279282 1.39657 0.6034304 0.8279282 0.4313586 -0.431359 -1.621067 -1.224498 1.224498 -0.034789"
def S17 "poly3d 4 -0.315858 -1.684142 -0.252783 1.684142 0.315858 -0.252783 -0.936925 0.9369254 -1.115501 -0.431359 0.4313586 1.621067"
SO ££0000ff -0.154432292 -0.585884752 -0.150972715 0.998509448 -0.048051485 0.011763417 -0.023055547

S1 ££f0000ff 0.155654298 -0.325552043 -1.234618145 0.998531184 -0.053601022 0.007163775 -0.003329496

S2 ££0000ff 0.9680784 0.495084921 -1.254949121 0.99852946 -0.05363929 0.007117843 -0.003328674

S3 ££0000ff 1.210360141 0.797214207 -0.165168564 0.998443267 -0.054686688 0.005043225 -0.009745485

S4 ££££0000 0.361358044 1.372644779 -3.891885513 0.999584851 -0.019730187 -0.011201971 -0.017758418

S5 ££££0000 1.483483516 -0.526823379 -3.337142229 0.998517425 -0.048233172 0.011607006 -0.022400701

S6 ££££0000 1.173870174 -0.785030919 -2.252996635 0.998531274 -0.053599533 0.007161901 -0.003330563

S7 ££££0000 -0.085884264 0.970030642 -2.078173636 0.998529355 -0.053640724 0.007120608 -0.003331138

S8 ££££0000 -0.328488245 0.66716888 -3.166775325 0.998428091 -0.054977153 0.005502218 -0.00941203

S9 ££f0000ff 0.524099139 0.08964577 0.55774948 0.999571471 -0.020275866 -0.010299563 -0.018430503

S10 ££0000ff -0.188457808 0.877382911 1.231385837 0.999526732 0.00486902 0.027593165 -0.012697329

S11 ££0000ff 0.113039901 0.607270023 2.312865412 0.999579335 0.005704506 0.026809908 -0.009478432

S12 ££f0000ff 0.945381121 -0.196246853 2.353739171 0.999573192 0.005423836 0.027096043 -0.009477373

S13 ££f0000ff 1.217026204 -0.515412828 1.261118397 0.999306659 0.003265643 0.0258853 -0.026561013

S14 ££££f0000 -0.072101962 -0.573225617 4.317570339 0.999495888 0.006306834 0.028937872 -0.011436472

S15 ££££0000 -0.379159483 -0.302055009 3.237874425 0.999541604 0.007136676 0.028208827 -0.008361274

S16 ££££f0000 -1.210407278 0.502635202 3.201111353 0.999547665 0.007424136 0.027917833 -0.0083632

S17 ££££0000 -1.034305108 -1.753123088 4.142917717 0.999267825 0.002366557 0.026484825 -0.027509394

eof

N

~N o o

C.2.2 Reformed Scottish Packing

Reformed Scottish packing(Fig. 5.3a) was first proposed by Conway and Torquato [27].
We compressed a unit cell of it to a packing fraction of ¢ = 74.36%.

boxMatrix 5.23463941 0 0 0 5.23463941 0 0 0 5.23463941

def SO "poly3d 4 1111 -1-1-11-1-1-11"

SO £f£££0000 -0.756773627 -2.244651662 2.351203256 0.881507077 0.356625021 -0.075548311 -0.300093853
SO £f£££0000 -1.38616614 -1.794055571 1.492490701 0.632311173 0.447059355 0.449753654 -0.445019285
SO £f£££0000 -2.505547105 -1.120288756 1.714331948 0.194686512 0.330281073 0.832603477 -0.399728688
SO ££££0000 -2.494197661 -1.074269164 -2.36204157 -0.345220353 0.095919121 0.893793129 -0.269733708
SO £f£££0000 -1.549595202 -1.771373859 -1.869402904 -0.75076058 -0.106440813 0.651940491 -0.001581712
SO ££££0000 -2.449340267 0.815945885 1.885520934 0.825648921 0.433528646 0.179626059 -0.313195229
SO £f£££0000 1.820612841 1.537858171 1.408340401 0.458583575 0.459235211 0.606462927 -0.459354814

SO ££££0000 1.080040105 1.966996561 2.434120301 -0.15175185 0.264350981 0.878093718 -0.368837847

SO ££££0000 1.70386055 1.549563794 -1.913435336 -0.627713221 -0.003571332 0.766364597 -0.136560107
SO ££££0000 -2.439709329 0.865146589 -2.192453799 -0.875419003 -0.299763739 0.367139091 0.094826988
SO ££££0000 -0.872783113 1.835472156 2.403769874 0.876916322 0.375857347 0.12990942 0.269949183

SO ££££0000 -1.786389732 2.53366036 0.831206324 0.526366801 0.71522839 0.453504414 0.075631261

SO f£££0000 1.824742505 -1.830369152 1.241746415 -0.001161779 0.763318405 0.632103956 -0.133372606

-
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SO ££££0000 1.812000521 -1.672038814 -2.024324151 -0.538466435 0.552345158 0.549292113 -0.321320556
SO ££££0000 -1.969202273 2.426280746 -1.120583489 -0.882459862 0.076358996 0.296804491 -0.356848693
SO ££££0000 1.158926063 -2.111221415 2.338099543 -0.286277679 -0.100703744 0.35256993 0.885210874
SO ££££0000 2.100789945 2.431212236 -1.281777653 -0.375562125 0.261197228 -0.150221409 0.876448873
SO £f£££0000 -1.537298044 1.552793478 -1.741334528 -0.353316339 0.539977644 -0.541361337 0.538998712
SO f£f£f£0000 -1.535395049 1.417867619 1.516386661 -0.153467569 0.617047447 -0.771785184 0.006912523
SO £f£f££f0000 2.295524447 2.544741591 0.625824883 0.03776461 0.462778259 -0.678807081 -0.56888581

SO ££££0000 1.725170307 0.536707036 -0.196596314 0.885160058 0.354445845 -0.115669304 -0.278353061
SO0 f£££f0000 1.06236591 0.957434449 -1.116115394 0.638022319 0.452111375 0.441155987 -0.44034557

SO ££££0000 0.172790525 1.575205611 -0.706930897 0.15956397 0.374443044 0.807117668 -0.427659698

SO ££££0000 0.168910136 1.471710739 0.44708544 -0.370514632 0.140165764 0.878803312 -0.266039855

SO ££££0000 1.062483637 0.838380289 0.85132658 -0.766901979 -0.139918353 0.626313803 -0.003902476
SO ££££0000 0.152098419 -1.727713462 -0.918383104 0.814967788 0.432725033 0.159213874 -0.351037736
SO ££££0000 -0.745400266 -1.081980423 -1.338554406 0.45223413 0.439611605 0.639334033 -0.439861254
SO ££££0000 -1.445656706 -0.778542445 -0.276552754 -0.11382948 0.285672736 0.872418244 -0.379895175
SO ££££0000 -0.77974491 -1.212424498 0.633112104 -0.618566785 0.001969295 0.774189471 -0.134171225
SO ££££0000 0.115341186 -1.826834366 0.23558989 -0.870679867 -0.267350375 0.384974921 0.149112899
SO ££££0000 1.852792709 -0.620694149 -0.319718146 0.878216286 0.366796203 0.157801165 0.263240369
SO ££££0000 0.797921994 -0.180509573 -1.845851274 0.563641964 0.683844677 0.461354794 0.042613945
SO ££££0000 -0.835302294 0.791452553 -1.190465105 0.000407138 0.750236478 0.652659608 -0.105737875
SO £f£££0000 -0.922437943 0.792117136 0.721370847 -0.541644895 0.538776864 0.533813416 -0.362468668
SO ££££0000 0.668333653 -0.054153852 1.469206773 -0.878209443 0.145067736 0.258368936 -0.375431776
SO £f£f££0000 -1.558186469 0.382430009 -0.15116573 -0.293928483 -0.066753789 0.366761831 0.880133932
SO ££f££0000 -0.488162293 -0.094362574 1.381687591 -0.354421824 0.298798543 -0.091887615 0.881283875
SO £f£££0000 1.124290929 -1.036339097 0.72290609 -0.384864219 0.537574494 -0.530087901 0.530942571
SO ££££0000 1.22783391 -1.053127767 -1.189566185 -0.127812368 0.634041705 -0.762663163 0.000123396
SO £f£££0000 -0.357595172 -0.186232874 -1.95560007 0.081194334 0.453074398 -0.723208505 -0.51487914

C.2.3 Fivefold Log Packing

This is a packing of fivefold logs into a hexagonal lattice (Fig. 5.3b), which we

numerically compress to a maximum packing fraction of 76.73%.

boxMatrix 8.813219058 0 0 0 5.269759849 0 0 O 5.088314394

def SO "poly3d 4 1 111 -1 -1-11 -1 -1 -1 1"

SO ££££0000 -3.743751649 -0.385888457 1.179645074 0.19949478 0.566525651 -0.404683143 0.689552082

SO ££££0000 -3.115868405 -0.399852273 2.272177419 0.140031107 0.009375453 -0.368683634 0.918899215

SO ££££0000 -3.524929661 -0.272970677 -1.719877012 0.084690004 0.536078706 0.241642843 -0.804397887

SO ££££0000 -4.109726368 -1.732947738 0.52806809 0.086392005 0.188724988 0.073225974 0.975477963

SO ££££0000 -2.660602853 -1.530007469 2.152376678 0.222937292 -0.309576585 0.116259129 0.917030597

SO ££££0000 -3.641515805 -1.412674537 -1.269972197 -0.258491075 0.805713639 -0.047636209 -0.530790624

SO ££££0000 -3.253685566 -2.215774124 1.404435973 -0.072109974 -0.114821571 0.592616556 0.793991043

SO ££££0000 -2.852512372 -2.10285253 -1.951807671 0.260944718 -0.536155275 0.560311117 0.574888535

SO ££££0000 -3.529968803 2.033978083 -1.817156332 0.104071188 0.264813045 0.378972196 -0.880581236

SO ££££0000 -3.637835559 2.093513478 2.105421002 0.124763473 0.306420629 -0.374135628 0.866350394

SO ££££0000 -2.109520962 0.922973258 -1.549029797 -0.349418561 0.644727946 -0.100139873 -0.672461561

SO ££££0000 -2.028389797 0.973897008 1.028897235 0.345525196 -0.140099489 0.221582453 0.901046996

SO ££££0000 -3.062612406 0.51348861 -0.94050432 0.505306738 -0.634614652 0.514928224 0.277088918
0
0
1
1
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SO ££££0000 -3.545102488 0.745978517 0.73402765 -0.262842077 0.107770712 0.463854931 0.839129382

SO ££££0000 -2.271847188 0.464357811 2.120637417 0.233030174 -0.304160524 0.694074694 0.609461756
SO ££££0000 -0.393776859 1.058959425 -1.101720149 0.353476767 0.867241648 -0.100263803 0.335995936
SO ££££0000 -0.471833917 1.143221259 0.050246355 0.379694313 0.888833838 0.113592092 -0.230007549
SO £f£££0000 -0.959742441 -0.066044028 -1.191308598 0.034790483 0.710294539 0.228796215 0.664773331
SO ££f££0000 -1.116649249 0.265334271 0.566775314 -0.105703821 0.969422782 0.161590032 0.151442511
SO ££££0000 -0.006718623 -0.611362884 -1.866587292 0.398042811 -0.365841521 -0.452984125 -0.708891588
S0 ££££f0000 -0.269314151 -0.261237191 1.37333134 0.579641755 -0.774587503 0.253030262 0.002307089
SO £f£££0000 -1.363748449 -0.5878672 -0.242619642 0.531626756 -0.691672448 -0.136438621 -0.469411035
SO £f£££0000 -0.4429617 -1.512584769 0.955068156 0.287062196 0.792863649 0.095056185 -0.529081139

SO £f£££0000 -0.891345768 -1.648286775 -0.128328314 0.404796327 0.906896891 -0.116045556 0.014539337
SO ££££0000 0.057489534 -1.555766182 -0.927544628 0.383307976 0.679870858 -0.240321994 0.577144654
SO ££££0000 -0.91089816 -2.333208897 1.620228896 -0.126288769 0.981182886 -0.019054843 -0.144804021
SO ££££0000 -1.759933315 -2.471471155 -0.014968832 0.007196851 0.907360539 0.069473161 0.414509996
SO ££££0000 -0.98340612 -2.626341591 -1.780845661 0.190631326 0.538509379 0.126976116 0.810891123
SO ££££0000 -1.790096818 2.283434209 1.047356853 0.531447384 -0.778926887 0.133756317 -0.304870187
SO ££££0000 -1.908872257 2.242441902 -1.19338963 0.403671885 -0.567793426 -0.194816223 -0.690439189
SO ££££0000 -2.524522915 -0.727342981 -0.209453305 0.885324384 -0.148335762 0.309233688 0.313961404
SO ££££0000 -2.803328074 -1.847414698 -0.246439521 0.534073439 -0.35630253 0.184859047 0.744070697
SO ££££0000 -1.303585806 -0.156478161 2.223471827 0.78065659 0.157997204 0.278441466 -0.536733195
SO £f£££0000 -1.481061134 -1.310119867 2.321580439 0.341958503 0.28639269 0.097454275 -0.889688863
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SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO ££££0000
SO ££££0000
S0 ££££0000
S0 ££££0000
S0 ££££0000

832496067
817670047

|
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3. .704584434 1.584847866 0.331128443 0.889782727 -0.203882347 0.238898811
3. .849824237 -2.337754567 0.281166802 0.904110256 0.063471749 -0.315438125
2.045199376 .664677069 1.666721697 -0.027680336 0.67366733 0.360812527 0.644376014
3.054154319 .622938833 -1.168785676 -0.121354814 0.969974337 0.171850492 0.12202542
3.101253258 -2.153112034 1.295977159 0.407075997 -0.272921765 -0.559618802 -0.668303553
3.841510249 -2.270997395 -0.361683356 0.632650094 -0.745658011 0.203301761 0.049156731
2.869412023 -2.377933833 -2.11620821 0.610792338 -0.673958893 -0.148100663 -0.388301847
4.148377126 2.098924909 -1.068233191 0.265024951 0.788933143 0.231155895 -0.503898028
3.540415893 1.951285423 -2.139300567 0.361647194 0.932275997 -0.007144168 0.00466193
4.03332317 2.126896458 1.867446463 0.288031006 0.763352854 -0.238423209 0.526768387
SO £f£££0000 4.27794816 0.838614335 -0.847532229 -0.203636014 0.956670709 0.08630591 -0.189380087
SO ££££0000 3.068688641 0.867488462 -2.243556506 -0.098763635 0.913639393 0.138768786 0.369123323
SO ££££0000 4.160690494 1.078088275 1.195067139 0.024405303 0.545416462 0.145996127 0.824991149
3.
3.
0.
1.
0.
1.
2.
1.
2.
2.
0.
1.
0.
1.

LI |
= ok o

0
1
SO ££££0000 3.572421505 0.090014486 -1.488256381 0.609211714 -0.760569406 0.095525071 -0.203150749
SO ££££0000 3.300978358 0.425268371 1.794570785 0.513342676 -0.55602924 -0.225530838 -0.613552461
SO ££££0000 0.870884232 0.971958271 -0.992439471 0.235318146 0.498663368 -0.207433065 0.808041917
350194787 0.964238428 0.181793571 -0.080357104 0.032900922 -0.341212238 0.935967133
736920868 0.82622409 1.232637487 0.315906067 0.467707796 0.362503843 -0.741649337
420861565 -0.128431969 -1.433407431 0.202949566 0.14143218 0.208229501 0.946281611
176950166 0.161354413 0.255282056 0.059614814 -0.386568457 0.072445361 0.917476197
216852837 -0.005374371 1.874276931 -0.080773506 0.814517491 0.124392526 -0.560859516
067612021 -0.720726886 -0.679918166 0.022023259 -0.205166044 0.627911812 0.750432293
125435444 -0.423216246 1.283262843 0.174505994 -0.681075428 0.457110767 0.544732656
709646851 -1.708436822 0.825569469 0.058326429 0.379982451 0.27670301 -0.880708129
110080582 -1.583765112 -0.306053652 0.143356025 0.190727002 -0.335530789 0.911312981
SO ££££0000 0.960435881 2.483107415 1.290306239 -0.231561459 0.706106375 -0.101405207 -0.661445434
SO £f£££0000 1.488417038 -2.628979802 -0.800025076 0.159816114 -0.129883605 0.189133362 0.960113342
SO ££££0000 -0.105729572 2.134166226 1.832979101 0.447682354 -0.741516948 0.472847892 0.161703423
SO ££££0000 0.561551944 2.318058479 -1.719213716 -0.206507418 0.011604228 0.614183825 0.761576166
SO ££££0000 1.706431935 2.119209571 0.208549356 0.104371842 -0.440667156 0.605801747 0.654158406
SO ££££0000 1.797647364 2.198550823 -2.362409543 0.813363579 -0.165607581 0.32066916 0.456273061
SO ££££0000 1.909269948 1.04957602 -2.416330771 0.405865795 -0.319654474 0.152254407 0.842563095
2.
3.

SO ££££0000
SO0 ££££0000
SO0 ££££0000
S0 ££££0000
S0 ££££0000
S0 ££££0000
SO0 ££££0000
S0 ££££0000
S0 ££££0000

SO ££££0000 2.88074176 2.041318507 0.22721976 0.869946221 0.1238089 0.313719173 -0.359784949
SO0 ££££0000 132464914 0.836519777 0.204851582 0.480259928 0.311212065 0.165960248 -0.803090685

C.2.4 Scottish Bubbles Packing

This packing is obtained from numerical compression of the Scottish bubbles pack-

ing proposed in [27] (Fig. 5.4a) and has a packing fraction of 60.36%:

boxMatrix 3.75659289 0 0 0 3.756591615 0 0 O 3.756591138

def SO "poly3d 4 1 111-1-1-11-1-1-11"

SO ££££0000 -1.674083833 -1.100295886 -0.124996452 0.94016149 -0.042599614 0.336251447 0.034879925
SO ££££0000 -0.875913473 0.486606822 1.486858222 0.930230982 0.363977172 -0.022512482 0.041038097
SO £f£££0000 -0.464823235 -1.5165244 -1.113317263 0.925560286 -0.027139011 0.001426762 0.377623615
SO £f£££0000 1.417857763 0.70866869 0.393789566 0.924591991 0.031836882 -0.379610991 0.003399923

SO ££££0000 0.993205856 -0.417557107 -1.317239266 0.929479616 -0.366155169 -0.038651369 0.022452331
S0 ££££0000 0.198600908 1.68138479 0.809160667 0.939255326 0.04605815 -0.042754144 -0.337416897

SO £f£££0000 -1.078839116 1.338409215 0.197359991 0.910956442 -0.41050441 -0.038125796 -0.013817143
SO £f£££0000 -1.333117292 0.099607279 -0.905918956 0.930110955 -0.011594415 -0.001194094 -0.367093659
SO ££££0000 -0.323981778 -0.90254482 1.400864563 0.902459478 0.010229579 -0.427345702 0.053271916
SO ££££0000 0.812756438 -1.715809995 -0.501078152 0.910386889 0.412112219 0.011321049 0.035086542
SO ££££0000 1.526778256 -0.501033493 1.044560772 0.902392232 -0.011437949 -0.046502259 0.428246393
SO ££££0000 0.532944231 0.932648804 -1.726306652 0.93018232 0.013843979 0.366804118 -0.004892335

C.2.5 Welsh Bubbles Packing

This packing is obtained from numerical compression of the Welsh Bubbles packing
proposed in [27] (Fig. 5.4b) and has the packing fraction 76.87%.

boxMatrix 7.784688508 0 0 O 7.784688508 0 0 O 7.784688508

def SO "poly3d 4 1 111-1-1-11-1-1-11"

SO ££££0000 -3.656425137 -2.7170994 -2.882909613 -0.06660635 0.778642176 -0.41928268 -0.462041113
SO ££££0000 -2.919910754 -2.333637748 3.838857225 0.241908183 0.68889824 -0.68011529 -0.065900213
SO ££££0000 -2.926722025 -2.187143099 -2.154142264 0.994670274 0.084680525 0.044884482 -0.038021546
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-2.
-0.
-3.

.100500334
.084932928
.257348845
.30967244 -
.14570978 -
.116680328
.754653515
.298315176
.802224851
.052756749
.006295647
.199188989
.988648394
.202853223
016611975
.649266571
.830501037
.080490543
.314120126
.095283567
.220145257
.802419848
.679126044
.208270393
.761966178
.572402441
.870976476
.077954505
.113145001
.803669034
.666378361
.014579026
.929065753
.800704702
.470227136
.362761162
.168729347
.996399301
.356053895
.13994739 0
.67508576 0
152527678
88203605 3
602568327

-1.432385882 -2.556781262 0.365757001 0.443425251 0.817488379 0.036174766
-1.55227131 -3.743213641 -0.048854607 0.682131892 0.634703806 0.359806043
-2.994504728 -1.667309791 0.409246669 -0.407923576 0.103766885 -0.809535641
1.698578145 -1.1387313 0.846043545 0.070788406 -0.409938699 0.333391037
0.937537453 -0.119136944 -0.027029742 -0.066757898 0.691765648 -0.718521443
-0.038743212 -3.792927383 0.452800609 0.733102249 0.407692498 0.30219121
-2.272583752 -0.174656844 0.658207801 -0.257816251 -0.055270665 0.705151349
-0.344266621 -1.743140782 0.650952477 0.063885178 0.723348149 -0.221239717

-0.074164592 -1.929777615 -0.214246191 0.941954729 -0.076846733 -0.246808503

-0.521039786 -0.852425943 0.665791138 0.373690997 -0.639843166 -0.087623757
-0.29444137 -0.577859199 0.549444512 -0.548811847 0.008910767 0.629949905
-3.640017128 3.623358402 0.070441907 0.002541169 0.732066121 -0.677577062
-1.706693432 -2.408856221 0.494473767 -0.120959983 0.83369087 0.214065199
-1.889086807 -3.57042934 0.679840739 -0.226211854 0.455973514 0.527951628
-2.715869514 -1.818061602 0.1375085 0.581812904 -0.196680525 0.777111271
-2.658903962 2.470923267 0.079229274 0.512932062 -0.188962078 0.833616672
-1.456870074 3.585316973 0.286144823 0.646426332 -0.514418542 0.485414978
-3.2032115 2.769338768 0.42463512 0.314696991 -0.696733021 0.484988574
-3.850289269 1.69696918 0.743108554 0.317080103 -0.390910883 -0.440951887
-1.792391665 3.19973254 0.938508384 -0.186407229 0.037682053 0.288156937
-1.014166572 1.69500867 0.967303967 0.202218756 -0.144839845 0.049517978
-3.047383367 -0.346099704 0.690799993 0.024017985 0.395288867 -0.604950591
-2.733642232 0.153888898 0.199192258 0.943911669 -0.249914224 0.083042676
-3.630942459 1.836197004 -0.203860692 0.960510511 0.075792159 -0.173539407
-1.7789207 1.556663774 0.5045116 -0.192976486 0.802597779 0.253110503
-3.01740914 0.228969535 0.662470439 -0.249637638 0.51034651 0.488221678
-1.421926218 0.839553724 0.481336387 -0.185253723 -0.484192151 0.706791555
-0.774596403 1.987272754 -0.27281331 0.70966606 0.486182539 -0.430782452
-0.405380825 3.362457215 0.604739175 0.049273969 0.53085995 -0.591650505
-3.028408058 2.84362096 0.570732544 -0.583701468 -0.064490288 0.573932019
-1.604718536 0.675010993 0.627456597 0.580026085 -0.51947716 -0.003382196
-0.47759982 0.038671319 0.490093065 0.297885507 -0.680593094 0.455923296
-0.143474949 2.77548868 -0.006658204 0.694096615 0.320226712 0.6447018
-0.185659477 2.019313151 -0.285097966 0.654410728 -0.014729053 -0.700177694
3.688039943 -2.99037146 -0.277441964 0.570389274 -0.04189176 -0.771963155
3.677865568 -2.26274455 -0.014154193 0.716725711 0.272740634 0.641651355
2.207802509 -3.517363246 0.674267292 -0.223091291 0.533759425 0.459015001
3.714675216 3.527598501 0.432357575 -0.225630362 -0.524504791 0.697891533
2.315485253 -3.683801899 0.183167665 0.959394209 -0.214504223 0.000543861
.655840555 -2.851435057 0.665080766 0.555772685 0.442291015 -0.230570934
.944528378 -0.502542752 0.954407038 -0.185588948 0.032322164 0.231558255
2.690157319 -1.356387446 0.37795614 0.710258452 0.541099188 0.244732011
.523870374 -2.423940549 0.943063136 0.244917241 -0.22328179 0.028155094
1.121892809 -0.524115796 0.277759394 0.72161673 -0.446297245 0.450486163

3.665673141 0.361280635 -2.090922645 0.729360146 0.314951286 -0.466146891 -0.38928979
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368488324
517684428
97472195 3
087132565
839020342
713299771
724031925
.89556548 3
.901498942
.173327799
.175206349
.178757573
.1765487 1.
.236246762
.396258598
.763663114
.63476218 2
.324417388
.110846996
.278323799
.287962025
.480366271
. 794582551
044428656 -
125997902 -
889846376 -
985712031 -
618492332 -
988470418 3

1.029176818 -3.089144055 0.036110722 0.546847628 0.569465473 0.612668558
2.223607599 -0.917302037 0.516764881 -0.05807308 0.619722156 -0.587814618
.427355656 -3.674117624 0.52432607 0.626384423 -0.5766376 0.014622073
-3.427102159 -2.328812987 0.692125428 0.304014295 -0.4587327 -0.467013929
0.296982728 -3.862651338 0.03546639 0.064350629 0.700098924 -0.710255327
1.544009876 -2.256488305 0.093085014 0.815251787 0.235325856 -0.520885251
2.19717653 -1.302062083 0.855061259 -0.058415589 -0.4900872 -0.158972947
.475628575 1.607329444 0.673336095 0.318631317 -0.66661025 0.026895398
3.524960399 0.884073091 0.704678645 0.029859995 0.6586006 -0.262262536
3.344817225 -0.394201976 0.638739691 0.485050863 0.539902776 -0.255425643
3.589840189 0.233905412 -0.040892434 0.632648476 0.579207252 0.512447728
2.304156944 3.526714605 0.62114143 -0.347927792 -0.011669097 0.702134893
575428853 3.670991233 0.69670756 -0.060252631 0.309969236 -0.644117434
2.488178261 2.374239226 0.8068635 -0.010420904 -0.397860269 0.436543129
2.123111978 2.111338256 0.82618006 -0.127138041 -0.536912359 -0.113962916
1.12167322 2.659304016 0.414852775 -0.43249361 -0.04435412 -0.799299171
.169467062 1.229987985 0.388323476 0.415054077 0.822410706 -0.02399211
1.79214979 0.158624699 0.042953192 0.708695997 0.617955603 0.337691991
0.822175708 1.458300035 0.050128269 0.82664914 -0.391688823 -0.400896773
1.022660244 0.118248435 0.307734746 0.616106852 -0.725040004 -0.005354031
1.116365861 1.491945345 0.179617703 0.819716411 0.190416873 -0.509454512
1.674743443 1.942369241 0.998603402 -0.040358508 0.005985032 0.033565095
0.135440771 1.981488177 -0.245339409 0.953791031 -0.004142765 -0.173418801
2.629183942 -2.327229202 0.174970842 0.80042437 0.158120978 -0.551093267
1.719407049 -1.508814949 0.850780474 -0.190037485 -0.469369693 -0.140536225
1.524674074 3.728203168 0.680718286 -0.036902404 0.32729091 -0.654325216
1.331603744 -3.558530939 0.221414463 0.93597406 -0.273291975 0.015481974
2.448063715 -3.145649728 0.727706079 0.387816858 0.477405133 -0.303523122
.779089358 -1.917257867 -0.199304292 0.946989825 -0.038154952 -0.249062783
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SO ££££0000 0.644507553 -1.141566328 -3.848929526 0.655499289 -0.234871412 -0.122252254 0.707255604
SO ££££0000 -0.093873899 -1.003344037 -1.97158382 -0.299536684 0.70418059 0.407994752 -0.497943526

