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added-mass coefficient

damping coefficient

hull offset

restoring-force coefficient

contour of body in the cross-section at x
force in j-th mode due to body motion
force in j-th mode due to incident waves
gravity constant

y offset of camber surface

g(x,z;e) /€

half-thickness of body (equal to
a symmetrical body)

h(x,z;e) /¢

part of free-surface deflection in problems in
two dimensions (see Equation (5-15))

b(x,z) for

projection of a body onto the
centerplane of a ship)

V=1

unit vectors parallel to three Cartesian axes

y = 0 plane (the

Fourier-transform variables corresponding to
X, Yy, and 2z , respectively

modified Bessel function of second kind

length of a ship, or the segment of the x axis
between bow and stern cross-sections

(j=1, ... , 6) a set of functions defined
over the surface of a slender body (see (2-75))

added mass per unit length of a slender body

(j=1, ... , 6) a set of functions defined
over the surface of a slender body, equal to the
components of the unit normal vector for Jj =
1, 2, 3 (see (2-72))

damping coefficient per unit length of a slender
ship

unit vector normal to body surface (usually
taken positive into the body)

unit vector in a plane x = constant , normal to
body contour in that cross-section
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pressure

radius coordinate in cylindrical coordinate system
radius coordinate of a slender body

xi + yj + zk

half-span of a horseshoe vortex or a lifting line

local half-span in wing cross-section at x , or
cross-section area of a slender body (taken as the
cross—section area of the submerged part, for a ship)

half-span of a wing of large aspect ratio
keel depth of a ship at cross-section at x

transfer functions between motion variables and
forces on body

speed of a body, or speed of an incident stream
(the latter invariably being taken in the positive
x direction)

fluid velocity at (x,y,2) with uniform stream
at infinity, U =1 , flowing around a body

Cartesian coordinates

stretched Cartesian coordinates, e.g., x = X ,
y =€¥Y , and z = ¢€Z for a slender-body problem,
xyz being far-field coordinates, XYZ near-field

terms in a near-field expansion of ¢(x,y;e) (Cf.
Cn (XIY7€) )

¢n(x,0,z;€) in thin-body problem

normal velocity component in the plane of a sheet
of dipoles

motion-amplitude parameter in ship-motion problems
small parameter in most problems considered
displacement of the free surface

terms in a far-field expansion of «¢(x,y;e) (Cf.
z (x,yie) )

function mapping the complex variable z onto an
auxilliary ( ¢ ) plane (in Section 5)

steady part of free-surface deflection in ship-
motion problem

free-surface deflection in problems in two
dimensions

part of free-surface deflection in low-speed
problem in two dimensions (see (5-7))



6 angle variable in cylindrical coordinate system
0(x,y,t) time-dependent part of free-surface deflection in
ship-motion problem

K g/U2 , @ wave number in steady-motion problems
An(z) density of dipoles on a line (see (2-40))
un(z) density of dipoles on a line (see (2-40))
un(x,z;e) density of dipoles on a surface
v wz/g ; @ wave number in oscillation problems
E.(t) displacement in the j-th mode of motion (see

J Section 2.32)

) water density
on(x;e) density of sources on a line
on(x,z;e) density of sources on a surface

¢(x,y,z,t) velocity potential (The arguments may vary, but
¢ generally denotes the complete potential func-
tion in a problem.)

¢0(x,y) in Section 5.4, potential for the problem in
which the free surface is replaced by a rigid wall

¢ (x,y,2;e) terms in a far-field expansion of ¢ (x,y,z;¢c)

n
¢j(x,y,z) normalized potential functions (see (2-73), (3-28))
@n(x,y,z;e) terms in a near-field expansion of ¢ (x,y,z;e)
Qj(x,y,z) normalized potential functions (see (3-44))

X(x,vy,2) velocity potential for the perturbation of a unit-
strength incident stream by a slender ship

wj(x,y,z) normalized potential functions (see (2-76))

Vv(x,y,z,t) time-dependent part of velocity potential in ship-—
motion problem (with forward speed)

Wj(x,y,z) normalized potential functions (see (3-45))
w radian frequency of sinusoidal oscillations

Qj(x,y,z) normalized potential functions (see (3-46))
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MISCELLANEOUS CONVENTIONS

l) Veloeity Potential: The velocity is always the positive
gradient of the potential function.

2) Coordinates and Orientation: In problems involving a
steady incident flow, that flow is always in the
positive x direction. The vertical axis is the
y axis in 2-D problems, the =z axis in 3-D problems.

3) Time Dependence: In problems of sinusoidal oscillation,
the time dependence is always in the form of the
exponential function, elwt” | 1n such problems, the
real part only is intended to be used, but we do not
indicate this explicitly in general.

4) Fourier Transforms: These are denoted by an asterisk.
For example,

[+ oo}

o* k) = | ax e o (x) ; o(x) = ak e¥¥g* (k)

1
2T

- -0

o** (k,2;2) =[ [dx dy e_i(kx”y)cb(x,y,z) .

5) Principal-Value Integrals: These are denoted by a bar
through the integral sign:

ag £(§)
£ - x

6) Order Notation: There are three symbols used: O , o , "~ .

a) "y =0(x) " means: |y/x| <M as x > 0 , where M
is a constant not depending on x .
b) "y =o0(x) " means: |y/x| + 0 as x > 0 .

c) "y N £(x) " means: ]y - f(x)| = o(f(x)) as x> 0 .



ERRATA

"Singular Perturbation Problems in Ship Hydrodynamics" — T. Francis Ogilvie,
Report No. 096, Dept. of Naval Architecture and Marine Engineering, The University

of Michigan, Ann Arbor. (October 1970)

p. 42, line 20: Read 'parameter' for 'paramter'.

pP. 44: 1In the last line of (2-40), remove the superfluous N , that is,
N

| t~12

N
replace: z by:

n=0 n=0
P. 79, line 1l: Read ' ¢i ' for ! ¢1 '.

p. 80, middle line of (2-76): Equation should read:

%gl = m on s(x,y,z) = 0 ;

p. 80, last two line: Replace ¢3 by ¢1 , and replace first ¢5 by ¢3 ’

so that the whole expression on these two lines is as follows:
[-U cos ES - 1w53 sin €5]¢1(X,Y:Z)

+ [-U sin ES + iw£3 cos §5]¢3(X,Y,Z) + in5¢5(x,y,z) .

p. 97, starting on the fourth line: In the formula for DW , remove the
factor U2 and change s(x) and s(§) to 0O(x) and 0({) . These lines

should read as follows:

D = wave resistance

p[[ do (x) do (&) YO(KIx—El) .

where 0O(x) is given by (3-13b), and also

n, -

N

2
K = g/U ’
ao(x) = d—od(xi‘ldx ,

Yo(z) Bessel function of the second kind, of order zero, argument =z .



1 INTRODUCTION

This paper is a survey of a group of ship hydrodynamics

problems that have certain solution methods in common.

The problems are all formulated as perturbation problems,
that is, the phenomena under study involve small disturbances
from a basic state that can be described adequately without
any special difficulties. The methods of solution make
explicit use of the fact that the disturbances of the basic
state are small. Mathematically, this is formalized by
the introduction of one or more small parameters which serve
as measures of the smallness of various quantities. The
solutions obtained will generally be more nearly valid for

small values of the parameter(s).

However, the problems will also be characterized by
the fact that they are ill-posed in the limit as the small
parameter (s) approaches zero. Thus, we call them singular’
perturbation problems. Special techniques are needed for
treating such problems, and we have two which are especially
valuable:

1) The Method of Matched Asymptotic Expansions, and
2) The Method of Multiple-Scale Expansions.

The first has a well-developed literature, and it has been
made particularly accessible to engineers by Van Dyke (1964).
The second, which has a longer history, is perhaps less
well-known, but we now have a textbook treatment of it too,
thanks to Cole (1968). Because of the availability of such
books, my treatment of the methods in general will be ex-

tremely terse.

The necessity for treating ship hydrodynamics prob-
lems as perturbation problems arises most often in the
incredible difficulty of handling the boundary condition
which must be satisfied at the free surface. Even after



neglecting viscosity, surface tension, compressibility,

the motion of the air above, and a host of lesser matters,
one can still make little progress toward solving free-sur-
face problems unless one assumes that disturbances are
small — in some sense. Historically, it has commonly been
assumed that the boundary conditions may be linearized; in
fact, this has so commonly been assumed that many writers

hardly mention the fact, let alone try to justify it.

The two methods emphasized in this paper can also be
applied to problems involving an infinite fluid. 1In fact,
neither method was applied specifically to free-surface
problems until quite recent times. Section 2 of this paper
is devoted to several infinite-fluid problems. My justi-
fication, quite frankly, is almost entirely on didactic
grounds. The methods can be made much clearer in these
simpler problems, and so I include them here, although in
some cases the infinite-fluid problems can be treated ade-.

quately by more elementary methods.

Most of the material in this paper has appeared in
print elsewhere. My intention has been to present a coher-
ent account of the treatment of singular perturbation prob-
lems in ship hydrodynamics, and so I have reworked solutions
by other people and put them into a common notation and a
common format. In some cases, I have made conscious de-
cisions to follow certain routes and to ignore others. I
am sure that I have made many such decisions unconsciously
too. I have tried to give credit where it is due, but I
am also sure that I have committed some sins of omission in
the references. I apologize to those whom I may have slight-

ed in this way.



1.1 Nature of the Problems and Their Solutions

We never really derive the perturbation solution of
the exact* problem; we derive, at best, an exact solution
of a perturbation problem. That is, we formulate an exact
boundary-value problem, simplify the problem, solve the
simplified version, and then hope that that solution is an

approximation to the solution of the exact problem.

Thus, there will almost always be open questions
about the wvalidity of our solutions, and these questions
can only be resolved through comparisons with exact solutions
and experiments. We can have little hope of being rigorous.
In fact, it is difficult to provide completely convincing
arguments for doing some of the things that we do; in many
cases, our approach is justified by the fact that it works!
Much progress has been made in this field by people who try
approaches "to see what will happen."

This does not imply that we shoot in the dark. It
does suggest that we often depend more on intuition (or
experience, which is the same thing) than on mathematical
logic in deciding how to solve problems. The small dis-
turbance assumptions by which free-surface problems have
traditionally been linearized must have been tried first
on this basis. The predictions which result from making
such assumptions agree fairly well with observations of
nature, and so we are encouraged to go on making the same
assumptions in new problems. We may expect to be success-

ful sometimes.

There are also open questions about the uniqueness
of solutions. Engineers do not often worry about such
matters, but they should certainly be aware of certain

*"Exact" means only that nonlinear boundary conditions are
treated exactly. I neglect viscosity, surface tension,
compressibility, etc., and still call the problem "exact."



situations in which the dangers of non-uniqueness are
especially great. The history of the study of free-surface
problems provides numerous examples of invalid solutions
being published by authors who were not sufficiently careful
on this score. We have learned to be careful about imposing
a radiation condition when necessary, although newcomers

to the field are still occasionally trapped.* Questions
about stability of our solutions are not so well appreciated,
but of course solution stability is just one aspect of
solution uniqueness. A particularly startling example has
been pointed out in recent years by Benjamin & Feir (1967):
Ordinary sinusoidal waves in deep water are unstable. This
has now been demonstrated both theoretically and experimen-
tally. It comes as no great surprise to those experimenters
who had tried to generate high-purity sinusoidal waves for
ship-motions experiments, but it was certainly quite a
surprise to the theorists, who apparently did not suspect
any such phenomenon before its discovery by Benjamin and

Feir.

Since we shall be considering small-perturbation prob-
lems, we may expect the solutions to appear in the form of
series expressions (not necessarily power series!). Often,
we are content to obtain one term in such a series. Prac-
tically never do we face the question of whether the series
converges. In fact, we usually just hope that the series

has some validity, at least in an asymptotic sense.

The question will arise from time to time, "How small
must the small parameter be in order that a one- (or two-

*Within the last few years, a leading German journal pub-
lished an article on wave resistance in water of finite
depth, in which it was concluded that a body had identi-
cally zero resistance if it were symmetrical fore and aft.
The author was, I believe, primarily a numerical analyst,
not familiar with the pitfalls of free-surface problems.
He did not impose a numerical condition equivalent to a
radiation condition. (This is one reference that I inten-
tionally omit.)



Oor three- or n- )term expansion give valid predictions?"

In ship-hydrodynamics problems, it is quite safe to assert
that the only answer to such a question must be based on ex-
perimental evidence. 1In fact, even in simple problems, the
knowledge of a few terms is not likely to help much with this
question. For example, suppose that one tries to solve the
simple differential equation: y"(x) + y(x) = 0 , by means of
a series of odd powers of x . How does one know that a two-
term approximation is accurate to within one per cent even if
X 1is as large as unity? One might compute the third term, of
course, and compare it with the second term, hoping to guess
what the effect of further terms would be. If it were too
difficult to compute that third term, one could only hope
that the solution had some validity, and perhaps one would
try to find some experimental evidence on which to hazard a
guess about validity. So it is in our ship-hydrodynamics
problems. It will be necessary to discuss this point further

at an appropriate place.

A related question concerns the precise definition of
the small parameters that we use to formulate the approximate
problems. 1In this paper I avoid defining the small parameter
quantitatively. It is usually unnecessary and it is dangerous.

I shall return to this point also.

1.2 Matched Asymptotic Expansions

For most of our problems, the approach advocated by Vvan
Dyke (1964) is entirely adequate. I shall assume that the
reader is familiar with (or has access to) Van Dyke's book.

Only a few definitions and concepts will be mentioned here.

Perhaps the simplest problem that demonstrates the
applicability of the method of matched asymptotic expansions
is the following: Find the solution of the differential



equation,

ey + 2y + y = 0,
subject to the initial conditions:

y(0) =1 ; y(0) =o0.

The parameter € 1is to be considered small, and, in fact,
we want to know how the solution of this problem behaves

as € > 0 . Now, if we set € = 0 , the order of the dif-
ferential equation is reduced, and two initial conditions
cannot be satisfied. Therefore, one cannot obtain a series
expansion for the solution by a simple iteration scheme

which starts with the solution for the limit case, € = 0 .

The exact solution for this problem is:

-pzeplt + plep2t
y(t) = — '
Py = Py
where

-1 - /1 - ¢

pl= c e -2/ ;
-1+ /1 -

P, = =S = -1/2 .

If we consider that t

0(l) as € = 0 , then the follow-
ing approximation is valid for vy (t) :

2
“t/20 4 % (2 - t) +—5= (6 - 3t + 2t2) + ...}

y(t) v e 32

This approximation could be obtained step-by-step,
iteratively:



where y(t) v I yn(t) .

at t =0,

the other hand, we could consider that t = O(g)

and rearrange the exact solution accordingly.

easily done if we set t =

terms of T .

y(t) ~ 1 + e(% -5+ ez(I% -

-2T,¢
- e {Z-'l‘

This approximation could be
differential equation by an
let y(t) ~ I Yn(T;€) , the

and the constants cannot be determined.

€T

The approximation for

However, it is not uniformly valid

On
as e > 0

This is most

and rewrite everything in
y(t) is then:
T Tz
7t3® Y 4oL,
2,3 T
€ ('E+§)+-.o } .

obtained completely from the
iteration scheme in which we

individual terms satisfying

the equation:

Yl','l(‘[) + 2YI'1(T) = =€ Yn_l('r) [Yr'1 = dy/dr]

and the conditions:

Yl(O) =1 ; Yn(O) =0, n>1; YA(O) =0, n> 1.

T+oo;

However, this solution is not uniformly valid for

in fact, one would hardly suspect that it represents a

solution decaying exponentially with time.

The difficulty arises because the problem is character-

1/pq
One of the two exponentials in the

ized by two time scales, and l/p2 , and the two
are grossly different.
exact solution decays very rapidly and the other decays
at a moderate rate. The contrast in these two time scales,
along with the fact that each has its dominant effect in a
allows us to apply the method of

The Van Dyke

distinct range of time,

matched asymptotic expansions to this problem.



prescription for doing this is as follows:

Define the n term outer expansion of y(t) as
[yp(€) + ... + yn(t)] ; define the m term inner expansion
of y(t) as [¥Yy(1) + ... + Ym(T)] . In the n term
outer expansion, substitute t = €t and rearrange the
result into a series ordered according to ¢ ; truncate
this expression after m terms, which gives the m term
inner expansion of the n term outer expansion. Similarly,
in the m term inner expansion, substitute T = t/e and
rearrange the result into a series ordered according to ¢ ;
truncate this expression after n terms, which gives the
n term outer expansion of the m term inner expansion. The

matching rule states that:

The m term inner expansion of the n term outer
expansion = the n term outer expansion of the m

term inner expansion.

In the example discussed in the previous paragraphs,
the outer solution could not be obtained by a simple itera-
tion scheme. The matching principle can now be used to
determine the constants in the outer solution, and so an
iteration scheme is now available, requiring, however, that
inner and outer expansions be obtained simultaneously. In
the example, the inner solution could be obtained completely
and independently of the outer, but this is an accident which
occurred because of the simple nature of the problem above.
Ordinarily, in cases in which one might consider using the
method of matched asymptotic expansions, one must proceed
step-by-step to find first a term in one expansion, then a

term in the other expansion, and so on.

It is worthwhile to be fairly precise about certain

definitions. We use the equivalence sign, " ~ ," fre-

quently. For example, we write:



N
¢(x,y,2z5€) v ] ¢ (x,y,zie) .
n=0

This means that:

| ¢ -3 ¢

n=0 n !

Also, it implies that ¢

= o(¢N) as € > 0 for fixed values of (x,y,z)

n+l = o(¢n) as € > 0 . The quali-

fication that (x,y,2) should be fixed is very important.

In the example above, we would have the equivalent statement

for the outer expansion:

N
ly(t;e) - ) vy, (tie)| = o(yy) as € > 0 for fixed t
n=1

and, for the inner expansion:

14

N
ly(tie) = [ ¥ (t:e)] = o(Yy) as e > 0 for fixed T .

n=1

In the latter, we evaluate the difference on the left-hand

side for smaller and smaller values of t ( = e1 ) as
in other words we restrict the range of t more and
as € > 0 . This is in contrast to the interpretation
the outer expansion, in which we simply fix t at any
while we let € + 0 . 1In even more physical terms, we

€ >0
more
of
value

may

say that the inner -expansion describes the solution during

the time when the eplt term is varying rapidly, and the

outer expansion describes the solution when the eplt

term

has effectively reached zero and the epzt term is varying

significantly. This separation into two distinct regimes

is characteristic of problems in which we apply the method

’
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of matched asymptotic expansions. Of course, the real key

to the success of the method is in the procedure by which the
two aspects of the solution are matched to each other.

After all, they do represent just two aspects of the same
solution.

Usually, we insist that our asymptotic expansions be
consistent. A precise definition of this term is awkward,
but perhaps it is clear if we state that each term in such
a series depends on € 1in a simple way that cannot be
broken down into simpler terms of different orders of mag-

nitude. For example, the following two series are equal:

[1 + € + e2 + e3 + ...] = [1 + %e + %82 + %83 + ...]

+ [%e + 7€ + g€ + ...]

+ [%82 + %53 + ...
1l 3

+ [Ee + <..] + ..

On the right-hand side, let:

_ 1,12 ,13 .
fO(E) —1+'2-€+'4-€ +§‘€ + ... H

n
fn(a) = %— fo(e) , for n >0 .

Then we can write:

Nn N
e~ ] £(e) as e~>0.
n=0 n=0

These happen to be convergent series (if € < 1 ), but we

can interpret them as asymptotic series just as well. The
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series on the left is "consistent;" the one on the right is

not, because individual terms have their own e substructure.

The striving for consistency can become a religion,
but it is not a reliable faith. Consistency (or the lack of
it) tells us nothing about the relative accuracy of other-
wise equivalent asymptotic expansions. 1In fact, we could
define a third asymptotic series with terms given by:

go(e) = 1/(1-¢g) ; gn(e) =0 for n> 0.
This series is grossly inconsistent, but one term gives

the exact answer for the sum of the previous series!
Occasionally one can make educated guesses about such things,
replacing a few consistently arranged terms by a simple,
inconsistent expression having much greater accuracy in
practical computations. Mathematically, these different
asymptotic series are equivalent, and, if ¢ is small e- -
nough, they will all give the same numerical results. But
we want in practice to be able to use values of ¢ that

are sometimes not "small enough."

We shall work with consistent series, for the most
part, in spite of such possibilities of improvement through
the use of inconsistent series. Most newcomers to this
field of analysis find that there is a considerable element
of art in the application of the method of matched asymptotic
expansions, and I personally consider that the improvement
of the expansions through the development of inconsistent
expansions is the highest form of this art. Except in
one respect, I do not intend to pursue the possibilities of

inconsistent expansions in this paper.

The exception that I make is the following: Many
singular perturbation problems lead to asymptotic-expansion
solutions of the form:
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i 2 nm
a__€ (log e) ,
n=0 m=0

where a.m does not depend on € . We can, of course, write
this out in a long string of terms quite consistently ar-

ranged. However, my practice will be to treat the sum:

n
_ n m
h (e) = e m£0 a__(log €)

as a single term (albeit inconsistent) in the series

Zhn(s) . An alternative way of describing this practice is
to say that I consider 1log ¢ = 0(1) as € - 0 ! I have
encountered some practical problems which could apparently
not be solved by the Van Dyke matching principle unless
treated in this way, and I have never seen or heard of a
problem in which this practice led to difficulties. There"
are some good arguments for proceeding in this way, but

I know of no proof that either way is the correct way.
(Some of my colleagues will call this a cheap trick, rather

than a higher expression of an art form.)

The classical example in physics of this kind of
mathematical problem is the boundary layer first described
by Prandtl in 1904. The thickness of the boundary layer
becomes smaller and smaller as the small parameter, 1//R
approaches zero ( R 1is the Reynolds number), but the pre-
sence of the boundary layer cannot be neglected, because
then the governing differential equation becomes lower order,
and the body boundary conditions cannot all be satisfied.
Unfortunately, Prandtl did not realize the generality of
the analysis which he introduced into the viscous-fluid
problem, and, lacking the modern formalism for treating such

problems, he could not obtain higher-order approximations.
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Perhaps I should include a discussion of Prandtl's
problem in this paper, since it might be considered as a
"singular perturbation problem in ship hydrodynamics." How-
ever, I shall not do this, for several reasons. Van Dyke's
coverage of the problem is excellent, I think. Also, the
analysis concerns only laminar boundary layers, and they are
really of quite limited interest in ship hydrodynamics.
Finally, the formal procedure breaks down completely at the
leading edge of a body, and the singularities that occur there
cause major difficulties in all attempts to use the formalism

to obtain higher-order approximations.

One final point should be emphasized, even at the risk
of insulting the intelligence of readers who have read this
far. Whenever we write, " ¢ - 0 ," we are implying the exis-
tence of a sequence of physical problems in which the geometry
or some fundamental parameter varies. For example, in Prandtl's
boundary-layer problem, we may consider that viscosity changes
as € =1//R > 0 . 1In the simple ordinary-differential-equation
example presented above, we may think of a spring-mass system in
which the mass is changed systematically from one experiment to
the next. Later, when we treat slender-body theory, we consider
a sequence of problems in which the body changes each time. The
theory always implies the possible existence of such a series of
problems, and the quality of the predictions improves as the
problem more nearly fits the limit case. Thus, we shall be able
to apply the results of slender-body theory to bodies which are
not especially slender. 1In such cases, we may expect that the
predictions will be less accurate than the predictions that we
would make for a much more slender body. But we never know a
priori how slender the body must be for a certain accuracy to
be realized, and it would be wrong to assert that the theory
applies only to needle-like bodies. All that we can say is that
it would be more accurate for such bodies than for not-so-slender

bodies.
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1.3 Multiple-Scale Expansions

In the problems of the previous section, we had two
greatly contrasting scales for the independent variable.
The fact that enabled us to obtain two separate expansions
was that each of the scales dominated the behavior of the
solution in a particular region of space or a particular
period of time. The major practical concern was to ensure
that the separate expansions matched, because they really

represented just different aspects of the same solution.

The present section is devoted to problems in which
there are again two greatly contrasting scales. However,
in these problems, it will not be possible to isolate the
effects of each scale into a more or less distinct region
of space or time. The effects of the two scales mingle
together completely. However, we may still expect to be
able to identify these effects somehow, just because the
two scales are so different.

There are classical problems of this kind, the most
famous being related to nonlinear effects on certain periodic
phenomena. Cole (1968) discusses a number of these problems.
Perhaps the simplest example of all is a linear one: Find
approximate solutions for small € in the problem of a
linear oscillator with very small damping, where the differ-
ential equation might be written:

il
(]
.

v + 2y + y

To be specific, let the solution satisfy the initial condi-
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tions: y(0) =1 and §(0) = 0 . Physically, we expect
that the system will oscillate with gradually decreasing
amplitude. It would be desirable if the approximate solu-
tion at least did not contradict this expectation.

We might try representing y(t;e) by an asymptotic
expansion with respect to e: y(t;e) ~ % yn(t;e) . We would
find immediately that the first term in this expansion is
just: yo(t;e) = cos t . This seems gquite reasonable, since
it represents a steady oscillation at the frequency appropri-
ate to the undamped oscillator. The second term in the ex-
pansions would be obtained from:

§1 +y, =~ 25&0 = 2¢ sin t , with y,(0) = §l(0) =0 .

It is impossible to obtain a steady-state particular solu-

tion of this problem. 1In fact, the solution is:

yl(t;s) = g[sin t - t cos t] .

Thus, we obtain an expansion in which the second term grows
linearly with time. One might expect that succeeding terms
will grow even faster. This expansion is correct, and, for
small values of t , it could be used for numerical pre-
dictions. But we would certainly prefer to obtain an ex-
pansion which is uniformly* valid, even for very large t .

The exact solution is easily found, of course. It
is:

y(t;e) = e €t (cos V(1 - ezlt + 771%;;)sin /(l-ez)t] .

*Strictly speaking, the series really is uniformly valid
except at £t = o ,
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The approximate solution becomes worse and worse with in-
creasing t Dbecause the frequency is wrong and because
the exponential factor is expanded in a power series in

t . If we watch the oscillating mass on a time scale appro-
priate to the period of the oscillation, we do not see the
exponential decay and the slight shift of frequency caused
by the damping. On the other hand, if we watch for a very
long time, the effects of damping accumulate gradually.
Thus, the effects of the "slow-time" scale, 1/ , per-
sist throughout the history of the motion as observed on

a real-time scale, but these effects never occur suddenly.
It is this fact which enables us to separate them out of

the real-time problem.

There seems to be less reliable formalism available
for handling such problems than in the case of the method
of matched asymptotic expansions. More is left to the insight
and ingenuity of the individual problem solver. In the
example discussed above, the procedure is fairly clear:

Expand vy(t;e) in a series such as this:

y(t;e) ~ yo(%,T;e) + yl(‘E,T;e) + cee

where we define:
t = et H t =T+ fl(T;e) + fz(T;E) + ce.

and the functions fn are to be determined in such a way
that the approximation is uniformly valid for all t . 1In
treating this particular problem, Cole immediately assumes
that t = t and further that t/t =1 + O(ez) . These
extra assumptions speed the solution considerably,but it
is not clear how one would know to make them if the exact
solution were not available. The exact solution takes the

form:
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v(t;e) = e ¢ [cos T + (t/1) sin 1] ,
in terms of the new variables. (The factor (€/T) does
not depend on t .) Here it is clear how the two time

scales enter into the solution as well as the problem. One
may expect the relationship between t and T +to be equi-
valent to the expansion of the quantity /(l—ez) . The

reader is referred to Cole's book for further discussion of

the solution of such problems.

One problem that will be discussed later is a close
relative of the clasical problems mentioned above. The
solution by Salvesen (1969) of the higher-order problem of
the wave resistance of a submerged body leads to a situation
in which the first approximation is periodic downstream and
that period is modified in the third-order approximation.
(Otherwise the waves downstream in the higher approximation
would grow larger and larger, without limit.) A similar
problem involves the oscillation of a body on the free sur-
face, in which the wavelength of the radiated waves must be
modified in the third approximation. For example, see Lee (1968).

A quite different application of this method is the
problem of very low speed motion of a body under or on
a free surface. The simplest such case has been discussed
by Ogilvie (1968). For a translating submerged body, there
are two kinds of length scales: length scales associated
w1th body dimensions and submergence, and the length scale
U /g » which is associated with the presence of the free
surface. Presumably, the latter has effects primarily near
the free surface, in a "boundary layer" with thickness which
varies with U /g as that variable approaches zero. But
the effects of the body dimensions are also important near
the free surface (or at least near a part of it). Thus
the effects of the two length scales cannot be separated
into distinct regions. A brief discussion of this problem
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appears in Section 5.42 of the present paper.

There may be many other problems of ship hydrodynamics
in which this approach would be valuable. For example, many
authors have obtained approximate solutions of problems
involving submerged bodies by alternately satisfying a body
boundary condition, then the free-surface condition, then
again the body condition, etc. At each stage, when one
condition is being satisfied, the other is being violated,
but it is assumed that the errors become smaller and smaller
with each iteration. Such a procedure is discussed, for
example, by Wehausen & Laitone (1960), who point out the
usefulness of Kochin functions in such procedures. How-
ever, there is often a question about the precise nature
of such expansions. 1In the first approximation, for example,
the effects of the free-surface are likely to drop off
exponentially with distance from the surface. This makes
it inappropriate to treat depth of submergence as a large .
parameter in the usual manner, because exponentially small
orders of magnitude are either trivial or exceedingly difficult
to handle. I do not believe that anyone has yet shown how
to treat this problem systematically.
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2 INFINITE-FLUID PROBLEMS

It is mainly the presence of the free surface in our
problems that forces us to seek ever more sophisticated
methods of approximation. However, the nature of the approx-
imations can often be appreciated more easily by applying
those methods to infinite-fluid problems. In this section,

I discuss a number of problems that are geometrically simi-

lar to the ship problems that are my real concern. In some
cases, it must be realized that the methods used here are

not necessarily the best methods for the infinite-fluid
problems. However, without the complications which accom-
pany the presence of the free surface, one can better under-
stand the significance of the coordinate distortions, the
repeated re-ordering of series, and the matching of expansions.

The reader who feels comfortable with matched asymp-

totic expansions is invited to skip this chapter.

2.1 Thin Body

A "thin body" has one dimension which is characteristi-
cally much smaller than the other dimensions. In aerodynamics,
the common example is the "thin wing," and, in ship hydro-
dynamics, one frequently treats a ship as if it were thin.

In such problems, the incident flow is usually assumed to
approach the body approximately edge-on, and so the thinness

assumption allows one to linearize the flow problem.

