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FOREWORD

This set of lecture notes was written during my visit
at the Federal University of Rio de Janeiro, Engineering
Post-Graduate School (COPPE), in 1968. The students who
were taking my course there had had a graduate level course
in dynamics and were primarily interested in applications of
elastic vibration theory to problems occurring aboard ships.
For this reason my treatment of any elementary aspects of

dynamics was kept rather sketchy.

If these notes are used as a first introduction to
elastic vibrations, as for example in our undergraduate
course NA 446, "Ship Vibrations," they must be supplemented
by some other introductory material. This should include a
comprehensive treatment of the dynamics of single and two
degree of freedom systems as well as a thorough introduction
to Euler beam dynamics. Fortunately these topics are covered

in many good textbooks.

In graduate level work on ship vibrations the notes may
primarily serve as a general survey suggesting areas for
deeper study of the many specialized topics covered in the
extensive literature on this subject. The references contain
many worthwhile articles the graduate student should become

familiar with.

I acknowledge again with gratitude the help receivad
from Professor Alberto Luiz Coimbra and his staff at COPPE

when preparing these notes.

Horst Nowacki
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1. INTRODUCTION.
1.1 Definitions.
Vibrations are oscillatory motions of a dynamic system.

A dynamic system is a combination of matter possessing

mass whose parts are capable of relative motion.
For the resulting motion of a free system to be of oscilla-

tory character, there must also exist some restoring force

mechanism since the effect of inertia forces alone could only
produce a monotonous motion.
In elastic vibrations, the restoring force is provided by

the elasticity of the material according to Hooke's law.
Ship hull vibrations are the elastic vibrations of the ship

structure and of its parts.

The basic force categories involved in elastic vibrations
can best be illustrated by the example of the simple linear
mass-spring-system (system of one degree of freedom), Fig. 1.

Ll S S LSS S S
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Fig. l: Mass-spring-damper system

The basic forces involved are:

a) Passive elements, due to system properties:

Inertia force: mX

Damping force: c¢x



b)

Spring force: kx
Active element, acting on system from outside:

Excitation force F(t).

The excitation is either periodic or non-periodic. The
most important example of periodic excitation is harmonic
excitation F(t) = F, cos wt. Any other periodic excita-
tion can be converted into a series of harmonic excita-

tion terms by Fourier analysis. The steady-state

response of a linear system to any periodic excitation
is therefore obtainable by superposition from its re-
sponse to harmonic excitation.

By contrast, one can study the step response (response
to a step function) or the impulse function response of
a linear system to get a characteristic description of
its transient response behavior.

1.2 Complex Representation of Harmonic Motions and Forces.

In dealing with harmonic motions (or forces) it is of great

convenience to introduce the following complex notation:

Let us agree that

the real notation x = X.cos wt

and the complex notation x

(1)

X*cos wt+iX sin wt=X- e“ut

are equivalent. The motion x is thus defined as the real part

of %.

X = Rel#] (2)

The advantage of the complex notation lies in the ease with

which one can differentiate, superimpose, or otherwise manipulate

motion expressions. Differentiating (1) for example:




Real Notation:

Complex Notation:

. dx dx iwt +\
X=3g°~ -wX * sin wt I~ iwX « e = iwx
= wX * cos (wt + w/2) > (3)
2 2> .

g =9% o 428 « cos wt d°X - _y2xelut o 23

at? dt? /
Note that in complex notation the time-dependent term

elwt is the same throughout whereas in real notation the cosine

arguments differ in their phases so that tedious trigonometric
operations would be necessary to superimpose such functions.

The factor in front of the exponential function is called
complex amplitude, and carries amplitude and phase information.
For the velocity for example, the complex amplitude is

X = iwX T (4)
which means the magnitude of the velocity is

I f'= wX (5)

and the phase is the argument of the complex number X:

2

Im(
Re (X

_ wX _m
= arctan 5= 3 (6)

a = arctan

S

The velocity is thus a quarter of a cycle in advance of the
displacement.
A phase vector diagram is often used to illustrate the

phase relationships of harmonic motions of the same frequency.