SO ££££0000 0.326153563 -2.730753371 -0.529961853 0.200867753 0.655229808 -0.496231541 0.532991841
SO £f£££0000 3.269574571 -3.042649844 -0.442984814 0.948554465 -0.212889346 0.044329048 0.23012494
SO £f£££0000 1.663575768 -1.039782934 -1.08223132 0.431170992 0.698302681 0.491760735 0.290923221

SO ££££0000 2.859536337 -0.515202795 -2.134753003 0.941187887 0.236479804 -0.21608397 0.107472703
SO0 ££££0000 0.230414964 -2.943023224 -3.338926398 -0.041297363 0.516959961 0.582137204 0.626229352
SO0 f£££0000 0.431552321 -1.514902675 -0.946434413 0.553920733 -0.014323291 0.603760152 -0.573097151
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S0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO ££££0000

.915094721 3.607439779 -0.599205774 0.57278985 -0.529616253 0.037595905 0.624503772
.869740848 -0.167383356 -3.507449773 0.539259608 0.561354713 -0.627757286 0.000866874
.632059126 -0.300242955 -0.195899751 0.671602684 0.488173607 0.510557114 -0.223534778
.87995982 0.374200862 3.826639386 0.484777782 -0.253803952 -0.523018505 0.653472034
.714269602 -2.447693862 2.812521963 0.397142884 -0.426971087 -0.074560433 -0.808958567
.807582982 -3.749817968 2.757727911 0.041038831 0.659806542 0.323384572 0.677047679
.577123595 -1.179627667 2.328230985 0.788343147 -0.042425471 -0.402640337 0.463244991
.589922748 -1.817022981 2.054679118 0.809286425 -0.197077456 -0.544155127 -0.100554247
0924499961 -2.93795881 1.273954843 0.050729249 0.82544227 -0.426708903 -0.366047968
.570023809 -2.960107423 -0.018262555 0.367888077 0.621572706 -0.690025782 0.046584916
.970918044 3.825346473 1.969169809 -0.281629582 0.700095037 -0.019517718 -0.655874056
.745494284 -2.76183852 1.392580589 0.219456566 0.821206872 0.123634484 -0.512027931
.326938294 -1.887613361 1.807260106 0.997175685 -0.059382178 -0.024234847 0.039077905
.855606413 -1.426992978 0.759130921 0.414665875 0.365886936 0.830525187 -0.066384306
442302568 .200099955 -0.169059294 0.065766803 0.692379215 0.677651721 0.238901432
.655024199 -0.128418988 0.749211159 0.655021494 -0.075989654 0.698850782 -0.277092042
.603006999 -0.129575813 0.357242005 -0.03501938 0.588632734 0.593188819 0.548098688

1
[N

SO ££££0000 2.942227869 2.123229291 -2.353518626 0.504778188 -0.156632962 0.820770025 0.216798666
SO £f£££0000 3.763507482 2.91806823 -1.9470923 -0.277840392 0.688401568 0.436508258 -0.508299654
SO ££££0000 3.036501603 1.220231621 -1.639625038 0.090635432 0.550005048 -0.165666844 0.813531906
SO ££££0000 1.625050363 3.681980816 -2.08598629 0.684918132 0.041385392 0.689256031 -0.232595198
SO ££££0000 0.615577488 3.781932075 -1.255255294 0.61516452 0.350397624 -0.705442601 0.033835702
2.643493464 -2.570144047 0.357613558 0.402826802 0.837185266 0.094678089
SO ££££0000 0.445088517 1.440600259 -2.620910238 -0.054910624 0.822016463 -0.330318026 -0.460612375
SO ££££0000 0.644471534 0.226748362 -2.988754206 -0.326142489 0.624124478 0.084097484 -0.70500165
SO ££££0000 1.083605339 2.023550681 -1.853568733 0.994037175 0.09840466 0.017910254 0.04342626
SO ££££0000 0.367481012 2.527642456 -1.02442029 0.783545923 0.102630234 -0.437960803 0.428617728
SO f£££0000 1.794159406 1.099342438 -1.541404365 0.470447827 -0.383374684 0.084873998 -0.790252553
SO £f£££0000 1.518180325 0.166486856 -2.227480973 -0.100583539 0.67385205 0.279706577 0.676439648
SO £f£££0000 1.030414554 1.84164268 -0.152344276 0.649413134 -0.277440301 -0.068880723 0.704659426
SO ££££0000 1.937118159 1.128517011 -0.204081893 0.716736945 0.033686754 0.326269213 -0.615387483
SO £f£f£f£0000 1.949821395 3.41715498 0.163598335 0.504710977 0.267832439 -0.668422605 0.476176265
SO0 f£££0000 3.115356328 2.786206686 3.6226102 0.135858771 0.709460473 0.639027097 0.264296426
SO £f£££0000 1.815556854 2.36127738 3.848544492 0.427872359 0.583783213 -0.686978432 -0.064676411
SO £f£££0000 3.742867726 2.920756021 -0.159604024 -0.07089322 -0.060710205 0.693420084 -0.714462742
SO ££££0000 3.770559611 1.879807305 3.149408289 0.966178764 -0.212080742 -0.029399311 0.143722079

SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
S0 ££££0000
S0 ££££0000
S0 ££££0000
SO0 ££££0000
SO0 ££££0000
SO0 ££££0000
S0 ££££0000
SO ££££0000
SO0 ££££0000

.618086542 -3.403702453 -3.793879725 0.521684751 0.635129122 0.53069162 0.206935794
.777158048 3.008945738 1.692805519 0.946386141 0.278754487 -0.145976965 0.073074855
.932300366 -0.180383877 1.648271311 0.714754367 0.326472021 -0.616921869 0.044154522
.413652072 1.093618266 2.352144611 0.171351815 0.517878397 -0.161142055 0.822480249
.612782143 2.336620869 3.365951618 0.270046488 0.705603612 -0.45482067 0.471525817
.131092409 1.286347929 2.895613269 0.454836465 0.183270788 -0.774439287 0.399724154
.485817352 -0.110106598 1.56224039 0.750885399 0.244457475 -0.43060606 -0.437024121
.4981774 1.921396798 1.428913126 0.489331273 -0.146425134 0.844778116 0.159576067
.259547599 0.967844873 0.181428358 0.672823333 -0.234578352 0.496803673 0.495447142
.998277415 2.624589566 1.00239716 0.490385589 -0.24864581 -0.449367601 0.704106522
.703328833 3.450842236 1.927031569 -0.20635697 0.682464331 0.537236468 -0.450595402
.46964324 1.146202101 0.461603158 0.260664122 0.943839921 -0.199777811 -0.036183483
.735424583 3.599613939 3.161018246 0.633827183 -0.003442385 0.56637748 -0.526752126
.335354493 0.845380235 2.867666749 0.64194019 -0.599383181 -0.003954412 0.478159971

0
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2
2
1
1
2
2
1
0
1
1
1
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2
2
2
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0
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1
0
SO ££££0000 1.831048148
0
0
1
0
1
1
1
1
1
3
1
3
3
1
3
1
[
0
2
0
0
0
1
[
3
0
3
3.261376405 2.25589417 0.711405855 0.626117929 0.581648308 -0.519163327 -0.011446597

C.2.6 The Quasicrystal Approximant

The packing is the densest arrangement of a single unit cell of the (3.4.32.4)
approximant in the hard tetrahedron system. It has a packing fraction of 84.78%:

boxMatrix 10.208845351446810 0 0 0 2.571686440054523 0 0 0 9.823376081309215

def tetra "poly3d 41111 -1-1-1-11-11-1"

tetra FFFF0000 0.538327947382685 -1.081636567075107 -0.034601148989334 0.817337586591655 0.327880695725213 0.296792389611936 0.369280105588854
tetra FFFFO000 -1.038510164943297 -1.113760600594468 -1.257832842360639 0.572409504226847 0.555069682225026 0.586810519323514 0.141061765750514
tetra FFFFO000 -2.936248068239788 -0.760953042828404 -0.857718710157713 0.181230846549929 0.627571732250111 0.744225012130181 -0.139421061749015
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FFFF0000
FFFF0000
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-3.189060515609178 -0.610367833064769 1.083708754383395 -0.262808429185872 0.555597125444297 0.696642276980510 -0.370044729283231
-1.700792884507799 -0.596037624237901 2.343482422988033 -0.606076412917511 0.313456853804025 0.510476549992585 -0.523287563788776
0.093321350868941 -0.778493967504492 1.780561049880858 -0.831871087530107 -0.002668094829472 0.097034161527852 -0.546413530668893
-2.767938113199055 -1.232301986627499 1.982530638007453 -0.511466780056498 0.110877850877013 0.167797356284971 0.835435145482465
-0.761345399388574 1.256504453932962 2.393360544933835 -0.487044537614804 0.482367246946034 -0.142012005764080 0.714102266956315
0.549414258868341 0.992553257462912 1.084636990857025 -0.303386855923978 0.746141048841573 -0.457236868165683 0.377046943067038
-0.125152393012702 0.823723080366044 -0.775141581446323 -0.056835804113628 0.752769535285890 -0.6556961774771561 -0.013047641858777
-2.194642199677001 0.987952038557198 -1.226087546632044 0.159579359045945 0.623480493426552 -0.642537327176357 -0.415875324668502
-3.381243877588915 1.229767581486165 0.073893654179913 0.393124942344290 0.255341799443682 -0.453167851680405 -0.758216488456317
-0.708113781697524 -0.021495439484946 -0.196829692232588 0.877925426273603 0.307669977993508 0.300202508678201 -0.210866271193619
-1.857907264675644 0.041304477416064 -0.356556276456923 0.506204629628837 0.215785933070325 0.731901659349072 -0.401887129768268
—-2.435572428894385 0.233651581666976 0.682098169607358 -0.077285676855159 0.027685802901592 0.890770431506546 -0.446977022702931
-1.477550748677476 0.339731983158568 1.419936214180924 -0.632164311257724 -0.165375287509000 0.689639949026538 -0.312115425059444
-0.452581552857670 0.154795581620399 0.921348760887522 -0.925126149367389 -0.289148777663002 0.237492658937657 -0.064279305249676
-4.696066630116136 -0.884464942233475 -1.346366031479770 0.752798795508367 0.294740657666394 0.342476451388553 0.478677133821784
4.134873454476181 -1.175565733250324 -2.558587215359589 0.510749237041532 0.484786698026172 0.687858834606214 0.175975276480974
2.031764476656213 -1.243319524637724 -2.137790930785434 0.204314433293040 0.515845672497673 0.824581764224713 -0.110561153311766
1.658507621859929 -1.137723342775472 -0.313403753042214 -0.237414150952348 0.395554503426156 0.768344744968793 -0.443641193562661
3.271541703109135 -0.876038338172507 0.965908625133347 -0.541999631237362 0.250655568049121 0.494577015532645 -0.631507530953795
-4.989165291905720 -0.593659657065584 0.517834054501861 -0.756664421751636 -0.019744211393859 0.101846515268841 -0.645520260177239
2.360360741610543 0.956477746914198 0.513260555626028 -0.642953883823895 0.136119708720473 0.156883192088804 0.737203765734854
4.377127913593054 1.285047852548412 1.082363925029749 -0.562284737816316 0.528052666184054 -0.071990696462948 0.632308148751484
-4.522007830461938 1.177264584894022 -0.227473951806370 -0.350439854078513 0.804758552082334 -0.356105856313270 0.320537362288966
042810954123738 0.878814607332197 -2.052047428809768 -0.042946284143429 0.836754778718335 -0.542672105156007 -0.059194959716595
.967736292179869 0.721734491222510 -2.523174127599491 0.215380422872353 0.707681157304578 -0.548393453731362 -0.389952911187965
706919969633839 0.634717871709929 -1.195703636912878 0.495220229784038 0.339443008716617 -0.417846454807487 -0.681864875214195
458147895925859 0.038082237703646 -1.360190323111128 0.909700755650608 0.271464815741076 0.308484459239547 -0.059905987939942
377947850623143 -0.190438203561325 -1.699150163680346 0.589151094465234 0.124784175111518 0.741999472511364 -0.294561844652378
679837668157425 -0.210713352231313 -0.773160162333578 0.050065553221748 -0.070476349661202 0.902188261894857 -0.422590658460607
299641709982919 -0.016235173743299 0.188802285702022 -0.502797492167502 -0.254502471747885 0.726292166284481 -0.393602417342784
434606170769150 0.209092014499054 -0.182723363338539 -0.886139019530960 -0.322768069970230 0.249038169297686 -0.220359708897201
.838753749622308 -1.146358338570484 -4.799537185590947 0.761545429760626 0.438995628617801 0.203153385841501 0.431346842212042
.565515277303737 -0.882811702074357 3.569803940521781 0.506505569756983 0.628751849091636 0.544904832457930 0.226278464801665
-1.419074054456052 -0.716688317680052 4.147667296626637 0.106431735532988 0.664146106765873 0.739981379454344 0.003129313026134
-2.023364552388024 -0.888020884264969 -3.841453326569261 -0.322264907562681 0.498243385207910 0.757353775892369 -0.272606156555113
-0.721714298812761 -1.145568117266694 -2.394982752119308 -0.654942751494002 0.179376699958866 0.565729883002002 -0.467785945979434
1.256918477712772 -1.238965549276295 -2.998815047856791 -0.803951198898402 -0.123352733140934 0.203300359724991 -0.545083054911976
-1.582509759020920 0.899223946443282 -2.979946333368044 -0.527536145069068 -0.000555452719667 0.088149375860735 0.844946740719974
0.318513131849556 0.750726066698343 -2.651095164365957 -0.579651042901480 0.380051042245615 -0.230173035892449 0.683071187578061
1.662757405244697 0.644999535532183 -3.962811714543805 -0.454695423162165 0.656030783788427 -0.481561645846869 0.361903390598343
1.229334960140172 0.885161672843021 4.072607722726285 -0.221182532901262 0.744793716808440 -0.625999884307172 -0.066968286445587
-0.623356423578924 1.220872866225897 3.589547386680102 0.046514475467346 0.647494662849288 -0.585750939942802 -0.485265805007738
-2.028474652833631 1.208524566926964 4.896481551915810 0.346491312945109 0.362205189894005 -0.371621997027021 -0.781439864476513
0.732813381118706 -0.230974583943343 -4.214301749883523 0.897224798578043 0.418766209101065 -0.137456251145785 -0.026987070101444
0.281543473048466 -0.056667333023830 4.533576555041718 0.771082601838942 0.406538614154196 0.438950057901022 -0.217900947706894
-0.840433642170010 0.161138764428531 4.764206456256443 0.358257593893781 0.250043854487951 0.843857719460435 -0.311502354015632
-1.135898930333364 0.035889438478583 -3.945568679994772 -0.178262850759858 -0.020910242912084 0.936364211899445 -0.301673963832243
-0.064071054956771 -0.149241850813768 -3.375331641098099 -0.687372703780503 -0.274723809635332 0.649616753364577 -0.173331094339700
-3.184861293590484 -0.564957882024360 3.615344114948864 0.714078251182203 0.372789724051026 0.243475541273074 0.540221929980920
-4.534508497980070 -0.560452127293761 2.446196612448177 0.452670246466278 0.534694067769814 0.647464186851024 0.299970046173399
3.794489596766005 -0.772837126442072 2.807060839105459 0.074428277124671 0.534678333083905 0.841554806561626 -0.019105476908318
2.964789259049481 -1.060923931933388 4.755308046086619 -0.252676323194415 0.367286688430913 0.835113079691828 -0.322244175007146
4.257131873414839 -1.135933039257589 -3.772954964360948 -0.587155648381717 0.092678300591149 0.562569841704335 -0.574607823108720
-3.910613890829325 -0.862450485822128 -4.455605701246658 -0.711213609369052 -0.120302657336473 0.187075282677951 -0.666862287955312
3.514489393930678 0.739954569704744 -4.351893531318328 -0.661020108993362 0.011701276332465 0.082461870300173 0.745731543911877
-4.887865006924959 0.977117512384285 -4.023385963234607 -0.659470748831491 0.468730927255962 -0.201957159871623 0.551908466003182
-3.146079227204990 1.223813587855193 4.573634386166327 -0.491682853916059 0.742885359592871 -0.348114220371918 0.291866070728309
-3.623158449674954 -1.241200547539019 2.760307516692577 -0.173707614333799 0.832664245227928 -0.513411619556687 -0.113597659947926
4.699546920854318 -1.228102796296048 2.246263973630346 0.171204252361910 0.707302047004369 -0.475735993446091 -0.494052813792706
3.208756964352296 1.077471296984867 3.691819310677610 0.451868902494213 0.437674909129520 -0.327803331666591 -0.704840510062684
-4.204608300488951 0.293313547434629 4.171787185734140 0.900478930623327 0.423294357587475 -0.011500550335313 0.099132838555449
-4.898168953737978 0.316694155565076 3.211272283637288 0.773320592173426 0.305368810232691 0.541868512284486 -0.122896976578802
4.204403489853616 0.145311207934812 3.503722216171458 0.353881981974805 0.087892521068740 0.889397179112492 -0.275708370131388
4.106949301365407 -0.054522550694620 4.638078384083317 -0.182543735350168 -0.186672710819419 0.904692261194453 -0.336694217732655
-4.916059109246240 0.071168555842361 -4.768939963391872 -0.689581805270762 -0.380781632199243 0.547226850057171 -0.282887003935676
974581091485459 -1.210720077155658 2.416637031661228 0.021668269501219 0.935253196799797 0.016834137978934 0.352914374560017
110363173395732 0.657973996980618 3.345775278271824 -0.505310953002522 0.783627204765564 -0.222545809037109 0.284714958523451
621649214702879 0.656642344341665 1.370776900917460 0.485272052035142 0.803199407761802 0.268369036762872 0.217623084693838
950700977580040 -0.452266134078486 2.079034761298958 -0.252476329339501 0.808735181283946 0.483088980661470 0.220970917634733
940323938642802 -0.504288306036050 2.537035254114325 0.244167892763267 0.797411910598554 -0.488517549180879 0.256645454121862
671289283234656 0.235839005664591 -1.517486858207975 0.280815575269599 0.215389303570009 0.854292724461511 0.380701985187573
683382633179328 0.232772979971984 -3.584102992500505 0.314051482143453 -0.193490460074717 0.841894384783555 -0.393886980355399
-2.130671228628549 -0.129803775215756 3.354746342821389 0.311116539493081 -0.395696289638968 0.836076266530751 0.218191250429080
-4.219931604871536 -0.109882500349770 1.259410522196842 0.295727109456136 0.413921403937317 0.827822470220452 -0.236483627114834
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-3.394388192655966 1.231891135755789 -2.732609794016115 0.031812382980703 0.981340904812329 0.002619109379136 -0.189607861380449
-2.492950056583079 0.622251353451831 -2.319830595473770 -0.301730998869111 0.817827531747219 -0.469943878130378 -0.138813846735404
-4.484404754184109 0.572007745972042 -3.000374860468890 0.252466480528742 0.807304941584386 0.487527247277332 -0.216417630208467
-3.112641842535461 -0.527872771756743 -3.561978275061939 -0.471096066244149 0.818736048052575 0.287307751275629 -0.158726292861267
-3.650459631519871 -0.571845157892545 -1.745648036092591 0.491642781260037 0.806959135021187 -0.282548794443044 -0.165137847871210

The compression of eight unit cells, with 656 particles. It has a packing fraction

of 85.03%:

\boxMatrix 20.124027715878380 0 0 0 5.192920842530376 0 0 0 19.687498870777841
def tetra "poly3d 41111-1-1-1-11-11-1"
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2.967194957690658 2.525475006938243 1.820984433765668 -0.006043679186931 0.978852119705851 -0.018126493561838 0.203674819063132
8.083070662718706 2.456598480470830 -2.943126690206037 0.020471739625235 0.944363062680458 -0.011277099212200 -0.328073377089425
2.836738975044177 2.543630128702523 -0.814550485074518 -0.290974565891018 0.381009221557803 0.740119087106881 -0.471581925006173
3.135588506123002 -2.571739524296127 -5.282546353406340 0.747127277665386 0.492260789020921 0.257935234820228 0.364622491351047
1.743432222624314 -2.578910324981241 -0.435280431076952 0.804467062009140 0.352214321079964 0.343734010785478 0.332602988558270
-7.382131571031975 2.490596377417793 6.377316239030486 -0.820920282632604 -0.183116292719497 0.131206296135632 -0.524731570193220
0.702323484126362 2.536865086001133 -2.815232356051019 -0.705761093444262 0.135502573887805 0.488114250880235 -0.495262364346178
-7.461147862160111 2.504271077861492 -3.473727160720102 -0.814800154844888 -0.199520428246462 0.108113487982419 -0.533482689591115
5.271094482923667 2.540974979975772 -2.954577478869326 0.521065417175715 0.466942148864871 0.686546398806556 0.197762238363911
-6.580413638711274 2.477407182044689 7.232789608448060 0.121806413992915 0.514095321382885 0.835967861122167 -0.148414733814551
3.457653596752102 2.491611100004213 7.304998929526876 0.117903492300278 0.521170931609876 0.832318758490541 -0.147394405636906
-7.146981808554102 2.526421414278008 -8.080344834376364 -0.002748189485390 0.978695142394874 -0.035088812911946 0.202279610726491
8.417798091377312 2.491312182688579 1.524733317944170 -0.534858492524898 0.196286264660411 0.100727151067544 0.815629901559201
-6.600412136174926 2.482952514369005 -2.589787543710112 0.108272012389513 0.519234217584184 0.834159254020317 -0.151166588752717
5.191432051561147 2.528033422186501 6.806466985269205 0.520922894371677 0.460910120227276 0.697645195159533 0.171733458773557
8.430271675936103 2.481441151412164 -8.285699051392756 -0.541719030338291 0.199865806102611 0.119395490001136 0.807674977133552
0.689477644565347 2.5651056300534294 7.072629349506821 -0.696923792980905 0.141535808849536 0.499661995546652 -0.494573282534301
2.637226212620744 2.512258637154960 6.406808926504192 -0.820181236044125 -0.184239211050716 0.122591062332396 -0.527569980750191
—7.174884718740078 2.449709592607006 1.923636019096525 -0.027485287289556 0.976433751639474 0.003259283148399 0.214035195038644
2.752251427683678 2.522093501503124 -3.483532911730250 -0.822302452147397 -0.176908095140797 0.141729796586445 -0.521952936408635
-4.868881883924582 2.540907449296828 -3.095120072610091 0.515220479986719 0.467313986622787 0.695069168174476 0.181781039611437
3.491196747285091 2.476542489255813 -2.576486099564288 0.122163507336598 0.512724659640270 0.837796067821320 -0.142433316380420
7.681319098055285 2.445423775301966 2.414176671062616 -0.133909149038431 0.809000228907282 -0.529580369665491 -0.217098137939343
7.654610557403570 2.444307374782363 -7.426224240004402 -0.133125941394519 0.809001863545675 -0.532244973104299 -0.210970986423850
-2.444971659913953 2.467234557381597 -7.368264285733147 -0.124643195323015 0.804383357566828 -0.539650959567185 -0.214961228521336
-4.813421198930431 2.514275826442203 6.861835405579372 0.524851907545194 0.463335992255484 0.688402348843920 0.189611285352351
2.853430198863830 2.457420654727494 -7.850599568137761 -0.023056208556438 0.979290073865177 0.004844083255961 0.201086790549622
7.803246588194591 2.411438089106807 9.589071561621216 0.432359860640060 0.203436086519546 -0.425602737295751 -0.768466667862233
-2.099270862669440 2.391264618785062 -2.843793457729366 0.001466715796809 0.946015275588607 0.018859014706699 -0.323569597864317
-2.369614785502925 2.423157410402030 2.383081937891202 -0.139021299159943 0.810428556477273 -0.532570860694564 -0.200616329258352
7.843901449744857 2.432189681952493 -0.265007164523572 0.419037797024265 0.231895089425307 -0.437701688938800 -0.760952839317656
-4.317005628621922 2.392457322891093 1.918572567010795 0.176331183818831 0.656522841173517 -0.491031811614987 -0.544768604650274
-1.701326636510450 2.533356486609404 -8.253940349572657 -0.525147805348420 0.206688596063446 0.103127047063640 0.819063134904137
-1.550561187364750 2.512195059152839 1.562526111096307 -0.530723036102746 0.187865097191705 0.116185913200976 0.818254604497091
-4.520873799035489 2.458633944220290 -7.857622835121759 0.163252332999118 0.668974166658907 -0.505866296452897 -0.519539729208842
7.951035034067244 2.430004341174198 7.024900130073261 0.007445458623011 0.941729451483150 0.017015062043694 -0.335858144190055
-4.692946999637413 2.297575468828299 0.762669946383593 -0.544088246864592 0.579254608156500 -0.144800905701963 0.589461428985108
8.136636911346516 2.350062089182471 -5.626016762386641 -0.437520689062039 0.771928263712268 -0.409949756923086 0.211290319521610
5.695573339293704 2.416673197744705 1.956356137954938 0.181103619089086 0.657842855846871 -0.490006747019357 -0.542528933827107
-4.728328156328135 2.345108232769229 -9.029814401787295 -0.554772229031735 0.559638575230684 -0.103089444551695 0.606963759569674
-9.908220575495738 2.349849578991982 -7.704833571301321 -0.454383137402426 0.584184450085076 -0.212232333600890 0.638139427787882
0.251063427329893 2.381778376302428 -7.732477490835121 -0.457945241444752 0.551357776854095 -0.199109674032196 0.668315865027467
-9.818910944251311 2.375220338907573 2.140107284217637 -0.454713780864752 0.563954816758644 -0.210868159172520 0.656296397669224
-2.217122308213899 2.417727803037493 -0.294356103315062 0.429051272850984 0.209651013571416 -0.429386754095065 -0.766543197204914
-1.980113997320849 2.490398797169237 6.910272983755354 0.028559729877512 0.942620109523523 0.003523597906005 -0.332624796443352
-1.975018391988375 2.352440345702336 4.189638375263064 -0.440826690481522 0.769042423162981 -0.403126775240640 0.227451936502643
-1.931860543969250 2.330288907535092 -5.560088026724943 -0.435410309390834 0.773604584210798 -0.413142857316908 0.203142288094425
8.114738021029163 2.333266258001148 4.247369454132340 -0.437383165387793 0.770462047151862 -0.412535942290816 0.211892182140222
-9.440185154019884 2.302618703292619 -6.650142683644363 0.129833648935575 0.544940876568134 -0.574034051411073 -0.597216520593509
9.246546750979205 2.272229004640127 -5.271832468171408 0.382959763933915 0.254745155799962 -0.349701332207544 -0.816183620918971
5.721544815782881 2.385461921066689 -7.909321045000322 0.180296962342099 0.643913463589782 -0.492667416828799 -0.556908675792774
—-2.276774245344726 2.444878488692828 9.649382015027685 0.417001899378317 0.227513316075496 -0.446032491841373 -0.758552650212879
6.717572575141039 2.341548709947427 -0.504351218212845 -0.321702964704797 0.831379593242335 -0.355636585441677 0.280780685831021
-0.838170034739154 2.268888140547801 4.507525406566934 0.386741231726256 0.261964262173039 -0.348549593027844 -0.812600225342768
-9.446720410586853 2.319100706296557 3.232801472610735 0.109748401001082 0.559512692705093 -0.572882288886563 -0.588818068897086
0.328079348341259 2.336594415926081 2.078937909691774 -0.459305226289257 0.558515321457756 -0.212414992058200 0.657251257852907
5.383733868153117 2.320521881445598 0.827034760570371 -0.549053094578841 0.573641251974128 -0.115079941973060 0.596852595137552
-0.804228115326879 2.282695629194345 -5.297848080224054 0.384168975827952 0.257168941646046 -0.328281742885387 -0.823716838939261
0.528495146540289 2.339423443411039 -6.590621377449891 0.099207287399651 0.576088836244631 -0.581296079872427 -0.566016284576742
0.592045315666670 2.291326234872046 3.303937370435079 0.105322838184797 0.589268759821661 -0.591496522488125 -0.540186349641858
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9.235025258662466 2.268841304259808 4.541070423063566 0.378864273330228 0.259727507236206 -0.338420127844903 -0.821264452809364
5.280822776566643 2.290317182355136 -9.056249066898403 -0.539614554595648 0.589906444754057 -0.163832954355741 0.577914597473744
-3.397262377480024 2.369946203598853 9.375704804596710 -0.321344996263212 0.830125566207377 -0.357539274734951 0.282479388146255
-3.355676246312767 2.349245425676141 -0.475012700825273 -0.310417185798137 0.838102758392852 -0.365428273308144 0.260167473375298
6.662122262241242 2.348971939234350 9.422471582028669 -0.302509657165101 0.841508781849657 -0.367208737677281 0.255946518564362
9.374486370865649 2.159231797892271 -1.530700620450238 0.251342730496851 0.559254815424048 -0.626167426811084 -0.481638076622049
4.304384996749608 2.163364873160241 -6.624301413672676 0.487230010977113 0.305526211966163 -0.299491307757175 -0.761292064048186
6.877548772789480 2.168497066492087 -4.235636989227465 -0.636602299325055 0.489339999840843 -0.207431324904560 0.558798821131680
-8.486871735353274 2.062232002699835 -9.168917448819895 -0.269985728063541 0.778097983030117 -0.474557664200412 0.310590178201295
-0.737020206530090 2.170457827214565 -1.560585192622092 0.252840129758909 0.562426888450831 -0.622203415609109 -0.482297391176205
9.320433530557731 2.160962981607907 8.294039799808369 0.269051423053197 0.540999131383099 -0.619182662924279 -0.501541724614992
-8.498978539770512 2.111835851221664 0.678300999875166 -0.279942122372515 0.751857027628046 -0.478218564714249 0.357281992955893
6.789453731683738 2.145681938486413 5.607385535036141 -0.635974972554614 0.491828855130614 -0.201438036058418 0.559520266991281
-0.721303652118930 2.207699319398742 8.271216533545688 0.244972400449453 0.560046733470335 -0.627497944358650 -0.482268088487004
-6.571087443004024 2.080838889288747 0.188322598604875 -0.636084091442735 0.174663484936909 0.122479246032047 0.741544691798536
-6.633912669478129 2.101383530830722 -9.833381832732812 -0.652574534183215 0.192547645706284 0.107523900982484 0.724921024792381
-3.223770845141634 2.153824781429952 5.607079072863153 -0.636239417363768 0.487495215987566 -0.199537591096270 0.563677716360463
-5.872600730713089 2.122322589700097 -6.587748936412700 0.482603763609614 0.330232013369426 -0.321366561605353 -0.744824783273063
3.470690457235335 2.117019708582658 0.054547663131045 -0.650482053510753 0.190460589089563 0.109499436487428 0.727054148927730
1.538266120305421 2.127211106205886 -9.092256451089259 -0.274150043760131 0.763196912003252 -0.473493243607856 0.343767909021087
-5.755493806216225 2.184364787904376 3.227697738085434 0.479590315759577 0.330458209278472 -0.309989857352367 -0.751463099086545
-3.218992750308606 2.153757998160970 -4.298589700450454 -0.640158599232680 0.477962915685169 -0.187581778089740 0.571455593713874