In this section, thin-body problems are treated by
the method of matched asymptotic expansions. This is
not the way thin-body problems are normally attacked, and,
in fact, I do not recall ever having heard of such a treat-
ment. At the outset, I must point out that there are good
reasons why this has been the case. If the body is symmetri-
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cal about a plane parallel to the direction of the incident
flow, one does not need inner and outer expansions for solv-
ing the problem. And if the body lacks such symmetry, the
lowest-order problem cannot be solved analytically, and

so the method of matched asymptotic expansions does not of-
fer the possibility that one may be able to obtain higher-

order approximations.

In fact, the problem of a thin body in an infinite
fluid is not a genuine singular perturbation problem (al-
though it may contain some sub-problems that are singular,
such as the flow around the leading edge of an airfoil).
However, I believe that the problem of a thin ship is sing-
ular; I shall discuss this in Section 4. There has been a
considerable amount of misunderstanding as to what consti-
tutes the near field and what constitutes the far field in
the thin-ship wave-resistance problem, and the rectifica-
tion of such misunderstanding requires a careful statement
of the problem.

It is conceivable that this interpretation of the thin-
ship problem may be useful in formulating a rational mathe-
matical idealization of the maneuvering-ship problem.

For convenience, I separate the thin-body problem into
two parts: a) the symmetrical-body problem, and b) the prob-
lem of a body of zero thickness. To treat an arbitrary
thin body, with both thickness and camber, one should cer-
tainly consider both aspects at once. It is not really dif-
ficult to do this, and indeed the problem of an unsymmetrical
body of zero thickness actually involves thickness effects
(at higher orders of magnitude than in the symmetrical-body
problem). I have kept the problems separate here only for
clarity in discussing certain phenomena that occur.
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2.11 Symmetrical Body (Thickness Effects). Let the
body be defined by the equation:

th(x,z;e) for (x,0,z) in H ,

Yy = -
0 for (x,0,z) not in H , (2-1)

where H 1is the part of the y = 0 plane which is inside
the body. (It is the centerplane if the body is a ship.)

The "thinness" of the body is expressed by writing:
h(x,z;e) = eH(x,z) , (2-2)

where € 1is a small parameter and H(x,z) is independent
of € . The body is immersed in an infinite fluid which
is streaming past it with a speed U in the positive x
direction. The flow, in the absence of the body, can be

described by the velocity potential: Ux .

It will sometimes be convenient to say that the body
is defined by the equation: y = *h(x,z;e) , implying that
the function h(x,z;e) is identically zero if (x,0,z) is
not in H . Also, note that we shall frequently drop the

explicit mention of the € dependence.

As € » 0 , the body shrinks down to a sheet of zero
thickness aligned with the incident flow. Thus, the first
term in an asymptotic expansion of the velocity potential
in the far field is just the incident-stream potential.

In general, let the far-field expansion be expressed as

follows:

N
b(x,y,2;€) "V nzo ¢, (x,v,2z;€) , where ¢ _,, = o(¢ ) as

€ »0 for fixed (x,v,z) . (2-3)

Then we have:
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¢0(x,y,2;€) = Ux . (2-4)

The far field is the entire space except the y = 0 plane.
Since the potential ¢(x,y,z;e) satisfies the Laplace equation
throughout the fluid domain, the individual terms in the above

expansion satisfy the Laplace equation in the far field:
gy * Ongy *bny, = 0 for |y >0 . (2-5)

At infinity, we expect (on physical grounds) that:
V(i - Ux) > 0 . (2-6)

Therefore, for n > 0 , every ¢n must be singular on the
y = 0 plane or be a constant throughout space. The latter
would be too trivial a result to consider, and so we assume

that ¢n is indeed singular on the y = 0 plane.

But what kind of singularities will be needed? Because of
the symmetry of the problem, it is not difficult to show that a
sheet of sources will suffice. One can use Green's theorem to
show this. Alternatively, one can use transform methods for
solving the Laplace equation, which is practically equivalent to
solving by separation of variables. Whatever method is used,

the result is the same; ¢n(x,y,z;e) has a representation:

o ( o 1 ® ® On(g,?;;e) dg¢ dg (2-7)
X,7,23€) = - =

where ¢n(x,z;e) is an unknown source-density function. The

outer expansion is just the sum of these:

N ©re .
4 21 2 2 2.1/2°
L =00 -—00 [(X—E) + y + (Z-C) ]
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This is the most general possible outer expansion for this

problem.

It will be necessary presently to know the inner expan-
sion of the above outer expansion. To find it, define an

inner variable:

Y = y/e, (2-9)

substitute for y 1in the outer expansion, and re-order the
resulting expression with respect to e . A direct approach
to this process is difficult, but the following method, in
four steps, allows us to obtain the desired results to any

number of terms in a fairly simple way:

1) Take the Fourier transform of ¢n with respect to x :

¢.:(k;YsZ;€) = —i—f dz O—*(k D) 5 d;{ e"ikx _
[X +y + (z~ C) ]
) —.%E % 0;(k;§;e) K0(|k|/[y2+(z—;)2])

—00

where KO is the modified Bessel function usually denoted
this way, and c;(k;z;e) is the Fourier transform of the
function on(x,z;e) . The convolution theorem was used in

the first step above.

2) Take the Fourier Transform next with respect to 2z :

[ee}

Kk oL _ 1l % -i
op% (k;yimie) = - == or* (k,m;e) dz e "% K_(|k]| [y2+2211/2)
*
k,m;e
_ ( m ) e_(k2+m2)l/2|YI ,
2(k +m )l/2

where 0;*(k,m;s) is the double transform of cn(x,z;e) .
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3) Substitute: y = €Y and expand the exponential
function into a power series:

* %
Oh (k,m;e)

¢;*(k;y;m;e) = - 2(k2+m2)1/2 1+ %T Ezyz(k2+m2)
+ %T €4Y4(k2+m2)2 + ...
+ % c;*(k,m;S) ely| + %T e3]¥|3 (k24m?)
O - S S N
4) Note that:
- 0;*;k’2;i;2 = ¢;*(k;0;m;€) = “;*(k,m;s) . (2-10)
2 (k“+m“)

Also, we observe that, if f£**(k,m) is the Fourier trans-
form of £f(x,z) , then (k2+m2)f**(k,m) is the Fourier

transform of —(fxx+fzz) . Defining the inverse transform
of a;*(k,m;e) :

an(X,Z;€) = ¢n(x,0,z;e) , (2-11)

and inverting the above series term-by-term, we obtain:

1 1 2 2
¢, (x,y,2;8) v oo (x,z;7e) + §e|Y|on(x,z;s) - 37€ | Y| (ang,+on,,)
1 3 3
T Z2e31 ¢ Y] (Onxx+0nzz)
1 4 4
* a7 e 1Y ot 20n 0y, 00,5, ] (2n12)
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This is the inner expansion of a typical term in the outer

expansion.

In order to combine the expansions of the separate terms
into a single inner expansion of the outer expansion, let us
assume that o and a are both O(e™) . (It is not nec-
essary to assume this; it is merely convenient.) Then we

have for the desired expansion:

¢(XsYsz;€) voU o x 0(1)
+ o, (x,2z5€) 0(g)
+ a,(x,z;€) +-l|ylc (x,2;€) 0(82)
2 3 3 2 1 3 3

1 1, (2 3
+ ag(x,z38) + Flylo, (x,258) - Sly|T(arHor ) o)

+ o . (2-13)

Note that we have reverted to far-field variables. We musf
here consider that y = O(e) in order to recognize the or-
ders of magnitude as indicated above.

Next we must find the inner expansion of the exact
solution. Substitute y = €Y in the formulation of the

problem. The Laplace equation transforms as follows:

_ 2
¢YY = "€ (¢xx + ¢zz) £ (2-14)

The kinematic condition on the body is:

*o.h - ¢ = ¢zh = 0 on y = =% h(x,z) ,

which transforms into:

¢Y = iez(¢xHx + ¢sz) on Y * H(x,z) . (2-15)
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We assume that there exists a near-field asymptotic expansion

of the solution:

N
d(x,y,238) v Zo @n(x,Y,z;e) , where ®n+l = o(@n) as €~ 0, (2-16)
n= for fixed (x,Y,z)
We could show carefully that:
Qo(x,Y,z;E) = Ux .,

(Perhaps it is obvious to most readers.) We then express

the conditions on the near-field expansion as follows:

[L]  ®1¢v + P2ou + ®3YY + ...
YY YY
(2-17)

2

Vo= e [0+ Oy +®2xx+¢zzz+...] :

XX

[H] 2 '
21y q’ZY + %Y + ... 0 +¢ [UHx+ <I>1XHX + <I>1ZHZ + ...1] (2-18)

on Y = * H(x,z)

Solution of the ¢l problem. From the [L] condition

above, it is clear that:
1oy = O (2-19)

in the fluid domain. Therefore @1 must be a linear func-

tion of Y . In view of the symmetry of the problem, we can

set:

Ql(x,Y,z;e) = Al(x,z;e) + Bl(x,z;€)|Y| , for ]Yl > H(x,z) . (2-20)

The body condition reduces to:

b1y (x,#H(x,2),258) = *€7UH _(x,2) = % B (x,z3¢) = 0(?) . (2-2D)
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It appears that we have determined the value of Bl(x,z;e) e
but this is wrong, as we shall see in a moment. The two-term
inner expansion appears to be:

d(x,y,z;e) ~ Ux + Al(x,z;e) + Bl(x,z;€)|YI .

Its outer expansion is obtained by setting Y = y/e

¢(x,y,z;e) ~ Ux + %Bl(x,z;e)lyl+ Al(x,z;e) .
0(1) 0(e) 0(e?)

The order-of-magnitude estimates were obtained as follows:
B1 is 0(82) , from (2-21). If our expansion is consistent
(as we insist), then A1 is also 0(62) , by (2-20). Now,
in the outer expansion of the inner expansion, the Bl term

is lower order than the Al term. The two-term outer expan-

sion of the two-term inner expansion is:

¢(x,y,25e) Ux+%‘-Bl(x,z;e)|y| .

0(1) O (e)

On the other hand, the two-term inner expansion of the two-
term outer expansion is, from (2-13),

¢(x,y,z;e) ~ Ux + a, (x,z5€) .

There is no linear term here at all, and it seems that we
cannot match the two expansions.

It is a very comforting feature of the method of matched
asymptotic expansions that things go wrong this way when we

have made unjustified assumptions. Our mistake was this:

When we found that apparently B1 = €2UHx = O(€2) ;, we elim-

inated the possibility that there might be a term which is
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O(e) in the inner expansion®*. Now we rectify this error.
Once again, let @l be given by (2-20), but suppose that both
"constants" are, in fact, O(e) . The body boundary condition
immediately yields the condition that:

Bl(x,z;e) = o,

and so we have:

@l(x,Y,z;e) = Al(x,z;e) .

The inner expansion, to two terms, is now given by:

¢(x,y,2z;e) ~ Ux + A (x,z;€) .

When we match this to the inner expansion of the outer

expansion, we find that:
Ay (x,zie) = a,(x,z;e) = ¢,(x,0,z5¢) .

(See (2-11).) Now we have matched the expansions satisfac-
torily, but the result is not yet of much use, since we do
not know either function, Al or o, .
however, that the inner expansion can be rewritten:

It is worth noting,

¢(x,y,z;e) ~ Ux + $,(x,0,2z;¢) .

Thus, to two terms the inner expansion is determined entirely
by the far-field solution, the latter being evaluated on

the centerplane. 1In other words, in the near-field view, the
fluid velocity (to this degree of approximation) is caused
entirely by remote effects.

*This trouble would have been avolded if I had started by
assuming that the expansion is a power series in ¢ , as
many people do in such problems. However, that procedure
can lead to even greater difficulties sometimes.
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Solution of the ®2 problem: This is much more straight-
forward, and the results are more interesting. We may ex-
pect that ¢, = 0(82) » Since we still have the nonhomogeneous

2
body condition to satisfy. In this case, then,

o, (x,Y,z;€) = A,(x,z;e) + B2(x,z;e)|Y| ,

and the body condition requires that B2(x,z;e) = eZUHx(x,z) .

The three-term inner expansion is:

¢(x,y,z;€) v Ux + ay(x,z;e) + A (x,z;¢€) + €2UHX(X,Z)|Y] .

0(1) 0(e) 0 (e?) 0(e?)

The two-term outer expansion of this three-term inner expansion

is:

¢(x,y,zie) ~ Ux + a,(x,z;€) + Uh (x,z;€) |y| .

0(1) 0 (g) O(e)

The three-term inner expansion of the two-term outer expan-

sion is, from (2-13):
¢(x,y,z;e) ~ Ux + a) (x,z5€) + %]ylol(x,z;e) .

(The a, in (2-13) is not carried over to the above expan-
sion, since it originates in the third term of the outer ex-

pansion.) These two match if:

ol(x,z;e) = 2Uhx(x,z;s) = 0(eg) . (2-22)

Thus, finally, we have found cl(x,z;s) , the source
density in the first far-field approximation, as a function
of the body geometry. It is the familiar result from thin-

ship theory. 1In addition, we can now also write down
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al(x,z;e) by combining (2-7) and (2-11):

( | 1 Uh_(£,z;¢) dE 4t
o, (x,2z;¢ = = =— = 0f(e) .
17 2 2 1
") g 18+ (zmp) 212
We have the two-term outer expansion — with everything in
it known — and the three-term inner expansion — with the

"constant" Az(x,z;e) not yet determined.

Solution of the higher-order problems: From the [L]

condition, (2-17), it can be seen that @2(x,Y,z;e) is not

linear in Y . However, the differential equaiton for @2

is easily solved, the body boundary condition can be satisfied,
and matching can be carried out with the outer expansion.

The result is:

¢3(X,Y,z;e) = A3(x,z;€) + B3(x,z;e)|Y[ - lezYz(al

2 )

xx+alzz
where:
B,(x,z;e) = e2[(ay_H)_ + (0 H)_]
3y 1% % 1% 50 7

A3(x,z;e) = a3(x,z;€) .

We also obtain Oy 4 through the matching:
o,(x,z;8) = 2[(a1h) + (a3, h) 1,

and this information also gives us o, and A, .

Summary: Symmetrical Body. The results for both near-

and far-field expansion are stated in terms of the far-field
coordinates (the natural coordinates of the problem) in
Table 2-1. In a sense, the results are rather trivial. There

could be difficulties near the edges of H , but, barring
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such possibilities, the inner expansion could be obtained
from the outer expansion and then matched to the body
boundary condition. This is actually the classical thin-ship
approach. The outer expansion is uniformly valid near the

thin body, except possibly near the edges.

In the classical approach to the thin-body problem,
there is usually a legitimate question concerning the analytic
continuation of the potential function into the region of
space occupied by the body. Sometimes one avoids the problem
by restricting attention to bodies which can legitimately
be generated by a sheet of sources, but this is not very
satisfying. The method of matched asymptotic expansions
avoids the question altogether by eliminating the need to ask
it. What we are really saying is this: From very far away,
the disturbance appears as if it could have been generated
by a sheet of sources, but close-up we allow for the possi-
bility that this observation from afar may be somewhat inac-
curate. 1In fact, there is no analytic continuation presumed

in the present method.

One can show by the use of Green's theorem that the far-
field picture is valid even if the analytic continuation is not
possible. A particularly appealing (to me) version of such a
proof has been provided by Maruo (1967) for the much more com-
plicated problem of a heaving, pitching slender ship moving
with finite forward speed on the surface of the ocean.

I suppose that the uniformity of the thin-body solution is
the result of the fact that a well-posed potential problem can
be stated by giving a Neumann boundary condition over a surface.
The situation will be quite different when we consider slender-
body theory; in the far field, it would be necessary to give
boundary conditions on a line, and that does not lead to a
well-posed potential problem in three dimensions. Similarly,

we may expect trouble at the confluence of two boundary con-
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TABLE 2-1

SYMMETRICAL THIN BODY

Near-Field (Inner) Expansion y = 0(g)

1
$(x,y,z;€) "~ Ux + oy (x,z;e) + a,(x,z;8) + Eol(x,z;s)ly[J

L ¢

0(1) O(e) 0(e?)
1
t ay(x,z;e) + %oz(x,z;€)|y| - EIY|2(alxx+alzzlJ
0(63)
+ o(eh
Far-Field (Outer) Expansion = 0(1)
1 ? o,(E,Tie) dE dg
¢(x,y,z;e) ~ Ux = =
= Y I e S 2 N
0(1) o(e™)
From Matching
cl(x,z;e) = 2Uhx(x,z;€) :
oz(x,z;e) = 2[(alxh)x + (alzh)z] ;

etc.;

( ) 1 o,(8,zie) dg dg
a (x,z;e = - =
n S B S
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ditions, and this indeed occurs when we try to treat a ship
problem by the method discussed above. The free-surface con-
ditions cannot be satisfied, and the difficulty can be traced
back to the behavior of the far-field potential near the in-
tersection of the centerplane and the undisturbed free sur-
face.

2.12 Unsymmetrical Body (Lifting Surface) For the
sake of simplicity, let the body have zero thickness. Then

it can be represented as follows:

y = g(x,z;e) = eG(x,z) for (x,0,z) in H , (2-23)

where H 1is now the projection of the body onto the y = 0
plane. Again, there is a uniform incident flow in the posi-
tive x direction.

The analysis is quite similar to the symmetrical-body
case, at least in the near field, and so most of the details
will be omitted here. In the near field, let there be an

expansion:
N
o (x,y,z;e) ~ ) o (x,Y,zje) ,
n=0
just as in (2-16). The first term is, again, Qo(x,Y,z;e)
= Ux . The terms again satisfy the transformed Laplace

equation, (2-17):
[L] @lYY + CDZYY + ®3YY + <D4YY + ...

2
voom e (R, v 01, t Oa .t 02, t o.l)

the body boundary condition is now:
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[H] ¢1Y + ®2Y + ®3Y + ®4Y + ... (2-24)
2
voet(ue, + (21,6, + 21,G,) + (82,G + ©2.G)) + ...)
on Y = G(x,z) .

The solution for @l is generally an expression linear in
Y , but, for the same reasons as in the symmetrical-body
problem, only the "constant" term can ultimately be matched
to the far-field solution, and so we take for @1 :

8 (x,Y,z5€) = Ai(x,z;e) = 0o(e) .

The superscript * has been attached to the solution to
indicate that this quantity may be different on the two
sides of the body. This was not necessary in the previous
problem, because of the symmetry, but in the present near-
field problem the body completely isolates the fluid on its

two sides and there is no reason to assume that A1 is the

same on both sides of the body. (It turns out, in fact, that
- +

Al = - Al )

One next obtains:
+ +
@2(x,Y,z;e) = Az(x,z;e) + Bi(x,z;e) Y .

From the body boundary condition, the following is true:

QZY(X,G,z;e) = Bg(x,z;e) = eZUGx(x,z) . (2-25)
Thus, we find that:
B+(x z;e) = B,(x,z;e) = B,(x,z;¢)
2 14 r 2 I 4 1 - 2 14 ’ b4

Similarly, one can proceed:



- 35 -

5 v 2 _ Ai Bi 1 2.2, =% *
3(x,Y,2z5e) = 3(x,2;€) + B3(x,z;¢e) Y - S YT(AL, AT, )
where:
.y _ 2 : *
3 X,23€) = € [(GA]_X)X + (GAlz)Z] .

It is interesting to note the following about the symmetry:

It turns out that @l and @2 are odd with respect to Y ,

but ®3 is neither even nor odd. The linear term in ¢

3 14

+
namely, Bg(x,z;e)Y , 1s even, since it turns out that B;
= - B; . Careful study of the @2 problem shows that it

actually implies that there is a generation of fluid in the
body, but the rate of generation is higher order than the @2
term. Physically, of course, there can be no fluid generated,

and so a compensating source-like term appears in ®3 .

The far field is again the entire space except for the
plane y = 0 . The relations (2-3) to (2-6) are again valid,
as well as the discussion of them. But now it will not suf;
fice to provide only source singularities on the centerplane;
clearly we must also provide singularities which lead to
antisymmetric potential functions. In fact, since the body
has zero thickness, we shall expect the leading-order approxi-
mation to be strictly antisymmetric. These requirements are
all met by a distribution of dipoles which are oriented with
the y axis. The potential of such a sheet of dipoles can

be expressed:

f(x,y,2) = _X_ u(& c) d¢ arg (2-26)
/[—oo»/—:o [(X_E) + y + (z- C)2]3/2

The inner expansion of such an integral can be obtained by

the same Fourier-transform technique that was used before.
One finds that:
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2,1/2
£**(k;y3m) = %(sgn v) u¥*(k,m) e|Y| (k +m”)

The exponential function can be expanded into a series,
which is then inverted term-by-term. Define a new function
(Cf. (2-10)):

)**

(u
v, = )M e emy = - 2 . (2-27)
(k o )1/2

The following relationships exist between the two functions

u(x,z) and v(x,2)

1_[ f Y(E £) dg dt
M) o) 10+ @1
T[T T + w1 48 dt
1 XX
Y(X,Z) = - o5 .
2 /_w,/;, (=57 + )11 (2-29)

(Note the comparison between (2-28) and the relation between
o and o in Table 2-1. In fact, (2-29) gives the inver-
sion of the formula in Table 2-1.) The inner expansion of

f(x,y,z) can now be written in terms of these two functions:

e

u(x,z) (2-28)

£(x,y,2) = '% {ux,2) (sgn y) - v(x,2) y - %T yz(sgn ¥ G, )
(2-30)

31y (Y <z ) T 4! y (sgn y) (uxxxx 2]"lxxzz-'-uzzzz) e ko

This may be compared with (2-12).

Now let us assume that the two-term outer expansion is:

¢(x,y,z3e) ~ Ux + %ﬂ[[ ul(g ;-e) d¢ dg .
-0 J =0 [(X-E) + y + (2z~7) ]3/2
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Furthermore, assume that My and Y, are both 0(e) . (If
these assumptions are too restrictive, that fact will become
clear in the subsequent steps of the method of matched
asymptotic expansions.) Then the inner expansion of the two-

term outer expansion is:

- 12
¢(x,y,zie) v Ux % y,(x,z5e) -y vy(x,2ie) + 5y~ (U1 +u1, ) .

0(1) 0(e) 0(e?) o(ed)

I have kept four terms, as indicated by the order-of-magni-
tude notes under the terms. (Recall that y = O(e) in the

inner expansion.

Matching with the appropriate forms of the outer expan-

sion of the inner expansion, we find that:
+
Ay (x,z7e) = * uy(x,2; ) (2-31)
+
Bz(x,z;e) = =€ Yl(x,z;e) . (2-32)
From (2-25), we find that:
Yl(x,z;e) = - eUGx(x,z) = - UgX(x,z;e) . (2-33)

It appears now that we could use this knowledge of Yq in
(2-28) for determining My - But this is wrong. Note from
(2-30) that Yl(x,z) is the normal velocity component on

the y = 0 plane caused by the distribution of dipoles,
ul(x,z) , over that same plane. Now we would presumably
restrict the dipole distribution to the region H , and so
(2-29) is valid if the range of integration is reduced to

just H , since the integrand is identically zero outside

H . But the same is not true in (2-28). There is a generally
non-zero normal component of velocity, Yl(x,z) , over the

entire plane, and the range of integration in (2-28) cannot
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be reduced to just H . Unfortunately, we know Yl(x,z)

only on H , from (2-33), and so we have solved nothing.

This difficulty is hardly surprising, since we are really
formulating here the classical lifting-surface problem, and
its solution requires either the solution of a two-dimensional
singular integral equation or the introduction of further

simplifications — which will be discussed presently.

In the lifting-surface problem, we really should dis-
tribute dipoles over two regions, the centerplane H and
the part of the plane y = 0 which is directly downstream
of H . Let the latter be called W . Pressure must be con-
tinuous across W , since there is no body there to support
a pressure jump. In the usual aerodynamics manner, one can
then show that aul/ax must be zero on W . In this way, the
integration range in (2-29) can be reduced to an integral

over just H .

Of course, lifting surface theory is usually worked out
in terms of vorticity distributions. I happen to prefer
using dipole distributions, mainly because then I do not have
to worry about whether a vortex line might be ending in the
fluid region. The connection is fairly simple between the
two versions, of course. A single discrete horseshoe vortex
extending spanwise between 2z = s and 2z = -s and downstream
to x = » corresponds to a sheet of dipoles of uniform den-
sity, spread over the plane region bounded by the vortex
line. The potential function can be written, for unit vor-
tex strength,

s o
at
0(x,y,2) = 4= | &
‘*“/:s ,[0 (82 +y% + (0?12
]
- X —d |+ X
e v+ 0P < + 5% + (-0 *1H?

=8



- 39 -

2, 2 2
= Lty L oaaly L ol vy (zs) 7]
z-s z+s x(z-s)

—l y/[x +y +(z+s) ]
x(z+s) ‘

The normal velocity component in the plane of the vortex is:

.1 1 [l+ [x +(z—s) ]1/2] 1 [l+ [x +(z+s) ]1/2]

d)y(x,O,z) T 4w \z=s X z+s X

A lifting line can be described in a similar way if we
allow the dipole density to vary with the spanwise coordinate,
z . For simplicity, let us assume that u(z) = u(-z) , and
that p(s) = 0 . The potential for a lifting line is:

¢(x,y,z) f dC ]J(C) g 3/2 (2_34)
[(x-E)% + y + (2-0)7]
S s' o
-- ds* u'(s") dc [ dc
“ fo o o Lx=D%+ 52+ (0?32

(2-35)
and the normal velocity component is:
s 2 1/2
- _1 ds' U'(s') [+ (z=s ") %] _
6, (x,0,2) = - H[ —— |1+ - o (2-36)
-S

Note that this reduces to the result for the single horseshoe
vortex if a) we set p'(z) = 6(z+s) - 6(z-s)* , and b) we
integrate over a span from -s-f to s+B8 , where B8 1is a
very small positive number. This may lend some credibility

* §(2) 1s the usual Dirac delta function.
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to the procedure frequently advocated by aerodynamicists

in wing problems, viz., when integrating by parts in the
spanwise direction, extend the range of integration slightly
beyond the wing tips so that quantities which become infinite
at the tips do not yield infinite contributions that cannot

be interpreted. (This is terrible mathematics, but apparently

the physics is sound, since the results seem to be correct.)

Finally, we can use the above procedures to derive the
corresponding expressions for a lifting surface. The impor-

tant quantity is the normal velocity component, given by:

S(g)
(E ) 1/2
8, (x,0,2) = [ f 1+ LG f{)_‘Léz 0% ] , (2-37)
-S

¢y

where L 1is the range of x covered by the lifting surface
(the length of L being generally the chord length), and
s(x) is the half-span at cross-section x . On H (the
projection of the wing on the plane y = 0 ), the normal
velocity component, ¢y , is known, either by direct appli-
cation of the body boundary condition or by matching to a
near-field solution, and we obtain the usual integral equa-

tion for a lifting surface.

We shall not be concerned here with the various methods
of attempting directly to solve this integral equation,
either by analytical or numerical methods. In fact, analy-
tical methods do not exist, so far as I know, except for a
few special geometries, such as elliptical planforms. The
pair of equations (2-28) and (2-29) forms a remarkable anal-
ogy to a standard boundary-value problem in two dimensions
which is analyzed thoroughly by Muskhelishvili (1953). One
three-dimensional case has been solved analytically by a
method that has some similarity to the standard methods for
the 2-D problem; this was done by Kochin (1940). Even his
circular-planform wing led to so much difficulty, it seems
unlikely that it will be generalized to other planforms.
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Analytical solutions have also been obtained for cir-
cular and then elliptic planforms by formulating the problem
in terms of an acceleration potential in coordinate systems
appropriate to such shapes of figures. This was all done

long ago. See Kinner (1937) and Krienes (1940).

There are many numerical techniques for obtaining
approximate solutions of this problem. However, I ignore
these and proceéd to analyze a special configuration which
can be treated approximately as a limiting case of the gen-

eral lifting-surface problem.

2.2 High-Aspect-Ratio Wing

It is an interesting historical fact that Prandtl's
boundary-layer solution really contains the essence of the
method of matched asymptotic expansions, but Prandtl failed
to observe that the same technique would work in his lifting-
line problem. 1In the boundary-layer problem, he really
required the matching of two complementary, asymptotically
valid, partial solutions. It was probably Friedrichs (1955)
who first recognized that the high-aspect-ratio lifting-sur-
face problem could be treated the same way. Van Dyke (1964)
discusses the derivation of lifting-line theory in some detail
from the point of view of matched asymptotic expansions. My
presentation is not different from Van Dyke's in any start-
ling ways. There are some differences, partly because I have
in mind applications to planing problems eventually, partly
because I am not an aeronautical (or aerospace) engineer at
heart.

The conventional approach to solving the problem of a

wing of high aspect ratio is to simplify (2-37) by arguments
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that relate the sizes of the terms involving (x—E)2 and
(z-z;)2 . (Quite comparable arguments are used in the conven-
tional approach to the theory of slender wings.) If the
radical in (2-37) can be simplified, then the £ integration
can be performed, and one is left with just the integral over
Z . In this way, the 2-D integral equation is reduced to a
one-dimensional integral equation, which is of a standard
form.

Using the method of matched asymptotic expansions, we
return to the original formulation of the problem and dérive
a sequence of simpler problems, rather than try to work out
approximate solutions of the integral equation. The large-
aspect-ratio wing is "slender" in the spanwise direction.

This means that cross-sections parallel to the 2z = 0 plane
vary gradually in size and shape as 2z varies; in particular,
the maximum dimension in the 2z direction, say 2S (the span),
is much greater than the maximum dimension in the cross-sec-
tions. We shall make whatever further assumptions of this

kind that we need in order to keep the solution well-behaved.
The small paramter can be defined as the inverse of the as-
pect ratio, that is,

e = 1/(AR) = (area of H)/4S2 ’

where H 1is the projection of the wing onto the y = 0 plane.
As before, it is not necessary to be so specific about the
definition of € , and in fact it may be misleading. A

wing with aspect ratio equal to 100 might not be slender

in the required sense if, for example, there were discontin-
uities in chord length in the spanwise direction. In any
case, the wing shrinks down to a line, part of the 2z axis,
as € > 0 .

Let the body be defined by the following relation:
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y = g(x,2z) £ h(x,z) , (2-38)

for (x,0,z) in H . See Figure (2-1). It is not necessary
that the body be a thin one, in the sense of the previous
section. I do, however, specify that it should be symmetric
with respect to 2z , for the sake of simplicity in what follows.
Both of the functions g(x,z) and h(x,z) really depend on

e , of course®, but we shall generally omit explicit mention

of the fact.

A*y

Section A-A

2h(x,z)
Figure (2-1). Coordinates for the High-Aspect-Ratio Wing.

There is an incident flow which, at infinity, is uniform
in the x direction. Let the far-field solution be repre-
sented by the asymptotic expansion:

*In fact, g and h are both O0(e) .
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N (2-39)
x,y,2z) ~v Ux + Z ¢n(x,y,z) , where ¢n+l = o(¢n) as € >0,
n=1

for fixed (x,y,z) .