10
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}7 Fig. 2

4 Phase vector diagram
for addition of two
vectors.
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fe

Fig. 2 shows the vectorial addition of the motions

] . e (7)
;2 = X2 e1(wt + a) - Xzela . elwt

It can be shown by trigonometry:

ei(wt +8) _x . eiB . glvt (8a)

b
I

X o

where
X = \/(X1 + X, + cos a)? + (X2 . sin a)?

X2 *+ sin ¢« (8b)
X + X cos d
1 2

arctan

™
]

In summary, it may be stated that in complex notation it
is easily possible to separate the representation of a motion
or force into one time-dependent factor, and two others expres-—

sing amplitude and phase, respectively.

11



2. SEISMIC VIBRATION MEASURING INSTRUMENTS

A seismic instrument con-
sists of a box containing
t a spring-mass-damper system

as shown in Fig. 3.

I WH)

VI S A A A G e ¢‘KB
Fig. 3: Seismic Instruments

A. Displacement measurement, vibrometer.
The base motion Xp is to be measured. The motion of the
mass m is x, and by means of a pen or electronic equivalent we

can record the difference between box motion and mass motion:
X, = X, - X (9)
The system is an example of a base-excited one degree of

freedom system. We are interested in the steady-state response
to some harmonic excitation

Xg = AB . e (10)

The differential equation of the system is obtained as
follows:

\
mX + c(x - xB) + k(x - xB) =0
or, substituting xp: 5 | (11)
mxp + ch + ka = mxB )
The solution has the form
- . o—ia | it
xR = AR e e (12)

12



Substituting:

(-mw? + icw + k) AR . 1% o -ABmw2 (13)
Real part: Imaginary part:
AR -mw? - cos a Ap -mw? -+ sin o
—_— = —_— = 14)
A 2 2 cl (
B k - mw AB

2 | 2 A 2
cos?a + sin?a =1 = EB . komw + =R, Cla (15)

Ap mw 2 AR mw?
2 (Q )“
Ar - w'm? _ “n
A. | - w2 c w (16)
B (k-mw?)? + (cw)? (1 - (_ ) ) 2 4 (___ . __) 2
) mw )
n n n
. w c
or with n = — and r =
wn 2mwn
A 2
A f(1-n%)% + (2zn)?
Correspondingly from equation (14):
o = arctan CW = arctan 2%n (18)
k-mw? 1-n2

Ae

Fig. 4: Amplitude response
of vibrometer




Fig. 5: Phase response of vibro-

meter and accelerometer

__,7__5_2
(>
The amplitude response of the instrument is shown in Fig.
4. The magnification factor AR/AB is fairly constant in the
higher frequency range whereas it varies rapidly at and below
frequencies near n = 1, w = W, -
In practical application we therefore want to limit the use
of the instrument as a vibrometer to the range of higher fre-
quencies where the amplitude distortion (deviation from AR/AB =
l.) remains within specified limits.
This leads to the conclusion that a vibrometer should be
built with the lowest feasible natural frequency so that it re-
mains reliable down to relatively low excitation frequencies. A
soft spring and a heavy mass are hence desirable, but size and
weight impose practical limits on the design.
As an illustration one may study the problem of selecting
vibrometer damping for the widest permissible frequency range
if an amplitude error of, say, 10 percent is the specified tol-
erance.
Finally a word about phase errors. Take for example a
signal
Xg, = A, * e’ 1 (19)

14



which will be recorded as

AR, i(u,t - a,(w,)) (20)

XR1=AB1 ’Xé—l- e

The time shift of the recording relative to the signal is

a () ,
tl = -——w—-!—— (21)

Analogously for any second signal of frequency w,

o (w )
t = 2 _2 (22)
2 wz

The time shifts are the same only if a is linearly propor-
tional to the frequency w. This is strictly true only for the
instrument of zero damping below n = 1. Otherwise a certain

phase error occurs.

But satisfactory operation will also be possible for inter-
mediate damping near the resonance where the phase curves are
approximately straight, and at very high frequencies where
. = @, = wt and w; » w, for practical purposes.

In general the phase distortion is only of secondary im-

portance, and will not govern the design of the instrument.

B. Velocity Measurement
The differential equation (11) yields by differentiation

mXp + CXp + ka = mXp (23)
or with the velocities VR = Xp and VB = Xg
mVR + cVR + kVR = mVB (24)

15



This equation is analogous to (11) and the same response con-
siderations hold. But note that the pick-up must now sense

velocity rather than displacement.