6.060059231126099
1.613612398702575
4.246009204024970
9.836635279853590
2.535059261846175

2.020339529917992
2.080294744335935
2.153492788271665
1.969616998986292
1.942782413149267

7.464194828753682
0.704895329859417
3.269837996353571
6.459517291830933
3.617851041749562

-0.014313562693352 0.844127991428892 -0.532026214665351 -0.064739191515699
-0.269184538316058 0.778897236975300 -0.470408886617431 0.315553890730510
0.481715478737747 0.331449787242612 -0.311466735469582 -0.749052540732098
-0.561486262486451 0.087026739466708 0.018464555174283 0.822689846697409

-0.153781338378124 0.736479477024699 -0.630099353938139 -0.192156405188064

-7.632096361898880 1.979611719259037 -6.275314220831387 -0.151468702921077 0.728710741067842 -0.643445823531568 -0.178928365743235
-7.619476053923320 1.980889886950303 3.667403918330324 -0.167506481657282 0.723662626765860 -0.645517636784014 -0.177654050969620
-3.874597433044290 2.031854976624718 7.428860409074547 -0.022432956541969 0.843011331243498 -0.534266765813598 -0.058203786843560
9.927275379143650 2.003369116668110 -3.410684855983957 -0.559779776401106 0.079223783432909 0.037285467997657 0.824002419867259
3.436203126653263 2.082920262624057 -9.599140782179200 -0.632648947365013 0.174096604491871 0.125447602406321 0.744115972649995
-8.829830569876467 1.806147703526430 -1.135727324299165 -0.027728069627246 0.757251837129529 -0.645851093125739 -0.093151354402327
-8.934861876537115 1.832444992132952 8.655228743899572 -0.013139710283315 0.759800859126586 -0.643554201670848 -0.091476729259252
6.232602590023946 2.025302307427333 -2.396493027037970 -0.012382639008921 0.839871284547038 -0.537392498018102 -0.075314000812251
-4.025411786217106 2.051814985464878 -2.460025723059826 -0.028025092881905 0.843742016758538 -0.533818634588888 -0.048494006751867
-0.190855283780348 2.035369123170070 -3.357519798742610 -0.554354159881719 0.089693444156721 0.012956965620621 0.827332260061847
4.808335577796617 1.950216552979534 5.067821711183131 -0.671881250459626 0.095265575737037 0.025792598457301 0.734053674621359
2.512256356659625 1.963846221278963 -6.093879975461596 -0.146696457673997 0.717970816640766 -0.645833736469128 -0.214235479312875
-0.188827779444384 2.083216013713995 6.491645313725963 -0.550174481854452 0.078407229596661 0.032669143434308 0.830718407723357
1.167921366055470 1.832773571747028 -1.171601373124210 -0.019471946277610 0.759755729304574 -0.643693199819322 -0.089728142761333
-8.324171991032003 1.881366231790226 -3.002259962664657 -0.560788392805442 0.468092511366418 -0.272437752481757 0.626245519201581
4.872489152533197 1.966987702340167 -4.707744679671709 -0.667780674532221 0.089723192393427 0.026286632442073 0.738463088057135
-5.244565499363504 1.950763924893838 5.099496677660673 -0.670344720240533 0.097309428368333 0.026590528874464 0.735161053763355
-5.249179145281234 1.969305191013170 -4.800382443011436 -0.669374722398124 0.085997229675453 0.033055732013033 0.737190122074125
3.008840597168074 1.900671708363870 8.196907717924207 0.540580690521876 0.282226230049148 -0.376775428675430 -0.697252571492988
—7.374865305470937 1.814863164151592 -8.980147213288877 0.462033420106507 0.814865924361640 0.314935593346729 0.152755412546588
—7.084161194886224 1.814950955961375 8.077771474978229 0.551821689962208 0.286655760865187 -0.370792453003442 -0.689807403588671
3.014515112142815 1.838334003587951 -1.724140076807306 0.546493738139833 0.290513340415222 -0.374593177373076 -0.690381448679123
—7.430070941850120 1.798575165711773 0.983480036984401 0.484353968042949 0.811696337100251 0.272832875533461 0.179199642876957
-8.303614191315491 1.913214399312603 6.775518212654768 -0.556889022405358 0.445505188763981 -0.261471937237987 0.650409232365123
2.969140759627503 1.789627301705032 5.513214894293876 -0.399903834729587 0.703326142687276 -0.530820289730239 0.252267873483552
3.041181255094470 1.767549112605825 -4.357962457962693 -0.401462723966133 0.705084526858891 -0.528367612443601 0.250022313745225
-7.044524344556001 1.883782591000938 -1.698694009251392 0.544955731028193 0.276760051017051 -0.369821098575732 -0.699756729463037
~7.076598806499437 1.772296681917700 5.475629977297851 -0.404997368174541 0.695008827790424 -0.535728135986245 0.256778553188890
1.837452504307635 1.952061998722930 -3.069351161775783 -0.556263517626195 0.433124257312844 -0.266807476135714 0.657105811390692
-5.692657557254273 1.731379118191598 6.859188502525457 0.281912597889229 0.653738336758469 -0.526539778048861 -0.464658300620867
-7.106031005692598 1.819566543924744 -4.373121945982350 -0.395583453528353 0.700928241590943 -0.545052752464131 0.234799549544042
1.203070829523190 1.857254139321497 8.743486785756078 -0.024416530819994 0.753193000640855 -0.651716460189084 -0.085847494587505
-5.750413500083386 1.755693538911738 -3.002090022548284 0.286577637955591 0.651914710536356 -0.530084890542145 -0.460315626965907
3.242088645024563 1.777422055553402 2.719327067879044 -0.501639642154559 0.800166909489373 -0.287037650939791 0.160312112206899
-6.866721516782044 1.732372670862131 -7.112160505829323 -0.482939465840535 0.811761410510153 -0.281781051839765 0.168559554948101
-3.152181756913167 1.752814313506188 -3.167729307994581 0.279050829645936 0.805364288587662 0.482069530133964 -0.202800308821320
-3.008976865137813 1.753991762142212 6.691242353569818 0.266570224709437 0.801311147860505 0.487996259624806 -0.220681694313414
9.066775432667013 1.700078691334941 -2.623988227830642 -0.244248848775353 0.809692344712941 -0.484959352564682 -0.222610047269254
3.242726396497810 1.755612798634898 -6.980585327827120 -0.494600365724595 0.800259814988980 -0.309312558528855 0.138854052426401
-1.116421032347562 1.703476533446236 -2.575564038551478 -0.223489401240913 0.804215055028145 -0.497051303222578 -0.237129995495706
-6.820644618788277 1.747000768745126 2.856202512143502 -0.498504613123640 0.795112339468133 -0.293921299767019 0.181382986697288
4.350920096991846 1.732562694204899 6.887605709964037 0.303817458230417 0.632817140656549 -0.527012609469403 -0.479056497738971
8.902306131499190 1.695616229103132 7.259580836399637 -0.221154714829416 0.796926348579794 -0.499670319543705 -0.257543314444558
1.749341144673476 1.926805933321025 6.860936554672501 -0.555895240334681 0.451054132354849 -0.269786354575511 0.644007744009122
-1.074699017454190 1.712696652297647 7.265993779599897 -0.227535613357767 0.806361949261596 -0.494840138684361 -0.230523726726309
2.616280045641412 1.826258460339009 -8.806240622110604 0.480819624973246 0.809872604726237 0.289562728248344 0.170505949350466
6.914358090366411 1.735312904181323 6.722947739803031 0.264585284901212 0.799707904658701 0.489223612745939 -0.226102080866022
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2.724269240173339 1.835147361723628 0.904107524365275 0.465762138752870 0.811953234703948 0.315102780232242 0.156549713024514
4.406569764779057 1.751249086816243 -2.910818507140075 0.281270790348094 0.659963211822028 -0.533140868993761 -0.448437415195354
7.064752324387813 1.739254754447529 -3.147974811781891 0.258142360196203 0.803483433966579 0.484366372079086 -0.230577776059517
8.720892996948626 1.457949330864078 0.045659053741879 -0.031880087066932 0.062533493952912 0.902862425724701 -0.424161127871420
6.972198593381480 1.430968477354042 -6.176747467683576 0.892507672227832 0.433012499978394 0.125448607515875 0.013888007389342
6.902372705553331 1.445814007765328 3.605276552162426 0.894015400721994 0.428767653186800 0.128310946111071 0.020762079873130
8.696358518765594 1.438869040739118 -9.732264017615819 -0.059261274693414 0.051505675175715 0.901826607689538 -0.424904738040877
9.472430835815386 1.395441080601930 -8.787533392362407 -0.620794404164795 -0.166409060700731 0.709869165307204 -0.288111263959657
-1.320831710176478 1.495214503112972 -9.785646399852560 -0.031540482075427 0.062070251782687 0.901915434433270 -0.426264039024088
9.391336020118457 1.460698249339052 0.985869404661777 -0.568955954860661 -0.141117744864794 0.749461896873952 -0.307704027674268

-0.563023215771784 1.462267464894492 -8.785246478277610 -0.619538462657951 -0.150020271747430 0.714352030866199 -0.288733765516933
-6.026150147380231 1.318293004196383 5.762332781568535 0.193739122898167 -0.257043472970371 0.879311432900597 -0.351005996006161
—-8.175525357791877 1.344746180598466 7.922886124453706 0.184835576445566 0.241037867587121 0.886471436920015 0.349148890294747
-3.943114427015771 1.334710344006570 2.771736381282979 0.683334758301831 0.287955289839995 0.641247886087402 -0.197323358318727
-5.977838118625449 1.353595780607156 -4.063916657271919 0.224492960145634 -0.264704118664461 0.860142413696794 -0.373750810791061
-8.122929017943394 1.366220990765478 -1.936546170578706 0.196197395507666 0.252432727612525 0.873604383908167 0.366878291048328
-3.147779626578464 1.428345308120349 -6.276595571215210 0.892004883268968 0.435910539986741 0.118983367677443 0.012338864166407
-3.937318806416032 1.380811456791001 -7.134437345435121 0.683744952230586 0.300152478947657 0.637695924067648 -0.189064111105936
-3.155904322433090 1.443186390548483 3.636183343657517 0.892614913443120 0.431542505674572 0.128944602093996 0.019569662385043

1

-

.327803030669804 1.453867105362545 0.092056887833889 -0.044335076765730 0.060231156323461 0.902912043071324 -0.423268769522254
6.129670601626446 1.364532383864862 -7.033486463702734 0.668172853160852 0.286573900485855 0.657405723140633 -0.198086226278236
4.020544264197770 1.361544278104049 5.766705614197388 0.195042562643182 -0.260732659052930 0.876522809248275 -0.354520301433190
4.112948122721999 1.359983640372311 -4.019223692741575 0.210608330712075 -0.264766940165998 0.869467808872498 -0.359956008095802
-0.579789848883024 1.409977378346049 1.068008524626491 -0.613306138454836 -0.158687557795611 0.718211641457288 -0.287829598216914
1.916092658061364 1.364201357997826 -1.928088029956736 0.194612249458733 0.244612021740648 0.879177876761945 0.359634942953161
6.114298606228855 1.325992138208542 2.744422723646629 0.685369045240075 0.285791589810949 0.640370062526075 -0.196261616319619
1.928642699641587 1.390498543048799 7.967143197194575 0.202894017934602 0.251730871085541 0.875465133810101 0.359202429713010
5.399206848240674 1.278685185063714 9.423121753573133 -0.874007827795172 -0.308932952445200 0.307384835929362 -0.214907678985502
-9.901886123239779 1.225714385125715 4.638840283420492 0.212280603645098 0.167958334382819 0.903089989272065 -0.333399781799574
9.426119173348871 1.227715846728040 -0.847009168994388 0.516940768975518 0.246739892812629 0.723868636281776 -0.384585314427597
5.354968234381973 1.291235131775155 -0.430284830073500 -0.863982854551988 -0.318302373425863 0.315562658898770 -0.229428495223235
-9.871856728853647 1.229166172608347 -5.241531016158687 0.215043075868106 0.171349125056445 0.898198277482631 -0.342980767960550
-4.717616759018380 1.317773007446362 9.401079949371072 -0.863010426300234 -0.311133749636287 0.319305217410623 -0.237598341889643
-9.584511731040450 1.185389670554061 -9.249168590302220 0.922255405861489 0.299142954022381 -0.239460490371930 0.051157921858279
-3.584267705391179 1.253313856098356 4.691560864801653 -0.773468951160430 -0.412988570413191 0.435299891713161 -0.204206333333134
6.533655637884271 1.243322229305803 -5.120994139741550 -0.773315468153001 -0.409963884081205 0.440980538594723 -0.198617635282130
6.471639577847872 1.261122456043060 4.660607271777332 -0.773865210486360 -0.410947130309838 0.435262228864881 -0.206886162448305
-4.695223673916941 1.302309410683275 -0.452850353145610 -0.866499274006552 -0.305129288762785 0.320458079058510 -0.231044897912431
-4.975366908658273 1.176442877546655 3.338704482464536 0.196445442265364 0.046618571792166 0.924621360686963 -0.322972500901568
9.310447449908699 1.233651831918990 8.997984591652250 0.493063335657471 0.237496181269811 0.739400610418868 -0.392136262318075
0.134562807538405 1.244956336944144 -5.146711121467719 0.203964298650788 0.164378659581936 0.906947254601361 -0.329886190255053
0.181952440417749 1.228976540072896 4.622128954685680 0.252025375810923 0.176085630485373 0.893406531892885 -0.327569579562968
.6848569971556867 1.256855833594277 -0.854070878151244 0.508163140304863 0.245482019091322 0.728867968233453 -0.387634216783796
.565263111256845 1.206807010680198 0.735922890924369 -0.910883475849711 -0.291046996354989 0.284828719708013 -0.066749829709017
.592259650872882 1.241098134875209 -5.227394372400937 -0.771846547472443 -0.409532534164053 0.444986680026505 -0.196272426018093
.658152915148532 1.295657749423712 8.976999258679450 0.513374410583239 0.253447926530361 0.723319263106596 -0.386031225051425
-4.987499903961062 1.237690672306789 -6.566612623515638 0.191583275007936 0.054609812355074 0.930602690163097 -0.307070431974464
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.851419632382881 1.165291226574752 -0.343424349131118 -0.474847138714608 -0.217736523763546 0.750459666551626 -0.404871942659823
.823081373523408 1.143684282852877 -5.717755964036973 0.683976399697376 0.363006260279816 0.575396994946970 -0.263288886701802
.879082483242740 1.159935382997087 9.437124252667152 -0.470972805153455 -0.231467130967514 0.754070136453020 -0.394950393590484
4.182582831303694 1.144016959203009 -0.362664346221237 -0.469506501420921 -0.230256814958119 0.755938929055627 -0.393829632997646
0.496767588884722 1.199770551008564 0.643487077106499 0.919507708519049 0.294719696348798 -0.254596889717516 0.053162941080117
5.122883102262762 1.199145325512044 -6.449671568257406 0.183072603055086 0.045041775502950 0.930428464326584 -0.314258704320265
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1

[ed
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0.495104284796675 1.217249589367345 -9.182386241933150 -0.918540363276363 -0.288614128453521 0.265508184326302 -0.049908816304263
1.273941974919948 1.174033343477194 -5.592682474774767 0.697605943761518 0.379789270166226 0.556608413140357 -0.243501810910270
-9.708634767693024 1.047910486968290 9.290711864821899 0.868505688471200 0.323092122842583 0.302083764306905 -0.223729185830572
5.081835793198408 1.188903896286559 3.328968861572228 0.194392503355994 0.045224980950031 0.925541652746257 -0.321774617968519
1.269559188958251 1.173050501541141 4.237966693291547 0.703106166317390 0.377208659564659 0.554841447138179 -0.235597781342498
-8.854096689016995 1.150648385299570 4.159395337373134 0.678639199853140 0.368585220563798 0.582099412222596 -0.254468162831296
-9.758488325391637 1.076768486133748 5.840606029526789 -0.365271371126823 -0.111622121478348 0.879772595786709 -0.283050361480990
-9.622848301383668 1.060441550065952 -0.446692066985658 0.878432098860410 0.327041949753342 0.276095643418683 -0.212536600326743
0.199922064983580 1.108589917141633 5.814293976849461 -0.317543944705263 -0.094571587293185 0.896933581726859 -0.292800628463287
-9.745525832928235 1.103362882037134 -4.047134853253221 -0.358507162904805 -0.100455304785705 0.880959407269307 -0.292047716358250
4.239771788002260 1.169286512469710 9.567994159322618 -0.490937805954678 -0.218782183435497 0.745888632528395 -0.393401289729107
-4.733508694265563 1.083468756874682 4.508669988684716 -0.363936125882463 -0.233014454684656 0.841032099579741 -0.325453172764023
5.702592218652226 1.038498944112411 8.322869600017716 0.926644170301757 0.291129140571467 0.230728071747965 -0.057783752589743
-4.279651150287846 1.076936242046329 8.331600872312988 0.930188995931708 0.297510726775317 0.208433074228304 -0.052834201696641
5.326004409824709 1.075688760220857 4.494819943532345 -0.363945751415657 -0.235434318678558 0.840730379753433 -0.324478967229781
-4.757356973425594 1.088963405586699 -5.428688222956827 -0.350496023167931 -0.225776116803962 0.855093031900289 -0.308210300963417
5.792388385447879 1.047938356417620 -1.510310833897417 0.927314318492381 0.303514365428089 0.210445813482896 -0.060660895849936
5.379808487848234 1.096584231975718 -5.312884775821582 -0.360547783026876 -0.229655299341903 0.847681047569905 -0.314166486483479
-6.338209862098482 0.980131636647666 8.389674386080904 0.079124773822234 -0.025119424622714 0.898666635995207 -0.430704727189362
0.271781335612545 1.088114562608540 -3.979867645681133 -0.354054958627584 -0.109366784313682 0.884872918052303 -0.282283388915654
0.399596208836776 1.054992246752709 -0.498270332311360 0.875119160492989 0.324792392810122 0.283896632869667 -0.219269373958125
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-4.329587209328179 1.080564779324220 -1.538617022625287 0.931322584171296 0.292773111772959 0.209305101731502 -0.055798957198535
-6.320176330115068 0.969573905173536 -1.382666873379749 0.080501961489915 -0.025124782886296 0.892832081022237 -0.442424066455132
0.412312497275362 1.066476191058443 9.363094490562249 0.877666848341746 0.325221997740180 0.272923456945386 -0.222360837731677
6.666378775395886 1.019727585284291 1.001762020601936 0.167762095101101 0.354289797521134 0.887286212861900 -0.243018096620209
8.794976673357672 0.977875573037481 -6.830066994935251 0.186034780928487 -0.376028826599032 0.861798492339554 0.285125832664663
-8.564524402896977 0.950443504064194 -3.861734904782677 -0.788446329256001 -0.326051809696085 0.506306655763750 -0.125284370956530
8.883648976988470 0.986670959087702 3.031900965869529 0.193570095548091 -0.373472184144651 0.861353250888656 0.284815243558469
-8.038857125937868 0.962199306495610 -4.889797060709312 0.901608438112583 0.421775620098513 0.041595962143612 -0.086471536056968
-3.362539006509325 1.023717741950502 -8.907584539796785 0.186745475676394 0.362727019836656 0.880066017771262 -0.242979506870534
3.734590966053783 0.977398081094473 -1.417794843980021 0.079974334210944 -0.020951460920353 0.898653796826238 -0.430797511137896
-8.063225171557470 0.957056934594598 5.031710286541591 0.898159647487809 0.432448017511021 0.024651909557018 -0.075433700231102
-1.133828925895827 0.955437504980295 3.077501949674918 0.176265692900782 -0.363505760714700 0.868531930940423 0.287134554469389
6.674084927191318 0.966479400356153 -8.921265758835551 0.213554302570194 0.355670217893491 0.875957579706987 -0.246153558802697
-3.388183324579273 0.982287294976680 0.984714057132202 0.184145140397373 0.356060519559311 0.883761450450936 -0.241406653545512
-1.133771539239937 0.983031325449264 -6.773939182072046 0.189884477879720 -0.365528988047206 0.865736515871620 0.284310972429836
-8.630945535785289 0.922553549931109 6.036648521765116 -0.774197983100253 -0.332357419491326 0.523101542822475 -0.128533281951852
1.967685870240954 0.997086622059721 5.171093502227931 0.898555825580318 0.434924729276998 -0.003108886743481 -0.058551199835854
1.386904428058786 0.953057718767776 -3.703928519784695 -0.765822781720725 -0.334832784569819 0.533198369586666 -0.130774508390868
1.979754033670940 0.998094440360158 -4.693913838381840 0.896356468735089 0.437676957129280 0.014031632657297 -0.069188694450662
3.706341918870461 0.988364976043839 8.527061504991648 0.078046247735809 -0.019145777257163 0.895972770870587 -0.436777994278629
-5.247579483016108 0.841181338519302 7.744055694828587 0.651411897720928 0.181671620990179 0.676904832364792 -0.290616258243775
1.336272498756550 0.958088906150887 6.137103088915691 -0.756301425077496 -0.329943127601136 0.546929401923886 -0.141470549181484
4.687785651845637 0.848562363394117 7.805725361442592 0.638815761064806 0.167101937171709 0.685545976833823 -0.306623677584779
-5.309176618991072 0.864631121742853 -2.111932467881120 0.651351387882462 0.177789867663030 0.674025177062692 -0.299703508730812
4.803359926579107 0.850406212605482 -2.074174995006389 0.645167549687566 0.188928283906568 0.679492304590872 -0.293862458255640
-6.390558393730431 0.569563938345850 -8.057656082255065 -0.339454470016956 0.795581100178344 0.477010098052335 0.155829208368088
-2.018460555110515 0.556883101580519 5.935325926929604 -0.496041627652568 0.799044637260753 0.265698608795763 -0.211836306105963
-6.317669204521285 0.564590650540226 1.777709347113813 -0.318942496682458 0.806814567866449 0.476925201728923 0.140954917772531
-8.310305985814194 0.644853279763862 2.176867374166765 0.274987899829689 0.818259207083062 -0.470231037583592 0.183619977845861
-2.011206607395538 0.564842083019185 -3.938980750415717 -0.492640393641053 0.804748254593907 0.264917723211534 -0.198756859528585
7.724583197704190 0.604379558507558 0.661700904878540 -0.344611648296840 0.466941142319620 0.680390335729787 -0.447524046854345
-8.328018073110925 0.633655512707187 -7.569507202648401 0.252019249221412 0.814008653592422 -0.481530354390088 0.204950549400297
1.715831310685328 0.644126251182858 -7.691000237613244 0.300216261189026 0.822737645584177 -0.457812773487657 0.152906597267179
-2.585975831118617 0.642665165726091 7.834424181427446 0.507367661326298 0.792573973980943 -0.214150909697220 -0.261808975942748
8.063035839312905 0.574368910569361 5.867107966150016 -0.492393697994424 0.801096302394830 0.260132338022701 -0.219372576179315
7.811453695436677 0.617856933684430 3.295923289782689 0.661533013206040 0.442602677243942 0.340740108563305 0.500372981835850
7.439626261730945 0.604486733083154 7.774341326696662 0.508248448699732 0.790725001103869 -0.217049896782134 -0.263299884790077
9.002861318707827 0.537284400707839 -7.965502847356706 -0.695987886429789 0.200844587885970 0.381334535093456 -0.574322458036396
7.784445177511271 0.547322574683085 -6.471712285261167 0.662179454232645 0.433696131262008 0.352487066530747 0.499178228741070
8.113121033844651 0.544029789361418 -3.864708027727939 -0.499484576777018 0.799088978230907 0.260691492698441 -0.209790152453414
-2.292680956612807 0.619329183648808 -9.148021985193088 -0.335058122572234 0.468841673521450 0.678576891462881 -0.455474414254575
7.454073103264408 0.610143959898807 -2.024695880475137 0.508862822246772 0.786245001338463 -0.226098069522538 -0.267875136889395
3.676313474332527 0.604848688571989 1.686722679401049 -0.314724178693313 0.797943841170551 0.488091609961263 0.161247939426300
3.640648567544631 0.598493342330003 -8.191427405325671 -0.313521208090345 0.801133898387197 0.489056558721728 0.143918766336305
—-2.239471179390720 0.616210099634814 -6.543834617814415 0.669618942990495 0.428348145930117 0.340492363794233 0.502188497741972
1.694050689793789 0.638209261468909 2.215531088512206 0.287068566056173 0.834921532380693 -0.448736421430864 0.138323162308236
6.409428607200054 0.484130355738459 -7.891976790986733 0.421608321357907 0.550985292702346 0.674706318102952 0.251859117165600
-2.612048248768959 0.641175570973099 -2.008327745852244 0.503655425386078 0.792988508115146 -0.218704266636001 -0.263948635593541
9.109746599838425 0.580282590541844 1.945955909763260 -0.676528873285591 0.201318267642026 0.416473808828170 -0.573000179131473
—-2.274258582614507 0.613176472612608 3.324508945516158 0.660044186255278 0.440236673268758 0.336535218346163 0.507225187182740
7.756657464419176 0.565906671964656 -9.237639357846117 -0.328180082886900 0.483758947674576 0.682019887284700 -0.439458743330133
-0.989165908674471 0.587252496642423 -7.918351780880798 -0.689698895930349 0.195163674646332 0.385035236220392 -0.581355691397019
-2.327797260542389 0.594112215435480 0.700789228181430 -0.340652032395397 0.462520286486414 0.685685395401961 -0.447064554562167
6.483262827259979 0.477491656976813 2.017640890029753 0.381636340706673 0.574981258994292 0.683542259384765 0.237739847086116
9.709176368899021 0.478213967951917 3.669094761082688 0.001049536532059 0.634389408938739 0.768531777418773 -0.083113677556513
-3.580800303823596 0.482975584790823 2.016078481981321 0.394353798834422 0.569840973006685 0.6787160323711562 0.243127321027515
-0.309856498749069 0.471088705044263 3.729745607644345 -0.014620380865111 0.631189121003620 0.770230194073483 -0.090177525623413
-3.649436535600778 0.475492262093827 -7.897236046630441 0.404479415969132 0.557183527208546 0.677555359587547 0.258576204935611
5.965361293191640 0.380758981450982 -9.677770168575872 -0.750976008070413 -0.073712665574136 0.019602483859632 -0.655909460873309
5.938646932835658 0.403035014515628 0.169134613541512 -0.741995167001648 -0.077842498214905 0.028754193944074 -0.665249512550356
-4.098877673385640 0.392515644286359 -9.689118244064357 -0.736968418706288 -0.087375757527852 0.038097145965129 -0.669172350217266
9.645110294811554 0.517177364114995 -6.197924460652631 -0.002878453091963 0.627474700150219 0.773828998456025 -0.086347532261985