(Again, the dependence on € is suppressed in the notation.)
Since the body shrinks to a line (x =0, y=0, |z| <58)
in the limit as € » 0 , the terms denoted by ¢n all repre-
sent flow perturbations which arise in the neighborhood of
this singular line. They can be expressed in terms of singu-
larities on that line, and the strengths of such singulari-
ties should be o(l) as € =+ 0 . In an ideal fluid, we could
expect the occurrence of dipoles, quadripoles, etc., on the
singular line. We also take the realistic point of view that
viscosity cannot be completely neglected and that there may
be some circulation as a result. In the usual aeronautical
point of view, this implies that there may be a vortex line
present, complete with a set of trailing vortices. 1In the
point of view adopted in the previous section, I assume that
there may be a sheet of dipoles behind the singular line. I
also make the usual assumption that these wake dipoles (or
vortices) lie in the plane y = 0 . This part of the y =0
plane ( 0 < x < » , |z] < 8 ) will be denoted by W . (Note
that H has all but disappeared in the far field view. It
is only a line.)

We can now write the outer expansion in the following

form:
v, (2) dg dg
(x,y,2) ~ Ux + X—
? Z[ [ [-0)2 + 32 + (-2
(2-40)
d
Y—-Z u, (¢) dg s
Tael J o I+ 30+ 0?1
. NEI @ & .
+__
S n=0 _s [x +y2+(z -z) ]3/2
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The first sum contains terms which are exactly of the form
given in (2-34), that is, they represent a lifting line with
a strength I Yn(z) . The second and third sums represent
lines of dipoles oriented vertically and longitudinally, re-
spectively. It is implied above that the sums are asymptotic

expansions, in our usual far-field sense.

We shall presently require the inner expansions of these
terms. We obtain the inner expansions by assuming that

1/2

r = (x +y ) = 0(e) , which implies that both x and vy

are small.

Inner expansion of the lifting-1line potential: Each
of the double integrals containing a Yy can be rewritten

as a single integral:

Y(®) e
o (=D +y% + (0?13
(2-41)
-1 21wy (z-0)?)
= 41T dzc v' (%) (tan ;%E + x(z-7) ] .
-S

Now break this into two parts:

1) The first term in brackets on the right-hand side
does not depend on x . As y + 0 ({.e., for y = 0(g) ),

its contribution can be represented:

S
%Y(Z) - dg'z :(2) (1 + oeh) ,
-s

where the double sign is chosen according to whether y > 0
or y < 0 , respectively, and the special integral sign in-
dicates that the Cauchy principal value is intended. This
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representation is valid only for |z| < S , but that is no
restriction here. It may be noted that this term represents
a distribution of vorticity extending to infinity both up-
stream and downstream. Thus, it leads to a discontinuity
across the y = 0 plane, even upstream. The second term
must compensate for this behavior, since there can be no

discontinuities in the region x < 0 .

2) The second term in brackets on the right-hand side
of (2-41) must be considered carefully with respect to the
branches of the square-root function. With a bit of effort,

one can show that, as r > 0 , its contribution is:

T2 (-2 el 2) 1+0Eh) , o<tat Iam ;

léél (3 --% taﬁl-§ ) (1 + 0(82)) , T < taﬁl-§ <2 .

Combining this result with the previous one, we find that
the inner expansion of a lifting-line potential function can

be written as follows:

S oo
L [ f YD) dt a
I P O e

S (2-42)
-S

for 0<tar_11§< 2T .

Inner expansion of the dipole-line potential: An inte-
gration by parts with respect to ¢ transforms these inte-
grals into an appropriate form so that one can let r =+ 0
and thereby obtain the first terms in the desired expansions.
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Typical terms in the second and third sums of (2-40) have

the following inner expansions:

S
1 yu@) + xA(@)] dz _ , [yu(z) + xi(z) 2
1+ 0(e“1 . (2-43)
bm [s [x2 + y2 + (z—«:)2]3/2 [ 2ﬂ(x2 + yz) ][ (€ to8 E)]

Note the occurrence of the logarithm of ¢ !

Inner expansion of the outer expansion: In order not
to confuse the picture, I shall make more assumptions now,

namely:

Y (&) = 0(e) 5 W@ , A&, Y,(2) = 0@E) ;

also, all other terms in (2-40) are 0(82) . These state-
ments can all be proven. The description of the problem is

greatly simplified, however, by their being assumed now.

We can write the three-term outer expansion now:

¢(x,y,2) v Ux + ¢,(x,y,2) + ¢, (x,5,2) (2-44)
where:
ST @ & (2-44a)
¢ ( ' Y ) = I ;
1(¥s¥,2 4m «/—s 0 [(x—E)z + y2 + (z—C)2]3/2

S o]
enn o L Y,(0) dE ag
2 Ty 1D+ 0

L [ Slyn, @) + (@)1 dz
S

+ — .
4m x2 + 32 + (z-7)213/2 (2-44Db)

The inner expansion of the one-term outer expansion is, of
course:
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¢(x,y,2) ~ Ux, [0¢e) ] (2-45a)

to any number of terms. (Recall that x = O(g) in the near
field.) The inner expansion of the two-term outer expansion

is:

d(x,y,2) "~ Ux + %Yl(z) [1 - % tant ';f] [0(e) ]

S vi@ (2-45b)

- [oe?)]

47 z -z
-S

Finally, the inner expansion of the three-term outer expansion

is:

yul(z) + xll(Z)

1 CLgty]
¢(X:YQZ) v Ux + 2 Yl(z) [1 T tan X +

2 2 [0(e)]
S 4 1D 2m(x" + y7) (2-45¢)
z vi(t
_y 1 1 1 -1 '
4 z-C 5 Y,(2) [1 -y tan }é] : [0(?)]
-s

I have taken the trouble of writing out the inner expansion

of the outer expansion in three ways just to point out how,

in this problem, there is an additional term in the lowest-~
order expression each time we add another term of higher order
in the outer expansion. Each of the three terms included in
(2-44) contributes to the € term in (2-45c). This phenomenon
occurs frequently, and its occurrence is the reason that one
must proceed step-by-step in the matching. In the present
problem, one would be in some difficulty if he tried to write
down an arbitrary number of terms in each expansion and imme-

diately start matching.

Next we formulate the near-field problem. Instead of
making the formal changes of variable, x = €¢X and y = €Y ,
we shall simply understand now that, in the near field,
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x=0@) and y=0() ; also 3/3x = 0(c™Y) and 3/dy = 0(e™ D)

Of course, differentiation with respect to 2z does not af-
fect orders of magnitude.

The Laplace equation can be written in the form:

b t obyy T b, s (2-46)
where the right-hand side is 52 higher order than the left-
hand side. The boundary condition on the body is:

0 = ¢x(gxihx) - ¢y + ¢z(gzihz) on y=g*h. (2-47)

The last condition is equivalent to requiring that 3¢/3n = 0
on the body, where 3/9n denotes differentiation in the di-
rection normal to the body surface. An alternative statement
is the following:

20 B TR Fo (h, * 5 )0
N un £0)21 Y cao?) YT ETR (2T
[1+ (g t1h)?] [1+ (g *h)"]

where 0d¢/0N is the rate of change in a plane perpendicular
to the z axis, measured in the direction normal to the body
contour in that cross-section plane. Note that the left-hand
side is O0O(¢/e) , since differentiation in the N direction
has the same order-of-magnitude effect as differentiation
with respect to x or y . The right-hand side, on the
other hand, is O0O(¢e) , since g and h are both 0(g) .

Now let there be an inner expansion:

N

o(x,y,2) "~ ¢ (x,vy,z) , ¢ =0(®) as >0 ,
nZO n n+1l n (2-48)

with (x/e,y/e,z) fixed.
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The first term in this expansion satisfies the conditions:

0, Qoyy = 0 in the fluid region; (2-49)
39,
e 0 on the body. (2-50)

From (2-45a), it is clear that the one-term inner expansion,
d(x,y,2) Qo(x,y,z) , must match the one-term outer ex-
pansion, ¢(x,y,2) ~ Ux . Thus, @0(x,y,z) is the solution
of a two-dimensional potential problem, and a rather conven-
tional problem at that: In a section through the body drawn
perpendicular to the spanwise axis, the potential satisfies

the Laplace equation in two-dimensions, a homogeneous Neumann
condition on the body, and a uniform-flow condition at infinity.
The direction of the uniform flow is the same as the direction
of the actual incident stream as viewed in the far field.

Since @0 does satisfy the Laplace equation in two di-
mensions, the methods of complex-variable functions are
available for determining its properties. In particular, if
we assume that V9o is bounded everywhere in the fluid

region and single—galued too, then @0 can be expressed as
the real part of an analytic function of a complex variable,
the analytic function being such that its derivative can be
expressed by a Laurent series. Thus, we can write for

Qo(x,y;z) :

-1y Agyqc0s 0
®o(x,y;z) = Ux + 60 log r + notan £+ A00 t e
B,,Sin © A .cos 20 B,.sin 20 (2-51)
01 02 02
$ —_—— 4+ + + ...
r 2 2 ’
r r
where r = (x2+y2)1/2 . The "constants" are all unknown

functions of 2z , the spanwise coordinate. The first term



represents a uniform stream at infinity, and I have already
performed one matching to determine this term. The second
and third terms represent a source and a vortex, respectively;
the fourth term, a constant, is included for generality; the
fifth and sixth terms represent a dipole; etc. Such an ex-
pansion as (2-51) is valid outside any circle about the

origin which encompasses the body cross-section.

Every term in (2-51) must be of the same order of mag-
nitude at a point in the near field, that is for r = 0(e) .
If a term were of some other order of magnitude with respect
to € , the definition of "consistency" would eliminate it
from this series. The orders of magnitude of most of the
unknown constants can then be written down. Since the first
term, Ux , is O(eg) , we can make the following statements:
n+l

B = 0(82) ; A , B = O{e ) .

= 0(e) 7 Byy » By, on ’ Bon

No  2g0
The term containing the logarithm does not fit the pattern
quite so well — unless we follow my arbitrary practice of
saying that 1log € = O(l) . (See the discussion of "consis-

tency" in Section 1.2.) Then we can say that:

60 = 0(eg) .

The Laurent series expression for the near-field ex-
pansion is very convenient when it comes to finding the
outer expansion of the inner expansion. All we need to do
is to interpret r differently and re-arrange the terms
according to their dependence on € . Thus, if we consider
that r = 0(l) , the outer expansion of the one-term inner

expansion is:
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o(x,y,2) " QO(X,Y;Z) v Ux + 6, logr + N, taﬁl %- + A

0 00
0(1) 0(e) 0(e) 0(e)
A _cos O B..sin 6
+ 0_1.._.._ + L_ + 0(53) J(2=-51")
r T
0(82) 0(82)

This obviously matches the one-term outer expansion, with an
asymptotically small error which is O(e) .

We could keep two terms in (2-51'); that would be the
two-term outer expansion of the one~term inner expansion,
which would have to match the one-term inner expansion of the
two-term outer expansion. From (2-51') and (2-45b), we thus
construct the equality:

Ux + 5olog r+n

0

-1y - 1 i -1y
tan - + AOO = Ux + 2 Yl(z) [1 7 tan ol

This can be true only if the following are separately true:
§g=0 3 N = -y, (2) ; A= Ly (2)
0 L 21 11 P B T 2 V1B - (2-52)

The first of these three equations means only that there is

no net source strength in the 2-D problem. The second relates
the 2-D vortex strength, Ng -+ to the dipole density, Yy v
in the far field. The latter can obviously be interpreted
also as a vortex strength. The third equality relates the
"constant" term, AOO , in the near-field solution to the
far-field solution's dependence on z , the spanwise coor-
dinate. It is important to include such a term as this in
the near-field solution, because it provides a three-dimen-

sional effect in the otherwise two-dimensional problems.
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Presumably, the near-field problem can be solved somehow.
If the body is simple enough, an analytic solution may be
obtainable; with the available powerful methods of the theory
of functions of a complex variable, it is even reasonable to
hope to find such solutions. However, even if numerical
methods must be used, the solution can be found. Then all

of the constants in (2-51) except A are known. The con-

stant of most interest at this momengois Ng # it will be
non-zero only if some mechanism has been included that can
generate and determine a circulation around the body. I
shall assume that a Kutta condition is available for this
purpose, since the present section is concerned with wings.

Then, with known, we can find the first approximation

n
0
to the vorticity (and dipole density) in the far field, by

means of (2-52). At the same time, AOO is determined.

Nothing more can be done now unless we find a higher-
order term in either the near- or far-field expansion. It
is interesting to pursue the near-field solution further

first.

When we substitute the expansion, (2-48), into the La-
place equation, (2-46), and keep only leading-order terms,
we obtain the partial differential equation for @l i

lex + Qlyy = - ®ozz , in the fluid domain.

Now @0 was found to be 0(e) , and we might reasonably

expect that @1 would be 0(82) . In fact, this turns out
to be quite correct. In the equation just above, this means
that the left-hand side is O0O(1l) and the right-hand side is

O(e) . Asymptotically, then, we have that:

1o t Qlyy = 0 in the fluid domain.

We again have a purely two-dimensional boundary-value problem
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to solve, if we can state the boundary conditions appropriately.
From (2-47'), we find by the same arguments that:

w - 0 on the body.

We do not know the conditions at infinity yet, but let us
assume that the condition on @l is similar to that on

@0 , i.e., the gradient of @1 should be bounded.

This problem is identical to the @0 problem, and so
we can represent its solution outside of some circle by
another series like the one in (2-51). We have not deter-
mined yet what the coefficients of the increasing terms are
like, and so we allow two more arbitrary terms (the first

two terms in the following):

1y Allcos 6.
Ql(x,y;z) = oyx + Bly + Gllog r + n,tan” & + A10 + -
. (2-53)
Bllsln 0 Alzcos 26 B12s1n 26
e e e
T 2 2
T r

All terms must be the same order of magnitude if r = 0O(g) .

Assuming that order to be 52 , We have:

= . = 2 (3 = 3 .
a; Bl = 0(e) 61 . nl s A10 = 0(e”) ; A11 , B11 = 0(e”) ; etc.

With this information in hand, we combine the first
two terms in the inner expansion and then we obtain the

outer expansion of the two-term inner expansion:
¢(x,y,2) ~ Ux o(1)

+ notaﬁl-i + A00 + 0 X + Bly o(e)

(2-54)

AOlcos 6] B01sin 6

-ly 2
+ = + Gllog r + nltan - + A 0(e™)

10
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First we can keep just the first two orders of magnitude and
match them with the two-term inner expansion of the two-term
outer expansion, given in (2-45b). Using (2-52), we see that
everything already matches except for the terms a;x + Bly
and the integral in (2-45b). For these to match, we require
that:

S

NETRCICH 1 dz v, (2)

R z-¢ : (2255)
-S

Physically, this means that the @l problem should have had
as the condition at infinity,

| ® - Byy | > 0 as ro>e

that is, there is a uniform stream at infinity, moving at a
right angle to the actual incident uniform stream. This is
the downwash velocity. With this condition at infinity
known, the @1 problem can be solved by the same method used
for the @0 problem, and all of the terms in (2-53) are

then known, except AlO .

We have all of the information available to match the
three-term outer expansion of the two-term inner expansion
with the two-term inner expansion of the three-term outer
expansion. Using (2-45c) and all of the terms in (2-54), we

obtain the equation:

A .cos B B..sin O
- 1 -ly
Ux + notan1-§ + AOO + Bly + 01 = + 2 B + Gllog r+mn,tan” =+ A

1 -1.1].+ yu; (2) + xA;(2)

1
= Ux+ < v,(2) [1 - = tan
21 T x 2'rT(x2 + yz)

10

S
dg v (%)
1 1 1. -1y
_-4L'n' _z—_t_:_ + EYZ(Z) [1-ﬂ_tan x .
-S
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The unknown quantities are: A10 ’ ul ’ Al ’ Y2 . This

equation is satisfied only if:

1 . =1 .
61 =0 5 T]l = = ﬁ Yz(z) s Alo = 2 Yz(z) ’

(2-56)
ul(z) = 21rB01 3 Al(z) = 21TA01
From this matching step, we see that all quantities intro-
duced so far are now completely known. There is no source
strength in the second approximation®; there is a correction
to the vorticity in the far-field description; there is a
correction to the "constant" in the near-field problem; and
the density of both vertical and longitudinal dipoles in the
far field is known. It is interesting to note that the last
were determined entirely from the lowest-order near-field
solution, that is, from @0 . When quadripoles first enter,
it will be found that they too are determined in strength from
@0 solely.

The next term would be much more difficult to obtain,
since, in the near field, it entails solving a Poisson equa-
tion in which the nonhomogeneous part depends on @0 , which
we have not obtained explicitly. (The right-hand side of
(2-46) finally has an effect.) Also, spanwise effects occur
in the body boundary condition, (2-47), for the first time.
Therefore I shall put this problem to rest at this point.
Table 2-2 shows the sequence of steps that we have followed

in this problem.

One point in particular should be noted: The near-
field problem was not linearized. If one can predict the flow
around the two-dimensional forms which appear in the near-
field problem, one is not limited to consideration of, say,

thin wings. All that is necessary is that the spanwise

*It would have been possible to eliminate the 6 log r terms
in both problems above by noting that the body boundary con-
ditions allow for no net source strength.
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length be much greater than the dimensions in the two-dimen-
sional problems and that there be gradual change in the body
and flow geometry in the spanwise direction. Needless to say,
the latter condition is usually violated at the wing tips, and
so the analysis breaks down there. It may be hoped that the
prediction of important physical quantities is not affected
too seriously thereby, but higher and higher approximations
certainly cannot be found until the extra singularities at

the tips are removed somehow.

TABLE 2-2
HIGH-ASPECT-RATIO WING -— SUMMARY
Terms Far-Field Near-Field Quantity Determined
Expansion Expansion by Matching
1 ¢0 = UX et <I>0 1 condition at infinity
for @0 problem

2 2 Vorticity, Yl(z) , in
far field

2 ¢0 + ¢1<—-¢- <I>0 + <I>1 3  Downwash velocity (con-
dition at infinity for
¢, problem)

4 4 correction to vorticity
in far field; densities
of vertical, horizontal

3 ¢0 + ¢1 + ¢2 dipoles in far field




- 58 -

2.3 Slender Body

In the previous section, we considered the flow around
a slender body which was oriented with its long dimension
perpendicular to the incident flow. Now we consider the
flow around a slender body which is oriented with its long
dimension approximately parallel to the incident flow. The
same geometrical restrictions will be applied to the body in
this problem, namely, that its transverse dimensions should
be small compared with its long dimension and that cross-
section shape, size, and orientation should vary gradually
along the length.

Although both this section and the previous section con-
cern slender bodies in an incident flow, convention says

that only this section really presents "slender-body theory."

In ship hydrodynamics problems, slender-body theory has
been applied mostly to nonlifting bodies, i.e., bodies not
generating trailing vortex systems.* I shall limit myself
here to such problems too. Specifically, I assume that there
is no separation of the flow from the body; furthermore,
there are no sharp edges at which a Kutta condition might be
applied. The potential function should be continuous and

single-valued throughout the fluid domain.

This restriction is not generally desirable. Certainly
an important aspect of aerodynamics is the calculation of
lift on a slender body which does generate a vortex wake;
modern high-speed delta-wing aircraft and many slender mis-
siles are genuine slender lifting bodies. There are several
important ship-hydrodynamics problems which may ultimately

*Obviously, a ship is a "lifting body," but I think it is
commonly understood that the term implies a dynamic 1lift
process, and that is the way I use it.
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be best analyzed by a slender-wing”® approach. Most impor-
tant, perhaps, is the problem of a maneuvering ship. An
attempt is made in this direction by Fedyayevskiy & Sobolev
(1963), but it is not very successful because they use the
conventional methods of slender-wing theory, and these break
down in application to wings which are not more-or-less
delta shaped.** A modern approach to slender-wing theory is
given by Wang (1968).

| 4~ radial component

| t— fluid velocity

axial component

’7///////////// /" /

—
=

.

1/////////////////

Figure (2-2). Fluid Velocity Near a Slender Body
in Steady Motion.

*nslender wing", "wing of very low aspect ratio", and "slen-
der lifting surface" are all equivalent terms in my usage.

**Conventional slender-wing theory can be used for wings in
which the span increases monotonically downstream, ending in
a squared-off trailing edge. If the incident stream is uni-
form and steady, the wing does not have to end at the loca-
tion of the maximum span, but the part of the wing aft of

this location must be uncambered. Not all of these conditions
are satisfied in the interesting ship maneuvering problems.
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The physical ideas behind slender-body theory were
developed fifty years ago, and the original way of looking
at the problem is perhaps still the best way. Take a refer-
ence frame which is fixed with respect to the fluid at in-
finity. As a slender body moves past, one may imagine that
its greatest effect on the fluid is to push it aside; the
body also imparts to the fluid a velocity component in the
axial direction, but this component should be quite small
compared with the transverse component. Both components
should be small compared with the forward speed of the body.

In modern slender-body theory, we attempt to formalize
this estimate of the relative velocity-component magnitudes.
We devise a procedure that automatically arranges velocities
in the anticipated order:

1) Forward speed
2) Transverse perturbation
3) Longitudinal perturbation

When this pattern comes out of the boundary-value problem,

we then investigate further to see what other patterns fol-
low from the same assumptions. The whole body of assumptions,
results, and intermediate mathematics constitute what we

call "slender-body theory".

In aerodynamics, the original intuitive approach of
Munk was not completely displaced until the late 1940's. The
newer, more systematic approach which developed then is
described well by Ward (1955). For the first time, it was
possible to predict with some confidence how the flow around
the various cross—-sections interacted. There were some
difficulties in principle, even with the new approach; what
we now call the "outer expansion" of the problem was in ef-
fect forced to satisfy body boundary conditions. The dif-
ficulty is somewhat comparable to trying to force a Laurent-
series solution to satisfy prescribed conditions which are



- 61 -

stated on a contour inside the minimum circle of convergence.
A readable, refreshing account of slender-body theory in
the 1950's has been provided by Lighthill (1960).

During the early 1960's, slender-body theory was ap-
plied to ship hydrodynamics problems by several investiga-
tors. Probably the earliest tc try this on a major scale
was Vossers (1962); he attacked a variety of steady- and
unsteady-motion problems by slender-body theory. He used a
Green's function approach, which apparently avoids the fun-
damental difficulty in principle of the previous method.
However, it is really too much to hope to obtain asymptotic
estimates of five-fold integrals — without making mistakes.
Apparently Vossers did hope for too much, but Joosen (1963)
and (1964) corrected many of his mistakes. Newman (1964)
also advocated the Green's-function approach and produced some

interesting results.

The modern (Z.e., fashionable) alternative is to use
the method of matched asymptotic expansions. In ship hydré—
dynamics, Tuck (1963a) first used this method in his doc-
toral thesis at Cambridge University. It avoids the dif-
ficulties in principle of Ward's approach, and it is easier
to work with than the Green's-function method. O0f course,
the method of matched asymptotic expansions has its own set
of difficulties of principle. However, it is the method

that I shall pursue here.*

In any case, the analysis can be no better than the

assumptions which are made at the beginning. Therefore I

*A very recent account of slender~-body theory, particularly
with respect to its applications in ship hydrodynamics, has
been published by Newman (1970). I think that his presenta-
tion and mine generally complement each other (and perhaps
occasionally contradict too). Newman has provided a survey
that seems comparable in intent to the one by Lighthill (1960),
mentioned above, whereas I am trying to place slender-body
theory into a hierarchy of singular perturbation problems.

My emphasis is on the development and application of the
method of solution.
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shall be (perhaps painfully) explicit about the assumptions.

2.31 Steady Forward Motion. Let the body surface be

specified by the equation:

r = ro(x,e) , X in A ,

_ 2, 2.1/2 . .
where r = (y“+z27) , and 0 1s an angle variable measured
about the x axis. It will be assumed that r = 0(g) . 1In

this section, I take the most conventional definition of 9 ,
namely, that it be measured in a right-handed sense from the
y axis. (In ship problems, it is more convenient to mea-
sure the angle from the negative vertical axis.) A 1is the
part of the x axis which coincides with the longitudinal
extent of the body; typically, one might take it to be the
interval, - L/2 < x < L/2 , but I shall not insist that the
origin be located at the mid-length section. Figure 2-3

shows a typical cross-section.

A z

r = ro(x,e)

Figure (2-3). Cross-Section of the Slender Body.

As usual, assume that there exists a velocity poten-
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tial, ¢(x,y,2z) , which satisfies the Laplace equation.

There is an incident stream which, in the absence of the body,
is a uniform flow in the positive x direction, with the
velocity potential Ux . It will be convenient to use cylin-
drical coordinates, (x,r,8) , in which case the Laplace
equation takes the form:

1 =
o, + ;7 99 +* 94y = 0, for r > r,(x,0) .

-
+
i

rr
(2-57)

The kinematic boundary condition on the body can be written:

1 - - -
P T0x ~ 9 F ;7¢eroe = 0 on r=ry(x,0) . (2-58)
0

With respect to the physical arguments presented at the
beginning of the section, note that our frame of reference
is now moving with the body. Therefore, the velocity com-

ponents should be ordered:

9¢/9x ~ U = 0(1l) ; 0o¢/3y , 20dv/3z , 23¢/d3r = o(l) ;

3(¢p - Ux)/3x = o(3¢/3r) .

In each case, of course, the appropriate limit operation is
that € » 0 , where € 1is the slenderness of the parameter.

These order relations should be valid near the body.

Far away, there will be the uniform stream, which is
0(1l) , but there is no reason to assume that the perturba-
tion velocity will have components with differing orders

of magnitude.

These order-of-magnitude relations all come about auto-

matically if, in the near field, we define new variables:



- 64 -

and assume that differentiation with respect to x , Y ,

Z , R, and 6 all have no effect on the order of magni-
tude of a quantity. Thus, suppose that the potential in the
near field can be written: ¢(x,y,z) = Ux + &o(x,Y,2) .

Then the derivatives have the following orders of magnitude:

3¢ _ 9% _ , 99 _ 3¢ _ 1238 _ .
3¢ - . 99 _
N = o(d/e) ; AT 0(d/e) .
It will turn out that ¢ = O(ez) . This means that the trans-
verse velocity components, ¢y ’ ¢z , and ¢r are all o0O(e) ,

that is, they are proportional to the slenderness parameter.
Note also that a circumferential velocity component would be
given by (1/r)23¢/36 = (1/€R)3%/386 = 0(®/c) , when we inter-
pret R = 0(1) (that is, in the near field), and so circum-
ferential and radial velocity components have the same order
of magnitude. The perturbation of the longitudinal velocity
component is O(®) = 0(62) , which is, appropriately, a
higher order of magnitude than that of the transverse velo-

city components.

In the far field, we assume that differentiation with
respect to any of the natural space variables has no order-
of-magnitude effect. Thus, we use the Cartesian coordinates
(x,y,2) and the cylindrical coordinates (x,r,0) in a very
conventional manner. As € » 0 , the slender body becomes
more and more slender, shrinking down to a line which coin-
cides with part of the x axis. (This is the line segment
that T defined as A previously.) 1In the limit, there is
no body at all and thus no disturbance of the incident uni-
form flow. 1In the far field, the disturbance is always o(l) .
Therefore the far field consists of the entire space except

the x axis, and the potential function must satisfy the
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Laplace equation everywhere except possibly on the x axis.

At infinity, it is reasonable to require that the per-
turbation of the incident flow should vanish, which implies
that the perturbation potential must be regular even at in-
finity. A velocity potential cannot be regular throughout
space, including infinity, unless it is trivial. Therefore
the velocity potential must be singular somewhere, and the
only place in the far field where such behavior is permitted
is on the x axis. Our far-field slender-body problems all
reduce to finding appropriate singularity distributions on

the x axis.

The Far-Field Singularity Distributions. In the far
field, the first term in the asymptotic expansion for the
potential function will be Ux . All of the following terms
must represent flow fields for which the velocity approaches
zero at infinity; they represent distributions of singulari-
ties on the x axis. The nature of the singularities can
only be determined in the matching process, and so we must

generally be prepared to handle all kinds of singularities.

One of the easier ways of doing this is to apply a
Fourier transform to the Laplace equation, replacing the x
dependence by a wave-number dependence. The resulting partial
differential equation in two dimensions can be solved by
separation of variables in cylindrical coordinates. When
we require that the potential functions be single valued,

we find that the solutions must all be products of:

K (|k|r) or In(|k|r) and sin n6 or cos n6 ,

where Kn and In denote modified Bessel functions. Since

In is poorly behaved when its argument is large, we reject
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it, so that the solution consists of terms:

Kn(|k|r)[a cos n6 + R sin nB]

The quantities o and B are constants with respect to
r and 6 , but they are both functions of k . They also
depend on the index n , of course. The general solution
is obtained by combining all such possible solutions. Any
term in the far-field expansion of the potential function

might be of the form:

oo

1 v 1
¢m(X,Y,Z) = 'ﬂ z dk e
n=0

kx Kn(|k|r) [a;n(k)cos nb + b;n(k)sin nb] ,

(2-59)

where a;n(k) and b;n(k) are unknown functions. The most

general far-field expansion comprises the incident-flow poten-

tial, Ux , and a sum of terms like the above, that is,

M
d(x,y,2) Vv Ux + Z ¢m(X,Y,Z) for fixed (x,y,z) as € >0 .
L (2-60)

It will be necessary to have the inner expansion of the
outer expansion. This means that we must interpret r to
be 0(e) 1in the above expressions, instead of O0(l) as
heretofore, and rearrange terms according to their dependence
on € . The easiest procedure is to replace any of the Kn
functions in (2-59) by its series expansion for small argu-

ment. We obtain formulas such as the following:

n=20
1l ikx * (2-61a)
o dk e Ko(lklr) amo(k)
-C0
[+] [oe]
_logr ikx % _ndy ikx % Clk .
N o dk e amo(k) o7 dk e amo(k) log 2 3

=00 -00
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n>0
® (2-61b)
1 ikx
57 [ @ e F K (k| a:m(k)(:‘i’fl)ne
- 1 i
n- A
" 2 (n-1)! (CgS)ne dk elkxa:ék)

2 sin Mk

Physically, the n=0 integral represents the potential
for a line of sources. This can be seen directly from (2-6la):
As r » 0 , the function is proportional to 1log r , which
is the potential function for a source in two dimensions.
However, the strength of the apparent 2-D source is a func-
tion of x . 1In fact, the integral defining that strength
is identical to the integral which gives the inverse of a

Fourier transform. Let a_,(x) be the function having

m0
aﬁo(k) as its Fourier transform, and further define:

Gm(x) = - 27 amo(x)

Then the result in (2-6la) can be rewritten:

o

3 [ @k M (kD) ¥ ) v o (1) logr - £ (x) , (2-6la’)
where
£.x) = [ dEol(E) log 2|x-E| sgn (x-E) . (2-61la")

-=00
By manipulating the full integral containing K0 , One can
also show that:
(=] (o]
1 0, () d&
e+

1 ikx * = - =
dk e Ko(Jk[r) aX (k) = - 5=
which is easily recognized as the potential function for a

o 2.1/2 »(2-62)

-—00

]

line distribution of sources.
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Similarly, the other integrals can be interpreted in
terms of dipoles, quadripoles, etc. In particular, we see
that for n =1 the inner expansion of the integral reduces
to the potential in two dimensions for a dipole. We may
consider the variable x as a parameter, and then we have

a different 2-D dipole strength at each x .