C. Acceleration Measurement, Accelerometer

For the accelerometer, we rewrite equation (ll) as

. . - iwt
mxp + cxXp + ka = agme (25)
where ag the acceleration amplitude. Then from the response

of the mass-excited single degree of freedom system

Ar

a.m A_ °* w2
B R n _ 1 (26)

k3 (1152 + (2zm)

This function is fairly constant for low values of n so that the
accelerometer ought to be designed for high Wy, and operated with

W<w . This is the contrary of the vibrometer. The phase response,

however, is the same as before.

3. THE VIBRATION ABSORBER

/%/’ /I/// If a given single-degree of
C, :
/ﬁ> LTJ freedom system (ml, kl, cl)
. vibrates excessively at or
m, r-r fwt . Y
=6 € near its resonant frequency,
= k du t
Fi, T e e e
excitation F = F1 e e
My it may be advantageous to
add a second elastic system
(mz, kz, cz) in order to
Fig. 6: Vibration Absorber obviate the resonant vibrations

by the so-called absorber effect.

16



To understand the principles of vibration absorbers we have
to examine the steady-state response of a two degree of freedom
system as shown in Fig. 6.

The differential equations for the motions of the two masses

are:
mE 4+ (c4c)% + (k+k)x -cx -kx =F e (27)
171 1 2° T 1 2’ 272 27 2 1
m¥ +cx +kx ~cx -kx =0 (28)
272 2 2 272 271 271,
Let the complex solution:
; = }—{- . elwt
1 1
) (29)
; =X elwt
2 2
Substituting:
[(k +k ) - m w? + i(c +c )w]l x - (k +ic_w) X =F
1 2 1 1 2 2 2 2 1 (30)
- (k +ic w) X + [k -m w?+ic w]l x =0
2 2 1 2 2 2 2

The steady-state response is obtained from this complex set

of equations by means of Kramer's rule:

F, -(k, + iczw)
0 k, - m,0? + ic,w
= _ Lomid
x1 = x1 e 1 = D (w) (31la)
k, + k, - mow? + i(c +c,)u Fl‘
-(k, + ic,w) 0
= ~i¢,
X, =X, * e = D (w) (31b)
k +k -m w?+i(c +c )w -(k +ic w)
where D (w) = | * 2 ! 12 22 (31lc)
-(k +ic w) k -m w?+ic w
2 2 2 2 2

17



Let us discuss the simplified case of the undamped system:

€, = ¢z = 0. There, obviously, only the real parts are retained,

and ¢, = ¢, = 0.
\
x =
"1 D (w)
F,k,
xz T D (w) > (32)
D (w) = (k +k -m w?) (k -m w?) - k? =
1 2 1 2 2 2
=m -m (mf - w?) . (wz - w?) J
1
The last result is known from the transient response sol-
ution for the natural frequencies of the system, w and w .
1 2
The steady-state response is therefore of the form:
2 A
. = F (k2 - muw )
1 2 _ .2 2 _ .2
mm, (w1 W )(w2 w*) >
F;k (33)
X0 mm (w? - 0?) (w? - w?)
1 2 1 2

/

The two-mass system has of course two resonant conditions at
w=w, and w = w . But the original resonance at w, = kl/m1 does
not appear any more. In fact, we can select m2 and k2 so that x1

vanishes at the original resonant frequency:

- 2 =
k2 mzwn 0
or k (34)
k -m L=o0
2 2 I
1
Hence, if we ensure suitable tuning of the added mass-spring
system:

BLW‘

k
=7 (35)
2

=)

18



we have cancelled any motion of the mass ml. This is obviously
at the expense of two new resonances not too far from the orig-
inal one. It can be shown that the frequencies w w2 depend
on the ratio of the masses‘mz/m1 as shown in Fig. 7. The fre-
quency response of the system is shown in the magnification
factor diagrams, Fig. 8 and Fig. 9.

Fig. 7: Natural frequencies
wl, wz against
mass ratio.