©

.122592348937458 0.308712364045161 -8.401787010493136 -0.830207677615704 -0.062944670371187 0.052392701124424 -0.551405645027950
.778001876857067 0.356145991669426 8.750233948658158 0.073179262816093 0.638870324500932 0.735578560924298 -0.213104867786512
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8.225076660403781 0.364020931659360 -1.094141022560427 0.091937064304493 0.638172640253159 0.738163256959561 -0.198489958220150

-0.996389104785962 0.566560065400384 1.956943077502974 -0.692325019695301 0.195160446486724 0.389437583456836 -0.575271097676829
-4.123052386174989 0.396256111574246 0.231149446388127 -0.746506948405715 -0.098854260944027 0.022470677608340 -0.657609519185223
-0.315679377430055 0.469475909631215 -6.137031686113994 -0.004368788274699 0.638485691836840 0.764431942618256 -0.089222979739085
-5.464954251593383 0.313221947229394 -7.413995334247434 -0.015017921140036 0.525858327718775 0.847356152726120 -0.072353518578117
—-2.729552561401777 0.300509007268166 5.058194481152755 -0.731228998004535 -0.185048462856675 0.142479077818603 -0.640906335789892
-9.168200971843955 0.310338326605526 1.395123082296690 -0.826688824485732 -0.082616484280981 0.014292668783830 -0.556377411128888
-5.415053301160664 0.260931060799846 2.443092487617973 -0.005306347808556 0.526828665462840 0.844778570279399 -0.093661983303116
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-8.677483640890749 0.266048089505259 -6.483523946948477 0.443462453637530 0.646495468020543 0.583655295449611 0.211497418746205
4.560508242937969 0.367165059500981 -7.457336151407894 0.014937015061312 0.531742393556898 0.843912563376530 -0.069559311746837
0.893379791872846 0.342320645515242 -8.467348883677728 -0.830555651351413 -0.092081422439598 0.005190963038006 -0.549246188473319
8.255112507129139 0.331164184377911 8.661777469071568 0.113710227085473 0.640438008493483 0.736244485041540 -0.186690116982635
0.875649378775874 0.326723566413794 1.425412952879629 -0.831322880609327 -0.092422662169858 0.002253265751119 -0.548046752099035
-1.866667815369802 0.384472909188927 -1.049607958215743 0.104684717759220 0.640143484213774 0.737831041559243 -0.186715782937397
-2.747335165872640 0.327013602579734 -4.797063374853148 -0.744432857062344 -0.162211450590422 0.148654020377231 -0.630403956879264
-8.560028181377051 0.272451498344408 3.322914103414680 0.411945675036921 0.655954474479682 0.605293373281522 0.183424154597849
-3.622364685507638 0.165346837297151 -1.591138188777000 0.701626973229676 0.349533712080130 0.412852432051188 0.463787283035518
9.178943770945223 0.225913289935453 -4.182852571859288 -0.386326522426259 0.460459458736121 0.742534994435059 -0.295585329422484
-0.940706127304912 0.239867233843110 5.646464992171719 -0.380561754106666 0.458277474481052 0.744212469170176 -0.302162718458376
-3.586009751166577 0.149504977698176 8.246420821891187 0.698440032244274 0.347294197770371 0.425440571922352 0.458877523219469
-0.926158588272541 0.246170768375853 -4.196466456232830 -0.372064839460800 0.468743537239781 0.743978004631323 -0.297227152457077
9.135550719371897 0.231753292362979 5.583467474827106 -0.386955517033521 0.458199127262231 0.741461002057076 -0.300922863940192
3.952196177779715 0.194392990603804 -9.276430022156454 -0.621714210411162 0.158770914420094 0.434568851337396 -0.631991416677734
4.555607525725028 0.311446460852042 2.390718201187923 0.014012265496414 0.529278484365031 0.844432945377414 -0.081246188619153
-6.125007102021700 0.287431531129933 -9.178416633895791 -0.607412381716307 0.118220894137390 0.448008837088479 -0.645261265393878
1.548328369055433 0.317467435458673 -6.536009376828503 0.402530319302356 0.654043024068709 0.621679127317405 0.153987426003782
1.534657716593799 0.301698790205403 3.314898902660294 0.410038093755195 0.651384750387937 0.617235644311679 0.163054678015680
4.004198354097559 0.229673185627679 0.629085586703420 -0.593703522960338 0.144859434427887 0.461619824914341 -0.642992230379006
6.469383280274220 0.107063033350926 8.205539620648933 0.707969054112744 0.328243228780947 0.434627465482865 0.449594447726066
-6.071273878088883 0.264600497388533 0.687002434809596 -0.602383246493258 0.133346934657484 0.441575715521982 -0.651432196642863
6.465437971327683 0.073178811415545 -1.594724964929201 0.707521563449601 0.342826073977960 0.423816809180063 0.449736403364371
-8.588071727296541 0.036134672179982 9.492106103888107 0.779699581735035 0.382251531000381 0.341162113723892 0.359945470105575
-4.788953219488080 -0.021053153440682 5.670667300470129 -0.639325932726354 0.038777467278511 0.510050822623784 -0.574113941753588
-10.032554526303285 -0.042512144417038 8.141199650725953 0.546195417709574 0.577256984291868 0.598956522560140 0.098468390064963
-8.564538704251918 0.028747571385439 -0.401296532954021 0.785760050184697 0.391180910378278 0.317200507712239 0.359085612071079
-6.106947959740353 0.013423536929794 -5.447934694507080 -0.355199268332918 0.322347044295843 0.803921033352983 -0.351620299388653
—7.185512920241253 -0.057558738187249 -5.033955228592187 0.732495247614770 0.479007772012143 0.299483872083612 0.379883767665251
—7.220189003906007 -0.046167682794251 4.759144402878206 0.729481387190762 0.477851087209068 0.310954554274328 0.377918654436914
9.967088103448175 0.031286475240814 -1.636816259991061 0.528441109096430 0.594400263946624 0.595499994544811 0.113216946320983
-6.077410350678107 0.003009328243814 4.368885724091175 -0.336655324847828 0.343179771489396 0.797629718191488 -0.364249460328847
3.890333582811488 0.063150519184271 -5.576303820653617 -0.355211109405343 0.324559234208086 0.799709539011431 -0.359097513858575
-4.714342670835928 0.046956946978598 -4.128639436019051 -0.645182469974077 0.072060020288152 0.527968282586619 -0.547536689635276
-7.318488069151453 0.019502357158119 -0.537202729261091 -0.263108739812101 0.393824624754816 0.737863171530604 -0.480867857181175
5.304070341545248 0.000059895036955 5.654992142539752 -0.639057850387444 0.052450311986476 0.515563418735261 -0.568373459877140
-7.331048464193790 0.039515328769624 9.235401216165501 -0.280963882540676 0.390321940517307 0.736917632007703 -0.475037349157552
1.440203913627448 0.041437902493166 -0.409504849350911 0.772862148470633 0.391086964731084 0.354491304638305 0.352237136620514
-0.059687010798161 0.051021041380002 8.158920397907091 0.516771186748978 0.595024694452891 0.608917973729572 0.090066946247605
3.966104015687392 0.026203609232787 4.317597890607811 -0.342651658601985 0.347609349283016 0.795576264642002 -0.358909443016794
2.622385591677455 0.039637287236913 9.088631624179337 -0.297749087481092 0.359614110320398 0.751901367101860 -0.465475570479268
—-2.296344045445545 -0.148033482766863 6.974543224295436 -0.018692767948977 0.942126915480873 0.023028191772758 -0.333941848136138
5.351015262106300 0.025827303624650 -4.188196411654870 -0.636603466505795 0.084382284599843 0.535056081050134 -0.548935922134622
-4.954026036614034 -0.126391121711462 6.810195896266466 0.473966326710822 0.490779499252216 0.717079394305621 0.142437868982509
2.760255871225336 -0.059611014728711 -7.799568270715776 0.011318622225244 0.980071873694905 0.017450071355508 0.197551274844702
-0.074012783501580 0.006802371258420 -1.741152669400277 0.534337903295637 0.577575707830344 0.609937376992410 0.094157861984640
2.830942064987628 -0.004089127747441 4.709829983838887 0.733383463641381 0.480930078694143 0.304606645161102 0.371577376044767
1.475773875613507 0.064067196759702 9.373428929480125 0.781905402463153 0.389841513516086 0.330824436042777 0.356654915086559
2.817639245331984 -0.005166337215476 -5.137456092024490 0.735500872098206 0.472087662264747 0.308054577142145 0.375864448680583
-5.005551101809012 -0.099044404448851 -3.012935929441732 0.497615590768866 0.506164839505704 0.689321913441776 0.144952332581732
4.982286051179893 -0.107073064312643 -3.089174105180483 0.510719804616315 0.485314925152245 0.692103572240499 0.156931035455339
0.463104774841966 -0.052693603146007 6.931951809190915 -0.691806997152465 0.197266629942240 0.509413734354545 -0.472214572681824
2.717141016533906 0.033662782266536 -0.591222449081602 -0.253116423584054 0.404876202451982 0.750826468746757 -0.456362740185213
-6.948642940832444 -0.128914088198751 7.335655372685357 0.122732260215910 0.516561958848586 0.827833396891602 -0.181086724979266
—7.259089598154612 -0.074766106266561 2.130145993660044 0.014926742462743 0.977731987910065 0.018321321006203 0.208522615975992
-6.984394619778949 -0.093083666567805 -2.400598007437499 0.123146776352445 0.531058594831622 0.817109880353137 -0.187464886735479
0.454399574347047 -0.065570115390398 -2.927115983106193 -0.696735324235442 0.189467073541832 0.505958596108763 -0.471877118569737
=7.770764196403985 -0.099669655171726 -3.284179197576816 -0.838145481096097 -0.151976542110226 0.121317221925131 -0.509605155812594
-9.591704501233613 -0.075189043049617 6.961755902110978 -0.688106639350276 0.192283282654348 0.520149949235246 -0.467953440423626
7.710602068083476 -0.146895137333071 6.844502441880872 -0.019418101996763 0.939911752006791 -0.009335738851286 -0.340736965611994
-7.800193417751432 -0.131523222989805 6.553444343076952 -0.839150645386889 -0.155217532256512 0.109344746402893 -0.509683665091450
-9.570057175794545 -0.038715913813764 -2.858316234751966 -0.693837968722212 0.189575239686436 0.511671306542804 -0.469938906367674
8.103287814900620 -0.141087519110909 -8.269669158864058 -0.532658954357349 0.211423722448410 0.133953063517871 0.808474504671094
3.211158104582292 -0.104408058898928 -2.537318542863173 0.092832366541849 0.529334104071185 0.818877821170258 -0.201560591348725
3.133406261894510 -0.106180629949768 7.313956667437955 0.123062525650869 0.518668234870766 0.828730249862671 -0.170426083329483
7.369466722950916 -0.091514558380442 -7.378464775416297 -0.105909185279343 0.817387607708449 -0.531461725114362 -0.195471680753480
5.024152370615118 -0.114216500318524 6.778642588919576 0.484096017288452 0.478436342033309 0.717052232415091 0.150285756663032
-2.642838165777742 -0.119336131603576 2.436481107084253 -0.125680237903646 0.811847300278912 -0.534153975590995 -0.199469218654558
7.414444426311052 -0.120459214971182 2.406817297035769 -0.125054792309791 0.808634199891153 -0.537249011277190 -0.204537354946308
8.212336144719041 -0.146681887426757 1.559159594652529 -0.539777275150297 0.204633775193539 0.131527791202851 0.805894503903992
2.248094101038339 -0.118408648397792 6.487203438265434 -0.833082538620035 -0.153207327554846 0.107742903366645 -0.520473309021726
2.280387545830212 -0.114010090595925 -3.341089897447914 -0.832824907837005 -0.152130802299233 0.113869540427888 -0.519896739401986
-1.839929550933155 -0.158387634277867 1.578684888246833 -0.541136975360772 0.201045523067584 0.128414613748876 0.806387722207874
-7.309464885762828 -0.068823571218608 -7.704360442667237 0.003648803435673 0.981169367502269 0.020151251455697 0.192060629941312
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-10.047113964171535
.841884463375006
.331271901545184
.673405560832153
.993558024565989
.106956846161431
.711939816279678
7.955265107539345 -
-9.672334127349854
5.465751201954628 -
7.648568077108047 -
7.726161340086948 -
7.705307481119986 -
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-2.117298830644286
0.034334096189834 -
6.533945094002318 -
-2.420485892614658
7.971137952708395 -
-4.507329516830667
-4.585413238587601
0.067047808218792 -
5.108124726948816 -
-0.990026093298155
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-3.632798627291571
-3.658136436495582
=7.799007303145099
-8.616292770796864
8.914948808407269 -
-5.940097030436188
=7.779328779372618
8.986232594504477 -
6.418822239649172 -
-5.909520568434070
-1.156888201784882
-1.123316073326944
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4.161482470841685 -
2.277767357946466 -
-4.049763651733856
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9.641945854946107 -
9.605105863964026 -
-6.813139092262903
-0.497429945478894
-4.134993624998765
-6.784239570813630
5.817721664875519 -
2.280531714170660 -
5.890278808690802 -
-0.506419466922862
3.252149777975983 -
-5.547611680601793
-5.453269889251790
0.816420917622336 -
4.536186585082678 -
-9.140147635687828
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0.056330920841380 2.040487481049594 0.005799641730265 0.978744511673400 0.008824621876812 0.204811306020272
-0.182362656040725 -7.803609648347809 -0.489199319359055 0.545266130434347 -0.179341555366788 0.656662378592235
-0.132238948381925 -8.272290337486302 -0.545164156161684 0.205816752446175 0.130298985524401 0.802158140032463
-0.123223277243961 -2.890401850389047 -0.024758174476260 0.943399638545427 0.012852358115155 -0.330482937047952
-0.060791136464121 -7.433512307976684 -0.116866831032484 0.817156777576582 -0.528662184968273 -0.197770672369927
-0.162678854104862 2.049870085894208 -0.493829347477377 0.553027303669819 -0.177721728637478 0.647076783802251
-0.171858884170068 4.193515674468031 -0.455389265001041 0.760060788580858 -0.414320648949879 0.208006285571872
-0.256075749407512 -6.669492218644378 0.125101728007451 0.595731659472223 -0.546696276408164 -0.574957849684192
0.171702836431288 4.153189170746431 -0.451194934469864 0.758486621985950 -0.419873668011230 0.211724533977225
-0.273403874189966 3.156257091462990 0.114790861849968 0.594766659624972 -0.552577893819060 -0.572479999560497
0.244411771615160 -7.928650741874765 0.204154783137756 0.665374822588906 -0.467765473080163 -0.544786776804328
0.257313699569813 -0.187418993548896 0.409049735330234 0.211757740286675 -0.442320445388808 -0.769538561116981
0.167520272754891 -2.881843520917815 -0.020492462413181 0.944413146946870 0.009297746889601 -0.327989967469940
0.258423764080551 9.536426314842222 0.417797614715470 0.206588986636096 -0.439177964585761 -0.768042224855537
-0.222505092747828 9.678458994376951 0.418285126588943 0.209052180909344 -0.447622665528986 -0.762213019986043
-0.120131050593252 -5.661117437621187 -0.445822650678384 0.756428085834282 -0.418053719544215 0.233001722479535
0.174307546027494 2.043640895330205 -0.486057646904230 0.561049290982664 -0.192270075142011 0.641875280080685
0.342288076938788 -0.507887673639786 -0.337716959325079 0.819678752693857 -0.379747479419756 0.264321489177114
-0.248405031282651 -0.175400981770515 0.412710690397613 0.211502681937435 -0.437508225337750 -0.770404474498046
0.160317672151314 -5.578201835719922 -0.440738727709890 0.762003997415620 -0.420566792026814 0.219597029268517
-0.254493750533700 1.904367684833590 0.210350340813234 0.649083259285691 -0.465924238628660 -0.563345595964967
-0.215953197305313 -7.986423758809739 0.215642925151018 0.654909736988067 -0.450996191501986 -0.566739623179144
0.135342290260276 -7.816366265831682 -0.488669960130731 0.560742801259892 -0.181704499118219 0.643236081000776
0.282063386230408 -9.195989584753868 -0.567202404042969 0.551385697089124 -0.143426252791911 0.594713507416376
-0.258515201532267 4.494521653619520 0.370344971671641 0.275546733020633 -0.317440810494443 -0.828341675706238
0.230875833346835 -5.347627136517205 0.361582040342248 0.275410491155992 -0.314954400488047 -0.833193383960991
-0.333141039095175 9.302894592941710 -0.347565843680279 0.821347783982794 -0.374100478947381 0.254233423657690
0.261151219330459 4.433475414401974 0.365290198027183 0.273271240654403 -0.316310592937557 -0.831765296854801
0.243219326081276 1.899009461593200 0.183626358890747 0.662770597907046 -0.471566839585807 -0.551943122679790
0.243481249015165 -6.712620696379411 0.120372116498324 0.586163681740700 -0.556210052300273 -0.576674144988337
-0.297600545329985 0.740870969078843 -0.586825327441361 0.555335772703878 -0.109967715212973 0.578917365640007
0.237122893241373 3.137776098346887 0.120896321183446 0.586584175912202 -0.546890258549707 -0.584990708641724
-0.330517543012406 -0.535835893199852 -0.352267520952391 0.814847201750753 -0.380548330381686 0.259064856213140
0.260308786509563 0.745346104475052 -0.584851162486721 0.549421145571512 -0.103063580610625 0.587761363895702
0.314003983026085 9.290506492323265 -0.320921215194635 0.828874902523061 -0.375273327952541 0.262956077953732
-0.262180570400647 -9.189577639088558 -0.597122473814022 0.542325194477166 -0.111014981938636 0.580520291192901
-0.242543710648662 -5.350541349014151 0.353930058479347 0.280870869587564 -0.330966942943165 -0.828435846038055
0.408256222746566 5.556812052118993 -0.638954503306100 0.494558237814323 -0.257129349684306 0.530126201621626
-0.453888801209819 -9.138656144726875 -0.310820795626877 0.747382318728887 -0.481581107239874 0.335990684107349
-0.441526051560405 5.550158010045182 -0.644339871499970 0.491313038054892 -0.242469080748998 0.533522608249557
-0.417171924324781 -4.333301121135658 -0.628696253123493 0.485073197394476 -0.269115530625786 0.544997106096888
-0.530664719382997 3.810958680883834 -0.114488457419027 0.734719179291799 -0.643722030286542 -0.180837132310732
-0.480145328095381 0.633935443682740 -0.323397436326983 0.726376826291447 -0.493583711822342 0.352371854477028
0.454285232529910 -1.581879806054214 0.204244072107684 0.552266310744195 -0.636726854576360 -0.497860616726371
-0.487738277535140 -6.584240319090719 0.473829316064037 0.321064618199986 -0.258660739752149 -0.778137463363161
-0.471830555801481 -5.968503022506461 -0.112946472058809 0.730804037045180 -0.643810054229313 -0.196665116279389
0.479013429612094 8.200326072623286 0.199254321150884 0.560648919515319 -0.641477149605111 -0.484228841647736
0.424849672614922 -4.315826239923522 -0.629915811574273 0.481482516966781 -0.259721660547750 0.551294218386497
-0.554749099050927 3.269397463812810 0.478493570474290 0.322147169131550 -0.285651368944825 -0.765289748954761
-0.413747237992147 -1.602683126662948 0.216707330738553 0.549644844582281 -0.633122476591034 -0.500084400140144
-0.458997231095205 8.254116663897468 0.214289187020785 0.542496341990644 -0.638102005786865 -0.502596949317761
0.596492601944818 -9.643919143474644 -0.625202186081798 0.177151003186587 0.130038743561984 0.748885621280946
0.440824439208642 -9.276139113723978 -0.318752806893085 0.736948093353932 -0.486447633091483 0.344489268424255
0.435345058428433 0.641939751140860 -0.303763715512747 0.749447073806668 -0.489194536966689 0.326719135806982
0.496394860891827 -6.692931980182149 0.471621408811701 0.318813743822133 -0.273417790177103 -0.775353954987818
0.502635925402273 3.754154284651541 -0.115771336151146 0.731302193541534 -0.644456202797434 -0.190971993033094
-0.595103133406575 7.372401946482158 -0.023773600320519 0.837100807116568 -0.535952240257895 -0.107015189646773
0.523647512268643 3.208827651286468 0.474684919735391 0.317608646702443 -0.281865836907065 -0.770941388498716
0.569445344742378 -3.417371476270223 -0.539402842886505 0.066665130967487 0.012967911452753 0.839304573245969
0.568738625571255 6.369096976840234 -0.535200120331010 0.067837672998317 0.021590638587519 0.841720099347300
-0.607948376494618 -9.524627277314243 -0.640852041902677 0.156080576920850 0.149656108495949 0.736580316793133
-0.564067670907232 6.353611230415963 -0.545447600389274 0.093138077192410 0.001934970508004 0.832951661079811
-0.597109711796917 -2.434890154925029 -0.043569107976645 0.825156043176416 -0.557256277247360 -0.081759884466490
-0.636089906758958 0.364063538951003 -0.636923466830691 0.170332808253539 0.161261333201403 0.734377296930496
0.619386925583500 -2.462182066323600 -0.030188749642400 0.833452270652403 -0.548354520117830 -0.061263955191661
0.503169407276050 -6.091562856008093 -0.106468630149207 0.734072224091313 -0.644161010476619 -0.186705632463316
0.627539101592375 7.375336736639815 -0.004894362742053 0.838514753755149 -0.537587684759887 -0.088704758287224
-0.561488353550246 -3.485776624165405 -0.537689022849285 0.090441055264576 0.009005352417492 0.838230179519831
0.619157736403055 0.252817379604405 -0.643456137820988 0.151350551706395 0.148691257513599 0.735491753276467
-0.767908239737875 5.113830262631055 -0.649365025233109 0.105702782124824 0.024050160834498 0.752710818056251
-0.752905956571451 -4.724140358999492 -0.642575140301197 0.079817159035156 0.017214641201096 0.761859610636219
0.592348689519798 8.639205243722534 -0.043780809310181 0.736712972296798 -0.669285309199682 -0.085990767383766
0.671276446474740 -4.785572513168274 -0.635007058160856 0.090293866946404 0.018243265490184 0.766994287424629
-0.670271980213119 8.747021575457973 -0.023489963892375 0.732299790764852 -0.674989788034689 -0.087028869296196
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—7.309366101034794 -0.787748685770598 -1.486177701740878 0.528279511845106 0.249353480022320 -0.403569966437419 -0.704183840737031
4.547111210514510 -0.703595470478348 5.068980967013129 -0.648283829663133 0.090318860094405 0.020111573325444 0.755755320409274
-9.171919041898439 -0.589445957570994 -1.185008061860652 -0.040212788977749 0.732603246441816 -0.671947412772469 -0.100807189098434
-6.092023025095025 -0.699926453917683 -2.813612993860794 0.258118606101309 0.643530902752448 -0.560923289011237 -0.452335966104568
—7.353824775088935 -0.729594307536599 8.271805522600689 0.527690440517271 0.250096548385010 -0.390009698216537 -0.711959936211048
-6.021342575149390 -0.763939927350561 7.022704391980481 0.294004642737681 0.647638045262321 -0.544861514697524 -0.444130793999929
2.723425012970797 -0.743297797057612 -4.246105123399179 -0.360290549752981 0.698829750969864 -0.551289433301831 0.279119436169963
-7.292962445952025 -0.766127341204544 -4.122112588994971 -0.374340191782785 0.694447069677477 -0.547957373130209 0.278128397443761
-7.352668758139292 -0.756216932495425 5.674000700309238 -0.364626690752226 0.700481284441431 -0.550396762906008 0.270992158412288
0.875335037261953 -0.619475360733770 -1.196468283979481 -0.010464848487979 0.731699267811592 -0.673170595122125 -0.106527077745652
1.368409835720561 -0.773464627328390 6.893493688874377 -0.530567398998888 0.455721587979097 -0.292525330903276 0.652108119984174
2.665836505944252 -0.842013224702758 8.202821060842480 0.526044200114778 0.260713968165123 -0.363321636970820 -0.723396927307575
—7.036040064644832 -0.769565297110241 -6.817842290965518 -0.472591918261634 0.810965574029405 -0.310594781177896 0.150075309221742
-8.710166501175237 -0.831231421991788 6.971956666504108 -0.519145669761333 0.482729409847056 -0.284680353942431 0.645303948938779
2.734502548644564 -0.726065022738250 5.612313226535724 -0.370352976078804 0.697471373677103 -0.547410363423002 0.276973374221503
-7.001367006511852 -0.823780890347191 3.003558995994563 -0.467834015946895 0.815554379072662 -0.299317409115375 0.162516081969953
8.753393395310438 -0.847636245072128 -2.693818359143901 -0.261483164869253 0.797828208494463 -0.488810351117242 -0.236983427397599
4.126988407049465 -0.802773595001889 7.015558996798982 0.332158885529176 0.615423081384464 -0.535682978491854 -0.473253264349400
-8.689232332481978 -0.796350983439223 -2.859091216980917 -0.527410442502042 0.466814250711199 -0.295214484201331 0.645578104330130
8.758590120631167 -0.845500737029494 7.114969512715087 -0.263475922970494 0.803276997619461 -0.487108146963892 -0.219208020546041
1.357624476629944 -0.787401056530377 -2.988025865612748 -0.529407390047664 0.461312541487006 -0.299254376331144 0.646038213015592
-7.548010779707245 -0.844586919378202 -8.665688642155356 0.484409099875958 0.804943665695999 0.282862617206573 0.193396635959105
3.071303599168830 -0.775988151099281 2.935522494345092 -0.472446347250206 0.810963659245804 -0.307991896536644 0.155799178497042
-7.608898417025745 -0.884729771795831 1.173557459370500 0.488248336755647 0.814935867067633 0.266680157779901 0.162403163973357
-1.294693680997385 -0.853961129257755 7.139189031280130 -0.250902879087499 0.798219435296229 -0.485975062941493 -0.252431607727686
2.683466887488777 -0.752062839687301 -1.621660268998456 0.520911579184791 0.243097031540407 -0.390288504033247 -0.719186932269309
6.750085863630305 -0.906665918394911 -3.234688367712661 0.229577588842779 0.803284899859106 0.495425585590118 -0.237867588170753
3.060461166787393 -0.757735056154135 -6.924045681785055 -0.467809008778461 0.811993056290116 -0.310755559789876 0.158911893519749
2.435400380420820 -0.844963171730675 -8.723373783934491 0.492960711895690 0.809431488950136 0.278602284978544 0.155535102237389
2.471706446577485 -0.844382545961567 1.185502599563527 0.495814941628574 0.804878702347553 0.286461118850731 0.155813496052044
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1.987087906897905 -
7.963072054359683 -
6.784161758277994 -
-3.367613789067240
8.083939778667053 -
-2.359500845817258
8.002049060304442 -
-1.784501558275672
9.343891092587706 -
-0.585618474149383
-2.003592345867087
6.134551539060359 -
9.335980004442051 -
-3.879449486818487
-3.244798043924911
-2.122187725207751
9.848541668048560 -
6.119209133051827 -
8.523239639007548 -
-3.968674242657702
-9.046883251555210
-0.209679770066215
9.826685140571991 -
-0.226618965686285
-8.985375378803305
-0.742749354751801
4.824094596495918 -
8.447594466296833 -
4.733964969925632 -
7.516182219626243 -
-1.590399896363744
-5.789077256317532
1.099166687460645 -
7.589796750814235 -
-2.505600397225792
-5.758352386565893
-5.198744843633234
-5.424996629227651
1.794898821467646 -
1.151432283215675 -
-8.309133508532639
9.388768380724011 -
-2.504024161115576
-3.470611081523396
-8.352940416250343
-3.441338198893986
-1.625553903328091
4.341362217363210 -
9.236986751475749 -
-0.767935454072553
4.238589336360546 -
6.565661218763045 -
1.670396127146395 -
-0.669342436248618
6.671745487403873 -
.242643878651593
.642265605024276
.347421824593154
.735857698717165
.170599890405131
.822357261423109
1.746094216002231 -
—-8.295192912764747
-4.327624866446451
0.389494089502717 -
-5.911075786952734
-9.351884738643188
4.219338555171120 -
2.989505169995194 2
-4.311158932773361
0.394123063587221 -
4.315451440930419 -
-9.414084858033110
-7.174539406526942
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©