The Sequence of Near-Field Problems. 1In the near field,
we can formalize our procedure by making the changes of var-
iables already mentioned, r =e¢R , y =¢€¢Y , 2z = €% , then
assuming that differentiation with respect to R, Y , or
Z does not affect orders of magnitude. Instead of doing
this, I shall simply retain the ordinary variables, r , vy ,
and z , and I ask the reader to recall that differentiation
with respect to any of these three variables causes a change
in order of magnitude. Thus, for example, 3¢/dr = O(¢/c)
in the near field.

In cylindrical coordinates, the Laplace equation and the

body boundary condition can be written as follows:

1 1
[L] ¢ + To. + ;§'¢ee = - b (2-57")
2
- ¢_+ (1/rg)rga?d O <))
[H] ,g% = NVp = r 0 02 2} _ x Vx -
VI1 + (rg4/10)"] VIl + (rog/r0)"]

on T = ro(x,e) .

(2-58")

The definition of N is analogous to that in (2-47'). It is
a unit vector lying in the cross-section plane at some x ,
perpendicular to the contour of the body in that cross-sec-

tion. It has the three components:
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(OQ_l’rOS/ro)

VIL + (xg,/x0)%]

measured in the x , r , and 6
Equation (2-58'), like (2-58),
9¢/3n = 0 , where n

surface.

directions, respectively.
expresses the fact that

is the unit vector normal to the body

Let the inner expansion be expressed as follows:

N
¢(x,y,2) ~ z @n(x,y,z) as € >0 for fixed (x,y/e,z/e) .
n=0

Substitute this expansion into the [L] and [H] conditions
above:

2
s e e = - + @ + s e e
(L] Vy’z(<1>0 +0, +0, + o, + ) (%0_ 1 )

XX
) 30, 80 99, ro, (8o, + 81, + +- )

+ + + . = - 2
/[1 + (roe/ro) ]

oN oN oN

The operator V2 is the 2-D Laplacian in the y-z

plane,
r
that is,
2 = 2 32 3 1 1 92
vz - 2 Y T2 2%t It
’ dy 3z or T r® 50

It can be proven that the first term in the expansion,
@0 , represents just the uniform stream:

Qo(x,y,z) = Ux .

This appears so obvious that I pass on immediately to the

@l problem. From the [L] and [H] conditions, we find:
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[L1] vy,zq)l = 0 in the fluid domain;
3@1 U 0,
[5,] Sie=" - on =71, - (2-63)

yI1 + (roe/ro)zl

Finding @l is strictly a problem in two dimensions. In
fact, it is just the problem that the early aerodynamicists
put forth intuitively at the beginning of their slender-body
analysis. (It was also the end of their analysis!) For an
arbitrary body shape, we might have to solve this boundary-
value problem numerically; that is not much of a problem
today. However, we are not yet ready to work with numbers,
because the formulation of the problem is not quite complete:
we have not specified the behavior of @l at infinity. To
do so requires that we match the unknown solution of this

problem to the far-field expansion.

First, note what (2-63) tells us about the order of
magnitude of @l . The right-hand member is O(e) and
the left-hand member is O(@l/s) ({because of the differen-

tiation in the transverse direction), which together imply:

o, = 0(e

Actually, (2-63) says only that @l cannot be higher order
than 82 ; it could be lower order if the matching intro-
duced some effect that required 82 to be o(@l) , but this
does not happen.

This @1 problem is remarkably similar to the @O
problem in Section 2.2. If we can assume that V@l is
bounded at infinity, then we can express @l in a series
just like the one in (2-51). Whether V@l really is bounded
at infinity can only be determined from the matching, of

course, but we go ahead with the assumption, trusting that
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our method will show us if we have made unwarranted assump-

tions.

It should be noted too that there are important differ-
ences between this problem and the problem of Section 2.2.
The Neumann-type of condition on the body was homogeneous
there, but it is not homogeneous here. Thus, one may expect
that there may be a non-zero net source strength inside the
body in the present problem. What happens at infinity is
also different. 1In the earlier problem, the potential had
to represent a uniform flow at infinity, and we supposed
that there might be the proper circumstances that a circula-
tion flow could occur. In the present problem, the uniform
flow at infinity has been included in @0 » and so we might
expect that @l will represent a flow with velocity vanishing
at infinity, and there appears to be no reason to expect a

circulation in the 2-D problem.

It would be tedious to go through the same arguments
that were used previously, and so I shall only summarize the
results that would be obtained after a careful matching pro-
cess. In the near field, @l does indeed yield a velocity
field which is bounded in magnitude at infinity, and there

is no circulation. Thus, it can be represented by the series:

A A..cos O + B,.sin ©
_ 10 11 11
@l(x,y,z) = Cl + T log r + T + iee
(2-64)
The "constants" are all functions of x . In the near field,

all terms must be the same order of magnitude, by definition,

All and Bll are 0(eA10) .

noring quantities which are 0O(log €) .) 1In the matching,

and so (I am, as usual, ig-
the 1/r terms are lost in the first round, and the log r
and constant terms are forced to match the inner expansion

of the outer expansion.
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In the outer expansion, (2-60), only a line of sources
in the ¢l term of (2-60) can match the near-field expan-
sion properly. That is, in (2-59) and (2-60), we have the
following:

a’in(k) = b’in(k) = 0 except for n=0 .

The two-term outer expansion and its two-term inner expan-

sion are:
0(x,7,2) v Ux + 2| dk eFFk (|k|r) a*. (k) (2-65a)
Y 2T 0 10
NoUx +f Ao (x) log T - £ (x) (2-65b)
27 %1 i f1 ’

where (2-6la') has been used to express the latter.

Matching between the near-field and far-field then
shows that:

A10 = ol(x) (2-66a)

- % £, . (2-66b)

In obtaining an actual solution, one proceeds through

the following steps: 1) Matching shows that @l represents

a flow with bounded velocity at infinity. 2) Then the @l

problem is completely formulated and can be solved. 3) From

the solution of the @l problem, the function A, .(xX) can

10
be determined, which, through the matching, gives ol(x) ’
and the far-field two-term expansion is known. 4) From the
matching relation for Cl(x) , along with formula (2-6l1la"),

the near-field potential is known completely to two terms,
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and the Cl(x) term includes the most important effects of
interaction among sections. This sequence of steps shows
what an intimate relationship exists between near- and far-

field expansions.

The source strength, cl(x) = Alo(x) , can be computed
without the necessity of solving the flow problem. In the
near-field picture, draw a circle which encloses the body
section. The net flux rate across this circle is just A -
From the body boundary condition, (2-63), one can show that
there is a net flux rate across the body surface, and it is

given by Us'(x) , where:

2T
s(x) = do rg(x,e) = cross-section area at x .
0 (2-67a)
The two fluxes must be equal, and so we find that:
ol(X) = Ay, (x) = Us'(x) (2-67b)

Thus, the source strength is proportional to the rate of

change with x of the body cross-sectional area.

I shall not pursue the solution to higher order of
magnitude, although there is no insuperable difficulty in
doing so. Rather, I prefer to point out several interesting

facts about the solution and then close this section.

In the far field, the solution to two terms is axially
symmetric, although the body is not a body of revolution.
The near-field two-term expansion is not symmetric in this
way unless the body is circular and is aligned with the inci-
dent flow. However, the near-field solution can be repre-

sented by the series,
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g, (X) A..cos 6 + B..sin 6

1 11 11
2T log r - 77 fl(x) i 2T r

d(x,y,z2) ~ Ux +

and, at large r , the axially symmetric terms dominate this

series.

If the far-field expansion is carried to three terms,
it will be found that the third term can be interpreted
in terms of a line of dipoles, both vertically and horizon-
tally oriented. Such terms will be of the form given in
(2-61b), with n = 1 ; they contain unknown functions,
a;l(k) and b;l(k) , which must be determined through match-
ing. These unknown functions will depend entirely on the
solution of the @l problem discussed above. 1In fact, one

finds explicitly that:

_ dk ikx _=* . _ dk ikx | *
All(x) = TET e azl(k) : Bll(x) = TET e b21(k) .

Thus, the two-term inner expansion contains enough infor-
mation to determine the strength of the dipoles which appear
in the third term of the far-field expansion. The same inner
expansion would determine the strengths of quadripoles in

the fourth term of the far-field expansion, etc., etc.

On the other hand, the far-field expansion (even at the
second term) contains much information about three-dimensional
effects, information which is largely lacking in the near-
field expansion. I have already pointed out that only the
"constant" term contains important information about 3-D ef-
fects in the two-term near-field expansion. The rest of the
@l solution depends on just the shape of the local section
and the local rate of change of section shape and size. If

higher-order near-field terms are found, it will be seen that
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they are influenced even by the two-term outer expansion.
In fact, the "constant" term in @1 can be interpreted

as a modification to the incident stream, caused by the
presence of all the other cross-sections of the body. The
effects of this extra incident flow on the transverse velo-
city field are not perceived until one finds a higher order

expansion of the solution in the near field.

The briefest account of slender-body theory would be
seriously lacking without mention of the possibly catastro-
phic effects of body ends. If a body has a blunt end, then
s(x) increases linearly in some neighborhood of the end.
Accordingly, s'(x) 1is discontinuous, jumping from a value
of zero just beyond the end to a finite value at the end.
This is an obvious violation of our assumptions about "slen-
derness."” But trouble develops even without a blunt-ended
body. For example, if the tip is pointed (but not cusped),
there will still be a stagnation point right at the point.
Thus this case violates the assumption that longitudinal
perturbation of the incident flow velocity is a second-

order quantity.

Sometimes these end effects can be overlooked with
impunity. There are major examples later in this paper.
However, even when we have such luck, we must be prepared to

have higher-order expansions go awry.
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2.32 Small-Amplitude Oscillations at Forward Speed.
In this section, we consider the same kind of body as in
Section 2.31, namely, a slender body which is aligned ap-
proximately with an incident stream. However, now we for-
mulate a time-dependent problem in which the body performs
small-amplitude oscillations while it moves through the fluid.

It would be entirely feasible to consider the general
problem in which the body oscillates with the six degrees
of freedom of a rigid body. (We could even include more
degrees of freedom by allowing deformations of the body.)
However, the major concepts should be clear if we allow only
two degrees of freedom, a) a lateral translation, comparable
to the heave or sway of a ship, and b) a rotation, like the
pitch or yaw of a ship.

In this section, I shall depart from my usual approach
and first treat the problem for a perfectly general body,
then introduce the slenderness property at the very end.
This introduces a bit of variety, but more important is the
fact that some general properties of the physical system
can be pointed out, without any confusion over the effects

of assuming slenderness of the body.

We use two coordinate systems: Oxyz is fixed in the
body with its origin at the center of gravity, and O'x'y'z’
is an inertial system which moves with the mean motion of the
body center of gravity. With respect to the stationary
fluid at infinity, the mean motion is a translation at speed
U in the negative x' direction; thus, in the O'x'y'z'
system, there appears to be a flow past the body in the

positive x' direction.

The two reference systems differ because the body
oscillates in the 2z direction, the instantaneous displace-
ment being denoted by 53(t) , and rotates about the vy
axis, the angular displacement being denoted by Es(t) .
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In a more general problem, we could let El(t) ’ Ez(t) '
and £3(t) denote surge, sway, and heave (displacements
along the x , y , and =z axes, respectively) and £4(t) ’
55(t) , and £6(t) denote roll, pitch, and yaw (rotations
about the x , vy , and 2z axes, respectively). It will be
assumed explicitly that gj(t) is a small quantity, so

that squares and products can be neglected in comparison
with the quantity itself. Furthermore, it will be assumed
that Ej(t) varies sinusoidally in time and it will be
represented by the real part of a complex function varying
as eimt . We shall not usually bother to indicate that only
the real part of a complex quantity is to be implied. Thus

we can write:

€j(t) = inj(t) . (2-68)
> &5 (t)
. * 53(t)
X
. o

Figure (2-4). Two Coordinate Systems
for Oscillation Problem.

The relationship between the two coordinate systems is

as follows (See Figure (2-4)):

]

X - z'gs H

R

]
Il

x' cos g - (2'-E3) sin &g (2-69)

y =% ’

R

x'Es + z' - 53

N
|

x' sin €5 + (z'—£3) cos ES
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The absolute velocity of the center of gravity is:

-Ui' + iw£3k'

(- Ucos §. - iwg, sin &_) i
5 3 5 (2-70)
+ (- U sin 55 + iw£3 cos ES)k

~ - Ui + (iw£3 - UES) k (2-70")

where (i,j,k) are unit vectors in the Oxyz system, and

(i',3',k') are unit vectors in the O0O'x'y'z' system.

Let the body surface be defined by the equation:
S(x,vy,2) = 0 . (2-71)

Denote the unit vector normal to the surface, inwardly di-
rected, by n :

n = nli + n,j o+ n3k . (2-72a)

It is convenient to make a number of other definitions,

as follows:

1) nj : Extend the above definition of nj to
j=4,5,6 as follows:
r xn = n4i + n5j + n6k (2~72b)
where
r = xi +yj +zk .
In particular, note that:
ng = n - k and ng = 2zn; - Xng; . (2-72")
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3)

4)
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¢l : This is a normalized velocity potential. It
satisfies:

¢ixx + ¢iyy + ¢izz = 0 in fluid region;
8¢i
W = ni on S(X,Y,Z) = 0 H (2_73)
|vo,| ~o at infinity.

v(x,y,2) : This is a normalized fluid velocity,
equal to the fluid velocity at (x,y,z) when an in-
cident stream flows past the body, the stream having
unit velocity, i , at infinity. It can be repre-
sented as follows:

v(x,y,2) = V[x - ¢1(X;Ysz)] . (2-74)

m, : This quantity is related to the rate of change
of wv(x,vy,2) in the neighborhood of the body, as
follows:

mi + mj + mk = m = - @V ; (2-75a)
mi + mgd + omgk = - @VGExwV) (2-75b)
In particular, note that:
_ 1, ) (2-75a"')
M3 = T3p T Plz b
) - _ 9 _
mg = - 35-(j V) = - o (zv1 xv3)
= -2 [2@-0p) +xby] = -ng e (zby - xbp)
on 1y 1, 3 on 1y 17 -

(2-75b"')



5) wi : This is another useful normalized velocity

potential. It is related to m, the way ¢i is

related to n, . It satisfies:
wixx + wiyy + wizz = 0 in fluid region;
Swi
55 = 0 o S(x,y,z) =0 ; (2-76)
lVlPil - 0 at infinity.

In particular, it can be seen that these conditions

are satisfied for i = 3,5 if:
¢3(X,Y,Z) = ¢lz(X’Ysz) 5 (2-76")
ws(XSY,Z) = - ¢3(X,y,Z) = (Zq)]_X = Xq)lz) - (2_76")

(The last term does satisfy the Laplace equation.)

Now we can write down the velocity potential for the
combined translation and oscillation in terms of the above-
defined quantities. It is a well-known fact of classical
hydrodynamics that the fluid motion can be expressed as a
superposition of six separate motions, each of which would
be caused by the motion of the body in one of the rigid-
body degrees of freedom. However, it is essential for the
use of this fact that the description be made in terms of a
coordinate system fixed with respect to the body. Note
that there is no linearization implicit in this superposi-
tion, in the sense that there is no requirement that motions
be small in any way. In the body-fixed reference frame, the

velocity potential is:

[-U cos 85 = 1wk, sin E519,5(x,y,2)

+ [—U sin 55 + iw£3 cos ES]¢5(X,Y,Z) + iw55¢5(x,y,z) «
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The nature of the superposition is obvious when we compare
the first two coefficients here with (2-70) . However, it
must also be recalled that the velocity potential obtained
in this way gives the absolute velocity of the fluid, that
is, the gradient of this potential is the velocity in a
reference frame fixed to the fluid at infinity.* Thus, we
must add to this potential an extra term to provide for the
apparent incident stream in the observation reference frame.
The latter has the velocity potential Ux' » and so the com-
plete potential is:

o(x',y',2",t) = Ux' - (U cos ES + iw£3 sin ES) ¢l(x,y,z)

(2-77)
+ (- U sin ES + inB cos ES) ¢3(x,y,z) + inS ¢5(x,y,z)

= Ux' - U ¢1(x,y,z)
+ 10 0505,5,2)] E4(8) (2-771)

+ [iw ¢5(X,Y,Z) -U ¢3(X,y,z)] gs(t)

The potential ¢ has been defined basically in terms of the
inertial reference frame, although most of the right-hand
side here is expressed in terms of the body-fixed system.
Note that not only the incident stream is defined in terms
of primed coordinates, but also the body motion is really
defined in those coordinates as well; in particular, heave
motion is a translation of the body along an axis fixed with

respect to the fluid at infinity.

The Bernoulli equation must be used for computing the

pressure:

1 2 2 2
- g' = ¢t + 5‘(¢xv + ¢y| + ¢z') .

*This can be concluded also by recalling the definition of
¢j : its gradient vanishes at infinity.
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The linear approximations of the derivatives here are as

follows:
b, = [AW%e, + (1w0)éy 1E4(0)
+ [0, - (WD), + (00) (2by ~xb; )1E(E)
b = UIL=- 011 + [iwdy JE5(8) + [duds ~Uds ~Uby 1E.(t) 3
dpr = - UlbL ] + Dby JE(6) + [iwps ~Udy 1ES(E) ;
b0 = - Uldy,] + [w6y 1E,(0) + [iwgs ~Ubs +Udy 1E(t) .

Some simplification has been done through the dropping of
quadratic terms in Ej . Substituting these expressions into
the Bernoulli equation and simplifying somewhat, one finds
that:

oo U2 L awPe. + @), + v TECD)
-5 =T [Gw)7e, + (1 37 VP37 05;

£ LEAD20, + (D) (B + vV8) - TP, + veV9) IES(E)

In the terms containing Ej , one can use primed and upprimed
coordinates interchangeably, since the difference leads to

terms of higher order.

The force (moment) corresponding to the j-th mode of
oscillation is given by:

F () = [dS ny P(X,y,2,t) = ETji gi(®) + Fyp
S

where S is the surface of the body at any instant and Fjo
is the steady force component. (For Jj = 1,2,3 , the latter

is zero.) The "transfer functions" Tij are:

Tyy = - pf ds n, [(iw)2¢3 + (Qwo) (Y + veV9) 1
S



T,s = - p| dSng [(iu))zq)s + (1W0) (Y + v Vo) - Uz(tp3 +vVo )l 3
S

T, = -0 48 ng [0+ G0y + vVl
S

n, = - o 8 ng [0 05+ (D) Uy + vTE) ~ TGy + v Tep]

S

These formulas can be simplified considerably, even be-
fore we introduce the slenderness approximation. We use two
theorems: One is an extension of Stokes' theorem, proven
by Tuck (See Ogilvie & Tuck (1969)):

ds nj (v'Vd>i)
S S

ds mj ¢i

The other theorem is Green's theorem; in applying it, we
note that all of the functions decrease sufficiently rapidly

far away that there is no need to account for effects at in-

finity.* Thus, in T33 and T35 we have:
dS ny(by + voV3) = [dS (0303 - Y3 63) = O
S S
Similarly, in Tyg
ds ns(lp5 + v°V¢5) = 0

S

In , we manipulate one integral as follows:

T35

*¢1 and ¢3 appear to represent dipoles at infinity; thus,
both are proportional to 1/r2 as r + » . ¢ appears to
represent a quadripole, thus is proportional t& 1/r3 at
infinity.
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de n3(1p5 + V°V¢5) = de (n3\1)5 - m3d>5)
S S

fds (ny¥g = b3 95 + Y35, - bang)
S

- ds n3 ¢3 + fds 2 (n3¢1x - nl¢1z) .
S S

Similarly, in T53 and T55 , we find:

[ds ng (Y5 + vV, = [ds ng ¢y - fds z (n39y, - n391,)
S S S

The last integral in the last two expressions can be rewritten:

de z (n3¢lx - nl¢1z) = j'j'ds z nxV¢1
S S

= J‘de [nxV(z¢,) - nx(¢,k)]
S

[dS n, d)l ,
S

the last equality following from application of Stokes'

theorem to the first term. Combining all of these results,
we find for the T.. :

Ji
T = - p(iw)2 dsS n, ¢ 3
33 373 >
_ . 2 . .
T35 = = p(lw) ds n3 ¢5 + p(le) fds (n3¢3 = n1¢1) H
S

T = - p(iw)

53 ds n, ¢5 p(iwvU) [ ds (n3<1>3 - nl¢l) H

S

2
dS ng ¢5 + U [ds (0395 - n;9,)
S

%hh

_ 2
T55 = = p(iw)

R
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These results have been obtained with no assumptions
made about the shape of the body. The only assumption was

that the sinusoidal oscillations had very small amplitude.

Now, finally, let us assume that the body is slender.
The only effect is that we lose the terms containing n1¢l
For a slender body, n3 and ng are 0(l) as the slen-

derness parameter, e , approaches zero, whereas ny is
O(e) . From (2-73), we see that ¢l is therefore higher

order than ¢3 and ¢5 by a factor of € . Thus:

2
fds nl(bl /VdS n3¢3 = 0(™) .
S S

Seldom in practical problems do we ever retain terms with
such a great difference in orders of magnitude, and so we

neglect the terms containing nl¢l if the body is slender.

In the ship-motion problem, the quantity corresponding
to T33 will be

2 1
(iw)"[agy + 75 byl

where ajzs and b33 are tEe heave added-mass and damping
coefficients, respectively. The other Tij's have a similar
interpretation in terms of pitch added-moment-of-inertia and
damping coefficients, cross-coupling coefficients, etc. We
note that there are three kinds of terms here:

a) Terms independent of U . These are all of the same

form:

*In the ship-motion problem, ¢§ 1is complex. Here, of
course, ¢j is purely real, ahd so there is no analog
to bjj .
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0) _ L2
Tij = = (iw) ds n, q)J . (2-78)
S
b) Terms proportional to U . These occur only
in the cross terms, Tij , with 1 # j . For a

slender body, we have:

_ (0 sy m(0)
Tys = Tgg” = (U/dw) Tg5° (2-79)
0) . 0)
T4 Tgg" + (U/iw) T3q (2-80)
c) A term proportional to U2 . This occurs only in
T55 :
_ (0) . 2 (0) (2-81)
Tss = Tss' + (U/Aw)” Ty"

Even at zero forward speed, there is coupling between
the heave and pitch modes, unless the body is symmetrical
fore-and-aft. If the body Zs symmetrical, one can show
that T(O) and T(o)

35 53
existence of forward speed causes a loss of symmetry, and

are zero. But even in this case, the

so a pure-heave motion causes a pitch moment, and a pure-
pitch motion causes a heave force. The symmetry between

and T should be noted: The speed-independent parts

T
35 53
are equal, whereas the speed-dependent parts are exactly

opposite.

One remarkable fact is that there is no interaction
between the oscillatory motion and the perturbation of the
uniform stream by the steady forward motion. If the above
formulas are derived from the kinetic-energy formula by use
of the Lagrange equations, this fact is perhaps obvious.
When we derive expfessions for force and moment on an oscil-

lating ship, it is anything but obvious.

For the sake of completeness, I write out here the
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final formulas for the Tij's for a slender body in an
infinite fluid. We note first that, by the same procedures
used in the steady-forward-motion problem, the following

is true to a first approximation:

¢

vy + ¢, = 0 , in the near field.

From (2-72'), it is rather obvious that, for a slender body,

ng = - mgll+ o]

and thus, from (2-73):

2
Now let:
m(x) = p [ d2 n3¢3 = added mass per unit length , (2-82)
C(x)

where C(x) is the contour around the body in the cross-

section at x . Then clearly:

ng) =1, - -p(iw)zfdxfdz ngy = - @? [ &
L C(x) L

where L 1is the domain of the length of the body. Simi-
larly, we obtain:

ng) = Tég) = p(iw)ﬁjfgx f}fgz n3¢3 = (iw)2 dx x m(x) ;
L C(x) L

0)
Tss

- (iw)2 dx x2m(x) .
L
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Collecting these results, we have:

13 - (iw)zfdx m(x) b
L

- 82
T35 = (iw) dx x m(x) - ic T33 ;

- ) (2-83)

2 U
53 (iw) fdx x m(x) + e T33 3
L

-3
i

-3
I

3
]

2
55 - (iw)zfdx xzm(x) + (I:g_m) T33 . J
L
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3 SLENDER SHIP

Of all the problems discussed in this paper, the
slender-ship problem has led to the most important practical
consequences. Therefore it is not unreasonable to devote
the longest chapter to the problem. Even so, some aspects
will not be covered; perhaps the most important missing
example is the case of sinkage and trim of a ship.

In the four sections, two steady-motion and two unsteady-
motion problems are discussed. The first steady-motion prob-
lem is the wave-resistance problem, that is, the problem of
a ship in steady forward motion on the surface of an infinite
ocean. In the second section, the problem treated is essen-
tially the same, but the Froude number is assumed to be re-
lated to the slenderness parameter in such a way that Froude
number approaches infinity as slenderness approaches zero;
this rather unnatural relationship is discussed at some length,
In the third section, I discuss in some detail the problem of
heave and pitch motions of a ship at zero forward speed; the
results are not at all surprising, but the method is quite
clear in this case, which helps one in approaching the final
section. It is concerned with the problem which is the com-
bination of the first and third problems: heave and pitch
motions of a ship with forward speed.

3.1 The Moderate-Speed, Steady-Motion Problem

The theory presented here is due to Tuck (1963a)*. The

analysis — as far as I carry it here — is not very much

*This reference is not readily available, but the material which
is of interest here can also be found in Tuck (1963b), Tuck

Tuck (1964a), and Tuck (1964b), all of which are gathered into
Tuck (1965a).
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more difficult than the analysis of the infinite-fluid prob-
lem, and so it will only be sketched here.

The theory is attractive for its simplicity and its
elegance, but unfortunately it has not been successful in
predicting wave resistance. The reasons are not entirely
clear, although they have been discussed for many years.
See, for example, Kotik & Thomsen (1963). The difficulty
could very well be that real ships are just not slender
enough for a one-term expansion (or perhaps any number of
terms) to give an accurate prediction of wave resistance.
This is the old question, "How small must the 'small'
parameter be?" Another possibility is that the error
arises because the lowest-order slender-body theory places
the source of the disturbance precisely on the level of the
undisturbed free surface, and so there are no attenuation
effects due to finite submergence of parts of the hull.
(These two possible causes of error are not entirely sep-
arate.) Still another possible cause is considered in

Section 3.2.
The hull surface will be specified by the equation:
r = ro(x,e) . (3-1)

Now it will be convenient to measure 6 from the negative

z axis, since most ships are symmetrical about the midplane.
We assume that ry = O(e) and that anro/axn = O(g) , as
needed.

There is a velocity potential satisfying the Laplace
equation and the same kinematic body boundary condition, (2-58),
as in the infinite-fluid problem. The incident stream is again
taken in the positive x direction, that is, with velocity

potential Ux. The two free-surface conditions are:



ge + = 7(x,y) 3 (3-2)

N
I
N[
=
-
Q
=
N
[

(62 + 07 + 4]

.. + ¢ ¢ - ¢ = 0 , on z=1g(x,y) . (3-3)

Finally, there is a radiation condition to be satisfied.

As usual, we assume that there is a far-field expansion:

N
¢(x,5,2) ~ ] ¢ (x,5,2) , where ¢_,.=o(¢) as €0,
n=0 for fixed (x,y,2), (3-4)

and a near-field expansion:

N
o (x,y,2) v nZO @n(x,y,z) , where ®n+l = o(@n) as € >0,
for fixed (x,y/e,z/c) . (3-5)
These expansions are substituted into all of the exact con-
ditions, from which we obtain two sequences of problems

which must be solved simultaneously.

In the far field, the first term in the expansion for
¢ must be just the incident uniform-stream potential, Ux ,

since the body vanishes as € »+ 0 and the asymptotic repre-

sentation ¢ ~ ¢0 = Ux satisfies the free-surface conditions
(trivially). The second term represents a line of singulari-
ties on the x axis. One really ought to allow the most
general possible kind of singularities on this line, but it

is no surprise to find that just sources are sufficient at
first, and so we consider the special case of a line of sources
on the free surface. One can show that higher-order singulari-
ties could not be matched to the near-field solution. Alter-
natively, one can construct a far-field solution using Green's
theorem and show that it really represents just a line dis-
tribution of sources. See, for example, Maruo (1967).
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One can use the classical Havelock source potential
to express the desired potential for a line of sources,
but Tuck's procedure is more convenient in the slender-
body problem: Apply a double-Fourier transform operation
to the Laplace equation, reducing it to an ordinary dif-

ferential equation with 2z as independent variable:
2 2
Sk D)0, 052) 4 0RR(,R52) = O

where k and & are the transform variables, and the
asterisks denote the transforms. Assume for the moment

that the line of sources is located at z = zg < 0 . The
above differential equation can be solved generally, with

a different solution above and below z = Zg - The solution
in the upper region is forced to satisfy the linearized
free-surface condition, the solution in the lower region
must vanish at great depths, and the two must have the
discontinuity at 2z = z appropriate to the source singu-’
larities. Finally, one may allow zg 0 . In physical
variables, the result is:

[~

¢1(X,Y, z) = - 2_12 dk eikx U*(k) Ko(lklr)
il
—00 (3-—6)
® @ 2 2
= im0 [ @ M 2ok at_Mrre (T
w0 b Y (&2+22) [g/(k2+82) - (Uk -ip/2)2] 7

where u denotes a fictitious Rayleigh viscosity, guaran-
teeing that the proper radiation condition is satisfied, and
o*(k) is the Fourier transform of o(x) , the source density*.

*Define o(x) = 0 for values of x ahead of and behind the
ship.
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The two-term outer expansion is:

o(x,y,2) Vv Ux + ¢1(XsY9Z) s

which has the two-term inner expansion:

b(,y,2) v Ux + 20G) logr - = £(x) - gx) (3-7)
where
f(x) = :g o' (&) log 2|x-&| sgn (x-£) (3-8a)
= -2 :keikx o* (k) 1og9-££l- ; (3-8b)
N T ) dr (3-9)
g = T _mdk e Ko | VAT [g/G2H) = (Oe-in/2)2]

The expansion should be compared with the corresponding ex-
pansion for a line of sources in an infinite fluid, as given
in (2-65). We now have an extra term, g(x) , and the terms
containing o(x) and £f(x) differ by a factor of two from
the earlier result. The latter variation is not'important;
it results from the fact that the line of sources was taken
at z = zg < 0 , and those sources merged with their images

when we let z0 - 0 .