X
&

Fig. 8: Response of mass m Fig. 9: Response of mass m,

19



The absorber is effective only in a relatively small fre-
quency range as shown in Fig. 8, where the dashed line represents
the response of the original system (undamped). The economy of
size in the design usually prevents mz/m1 from reaching any
significant values so that the band between w, and w, is fairly
narrow in most practical cases. The range where the absorber is
superior to the original system is only a fraction of that range.

Moreover, if damping is introduced (c1+ 0, c2 + 0, the
response curves flatten out, and the gains due to the absorber
at the resonant frequency are reduced, sometimes very drastic-
ally, Fig. 10.

. BEFoeg ,

4 ) W,
/ C(' h Ar — 6\)

Fig. 10: 1Influence of damping on neutralizer effect.

Nevertheless, the absorber may find useful application in
reducing local shipboard vibrations whenever a narrow, steep
resonance needs to be removed.

4. MARINE SHAFTING VIBRATIONS
4.1 The Substitution System.

Shaft vibrations are common in any type of rotating machinery,
and marine shafting systems are frequently subject to some tor-
sional and longitudinal vibration. These vibrations may be
excited by the engine whose gas torques are not uniform during
each revolution, and by the propeller operating in a nonuniform
wake field.

20



The systems under consideration may be direct drive or
geared, turbine or diesel driven, single or multiple engine
per shaft etc.

Shafting systems have characteristic mass concentrations
at certain stations, for example at the cylinders of a diesel
engine. It is therefore a natural conclusion to deal with these
systems as discrete multi-mass systems, lumping the heavy masses
at their stations and treating the stiffness between consecutive
stations as torsional or longitudinal springs.

For some elements of the shafting system the quantities
mass, moment of inertia, and stiffness can be found in an ele-
mentary, although sometimes tedious manner. This may be true
for the inertia of a turbine rotor, or the stiffness of straight

shafting elements. But the following other elements require some

special consideration:

The moment of inertia of piston, connecting rod, crank etc.:

To determine the contributio
of the piston and its drive
PISTON the rotary inertia at the st
tion of a given cylinder, we
'E C ROSSHEAD want to lump all reciprocati

masses at the crosshead (M)a
treat the others as follows:

CONNECTING
RID

_ Fig. 11: Geometry of drive.
CRANVA

a) The crank: Determine the mass moment of inertia about
the crankshaft axis, Ic' and put the equivalent mass m,
Ic/r2 at the crankpin.

21
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b) Connecting rod: Find moment of inertia, Ir’ about cross-

head, and put equivalent mass m, = Ir/il,2 at crankpin.
The difference between the actual mass of the rod and m.
is placed at the crosshead (m - mr).

In summary, we find:

At the crosshead: Mass M = piston, piston rod, crosshead,

m—mr

At the crankpin : Mass M1 =m, + m.

In the next step, we want to find the kinetic energy of two
masses and then equate it to that of an equivalent disk.

The crankshaft rotates at the speed w (rad/sec). The velocity
of M1 is: V1 = wr.

To find the velocity of M, we express the location of the
crosshead x:

X =Y *cos wt + & cos a (36)

With:

2
cos a = 1 - sin2?qg 5\/i -(%) sin?ut

and for & >> r

] - L [£)® L. 2
cos o =1 > (I) sin“wt (37)
- r? . ,
X ®r * cos wt + 2 - > Sin wt (38)
2 .
* =~ . - L°w , 2 sin wt ¢ cos wt
X ~e«rw sin wt Oy ~ ~— ~ (39)
sin 2 wt
Kinetic energy at time t:
M M | r
T = —% (wr) 2 + > (wr)? {sin wt + 57 sin 2wt }? (40)

22



Average kinetic energy during cycle

Period: TP = 21
FoW [Py len?® g (en)? [sin wt + == sin 2wt]2}dt = (4la)
2T i 3 3%
_ 2
T=1 IMm +¥% (1 + I (wr)? (41b)
2 1 2 422

The kinetic energy of an equivalent disk is:

I
e w?

—

hence the moment of inertia

r2

422

1+

] r? (42)

— M
e [

Propeller inertia:

Determine the mass moment of inertia by integration (or exper-
iment), and add correction for added mass.

Crude approximation: 25 percent increase.

Refined formulas accounting for hydrodynamic effects more
accurately are available, for example: C. Kruppa, High-Speed
Propeller Design, Lecture Notes, The University of Michigan.