e

©

~
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1.973545386731711 -7.604050293483457 0.304384454537071 0.811682761856233 -0.471094674764710 0.163067487102545
2.023576842844115 -9.235290078825340 -0.371203731667866 0.481871356972407 0.656801494329142 -0.445667568903581
2.063363762741595 2.122763181445483 0.374363025244176 0.573941037027076 0.700781074222663 0.198368085532030
-2.090336842746297 -7.664045566531004 0.374067530079615 0.578964791777353 0.694789371796293 0.205282687193186
1.982728949864609 -6.487927183187372 0.682710835212930 0.445093492213272 0.345655834628599 0.465101862670388
-2.043722853422749 7.943799621069173 0.493056782924006 0.804890112996093 -0.262542069467617 -0.200296222064789
2.051588653394916 0.644445021812817 -0.347645257734311 0.501685394322777 0.666353818173590 -0.428283934911785
-1.994359829265251 -3.733448353465209 -0.511530529187199 0.788917103978773 0.241703562237970 -0.239845176646696
2.119093898949912 2.050767791023873 -0.682090503526997 0.248066997818976 0.405937495619181 -0.555364798345912
-2.127929644243547 2.034218235048527 -0.674617596210483 0.255010122372586 0.416364304843680 -0.553625958588240
-1.973229068388874 3.358705412305136 0.679219810412809 0.427855393281977 0.346328713718421 0.485444779183437
2.103403131845999 0.326491594974806 -0.769518011067206 -0.084156367755945 -0.001788925764204 -0.633053343845452
2.079148973604492 -7.816421633892118 -0.674970487708917 0.245659872312258 0.391108873386778 -0.575412823124092
-2.072453616114648 0.357476892571064 -0.770259078479818 -0.095238559152058 -0.013037052965419 -0.630444766906696
-2.069371020611816 2.059509520263360 0.390482411956333 0.571877840208519 0.694106957605443 0.196709819874147
-2.034215942307957 -9.143510573120281 -0.343675116887050 0.507388517621048 0.664578714394653 -0.427527120300617
2.215622836141459 -5.991231875814836 0.031807396642654 0.665720238227172 0.739571758888381 -0.094013123489871
2.078062075510810 -9.435995016957285 -0.771396296190408 -0.097378782138549 -0.026119170241773 -0.628317527973567
2.259444169687289 -1.074967971535338 0.142020084496438 0.628389987101146 0.747821776551518 -0.160371163947819
-2.079684858854844 -9.508514012713384 -0.767976880890130 -0.074051473454264 0.016259009773355 -0.635974476137768
-2.338104473613786 -8.316684693962614 -0.847255560172442 -0.101464132263858 -0.030426035520303 -0.520516380129714
-2.186955217738397 -5.997601690826619 0.010367532864919 0.665234654896767 0.741925397078556 -0.083078717831350
2.208129628673452 3.837359548167891 0.028689555809300 0.666093568309996 0.740852463284613 -0.081448727974371
-2.234373759724156 3.794524606583723 0.040990485143159 0.660437360546063 0.744696700597135 -0.087000557713263
-2.277497228466246 1.517679496435628 -0.844222777560324 -0.064850680914238 -0.009010754753514 -0.531978474500672
-2.083650422730564 -7.781078579438086 -0.689386307546888 0.242747869014485 0.400974356662425 -0.552303862339336
2.243985350751486 -7.346055141488400 0.033876312597883 0.553620744180637 0.828075322710276 -0.081533594155544
2.276574144095465 8.738849589604131 0.114045451248139 0.623537823202124 0.750701018757610 -0.186124148143789
2.278759858481203 2.543002514848427 0.070932783393272 0.551423360043979 0.829366338317515 -0.055247580070877
2.252809434411153 5.109854239677093 -0.739374992446650 -0.187301249019910 0.105564183347401 -0.638043153598794
-2.276209696162745 -1.179014213627587 0.112932621099198 0.618671508725705 0.753944141112133 -0.189894758920334
-2.326673607599521 -9.225631165343575 -0.575316118689702 0.212949940497461 0.456789934261346 -0.644210091798832
2.224005299115658 -8.301527406287212 -0.846574305673825 -0.059763572933564 0.006450791998621 -0.528865434307903
2.223773759132594 -4.739099923883157 -0.738663073390158 -0.186760606408135 0.106751704926573 -0.638828156391953
-2.242494273914807 5.097854734355018 -0.737597161158324 -0.174535123562549 0.112172421715342 -0.642577050866822
-2.368487671703838 0.660226331844312 -0.607819497529508 0.187539204830785 0.433186588476775 -0.638540433048892
-2.242530023412600 2.439404549928561 0.024905369031858 0.545995758158847 0.833105651707832 -0.084872420481580
-2.246550158763522 -7.289425930579318 0.067179069160482 0.556868103728660 0.825289194612905 -0.065441828913631
2.343243394735880 3.294852823412587 0.434077863286114 0.649153865083580 0.610485516871874 0.132223680714509
2.254695946072082 1.486429181188758 -0.847760264255324 -0.080899166337081 -0.001594488666707 -0.524171075929987
-2.289580810318576 -6.602512464695752 0.432123373376272 0.655649612597296 0.610372695310078 0.104106428729629
2.429382317251376 -4.232845214171006 -0.419899926201747 0.458280217896409 0.699068012744286 -0.353507011837589
-2.216239338146258 -4.697670180051922 -0.741414528226804 -0.193718057153798 0.106914802625534 -0.633519562954710
—-2.374807597379027 -1.598679363225274 0.723847197811275 0.308534613424783 0.417170705490227 0.454774921274657
-2.309778418581617 3.284155360354552 0.453448188114042 0.660124771352104 0.580836543123317 0.145770151663433
-2.361112741932193 8.209916772627624 0.744314786178763 0.290527903870296 0.377303796308377 0.468220975010391
-2.290222290619773 8.801937262960410 0.147398574496449 0.631177577930373 0.743062255050997 -0.166574339178906
2.337163073361825 0.614701789863041 -0.581076897133441 0.207949172948135 0.446060195438258 -0.648179823145971
2.528085758492844 5.710832433009003 -0.390829499440638 0.461090623197558 0.723877550478846 -0.332639491760997
-2.479611813687495 -4.146168528390935 -0.397587845906165 0.464206886792605 0.720675925154728 -0.327203425936207
2.371679109492621 -9.133254620417667 -0.613981839669195 0.184501419377730 0.419912642767618 -0.642385319919400
2.373439859329669 8.266720754508460 0.731362827099567 0.302603708375997 0.409082841918940 0.454082194389460
2.366138743688324 -6.527644587705836 0.453947860332053 0.658960654090252 0.579008902751991 0.156367793982119
-2.454190266341454 5.550569047202194 -0.412921422485053 0.470216297885706 0.699558464771591 -0.344978965187729
2.354750248832981 -1.657348238511313 0.745822014826158 0.294604004314494 0.378855123648126 0.461981382880392
2.544087190722114 8.970654219184473 -0.293393157494236 0.378843707442506 0.738553062768432 -0.474275525345919
-2.578495627823026 -1.679035179530498 0.523068391855574 0.551730583896774 0.645188929444077 0.075657554529300
-2.586001075831008 9.368842104420994 0.803163528855695 0.349318417841759 0.342761492677921 0.339734525784179
-2.565182228759846 8.117745362087296 0.520594002402777 0.548238093610625 0.651136310172726 0.066621189955538
2.549980948710925 -0.690317753965651 -0.277071105068735 0.393799824863923 0.749582897660943 -0.454179237974787
-2.582698509201728 4.338025140350798 -0.335242632921199 0.356125813629201 0.784517268754828 -0.381207865821873
2.556611902442719 9.459301219463585 0.818140359874613 0.341168152571276 0.318897966257505 0.335491773866616
-2.584395390901583 -0.421402386460342 0.812832225409504 0.347388782865717 0.322865739486484 0.338204850853376
2.575095665651418 5.697884130217448 -0.601133215821527 0.104630740364578 0.542956362908406 -0.576965902791581
2.544597262824960 -1.694940889844645 0.511690977416034 0.551449329134836 0.655366105728915 0.067611008641193
-2.533485500484303 -5.498541933232143 -0.311974160607164 0.364810071894808 0.790158842055856 -0.381096757895564
2.513299999440539 -2.798343093808527 -0.689916801452872 0.138314652654103 0.500239722599085 -0.504622714379964
2.553596287807105 4.337452853813563 -0.339902934969168 0.357596910851959 0.780068073146856 -0.384817158408294
.593334893554811 4.565404208838261 0.740304687292038 0.482035533915351 0.264517199580486 0.386809210260663
-2.585119540777645 -4.266361495818183 -0.590826815894939 0.117413827838316 0.548744198732871 -0.579670139828525
2.545552326163515 8.210418547561909 0.525914391032781 0.556355817832193 0.637826365982804 0.084022521540718
2.562383840965269 -5.496684388149269 -0.342014521512394 0.360832973463682 0.779768731416523 -0.380508025987722
2.506689760898897 7.002551552794424 -0.698037590157069 0.141747599800504 0.490142864343879 -0.502405327610372
-2.590754066768112 -5.268656910790956 0.712540312631642 0.502334058772559 0.296510564678952 0.389908042114624
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tetra FFFFO000 5.782548437289897 2.591075910447661 -4.126624836186291 -0.604433528294719 0.099881280342371 0.542715390415985 -0.574581451768147
tetra FFFFO000 5.691700999047301 2.582022574718054 5.679570468489615 -0.602436343682148 0.101283583814408 0.539412449187966 -0.579522473353394
tetra FFFFO000 -7.007999279329397 -2.595313237078896 4.547587155944033 0.743628274185108 0.490615057669189 0.253671184355630 0.376782145607178
tetra FFFFO000 2.871120689451793 2.563199085058656 9.198140148343240 -0.273347744650279 0.400812628284607 0.748346788332464 -0.452335419677341

C.2.7 The Disordered Glass

The disordered glass obtained in a system of 8,000 tetrahedra and compressed
to a packing fraction of 78.58%, the densest known packing of disordered tetrahedra
(Fig. 5.6):

boxMatrix 29.809106661 0 0 0 30.354809922 0 0 0 30.001907762

def SO "poly3d 4 1 111-1-1-11-1-1-11"

SO ££££0000 -12.280534804 -13.776151837 -12.636977685 0.561308761 -0.31718098 0.342345194 -0.683467972
SO ££££0000 -11.53457426 -13.32490531 -14.477024052 0.499857058 0.102774551 -0.095963683 -0.854617625

SO ££££0000 -14.684439874 -14.191529521 -13.41926109 -0.531044913 -0.777467484 0.334331825 0.041926643
SO ££££0000 -13.455723235 -11.973899655 -14.223451258 -0.622549806 -0.383930436 -0.407672564 0.546655504
SO ££££0000 -13.484130313 -12.716632333 -12.690103475 -0.052771742 -0.353591547 -0.881530667 -0.308369654
SO £f£££0000 -14.205284333 -14.060496848 -12.370286953 -0.122514561 -0.726353011 0.597729604 -0.31641872
SO ££££0000 -14.082518658 -13.007230784 -14.462132333 0.319939361 -0.464718268 -0.81001249 0.159860888
SO ££f££0000 -11.586720375 -11.627607548 -12.718897843 -0.216754167 0.719765085 -0.373201171 -0.543761657
SO0 f£££f0000 -12.121135523 -14.445429577 -11.635097452 -0.127583998 -0.916595904 -0.3149875 0.210611363
SO0 f£££f0000 -13.863672726 -14.894511018 -14.05172989 -0.392331377 -0.455944785 -0.712945095 -0.360416057
SO f£££0000 -11.463801207 -12.847694569 -12.877794526 -0.387219417 -0.25527529 -0.352002627 0.813012792
SO £f£££0000 -12.567125055 -14.441883354 -13.590589859 -0.685478259 -0.311840202 0.650765733 -0.096846301
SO ££££0000 -11.483323475 -12.066308748 -9.612842997 0.331343314 0.87017851 0.063832707 0.359063163

SO £f£££0000 -14.895288824 -12.663927262 -8.995008632 0.993941801 0.036408612 0.082592098 0.062710878

SO ££££0000 -11.837875378 -11.638988356 -8.248576242 0.130736456 -0.447093031 -0.310944559 0.828449927
SO ££££0000 -12.285613086 -12.694601924 -7.78897287 -0.005658152 -0.297670958 0.934608448 0.19459454

SO ££££0000 -14.660058755 -14.340853114 -9.055798335 0.726758055 0.087733007 -0.627541843 0.265173309

SO ££££0000 -14.097462191 -11.583226601 -9.495632303 0.196267754 -0.787394787 -0.568061837 0.137091821
SO ££££0000 -14.199999699 -15.013074386 -7.777254356 0.51730816 0.126780367 -0.103479616 -0.840006533

SO ££££0000 -11.759127149 -14.205081172 -8.81328894 -0.683951084 -0.316454013 0.60136812 0.2653755

SO ££££0000 -13.525708437 -14.542694702 -9.918222387 -0.220373729 0.954365146 -0.132298939 0.152051232
SO ££££0000 -14.050343989 -13.287273799 -8.514106963 0.859947172 -0.354491772 -0.360353981 0.070508532
SO £f£££0000 -14.361813611 -12.237068543 -10.631030867 0.665835538 -0.684757087 -0.295578717 -0.020099518
SO ££££0000 -12.857957916 -11.818915092 -10.937260725 0.380955208 -0.001028226 0.771193148 0.510032548
SO ££f££0000 -14.209504893 -14.731267693 -10.936036338 0.903639616 -0.286391074 -0.165401073 0.272136147
SO f£££0000 -12.578515183 -13.400272584 -8.667182352 0.102266805 0.438746539 -0.046261182 0.89157326

SO0 f££££f0000 -12.104570554 -13.129912743 -10.075251029 0.541423621 -0.775054448 -0.22938388 0.231374373
SO £f£££0000 -13.008238218 -13.15098694 -10.952354454 -0.14868363 0.549999782 -0.783190427 -0.249010389
SO £f£££0000 -13.684783593 -15.132005016 -4.112569862 -0.501431567 0.076639675 -0.259199518 0.821893152
SO £f££f0000 -11.582677564 -15.011426682 -6.474412953 -0.411607168 -0.892186525 0.1856815 -0.01025304

SO ££££0000 -14.200265073 -13.770522025 -5.330949387 -0.37969556 0.263849577 0.791703988 0.399273687

SO £f£££0000 -12.454406714 -12.652935894 -4.9364481 -0.161920551 -0.440827995 0.830621052 0.299200738

SO ££££0000 -12.976600431 -13.146382019 -3.859921472 -0.018139014 -0.963008114 0.0318139 0.266972328

SO ££££0000 -14.04332278 -13.162813707 -7.239552377 -0.866790209 -0.195893714 0.453465659 0.068332153

SO ££££0000 -13.885631839 -13.808053586 -4.141624642 -0.662990994 0.109156195 -0.609137081 0.421283616
SO ££££0000 -14.479156751 -11.577932054 -6.355479101 -0.365420639 0.137285468 -0.030409194 0.920160713
SO £f£££0000 -13.411160628 -11.523882667 -4.787723584 -0.318605854 0.055233833 -0.890473284 -0.320151314
SO ££££0000 -11.538397923 -13.634140354 -6.274193762 0.353864606 0.841773498 0.406999293 -0.023426365

SO ££££0000 -11.190376877 -11.84792422 -4.905617959 -0.30714869 0.326765741 -0.88584365 0.119016218

SO £f£££0000 -14.233778187 -14.879057837 -5.862046092 0.10545583 -0.216632078 -0.961436934 0.132622145

SO f£f£ff0000 -11.296148174 -13.066591134 -7.295554575 0.526325166 -0.809412057 0.159808422 0.205657991

SO0 ££££f0000 -13.578010306 -14.686331669 -6.850828919 -0.341092793 -0.513042371 -0.743070361 0.261322925
SO ££££0000 -13.378922537 -11.466729769 -5.959955375 -0.420635652 0.340471816 -0.816095162 0.202813404
SO f££f0000 -13.123742437 -12.584101555 -6.828417758 -0.337860478 0.656468836 0.479355684 0.47446506

SO £f£££0000 -12.718868655 -13.381720839 -6.031296905 0.056602642 0.839349307 0.169597243 -0.513347502

SO ££££0000 -13.502933617 -11.885169992 -0.943713076 0.620931901 -0.740431166 -0.162515555 -0.199484228
SO ££££0000 -12.305823366 -14.610550659 -1.684422783 -0.3360416 -0.687524506 -0.554283701 -0.327346416
SO £f£££0000 -14.413965136 -12.666976537 -2.641472596 -0.765243275 -0.272966974 -0.356504827 -0.461298244
SO ££££0000 -13.327281043 -12.386760304 -2.930546669 -0.206117647 0.413315371 -0.882292196 -0.090809698
SO ££££0000 -13.493428015 -14.089755905 -0.360998447 -0.373146557 0.334300441 -0.403415141 0.765676881
SO ££££0000 -14.166598471 -14.671032578 -1.098021814 -0.596692222 -0.794402523 -0.113450769 -0.003456254
SO ££££0000 -14.854791023 -13.114219823 -1.269151123 -0.467391098 -0.609310166 0.273738631 -0.57909744
SO ££££0000 -14.023474899 -13.062347934 -0.245280391 -0.136307583 -0.654875733 -0.60572022 0.430884013
SO £f£££0000 -12.136867124 -12.587198105 -2.097515618 -0.531582392 0.051181204 -0.790085658 0.300940688
SO f£££0000 -11.925216258 -13.673103904 -2.437554685 0.329706377 -0.1562388 0.503008807 -0.783495554
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-1
-1
-1

-11.
.189607407
.389742178

-1
-1

-11.
-11.
.082476138
-11.
.495434363
-12.
-12.
-11.
-13.
-14.
.250936406
.602340361
.373525001
.698441626

-1

-1

-1
-1
-1
-1

-11.
.001352102
.463899886
.482708478
.581207252
.535981201
.524284414
-11.
-11.
-12.
-12.
-14.
-13.
.676789261
.267249847
.395863764
.60919375 -14.53628654 4.
.202924089 -14.641060759
.756696946 -14.137608375
.112597378 -13.149828866
.01442997 -12.339430155 10.
.584785678 -14.216656085 9.
4.
-11.
-13.
-14.
-14.
-13.
-12.
.131287069 -12.881466759 7.696277331 -0.900910171 -0.195445323 0.35594617 -0.153180657
.2598856 -12.68769483 7.845431051 -0.411852592 -0.739000437 -0.077361792 0.527513933

-11.
.973099712

-1
-1
-1
-1
-1
-1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

-1
-1

-1

-11.
-11.
.053520989

-1

-11.
-11.
4.

-1
-1

-14.
-12.
-11.
-13.
-12.
-13.
.685504906
.050377082
-11.
.911065496
.255200881
.655334878
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.704745593
.532678108
.869936854

992214669

656725606
375233013

807797467

507878541
468344112
984659791
151051614
783207066

827534832

717098355
454563314

-13.
-12.
-14.
-12.
-14.
-13.
-13.
-13.
-12.
-11.
-15.
-14.
-12.
-13.
-12.
-13.
-14.
-12.
-14.
-11.
-14.
-12.
-11.
-11.
-14.
-12.
-12.
-13.
-12.

515368963
703085378
740721314
053222018
084914195
961385986

o
NP W
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w

-0.

.381783982
.010037232
.851471656
.108969432
687805949
732179977

-0.834579389 -0.009591281 -0.054576571 0.548093649
0.869412183 -0.457085439 0.036798589 0.183959836
0.792447627 -0.469246681 -0.137080081 -0.364751096
-0.433255937 -0.603254046 -0.40857932 0.530506162
-0.097612714 -0.157084228 0.405393031 0.895238959
0.293666719 0.188520713 0.135724616 -0.927253271

91141107 2.628842087 -0.885506828 -0.061871144 -0.412578958 -0.204519492

979539061
143421546
405807287
040223329
675554212
354064723
041319538
950609485
000484974
146212005
300582412
090166772
404051382
461149986
766089851
537395621
646017584
234457382
226642238
933939899
733304498
058184049

0
1
2
0
2
2
1
1
2
1
3
1.
0
6
6
5
6
5
5
4
3
4

.171686044
.758493133
.73626452 0
.526845346
.291530569
.885167717
.919441867
.329604848
.105337317
.527351691
.517355699

936332948

.833413277
.479014873
.873761757
.072617528
.573331188
.845630592
.167147051
.238335516
.78750853 -
.526344967

0.616497211 -0.0646127 0.772647645 -0.137010965
-0.797931814 -0.133649439 0.122002139 0.574941845
.019638608 0.058287105 -0.535311923 -0.842412063
-0.067685419 -0.940917116 -0.090639648 0.319183518
0.852494985 0.513863949 0.088751004 -0.036323584
-0.182251552 -0.3674017 0.477178276 -0.77723951
-0.610816484 -0.367845892 0.582707608 -0.389928795
0.435125302 -0.529849906 -0.726197983 -0.050611646
-0.185142621 0.098799296 0.929225683 0.304139012
0.64235448 -0.114996942 -0.64200584 -0.40247351
0.408688876 -0.635356268 -0.603561245 -0.254969878
0.161691981 0.956946601 -0.134925574 0.199759844
0.081886133 -0.104707675 -0.960326815 0.245159891
-0.602413956 -0.148956224 0.562498114 -0.546356422
-0.144876507 0.609383958 -0.172193449 0.760270613
0.5184096 -0.356538445 0.277774845 0.725929032
-0.760404273 -0.456987389 0.433270646 -0.15882196
0.413085943 -0.863521991 -0.252010697 -0.142057673
0.920189628 -0.085648488 -0.381171367 0.024975487
-0.079453898 0.913995111 -0.397350106 -0.020320143
0.799287941 -0.03604912 0.520014025 0.299039564
-0.978174655 -0.041505955 -0.18026613 -0.094634674

11135739 -13.267380125 6.541538588 -0.93300323 -0.245614997 -0.182827594 0.189082831
996924522 5.80563352 0.151605792 -0.790375946 0.030963833 -0.592758626
235195355 4.259424284 -0.496696124 0.181623539 0.018390844 0.848509062
139208973 6.132082721 0.201207564 -0.609917735 0.440948412 0.62696122
09201518 4.677107617 0.276024836 -0.863641101 -0.063380212 0.417033916
3.968394503 0.290390993 0.778138662 0.547973234 -0.099491852
5.317631856 -0.756113867 -0.153679861 0.23312571 -0.591884045
048254818 -0.567851828 0.516592155 -0.35312035 0.534773658

603794726
894287035
198564582

-14.
-14.
-13.
-14.
-12.
-11.

704973367
579755287

8.
9.
9.

49125016 -12.996408114 11.
321848094 -13.985219243 8.
309839904 -11.479886794 7.
81985707 -12.859851064 8.665602647 0.526391369 -0.438775345 -0.515999275 0.513938781
176291103 -14.237915786 8.530711798 0.682401863 0.128236448 -0.302194389 0.653116883
102382916 -14.615465441 7.964081566 -0.3356314 0.044189346 0.100763403 0.935545617
299897849 -14.996081431 10.564294549 0.028133361 -0.556429864 0.828111916 -0.061846385

317516575

3855211563
632700886

780999867
559049829
615782001

376462781
453150177
214935946
823020409
971013584
199378505

507787607

-11.
-1
-14.
-1
-1
-1
-14.
-14.

N

NN

698013216
609186725
950060748
299473317
759086718
021158248
30752042 -
965669843

-0.236130392 0.950809959 -0.16651658 -0.111691935
0.491291281 0.081180804 -0.791474898 0.354415068
0.962456468 -0.265680797 -0.023817527 0.050239285
0.183983531 -0.894739317 0.03791512 0.405159301
0.617764599 0.661637308 0.417756317 -0.077991228
0.104892823 -0.570386275 -0.295855424 0.759030014
0.097930111 -0.817417128 -0.009305524 0.567584654
0.857405367 0.462661844 -0.052388923 -0.219215546

929758617 7.97535136 -0.043080996 0.10678147 -0.951266007 0.286067701

378093614

.940517687
.244692246
.049680864

533329844
006561325

439846834

.212916749

780172877

273305938
.832359475
249253117
. 787399872

770541882

13.
14.

1

N

11.

o
NN

13.
14.
.87557938 12.91654319 -0.493259418 0.423329812 0.717047423 0.251654543

.444527962 14.904268643 -0.38908849 0.274536514 -0.365751375 0.799666044
.192507869 -7.810156024 -12.149300705 0.559832097 0.079354988 0.780071602 -0.267916227
.092637753 -9.866276561 -14.178573108 0.208674582 0.645696806 -0.686972392 -0.259999012

233654373
130101974
949997364
73559965
93343442
313809104

977120476
352303173
.180719406
.416597146
369063468
.654897023
.043855524
.083855726
795187854
653664247

.989141398 9.989213212 0.300875413 0.783048929 -0.006565746 0.544302537
11.
11.
11.
14.
12.
12.
.4143016 -14.051331592 12.296240983 -0.837974414 -0.306437358 0.227271033 -0.390183168
.172561202
.983963908

-0.200712285 0.951578481 0.121464938 -0.198643506
-0.344096175 0.449990169 0.265624609 0.7800963
-0.560097075 0.041368195 -0.827323108 0.010789562
0.143384909 -0.499467409 -0.818686387 0.244388371
-0.697077638 0.09477402 -0.706519847 -0.077008817
0.800582899 -0.057348411 -0.469660008 0.367692341

-0.521761081 -0.852189189 -0.005467998 0.038846642
-0.184268795 0.109173744 -0.950515456 -0.225047714
-0.215728957 0.172000884 -0.384244413 -0.88104083
0.596772236 -0.454389616 -0.142028233 -0.645926433
0.377529294 0.789685662 -0.21708887 -0.432134945

0.093899942 -0.543121521 0.060561839 -0.832186324
-0.367826049 0.46357006 0.539087385 0.599325945

-0.445849154 -0.589425178 -0.239866771 0.629492195
0.499932604 -0.283451018 0.674096423 -0.464022547
0.43300656 0.350855839 0.821537822 -0.120337467
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££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

-1
-1

-1
-1
-1
-1

-1
-1
-1

-1
-1
-1

-11.
-11.
.903711911
.324413237
.390184595
.481756303
4.
-11.
-12.
-12.
-14.
-13.
-11.
.959178319
.505152794
.421263437
.505330497
.376359293
.204101706
.58791238 -
.42106573 -
.429531874
-11.
-11.
-11.
-14.
-12.
-12.
-14.
.506591981
.672485737
.010436159
.056835313
. 757964347
.618649376
4.
.301626887

-1
-1
-1
-1
-1

-1
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-1
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-1
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-1
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.561762207
L771719901
.556696739
.957721364
. 712396042
.003493308
4.
4.
4.
.206089269
-11.
-12.
-12.
-13.
-13.
-12.
.226516684
.148100794
-11.
.017321486
.103617232
.767967031
.639230107
-11.