The most interesting feature of this inner expansion of
the two-term outer expansion is that the wave effects are
all contained in g(x) — a function of just x . 1In the
infinite-fluid problem, all 3-D effects in the near field
were included (in the first approximation) in the single
function of x , fl(x) . We now have a generalization of

this for the free-surface problem.
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In the near field, it is easy to show that the first
term in the asymptotic expansion of the potential is again
just the uniform-stream potential, Ux . The next term,
@1 , must satisfy the Laplace equation in two dimensions
(in the cross-plane) and the same body boundary condition
as before, (2-63):

8@1 Urox(x,e)
_ = - on r = r_ (x,9) . (3-10)
oN [l+(roe/r0)2]l/2 0

As in the infinite-fluid problem, this condition suggests
that

2
@l = 0(e%) ’

1

since ro = 0(e) and 3/3N = O(eg ) .

Now consider the free-surface conditions. In the
Bernoulli equation, note the orders of magnitude:

2 2 2
gr + Ul + (o] + 0], +91,) + ... = 0 on oz =I(x,y)

o(z) o) o(eh 0(e®) o(e?)

The term containing Qix can be dropped, but the others
containing @1 are all the same order of magnitude, and we
have no reason to suppose that the ¢ term is higher order.
In the kinematic condition, note the orders of magnitude:

Ug, + &1 .2, + Qlycy - %, + ... = 0 on z-=2¢g(xy) .

0(z) 0(ze?) o(z)  ofe)

Clearly, we can drop the term containing le , but no
others.
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Now we must relate the order of magnitude of ¢ with
the order of magnitude of ®l . From the kinematic con-
dition, one might suppose that ¢ = O(e) . However, the
dynamic condition then implies that ¢ ~ 0 , which means
only that ¢ is higher order than we assumed. In fact,
the only assumption which is consistent with both conditions

is that:

2
z = 0(e”) .
The kinematic condition then reduces to:

le =0 on z =0 ; (3-11)

thus, ¢

ence of a rigid wall at 2z = 0 . From the dynamic free-surface

1 Yrepresents the flow which would occur in the pres-

condition, we can compute the first approximation to the wave
shape:
. (3-12)

grix,y) ~ - (U ey +zo0f )]

y' 'z=0
It may appear to be a paradox that we have a flow without
waves, from which we compute a wave shape! But, like all
paradoxes, it is a matter of interpretation and understanding.

We shall return to this point presently.

Since @l satisfies the Laplace equation in two dimen-
sions a rigid-wall condition on z = 0 , it can be continued
analytically into the upper half space as an even function
of =z . All of the arguments used in the infinite-fluid
problem can then be carried over directly. 1In particular,
at large distance from the origin, we can write, as in (2~64) ,

A
10 1
@l N Cl + > log r + O(f) ' as r > .
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The two-term inner expansion can be matched to the two-term

outer expansion. We obtain:

R0

2 o(x)

~e

C, = -5 £ -gx .

Note that there is again a factor of 2 difference from the
infinite-fluid results, (2-66). Of course, the term g(x)
is new here.

We can again determine AlO and thus ¢ in terms of
body shape, without the necessity of solving the near-field
hydrodynamic problem. By the simple flux argument, we find
that: '
_— 1 -
Alo = 2 U s'(x) ’ (3-13a)

where s(x) 1is the cross-sectional area of the submerged
part of the hull. With this convention, we find that

cx) = Us'(x) , (3-13b)

just as in the infinite-fluid problem. Again, we have been
able to determine the complete two-term outer expansion
without explicitly solving the near-field problem. This
occurs because the source-like behavior which dominates far
away from the body (still in the near-field sense) can be
found simply in terms of the rate of change of cross-section,
and it provides all the information needed for determining
the two-term far-field expansion.

Enough information is now available to determine a
first approximation of the wave resistance. It can be com-
puted in either of two ways: 1) integrate the near-field
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pressure over the hull surface, or 2) use the far-field
expansion and the momentum theorem. In either case, one

obtains:
DW = wave resistance
1 2
vo- 5 pU ds(x) ds(&) Y, (k|x-£]) ,
w00 - OO0
where
s (x) = immersed cross-section area,
2
kK =g/U" ,
ds(x) = é%%?L dx ,
YO(Z) = Bessel function of the second kind, of order zero,

argument z .

This is the slender-body wave-resistance formula which is so
notoriously inaccurate. At speeds for which one would hope
to use it, it gives values that are too high by a factor of
3 or more. Generally, one could not (and should not) expect
to correct such errors by including higher-order terms, and

so it is rather futile to pursue this analysis further.

Streamlines, Waves, Pressure Distributions. I mentioned
previously the apparent paradox of prescribing a rigid-wall
free-surface condition, then using the solution of that prob-
lem to compute wave shapes, as in formula (3-12). Such a

procedure really can be quite rational.

Once a velocity potential is known everywhere, it is a
fairly simple task for a computer to figure out the velocity
field and to produce streamlines. Figure (3-1) shows the
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streamlines around a Series 60 hull, calculated from the near-
field slender-body solution by Tuck and Von Kerczek (1968). The
upper boundary of the figure is the rigid-wall streamline.
Figure (3~2) shows the same streamlines in two other views.
These drawings are accurate (in principle) to order € . This
means, loosely speaking, that they show the streamlines on a
scale which is appropriate for measuring beam and draft of

the ship. Thus, we see that some of the streamlines start
near mid-draft, pass under the bottom, then return to approx-
imately their original depth. These are variations which

show on a scale intended for measuring quantities which are
o(e) .

The wave height, on the contrary, is 0(82) , as we
found earlier. Therefore it should not show in these figures.
Our assumptions have led to the conclusion that wave height
is small compared with beam and draft. Thin-ship theory, on
the other hand, predicts that wave height and beam are com-
parable — without being very explicit about the ratio of
wave height to draft.

In the section of Figure (3-2) showing hydrodynamic
pressure along streamlines, only the waterplane curve (de-
noted by W) is really consistent. On any streamline, the
pressure will vary mostly because of the changing hydro-
static head along the streamline. Such pressure variations
are O(e) . If we were to work out a second-order theory
and plot the streamlines, the shift in streamline position
from first-order theory to second-order theory would lead
to a hydrostatic pressure change which is 0(82) . This is
the same as the order of magnitude of the hydrodynamic pres-

sure, but it is ignored in the figure.

On the other hand, if we were inside the ship measuring

pressure at a point on the hull, we would not care which
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streamline went past that point. We could use the Bernoulli
equation to estimate the pressure at any point, and the
estimate consistent to order e? would be found from the
equation:

= B L (92 402
0 5 v gz + UL + 5 (e 407 ) .

3.2 The High-Speed, Steady-Motion Problem

In the preceding analysis, we have said nothing ex-
plicit about the speed other than assuming that it was
finite. The first term in the velocity-potential expansions
was Ux , and all other terms were assumed to be small in

comparison.

In principle, there is no reason to provide or allow
a connection between Froude number and our slenderness ex-
pansion parameter. However, the practical manner in which
a perturbation analysis is used may justify our making such
an unnatural connection. In practice, we work out an
asymptotic expansion, which provides a description that
becomes approximately valid (in a certain sense) as the
small parameter approaches zero. But we use the expansion
under conditions in which the small parameter is quite finite,
and we just hope that the resulting error is not too big.
The size of that error may depend on other parameters of the
problem, and we may possibly reduce the error by allowing
such other parameters to vary simultaneously with the basic

slenderness parameter.

In the steady-motion problem that we have been consider-
ing, the small parameter e could be thought of as the beam/
length ratio. There is a completely different length scale
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in the problem, namely, U2/g = F2L , where F 1s the
Froude number and L is ship length. This length is
proportional to the wavelength of a wave with propagation
speed equal to ship speed. When we assume that F = 0(1)
as € » 0 , we imply that the speed is such as to produce
waves which can be measured on a scale appropriate for
measuring ship length, and we imply that this speed is
unrelated to slenderness.

If we are interested in problems of very-low-speed
ships or very-high-speed ships, in which the generated
waves are, respectively, much shorter or much longer than
ship length, it is entirely conceivable that our severely
truncated asymptotic expansions may be made even more in-
accurate by the extreme values of Froude number. We may
increase the practical accuracy by assuming, say, that
wavelength approaches zero or infinity, respectively as
€ +* 0 . This is not to imply that there really is a
connection between speed and slenderness. It is done only
in the hope that wavelength and ship length may be more
accurately represented when we use the theory with a finite
value of € .

Formally, the low-speed problem may be treated simply
as a special case of Tuck's analysis, as described in Section
3.1. One finds that the appropriate far-field problem con-
tains a rigid-wall free-surface boundary condition (in the
first approximation). Thus, both near- and far-field
approximations are without real gravity-wave effects. However,
this formal approach is quite improper. The difficulty is
so serious that we devote a special section later to the
low-speed problem. It is perhaps the most singular of all
of our singular perturbation problems. The difficulty, in
essence, is that we have treated all perturbation velocity



- 103 -

components as being small compared with U , and this leads

to nonsense if we allow U to approach zero.

At high speed, a slender-body theory can be developed
along lines paralleling Tuck's analysis. This has been
done by Ogilvie (1967). The resulting near-field and far-
field boundary-value problems are quite different from
Tuck's, however. No numerical results have been obtained

yet from this analysis.

Near-field and far-field regions are defined just as in
the previous slender-body problem. In the far-field, the
velocity-potential expansion starts with the uniform-stream
term, Ux , followed by a term representing a line of singu-
larities. The near-field expansion also starts with the
uniform-stream term, followed by a term which satisfies the

Laplace equation in two dimensions.

The differences appear first in the boundary conditions
satisfied by these expansions. The proper way of setting up
these conditions is to nondimensionalize everything and then
assume that Froude number, F , is related to the slenderness
parameter, ¢ , in such a way that F >« as € > 0 . It
is easier just to let the gravity constant, g , approach
zero in this limit. The only interesting new case, it turns

out, is: g = 0(e) . We now assume this to be the case.

Since g appears only in the dynamic free-surface
boundary condition, the body boundary condition will be
the same as in the moderate-speed problem, Equation (3-10),
and in the infinite fluid problem, Equation (2-63).

In the far field, the disturbance vanishes as € - 0 .
Therefore the free-surface disturbance is o(l) . If we
let the expansion of the velocity potential, ¢ (x,vy,2) ,

be expressed:
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N

d(x,y,2) ~v Ux + 2: ¢n(x,y,z) ' for fixed (x,y,z) ,
n=1

the dynamic and kinematic free-surface conditions are, ap-
proximately:

0 = UCX - ¢1Z ’

on z=0 . (3-14)

o
R

gt + U¢1X ’

We do not know the relative orders of magnitude of ¢ and
¢ , a priori, but a study of the possibilities shows that
only one combination is possible, namely, that ¢ and ¢l
are the same order of magnitude. Then, in the dynamic con-
dition, the term containing g is higher order than the
other term, and it can be neglected in the first approxima=-
tion, that is,

¢, =0 , on z=0 , (3~-14)

¢, =0 on z =0 . (3-15)

Thus, the free surface acts like a pressure-relief surface,
with no restraining effect of gravity (to this order of mag-
nitude).

This condition points to a fundamentally different kind
of solution from that of the previous problems. If we con-
tinue the function ¢l analytically into the upper half-
space, it must be odd with respect to the surface z = 0 .
Thus ¢1 cannot represent a line of sources. The least
singular solution represents a line of dipoles, oriented
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vertically. Assuming that ¢1 will consist only of such

dipoles, we can write it:

co

0 (xy,z) = SRO gy [1 + x- & ] _ (3-16)
1 ! [-£)2 + £211/2

where y =r cos 6 and z =r sin 6 . The two-term outer
expansion and the two-term inner expansion of the two-term

outer expansion are, respectively:

o(x,y,2) v Ux + d)l(x,y,Z)
X

v Ux 4+ -Z—%I—‘—e dg u(E) . (3-17)

I am now assuming that the bow of the ship is located at
x = 0 ; then, in matching to the near-field solution, we
can show that the dipole density must be zero upstream of
the ship bow. This expansion is unaffected by the downstream

dipoles.
In the near field, we assume the usual expansion:

N
o(x,v,2) "~ Ux + Z@n(x,y,z) for fixed (x,y/e,z/c)

n=1

The term ¢ satisfies the 2-D Laplace equation:

1
Qlyy + lez = 0

The body boundary condition suggests that @l = 0(82) ’
just as it did before in Equation (3-10).

From the dynamic free-surface condition,
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1
0 = gz + U@lx + f(Q%y + @%Z) on z = t(x,y) .,

we see that ¢ = 0O(g) (since g = O0(g) ). This causes a
new problem. We would like, as usual, to change this con-
dition at z = g(x,y) to a modified condition at 2z =0 .
But this is not possible. For example, the term le
would be transformed:

o1, (X,¥,0(x,y)) = o3 (x,y,0) + z(x,y) 01, (xX,¥,0) + ... .

o(ez) O(€2) O (¢g) o(e)

Every term, in fact, will be the same order of magnitude,
and so this ordinary kind of expansion fails. We must con-
tinue to apply the condition on the actual (unknown) loca-

tion of the free surface.*

The kinematic free-surface condition is also nonlinear
and must be satisfied on the unknown location of the free
surface:

0 = Uz + élycy - 9, on z = ¢(x,y) .

Each term here is 0O(e) , and so none can be ignored.

We are left in the rather uncomfortable position of
having to solve a nonlinear problem just to obtain a first
approximation to the near-field potential function. However,
that nonlinear problem is a two-dimensional problem, which is
not an insignificant advantage, and, as we shall see, it is
possible in principle to predict the location of the free

surface, thus avoiding the necessity of searching for it.

*If we expand: ¢ Vv Ifp , we could apply the condition on

z = {1 , then apply the usual kind of transformation, as above,
so that conditions on higher-order terms would be applied on

a priori known surfaces.
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We do not have a condition to apply at infinity in the
@1 (near-field) problem. It is not so straightforward in
this case to predict the form of the solution as r » « ,
but Ogilvie (1967) showed that:

All sin ©

= [1+ 0(1/r)] as r> oo

®, (%3y,2)
where All is a constant to be determined. There is no
source~like behavior. This might have been expected, of
course, since the inner expansion of the outer expansion,
(3-17), showed the characteristics of a two-dimensional
dipole. An intermediate expansion can be used to show that
these statements are correct.

A numerical procedure for solving this problem may be
the following: Suppose that at some x we know the value
of @l on the free surface, 2z = f(x,y) , and that we also
know z(x,y) at that x . Using Green's theorem, we can
write:

1 8(I)l ]
. = — —_— ' - —_ ) 1
@1(x,y,z) o7 N log r ®l T (log r')| 42 .

where r'2 = [(y—y')2 + (z—z')2] , and the integration is
carried out in the cross-section, with (y',z') ranging

over the body contour, the free-surface contour, and a closing
contour at infinity. The last of these contours contributes
nothing and can be ignored. We assumed that @l is known on
the free surface, and, from the body boundary condition, we
know BQl/BN on the hull. If we let the field point,

(x;y,2) , approach the hull surface, we obtain an integral
equation, with @1 unknown on the hull and BQI/BN unknown

on the free surface. This is not quite the usual form for
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an integral equation, but it should be possible to solve
it approximately by essentially standard numerical methods.
Then the Green's-theorem integral can be used to express
@l at all points in that cross-section. Thus, solution
of an integral equation in one dimension allows the po-
tential to be found.

This procedure has not used the information contained
in the free-surface conditions. Usually, we look on the
free surface conditions as complications that cause tre-
mendous difficulty in the finding of solutions. Now we
take an opposite point of view: Supposing that we have
solved the above problem at some x , we use the kinematic

conditions to predict the value of ¢ just downstream:

C(xt+Ax,y) L(x,y) + Mx T (xy) +

Ax
c(x,y) + T [le(xsy’c(XQY)) - q)lyCy] + ...

Similarly, we predict the value of @l on the free surface
just downstream:
®q z (x+h%,y) o7 + (Ax)[®1x+;x®lz] + ...

where the right-hand side is evaluated at (x,y,z(x,y)) ,

and the dynamic boundary condition is used to evaluate 1, -

Now we are ready to start over. Presumably having
solved the problem at some x , we have used the free-surface
conditions to formulate the equivalent problem at x+ Ax .
The most serious difficulty may very well be in starting
the whole process, and there seems to be no elegant pre-
scription for carrying out that essential first step; in
some problems, it is possible that a linearized solution may
suffice for a start, but this is not certain. Another
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serious difficulty may be the stability of the method.

This analysis has led to the possibility of predicting
waves with amplitude which is 0(e) , that is, waves com-
parable in amplitude to ship beam and draft. Such a pos-
sibility makes the analysis worth further investigation,
but it is also the cause of the major difficulty, viz.,
the necessity of solving a nonlinear problem in the
near field.

When the above analysis was offered for publication
in 1967, one of the referees called attention to the fact
that the conclusions seemed to be quite at variance with
those of Rispin (1966) and Wu (1967). Simple observation
shows that, at very great distance, the dominant fluid mo-
tion should be gravity-related free-surface waves, whereas
my high-Froude-number analysis predicts no true wave motion
in the far field. Actually, all aspects of the problem are
in complete harmony if we consider a "far-far field" in

which distance from the ship is O(e™ 1

) , that is, much
greater than ship length. The two free-surface conditions
then fall into the usual linearized format, and we would

expect to find progressive waves in such a region.

This is quite reasonable. At very high Froude number,
one expects typical waves to be very long — in this case,
considerably longer than the ship. The appropriate dis-
tortion of coordinates is an isotropic compression in scale
far, far away, in contrast to our usual anisotropic stretch-
ing of coordinates in the cross-plane near the body. 1In
their two-dimensional planing problems, Rispin (1966) and
Wu (1967) performed just such a distortion. Their problem
is discussed at some length later, when we come to two-
dimensional problems.



- 110 -

The present problem is an interesting case in which
an inconsistent expansion might be useful in the far field.
Suppose that we arbitrarily replace the free-surface con-
dition, (3-15), by the usual moderate-speed condition,

If Froude number is indeed very high, then this condition
is quite equivalent to (3-15). But the potential function
which satisfies this condition does not represent just the
simple line of dipoles implied by (3-16). There will be
all of the well-known extra terms involving the free sur-
face. If such an inconsistent far-field solution can be
matched to the near-field solution, then the waveless far-
field solution obtained previously can be avoided. Perhaps
this is worth further study.

3.3 Oscillatory Motion at Zero Speed

A systematic study of the zero-speed ship-motions
problem by means of the method of matched asymptotic ex-
pansions does not yield any results that were not obtained
previously by simpler means. However, it is instructive
to consider this problem by this method because the results
are rather obvious and it is then clear how the formalism
is used in place of some common physical arguments. Then,
in the more complicated forward-speed problem, in which
physical insight is less reliable, the same formalism can
be applied with reasonable faith in its predictions.

Only the slender-body idealization of a ship has led
to useful prediction methods in the ship-motion problem¥*.

*Note that "strip theory" is a special case of "slender-
body theory."
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The thin-ship model, which was intensively studied from the
late 1940's until the early 1960's, was useful for certain
restricted aspects of the problem. For example, the damp-
ing of heave and pitch motions, as predicted by thin-ship
theory, is fairly accurate. But the complete theory is
deficient. A straightforward one-parameter analysis leads
to the prediction of resonances in heave and pitch with no
added-mass or damping effects, as shown by Peters & Stoker
(1954) . (See also Peters & Stoker (1957) and Stoker (1957).)
A multi-parameter thin-ship analysis is apparently satis-
factory in principle, as demonstrated by Newman (1961), but
no one has used it for prediction purposes. It is too com-
plicated.

Slender-body theory at one time appeared to have com-
parable difficulties, but these have been largely removed
in recent years, and a theory which is essentially rational
now exists and is fairly successful in predicting ship
motions.

In early versions of the slender-body theory of ship
motions, all inertial effects (both ship and fluid) were
lost in the lowest-order approximation, along with hydro-
dynamic damping effects. The theory was even more primitive
than the classical Froude-Krylov approach. Excitation was
computed from the pressure field of the waves, undisturbed
by the presence or motions of the ship, and the restoring
forces were simply the quasi-static changes in buoyancy
and moment of buoyancy. Even the mass of the ship was
supposed to be negligible in the lowest-order theory.

These deficiencies are removed by assuming that the
frequency of motion is high, in an asymptotic sense. That
is, if one assumes that the frequency of sinusoidal
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oscillation is 0(8_1/2) * , then the ship inertia force is
the same order of magnitude as the excitation and the buoy-
ancy restoring forces. The hydrodynamic force and moment
also enter into the calculation of ship motions at the low-
est order of magnitude. This was all recognized, for
example, by Newman & Tuck (1964). However, correcting

the slender-body theory in this way was rejected by many
workers on the ground that the resulting theory would

be valid only for very short incident waves, whereas the
most important ship motions are known to occur when the

waves have wavelengths comparable to ship length.

The choice was this: 1) Follow the reasonable usual
assumptions of slender-body theory and obtain a rather
useless theory**, 2) Accept the formal assumption that
frequency is high and obtain a much more interesting theory
— which turns out to be very similar to the intuitive but
quite successful "strip theory" of ship motions. In what

follows, I make the second choice.

The reasons for the success of this choice have become
clear in the last few years. In one of the most important
practical problems, namely, the prediction of heave and
pitch motions in head seas, we can truly say that we are
dealing with a high-frequency phenomenon. Because of the
Doppler shift in apparent wave frequency, fairly long waves

* ¢ 1is the usual slenderness parameter.

**Newman & Tuck showed, for example, that the lowest-order
perturbation potential resulting from ship oscillations
satisfies a rigid-wall free-surface condition, even with
forward speed included. Maruo (1967) has the same result

for the forced-oscillation problem. Newman & Tuck performed
calculations with a second-order theory for the zero-speed
case and found practically no change in their predictions

due to second-order effects. They did not make such calcula-
tions in the forward-speed problem.
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are encountered at rather high frequencies; the waves are
long enough to cause large excitation forces, and the fre-
quencies are high enough to cause resonance effects. At
zero speed, on the other hand, incident waves with fre-
quency near the resonance frequencies of a ship are likely
to be much shorter in length than the ship, and so their
net excitation effect is much reduced through interference.
For typical ships on the ocean, most of the heave and
pitch motion at zero speed is caused by waves with length
comparable to ship length, and so the frequencies of such
motion are well below the resonance frequencies. Thus,

at zero speed, prediction of ship motions can be treated
largely on a quasi-static basis; the system response is

"spring-controlled" rather than "mass-controlled."

The problem is very much like the simple spring-mass
problem discussed in Section 1.2. If the mass of a spring-
mass system is very small, we can ignore inertia effects at
low frequency. Thus, if the system is described by the
differential equation:

my + ky = F et

the exact and approximate solutions, given by:

Yox = Feiwt/(k—mwz) ’ yap = Feiwt/k ’
respectively, are approximately equal if « is small enough.
If we solve this equation on the understanding that w is
very large, we must keep all quantities in the exact solu-
tion. But that solution will reduce numerically to the
approximate solution if we evaluate it with a small value
of w .
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We could say that the solution obtained on the assumption
of high frequency becomes inconsistent if we apply it to
problems at low frequency, but, if the appropriate small
parameter is small enough, an inconsistent approximation

is no worse numerically than a consistent approximation.

Once more I would warn against trying to make absolute
judgments of what is "small" and what is "not small." I
avoid careful definitions of my small parameters largely
for this reason; if the definition is not precise, one
can never be tempted to put numbers into the definition!

In the problem ahead, we cannot possibly judge analytically
how "slender" the ship must be or how "high" the frequency
must be for the results to have some validity.

In all of the discussions of ship motions, I use the
same notation as in the study of oscillatory motion in an

infinite fluid. See Section 2.32.

The ship in its mean position will be defined by the
equation:

Sg(¥,y,2) = -z +dlx,y) = 0, (3-18)

where d(x,y) = O(e) ; the instantaneous hull position is
defined by the following equation:

S(XIYIZIt) = -z + d(er) + E3(t) - X Es(t) = 0 . (3-19)

The ship is heading toward negative x (although it does
not matter in the zero-speed case). Upward heave and bow-up

pitch are considered positive.

We assume that all motions have very small amplitude.
Symbolically, we write that:
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gi(t) = 0(ef) as either € or & approaches zero,

where € 1s the usual slenderness parameter, and § 1is a
"motion-amplitude" parameter. This convenient assumption
allows us to vary the motion amplitude for a given ship
(i.e., for fixed € ), and it also guarantees that the mo-
tions are small compared with the ship beam and draft, even
as the latter approach zero as € + 0 . Velocity potential,
wave height, motion variables, and all other dependent var-
iables may be expected to have double asymptotic expansions,
valid as € > 0 and ¢§ > 0 . We shall consistently carry
terms which are linear in § . The steady-motion problems
already treated correspond to the § = 0 case; at zero
speed, the ¢§ = 0 case is trivial. The problem ahead is

to solve the linear motions problem — "linear" in terms of
motion amplitude. With respect to the slenderness parameter,

we shall consistently carry up to €2 terms.

It should be noted that the slenderness assumption is
not needed in formulating a linear motions problem at zero
forward speed; it is convenient, however, in practical

application of the theory.

All motions are assumed to be sinusoidal at radian
frequency w . I use a complex exponential notation, so
that: éi(t) = ini(t) . Also, it is assumed that
w = 0(5_1/2) , and so symbolically we can write:
3/ot = o(e” /3 .

The potential function, ¢(x,y,2z,t) , satisfies the
Laplace equation and the following boundary conditions:

(Al 0 = gz + o, + 7 [65+e2+02] , on z = t(x,y,0) 5 (3-20a)
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o
i

(B]

¢XCX'F¢Y§Y-'¢Z'+€t , on z = t¢t(x,y,t) ; (3-20Db)

!

[s] O ¢XSX-+¢ySy-¢Z-+St , on S(x,vy,z,t) =0 .(3-21)
We consider first the problem of a ship which is forced
by some external means to heave and pitch in calm water. In
the far field, the slenderness assumption leads us to expect
that the potential function can be represented by a line of
singularities on the x axis. From previous experience, we
might hope that a line of sources would suffice in the first
approximation; this turns out to be correct. Since these
sources represent an oscillating ship, the strengths of the
sources will also vary sinusoidally. Suppose that there is
a source distribution on the x axis:
iwt}

Re {o(x) e —0 < x < ©

r

Define o(x) to be identically zero beyond the ends of the
ship. Obviously, o(x) =o(l) as ¢ »~ 0 , since there is
no fluid motion at all for &6 = 0 . Therefore, in the first
approximation, we may linearize the free-surface conditions.
More precisely, we could assume the existence of asymptotic
expansions, ¢ Vv Z¢n and ¢ n Z;n , and let the first term
in each be o(l) as &6 - 0 . The linearized free-surface

conditions take their usual form:

[A] 0 = gz + ¢t ’ on z =0 ;
[B] 0 = =~ ¢z + T on z =0 .

These can be combined into the following:

-vp = 0 , on z=0 , (3-22)
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where v = wz/g = O(s:-l

) . In the far field, it is very
difficult to guess how differentiation alters orders of
magnitude. If the oscillation frequency is very high, then
the resulting waves are very short; it would be reasonable,
perhaps, to try stretching the coordinates, and there would
be no obvious basis for doing this anisotropically. The
approach which I take here is somewhat different: Solve
the above-stated linear problem exactly, then observe the
behavior of the solution for high frequency of oscillation.
In other words, the problem is not stated in a consistant
manner, but when we have the solution we rearrange it and
make it consistent.

The desired potential function can be written in the
following form:

o(x,y,2z,t) = Re {¢(x,y,2) eiwt} s (3-23)
where:
0(x,y,2) = - 55| €o® [ e I /=D 0] (3-232)

—-00 0
—
® ®  ilytz/k+22)
B A ) d e (3-23b)
41T2 V(k2422) ~ v *

-

The form in (3-23a) can be obtained readily by superposing

a distribution of free-surface sources; JO is the ordinary
Bessel function of order zero, and the wiggly arrow shows
that the integral is to be interpreted as a contour integral,
indented at the pole in the obvious sense indicated. Form
(3-23b) is obtained by a transform method; o*(k) is the

Fourier transform of o(x) ; details may be found in Ogilvie
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and Tuck (1969). Again, the inner integral is to be inter-
preted as a contour integral; there are two poles in this
case. In both formulas, the path of the contour has been
chosen so that the solution has a satisfactory behavior

at infinity, viz., it represents outgoing waves.

We need the inner expansion of this potential function,
1/2
+ 0 .

The basic idea here in finding the inner expansion is to use

that is, we must find its behavior as r = (y2+22)

the second form of solution, convert the contour integral
into an integral along a closed contour, and use the calculus
of residues. The integrand of the inner integral has four

singularities, located at & = #, and at & = +i|k| ,
2 .2.1/2
where 90 = (v7-k%)

but the second two are branch points. We "connect" the

. The first two are simple poles,

latter via the point at infinity; see Figure (3-3). It

is drawn for the case that |k| < v ; if |k| > v , all

four singularities are purely imaginary. The contour is
closed as shown if y > 0 . (Otherwise, the contour is
closed below.) The integrals along the large circular arcs
approach zero as the radius of the arcs approaches infinity.
Then the inner integral in ¢(x,y,2) is equal to 27i

times the residue at & = —20 r less the value of the contour
integral down and back up the imaginary axis. The latter can
be shown to be O(e) , and so the inner integral in ¢(x,y,2)
is:

[+

ag ettytazrki+l _ 2miv eVZ-iyvvi-kz o(e) -
W KZ42H20 v - k412
-.v—f\..

Next, we assume that the source distribution is smooth
enough that o(x) does not vary rapidly on a length scale
comparable with ship beam. This assumption implies that
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Figure (3-3).

Contour of Integration Defining the Velocity

Potential of a Line of Pulsating Sources:

Zero-Speed Case.

o*(k) decreases rapidly with increasing values of k ,
and so the value of the above inner integral — a function"
of k — does not really matter except when k is small

in magnitude.

in a manner appropriate for small

¢(X,Y,Z)

With the time dependence reintroduced, we have:

¢(XIYIZIt) =

1

1]

Accordingly, we expand the above expression

oo

—lf dk elkxo*(k)
an” J_

i _vz-ivy

21 ©

- 00

i evz—lvyc(x) + el

Re{i o(x) e

x| .

2miv

(v

2

vzei(wt—vy)

- k2)

1/2 ©

} o+ ...