Stiffness of the crankshaft
The torsional stiffness of a crank is defined as

(43)

w
il
o=

where M = the torque applied, maybe unit torque,

©® = the angular displacement produced by M

23



CRANVAKSAET
SFARING P, /}V
e

e
, ,’ . 5 \\\\\\\\\\_Eigg extended halfway into

- - cheeks to account for

elasticity of cheek mounting.

comprng |

The

Fig. 12: Crank

geometry of the crank permits two ways of applying a

torque resulting in two different deformations of the crankshaft

element:
a)

b)

If a pure torque M is applied to two neighboring crank-
pins, the three pins will deflect torsionally and the
crank cheeks will experience a bending moment M; they
must be treated as cantilever beams. The total angular
displacement is then composed of five contributions, and
the stiffness is determined like for five springs in
series.

This type of crankshaft torsion is called torsion of the
first kind. Note that the presence of the bearings which

will influence the bending deflections is disregarded in
this approach.

If discrete circumferential forces are applied to two
neighboring crankpins we speak of torsion of the second

kind. The pin in the crankshaft axis will still be under
torsion and the cheeks are being bent, but the crankpins

are free of torsion.
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In actuality, both types of torsion are always present in
engines. Strictly speaking, one would have to use a mixed
stiffness definition. But in practice, one is usually satis-
fied with the simplified stiffness concept associated with
torsion of the first kind.

For more detail see: Biezeno-Grammel, Technische Dynamik,

Springer-vVerlag.

Engine damping:

Damping in diesel engines is primarily due to the fric-
tional losses in the lubricating films in the cylinder and in
the bearings. There may also be some structural damping caused
by the hysteresis properties of the material and by bearing
slack.

Since these types of damping have been too difficult to
separate in experiment or analysis, results of measurements were
usually interpreted as cylinder damping coefficients because most
of the losses presumably occur in the cylinders. Cylinder dam-

ping coefficients C are defined so that the damping torque

CYL
can be expressed as:

M = C . 98

cyr, = Scyr * Ccvn (44)

éCYL = angular velocity of crankshaft at cylinder (rad/sec)

For numerical values see Handbook of Torsional Vibrations,
British Internal Combustion Engine Research Association, London,
editor: Nestorides.

Propeller damping:

The hydrodynamic effects of propeller damping in torsional
and longitudinal shaft vibrations are not fully understood. The
literature shows considerable disagreement as to the magnitude
of the damping torgque and longitudinal force. The torsional

and longitudinal vibrations are usually coupled, and their
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measurement requires special apparatus and careful dynamic
analysis. (See Wereldsma, Experiments on Vibrating Propeller
Models, TNO Report No. 70M, Netherlands' Research Centre
T.N.O. for Shipbuilding and Navigation, March 1965).

The following summarizes some of the conventional methods
of estimating propeller damping in torsional vibrations.

The quasisteady method assumes very slow propeller motions
(frequency w + 0) and uses propeller open water test data to
predict torque variations with rotational speed. The damping

torque is expressed linearly as

D P
where the propeller damping coefficient (45)
. a-°0 - '
C, = Q = steady average torque

N = number of revolutions/min.

The factor a is given as follows:

30 (average) in the BICERA handbook quoted above.
a = 20...50 depending on pitch and blade area ratio for
Wageningen B - series, according to Archer'Institute

of Mechanical Engineers, 1951.

Den Hartog, Mechanical Vibrations, McGraw-Hill Boox Co., New
York, recommends multiplYing the quasisteady coefficient by 1.5
to account for dynamic effects.

Wereldsma (see reference above) measured damping values that
were above quasisteady predictions, but were in good agreement
with predictions by Dernedde based on an asymptotic high-frequency

theory utilizing two-dimensional foil theory.
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Other results from high-frequency asymptotic theories by
Lewis and Auslander (Journal of Ship Research 1960) and Schmiechen
(Proceedings, llth ITTC, Tokyo) are, however, considerably lower
than the quasisteady predictions.

The reference by Schmiechen gives a good survey of the state
of knowledge in torsional and longitudinal propeller damping
including coupling effects.