100602614
270777301
808473922

427942545
2546566 -9
006627787
048052996
766134854
253912234

632271362

30135824 -

.6051739 -7
.038527341
.059444583
-12.
-14.
-11.
-13.
-11.
-14.
-11.
844831091
.543546443
.264756388

90978226 -
382470843
965525122
558159054
207783825
237696546
625489432

632827783
934284441

070081531
35040026 -
688699109
791827859
732060783
159707261
350327818

336817324
209872039
901632486
751270354
83267329 -
94150238 -
677019087

095403865

-7.900879336 -13.909348006 -0.678396073 -0.484766515 0.540611536 -0.111889949
-9.980263145 -12.214571705 0.567661664 0.544176451 -0.566570265 0.24623233
-11.370592455 -12.136392124 -0.538270723 0.523436976 -0.656523034 -0.07249736
-9.090047669 -14.568106848 0.725322597 -0.310391404 0.581181014 -0.199481668
-7.987176961 -14.09032433 -0.510776079 -0.141202918 -0.657659025 0.535400916
-9.335171571 -11.279276342 0.344401496 0.78061534 -0.456012139 -0.253140732
-9.830960017 -12.557258829 0.788822635 0.46154203 -0.247895054 -0.321381156
-11.171377072 -13.866956311 0.756044342 -0.137211311 -0.377031216 0.517124231
-9.49328433 -11.70781882 -0.006791446 0.027474782 -0.559817524 -0.828132449
-10.991728973 -12.687037347 -0.840602256 0.314491314 -0.388959963 0.207829757
-9.243904205 -14.718927021 -0.632588857 0.46977668 0.524756428 0.322136461
.003520197 -13.749354709 -0.197683229 0.035813365 -0.400939794 -0.893804243
-8.917047861 -12.585733676 0.51348204 -0.273454994 -0.050119242 0.811816865
-10.994181781 -9.312737854 0.78986152 0.105235489 -0.433517595 0.420840546
-8.559477004 -7.9085022 0.137922954 0.082258546 -0.836027692 -0.524660355
-11.232121853 -10.147210012 -0.575757535 0.42103598 0.471204552 0.51884317
-9.697999573 -9.727381967 0.073284905 -0.229717137 -0.051864148 -0.969107564
-9.15262403 -10.821531795 0.107833729 0.901909807 -0.33245703 0.253777284
-10.407920658 -10.667070889 0.084384121 -0.36515317 -0.36365716 -0.852816483
-10.947566228 -8.003029089 -0.215777391 -0.122778917 -0.562837696 0.788402932
-9.438898319 -10.124309718 0.584396677 -0.787555234 0.137649591 -0.138887967
-7.847145595 -9.45941268 0.052432466 0.499241933 0.258681545 -0.825283095
-8.904767843 -8.866190431 -0.479042187 -0.163080271 -0.03114864 0.861947313
8.888669725 -9.472741103 0.089774182 -0.282557996 0.237921397 -0.924929719
.998507265 -11.018380228 0.733653886 0.17384921 0.315032154 -0.576440084
-9.800936479 -9.345420954 -0.621501194 -0.431469712 0.653581311 0.020040557
-8.243442277 -8.415860173 -0.133459421 0.65475112 -0.485528004 0.563695052
9.219637908 -8.314686897 0.450898434 -0.592678789 -0.622353487 0.241036498
-8.033353354 -10.555868782 0.329140743 0.770267931 0.158273378 0.522784109
-7.608292112 -10.126337933 0.679011104 -0.401466748 0.535552827 0.30158173
-8.554114828 -5.05218984 0.792898336 0.54717893 0.058609228 -0.261672325
-8.029878688 -6.323224848 0.713239326 -0.58687307 0.37724489 0.067497833
-7.835146734 -5.674890334 -0.598353169 0.316168125 0.512950806 0.528102899
-8.592524388 -5.405380434 0.660703167 0.455859561 -0.475652147 -0.359747719
-10.518640344 -6.944416701 -0.595580979 -0.402095136 -0.277356517 -0.63771166
-8.005567274 -4.988821984 -0.31575785 0.564779336 -0.760546982 0.053754711
-9.574813223 -5.540709929 -0.170546709 -0.413908298 -0.894037471 -0.017051131
-9.846730593 -7.108499941 0.712698314 -0.429186883 -0.056740229 -0.551942279
-9.692832073 -5.842926789 -0.548748562 0.079532478 0.474979206 0.683333267
-9.633691976 -6.651914186 0.640408785 0.205738485 -0.659276779 -0.336009512
-7.645192264 -3.816959472 0.365034228 0.551814733 0.74385243 -0.094520236
-8.584732978 -6.6229699 -0.175399966 0.469297769 -0.804826443 0.318196247
-11.311475619 -4.408893047 -0.461320931 0.143355936 0.055517924 -0.873813387
-8.560953184 -3.930799898 -0.103220283 0.775771443 -0.524086116 -0.335943424
8.649944482 -7.288311162 -0.799420883 0.031382449 -0.571098399 -0.183815157
-10.728121907 -4.352949394 -0.365393098 0.534284218 -0.571741498 -0.50412292
-9.961109939 -7.389191691 0.199229584 0.36846643 0.692831711 0.58696191
-8.866445644 -1.200358021 -0.439502633 -0.365867465 -0.775304544 0.268106877
-10.563117836 -1.953264122 0.397150674 -0.561665713 -0.41110446 -0.59816059
-8.263941309 -3.69050926 0.638024284 0.234500826 0.156091295 0.716637903
-8.642118517 -1.629919497 -0.545923006 -0.837035431 0.018747978 -0.031436793
-10.401700878 -2.424172425 -0.25777002 0.453958662 0.301287108 -0.797936231
-9.924239667 -3.696598258 0.33407389 -0.528299377 0.779989591 -0.030176844
-10.327171143 -3.747325927 -0.500963389 -0.023292946 -0.839996181 0.207122036
-8.079508715 -3.141066927 0.150543869 -0.082843098 -0.009905446 0.985076366
-8.937371197 -2.458319839 0.332724501 -0.184929294 -0.107104201 -0.918490203
9.571593592 -1.265244471 0.135553743 0.88064099 0.22053882 0.396811362
10.036075014 -2.739761043 0.86920653 0.423093098 -0.088693223 0.240011981
-8.173842115 -0.70574893 -0.544864362 -0.074110003 0.703877276 -0.449652438
-10.550261069 -2.301174321 -0.519858359 0.06204989 -0.847686403 -0.085585393
-8.138825857 -0.822663274 -0.596921345 0.6296414 -0.098499854 -0.487375004
-9.595945268 1.594116428 -0.693319661 -0.358576234 -0.213345029 -0.587549854
-10.352832612 2.345959047 -0.260794242 0.959314228 0.050633382 0.095597263
10.719921156 2.233341001 -0.316477377 0.565645131 -0.657836878 0.383586103
8.162036699 1.185852276 0.353380679 -0.744386369 0.079952803 0.560908708
-7.644017753 3.316247033 -0.049935546 -0.773808266 -0.621316481 -0.112663394
-9.571062356 0.007519113 -0.771514702 0.379930332 -0.164065159 -0.483219031
-8.801614972 0.237324262 0.431369805 0.361095744 0.57038904 -0.598486674
-10.217139243 0.388743742 -0.750949549 -0.242288609 -0.08273464 0.608708455
-8.435006737 2.739834807 0.785942678 0.319074757 -0.396919256 -0.350628734
-11.04189048 0.043857494 0.2937452 -0.488340452 0.265577284 0.777628489
-11.202315754 0.424041237 -0.748066878 0.359306776 -0.029914675 0.55713526
-11.254131704 2.655661417 0.521320083 -0.238041972 0.154286724 -0.804833521
-8.324540854 2.135319222 -0.138446329 -0.6345265 -0.244590103 -0.719989178
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.549457893
4.
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4.
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.988456337
.451433392
.107176362
.014536779
.84553568 -

757190671

523742839

073567643
207747161
873729667
869406677
78327617 -

591611236
767755339

502914974
285734826
345628639
834460652
379440549
979589706
091762464

92202725 -

660848213
853776112

049408968
88127445 -
723838377
221541248
806537411

516224233

576509731
605468666

906371582

54987538 -
753446795
977607539
701967253
1594052 -3
86818926 -
136972736
325365844

735429846
980361815

34721495 -

-8.485427015 3.177149845 0.143221222 -0.31260008 -0.934561996 -0.091448059
-9.315668826 0.835928612 0.697753223 -0.691244693 -0.146658732 0.117526295
-9.851497824 3.196459806 -0.116324076 0.870597886 0.425713267 0.217476998
-8.46003391 1.510404245 0.470086691 -0.340193586 0.231931793 -0.780701268
7.739704694 4.054009572 -0.359294332 -0.669684609 0.586464214 0.280160372
-11.298516859 6.27101982 0.452007266 -0.201809991 0.035161735 0.868173837
-10.533966934 5.076100739 -0.140794455 0.452024553 -0.771615856 0.42480548
-10.116590199 6.608995888 0.001269998 0.261006752 0.844425895 0.467780686
-9.027042204 7.450487206 0.101391818 -0.70137441 0.582321991 -0.398365077
-10.923787605 3.810420162 -0.505636452 -0.167007808 0.707284854 -0.464960542
-9.925419914 4.0514608 -0.720309369 0.107349174 -0.30588729 -0.613240193
-10.426800388 4.806650808 -0.338906478 -0.231480939 0.886642659 -0.213128528
-9.17084664 4.057019202 0.66873714 0.294333059 -0.130942134 -0.670084208
-8.998485864 6.153356491 0.716641254 0.063613404 -0.525109141 0.454575668
—7.843836557 6.140791827 -0.556820405 -0.451926771 0.694966157 -0.052299812
7.744291986 5.508979414 -0.180893949 0.003300746 -0.801610268 -0.569813533
-8.771251829 5.302724145 -0.343893062 0.699447939 0.623503653 0.061264483
-9.703511486 5.452356507 0.095580131 -0.677391488 0.03954529 0.728314067
-9.588800757 5.858972383 -0.363166254 -0.535744246 0.489745643 -0.584155442
0.865228136 7.369405206 0.11974498 -0.128074214 0.984461862 -0.009642535
-11.359760734 9.274769163 -0.746332797 -0.2418089 0.620029967 -0.008868665
-7.649572426 9.206145224 0.921105252 -0.370061116 -0.109148666 -0.052023601
-7.718847293 9.689914933 -0.877947289 -0.311906135 0.323558629 -0.165024042
-9.828793546 9.536208034 0.414059499 -0.000638985 -0.05245251 -0.908737067
-9.431951476 9.504017996 0.807075743 0.346385085 -0.292446777 -0.378313363
-7.88631143 8.518839756 0.219349924 0.762122978 0.396055606 0.462811122
-10.827991688 8.964291836 -0.052078628 -0.352618595 -0.213210643 -0.909664314
-9.466126667 11.248259693 0.295703798 0.345974348 0.333131022 -0.825763124
-8.790808206 10.288600735 -0.697662053 -0.006064076 0.705520511 0.124385267
—7.84259424 10.369380108 -0.328491058 -0.809381694 -0.135508305 0.467581434
-8.334485313 10.867065822 0.866115184 0.387466608 0.231746337 0.214494175
-10.616376939 10.126338247 -0.586841848 0.614258296 -0.470895729 -0.237824734
-8.9513262 8.357586682 0.690053157 0.410168346 0.402262025 0.440197492
-9.698660086 10.226178757 0.574304427 -0.212209926 0.395676906 0.684529882
10.738570788 9.225772657 -0.283169923 -0.121165333 -0.243004985 0.919827339
11.172905009 8.161065345 -0.705308646 0.599734346 0.196374911 0.322947863
-7.965136518 7.908661223 -0.679352842 0.311178703 0.632532376 0.203838965
-9.640658767 7.737686628 0.027526284 -0.198290049 0.789650678 -0.579978592
-10.239388746 11.937043064 0.407997556 0.386615302 -0.473473664 -0.678151379
-10.099017165 14.085438347 -0.02070418 -0.153688239 -0.55837386 0.814966193
-9.293865113 14.329527719 -0.568698443 -0.754349046 0.324314141 0.048579177
-10.647176333 11.43289887 0.180780207 0.297911593 -0.910512389 0.222563226
-8.407388858 12.717594623 0.729467144 -0.235446941 0.353972435 0.53586
-11.085545965 12.305621696 0.036916013 0.597572551 0.634381137 -0.488983463
-9.699292618 12.921539299 0.15101006 0.464182064 -0.506817526 0.710539913
8.176154659 13.798003249 -0.540118095 -0.146858978 -0.045019762 -0.827452781
-10.199561892 11.945654625 0.647021731 0.759027161 -0.026441645 0.067390557
-9.649818412 12.830019621 0.333382204 -0.842139618 -0.361310207 0.22161251
-10.397915273 14.670011212 -0.892720201 -0.201881693 -0.103380739 0.38936724
-8.305037016 11.833609708 -0.567267563 0.610137588 -0.257926846 0.489298863
-8.684176079 12.763199104 0.162520761 -0.707891044 0.620242484 0.296271046
-11.093282537 13.561603445 -0.262445394 0.927285093 0.052041847 0.261832805
-10.124802537 13.795601532 -0.293545272 0.515066701 -0.624449892 -0.508527089
-6.769036155 -14.525274317 -0.489736499 0.159451964 -0.218223838 -0.828921944
-3.892578044 -13.583897232 -0.762248684 0.124288577 -0.215363918 0.597618337
-5.0565771666 -12.517959714 -0.144094783 -0.670986593 0.727022078 0.02127401
-6.168556741 -13.112402884 0.201345761 -0.731389294 0.421214198 -0.497099772
-7.446889776 -13.241344753 -0.703892512 -0.041157997 0.689688415 0.164837012
5.576213354 -14.414487781 -0.398354154 0.45166535 0.005188689 0.798301608
-4.77947952 -12.857568121 -0.892934627 0.113688167 0.111071906 -0.42119566
-5.534173882 -11.607413152 0.877002753 -0.337581312 -0.146776299 0.308806973
-7.019175728 -12.822854268 0.479803587 0.439952716 0.361444103 0.667523997
.834403672 -13.834026691 0.746926785 0.108218627 0.437551551 -0.488812589
6.680584623 -12.255920879 -0.423691542 0.835066295 0.259752713 -0.235962474
-5.099016903 -13.863989539 -0.850387381 0.432279608 -0.11686274 0.27625847
-4.682093491 -10.891050492 -0.046355268 0.091921936 -0.966152633 -0.236538869
-6.119284079 -10.077507374 -0.771565626 -0.558308024 -0.214856346 0.216368634
-4.800446777 -9.928781602 -0.345204183 -0.92586047 0.074710231 0.134293869
-4.232467579 -10.917524491 -0.905713837 0.077544446 -0.202790556 0.364067708
-5.397778754 -8.566106601 -0.076122472 -0.069491766 -0.060751306 -0.992816973
-6.530136401 -8.985569268 -0.45545048 0.810397497 -0.076551484 0.360500523
4.656846424 -8.463142997 -0.359487818 -0.051820011 0.635255397 -0.681567147
6.431261916 -8.812031185 0.440328256 0.463406302 -0.254879256 -0.725535796
-7.359930514 -7.847798083 0.505217403 0.066976424 -0.391026998 0.766398996
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-11.
-11.
.338000322
.432433883
.785252197
.270395097
.9582719 -5.189531524 -4.407311657 -0.43016423 -0.510811018 -0.743327222 0.038671442
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-1

-11.
.126121737
.200052236
.120280607
-11.
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.913219615
.739661029
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4.
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4.
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.162196917
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.892626485
.529258162
.512872932
.588947082

698785238
273930218

692624449
660745864
204338166
930960165
569354498
899048103
456120552
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875923151
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359147604
380474266
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443558759
027835622
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.472447023
.380689096
.272264917
.151398007
.35527537 -10.437937121 -0.17730338 0.075795484 -0.564949239 -0.802278576
.03275619 -9.413208041 -0.807169248 0.108773521 0.368066724 0.448523146

.472089353
.918168374
-5.
.441777935

714576621

062212152
145234543
512526877
057831078
882319881
884986802
320286686
022540755

855176553
084309177
245399149

-9.271533856 0.24378278 -0.069508863 0.688512829 -0.67947668
-8.209196252 -0.40342701 -0.067461901 -0.513344736 -0.754435366
-11.043966138 0.238643789 0.248587401 0.630897232 -0.695141805
-7.656225646 0.244924045 0.289986106 0.246941397 -0.8915942

-6.986371096 0.606427541 -0.285908582 -0.718134424 0.186507022
-5.994820377 0.689835683 -0.511643329 -0.075793099 0.506560205
-3.765386252 0.437784674 -0.409609166 0.554508429 -0.577135437
-5.504943011 -0.311191565 0.121030249 -0.516627192 -0.788421101

-6.66887454 0.41858108 0.847078917 0.137707948 -0.297125747
-4.400026202 -0.504037838 -0.106118374 -0.795466035 -0.319246826
-6.219344669 -0.411412083 -0.088814726 0.03019216 -0.906609329
-4.177395276 0.645497731 -0.4152282 -0.634161095 -0.093583799
-7.415047632 0.225202095 -0.543493804 -0.024004659 -0.808283538
-5.502778266 -0.16920509 -0.005240819 0.142982008 0.975140152
-6.41272587 0.294220127 -0.789902766 -0.523656707 0.123579084
-5.585453198 0.24626732 0.801395643 0.016784296 0.544826319
-3.835559261 -0.074058181 -0.539744676 -0.088580887 0.83387319
-7.106496012 -0.353799179 -0.727107297 0.563769777 -0.168240181
-7.429776854 -0.67845953 -0.234369253 -0.454789667 0.527190742
-2.588002921 0.058242503 0.563034006 0.757313984 -0.325693181

5.598095641 -1.352372693 -0.060915954 0.396696747 0.893512849 -0.201384524
-4.176199801 -1.268755057 0.328623015 0.257145758 -0.266354772 0.868871744
-5.01690633 -2.062179698 -0.760615731 0.360192594 -0.056851866 -0.537115323
4.266965206 -3.673780065 0.318277095 0.931184347 -0.102529144 0.145200472

-6.
-4.
-6.
-7.
-7.
-3.
-4.
-5.
-6.
-6.
-5.
-4.
-4.
-5.
-5.
-7.
4.
4.
-5.
-6.
-6.
-4.
-6.
-6.
-7.
-5.
-6.
-4.
=7.
-7.
-5.
-5.
-4.
-6.
5.52232548 5.
-3.

586896327
835177059
415855462
402836783
016718632
858442885
202488805
859424512
361053668

29016426 -

909816309

-0.730125723 -0.567256028 0.556721668 -0.420977271 0.437103788
-3.203970465 0.270312943 0.412093018 -0.09804147 -0.86457974
-0.457252507 0.719957801 -0.209767243 -0.209097945 0.627643623
-1.404374154 -0.399928316 0.297005755 0.865525534 -0.052062203
-0.073436076 -0.059381324 -0.7566011 -0.533596512 0.373233702
-3.478061726 0.836668127 -0.539900118 -0.091372877 0.012054254
-1.563818658 0.483382917 -0.608809663 0.497195153 -0.385342353
-1.58476973 -0.839191104 -0.065135839 0.466475343 0.271875647
-3.057398621 0.073352651 -0.405733125 0.895108177 -0.169650731
2.674376316 -0.061306733 0.83009282 0.291938393 -0.47112564
-2.224329631 0.613970925 -0.392520343 0.34893332 0.589247844

80315572 2.949077609 0.234564798 0.033543405 0.924168941 0.299609686

528809182
123871183
735807436
305003684
132348428
261285988
842408259
305576925
906119567
975162027
012947248
346498134
008703384
929157903
792578314
742114816

2272459 4.

201751645
812406412
355604747
960398417
528583833

805039578

3.339179392 0.304029155 0.644557417 0.144460004 -0.686471643
1.58246955 -0.711260087 -0.613130141 0.120623809 0.321916783
0.639568544 -0.757291291 0.094901497 0.509520735 0.397356549
2.397434688 0.903373816 0.002520758 0.32413096 0.280799776
1.751752972 0.045955849 0.814194681 0.052747717 -0.576361658
0.209227619 -0.851907816 -0.148388296 0.500657296 0.039702127
3.318763552 -0.082872226 -0.308884407 -0.618600243 -0.717674269
1.541394422 -0.467371965 -0.399862229 0.623253676 0.482937366
1.053690297 0.281687269 -0.061602321 -0.510584891 -0.810037348
1.809236799 0.267906755 0.314749784 -0.35258336 0.839549592
0.074970826 0.511497084 0.437989439 0.049439432 -0.737625737
1.279197651 -0.008200505 0.49347127 0.195392186 0.847490856
7.196048491 -0.310248449 -0.327930241 0.711315034 -0.538737951
4.2748414 -0.616967747 -0.157302701 -0.630285924 -0.444236777
6.03245183 -0.585906392 -0.546602882 0.133505123 0.583194112
5.219734423 -0.204418091 -0.26627263 -0.505853668 -0.794622047
176960972 0.807680089 -0.255534894 -0.293482903 -0.442970177
5.512159896 0.417471569 -0.610458644 0.471291766 -0.480564049
5.307021268 -0.19902966 0.182232412 0.16966769 -0.947835121
4.200022181 -0.330653601 -0.044670935 0.94141247 0.049145347
5.925451155 0.149884252 0.030116473 -0.816963071 -0.556056697
7.157966325 0.766264846 0.3538314 -0.312838046 0.435630443
437807166 -0.472967566 0.102644562 0.860235808 -0.16049963
6.066289432 0.050091931 -0.7955915565 -0.348333675 0.493141488

5.242390794 4.33427043 0.369498272 -0.030597381 0.366055833 0.853544348

-4.
-4.
-5.
-6.
-6.
-4.
-5.
-5.
-5.
-5.

928277433
161918134
337213416
333378763
713826388
635387421
214767397

9.479921395 0.427957079 0.03780656 -0.638052694 -0.638993085
7.952074979 0.708413606 -0.400164314 -0.393864208 0.427656018
7.569228257 0.694642957 0.594623632 -0.356350491 -0.192115137
10.589365504 -0.813064979 0.278778598 0.508856741 -0.047672322
9.470581352 -0.003763371 -0.109741407 0.984713811 -0.135208621
10.798002538 0.484609622 0.202603938 -0.249714518 0.813478837
9.562450701 0.820865222 -0.426936113 0.36347894 0.10857671

32330325 8.43192636 -0.806218513 -0.140112661 -0.511698226 -0.261811148

192537558
839398223

8.361332823 0.343171784 0.552204269 -0.33260289 -0.683138997
10.588691328 -0.498513437 0.027998963 0.708463031 0.498779055
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££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000
££££0000

-11.
4.
-11.
.624791326

-1

-1

-11.
4.
.134403189
.55561707 -
.360407166
.411690238
.751857487
-12.
-11.
-12.
-13.
-12.
-11.
.660249203
.709787984
.6187557 -6
.992384667

-1
-1
-1
-1
-1
-1

-1
-1
-1
-1

-11.
.423213424
4.
-11.
.526687146
4.
-11.
-12.
-13.
-13.
-12.
-12.
.337003406
.899294405
.676210508
.473434959
.952636423
4.
-11.
.645663899
. 767546937
.160193901
-11.
-12.
-12.
-13.
-13.
-11.
-11.
4.
.1565039 -3
.543964081

.847799421

-1
-1

-1
-1

-1
-1
-1
-1
-1
-1

-1
-1
-1

-1
-1
-1
-1

-11.
4.
.515941083
-11.
4.
-11.
-12.
-12.
-11.
-13.
-14.
-13.
-11.
.832191233
.585348603
.480528642
.503324823

-1
-1

-1

-1
-1
-1
-1

-11.
.396209152
.285334008

-1
-1
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409945969
014670945
998661151

826605331
209553178

899609579
351157779
024548632
076290638
276048917
652698416

226452468

695857516
359300233

618127482
882504098
76497673 -
424682382
542271471
421335327
194902911

102840365
348755736

309712516
167046509
228962382
986447114
58336928 -
41640808 -
875032383
832309845

739056404
251144969

860296454
706626362
193803379
954250814
037282046
614443755
955430565
406168611
554283325
539382169

920304841

-3.968969776 11.187531019 -0.219178298 -0.67437255 0.410321949 0.573426923
-4.254352432 9.951823793 0.107520448 0.589167301 -0.784412359 0.161302496
-7.071608248 7.940171529 0.821518079 0.111265891 -0.01398976 -0.559045824
-6.531883645 9.355723531 0.584923436 -0.618530679 -0.226908423 -0.473071813
-5.678329357 10.439694241 0.245264875 -0.138064837 0.614005521 0.737414716
-5.482115294 14.549164616 0.439118105 0.122794639 -0.880716557 0.128199503
-6.57023229 11.706862086 -0.770143339 -0.282392463 0.534875793 0.202587316
6.910910271 14.625114821 0.129012304 -0.455274079 0.871201902 0.130723308
-6.639388878 .660348325 0.651821813 0.126321907 -0.635601042 0.393931993
-7.422424574 .576617057 -0.60594694 -0.648234215 0.274381869 -0.370587774
-4.942258213 .506874246 -0.391127192 0.709435594 0.25968114 -0.525629493
-5.311419192 .250818023 0.059697445 -0.190885993 -0.843772376 -0.498043101
-6.866470669 .146602779 0.952486635 0.20187355 -0.201293565 0.107224909
-4.545940983 13.024867806 -0.703433633 0.093211411 0.304304032 -0.635524833
-5.75192229 14.423713985 -0.379109109 0.786840745 -0.016581261 0.486706264
-4.838762812 14.863590624 0.525049468 0.46098519 -0.514964675 0.496615641
-4.186507447 14.072427036 -0.397986688 0.003837182 -0.351595842 0.847332424
-7.322082178 14.816707658 0.214360552 0.064832202 0.961801129 -0.157432295
-4.847641429 12.567025582 0.67298397 -0.510556099 0.383678096 -0.373116824
.621784828 14.916299009 0.354519691 0.56840077 -0.232759876 -0.70502425
-5.808613318 11.849025584 0.238093411 0.699198859 0.660005038 0.137207262
-5.496677354 12.71843463 0.221916862 -0.000162543 -0.265934475 -0.938100067
-2.569650186 -12.158969283 0.872084005 -0.03582583 -0.40739888 0.268723187
-0.530179327 -14.446701648 -0.441481578 -0.372206192 -0.783516642 0.229473832
-1.018645099 -14.12806437 0.190554624 0.677869804 0.105856699 -0.702122371
-2.324014176 -12.429611237 -0.089812341 -0.436817281 -0.594940735 -0.668707655
-0.759005229 -12.483481223 0.125025864 -0.911982522 0.37266477 -0.117377095
-0.787828973 -11.394797323 0.618998514 -0.543272988 0.565753898 0.040222232
1.578177244 -12.390642662 0.630779401 0.112542261 -0.195407267 0.742473964
-0.339808752 -12.489687379 0.386508363 -0.299566583 -0.85274598 0.18356318
-1.294162893 -14.326926788 -0.729722313 -0.576289854 -0.296069654 0.218490526
-0.767511842 -14.704708367 -0.424703823 0.542485279 0.178752185 -0.702413013
-2.06581048 -13.362948185 -0.13719558 0.634647317 -0.387803164 -0.654223862
-3.471222115 -13.109270789 0.525408213 0.601023143 0.395174471 0.454482706
-3.568588274 -11.295147816 0.899909368 -0.177658934 0.346341715 0.196590563
-3.30527523 -14.984245281 0.840361494 0.283174448 0.46024167 0.042218446
-3.11151091 -13.851824493 0.065937282 -0.295745023 0.840797517 0.448605274
-0.213836205 -9.749880304 0.219411957 -0.437126892 -0.581848542 0.64979285
-3.201017671 -9.69155887 -0.564286673 -0.19331206 -0.510430167 -0.61941266
-1.041686425 -9.768573537 0.857022982 -0.086301778 0.303789267 0.407155613
-0.634249497 -8.399544887 -0.430998984 -0.403002328 0.733453573 -0.337453486
-1.305330472 -10.432327838 0.319865264 -0.184251222 -0.911453856 0.181630308
-2.712956899 -10.522218827 -0.052207707 -0.749560131 0.12074691 -0.648732726
-3.297466219 -10.228657402 0.293563415 -0.571878997 -0.528545806 0.554449515
-2.486941042 -9.937357282 0.30983358 -0.91167442 -0.10357357 0.249249716
-1.671895492 -7.822666755 -0.389936249 0.818535339 -0.219784108 -0.360061893
-3.060788995 -8.338215797 -0.328008371 -0.741093512 -0.577902731 0.09601744
1.78927678 -7.904562466 -0.777151707 0.363180752 0.422218837 0.293029383
2.907950639 -7.587777941 0.463805108 0.660130433 0.20004019 -0.555964527
-0.745973676 -8.783723383 0.544082142 0.830987452 0.106078868 -0.046709232
-1.723782296 -10.275605698 0.948918302 0.148712034 -0.186054772 -0.206935762
.327005199 -8.557993128 0.042655096 -0.773212727 0.583836921 0.243838205
.691666206 -6.026876671 0.133029201 0.251123184 -0.694012285 -0.661503837
-0.446310822 -5.238630516 -0.060458016 -0.190339739 -0.61841856 -0.760048746
-0.922607607 -6.093962805 0.401692082 0.24620153 0.658415926 -0.586955489
.556340173 -6.942765934 -0.6621355 -0.197555438 0.613208326 0.382784505
.904290484 -6.508240223 -0.770052814 0.398107637 -0.131973906 -0.480740951
.165774953 -4.612178617 -0.429468222 -0.55887554 -0.010929028 0.709292418
.484284561 -6.826140407 -0.016426732 -0.403276465 -0.594805303 0.695201342
.849026849 -4.719682208 -0.235982667 -0.773894577 0.040819158 0.58628761
.539721423 -5.412173866 -0.165430973 -0.953059364 0.004160811 -0.2535609
.860320469 -5.873039769 0.81639981 -0.540537528 0.153473976 -0.13325265
.624202776 -6.670255198 0.272744661 0.132729061 -0.95251221 0.026717721
.365093697 -4.168625165 -0.220914787 -0.852135541 0.40049176 0.254299089
.24074731 -4.0390132 0.033826255 -0.905795241 -0.067284215 0.416969543
.024932867 -4.331042362 -0.448478529 -0.382320735 0.318435535 -0.742493552
.260705147 -7.046529478 0.540849724 0.21314074 -0.643700679 0.497696733
.700537891 -5.300007466 -0.009076125 -0.182337995 0.229079742 -0.956134379
.152701586 -0.77441043 -0.267056487 -0.887922247 -0.36996083 0.058342951
.865212012 -0.451860243 0.531878688 -0.379000028 0.393855762 -0.646793381
.357250043 -0.876160322 0.415815807 0.852625437 -0.157337728 -0.274539467
.188349635 -3.510901468 0.213474154 -0.147395584 -0.94597677 -0.194502642
.446348838 -2.501564641 0.777035367 0.427470068 0.188173657 0.421990585
.5775565729 -2.202083032 0.643675627 -0.097033545 0.702834916 -0.286861046
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-11.
-11.
.886440716
.591399373

-1
-1

-11.
.36801054 -

-1

-11.
.112599197
.073880204
.948214487
.816660114
-11.
-12.
-13.
-14.
-11.
.740330261
.531012036
.876347186
4.
.943417641
.203799953
.387858446
.025921237
.87653561 -
.790494419
-11.
-12.
-14.
-14.
-14.
-13.
-13.
.696116629
-11.
-11.
.894784374
.816353819
4.
-11.
.193509892
-11.
-11.