We obtain.

vz-iyvv2-k2

dk eikxo*(k){l + ...}

(3-24)

. (3-25)



- 120 -

This approximation represents a travelling wave; for y > 0 ,
in particular, the wave is moving away from the line of
sources. For y < 0 , we must start over, closing the con-
tour for the £ integration on the lower side of the &
plane. It turns out that the result is the same if only we
replace y by |y| . Thus, we have an outgoing wave for

y < 0 also. In both cases, the outgoing wave has the form

appropriate for a gravity wave in two dimensions.

In the approximations above, it is necessary to require
that r be not extraordinarily large; if one assumes that
r=0(l) and w = 0(8_1/2) , then the above results follow
logically. Thus the very simple approximation above is valid
even in part of the far field. It is an example of the well-
known physical principle that nearly unidirectional waves
can be generated if the wave generator is much larger than a
wavelength.

If we let «r O(e) , no change occurs in this approxi-

mation. Since v = O(e-l) , 1t is not permissible to expand

the exponential functions even when y and 2z are O(g) .
The only effect of passing from far field to near field now

is to change the scale of the observed wave motion.

This far-field analysis has provided information that
was probably quite obvious intuitively: In the near-field,
the condition at infinity is that there should be outgoing,
two-dimensional, gravity waves*. With this information in
hand, we can move on to the formulation and solution of the

near-field problem.

*I cannot imagine that anyone would ever have doubted this
fact, even without the above analysis to show it. But in the
forward-speed problem, the condition at infinity in the near
field is not at all obvious, and such an analysis seems
necessary.
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In the near-field, we make the usual slender-body

assumptions:

A
Yy 9z

N
ar
To a first approximation, the potential function satisfies
the Laplace equation in two dimensions:

byy ¥ Ogy VO

and the linear free-surface condition

¢, = vp ~ O on z =0 . (3-22)

z
With the assumptions made above, the two terms here are of
the same order of magnitude. (If we did not assume high
frequency, we would obtain just the rigid-wall boundary con-
dition, ¢, = 0 .) This condition implies that we shall

be solving a gravity-wave problem in two dimensions. At
infinity, we know from the far-field solution that the
appropriate condition is an outgoing-wave requirement. All
that remains is to put the body boundary condition, (3-21),

into the appropriate form.

Let 09/90N denote differentiation in the direction normal
to the body contour in a cross section. Then, from (3-19) and
(3-21),

_B_Q _ q)Z - &Sy _ ¢XSX + St
N (1ra 2,172 e 2172
¥ ¥
_ B3 moEg 7 Es0y *dyd, By - XEg (3-26)
= 2.1/2 2. 1/2
(1+d,%) (1+a,%)



The last simplification involves an error which is 0(32)
higher order than the retained terms. To the same approxi-

mation, we can write (see (2-72")):

1
ng = n-k v ;i n. v - xn, .
? (1+d_2%)1/? 5 3
y
Thus, the boundary condition is:
%% e n3‘%3 + nsés ' on z = d(x,y) . (3-27)

As in the infinite-fluid problem (Cf. (2-73)), we can

define normalized potential functions, ¢i(x,y,z) :

¢iyy + ¢izz = 0 , in the fluid region; (3-28a)
3¢i
=N = Dy v on z = d(x,y) ; (3-28b)
$i, = Vvé; = 0 , on z =0 |, (3-28c)
where v = wz/g . In the present case, the functions satisfy

the 2-D Laplace equation and a 2-D body boundary condition,
and they must satisfy the linearized free-surface condition.
Instead of the previous simple condition at infinity, we
must impose the 2-D outgoing-wave radiation condition and

a condition of vanishing disturbance at great depths. Thus,
the boundary-value problem is much more complicated than in
the infinite-fluid case, but, thanks to the slenderness
assumption, we have only 2-D problems to solve, and, thanks

to the small-amplitude assumption, the problems are linear.

The actual velocity potential function can now be
expressed:
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6 (x,y,2,8) ~ Re _}; 5 Lug, (86, (,y,2) [ (3-29)
J=3,

It must be observed that each ¢j is complex, because of
the radiation condition. It is necessary to devise an
appropriate numerical scheme for solving these problems.
Both mapping techniques and integral-equation methods have
been successfully applied. Note, incidentally, that the
heave/pitch problem requires solution of just the ¢3 prob-
lem, since the slenderness assumption allows the approxima-
tion to be made that ¢5 = —x¢3 .

The result of this analysis is a pure strip theory,
that is, the flow appears to take place in cross-sections
as if each cross-section were independent of the others.

It is consistent to follow the solution of this problem
with a computation of the pressure field at each cross-
section, from which force-per-unit-length, then force

and moment on the ship can be found after appropriate in-
tegrations. We obtain the following formulas for the force

and moment on the ship resulting from the motion of the

ship:
— — —-— . 2 -
Fie) = -o| dsony[g(Ey - xEg) + (W% (B304 + E5og)] s (3-30)
So
where j = 3 for heave force and j = 5 for pitch moment,

and the symbol S

taken over the hull surface in its mean or undisturbed posi-

0 denotes that the integration is to be

tion, which is specified by Equation (3-18). The first
term, involving g , is just a buoyancy effect. The follow-

ing terms are purely hydrodynamic; they will be expressed
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in terms of added-mass and damping coefficients, as follows:
Let:

m(x) +%an(x) = p[dz ng 6, (3-31)
C(x)

where C(x) 1is the contour of the immersed part of the
cross-section of x . Cf. (2-82). We call m(x) the
"added mass per unit length" and n(x) the "damping
coefficient per unit length." Using the slender-body
approximations that ¢5 o —x¢3 and n_. = -xXn

5 , we find
for F?(t) :

3

F?(t) = - pﬁ/ﬁds n3(E3—XE5) - (iw)%J[.dx (53-XE5)[m(X) + n(x)/iw] ;
S L
0 (3-32)
F?(t) = pg[ ds xn3(£3-x£5) + (iw)zf dx x(£3—xE5) [m(x) + n(x)/iw] .
S L

0

Finally, we abbreviate these formulas:

m 2
Fj(t) = - izs:g(iw) a5y + (iw)bji + cjilﬁi(t) s (3-33)
where:
a = | dx m(x) ; b =fdxn() H
33 J; 33 L x
a = a = - | dx x m(x) ; b = b =-Id (x) ;
35 53 fL 35 53 Lx’”‘x

2
a55 =deX x m(x) ; bss deX xzn(x) H
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[e]
]

33 p%/;ds ny = Zpgf dx b(x,0) ;
L

0

Cy5 = Cs 3 =—pg‘/‘den3 =—2pgfdxxb(x,0);
SO L g

0
It

, |
55 ogf ds xn, = ng[dx b (x,0) ;
S0 L

b(x,z) is the hull offset at a point (x,z) on the
centerplane.

The wave-excitation problem can be formulated as a
singular perturbation problem, but such a problem has never
been satisfactorily solved, even for the zero-speed case.
Fortunately, another approach is available for obtaining
the wave excitation; this is the very elegant theorem proven
by Khaskind (1957). It allows one to compute the wave
excitation force, including the effects of the diffraction
wave, without solving the diffraction problem. Since we
thus avoid the singular perturbation problem altogether,
only the final results are presented here. (Reference may
be made to Newman (1963) for details of the zero-speed
case.) Let the incident .wave have the velocity potential:

igh evz+i(wt—vx)

¢0(X’ z,t) = )

b

the corresponding wave shape is given by:

_ i(wt-vx)
Co(x,t) = he

This is the head-seas case. For an arbitrary body, the
heave force due to the incident waves is:
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A _ iwt Vvz-ivx _ .
F3(t) = pghe [ds e {1 \)(b3)n3 + 1\)¢3nl} .
50

If the body is a slender ship, with axis parallel to the

wave-propagation direction, this formula simplifies to the

following:
Fa(t) = pgh eiwt[dx e‘i\’x[dz n, V% (1 - voy) (3-34a)
L C(x)
The corresponding expression for pitch moment on a slender
body is:
Fa(t) = ogh eiwtfdx e VX (<x) fdz n, eV% (1 - voy) . (3-34b)
L Cc(x)

In the expression (l—v¢3) in the integrand, the first term
leads to the force (moment) which would exist if the presence
of the ship did not alter the pressure distribution in the
wave; in other words, it gives the so-called "Froude-Krylov"
excitation. This fact can be proven by applying Gauss'
theorem to the integral. Dynamic effects in the wave ("Smith
effect") are properly accounted for. The second term gives
all effects of the diffraction wave.

A final rewriting of the wave-force formula is worth-
while. The above approximate expression for Fg(t) can be
manipulated into the following:

0
F‘g(t) ~ Zpgfdx b(x,O)Co(x,t) 1- b_(\)){,O—)[ dz 2 b(x,2)
L -T(x)

+ ipw[dx cot(x,t)[dl n, ¢3 V%
L C(x)
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The first term shows the Froude-Krylov force quite ex-
plicitly; the product of CO(X,t) and the quantity in
brackets is often called an "effective waveheight," the
second factor being a quantitative representation of the
Smith effect. The second integral term has been expressed
in terms of the vertical speed of the wave surface,
cot(x,t) . This term should be compared with the force
expression for the calm-water problem, (3-30). For a
slender body, the hydrodynamic part of the latter can be
written, for j = 3 ,

- dpu [ a8 n3[E3(005E (06,1 = - spu [ dx [Ey(0-xE ()] [ at n
SO L C(x)

3¢3

The last quantity in brackets is the vertical speed of the
cross-section at any particular x . Comparison with the
second term of Fg(t) shows that the latter is almost
exactly the same as the hydrodynamic force that we would
predict if each section of the ship had a vertical speed

- cot(x,t) . This analogy would be exact, in fact, if the
exponential factor, eZ , were not present in the Fg(t)

formula.

Except for that factor, what we have found is that
Korvin-Kroukovsky's well-known "relative-velocity hypothesis"
is approximately correct according to the analysis above.

The hypothesis is particularly accurate for very long waves,
in which case eV% =~ 1 over the depth of the ship, but it is
less accurate for short waves. Again, it should be noted

that we have no absolute basis for saying whether a particular
wave is short or long in this respect. In computing the
Froude-Krylov part of the force, it is well-known that the

exponential-decay factor must be included in practically all
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cases of practical interest; this has been amply demonstrated
experimentally. It suggests that one should be wary of
dropping the exponential factor in the diffraction-wave force
expression.

Summary. In the far field, we assumed that the effects
of the heaving/pitching ship could be represented by a line
of pulsating singularities located at the intersection of the
ship centerplane and the undisturbed free surface. For a
first approximation, we tried using just sources, and these
were sufficient to- allow matching with the near-field solution.
In particular, the inner expansion of the outer expansion
showed that the near-field expansion would satisfy a two-
dimensional outgoing-wave radiation condition, at least in
the first approximation. With this fact established, we
formulated the near-field problem; it reduced ultimately to
the determination of a velocity potential in two dimensions,
the potential satisfying a linear free-surface condition and
an ordinary kinematic body boundary condition, as well as the
outgoing-wave condition. This is a standard problem which
must generally be solved numerically with the aid of a large
computer; such programs exist. The force and moment were
expressed as integrals of added-mass-per-unit-length and
damping-per-unit-length, both of which could be found from
the velocity potential for the 2-D problem. Finally, the
determination of the wave excitation force and moment was
carried out by application of the Khaskind formula, which
permits us to avoid the singular perturbation problem in-
volved in solving for the diffraction wave.

3.4 Oscillatory Motion with Forward Speed

The problem of predicting the hydrodynamic force on an
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oscillating ship with forward speed is not fundamentally
much different from the same problem in the zero-speed case.
It is considerably more complex, to be sure, but no new

assumptions are needed.

The approach here is that of Ogilvie and Tuck (1969).
Alternative approaches have been devised by numerous other
authors; some of these were mentioned in the last section.
The distinguishing characteristics of the Ogilvie-Tuck
approach are: 1) application of the method of matched
asymptotic expansions, and 2) assumption that frequency
is high in the asymptotic sense that o = 0(8-1/2)
Froude number is O(l) . Also, the problem is broken down

into a series of linear problems by the use of a "motion-

, while

amplitude" parameter, & , which is a measure of the ampli-

tude of motion relative to the size of ship beam and draft.

The reference frame is assumed to move with the mean
motion of the center of gravity of the ship. Thus it appears
that there is a uniform stream at infinity, and we take this
stream in the positive x direction. The =z axis points
upward from an origin located in the plane of the undisturbed
free surface, and the y axis completes the right-~handed

system. (Positive y is measured to starboard.)
Let the velocity potential be written:

¢(x,y,2,t) = Ux + Ux(x,y,z) + ¥v(x,y,2z,t) , (3-35a)

where U[x + x(x,y,z)] is the solution of the steady-motion
problem discussed in Section 3.1. For the moment, we simply
assume that Y(x,y,z,t) includes everything that must be

added to the steady-motion potential so that ¢(x,y,z,t) is
the solution of the complete problem. We shall also divide

the free-surface deformation function into two parts:
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z(x,y,t) = n(x,y) + 6(x,y,t) ’ (3-35b)

where n(x,y) 1is the free-surface shape in the steady-motion
problem (the ¢(x,y) of Section 3.1), and 6(x,y,t) is
whatever must be added so that ¢z(x,y,t) is the complete

free-surface deformation.

The body surface is defined mathematically just as in
Section 3.3 for the zero-speed problem; see (3-18) and (3-19).

The same assumptions are made about orders of magnitude:

g, (8) = O(e§) 5 w = o(e~1/2

) .
From these assumptions and the subsequent analysis, it turns
out that

vix,y,t) = o(e’%) ,  e(x,y,t) = O0(ed) ,

as either € or § - 0 . We can look on the complete solution
as a double expansion in € and & . From this point of view,

the expansion for the potential can be written:

¢ (x,y,2,t) = {Uxi-le(x,y,z)+ oe o1}

0(8%%) 0(s%32)
(3-36)

+ {wl(x,y,z,t)4-w2(x,y,z,t)+ ce. F+o0(8) .
o(sle3/2y o(sle?)

The order of magnitude of the term le(x,y,z) was found in
Section 3.1. The order of magnitude of wl may be somewhat
surprising. Physically, it implies that the effects of ship
oscillations dominate the effects of steady forward motion —
in the first approximation. These orders of magnitude were
derived by Ogilvie & Tuck. Here, I shall not prove them, but
I hope to make them appear plausible. It should be noted
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that the high-frequency assumption was made just so that
the orders of magnitude would come out this way. (Cf. the
discussion in Section 2.3, in which it was pointed out that
the formalism for the steady-motion slender-body problem is
established to force certain expected results to come out
of the analysis. We are doing the same here, forcing strip

theory to come out as the first approximation.)

The linearity of the wl problem permits us to assume
that the time dependence of wl and of the corresponding
f%rst term in a 6 expansion can be represented by a factor
elwt .
In order to find any effects of interaction between
steady forward motion and oscillatory motion, it is necessary
to solve for the term wz(x,y,z,t) . Thus, we must retain
two terms in the time-dependent part of the potential
function. (The problem is still linear, however, in terms
of & .) It is not convenient to be repeatedly attaching
subscripts to the symbols, and so I shall simply write out
equations and conditions which are asymptotically valid to
the order of magnitude appropriate to keeping 82 terms in
the expansion of vy (x,v,z,t) .

In the far field, the effect of the oscillating ship can
be represented in terms of line distributions of singularities.
Again, we try to get along with just a distribution of sources,
and we are successful if we allow for the existence of both
steady and pulsating sources. The steady-source distribution
is exactly the same as in the steady-motion problem. Let the
density of the unsteady sources be given by o(x)elwt ; de-
fine o(x) = 0 for the values of x beyond the bow or
stern. The corresponding potential function must satisfy the
Laplace equation in three dimensions, a radiation condition,

and the usual linearized free-surface condition:
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. 2 . 2
(Hw)™ Y + leUtlJX + U wxx + ng = 0 on z =0 . (3-37)

Then it can be shown that:

iwt [ 7 . ; f2+02
Potyz,t) & - S| dk Tonq | 2 exp [alylta/kiie’] , (3-38)
- c A2422 - v + Uk/w)

where o%*(k) 1is the Fourier transform of o(x) , and the con-

tour C is taken as in Figure (3-4), where kl and k2 are

the real roots* (kl < kz) of the equation:

®
- A WY k <k

®
- k >k

Figure (3-4). Contour of Integration Defining the
Velocity Potential of a Line of Pulsating Sources:
Forward-Speed Case.

*There are two real roots if T = wU/g > 1/4 ; the other two
roots are a complex pair. Since we assume that w = O0(l/Ve) ,
then also T = 0(1/ve) , and we are assured that T » 1/4 .
However, if 1 ¥+ 1/4 , the complex pair come together, and our
estimates are all very bad. Of course, it is well known that
the ship-motion problem is singular at T = 1/4 . For still
smaller values of 1 , there are four real roots of the above
equation, and the solution can again be interpreted physically
and mathematically. From experimental evidence, it appears
that our final formulas can be applied for any forward speed,
at least in head seas, but the presence of a singularity at

T = 1/4 shows that this is accidental. Our theory is a high-
frequency, finite-speed theory, and it really should not be
possible to let U vary continuously down to zero.
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SEC

and the contour is indented as shown at the poles on the
real axis in the & plane. The contour C extends from
-2 to +x ., The poles in the & plane all fall on the
<k <k, , and then C is the entire

1 2
real axis, with no special interpretations being necessary.

imaginary axis if k

The above expression for V(x,y,z,t) is a one-term
outer expansion, but it is not a consistent one-term ex-
pansion. It is shown by Ogilvie & Tuck that a much simpler
1/2 is 0O(l) as
€ > 0 ; emphasis should be placed here on the restriction

expression is possible if r = (y2+zz)

that r is not extraordinarily large. If o*(k) is
restricted in a rather reasonable way, it follows that:

A S . 2
V(%,7,2,8) o g; Jdwt [ g elkxo*(k) e\)(z—1|y|)(l+Uk/w) . (3-39)

- 00

We can take this as our one-term outer expansion of Vv(x,y,z,t) .

The inner expansion of this expression is obtained by
letting r = 0(e) . Then we find that:

V(x,y,z,t) & i et®t e"‘z‘ily“[c<x) - 2i (wU/g) (z-ilyl)c'(X)] .
(3-40)

Since vr = O(l) , it is not appropriate to expand the expo-
nential function further. This is a two-term inner expansion
of the outer expansion of ¢ ; the first term represents an
outgoing, two-dimensional, gravity wave, just as in the zero-
speed problem (see (3-25)), but the second term represents a
wave motion in which the amplitude increases linearly with

distance from the x axis. The latter is a rather strange
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kind of potential function; it represents a wave which be-
comes larger and larger, without limit, at large distance.
However, one must remember that this is the inner expansion
of the outer expansion of V¥(x,y,z,t) ; it means that there
are waves near the x axis which seem to increase in size
when viewed in the near field. At very great distances, one
must revert to the previous integral expressions for
Vv(x,vy,z,t) .

We must next find an inner expansion which satisfies
conditions appropriate to the near field and which matches
the above far-field expansion. One finds readily that:

wyy + wzz = 0 in the fluid region,
to the order of magnitude that we consistently retain. Thus,
the partial differential equation is again reduced to one in

two dimensions, and so we seek to restate all boundary con-

ditions in a form appropriate to a 2-D problem.

The body boundary condition must be carefully expressed
in terms of a relationship to be satisfied on the instan-
taneous position of the body. This condition can then be
restated as a different condition to be applied on the mean
position of the hull. It can be shown that:

£, - xt - UE. +U(E,-%xE.) (ho.Xo=X_.)
3y " 3 5 + 5 3 5 y'yz “zz" . o, - a(x,y) -
5N (1+a2)1/2 (1+a2) 172
Y Y
(3-41)
[e1/25] [e6]

The derivative on the left has the same meaning as in the previous
slender-body analyses: It is the rate of change in a cross-
section plane, in the direction normal to the hull contour in that

plane. The"first term on the right-hand side is the same as in
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the zero-speed problem; see (3-26). The guantity —UES has a
simple physical interpretation: it is a cross—flow velocity
caused by the instantaneous angle of attack. The remaining
terms all arise as a correction on the steady-motion po-
tential function, Uy ; the latter satisfies a boundary
condition on the mean position of the ship, which is not
generally the actual position of the ship, and so it must

be modified.

Intuitive derivations of strip theory usually omit the
terms involving x . However, in a consistent slender-body
derivation, they are the same order of magnitude as the
angle-of-attack term. (This says nothing about which is
the more nearly wvalid appraoch!)

The free-surface condition reduces ultimately to:
Veg ¥ 9V, v - 209, - 2UX Wy = Uxgy¥e ©On 2 =0 . (3-42)
[e1/25) (e8]

The orders of magnitude are noted, again on the basis of

information not derived here. This condition can be compared
with the linear condition used in the far field, (3-37). The
two terms on the left here are obviously the same as the

terms (iw)2w+g1pz in (3-37), and the first term on the right
here, -2thx
The other two terms on the right-hand side here are basically

» is the same as the term Zinwx in (3-37).

nonlinear in origin; they involve interactions between the
oscillation and the steady perturbation of the incident
stream. The term Uzwxx which appears in (3-37) is missing
here because it is 0(53/26) in the near field by our
reckoning.

Again it is worthwhile to compare this boundary condition
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with its nearest equivalent in other versions of slender-
body theory or strip theory of ship motions. If we did not
assume that frequency is very large, slender-body theory
would require in the first approximation that wz =0,

since the other terms are all higher order. This is just

the free-surface boundary condition obtained in this prob-
lem by Newman and Tuck (1964) and by Maruo (1967). Higher
order approximations would involve nonhomogeneous Neumann
conditions on z =0 . On the other hand, in most deri-
vations of strip theory, it is assumed that the free-surface
condition is: wtt+ng =0 on 2z =0 . This agrees with

the lowest-order condition obtained by Ogilvie and Tuck, as
given above. However, the assumption of this boundary con-
dition in the usual strip-theory derivation is quite arbitrary,
and no means is available to extend it to higher-order ap-
proximations. The assumptions made by Ogilvie and Tuck were
chosen explicitly so that the simplest approximation would be
just strip theory, and we see here that that goal was achieved.
This basis for choosing assumptions was selected only because
strip theory had prbven to be the most accurate procedure
available for predicting ship motions.¥*

The method of solution used by Ogilvie and Tuck is to
find several functions each of which satisfies some part of
the nonhomogeneous conditions. In particular, let the solu-

tion be expressed in the following form:

V(X,y,2,t) = Zj [iwe + UYL, + (iw)zUQj]Ej(t) , (3-43)

where j = 3 and 5 , and Qj ’ Wj , and Qj satisfy the fol-

lowing conditions, respectively:

*In other words, we stopped fretting about how irrational strip
theory was and set out to derive it formally!
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ijy * szz = Oi an S fy oomoz= d(x:y) sz - véj =0 on z=0;
(3-44)
ijy + szz =0 ; WJn = mj on z = d(x,y) ; sz - VTj =0 on z=20;
(3-45)
ijy + szz =0 ; an =0 on z=d(x,y) ;
. - ¢ = - . . . = - 3_46
QJz VQJ (1/g)[2<I>Jx + 2Xy®3y + nyéJ] on z 0 ( )

The quantities nj were defined previously, in (2-72), as the
six components of a generalized normal vector. Also, the
quantities mj were defined earlier, by (2-75). 1In the
present notation, let wv(x,y,z) (See (2-74)) be defined by:

vix,y,2) = Vix + Xx({x,vy,2)] .

Then mj is again given by the previous formulas. Now it
requires just a bit of manipulating to show that the assumed
solution above indeed satisfies the body and free-surface
boundary conditions; I omit the proof.

The above near-field solution must match the far-field
solution, which has an inner expansion given in (3-40). 1In
connection with the latter, a comment was made earlier that
the near-field solution would have to represent a wave motion
in which one component grows linearly in amplitude as ly| + = .
Now we can see that just such an interpretation must be given
to the Q. functions, for otherwise we cannot possibly find
solutions to the problems set above for Qj . The nonhomo-
geneous free-surface condition on Qj can be compared to
the free-surface condition that would result if a pressure
distribution were applied to the free surface. In fact, if
a pressure field were applied externally on z = 0 , the

pressure being given by:
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p(x,y,t) = ipngj(t)[ZQjX + 2xy®jy + nyéj] ,
then the potential function would have to be (iw)zUQjEj(t) ’
With Qj(x,y,z) satisfying the conditions stated previously.
This "pressure distribution" is periodic in time, and it is
also periodic in y as |y| = « ; the latter comes from the
term containing @jx . Furthermore, the time and space
periodicities are related to each other in just the way that
one would expect for a plane gravity wave. This can be
proven by studying the boundary-value problem for Qj .
Thus, there is an effective pressure distribution over an
infinite area, and it excites waves just the right combina-
tion of frequency and wavelength so that we have a resonance
response. In an ordinary two-dimensional problem, there
would be no solution satisfying all of these conditions.
However, our solution need not be regular at infinity;
it must only match the far-field expansion. And the far-
field expansion predicts an appropriate singular behavior
at infinity. It is shown by Ogilvie and Tuck that the solu-
tion of this inner problem does exactly match the above far-
field solution. The way the pieces of the puzzle all fit
together is rather typical of the method of matched asymptotic
expansions, and it indicates at least that the manipulations
of asymptotic relations were probably done correctly! (It
still says nothing about the correctness of the assumptions.)

There is no benefit to be derived by repeating here the
solution of the above detailed problems. Rather, we jump to
the results for the heave force and the pitch moment, and we
do little more than compare these results with the comparable

formulas in two previous problems:

CASE 1 : The oscillating slender body, with forward
speed, in an infinite fluid (Section 2.32)
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CASE 2 : The oscillating slender body (ship), at
zero forward speed, on a free surface
(Section 3.3)

In all cases, let the force (moment) be expressed in the
form:

HONENE Z((iw)zaji +oawby + o) £ .

We define cji to be independent of frequency and of for-
ward speed. (We must make some such arbitrary convention,
or the separation into aji and cji components is not
unique.) With this convention, cji represents just the
buoyancy restoring force (moment). Thus, cji = 0 for all

j,i in case 1; in cases 2 and 3, cji is given by:

[cji] = 2pg[dx {1,—x}[_}];J b(x,0)
L

Table 3-1 shows aji and bji for the three problems. 1In
cases 1 and 2, the results have been obtained from Sections
2.32 and 3.3, respectively. For case 3, the present problem,
the lengthy derivation will be found in Ogilvie and Tuck
(1969). Some points should be noted:

1. All of the terms in Case 3 include the correspond-
ing Case 2 terms, Z.e., the added mass and damping at forward
speed can be computed in terms of the added mass and damping
at zero speed, plus a speed-dependent component. Formally,
we could also say that Case 1 includes all of the Case 2
terms, with n(x) set equal to zero. From this point of
view, the only differences among the three cases are the
forward-speed effects.

[Text continued on page 142.]
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TABLE 3-1
(Continued)

Note 1) 1In all cases, m(x) and n(x) are defined:

1l _
m(x) + ) n(x) = éj[éz n3¢3 '
C(x)

where C(x) is the wetted part of the cross-section contour
at x , and n, and ¢3 have the same meaning as in Sections
2.32 and 3.3. In CASE 1, ¢3 is a real guantity, and so

n(x) =0 .

Note 2) The quantity I in CASE 3 is defined as follows:
Let ¢ = ¢3 and let ¢_ be a 2-D potential function which
is sinusoidal in y , such that ¢ - ¢, 0 as y » o .,
Then

I E[dx / dy [¢2(x,y,o)— ¢§(x,y,0)]— 242 (x,b (x,0) ,0) ,
L b(x,0)

where b(x,z) gives the hull offset corresponding to the
point (x,0,z) on the centerplane.
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2. The coupling coefficients b35 and b53 include
a forward-speed term -T-Ua33 in both Case 1 and Case 3.
This means, first of all, that there can be some damping
even in the infinite-fluid problem. Secondly, it means
that this contribution to the damping coefficients is not
altered by the presence of the free surface. Note that in
neither case is it necessary to ignore the steady pertur-
bation of the incident stream (the x terms in (3-41), for

example) in order to obtain this result.

3. The other coupling coefficients, and

835 853
contain similar speed-dependent terms in Case 3; they arise
at the same point in the analysis as the terms discussed
in 2. above. We could arbitrarily include such terms,
i(U/wz)b33 , in Case 1 too, without causing any errors,
since b33 is zero anyway in Case 1.

4. In Case 1, there is a speed-dependent term in apg
which is lacking in Case 3. The reason for the lack is that
such a term is higher order in terms of € in the ship prob-
lem, because of the assumption that w = 0(6_1/2) . There
was no need for a high-frequency assumption in Case 1, and

so the extra term could legitimately be retained.

5. If, in Case 3, one arbitrarily includes the forward-
speed term, -(U/w)za33 , in the agg coefficient, making it
identical to the Case 1 coefficient, then it is consistent to

modify b55 in a similar way, namely, by changing it to:

_ 2 _ 2
b55 = dx x"n(x) (U/w) b33 .
L

The relationship between these forward-speed effects is guite
the same as that discussed above in paragraphs 2. and 3. In

the b55 coefficient of Case 1, we could also introduce an
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extra term, —(U/w)2b33 » Without causing any error, since
b33 is zero anyway in this case. Thus we can maintain the
symmetry between Case 1 and Case 3.

6. The only forward-speed terms not yet discussed are
those in Case 3 which involve the integral I . They arise
from the inclusion of the functions Qj in the potential
function, as in (3-43), and the necessity for including those
functions is a consequence of the fact that the right-hand
side of (3-42), the free-surface condition, is not zero.
Now, the right-hand side of (3-42) represents an interaction
between the forward motion and the oscillation. One might
try to simplify matters by assuming that one can neglect the
effects of x , the perturbation of the incident stream by
the body. But this reduces (3-42) to the following:

th gy, = - Zthx ' on z =0 . (3-47)

o(el/2s) 0(es)

The right-hand side is still not zero, and we would still
have the Q. functions to contend with. In fact, it may be
recalled that this remaining term on the right-hand side was
the one that caused the major trouble in interpreting the
Qj problems. Neglect of the Y terms leads to the condi-
tion on Qj (Cf. (3-46)):

sz - ij = - (2/g)<I>jx ’ on z=0 , (3-48)
and it is the one remaining right-hand term which causes the
solution for Qj to diverge at infinity. The usual procedure
at this point is to set Qj = 0 , turn the other way, and just
ignore these problems. The results are in remarkably good
agreement with experimental observations, and one still wonders
how this can be rationalized mathematically.
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Finally, we should at least mention the problem of pre-
dicting wave excitations in the forward-speed problem. The
singular perturbation problem involved in solving for the
diffraction waves has not been satisfactorily worked out
yet, at least, not in a manner compatible with the approach
presented above.