Propeller excitation:

A fair amount of data is available on unsteady propeller
forces exciting both shaft and hull vibrations. The subject will
be presented in a later section on propeller excitation.

At this time, let us just assume that the given excitation
torque can be expressed as a Fourier series:

(=]
-ia inwt
T = z: t, " e - (46)
n=1

amplitude of n'th torque harmonic

where ton

o] phase angle of n'th torque harmonic

n

circular frequency corresponding to one revolution =
2T *+ RPM/60

€
]

Engine excitation

Harmonic analysis will also be applied to the gas torques of
each cylinder, and exactly the same expression will be used as
above.

Note, however, that for four-stroke engines one engine cycle
corresponds to two revolutions so that the fundamental frequency
becomes:

_ 21 * RPM (47)
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Amplitude (and phase) data for the gas torque harmonics can
best be derived fron cylinder pressure measurements. In earlier
design stages one may also use the systematic data compiled in
the BICERA handbook for various typical engines.

The phase of the cylinders is usually related to cylinder no.
1 according to the firing sequence and crankshaft configuration.
Section 4.5 will give a more specific example.

4.2 Torsional Vibrations, Natural Frequencies

The substitution system whose torsional natural frequencies
we want to determine consists of N masses of mass moment of iner-
tia I n’ and (N-1) shaft elements of stiffness k . Figure 13
1llustrates the situation for a system of four masses. Gn are
the angular displacements.

k k
1 , 2 3

Fig. 13 Torsional system
The differential equations for each of the masses are as follows:

I0 + +k (0 -0) =0
1 1 2
0

+k (0-0) +k (6 -0)
2“2 1 2 1 2 2 3 > (48)
IO +k (06 -0) +k (06 -0 ) =0

2 3 2 3 3 L

Il
o

I6 +k (0 -0) = 0

b 4 3 4 3 )

Let us assume a solution of the form:

@ = A - elwt, 0 =A - elwt, etc. (49)



Substituting:

(-1 w2 + kX )A -k A =0
1 1 1 1 2
(50a)
(-T w2 +k +k)A -kA -kA =0
2 1 2 2 1 1 2 3
(- w?+k +k)A -kA -kA =0
3 2 3" 3 2 2 3 4
(50b)
(-I w2 + kX )A -k A =0
b 37 3 3
This set of algebraic equations is equivalent to the fre-
quency equation. But instead of determining the natural fre-
quencies W (3 =1, ..., 4) directly by solving an equation
of the order 2N, we apply a convenient recursive scheme, the
well-known Holzer method. For this purpose we rewrite the
equations.
\
Ilsz1
A =4 -
2 1 kK,
Izsz ka -kB&
A =17 - + =
8 2 k, k,
I w?A + I w?A >
= A - 2 2 1 1 (51)
2 k
2
Iasza kA -kA
= - 2 -
Al’—A3 X + %
3 3
I w?2A + I w?A + I w’A
=7 - -3 3 2 2 1 1
3 k )
3
Or, in general form
n
ZIiszi
A .=a - i=1 (52)
n+l n k

n
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This recursive equation has a physical interpretation that

becomes evident from the formulation:

n
- = - 2
kn(An+l An) ;;; Iiw Ai (52a)

If we free the left-hand end of the system just to the left
of mass (n+l) the shaft element kn will have the sum of the
inertia torques up to mass n acting on its left-hand end. This
torque is balanced by the elastic restoring torque due to the
- A_.

n+l n
By adding up the equations (48) we obtain an overall dynamic

deformation of this element, A

equilibrium condition of the system:

N N

- . . _ ’ _

'Zl Iiei = 0, or algebraically: Z ( Iiw Ai) 0 (53)
i= i=1

The sum of the inertia torques must vanish for a free vi-
bration to be possible. '

The foregoing deductions lead to the following solution pro-

cedure (Holzer scheme) :

1. Estimate a natural frequency w.

2. Assume A1 = 1l. at one end of the system.

3. Determine all other amplitudes recursively according to
equation (52).

4. For the final station N check if the equation (53), the
closing condition, is satisfied.

5. If the estimate of w was wrong make a new estimate and
iterate until satisfactory agreement with the closing
condition is reached.