-1
-1
-1
-1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

-1

-1
-1
-1

-1

-1

-13.
-12.
-11.
-12.
-13.

-1
-1
-1
-1
-1
-1

-11.
.029712597 -0.
.723859889 -2.
.419222932 -0.
770965223 -2.
426541084 -2.
731514754 -1.
323485298 -2.
746640606 -0.
572535049 -2.
221708737 -3.
.045009867 -0.
.307560128 -3.
.464747018 -2.
.821139351 -1.
.415050937 -1.
.716185944 -3.
825208883 -3.
.133413384 -0.

-1
-1
-1
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-14.
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-11.
-14.
-14.
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421206679
205280505

502433375

920532869

709791281
15439624 -
830459183
582667054
738124474

00584852 -

287379812
653879901
323294348
560175732
628635357
44952276 -
93317144 -

554304553

72804724 -

090673336

33958576 -

67110047 -
799877985

.631999314 -2.
238125409 -3.
052794392 -3.
350764927 -3.
588841972 -0.
578601686 -1.
.483570896 -2.
.668192529 -0.
.768035836 -3.
610504865 -0.
.194091157 -2.
.712714956 -1.

-1.616628723 -2.955711015 0.075497817 -0.076640376 0.880710779 -0.461275251

-3.729551913 -2.064595669 -0.108089563 -0.552747332 0.824761968 -0.050544325

-3.681220489 -0.864061826 0.471189439 -0.01611245 -0.819554005 -0.325656467
-1.828801051 -0.3085568 0.151836184 0.672791892 0.138679005 -0.710679236
-3.582338008 -0.369826424 0.483012832 0.595055425 0.619771589 -0.168792246
1.824507559 -1.991485344 0.333662891 0.090929634 -0.932056786 -0.108032517
-0.459315268 -3.49359539 0.64484424 0.171126617 -0.394368363 -0.631953464
-2.717981539 -2.433160455 0.215356876 0.295470984 0.188649323 -0.91144377

-0.251348378 -2.2725566157 -0.791830715 -0.054494454 0.591139059 -0.143488976

-1.009039718 -3.344055695 0.391994875 0.430231444 -0.74673056 0.321922962
-2.51868021 1.329934292 0.406796805 -0.381620496 0.786507871 -0.265117946
-0.914362723 1.870620421 -0.163797672 0.117596233 0.649067567 -0.733520785
1.204772949 3.074324414 0.030573882 -0.046860246 0.228452864 0.971945803
-2.524104181 0.677990367 -0.130882273 -0.357958322 0.92329678 -0.047526056
-2.350619351 1.540249192 -0.156979866 0.655019844 0.69971052 0.238141793
-3.766810553 3.405500179 0.385885018 -0.545923463 -0.446038009 0.595071777
-0.042994898 0.112879474 -0.022695018 -0.145409232 0.220795608 -0.96415268
-2.340020296 3.318175919 0.534104138 -0.538225879 -0.407498089 -0.508911565
-2.973322712 3.536774001 0.203907017 -0.790898351 0.061235654 0.573717631
0.59853234 2.882402446 0.260546258 -0.121395538 -0.52133022 0.803488377
-0.231905912 3.147409362 0.204012448 -0.918434345 0.049467349 0.335276388
-3.628329978 0.128985479 0.065050346 -0.229175203 0.850725596 0.468522292
-3.608222444 0.674312518 0.267420684 -0.647943729 -0.52300054 -0.484897449
-0.94492258 0.219193169 -0.27791829 -0.05386529 -0.935644922 0.210780775
1.720537375 2.594060004 -0.338826786 -0.799199223 -0.008437608 0.496392806
-2.114401547 2.632340298 0.145670753 0.796273867 -0.520169418 -0.272308166
-1.846397119 1.318924825 0.560513052 -0.710201239 -0.425953746 0.00165041
-2.510528322 4.751684869 -0.286144673 0.038589028 -0.423346435 0.858725748
-3.599153733 4.950660033 0.394681549 0.835858442 0.363861364 -0.114769544
-0.4856625 3.90064557 -0.49578246 -0.857482031 -0.127545928 -0.051539841
-1.224193356 5.441952945 0.150282848 0.73295417 -0.29332669 -0.595107304
3.022940582 5.43906143 0.080175698 -0.091888423 -0.992111017 0.029053483
3.447406971 3.767277095 0.421627821 0.50526814 -0.747421916 -0.091074513
-1.096715156 5.69243219 0.035387582 -0.734194024 0.640686556 0.221872915
-2.985163928 4.83735814 -0.066608065 -0.453639881 -0.092350788 0.883880963
0.651310856 6.730204918 -0.387954286 -0.665212165 0.376431979 0.515056514
-0.378842727 5.734517503 -0.541282348 -0.671825225 0.294357841 -0.411117682
-3.685071668 7.227427518 0.191658536 -0.415215526 -0.118489617 0.88137579
-2.501736803 6.375969288 0.562195805 0.761902642 -0.308983918 -0.089270257
3.164630402 6.991804263 0.496229786 -0.364245324 0.451409475 0.645995998
-1.315067238 4.658742386 0.739399108 -0.41494947 -0.530143676 0.007319767
3.747827254 5.703797606 -0.305843905 -0.098723162 -0.708295503 -0.628514696
-2.853778178 8.006566587 0.154161808 -0.345948828 -0.87599584 0.298638298

003517522 11.174286089 0.881404345 -0.213553128 0.001014119 0.421331714
537551937 10.44756625 -0.477102807 -0.735551149 0.350318254 -0.329567201
788844802 10.16097829 0.346024348 -0.772771593 0.421208773 0.325075967
750194572 8.694680242 -0.114061268 0.73297302 -0.655960963 0.139484027
330315162 7.52060191 -0.53810515 0.354231729 -0.741571525 -0.187174791
391026971 10.196388909 0.260162959 0.7033521 -0.634916891 -0.185719142
61539744 9.042938664 0.915307999 -0.397086887 -0.036591774 0.05651826
498045927 10.159594506 0.013675511 -0.112502346 -0.945632982 0.304851547
777756552 8.973188213 -0.336171686 -0.780366503 0.462671251 0.252887391
473865525 9.606465503 0.942685512 0.066385272 0.107058513 0.308991093
644355331 9.705912751 -0.051794268 0.929128837 -0.350332471 0.106320823
417603903 7.654155701 0.415706747 -0.361924924 -0.467935578 -0.690821645

51091074 -1.67437052 8.492959039 -0.542518285 -0.165504266 -0.723400274 -0.393667743

94620435 11.074462301 0.316728765 -0.01274092 0.655519968 -0.685429887
503839255 8.172410098 0.757073995 -0.28628819 -0.551689021 -0.201289002
925073669 8.509674184 -0.895937927 0.002605791 -0.443219707 -0.029064276
51766023 12.892222268 -0.465787339 0.528328061 -0.259145831 0.660874461
212945528 14.202781375 0.188095377 -0.12768397 -0.315204131 -0.921392038
647282574 11.817178717 -0.531945416 0.330836174 -0.42404901 -0.654036648
937189212 14.067885291 -0.400523483 -0.667223399 -0.02114567 -0.627651763
837621693 11.930707468 0.798160221 0.502648408 0.045658714 0.328937869
368182795 .869505501 0.869507187 -0.304984458 -0.385408232 -0.04901251
668612982 .210362169 -0.273544789 0.733353503 0.248032909 0.57082884
093301984 11.874776374 0.524474728 0.128815881 0.825111484 -0.165902888
591982986 11.812487059 -0.857365551 0.430046884 -0.276702951 -0.058476202
090042793 .837123465 0.351226934 -0.333003044 0.678568704 -0.552533372
796468713 .733615227 -0.050917328 -0.135233249 -0.591550456 0.793213371
084214651 .736221141 -0.269171462 -0.849961135 0.416011717 0.179016882
792323144 .896879614 0.242945999 0.565439961 -0.784522825 -0.07601861
386268522 .38677479 0.847234973 -0.071626877 -0.084345259 -0.519565557
822651419 .177265784 -0.543723037 0.597484272 -0.581642492 0.09523558
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.720605929
.819480552
.379413488
.001346113

534914557
130868611
489049396

.141632296

953396244

.091058276

130189844
578061941
874373293
536689558
616000667
847118953

0.771525009
2.33783747 -
3.550485468
3.226266952
1.070329102
2.900247178
0.797540182
0.
1
1
1
2
0
3
0
2

631953344

.569716637
340993249
.154921064
.196421702
.125328099
.177698676
.619045287
.927891795

-14.100351427 -0.008665856 0.813546119 0.256397023 -0.521850728
13.069256968 -0.865698109 -0.494746173 0.065487867 0.03878592
-11.685558156 0.13187409 0.174583392 0.427954405 0.876917836
-12.72736497 -0.554371621 0.211127103 0.470020561 -0.653588651
-11.940531349 0.720503414 0.677725248 -0.137818094 0.050690151
-14.26620564 0.312806952 0.864864157 -0.364918545 -0.144900849

-13.976279654 -0.582593895 0.373456967 -0.447648433 -0.566325991

-11.893534484 0.485184887 0.490830948 -0.343878435 0.636732462
-12.929491275 0.584238133 -0.665351898 -0.048934512 0.462145073
-13.036480096 0.770110444 0.376900964 0.129428741 0.498120235
-11.54517793 -0.802768984 0.510054827 0.121335925 0.284048632
-12.2101871 0.773212712 -0.53160094 -0.197027945 0.284117108
-11.775433937 0.09874916 0.848314319 0.020399779 0.519803106

-11.281654749 -0.430361806 -0.758264142 -0.419691172 0.252355955

-14.500193364 0.357539047 0.109920005 0.739945674 0.559074075
-12.38599585 -0.272980077 -0.89368094 -0.22179732 -0.278607617

30600626 2.936641574 -11.36621683 0.372914662 0.324617802 -0.597968685 0.630865587

.921858709
.873858963
.024597535
.065309569
.254999648
.549765292

428807946

.342129888
.259604554
.454078779

736198926
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1.167728793
0.918488618
2.491286546
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3
1
0
3
2
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.405346505
.205048217
.959960697
.094701557
.703580989
.338015618

46215831 2.614955833 -

906504987
363927794

.695648624

748019362

.459389136
.241018666
.418610959

184178138

.094564888

739268292

.780295223
.979831393
.855270017

660940068
447185809
517755525
576712449
595411544

1.328799671
2.675186875
2.958121194
1.768245715
2.362129878
0.22816378 -
3.592930077
1.535828468
0.822914071
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1
1
1
2
0
0
0
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649791601

.27361338 -
.161657879
.530416868
.076287314
.856128864
.700975821
440291599
282452892

28547926 2.195231929 -

. 785998999
.888423185
.103768706
.6711562068
.529325227
.116841361

555430813

.028157346
.691971665
.954760807

756380995
997685386
442014205
717816594
381958425
029485677

.563465096
.365391263
.814996078
.596391811

812265012

.823698056
.336049846

405178124

3.346452495
1.598433955
0.111785762
2.246275174
3.535024539
0.775903387
3.228479413
2.145102957
1.815894102
2.523796867
3.188514353
0.
3
1
2
1
2
2
2
3
0
3
1
3

09577279 1

.441548118
.211919638
.259876731
.665148965
.729376144
.675001307
.20317479 1
.591994727
194294425 2
.180267665
.576662301
.298140383

-7.909303951 -0.275553775 -0.333426093 -0.590532026 -0.681299555

-10.08026927 -0.135492481 -0.766508471 0.604547637 0.169200198

-10.309927738 -0.240812266 -0.261981579 -0.800861312 -0.481659905

-9.8115828 -0.509769207 0.238248707 -0.599148834 -0.569555602
-8.957372957 -0.133991629 0.927166673 0.25144368 0.243278193
8.214324676 -0.641123178 -0.492060526 -0.029574483 -0.588186075
.799912928 0.035063049 -0.812336472 -0.120291233 -0.569570064
-11.09099471 -0.456048784 -0.462541638 0.738850283 -0.179373907
=7.707640683 -0.091395161 -0.70689082 -0.700516487 0.035056303
-9.515070666 0.772737099 0.275180131 0.473073252 0.321488678
-8.731854891 0.266920903 -0.22632786 0.775248136 0.525850986
-10.720210378 -0.043797079 0.655275619 0.254039392 0.710042018
-7.683395747 -0.735178304 0.442423007 0.353794466 -0.372295878
7.895534518 -0.315421964 -0.474082626 -0.321218474 0.75668576
-10.420904969 -0.749609026 0.038701755 0.420443989 0.50972084
-6.158238628 0.434423216 0.787520715 0.168345509 -0.40341961
-6.609019199 0.608557322 -0.694243176 0.156029335 0.351196875
-5.509203772 0.436865341 0.607127924 -0.393006093 0.534874349
-4.746953748 0.009994132 -0.25948044 -0.880044015 0.397608539

5.
-4
-7
-7
-4
6.

-7.
-3.

885572349 -0.283230599 -0.551451252 -0.402551505 -0.673523741
.89237373 0.185058301 -0.291335216 0.853247465 -0.390955215
.307606238 -0.022126436 -0.675752689 -0.705779534 -0.211527713
.144275036 -0.388951993 -0.640876926 0.654730776 -0.096543894
.896046166 0.27092269 0.61025602 0.426741512 0.609983744
054257947 0.485260122 0.060347233 0.613458101 -0.620120943
395964524 -0.745716708 -0.283952831 -0.517678991 -0.308684051
846150882 -0.926098807 0.220224537 -0.043064936 -0.303294517

-4.845042701 -0.896934578 0.072757223 0.434488488 0.037874837
-5.888661044 0.352289041 0.364298578 0.073516277 0.858937911
-1.878420214 0.227970685 -0.790904451 -0.344321657 0.451599504
-2.789002684 0.661049298 -0.613216626 0.283365715 -0.326623739
-0.044587726 0.804304607 0.007351501 0.531617814 0.265372484
0.973852056 -0.493587922 -0.34227726 -0.696821842 -0.39199051
-2.431426707 0.38219686 -0.714202476 -0.068034839 0.582418788
-3.025276954 -0.412368135 0.375110195 -0.690398444 0.461080092
-2.729832841 0.447745187 0.809287419 -0.163109635 -0.343472513
-0.867162154 0.513246728 -0.032903363 0.609916721 0.602906924
-2.388210326 -0.631906334 0.295448541 -0.635237048 0.331479167
-0.434884416 0.711782754 0.609318165 0.013108305 0.349177401
-3.282024215 -0.270347128 0.51942782 -0.403172873 -0.70324875
-3.643948489 0.068111853 -0.178304696 0.812704119 0.550527225
-2.95913908 0.723503512 -0.663011628 -0.19168453 -0.014672745
-2.15740376 -0.169442889 0.39785011 -0.112767036 -0.894588169
-1.309424425 -0.260297747 -0.691575464 -0.069864116 0.670139885
.273575296 -0.003280552 0.448106721 -0.626501437 0.637719025
0.402858914 -0.962962414 0.15251493 -0.221375066 0.020872622
1.616768326 0.952480902 -0.277746271 -0.072901846 0.101599514
2.033643244 -0.693198464 -0.633229587 0.27407147 -0.208281084
0.73522592 0.469002197 -0.114034957 0.138999577 -0.864703467
3.282577381 0.183596442 -0.559045451 0.482575971 -0.648753392
0.284177902 0.254633723 0.486287061 -0.716215435 0.430954768
.685334815 -0.04694805 -0.844302635 -0.488299664 0.215667288
0.486443574 -0.481431684 -0.426491834 -0.765720281 -0.000836888
.406478882 -0.46216702 0.150486008 -0.630332234 0.605340302
2.879142657 0.963674212 0.101696311 -0.024237042 0.245769076
3.239926908 -0.823816243 0.04802921 0.562072315 -0.055630085
3.449861383 -0.387790613 0.848643977 -0.000096247 -0.359752459
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.389240889 2.886000311 1.063438818 0.023427075 0.421750517 0.885054146 -0.195593537
.483420679 0.827962052 1.186225533 0.830047906 0.116546749 -0.466262169 -0.282907968
.26864039 3.514907151 6.735455974 -0.449795012 0.052366573 0.881827001 0.131618119
.802809387 0.131303559 4.642889598 -0.261134832 0.213732373 -0.034631123 -0.940705989
.123173254 2.201242108 6.337620324 0.216594827 -0.607955456 -0.385734939 0.659306758
172677551 0.482002645 7.10844011 -0.16550574 -0.656903297 0.027090766 -0.735086389
033399552 3.705681861 4.993802818 -0.019967828 -0.140433647 -0.226050401 0.963732791
.700159638 0.264444511 4.325426287 -0.574074996 0.045805691 0.569345568 0.58667313
.407696221 2.773991043 5.317691225 0.013258634 0.325120473 0.703917981 0.631363891

46884328 1.32725264 4.526263924 -0.302620131 0.927747838 -0.092218809 -0.197991659

1.467992495 4.531349353 0.696106717 0.210942661 0.492275964 -0.478124469

93851635 1.820976393 6.203507134 -0.457746857 0.08085911 0.598911441 0.652100227
90756741 2.257914853 4.110916456 0.131283656 -0.568330025 -0.100266 -0.80604734

392629363
429857685
244418994

359524596

595145686

358010417

766098112

329431729

198940154
285317585

2.815522746 6.418645616 -0.963813371 0.255819367 -0.008371591 -0.074499354
1.153092626 7.056494743 0.715782382 0.682617156 -0.127877238 -0.073053486
2.249069758 7.145203589 0.079059089 -0.925069589 0.331884971 -0.166878045
1.109239207 6.181820239 0.41912318 0.218392667 0.294772226 0.830511732

1.567493416 4.964154097 -0.944660935 -0.298414325 -0.119836052 0.064837712
0.558610375 10.286755935 0.249919499 -0.418913553 0.823657867 -0.289204767
1.398326732 9.594595574 -0.099067677 0.123567136 -0.628747445 0.761310323

0.056107939 9.357902663 0.378376742 -0.146935677 -0.680031463 0.610571992
3.160900795 7.774423371 0.170330553 0.101779732 -0.579631602 0.790351564
2.741710912 9.470052133 0.701740625 -0.600631813 0.158052846 -0.349028391
2.392008163 10.172473695 -0.075983335 0.508728947 0.704764659 0.488598164
1.099924903 8.873293881 -0.406035548 0.272720706 0.411579718 0.768999796
1.658947063 8.869731167 -0.671086077 -0.419650126 -0.610495048 -0.028862507
0.818831242 7.833613404 0.248581471 -0.141648247 0.908003691 -0.306059346
3.689819599 8.829569614 -0.058623158 -0.759692463 0.591134393 0.264557775
3.16856159 9.755390859 -0.574455525 0.416203106 0.569705268 -0.414984015

68029361 3.749494992 10.254091131 0.691218092 0.687413412 0.181492867 -0.129385814

734329809
445739818

250638815

671065982

458978391

0.471525473 8.94220727 -0.128597451 0.943454224 -0.177601396 0.248625356
1.242630145 7.870493744 0.499631001 0.681556171 -0.367437343 0.388381059
1.983852072 11.202924086 -0.433022588 0.555998548 0.119441911 -0.699350186
0.878912003 14.022181209 -0.028722152 -0.717073218 0.506124763 -0.478350042
2.475154097 14.787671367 -0.362367252 -0.52354669 -0.61624943 0.463492696
0.867953658 12.706300707 0.540735197 0.719623628 -0.392218043 0.189505376
0.813899355 11.441097155 0.553368767 -0.258704303 -0.443255231 -0.656033453
0.029512149 12.826277069 -0.544183684 -0.402997769 0.268178634 -0.685227798
3.457101326 13.27061544 0.153095292 -0.472080987 -0.839176927 0.222448778
3.44569852 14.251396727 -0.455709883 -0.147675569 0.842320431 -0.247015628
3.552814489 12.105233925 0.089424928 0.021370171 -0.236473074 0.967278131
3.712239252 14.839110752 -0.487490736 0.613878874 -0.418664156 -0.458503909
2.634886911 12.503632681 0.227335565 0.924022763 -0.073140425 0.298581567

46970464 1.64063852 14.332252276 -0.570097506 -0.157043489 0.754088905 0.285790307

119982245
895416901
805665633
228634572

703025911
282478245
599017373

558849434
993886767
933450386
706256937
636686362
047330057

922620647
818822974
383476965
620665982

368621858

2.928275662 12.128294893 -0.523071915 -0.780850868 0.278738455 0.19741471
0.279118366 12.499813752 -0.048182722 -0.829448919 -0.519893205 0.198504339
2.739399766 14.058631176 0.773230513 -0.446945184 -0.184842305 0.410107179
0.253677474 13.751701824 0.226753813 0.445992242 -0.559039023 -0.661172443
1.710513246 11.855611811 0.535830141 0.006937093 0.018065489 0.844104007
1.147491757 14.403474775 -0.494130703 0.094737704 -0.864207719 -0.002152807
1.636947839 11.539399873 -0.206663908 0.448412702 -0.665214693 -0.560094179
2.846414671 13.002427383 -0.664657784 0.266394881 -0.689305006 0.110101803
2.348090397 13.983138857 0.151482247 0.862045133 0.481751144 -0.042978519

4.663391481 -11.643749536 -0.343842152 -0.407951557 0.092700628 -0.840687038
6.378317538 -11.429010706 -0.371370214 -0.865647681 -0.069753366 0.328439833
4.775239306 -14.857926372 0.086411412 -0.3642536 0.294163938 -0.879386127
5.917471647 -14.46953685 0.293009517 0.368539926 0.070231037 0.879426715
570151394 -13.751678762 -0.78763322 0.273875835 -0.534761809 0.136586035
6.857971246 -13.67769992 -0.207691325 0.178521559 0.609102283 0.744304223
4.719230005 -13.594139336 0.342826567 -0.200939177 -0.893384994 0.209658402
6.14082232 -12.575767507 0.413202595 -0.673078767 0.612836828 0.025682905
7.553568323 -14.90439176 0.478886978 -0.051053397 -0.814262441 -0.324094878
5.146530791 -12.718615998 -0.080587658 -0.159487561 0.57703203 -0.796933738
4.311846873 -13.351866385 -0.725861139 0.396020058 -0.447544076 -0.340584821
7.126395126 -13.013028349 0.4652913 -0.602943491 -0.290818258 -0.579126837
5.87071694 -13.081058285 0.321610186 0.062566023 -0.108676498 -0.938531726
7.178208134 -8.285381851 0.697589016 0.109691734 -0.211003491 0.67588077
5.535443925 -9.206550738 -0.187397396 -0.508703918 -0.31715511 -0.778148557
6.18318069 -11.165479399 0.115813887 -0.35161675 0.703509132 -0.606652871
5.780358264 -9.047044635 0.037564233 0.844604154 -0.027636608 -0.533356325
3.814867375 -8.655188418 0.529112597 0.631850976 0.112727945 -0.555064514
7.478284852 -11.09501386 0.169769858 0.069478864 0.815103068 0.549506935
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.7T74694147 4.896017596 -8.586242475 -0.670524842 0.142621759 -0.454132685 -0.569050941
.246765126 4.79765217 -10.402889892 -0.087609453 0.812484376 0.440568342 -0.371609014
4.

29682178 6.967375734 -7.509838569 0.259263009 0.946821524 -0.18106782 -0.059381293
26370209 5.916184047 -10.449984644 0.104554329 -0.405972115 0.469420627 -0.777109586

254587901 7.067489182

-7
-1
-1

-8.
-8.