One might hope to avoid the diffraction problem by using
the Khaskind relations, as in the zero-speed problem. (See
Section 3.3.) 1In fact, Newman (1965) has derived what I call
the Khaskind-Newman relations. These provide a generaliza-
tion of Khaskind's formula, relating the wave excitation on
a moving ship to the problem of forced oscillations of the
ship when the ship is moving in the reverse direction. Un-
fortunately for our purposes, Newman's derivation is based on
an a priori linearization of the free-surface, in the sense
that our terms involving ¥ can be neglected. Therefore, the
appropriate diffraction problem cannot really be avoided in
this way. Also, it is necessary to have available the po-
tential function for the forced-motion problem, and this in-
cludes at least a part of the §., functions even if the X
dependence is ignored. ]

In a not-yet published paper, Newman has applied the
Khaskind-Newman relations in the forward-speed problem by
arbitrarily ignoring the Qj functions in the forced-motion
potential function. He finds for the heave excitation force:

dx e‘i“ox dg n, eVo?
L C(x)

F3(t) = pgh(1l + Un_/g)e*®t

Uvg Uvg
1 - \)0@3 + ET (XZ+\P3) - o 7

where, as before, w is the frequency of oscillation (that
is, the frequency of encounter) and v = wz/g ; the frequency
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measured in an earth-fixed reference frame is denoted by

W and we define v wg/g . The actual wavelength of

o’ 0
the incident waves is A = Zﬂ/vo . The two frequencies are
related as follows: w = Wy + Uwg/g . These formulas are

all valid for the head-seas case only.

This formula should be compared with (3-34a) , which was
the corresponding result in the zero-speed problem. The
first term in brackets yields the Froude-Krylov force, and
the second term yields a pure-strip-theory prediction of
the diffraction wave force, which can be interpreted approxi-
mately in terms of the relative-motion hypothesis. The re-
maining terms represent an interaction between forward speed

and the incident waves.

Again, it should be pointed out that more than just
nonlinear effects have been neglected in setting Qj equal
to zero. 1In fact, the usual linear free-surface condition
for ship-motions problems can be written: '

= L = 12 -
wtt + gw = ZthX = U ‘,Uxx 7 on z =0 .

2z
(Cf. (3-37) and (3-47).) Even the inclusion of the Qj
terms still omits some effects usually considered as linear,
namely, the effects of the term -Uzwxx in this boundary
condition. These effects are higher order in the theory
presented here solely because of the high-frequency assumption.
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4 THIN-SHIP THEORY AS AN OUTER EXPANSION

It has already been shown how one can view a symmetrical
thin-body problem in terms of inner and outer expansions; the
usual description of the flow around such a body is really
just the first term of an outer or far-field expansion. It
was not at all obvious that one had to use such a powerful
method on such a problem, but it was clear that one could do
this. Probably the only advantage of doing so in the infinite-
fluid case was that one could avoid possible questions about
the validity of analytically continuing the potential function
inside the body surface. On the other hand, one had then to
face all kinds of difficulties in principle in justifying use
of matched asymptotic expansions. It was a rather academic

exercise.

The situation may be quite different in the thin-ship
problem. The purpose of this chapter is to show one can
obtain the first results of thin-ship theory in the same way
as for the infinite-fluid problem but that a second-order
solution leads to fundamental difficulty. The latter appears
to suggest that a combination thin-body/slender-body approach
may be appropriate. A limited amount of other evidence may
be cited to support this idea.

I wish to emphasize that there are no new results in
this chapter. It is all a matter of interpretation. Perhaps
someone will be able to show that the problem discussed here
has a trivial explanation. On the other hand, perhaps some-
one will be stimulated to do further research on the subject.

In either case, I shall be happy with the outcome.

The problem may be partially stated just as the infinite-
fluid, thin-body problem was stated. Let there be a velocity

potential, ¢(x,y,z) , which satisfies the Laplace equation,



- 147 -

(L] b * O, + O = 0 ,

XX vy zz

everywhere in the fluid domain and the body boundary condition,

[H] 0 = ¢xhx F ¢y + ¢zhz , on y =% h(x,z) = €H(x,2) .
Now we add on the two free-surface conditions:
1.2 1..2 2 2 _ .
[A] i‘ 9] b gg + 5[¢X + ¢y + ¢Z] ’ on z = C(xry) ’
[B] 0 = ¢, + ¢ycy - b, on z = g(x,y) .
Also, we must specify a radiation condition.
In the far field, where y = 0(l) , we assume the

existence of the expansions:

N
¢ (x,y,2) v ] ¢ (x,¥,2) ,
n=0

N for fixed (x,y,z) ;

zlx,y) v ]t (x,y) .,
n=1

in the near field, where y = O(e) , there are expansions:

N
o (x,y,2) v ] o (x,y,2) ,
n;O for fixed (x,y/c,z) .
t(x,y) v )z (x,y) ,
n=1

We assume right away that:
oo(x,¥,2) = o,(x,y,2) = Ux .

In the far field, the ship vanishes as € -+ 0 , and so
we take the entire space outside of the plane y = 0 (below
the free surface) as the far field. It is easily seen that

the second term in the outer expansion must be of the form:
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¢, (x,y,2) = - %;—[]rol(i,E)G(x,y,z;E,O,C) dg d¢ , (4-1)
H

where H 1is the portion of the centerplane of the ship below
z =0, ol(x,z) is an unknown source density, and
G(x,v,2;&,n,%) 1is the usual Green's function for a linearized
problem of steady motion with a free surface. It has the

important property:

Gxx + KGZ = 0 , on z=20, ’ (4-2)

where «k = g/U2 . Of course, the potential function,

¢1
also has this property:

¢1xx + K¢lz = 0 , on z=20.
For later convenience, we define:

al(x,z) = ¢l(x,0,z) y (4-3)
and so al(x,z) has the property too:

O,y +* ka3, = 0 , on z=0. (4-4)

With ¢1(x,y,z) given by (4-1), the two-term outer

expansion is:
¢ (x,Y,2) v Ux + ¢’1(le'2) r
and the inner expansion of the two-term outer expansion is:

1
¢(x,y,2) ~ Ux + o,(x,2) + Elylol(x,z) + oeee .

0(1) 0(e) 0(e?)
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I have taken my usual liberty of indicating unproven orders
of magnitude. I am not really assuming these orders of magni-
tude; I am saying that one can prove that these are correct,

and I display them here now simply as an aid to the reader.

Now consider the near field. Just as in the infinite-
fluid problem, one may stretch coordinates, y = €Y , and
follow through the consequences. This is effectively what I
do, without writing the change of variable explicitly. Thus,
the Laplace equation yields the condition:

o = 0
lyy ’

and so @l must be a linear function of y . The same
analysis as used in the infinite-fluid problem, Section 2.11,

leads to the conclusion that @1 is even more restricted

than this. It must be a constant with respect to y . Thus,
let:
®l(x,y,z) = Al(x,z) .
The two-term inner expansion is then:
¢(x,y,z) ~ Ux + Al(x,z) .
Matching gives the unsurprising result that:

Al(x,z) = ul(x,z) . (4-5)

In other words, once again the inner expansion starts out
simply as the inner expansion of the outer expansion; it is
not necessary to formulate a near-field problem to obtain
this result.

The same arguments lead to the prediction that:

o, (x,y,2) = A,(x,z) + U hx(x,z)|y] . (4-6)
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Thus the three-term inner expansion is formed, and it can be
matched with the three-term inner expansion of the two-term

outer expansion, yielding the familiar result once again that:
Ul(x,z) = 2Uhx(x,z) .

(See (2-22).) This obviously had to come out this way, since
we have not yet introduced any effects of the presence of the
free surface. It should be noted that only the function
Az(x,z) is not already determined. (Knowledge of ol(x,z)
allows us to express al(x,z) explicitly, from (4-1) and
(4-3).)

A systematic treatment of the free-surface conditions
leads to the following:

[A] 0 = gZy + Ud,, O(e)
2 1,.2
+ gZy + U<I>2x + Uzlq)lxz + %(le+¢%z) + -2-(<I>2y) 0(82)
. on z =20 ;
[B] 0 = Ule - (Dlz O(e)
2
+ UZ2X - QZZ - Zlq)lzz + lezlx + <I>2yZ2y 0(e™)
+ ... ’ on z =0 .

The lowest-order conditions in [A] and [B] together require
that:

1., T K@lz = 0, on z =0 .

We see that this is automatically satisfied by our Ql(x,y,z)
= Al(x,z) = al(x,z) . (See (4-4).) The first term in the
expansion for wave shape in the near field is also determined:

U
Zl(x,y) = - g le(x,O) .
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This really says only that the free surface appears in the
near field to be raised (or lowered) by just the limiting
value (as y +- 0 ) of ¢(x,y) in the far field. Again, a
rather trivial result.

When we consider the €2 terms in the free-surface
conditions, it is a different matter. The two conditions can

be combined into the following:

_ U 1 2 . 2
0 = 224y + kO2, g (01,0140 + 27 (@1x*01,)y
(4-7)
U md) -1 1 T g
Py By T %1%, Y Ylgx®lx TG hxzzy )
2

In condition [A], we note that differentiation of the ¢

terms with respect to y vyields:

_ 2

Therefore, in the complicated free-surface condition above,
(4-7), only the first two terms involve y ; all of the other
terms are functions of just x . From (4-7) and (4-6), we

can thus write the following:
0 = [h (x,0) +«h (x,0)] Uly| + (a function of x ).

This must be true for any y , and so we obtain the condition:
0 = h + kh ’ on z =0 .

If the ship is wall-sided at 2z = 0 , the second term is
separately zero, and so we would have to require that

h =0 at z =0 .
XXX

Now this is clearly unacceptable. Why should our theory

work only for such a special case? (The waterline is made of



- 152 -

circular arcs in this case.)

As a result of our having stretched the coordinates, we
came to the prediction that the fluid velocity near the thin
body consists of a tangential component which is essentially
independent of the local conditions plus a normal component
which depends only on local conditions. Near the free sur-

face, such results are simply untenable.

I present here a formalism which apparently avoids this
difficulty. Again, I point out that no new results are
obtained. However, it does seem possible that the procedure
might be fruitful if studied further.

The idea is to define a third region, complete with its
own asymptotic expansions of ¢ and ¢ . This region will
be essentially the same as the near field in a slender-body
analysis, that is, it is a region in which y = 0(e) and
z =0(e) as € + 0 . It follows from this assumption that
9/0y and 3/9z both have the effect of changing orders of
magnitude by a factor 1/e . What is most important is that
this region is interposed between the thin-body near field
and the free surface. Thus, it is no longer necessary or
even proper to try to make the previous inner expansion satisfy
the free-surface conditions.

We expect, as usual, that the first term in the expansion
of ¢ in this new near field will be just Ux . Furthermore,
we can expect the next term to be rather trivial, since the
second term in the previous near-field expansion did actﬁally
satisfy the free-surface condition. Using the usual arguments
of slender-body theory, we find in fact that the three-term

expansion of ¢ in this new near field is:

1
¢(x,y,2) ~ Ux + a, (x,0)  + Uhx(x,0)|y| - o ozag  (x,0) .

0(1) o(e) 0(e?) 0(e?)
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The corresponding wave shape is found to be:

U
c(x,y) ~ - E“lx(x’o) O(g)
- Blun._x,0) |y] + % oy (x,0) « (x,0)
g xx ! y g2 1y 2 Ixxx *°r 2
212 0(e”)
- %E a%x(x,O) + unZ(x,0) + & of,, (x,0)
+ e @ @ -

It can be shown in straightforward fashion that these results
match the far-field expansion as /(y2+22) + o and they match
the previous (thin-body) near-field expansion as z *> - o
Furthermore, they satisfy the free-surface conditions without
the necessity for imposing unacceptable restrictions on the
body shape. There is just one aspect that requires special
care: The free-surface conditions cannot be satisfied on the
surface z = 0 in this near field. The reason is that the
first term of the ¢ expansion is O(e) , and differentiation
with respect to 2z is assumed to change orders of magnitude

by 1/¢ . Thus, suppose that we want to evaluate some func-—

tion £(z) on =z ¢ in terms of its value (and values of

its derivatives) on z = 0 . The usual procedure is to write:

2

£(z) = £(0) + ¢gf'(0) + c7Ef"(0) o+ ... .

—~ NI

O(f) O(e)+0(£/e) 0(e?)-0(£/e2)

With our set of assumptions, this expansion is useless; we
cannot terminate it. The one simplification which is admis-
sible here is to evaluate f(z) and its derivatives on z = Zl

where ¢ = Z, + o(e) X

*The same difficulty arises also in Sections 3.2 and 5.42.
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I have not worked out any more terms in any of these
expansions, but I suspect that the next term in this near-
field expansion will be much more interesting. 1In the far
field, it is well-known that the third term in the expansion
of the potential function will include the effects of what
appears to be a pressure distribution over the free surface.
It was shown by Wehausen (1963) that at the intersection of
the undisturbed free surface and the hull surface the solu-
tion is singular, and he represented the singular part by a
line integral taken along this line of intersection. From
the point of view of the method of matched asymptotic expan-
sions, it should be possible to represent the far-field
effects of that line integral in terms of an equivalent line
of singularities on the x axis. The strength of the singu-
larities would be determined, as usual, by matching the solu-
tion to the near-field expansion. At this stage, thin-ship

theory will have become a singular perturbation problem.
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5 STEADY MOTION IN TWO DIMENSIONS (2-D)

Sometimes we study two-dimensional problems with the
intent of incorporating the solutions into approximate three-
dimensional solutions, as in the treatment of high-aspect-
ratio wings and in slender-body theory. And sometimes we
investigate two-dimensional problems simply because the cor-

responding three-dimensional problems are too difficult.

The problems discussed in this section are in the second
group. It is not likely that any of these problems and their
solutions will have practical application before several
more years have passed, even in the context of strip theories.
Here are some of the most fundamental difficulties related

to the presence of the free surface.

The first two subsections concern a 2-D body which
pierces the free surface. Such a problem is intrinsically
nonlinear. We might try to formulate the problem as a per-
turbation problem, in this case involving a perturbation of
a uniform stream. However, there must be a stagnation point
somewhere on the body, and at that point the perturbation
velocity is equal in magnitude to the incident stream velocity.
It is not small! If the stagnation point is near the free
surface, the free-surface conditions cannot be linearized.

We must find methods which are adaptable to highly nonlinear

problems.

Such a method is the classical hodograph method, used
since the nineteenth century for solving free-streamline
problems. But it introduces a new difficulty: It cannot
be used to treat free streamlines which are affected by
gravity, which means that only infinite-~-Froude-number prob-
lems can be treated directly. This leads to a further great

difficulty, which is discussed in some detail in Section 5.1.

In Section 5.3, a brief discussion is presented of the
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problem studied by Salvesen (1969). It contains two aspects
of interest: It is a case in which the free-surface condi-
tions can be linearized because of the depth of the moving
body, and I have already commented in the Introduction that
there are very interesting fundamental questions involved

in such procedures. Also, it presents a clear example of the
classical phenomenon discussed in the section on multiple
scale expansions: The wavelength obtained in the first
approximation must be modified in subsequent approximations,
or the solution becomes unbounded at infinity — where we

know perfectly well that the waves are bounded in amplitude.

Finally, Section 5.4 describes two recent attempts to
approach the problem of extremely low-speed motion. The
difficulty is basically this: In the usual linearization,
we assume that all velocity components (at least in the vi-
cinity of the free surface) are much smaller than the forward
speed — which becomes nonsense if we subsequently decide
to let U , the forward speed, approach zero. What is needed
is a perturbation scheme in which somehow the small parameter
is proportional to U . Then it is certainly permissible
to allow U to approach zero. Section 5.41 shows a very
straightforward procedure for doing this; however, it leads
to a sequence of Neumann problems, and so the wave nature of
the fluid motion is lost. In Section 5.42, an alternative
method is discussed. It is an application of the multi-scale

expansion procedure to which Section 1.3 was devoted.

5.1 Gravity Effects in Planing

Before we try to treat this problem properly, let us
consider briefly a well-known approach to the 2-D planing
problem and determine why it is not completely satisfactory.
In the middle 1930's, A. E. Green wrote several papers on

the subject, and the essence of his approach is well-pre-
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sented by Milne-Thomson (1968). A flat plate is located

with its trailing edge at the origin of coordinates, as

shown in Figure (5-1). There is an incident stream with
speed U coming from the left, and, at infinity upstream,
there is a free surface at y = h . The effects of gravity
are neglected. The fluid is assumed to leave the trailing
edge smoothly (a Kutta condition), and a jet of fluid is
deflected forward and upward by the plate. 1In the absence

of gravity, the jet never comes down to trouble us again.

In the figure, A marks the leading edge of the plate and C

marks the stagnation point.

The physical plane shown in Figure (5-1) is also the
complex 2z = x + iy plane. Let F(z) = d(x,y) + iy (x,y)
be the complex velocity potential for this problem. Then
F(z) effects a mapping of the =z plane onto an F plane,
as shown in Figure (5-2), in which points are marked to
correspond to Figure (5-1). It is assumed that ¢ = 0 and

v

Y = Ua on the upstream free-surface streamline, IJ , which

0 at the stagnation point. Furthermore, we have set

implies that a is the thickness of the jet and that Ua
is the rate at which fluid leaves in the jet. Of course,

F(z) is not known yet.

We can also consider that the =z plane is mapped by
the function w(z) = dF/dz . w(z) is the "complex velocity,"
that is, w = u-iv , where u and v are the velocity com-
ponents in the x and y directions, respectively. The
entire fluid region is mapped by w(z) into the region
bounded by a half-circle and its diameter, as shown in Fig-
ure (5-3). Again, points are marked to correspond to Figure
(5-1). The diameter is the iﬁage of the planing surface,
on which the direction of the velocity vector is known, and
the circle is the image of the entire free surface, on which
the magnitude of the velocity vector is known (from the
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Bernoulli equation). Again, we note that the mapping func-

tion itself is not yet known.

The functions w(z) and F(z) are, of course, very
simply related, although neither is known explicitly vet.
In order to obtain another relationship, one introduces the
£ = £+in plane, in which the fluid domain is mapped into the
lower half-space, as shown in Figure (5-4). We can write
out the explicit expressions for mapping the F and w
planes into the ¢ plane. The first is accomplished by

means of the Schwarz-Christoffel transformation:

z - c .
dz @b +c) T +b ~ H(Z)

which can actually be integrated, yielding:

U - + b
F(z(z)) = ﬂa(§+§ - 109%7‘;]

The second mapping can be shown to take either of the equi-

valent forms:

ia r - ¢

Ue T ~%o 7 i/(0-c0)/(z2-1)

w(z(g))
(5-1)

io (1 - ze) - iv/(1-c?)/(z?-1)

= U e T - ¢

The solution is then completed by using the relationship
between F and w , along with these expressions, to obtain

the relationship between 2z and ¢ . Since:

dz dz dF _ H(z)
T T Fa - W@

of which the right-hand side is known, we can integrate to

obtain:
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z
_ _HEYD
Z(C) = W(Z(E')) dg
1
= ——"*L—li- (--1) + (1+be) log &2 + 1/(1-c2)/(z2-1)
= Tm+o | ¢ € 08 pyy T AvEITe VAL

- ibV/(1=c?) log [z+/(g?-1)] - iV(1~-c2)V(b%-1) log

1+bz-v (b2-1) vV (z2-1)
L+ b

S0 now we have 2z as a function of ¢ , as well as F and

w as functions of ¢ .

There are three parameters in this solution, a , b ,
and c¢ , none of which has been determined yet. By letting
|z| > » , Green came to the conclusion that the flow far away

is a uniform stream as required only if:
c=-cos o and V(1-c?) = sin o . (5-2)

(Both statements are necessary to avoid an ambiguity in sign.)
Also, one can use the z(g) formula to evaluate 2z at the
leading edge of the plate:

z(-1) = -2§ e 10

(Compare Figures (5-1) and (5-4).) This provides a relation-
ship among a , b , and ¢ . But there are no more conditions
to be found unless we introduce more information about the
physical problem. For example, we could use the solution

with unspecified values of a and b , and work out the for-
mula for 1ift on the plate. (Milne-Thomson gives the formula.)
If then we fix the value of 1lift, we have another condition

on a and b . However, this is rather a backwards way of
going at the problem. We are most likely to want to solve

the entire problem just to find the lift and other inter-
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esting physical quantities, and so we have not gained much

if we must assume the value of the lift as a given datum.

There is another anomaly in this result: The value of
h (See Figure (5-1)) has not been used in any way. In the
formula for z(z) , let ¢ =& , with |&| very large.
Then every value of 2z computed in this way gives a point
on the free surface far away from the planing surface. With
a considerable amount of tedious algebra, one can eliminate
€ and express y as a function of x (at least asymp-
totically, as |[x| » » ). The first term is the most inter-
esting:

2 .
y v - %%élisE% [log |x| + constant] .

Thus, far away from the planing surface, the free surface
apparently drops off logarithmically to - . The slope

of the free surface approaches zero ( « 1/|x| ) and so
there is no violation of our assumption that the flow at
infinity is simply a streaming motion parallel to the x
axis. But obviously the assumption that the trailing edge
was located at a height h below the free-surface level at
infinity was quite meaningless, and it cannot be enforced

in the solution.

There are thus two difficulties: 1) The above solu-
tion is not unique (a common difficulty in free-streamline
problems); 2) It has unacceptable behavior at infinity.

These difficulties were resolved by Rispin (1966)
and Wu (1967), who recognized that the solution of Green's
problem is part of a near-field (inner) expansion of the
complete solution. An inner expansion does not necessarily
satisfy the obvious conditions at infinity; it must only

match some outer expansion in a proper way. Rispin and Wu
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produced the appropriate outer expansions and showed that
matching does occur. The effects of gravity appear first

in the far field, which is hardly surprising, for two reasons:
1) Far away, one expects to find gravity waves as the only
disturbance. 2) The divergence of the free-surface shape

in Green's solutions is so weak that one might expect the
smallest amount of gravity effect to bring the free surface
into the region where we expect to find it; thus, the small
effect of gravity eventually would have a large conseguence,
but only far away from the planing surface.

Rispin defines the small parameter:
_ 2
B = gi/u = 1/F° ,

where F is the usual Froude number. In the near field, the
natural coordinates are used, which means effectively that

¢ 1is considered to be O0(l1) . Smallness of B 1is achieved
by allowing g - 0 or U -+ = . Rispin treats his small
parameter properly by nondimensionalizing everything, so that
he then does not have to specify whether U +» » or g = 0
Rather than change all variables now, I shall treat g as

a small parameter, as in Section 3.2; the results are the

same as Rispin's, of course.

In the far field, typical lengths are assumed to be
0(1/B8) in magnitude, or O0(1/g) ,in my loose notation.

We could define new coordinates, say,

Bz ; X = Bx ; ¥ = By,

N>
il

and consider that 2z 0(1) as g » 0 in the far field,
while z = 0(l1) as g > 0 in the near field. Rather than
do this, we shall just keep in mind that such orders of mag-
nitude are to be assumed. Also, we note that d/dz = 0(1)

in the near field and d/dz = O(B) in the far field.
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This problem is reversed from the most common kind of
stretched-coordinate problem: The inner problem is solved
by natural coordinates, and the outer coordinates are com-
pressed. Note, however, that there is no distortion of
coordinates between near- and far-fields. There is just a

change of scale.

In the far field, the planing surface appears to vanish
in the limit, and so the first term in a far-field expansion
must represent just the incident uniform stream. That is,

if the outer expansion is represented:

N N
F(z;38) ~ ) F (238) , w(zB) ~ ] W (z;8) , for fixed Bz
n=0 ° n=0 as B+ 0

then clearly we have:

Fy(z38) = Uz , and Wy(z38) = U

This one-term outer expansion must match the one-term inner
expansion, the latter being just Green's solution. This
much of the matching procedure is rather obvious, and Green
already used this fact to determine the value of ¢ , as

given in (5-2).

The next term in the outer expansion is not quite so
obvious. In order to facilitate the matching process, Ris-
pin solved the problem in the ¢ plane, just as we did above
for Green's problem. The free-surface boundary condition on
Wy
dition. One can show fairly simply that:

is not much different from the familiar linearized con-

21

W
Re | —F + 1Ay = 0 on n=0,
T2 ,
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where A = a/mn(b+c) . (The factor A 1is just the value of
dz/dg far away from the planing surface.) Note that the
first term is O(BWl) because of the differentiation, and
the second term is the same order because of the g factor.
The solution for Wl must be analytic in the lower half-
space and satisfy this condition on n =0, |&] > 0 ; note

the exclusion of the origin, where singularities may occur.

As usual, we try to restrict the singularities to the
simplest kind possible. In this case, we would find nothing
in the near field to match with if we allowed all kinds of
singularities in Wl . A sufficiently general solution® is
the following:

g
. 2 . 2 [C C
Wo(g;8) = i e 1IAL/UT[ gy QlOAY/UT L 2)
1 t 2
o t
where Cl and C2 are real constants yet to be determined

(in the matching).

The two-term outer expansion is now:
w(z;B) ~ U+ W, (5:B) ,

with Wy given as above. Its inner expansion to one term
is easily found:

w(z;B) ~ U - — .

We cannot really say positively that these two terms are the
same order of magnitude, but it turns out that they must be

if this expression is to match the two-term outer expansion

of the one-term inner expansion. The latter is obtained

readily from Green's solution for w(z(z)) which was given

*_ . . . . '
Rispin discusses more general solutions, which are needed
in constructing higher-order solutions.
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in (5-1). It is:

w(z:B) ~ U.,.l_U_i_li_‘?‘_ )

Then, obviously, we find that:

C, = - Usina .

We cannot determine the other constants, Cl , from the
solutions so far obtained. It is necessary to solve for the
second term in the inner expansion, and Rispin carries this
through. Then, he matches the two-term outer expansion of

the two-term inner expansion with the two-term inner expansion

of the two-term outer expansion, finding that C1 = -alU/m .

Thus, Cl is proportional to the rate at which fluid leaves
in the jet; the Cl term represents a sink, in fact. (The

C2 term represents a vortex.)

Rispin obtains estimates for h as well, but the re-
sults are rather complicated, and it would add no perspicuity
to the present section to repeat them. The important point
in principle is that it is possible now to specify the value
of h and not come to a contradiction as a result. The far-
field description has effectively provided a height reference,
because of the effect of gravity. This effect does not change
the first-order inner solution, but it does modify the second-
order term. (The velocity magnitude is not constant on the

free surface in the second approximation.)

In the second-order term of the inner expansion, there
is another interesting phenomenon, namely, the apparent angle
of attack changes. This means, physically, that the occur-
rence of gravity waves modifies the inflow to the planing
surface. In the near field, it is still not possible to see
the waves that exist far away, but the latter have the effect
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of making the incident stream appear to be rotated somewhat.
It is like a downwash effect (although the physical origin

is quite different).

If one were given a planing problem such as we formulated
early in this section, with the incident stream and all geo-
metric parameters prescribed, it would be necessary to solve
for the parameters a and b . One equation relating these
parameters has already been mentioned, namely, the equation
relating the length of the plate to these parameters. The
other equation comes from the expression (which was not written
out here) for h as a function of a and b .

Rispin avoided much tedious algebra by solving the in-
verse problem. He assumed that a , b , and ¢ were given,
then solved to find h . He also had to treat the angle of
attack as an unknown quantity, and he found an asymptotic
expansion for it. (Note that only two of the basic parameters
can be prescribed arbitrarily, unless we are prepared also

to let £ Dbe an unknown quantity.)

One final comment on Rispin's work must be made. He
finds terms of six orders of magnitude: O0(1) , O(8 log B) ,
o(B) ., O(B2 log28) , O(leog B) , and 0(82) . But he
finds also that they cannot be determined one at a time.
Rather, they must be taken in groups: a) the O0(l) terms,
b) the terms linear in B8 (the logarithm being ignored),
and c¢) the terms involving 62 . This is the same kind
of matching procedure that would have been used if he had
adopted the working rule that logarithms should be treated
as if they were O0(l1) . (See Section 1.2.)
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5.2 Flow Around Bluff Body in Free Surface.

A problem related to that of Rispin (1966) and Wu (1967)
has been studied by Dagan & Tulin (1969). They have concerned
themselves with the flow at the bow of a blunt ship, where
any kind of linearization procedure must be completely wrong.
In order to handle such a situation, they have adopted es-
sentially the same procedure that the previous authors used,
namely, they set up inner- and outer-expansion problems in
which the nonlinearity is confined initially to the near
field and the effects of gravity are confined initially to
the far field. Then, by limiting their study to a two dimen-
sional problem, the nonlinear near-field problem can be
solved by the hodograph method, and the far-field problem is

a simple variation of a well-studied problem in water-wave

p

theory.

Figure (5-5). Bluff Body in the Free Surface.

The geometry of their problem is shown in Figure (5-5), which
is reproduced from their paper. They argue that at very low
speed there will be a smooth flow up to and then down under
the bow, with a stagnation point at the location of highest
free-surface rise, but that that flow becomes unstable as
speed increases, until finally a jet forms, as sketched in
Figure (5-5). Regardless of whether their description of the

flow at very low speed is correct*, this jet model appears to

*Their Section III.2 has some questionable aspects.
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be entirely reasonable physically; a barge-like body usually
causes a region of froth just ahead of the bow, and this
froth is probably caused by such a jet being thrown upward
and forward, then dropping downward (which the theory over-
looks). Thus it seems appropriate to study the formation of
such a free-surface jet by the use of free-streamline theory,
and one may expect that the details of the formation of the
jet are not terribly sensitive to the effect of gravity.

The body, as shown in Figure (5-5), extends downstream
to infinity. (In a sense, the whole problem is part of the
inner expansion of a much larger problem, in which the
stern of the body would be visible and in which waves would
follow the body.) Thus, there is no Kutta condition or equi-
valent which can effectively cause a circulation type of flow
in the fluid region. 1In Green's problem, for example, the
flow at great distances appears to have been caused by a
vortex. It is this property that causes the apparent loga-
rithmic deflection of the free surface far away from the
body, and it is this property that requires the far-field
description (as in Rispin's problem) to contain a logarithmic
singularity at the origin. Dagan and Tulin have no such

logarithmic solutions.

They find that the jet appears, from far away, to be
caused by a singularity of algebraic type. Specifically,
the outer expansion of their inner expansion shows the

-3/2
Z

plex variable defined in the physical plane, shown in Fig-

complex velocity behaving like , where 2 1is the com-
ure (5-5). Thus, their far-field expansion must exhibit a
singularity at the origin of this same type.

This result, if correct, is most interesting, for, as
Dagan and Tulin point out, it means that the far-field ex-
pression for pressure is not integrable, and so one must

use the near-field expansion for any force calculation.
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Furthermore, it is a disturbing result, because it suggests
that many previous attempts to incorporate bow-wave nonlin-
earities into linear-theory singularities have been futile

exercises.

Personally, I am not yet willing to admit that the
possibility of having the complex velocity behave like Z_l/2
is really to be rejected, as Dagan and Tulin claim. Wagner
(1932) analyzed the region of the jet and the stagnation
point for the flow against a flat plate of infinite extent
donwstream, and he showed that this flow, from far away, has
the behavior of a flow around the lead}ng edge of an airfoil,
Z—l 2

seems rather difficult to imagine that, by curving the body

that is, the velocity varied with . Physically it
around just behind the stagnation point, one causes such a

drastic change in the apparent singularity.