The computations can be conveniently arranged in tabular
form.
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D @] 06 @ ® ® @
STA n ZIinAi
| I I_w? A I_w?A Y I.w?A, k
n n n n n n i&1 i i n kn
1 |z --- | 1.0 I w? —— k ——-
1 1 1
2 Iz T @n—l—®n—l ®n : @n @n-l+®1 kz ®/Q
3 I _— | e———- k
3 3
4 _—— | mm———
I“ ,2769 ~ —
Given Must be zero Given
for correct
frequency.

HOLZER - TABLE

The solution can be greatly accelerated by using a plot of
the closing torque from column ()N against frequency and seek-
ing guidance from the mode shape. Figure 14 illustrates the
relation between closing torque, frequency, and mode shape.

SEQD nE Tho I HREE

i & A G ; .
CLOSIHG  yyozy | AEDED . NIDED | 202 |
TOoRGUE= [T T =

-
:@'f\/

e —

S et e - e

AN //\-\
’ et “aN ! —> o

Fig. 14: Frequency behavior of closing torque

and node character.
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4.3 Longitudinal Vibrations, Natural Frequencies

Longitudinal vibrations are very similar to torsional vi-
brations of shafting systems. The main difference is that the
system is built in at one end at the thrust bearing, Fig. 15.

T R R 8
1 2 3
m m m

1 2 3

- -> ->

X X X

Fig. 15: Longitudinal shaft vibration system

The model of the system ought to include the propeller mass
(m ) » shaft stiffness (k ), and the masses and stiffnesses of
the thrust bearing and, 1ts foundation (m ’ m ’ k ' k ). The
fixed point is to be assumed in the ship under the bearlng foun-
dation.

The differential equations are analogous to equation (48)
except for a minor difference at the built-in end.

A
mX +k (x -2x) =0
11 11 2
m2x2 + kl(x2 - xl) + kz(x2 - xs) = 0 $ (54)
mX +k (x -x) +kx =0
373 2 73 2 373
/
The recursive equation is obtained in analogy to equations
(50) and (51): i
— _ i=1
Apel = By k. (55)
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The same Holzer table can be used, but the closing condition

is different.

this time so that the amplitude at the wall must be zero.

Instead of a free end, we have a built-in end

If

we carry the Holzer table to the amplitude predictions at station

N + 1, the closing condition is

Ay, = col. ©N+l =0

(56)

We iterate for the correct natural frequencies just as before.

See Figure 16.

A

n.. = number of nodes .

N

.
ir - ™~ —w
"Vza /7”-:/ M/V =2 | _ 3
.’l\ N T~ /7” -
Fig. 16: Amplitude - Frequency Relation

4.4 Geared and Branched Torsional Systems

a) Geared System

€] <)
22 3
I I
22 3
k]
2
I GEAR RATIO:
' k
. 6
| n = g2z
I I 21
1 21
0 ¢]
Y 21
Fig. 17: Geared System
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In dealing with multi-speed systems as described in Fig. 17

we find it convenient to transform the system into one of constant

speed using suitable equivalent masses and stiffness coefficients.

The energy theorem will be used to derive the equations of motion

of the system. The system is conservative, hence:

@

QE (T+V) =T+V=0

The kinetic energy:

2T =T 62+ 1 02 +1 82 4+ 1 62 =
1 1 21 21 22 22 3 3

I62+ (I +n?T ) - 62 + 1 &2
1 1 21 22 21 3 3

The potential energy:

2v=k (6 -0 )2 +k (06 =-0)%2=
1 1 21 2 22 3

k (62 -200 +02) +k (n%02 -2n0 o + 02)
1 1 1 21 21 2 21 21 3 3

The derivatives:

\
T=1606 + (I +n?T )8 06 +1I038
111 21 22° 21 21 3 3 3
V=k (066 -006 -60 +0 & ) + >
1 1 21 1 21 21 21
+k (n?0 6 -no 6 -nd o +039d
21 21 21 3 21 3 3 3 )

Equating coefficients in equation (60) for terms in é1' éz,
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IO +k (6 -0 ) =0
l.l; 1 1 21 @ >
- + - 3)=
Ize@z + k1(621 61) kze(@21 = )= 0 (61)
IO +k (06 -no ) =0
3 3 2 3 21
/
where
—_ 2
I2e 121 + n 122 ( |
- n2 62
kze = n k2
Introducing @ = 06 /n and I3e = n?1 the last equation
becomes 3 3 3
Iae . §a +,k2e (@3 - 621) = 0 (63)

We have now converted the original system into the single-
line system shown in Fig. 18. This can be treated in the usual

way. The generalization for more than one gear is obvious.