.830978059 0.094179785 -0.882643689 -0.21152763 0.409055434
0.327248705 0.441740455 -0.593185729 0.013632652 -0.672911742
0.515323581 0.443192827 0.279689585 -0.494144414 0.693667897
02188755 -0.216967103 -0.267168758 0.508878096 -0.789043228
442073546 0.951981347 0.20166157 0.080262135 0.215921551

.455630439
.016637496
.153034487

.21537476 5.419177934 -10.869185398 -0.036411415 0.049507936 -0.99103662 -0.11861531
.275428722 5.303698534 -8.508291911 0.597296152 0.610294493 0.385812894 0.349179538
155509912 5.095055746 -9.282685856 -0.408821358 0.586435697 0.69337602 0.090487373
550593036 3.816329574 -4.998094786 0.499567335 -0.286585809 -0.311016669 0.756022277
477882186 4.118048367 -4.022152807 -0.573226218 0.223594517 -0.453544089 0.64475961
100020545 6.936605412 -3.963219652 0.782104169 0.608818162 -0.05012415 0.123049114
738401636 4.277304946 -6.175185527 0.329577553 0.398834479 -0.755970779 -0.401021041
.681678387 7.358183406 -4.870359562 -0.064664462 0.530938305 -0.462675845 0.707003597
.228422643 7.585611675 -5.723073149 -0.330233561 -0.369762962 0.037026924 0.867669381
.687524535 4.578232928 -6.596018258 -0.595320291 0.108510111 0.599267028 0.524116721
.854284161 6.643565379 -6.459454328 0.577785274 -0.137164947 -0.122750015 0.795161863
.389084779 5.341596683 -4.213150732 0.125496432 -0.278356231 0.942899661 0.133073976
716547049 5.483701098 -5.713252608 0.076884442 -0.288072557 0.4506042 0.841462322
.215027717 5.350839115 -5.93377377 -0.770032811 0.309379199 0.501106402 -0.245410585
.108702102 6.447221316 -4.420652091 -0.428111215 0.599267085 0.674711442 0.048623232
473634778 7.079385481 -4.621524003 -0.116946226 0.175715313 -0.875414144 -0.434853753
851547257 6.656394132 -6.360950027 -0.452421615 0.576693042 0.42077369 0.534499129
.859660356 6.120536493 -6.769250316 0.042137013 -0.754304078 0.472744916 0.453610047
9272076 3.936110764 -5.920099042 0.735721374 -0.05005771 0.118675803 0.664924311
188168244 6.893579886 -1.45103707 -0.046439726 0.691374006 -0.242738416 -0.678913394
520777315 4.230089398 -0.8672252 -0.857947476 0.323091692 0.397302435 0.04109334
465568903 5.77033183 -1.688197662 0.168512367 -0.128234964 -0.673171689 0.708519056
241229944 5.281978917 -0.72328134 0.764466389 0.536961355 0.35549731 0.029754102
741503066 5.86115757 -1.8230563497 -0.095091596 0.809831277 -0.421935887 0.396359683
860437217 5.877756609 -2.977234367 0.824424794 0.21611835 0.461093708 0.247000424
.256181026 6.885997427 -3.380383962 -0.089471574 0.962294531 -0.222887996 -0.127691088
.168741232 4.883964062 -2.366926955 -0.469045824 0.332056319 0.19585959 -0.794590232
.425804515 4.979303368 -3.553687428 0.183906726 0.695446557 -0.69130198 0.068073309
212090032 7.458258091 -0.667925825 -0.151880854 -0.487093156 -0.711141403 0.483684162
423437772 5.226631293 -3.447534986 0.299538145 0.9205574 -0.19267857 0.160393083
.970342824 4.472772327 -2.624703777 0.727794943 0.45218944 -0.515327854 0.016626339
.937985131 6.448317896 -0.627276328 -0.360413018 0.611967888 -0.125475764 0.692714654
016704744 7.157696616 -0.910280125 0.464555316 -0.514166 0.676116574 -0.250375839
.298003708 4.916271052 -1.410325547 -0.443592744 -0.553883697 -0.552810572 0.436851003
848619326 6.36857945 3.354193319 0.676295741 0.354028255 0.631352683 -0.136681587

3231323 4.464715769 0.662427707 -0.055397273 0.547366245 -0.834938066 0.014133736

05053046 7.462895909 2.935074749 -0.046078259 -0.
947878077 6.33247579 0.663525852 -0.136212901 -0.
69499669 5.522232466 2.399558322 -0.591555043 -0.

306499892 0.81735092 -0.485666638
484446006 0.71753075 0.481567997
378380812 0.321918955 0.635026597

552883667 6.807509136 3.5303766 -0.374286608 -0.472671996 0.387626102 0.697306764

315628415 4.021622946 3.55639686 -0.868660347 -0.
07968305 5.392574853 2.161161624 -0.035177159 -0.
.923664116 3.030846806 0.593417846 -0.
.555038098 1.995345462 -0.392764653 0.
.014443416 1.263696976 0.078618115 -0.
.361248476 0.666607955 0.887632367 -0.
.272007236
.184591136
.811104395

138207529

788030367

.934056746 -0.637102859 0.

402943348
846972443
628809105
923802723
332270811
610515886

424446359
.481698013
.149909229
.656014714
.396427784
.714826531

.929529042 -0.068077903 0.
.961833104 0.214358481 -0.

.416181811 0.899637643 -0.

.619508027 6.244476923 0.064033481 -0.

5
5
4

383680689 4.242132187 4.822562052 0.510783328 -0.
999605219 4
4

097909575 0.844843711 0.52481324

254777244 -0.261877031 0.334571634
561994165 0.470859264 -0.679129354
80361461 -0.043608059 -0.012536208
749800671 -0.120629021 0.518636212
70794735 -0.471962099 0.519501222

194006907 0.257983164 -0.328503863

.363626371 0.2225534 -0.369743044 -0.163033724 0.887231689

539110951 0.387640068 0.391400699

4 3

6 1

4 1

6 [

4 2

5 0

5 3.712254431 0.51779228 -0.656829027 0.534622326 0.121019636
.238793389 6.963236421 6.999049346 0.215411342 -0.

4 5

6 5

5 5

5 7

7 5

5 5

856436775 -0.248492714 -0.397951474
45716139 0.884662114 -0.061170312
969642187 0.030280156 0.113699529

.849413037 -0.497650516 -0.492656207 0.705952718 0.106134751

311041354 0.255925387 0.168545493

.474295575 -0.711258273 -0.634534245 0.003273612 -0.302435521
.20260995 -0.60615025 0.759293107 -0.061288386 0.228691028
.95803453 7.108332661 4.595125899 0.561966979 -0.659118424 0.03659137 0.498414576
.257435574 6.991814739 0.056367261 0.622526185 -0.607574125 -0.49003833

303730298 0.275848092 0.909700747

.692415576 4.864217886 -0.735321306 -0.421647426 0.1254555 -0.515535588

437072317 -0.71254961 0.200851277

.36475571 7.695560522 0.957398255 0.163692977 -0.040378452 0.234441402
.099001111 9.547541799 -0.186936603 -0.868138643 -0.000730011 0.459771105
.60799225 7.283925248 10.470850106 -0.492421578 0.

710604643 -0.499998731 -0.050629029
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7.110240316 7.505714199 -0.230472445 0.400106289 -0.306949279 -0.832213644

73862085 6.928127346 8.792558942 -0.933124991 0.329198266 -0.129262203 0.064788388

909517814

005670008

626447384

187538947
949823726
215168094

3347465 4.

307027966

459132952

962308305

510082176

290623552
912979201
787073166
760053148
632351186
431151859
508304823

425556116
940601586
213252765

970895889
863272012

052886624
461246854
576729289
157138521
850301509
229341175
837630272

277473629
687007544

770633052
212952909
971846646
430923526
409517753
950690919

609948003

7.301824448 8.482859412 -0.264149989 0.922537616 0.210210778 -0.186977429
6.457616023 9.773766571 0.011541903 -0.687814125 -0.180345507 -0.703032013
4.682167374 10.664479102 -0.369740647 0.729207836 0.25297329 -0.517254579
6.486244806 7.903891959 0.012019035 -0.134509714 -0.680210708 0.720469342
5.862018861 9.787246672 -0.666948199 0.515032545 -0.274066442 -0.463475094
5.633531728 8.420421721 -0.66618391 0.074215687 -0.532920454 -0.516417293
4.446308656 8.4292543 0.686028286 0.187240978 -0.490228563 0.503966232
5.731998705 10.539164318 0.1173183 0.499743571 0.577234546 -0.635053587
3.870881133 7.506797398 -0.303599773 -0.413010523 -0.444185668 -0.734811933
4.986389842 10.334589642 0.768215522 -0.257172827 -0.568464173 -0.143372011
6.743681812 9.750521094 0.68886593 0.239399207 -0.503684378 -0.463091565
4.48685027 13.526079012 0.226916953 -0.665549563 -0.401647176 0.586712896
348433909 11.68586768 0.729388234 0.608503547 -0.099128664 0.296462047
5.24902608 12.427280419 -0.574812523 -0.212009479 -0.756507753 0.22877623
5.875316961 14.049683151 0.868429747 0.375304547 -0.323862937 0.009437697
6.827479578 12.664440704 0.230620572 0.034502879 0.77978814 -0.580994113
7.389956463 12.63216868 -0.321728404 0.857576921 -0.357973781 -0.181404057
7.068832396 12.024768671 0.718327005 0.409132323 -0.285816282 0.484691768
5.790392146 12.816226458 -0.447629541 0.85180189 -0.094742238 -0.255118094
6.208464907 11.855022279 -0.471063852 0.505717345 0.685303943 -0.229580748
4.780142873 12.412514348 -0.509060776 0.622111353 0.441567411 -0.398563436
4.042985414 11.735880451 -0.466376337 -0.836315741 -0.287895205 0.013617785
6.1624357 14.423076266 -0.746738424 0.327620975 0.08414787 0.572682598
4.36538489 14.931446424 -0.809991814 -0.04842292 -0.128474063 -0.570142874
7.362114973 13.685405738 -0.815464599 -0.303111633 -0.098660885 -0.483121988
6.81544257 14.603600094 0.572686579 0.435013867 -0.494267776 -0.48835682
11.158087209 -11.435585259 -0.10511874 0.813253508 0.243939569 -0.517747302
9.052992697 -13.581833975 0.538981558 0.381571154 -0.200705448 0.723615684
9.746833368 -13.219374243 -0.215202251 -0.229221251 -0.689457796 0.652528586
10.385279033 -12.275743159 -0.540809952 -0.391840463 -0.724798902 0.169269606
7.969048038 -12.128069283 0.202519443 -0.505037927 -0.752938656 0.370143145
7.662024632 -14.299340218 -0.367953591 0.313941396 0.54677306 -0.683439958
7.956757485 -12.423092558 0.502842831 -0.789324368 -0.348621363 0.050786567
9.700704125 -14.874942302 -0.424316127 0.011593238 0.873561566 0.238142
9.18317847 -12.696947197 0.681843871 -0.386038235 0.504011807 0.363366915
9.886422801 -13.755199667 -0.698343325 0.085473127 0.442812621 0.555812853
10.504193243 -11.42122461 0.63635394 0.434894748 0.281810839 -0.571404299
9.393561059 -14.784950209 0.065492986 -0.493191029 0.165038212 0.851607695
8.413309755 -11.562688247 0.240747287 0.565724783 0.685791859 0.389468535
9.376658354 -12.797885162 0.413086661 0.549033825 -0.714161019 0.133773351
10.077013336 -11.995897367 -0.072362924 -0.825210553 -0.195197325 -0.525061097
10.372393294 -14.146391138 0.540361222 -0.318879707 0.755669909 0.187852258
9.163955252 -10.057832143 -0.140253894 0.150436585 -0.277594484 0.938423668
8.136888453 -7.60879271 -0.5988062 -0.594952288 0.536132137 0.005024115
10.724091764 -7.712835434 0.289661769 -0.62707008 -0.718213073 -0.083959254
8.834009602 -10.162052641 0.172389785 0.956933612 -0.03914968 0.230276198
9.382990611 -7.769088459 -0.575709953 0.595748027 -0.558931767 -0.035179799
8.472731322 -8.715005861 0.508979366 -0.654302337 -0.249517186 -0.500569306
10.631692125 -7.642938024 -0.162398814 -0.132663762 -0.95823291 -0.194465016
9.258728748 -7.818898406 -0.242752436 0.254831358 -0.934397615 -0.055075682
11.29234191 -9.411285932 -0.568277292 -0.541152594 -0.482176523 0.389513274
11.027615026 -9.54855478 0.70213388 -0.694503385 0.15701732 -0.004315521
10.601739471 -8.760916526 -0.34110864 0.056150139 0.481904809 -0.805145833
10.410020595 -10.192630972 -0.116632879 0.435248364 -0.798050171 0.400089436
11.3548927 -7.592822898 0.680776198 0.144350574 -0.428054303 -0.576607487
10.265238247 -10.345799991 0.419281042 0.230512067 -0.849160282 0.223594299
8.208478571 -9.053496183 0.264841542 0.883363564 0.311207415 -0.229516265
8.673422112 -8.4330307 -0.023194182 -0.698624591 -0.036055904 0.71420283
9.241853072 -10.508443366 0.808311987 -0.510107091 0.197182391 -0.218040347
8.451492774 -6.553232678 -0.260251392 -0.69461736 0.456515984 0.491293286
10.182383391 -6.041732966 0.586151697 -0.15817404 -0.765418026 -0.21340667
10.415167811 -4.694394509 -0.472376124 0.804813614 0.359211934 0.010130644
10.784574541 -4.141307394 0.048525862 0.166124002 -0.245805326 -0.953744095
10.006370602 -5.940282859 -0.926480485 -0.370108542 -0.068185882 0.002064728
8.544668647 -4.670116079 0.127229462 -0.257750537 0.877161551 -0.384662109
9.908427378 -4.545918987 0.615688069 0.705969307 0.349810262 -0.012973847
8.512126864 -6.125669469 -0.854543906 0.504657701 0.04969969 -0.112273137
9.292005888 -6.557173973 -0.472829776 -0.257453708 -0.498348302 0.679557622
7.697910508 -5.859752673 0.677398247 0.64667465 -0.055282382 -0.346247558

23698727 9.208664863 -2.469760333 -0.480983738 0.262464345 0.626850789 -0.553918044

309163182

9.925392523 -2.708681599 0.090109864 0.397902942 -0.374043326 0.83285356
9.983460363 -1.453972208 0.60181241 -0.180245726 -0.402676907 -0.66572112
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961474066 9.343932613 -1.561297111 -0.932898623 0.307778631 -0.032307668 0.184197418

.411919777 7.607119831 -2.491706366 -0.696812573 -0.552622602 -0.412937275 0.196324486
.735369903 9.103108083 -3.654606326 -0.096280081 -0.098265516 -0.980500914 -0.140328159
.761030598 10.188015897 -0.516764786 -0.705951344 -0.561039111 -0.344254376 -0.26145122
.479143028 11.368860727 -0.194219989 -0.203213746 0.238189848 -0.534760544 0.784857268
.392539574 11.022264172 -1.442358112 0.609457594 -0.561415884 -0.512792144 -0.224539223
.685156922 7.750933715 -3.245883718 -0.668082686 -0.567908655 0.113822092 0.467107927

896037834 8.536820669 -3.547535632 -0.003567108 0.021458608 0.828054365 -0.560225644

.833206328 11.364199979 -0.241339805 -0.681906979 -0.063653086 -0.468420021 -0.558152166
.386015705 9.064045413 -0.699559593 0.696576889 0.659352742 0.105454616 -0.262514616

467710233 11.156946535 -2.399674867 0.044650116 0.729972612 -0.681326491 0.030668637
045806299 10.964778377 -3.169944783 0.649458128 0.031186265 0.719959653 0.242671908
697580976 8.075626955 -1.535433036 -0.065633691 0.884189108 -0.44893145 0.111186297
672367364 7.806902129 -2.311078055 -0.624278696 -0.27813922 -0.348393768 0.64151108
453139925 11.052046666 -0.700104495 0.509122545 -0.256748338 -0.512806282 -0.641797665
087683376 10.520099733 -1.654067626 -0.231910558 0.885630907 -0.279154744 -0.289737843
19036093 10.650052331 1.175024125 -0.938573737 -0.249973118 0.109191123 -0.211352971

.056091736 9.391270036 2.502483632 0.339821058 0.880256792 0.313147896 0.107740543
.580229931 10.627301571 3.40217693 -0.387231973 0.03787041 0.893998816 -0.222223643

443067574 9.579447648 0.364660755 0.14298776 0.609523271 0.254878964 0.736934594

.366337895 10.008368048 1.667721033 -0.824072469 0.093573077 0.558094449 -0.026062068
.363402097 7.612052287 0.153198042 0.881196965 -0.36445452 0.225982524 -0.198989221
.611515251 8.091797741 1.433929526 -0.866598109 0.441374014 0.151783451 0.176517649

578177285 10.052974125 3.73963715 -0.067883492 0.182503013 -0.825144472 0.530302822

.468946407 9.775878918 3.419598315 -0.476932633 0.409841868 0.449196236 0.634655535

555202502 10.635550518 1.704856426 -0.960432598 0.057685916 0.095123431 -0.255329382

.141650344 7.850968403 3.016392435 -0.026180548 0.506395436 0.210386733 0.835832318

802335671 9.281004657 0.83688743 -0.250888468 0.071055444 0.101307046 -0.960074467
6145658 10.947267423 2.267118151 -0.887665606 0.334655294 0.152912598 0.276899518
650410358 7.795263735 0.854242757 -0.372336375 -0.574159291 0.317549806 -0.656406012
09171007 8.802907466 0.28290984 -0.78038101 -0.179650541 -0.440541754 0.405775954
267782719 8.236517213 3.596237218 0.48985207 0.485417752 -0.57429812 -0.44113062
275694308 8.334946162 6.21103399 0.289071952 -0.053203995 -0.664948493 0.686622344

.265362783 10.951023248 6.496690988 -0.439338953 0.786851327 -0.409919816 -0.140755166

94219351 9.008851513 4.131825843 0.438379249 -0.071458122 0.448215097 0.77577097

.813952717 10.668647796 5.57237068 0.761186214 -0.011326779 0.513839298 -0.395520451

166173931 10.381808785 4.115923152 0.539871503 -0.295561722 0.787202042 0.038664881

.431179677 9.760280933 6.384692055 -0.149170965 0.739794758 0.303868481 0.581477157
.668865979 8.21820629 4.748690252 0.344333987 0.924600866 0.143915404 0.076391753
.55224415 9.334633206 5.645279744 0.444151219 0.669172059 0.509961873 -0.308021652
.842879622 8.102193674 7.198447059 0.539832136 0.347009245 -0.286390648 0.711439559
.036807868 8.762631795 3.831399398 0.856683787 0.072482639 0.15645116 0.486170947
.772619228 8.138045859 7.075893224 -0.968276352 -0.182966821 0.080728766 0.149822944
.494332855 9.489511837 5.860845725 0.833910283 0.238562522 -0.028896216 0.496836565

944470101 11.080641583 6.239506514 0.401728924 -0.108489306 -0.901565951 0.118417815
579105451 9.090406932 7.433021473 0.006298386 0.903109312 -0.064145326 -0.424545967
692552165 8.856493553 4.863161952 -0.696206801 0.587046919 0.289606339 0.294618693

466656942 7.696042699 10.261013344 0.646396884 0.674928232 -0.344653437 -0.088639483
58858443 8.262043208 11.024837982 -0.607358478 0.344616788 -0.350706718 -0.623986976

.81239006 10.769399132 10.401601056 0.474690719 0.206260367 0.340452844 0.784995059
.740741426 11.220565105 8.866989101 0.976345166 0.03351381 0.10089825 -0.188272368

38427445 8.194716658 10.315428946 0.541493312 -0.467687054 -0.36097054 -0.598125473
214819175 10.639180518 10.40789858 0.69918992 -0.604223459 0.382004599 -0.010952346
369737274 9.624501005 10.671632407 -0.380280123 -0.890813681 -0.06478757 0.240084535

.397961737 8.60580617 9.550485115 0.035451254 0.508817993 0.141779926 -0.848378401
.629099558 8.912212572 9.816722515 -0.533182162 0.77480791 0.330892417 0.076809455
.343213905 11.013672966 7.651968287 -0.389567226 -0.206710385 -0.864105411 -0.24254903

958460429 8.4397112 8.248655416 -0.23230218 -0.775341024 -0.357210014 0.466136245
716226601 9.900669837 9.402577621 -0.283760642 0.275724053 -0.392263382 -0.8304129

.147867796 9.901332442 8.198958421 0.117882163 -0.952198219 -0.274540814 -0.063637161

5114385 9.542758566 8.874843027 -0.598064279 -0.187432187 0.403748585 -0.666464833
379080493 10.220836317 14.90959227 -0.366992578 -0.543432065 -0.39702546 -0.642159499
664682345 10.795729346 14.236075466 0.479769949 0.049099568 -0.089604889 0.871424691
704174343 8.446350988 13.563553857 -0.33004793 -0.575562838 -0.102988436 -0.741072983
708275235 8.778283451 11.454097738 0.270395106 0.40134625 0.191931577 -0.853797367
119907989 8.67875204 12.494239252 -0.454836033 0.775991467 -0.222211032 -0.376276073

.637434796 8.504852092 14.241534337 -0.033665116 0.464251248 0.880812412 0.086642565
.466896593 10.015185597 12.135141034 0.722591071 -0.320803588 0.46536269 0.397975839
.434789133 11.037255989 13.244363152 -0.528132106 -0.301148301 -0.413924116 0.677534505
.240785017 8.97508114 12.601999576 -0.108990886 -0.521843459 -0.614458898 -0.581584606
.675753997 8.934721095 13.674138272 0.721347297 0.36192453 -0.27127012 0.524481872
.393615451 7.885313868 13.98317486 -0.676584769 0.560133972 -0.310132258 -0.363731999

133168681 9.933856674 14.044687652 0.013148903 -0.370397716 -0.620978518 0.690665128
968745378 11.231341299 12.205629386 0.828801791 -0.262248741 -0.378864886 -0.317450133
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-11.015692631 -14.170003753 -7.930273696 0.727953155 -0.307186745 0.531660287 0.305053844
-9.783325241 -14.419550505 -8.135914562 -0.871900787 -0.391014011 0.234834233 -0.178185138
-9.442423528 -14.437735014 -9.346505751 -0.117430713 -0.405386722 -0.803111305 0.420575635
-8.143540261 -14.071555645 -10.410368019 -0.824243452 -0.520366163 0.169718443 0.145042881
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-11.048278483 -13.536377381 -10.394066596 -0.073552188 -0.212007419 -0.202534447 0.953217041
-9.434487492 -13.229855779 -7.784292022 -0.527019942 0.531145949 0.621199185 0.232906707
-8.356608142 -11.63260935 -11.112873821 0.567677268 0.049229966 -0.074523781 -0.818391799
-8.048527445 -11.756699717 -9.252761658 -0.325394016 0.373005415 -0.768217504 -0.405989608
-8.959714477 -12.685398622 -8.878972831 -0.928233108 0.047294238 0.354775574 0.101394497
-9.273861989 -13.370030822 -9.763366998 -0.318173052 0.639724355 0.087130276 0.694209604
-10.653612293 -14.406602078 -9.734443382 -0.631217888 0.729143468 -0.257817812 0.058683531
-7.45628261 -11.39550551 -10.338967781 -0.33443439 -0.766720789 0.449668378 -0.313195179
-10.464617993 -11.672669615 -9.987868362 0.167856977 -0.783695203 0.097892542 0.58996857
-8.937808059 -15.130500267 -7.704673127 0.077136526 -0.688013139 0.705210762 0.152858292
-10.151735999 -12.712549778 -10.493011919 -0.201037303 -0.091796584 0.949598086 -0.22230804
-9.925326602 -11.571044449 -8.928696194 0.933293505 0.319250834 0.076630727 0.145498697
-9.934038967 -13.079710146 -4.324982981 0.086405342 0.551330304 0.814819768 0.156964197
-8.964964678 -13.249056612 -4.996762084 -0.347142626 -0.059588523 -0.847443606 -0.397215986
-8.493195024 -13.937497731 -6.75764745 0.092538914 0.282806437 0.954509054 -0.019223286
-10.785364115 -12.926349628 -5.365780768 0.548557978 0.340682004 -0.556763023 -0.522527371
-7.690693763 -14.419767085 -4.216069675 -0.228107241 -0.633610083 -0.047444876 0.737735951
-8.404448363 -14.972034069 -6.018873776 -0.390885851 -0.250320847 -0.687298181 0.558720803
-8.201978493 -12.651151812 -4.176331468 -0.991713296 -0.052220025 -0.104363205 0.053722704
-8.804646601 -12.935780872 -6.159918178 -0.651858501 -0.055167769 -0.352729711 -0.66904317
-9.95519296 -12.275749719 -6.15626239 -0.291887339 0.023611142 -0.29451538 0.909673011
-11.158608256 -14.521024397 -4.451937164 0.727300632 -0.224446232 -0.625224503 -0.172487682
-8.107464739 -11.875197136 -6.113565993 -0.857577879 0.487159088 0.09153165 0.137325019
-10.131309434 -14.32452092 -3.961750115 0.141005698 0.486159965 0.760724783 -0.406280306
—7.749469877 -11.951647727 -4.993300821 -0.021852827 0.478919983 0.37607157 0.792923879
-8.660718786 -14.398485475 -4.900284666 0.363072005 -0.589537205 0.036783239 0.720605021
-10.2734529 -12.325758564 -7.382878356 -0.031571938 -0.703443483 -0.667149797 -0.243067126
-10.33564609 -12.770819873 -2.414797784 0.58687761 0.317256822 0.448629316 -0.594688588
-9.250153258 -12.205584927 -1.335149003 -0.040059517 0.096635598 0.3568941 -0.928269033
-10.769794786 -13.84180385 -2.667409605 -0.682029008 0.545142014 -0.115453835 -0.473631743
-11.073586955 -11.435761388 -0.638503938 -0.377780743 0.095120635 0.852286762 -0.349057374
-8.02479654 -14.285179315 -2.362033974 -0.523485598 0.368157826 0.767687672 0.032837205
-9.947438136 -12.255585321 -3.385338064 -0.443921519 -0.233332435 -0.84836969 0.1695834
-9.155994199 -13.978694416 -2.058105033 -0.750978288 0.59789241 0.274150678 -0.058289646
-9.730866612 -14.783645733 -0.464475033 0.382046513 -0.197499725 0.816273593 0.385657545
-8.429331614 -11.394073851 -1.252494692 -0.701992854 -0.315161664 0.314913508 0.555615551
-9.558942539 -15.036485076 -1.748319827 -0.756815119 0.396009866 0.158720322 0.495191803
-10.883489265 -14.853247669 -0.405104593 0.319625909 -0.24592384 -0.115075378 0.907809672
-8.74632777 -12.289634493 -3.142630729 -0.379021028 -0.803180849 0.442290585 0.124990488
-9.966494177 -11.746761297 -0.320376063 0.227894258 0.032723164 -0.662000055 -0.71326666
-7.534030201 -13.507745309 -0.366217366 0.000457647 -0.510823312 0.580756377 -0.633862261
-8.929426191 -13.305406789 -1.04171436 -0.749347975 0.578677168 -0.320426412 -0.03061474
-10.592873893 -15.171092424 -2.255442403 -0.644166501 -0.174580321 -0.707118493 0.233569408
-11.032149564 -11.971123557 -1.956752146 0.474003063 -0.061886529 -0.853154048 -0.208852397
-9.633405607 -13.443830388 0.018633416 0.515486203 -0.627161024 0.257434593 -0.52409012
-8.426291451 -12.015220632 1.191399111 0.009442503 0.933136681 0.022210215 -0.358710859
-9.464083019 -11.914067192 2.646062829 -0.295077491 0.725228272 0.410746729 -0.467183425
-7.918087656 -14.029156409 3.449187597 -0.332052593 0.719804233 -0.520263515 -0.317724434
-8.858930144 -14.838127911 1.184348269 -0.407144857 -0.323655461 -0.791588581 0.32072999
-9.929981451 -14.357179716 3.429582002 0.189843821 0.634551444 -0.437454325 -0.608224878
=7.707105277 -14.962442242 1.340047916 -0.564259408 -0.072230511 -0.565274668 -0.597376451
-8.998232139 -13.439587247 3.318380966 0.022825905 0.392423319 -0.071281973 0.916734311
-10.492312869 -14.167519425 2.293190076 -0.734336036 -0.34742413 -0.461335251 0.356674706
-9.557645364 -13.030555079 1.926006368 -0.238743853 -0.011607647 0.681514686 0.691667816
-10.696935696 -12.972196259 0.34116066 0.178517783 -0.896052494 -0.134713721 0.383501686
-10.597765919 -12.639467287 1.539156561 -0.374956677 -0.098572022 -0.391451317 0.834539941
-10.98158426 -11.456873153 1.803127799 0.24906821 0.250983541 0.785225558 0.508323825
-8.310584718 -15.09542856 3.206344013 0.429618299 0.176126183 0.238967705 0.852820099
-8.955699094 -13.440721807 1.022451287 -0.196075143 -0.567987904 0.452233982 0.659112058
-10.631945621 -13.773172543 4.2237797 -0.878321416 0.170157774 -0.020702506 0.446283797
-10.633643468 -11.696066354 5.957570641 0.416294643 -0.458626566 -0.758291176 0.203359127
-10.264550301 -12.503687352 6.751107384 -0.216743015 0.121630193 0.7064879 -0.662648783
-8.886152718 -12.886485076 4.387288244 -0.088097475 0.315346843 -0.9178700