Dagan and Tulin present a figure (their Figure 2) in
which they have placed many symbols showing beam/draft ratios
of more than a hundred ships, and it is quite evident that
most ships have values of this ratio considerably greater
than unity. They then use this fact as an alleged justi-
fication for claiming that their 2-D model of the bow flow
(as in Figure (5-5)) will have some validity in describing
the flow around the bow of an actual ship — since most
ships are presumably of the "flat" variety. However, this
claim is completely misleading. The theory might apply to
a scow, but not to a ship. After all, beam/draft ratio is
measured amidships, and even ships with the largest block

coefficients have entrance angles less than 180°.

Also, it is appropriate to mention again the warning
against defining a small parameter precisely and then
trying to interpret on some absolute basis whether a par-
ticular value of the parameter is "small enough." For
example, it is conceivable that a thin-ship analysis would



- 170 -

be valid for a ship with beam/draft ratio of 10 , whereas
a flat-ship analysis might fail for the same ship. I am
not saying that this is likely, but it is possible. 1In
one problem, a value of 10 might be "small," whereas in
another problem a value of 1/10 might be "not small."

Notwithstanding these objections, the paper by Dagan
and Tulin has provided a refreshing change in outlook on
the bow-flow problem, and perhaps it will be more fruitful
eventually than the usual attempts to place complicated
singularities at the bow in the frame-work of linearized

theory.
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5.3 Submerged Body at Finite Speed

Since the principal difficulty in solving free-sur-
face problems follows from the nonlinear conditions at the
free surface, we are always seeking new arguments to justify
linearizing the conditions. One possible basis for linear-
izing is that a body is deeply submerged. Then its effect
on the free surface will presumably be small, even if it is
not appropriate to linearize the problem in the immediate
neighborhood of the body itself.

Such problems were discussed by Wehausen & Laitone
(1960) , where the previous history may also be found. Tuck
(1965b) introduced a more systematic treatment for the case
of a circular cylinder. Salvesen (1969) solved the problem
for a hydrofoil (with Kutta condition and thus with circula-
tion), and he compared his results with the data from exper-
iments which he conducted. 1In the earlier studies of such.
problems, the approach was usually an iterative one in which
the body boundary condition was first satisfied, then an ad-
ditional term was added to the solution so that the free-
surface condition would be satisfied; the latter would cause
the body boundary condition to be violated, and so another
term would have to be added to correct that error, but then
there would again be an error in the free-surface condition.
And so on. The free-surface condition that was satisfied
once during each cycle was generally the conventional linear-
ized condition. Thus, if the procedure converged, one Ob-
tained a solution which exactly satisfied the body boundary
condition and the linearized free-surface condition. The
contribution of Tuck seems to have been in systematizing the
procedure in terms of a small parameter varying inversely
with depth of the body and in pointing out that a consistent
iteration scheme involves using the exact free-surface condi-
tions as a starting point. Then, as the boundary condition

on the body is corrected at each stage, so also is the free-
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surface condition made more and more nearly exact.

Tuck concluded, in fact, that it was more important to
include nonlinear free-surface effects than to improve the
satisfaction of the body boundary condition if one were
most interested in certain free-surface phenomena, e.g.,
predicting wave resistance and near-surface lift. Salvesen
agreed with this conclusion only on the condition that the
body speed be not too large. At fairly high speed, his
results indicated that precision in satisfying the body
boundary condition was just as important as precision in
satisfying the free-surface condition. Figure (5-6) is
taken from Salvesen's paper; it shows the theoretical wave
resistance of a particular body as a function of (depth)
Froude number, the resistance being calculated by three
different approximations: 1) linearized free-surface theory,
2) theory in which the free-surface condition is satisfied
to second order, and 3) theory in which both the free-surface
condition and the body boundary condition are satisfied to

second order. The differences are quite apparent.

The figure is a very interesting one. The difference
between the linear-theory curve and either of the other two
curves is presumably a second-order guantity, and yet that
difference is — in one case — of the same order of mag-
nitude numerically as the linear-theory curve itself. The
problem is worth further discussion.

Salvesen defines his small parameter as follows:

e = t/b,

where t 1is the thickness (or some other characteristic
dimension) of the body, and b 1is the submergence of the
body below the undisturbed free-surface level. It is not

assumed that the body is "thin" in any sense; it could be
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a circular cylinder (Tuck's problem), for example. Salvesen's
calculations and experiments were carried out for a rather
fat, wing-shaped body with a sharp trailing edge. The body
was symmetrical about the horizontal plane at depth b . If
the free surface had not been present, there would have been
no 1lift on the body.

A complex velocity potential, F(z) = ¢(x,y) + iY(x,y) ,
can be defined for the problem, with 2z = x+iy measured
from an origin located in the body at a depth b below the
undisturbed free surface. Salvesen expands the complex

potential in a series which he groups in two alternate ways:

F(z) [Uz + Fpyl + [Fgy + Fpyl + ... (5-3)

= Uz + [Fpg + Fggl + [Fpy + Feyl1 + ..o (5-4)

These terms are defined in terms of the iteration scheme
already mentioned. The grouping in (5-3) is to be used near
the body, and the grouping in (5-4) applies far away from the
body; in particular, the latter applies on and near the

free surface. Salvesen points out that this distinction
means that: a) near the body, we are considering the zero-
order flow to be that flow which would occur in the presence
of the body and the absence of the free surface, and b) near
the free-surface, the basic flow is just the uniform incident
stream. Thus, in (5-3), we must determine Fbo so that

[Uz + Fbo] satisfies the kinematic boundary condition on

the body and so that IVFbOI + 0 as |z| » « (in any direc-

tion).

Next, Salvesen assumes that Fbo is 0O(e) far away
from the body. The two terms so far obtained do not satisfy
a free-surface condition, and so Ffl must be determined
so that, when it is added to the first two terms, the sum

satisfies the appropriate free-surface condition, which is:
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Re{Fgo + F%l + iKFbo + iKFfl} = 0 on y =Db (5-5)

where «k = g/U2 . Since Fbo is assumed to be O(e) near
the surface, then the same should be true for Ffl .

Now the three terms in the series do not satisfy the
body condition, and so Fbl is determined so that, when it
is added to the first three terms, the sum satisfies the con-
dition properly. Then Fpy is assumed to be 0(82) near
the free surface, and a new function Fg, 1is found to pro-

vide a further correction needed near the free surface.

It is in this last step that the Tuck-Salvesen approach
differs from the previous treatments of such problems. If
Fby is really 0(82) + then the free-surface condition ought
to be satisfied to that order of magnitude. It can be shown

that this implies the following condition on Fey, @

Re{Fp, + Ff, + ikFp, + ikFg,}
" " . ' . '
= Ny Im{Fp, + Fg; + ikFpy + ikFgg}

- (1/20) IFL',0 + Ffll2 . (5-6)

The right-hand side of this equation takes account of the
nonlinearity of the free-surface conditions, since obviously
it involves just the potential function from the previous
cycle of the iteration. ny is the free-surface elevation

from the previous approximation; it is given by:

ny(x) = -(U/g) Re{Fj, + Fg;} ,

with the right-hand side evaluated on Yy = b . One might
try to cut corners in (5-6) in either of two ways, namely,
1) ignore the right-hand side by setting it equal to zero,
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2) drop the terms involving Fbl on the left-hand side.
The first is equivalent to retaining just a linear free-
surface condition. The second is equivalent to neglecting
the effect of the second-order body correction at the free
surface; this is the "inconsistent" second-order theory to

which Figure (5-6) refers.

Apparently, Salvesen did not prove one important step
in his development, namely, his claim that Fbo is 0(1)
near the body and O0(e) far away from the body. In fact,
with his definition of € = t/b , it appears that the state-
ment is wrong. The potential Fbo represents just a thick-
ness effect, since it is the solution of the problem of a
symmetrical body in a uniform stream. Although the body can
be replaced by a distribution of sources, the disturbance
will appear from far away to have been caused by a dipole,
and so it must have the form: Fbo v C/z . If the body were
a circular cylinder, we could evaluate C : C = Ut2 . where
t 1is the radius of the cylinder. The complex fluid velocity
on the free surface caused by the body is, in the first ap-
proximation, -C/z2 = 0(82) , Since =z = x+ib on the level
of the undisturbed free surface. This conclusion contra-
dicts Salvesen's assumption that the free-surface disturbance
is 0O(e) , but perhaps it does not matter. At this point,
the results would presumably be just the same if he had
defined: ¢ = (t/b)l/2 .  (The argument above for a circular
cylinder agrees with Tuck's conclusions.)

When the first free-surface correction is found, namely,
Ffl , its effect in the neighborhood of the body is not
diminished by an order of magnitude, since at least one part
of Fgy involves an exponential decay with depth, the expo-
nent being «k(y-b) . Near the body, y = 0 , and so the ex-
ponential-decay factor is e—|<b , and it has been assumed

that kb is 0(l1) . (See Salvesen's paper.)
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Since Ffl is 0(82) near the body, the order of mag-
nitude of the next correction term, Fbl , must be the same.
This time, however, the nature of the body disturbance is
quite different from a dipole disturbance. The effective
incident flow corresponding to Ffl is not a uniform stream,
and so the presence of a sharp trailing edge on the body
requires that a Kutta condition be imposed, and then a cir-
culation flow occurs. From far away, it appears that Fbl
is caused by a combination of a vortex and a dipole. If
the strengths of the two apparent singularities were com-
parable, the vortex behavior would dominate the dipole be-
havior far away, and the induced velocity would diminish in
proportion to 1/z , rather than l/z2 , which was the case
for the dipole. Thus, Fbl would be 0(83) near the free
surface. 1In the absence of a sharp trailing edge which can
cause the formation of a vortex flow, the corresponding Fbl
would be 0(64) . This matter remains to be resolved.

There are other interesting aspects to this problem.
One relates to the interpretation of the small parameter,
€ = t/b . In defining such a dimensionless perturbation
parameter, one normally assumes that the smallness of ¢
can be realized physically either by letting t be extremely
small or by letting b be very large. In the present prob-
lem, this choice is not really available to us. The reason
is that there is another length scale in the problem, namely,
1/k = U2/g , and this length scale appears generally in
combination with the dimension b . It has been assumed that
kb = 0(1) as € > 0 . Therefore, if we want to consider
the problem of a body which is more and more deeply submerged,
(b >« ), then we must also restrict our attention to higher

and higher speeds. This is awkward.

Finally, one more important aspect must be mentioned.
The relation between wave number, « , and forward speed,
U , namely, K = g/U2 , is based on linearized free-surface
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theory. 1In general, if one seeks to find the nature of non-
linear waves which can propagate without change of form, the
wavelength of those waves is not related to their speed in
this simple fashion. To be sure, the relationship is ap-
proximately correct if the waves are not terribly big in
amplitude, and so one might expect that the wavelength or
the wavenumber can be expressed as an asymptotic series in

€

+ K

K N K + Ko+ eee

0 1 2

with Ko = g/U2 . This can indeed be done, but it turns out
to be much more convenient to assume that «k 1is precisely
given and then to find the value of forward speed that cor-
responds to that wave number. Thus, one expands the forward
speed, U , into an asymptotic expansion:

+ u, + u

U v u + ... .

0 1 2

This procedure is discussed by Wehausen & Laitone (1960),
and Salvesen uses it in his hydrofoil problem. I was able
to omit mention of it in writing Equations (5-5) and (5-6)
because it turns out that u, = 0 , and so the effect of
this speed shift (or period shift) does not enter the problem
until the third approximation is being sought. However,
this is a classic example of the kind of expansion described
in Section 1.3. 1If one did not allow for a variation in
either « or U , the third approximation would not be
valid at infinity, and so one would have great difficulty in
predicting wave resistance, since that quantity depends ex-

plicitly on the wave height at infinity.

Figure (5-7) is taken from Salvesen (1969). It shows
very clearly the change in wavelength that arises in the

third-order solution. In fact, it appears in this case that
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the change of wavelength is practically the only third-
order effect. This figure also speaks well for Salvesen's

experimental technique!

0-20
feet
0-10
-010
- f;;——* —4-0-20
body location

Figure (5-7). Third-Order Effect on Wavelength.
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Froude number = 0.71 ;
€ =t/b=10.30 .

(From Salvesen (1969))

5.4 Submerged Body at Low Speed

Salvesen (1969) computed the wave height behind a hydro-
foil up to the third approximation, as already mentioned in
Section 5.3. Although his third approximation is not really
consistent, he gives what appear to be sufficient arguments
to demonstrate that the consistent result would not be much
different from the results presented in his paper. Figure
(5-8), from Salvesen (1969), presents the wave-height compu-
tations in a way that shows the relative importance of the
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first-, second-, and third-order terms. Let the wave am-
plitude be expressed by the series:

H ~ H1 + H2 + H3 ; Where Hn+l = o(Hn) as t >0 .

( t is the thickness of the foil, as in the last section.)
Then the figure shows the three ratios, Hn/(Hl+H2+H3) , for
n=1,2,3 ; that is, each curve shows the relative contribu-
tion to the wave height of one of the first three terms in the
wave-height expansion. As speed decreases (toward the right-
hand side of the figure), the second-order part comes to
dominate the linear-theory part, and then the third-order
part dominates the first two. It seems quite likely that
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the fourth-order term would take over if the graph were

extended, then the fifth-, sixth-, ... order terms.

Salvesen's analysis is based on the condition that t
(or, more properly, t/b, where b 1is the body depth) is
very small; the Froude number is simply a parameter un-
related to t , which is equivalent to saying that Froude
number = U/v/(gb) is O(l) as t/b - 0 . Perhaps it is
not surprising if Salvesen's expansion is not uniformly valid
with respect to Froude number. That is all that Figure (5-8)
really says.

The reason for its nonuniformity has already been men-
tioned: In the expansion of the solution near the free sur-
face, it has been assumed that the lowest-order approximation
is just the uniform-stream term, Ux ; all other terms in the
expansion of the potential must be very small compared to this
term. And this is nonsense if we consider the limit process
U~> 0 . Of course, we might have been lucky: It could have
turned out that the velocity perturbation approached zero
more rapidly than U . But it does not. And so we have here

a genuine singular perturbation problem.

Let us consider a sequence of steady-motion experiments,
each lasting for an infinite length of time. We arrange the
sequence of experiments according to decreasing values of
body speed, U , and we suppose that all conditions except
forward speed are identical in all experiments. We shall
discuss what happens when " U » 0 ", and we shall understand
by the limit operation that we are passing through the se-
quence of experiments toward the limit case in which there
is no forward speed at all. In each experiment, U is a

constant. ¥

*This is the same point that I belabored in the last paragraph
of Section 1.2. Again, I apologize to those to whom it is
obvious.
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As U » 0 , we certainly expect all fluid motion to
vanish. But we would like to know to what extent the
velocity field vanishes in proportion to U (that is, what
part is O(U) ), what part vanishes more rapidly than U
(that is, what part is o(U) ), and what part, if any,
vanishes less rapidly than U .

In an infinite fluid, the velocity everywhere is exactly
proportional to U . Far away, the velocity approaches zero;
it drops off like 1/xr if there is a circulation around the
body, and it drops off like l/r2 if there is no circula-
tion. But in both cases the constant of proportionality is
O(U) . No matter how distant our point of observation is
from the body, the velocity is O(U) as U+ 0 .

At very low speed, one expects that gravity will force
the free surface to remain plane. The constant-pressure
condition will be violated to the extent that the magnitude
of the fluid velocity on that plane is not quite constant,
but the error in satisfying the dynamic condition will be
proportional to the square of the fluid velocity magnitude.
The kinematic condition will be satisfied in a trivial
manner. Accordingly, it seems quite reasonable to assume
that the free-surface disturbance is O(U2) as U ~»> 0 ,
and so the velocity potential in the first approximation is
the same as if the free surface were replaced by a rigid
wall. Let the rigid-wall velocity potential be denoted by
¢0(x,y) . Clearly, it is true that:

oo (x,y) = O(U) .

This follows by the same arguments as those used in the pre-
ceding paragraph. The more important problem is to determine
the order of magnitude of [¢(x,y) - ¢0(x,y)] , Wwhere ¢(x,y)



- 183 -

is the exact velocity potential for the case of the body
moving at speed U under the free surface.

In order to be specific now, let ¢,(x,y) be the
0

velocity potential in two dimensions which satisfies the

conditions:
3o )
el 0 , on body; ]¢0 - Ux| >0, as x> - o 5;— = 0 on y=0.

The body is at rest in our reference frame.

The rigid-wall solution satisfies all conditions of
the free-surface problem except the dynamic condition on the
free surface. The latter could be used to define the free-
surface shape. Thus, if the free-surface disturbance is
expressed by:

nx) "~ nO(X) + nl(X) + e

the dynamic free-surface boundary condition says that:

N v ong = 5o [0 - 65, 0] (5-7)

Of course, the kinematic condition is now violated, but an
additional velocity field which is O(U2) can correct that.
And so it appears plausible that:

¢(x,y) - $o(x,y) = o(0) . (5-8)

One point should be noticed about this conclusion. The
limit process " U + 0 " implies that Froude number goes to
zero. Nothing has been said about the length scale used in
defining Froude number, but it does not matter so long as all

dimensions are fixed. The submergence and the body dimensions
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may be quite comparable, for example. Thus, we are not con-
sidering t/b as small, in the sense that Salvesen did.
However, both t and b are supposed to be large compared
with the length U2/g ; we imply this if we state that all

dimensions must be fixed as U =+ 0 .

It would be wrong to take ¢0(x,y) as the potential
for the flow around the body in an infinite fluid (without
either free surface or a rigid-wall substitute). The body
can be quite near to the free surface in Salvesen's sense,
and so the effect of its image cannot be neglected. Further-
more, at least part of the effect of the image is 0O(U) ,
even if the body is very far away from the free surface,
and such an effect must be included in the first term of
the approximation which is supposed to be valid as U > 0 .

The next problem is to find [¢(x,y) - ¢0(x,y)] . We
consider two possible approaches in the following subsections.

5.41 A Sequence of Neumann Problems. As above, let
there be a velocity potential, ¢(x,y) , which provides the
solution of the exact problem:

gn(x) + % [¢i + d>}2,] - %Uz = 0 , on y=n(x); (5-9)
SNy — & = 0 on y=n(x) ; (5-10)
%3 - o , on the body; (5-11)
dp(x,y) - Ux > 0 , as x *> - ® 3 (5-12)

The rigid-wall potential, ¢0(x,y) , satisfies (5-11) and
(5-12) too, but it does not satisfy the free-surface condi-
tions, of course; instead, we have:
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3%
W = o , on y = 0 . (5-13)

Now we introduce one more potential function, the difference
between the above two potentials:

d(x,y) = o(x,y) -¢0(x,y) . (5-14)

It must satisfy the body boundary condition, of course, and it
vanishes far upstream. On the free surface, which we now de-
fine as:

y = nx) = nO(X) + H(x) , (5-15)

where no(x) is defined as in (5-7), the new potential satis-
fies the two conditions:

0 = i@ - 16§ (0
(5-16)
1.2 2 2, .2 .
+ 5 [9p, + ¢0y + 2¢9 0+ 260,0, + & + @y]|y=n(x) 3
0 = IngG) + B 1doy, + 0110y = [oy + 21 - (5-17)

These conditions are still exact. An obvious approach to
solving for &(x,y) and H(x) is to re—-express these condi-
tions on y = n(x) as conditions on y =0 . Here I shall
assume that this can be done in the usual way.* Then it fol-
lows from the exact conditions that the following are the
appropriate simplifications:

0

14

gh(x) + ¢0x¢x , on y=0 ; (5-18)

o
y

R

né(x)¢0x - no(x)¢oyy , on y=0 . (5-19)

The second condition is a Neumann condition; the right-hand

*This is the crucial point which distinguishes this section
from the next section.
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side is known, and the condition is prescribed on a known,
fixed surface. In fact, (5-19) is satisfied by the real
part of:

1 Jf- ds p(s)

m s - 2 '
where
z = x + iy ,
p(x) = ng(x)eg, (x,0) . (5-20)

This follows from the Plemelj formula. (See, e.g., Muskhelish-
vili (1953).) The function p(x) can be interpreted in terms
of the fluid velocity which is needed to correct the flow

field because of the error incurred by taking the free sur-
face at y = no(x) while using the potential function

¢0(x,y) to prescribe the velocity field. This is the same

correction which was discussed above in connection with (5-8).

Now we may observe that, since Ny = O(U2) and ¢0(x,y) = 0 (U)
it follows that p(x) = O(U3) . Thus also:
Ive| = o@W’) as U-+0 . (5-21)

This is certainly a much stronger conclusion than (5-8)!

The integral expression given above is not the solution of
the ¢ problem, even in the first approximation, since it does
not satisfy the body boundary condition. However, since the
existence of ¢ arises from a defect of ¢0 in meeting the
free-surface conditions, it is difficult to imagine that the
above estimate of the order of magnitude of ¢ is not correct.

Numerical procedures could readily be worked out for
solving problems of the above type. 1In fact, all that is
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needed is one algorithm which handles the problem of a given
distribution of the normal velocity component on a surface
in the presence of a plane rigid wall. The integral part of
the solution given above would lead to a non-zero normal
velocity component on the body, and this would have to be
offset by a flow which does not change the condition at the
plane y = 0 . Presumably, all higher-order approximations
would be solutions of problems which are identical in form
to this one.

A variation on this approach has been discussed several
times by Professor L. Landweber, although he has not published
the work. He points out that the usual linearized free-
surface condition,

2
9 ¢ + K %% = 0 , on z =0 , where |<==g/U2 ’

becomes the rigid-wall condition when U -+ 0 , and so one
might try an iteration scheme in which ¢ is expanded in a
series, ¢ ~ Z¢n , and the terms are obtained as the solu-

tions in an iteration scheme:

324 1
___Ef_ (for n>1) on y=0 .

n 1
K X

v - %y T

In order to test the scheme, Professor Landweber proposed
trying to obtain the potential function for a Havelock source
in this way; this obviates the need to satisfy a body boundary
condition, and the known potential for the source can be ex-

panded in a series in terms of 1/«x .

Neither of the above schemes appears very promising to
me. Salvesen's findings about the singular low-speed be-
havior seem to condemn any approach which overlooks the
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peculiar nature of the free-surface problem at low speeds.
The next section should make clear why I am pessimistic
about these approaches. It should be obvious even now that
the wave-like nature of the problems has been lost, but

the difficulty is more serious than that.

5.42 A Dual-Scale Expansion. According to linearized
wave theory, the wave-like nature of a free surface dis-
turbance loses its identity exponentially with depth. A
disturbance created at the free surface is attenuated rapidly
with depth, and a disturbance created at some depth causes a
free-surface disturbance which decreases with the depth of
the cause. The depth effect is essentially proportional to
<Y , where, as above, «k = g/U2 and vy 1is measured as

positive in the upward direction.

As U approaches zero, this depth-attenuation factor
approaches zero for any fixed y . 1In other words, the free-
surface effects are restricted to a thin layer which ap-
proaches zero thickness as U +> 0 . We might say that the
free-surface is separated from the main body of the fluid
by this "boundary layer" in which there is a rapid transition
from conditions at the surface to conditions inside the bulk
of the fluid. From our experience with viscous boundary
layers, we should expect the occurrence of large derivatives
in this region and also some difficulty in satisfying boundary
conditions on a face of the boundary layer.

In a viscous boundary layer, of course, the derivatives
are much greater in one direction than in another, and this
fact allows us to stretch coordinates anisotropically and
apply the limit processes of the method of matched asymptotic
expansions. In the free-surface boundary layer, however, this

does not appear to be a possible approach. From the linear
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theory, we expect that there will be a wave motion with
wavelengths which are O(Uz/g) . Thus, derivatives will
be large in at least two directions inside the boundary
layer — in the direction normal to the layer and in one
direction parallel to the layer.

When I tried to solve this problem two years ago (See
Ogilvie (1968)), I did not apply very systematic procedures.
Rather, I simply assumed that the first approximation to
¢ , as defined in (5-14), would have certain properties,
namely,

°(x,y) = 0(0) ;o (x,y) , o (x,y) =0

-e

also, the surface deflection function would be given by (5-15),
with:

H(x) = ow?d ; w(x) = ow?) .

The order of magnitude of ¢ was chosen just so that the
velocity components would be O(U3) , and I assumed that
differentiation changes a quantity by l/U2 in order of
magnitude. The arguments leading up to (5-21) contributed
heavily to the conjecture about velocity components, and

the l/U2 effect of differentiation was chosen just because
the free-surface characteristic length is U2/g . It is im-
portant to note that the rigid-wall potential, ¢0 , is still
part of the solution, and these statements about orders of
magnitude and differentiation do not apply to it. 1In fact,

I assume that ¢0 is completely known, and so it is not
necessary to conjecture about the effects of differentiation.

In terms of the general approach of the multiple-scale
expansion method, I have assumed that an approximation to

the solution can be represented as the sum of two functions.
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The first depends only on the length scale appropriate to
the body geometry. The second function depends primarily

on lengths measured on a scale appropriate to U2/g , but it
also depends on the first function and thus on lengths
typical of the body. However, it seems to be possible to
keep clear when differentiations are being carried out with
respect to each of the length scales.

Physically, the situation may be described in the fol-
lowing way: If U is small enough, the body extends over a
distance of many wavelengths of the surface disturbance. The
initial disturbance is caused by the body, of course; this
is the "rigid-wall" motion, and its dimensions are character-
istic of the body. It causes a free-surface disturbance,
with the result that waves are created. But these waves are
very, very short, whereas the initial disturbance from the body
appears to be just a slight nonuniformity in flow conditions
when viewed on the scale comparable to the wavelength. The
method is, in fact, gquite similar to classical methods such
as the W-K-B method.

When the assumptions listed above are actually applied,
we find that the approximate free-surface conditions given '
in (5-18) and (5-19) must be replaced by the following:

R

gH(xX) + ¢, (x,0) & (x,n,(x)) U (5-22)

1]

®y(x,n0(X)) = 90, (x,0) H'(x) p'(x)

the function p(x) 1is the same that was given in (5-20). Note
that & in both conditions here is to be evaluated on y = no(x)
rather than on y = 0 . The reason is the same that was given
in Section 3.2 in the near-field problem: If we tried in the
usual way to expand @(x,no) , say as follows:
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®(x,n,) = ©(x,0) + n.o (x,0) + 1 n2® (x,0) + ... ,
0 0y 2 0'vyy

we would find that every term on the right-hand side is the
same order of magnitude according to my assumptions. In

Ny = O(UZ) » and, symbolically, we have:

0/3y = 0(1/U2) . So this expansion procedure is not useful.

particular,

The two conditions above can be combined consistently
into the following:

0, g () + 2 98, (x,00 0 (x,ng(x) = p'(x) .  (5-23)

This is remarkably similar to the free-surface condition for
another problem. In the ordinary linearized theory of gravity
waves, suppose that a pressure distribution, p(x) , is
travelling at a speed U . The free-surface condition would
be:

2

0, (x,0) + 0 (x,00 = p'G) ,

if ¢(x,y) were the potential function for the problem.
Replace U by ¢0X(x,0) , the "local stream speed," and
evaluate the condition on y = no(x) ;7 then this condition
transforms into the condition found for ®(x,y) in the low-
speed problem. Thus, on a "local" scale (in which a typical
length is U2/g ), the free-surface condition is just a very
ordinary condition; one cannot see that the stream velocity
changes slightly along the free surface, because the change
occurs on a scale in which a typical measurement would be a
body dimension; the change is very gradual. Also, the level
of the undisturbed free surface appears to change gradually,
as given by (5-7); this change also cannot be detected on the
"local" scale.
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It is now clear that the two length scales are quite
distinct. We cannot separate the fluid-filled region into
distinct parts in each of which only one length scale needs
to be considered. Rather, the gradual changes which appear
on the body-size scale appear to modify the short-length
wave motion in the manner of a modulation.

In trying to find a potential function which satisfies
(5-23) , I made a nonconformal mapping: x' =x , y' =y - no(x) .
Then ¢ satisfies a complicated partial differential equation
in terms of x' and y' , but the terms in the equation can be
arranged according to their dependence on U , and it is found
that the leading-order terms are simply the terms in the
Laplacian, that is,

all other terms are higher order. 1In this new coordinate
system, the free-surface condition, (5-23), is transformed
too, but again the leading-order terms are just the same
after the transformation (but expressed as functions of x'
and y' ). Furthermore, the boundary condition is then to
be applied on y' = 0 . Let us now drop the primes on the
new variables, for convenience. Then the problem is
as follows: Find a velocity potential, ¢(x,y) , which
satisfies the Laplace equation in two dimensions and the
free-surface condition:

1

o, (x,0) + 2 88, (x,0) 8 (x,00 = p'(x) |,

where

p(x) = mnyx)eg, (x,0) .
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In addition, the potential must satisfy a body boundary con-

dition; this has not been carefully formulated yet, and, in

any case, the only solution that has been produced so far is

one that satisfies the free-surface condition but not a body

condition. There may be some good justification (or ration-

alization) for proceeding this way, but it is really an open

question.

With such restrictions and reservations expressed, we can

write down a "solution" of the above problem. Define:

%9 = Relfy(z2)} ;  o(x,y)
df . (-2
k(z) = g[%] .
Note that:
fa(x) = P, (%,0) 5 k (x)

Then the solution is given by:

F'(z) = —Flf[ds

The ¢ integral is

located entirely in the lower half-space.

the location of the

= Re{F(2)} ;

2

glog, (x,0017° .

z z
p'(s)[ % exp[-i [ du k (u) .
- Q0 C
a contour integral starting at x = -o '

singularity in

k(z)

It should pass above
This solution rep-

resents no disturbance at the upstream infinity, as one would

expect.

Far downstream, this solution can be approximated:

© z
F'(z) = 2i e_lK%jr ds p"(s) expliks - iJ[.du [k (u) - k] ’
- 00 S
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where «k = g/U2 . Then, from (5-22), we obtain the wave

shape far aft of the body:

o

H(x) = - Zg—U ds p"(s) sin [k(x~-s) + K(s)] ,
where
K(s) = du [k(u) - k] .

S

Calculation of the wave resistance is then very simple in
principle. (In practice, it is a very tedious calculation.)
Note that the expression for the wave shape downstream does
not require knowledge of F'(z) (or ©&(x,y) ), that is, the
surface disturbance far away is a real wave, but its shape

and size depend only on the solution of the rigid-wall prob-
lem. This is not true of the wave disturbance in the vicinity
of the body.

It would be very useful, I am sure, to formulate this
problem carefully by the method of multi-scale expansions.
The approach described by Ogilvie (1968) is very heuristic
and leaves much to be desired.
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