0 0 ® =0 /n
. 3 3

Fig. 18: Single-line replacement of geared system.

b) Branched System

Branched systems are frequent in ship shafting installations
either as twin-screw or as twin-engine systems. The figure at
the bottom of page 37 shows an example for which we will derive
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the equations of motions by means of the energy method as before.
The gear ratios are n o, and n, . The equivalent moments of inertia
I, 1, ,1I and the stiffnesses k

2e e se 2
on page 37,

, and k2 are also found

je he

For the kinetic energy of the system:

. =2 . K
n?02 + 1,8 + I n?0? +1,0 (64)
1 1 20 e 3

2r =1 62 + 1 6% + 1 X
11 20 20 22 2 20 e &

2

Potential energy:

2v=k (6 -0 )2+k (@ -6 )2+k =+ (& -0 )? (65)
11 20 23 3 21 24 N 22
The derivatives:
L ] [ 3 L 3 hd \
T=I06 + © © + I n?2d B0 +1I 9 +
1 1 1 20 20 20 21 1 260 20 3e 3 3
+ 20 8 o+ 55 =
Izznz 22@22 I“e ueu > (66)
=100 + 8 8 +1. 8 -3 +1 8 -3
I1 11 Ize 20 20 3e 3 63 ke ©

\
V=k + (06 -006 -6 -9 +0 +086 ) +
1 1 1 1 20 1 20 20 20
+ kzse(9393 -8 -8 - @3@20 0,6 )+ > (67)
+%k,, (88 -T -6 -%eo +0 06 )
e [ 4 20 B 20 20 20 /

Equating coefficients:
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I6 +k (8 -0 ) -0
1 1 1 1 20
" TR = 5
I,e8,, *%,(0,,70) +k, (0 -T) +k, (6 -B) =0 >
- - (68)
T,00, * k5,8 -0 ) =0
Iue64 + ke, -9, ) =0 }

These eguations are analogous to equation (48) except for the
branching feature. The algebraic equivalent of these equations,
analogous to equation (50),can be obtained by substituting
harmonic motions

© =A elwt, ¢ = A . elwt, etc. (69)

1 1 20 20

We want to limit the discussion to a summary of the special
features of the Holzer procedure for branched systems, see page
37. The following steps are required:

l. Estimate a frequency w as before.

2. Start at the branched end of the system (not necessary, but
preferred here). Assume an amplitude for the upper branch,
say Xa = 1. Predict the amplitude A at the junction.

3. Assume A = 1 at the lower branch and predict an amplitude
ﬁzo at tﬁe junction. In general, ﬁzo will differ from A20
so that we have to correct A for agreement.

4. Assume K“ = Azo/ﬁzo’ and tre;t the lower branch anew. The
amplitude Azoat the junction must now conform with the
upper branch.

5. Transfer the inertia torques, col. () . from the two branches
to the single-line part of the system and add the contribution
of the center gear (I ): @ + @ + ©

6. Complete the Holzer table, and iterate for the correct fre-
quency w as usual. (Note that it is easier to use the closing
condition at the single-line end of the system than working in
the opposite direction).
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4.5 Steady State Response Analysis

a) Critical Speeds

Torsional critical speeds occur whenever an excitation fre-

quency, due to engine or propeller, equals a natural frequency
of the shafting system (resonance). The system has a great number
of natural frequencies, strictly speaking an infinite number if
we look at it as a continuous system. There also exist infinite
sets of excitation harmonics. We must therefore systematically
investigate a great number of critical speeds in the range of
operating speeds of the engine.

The excitation frgguencies are counted by order numbers. The
order number is defined as
CPM _ excitation cycles vibr.

RPM revolution = Tev. (70)

Order number = % =

The lowest frequency of excitation corresponds to the full engine
cycle. For a two-stroke engine it is

_ 2m * RPM
0= S (71a)

for a four-stroke engine whose cycle takes two revolutions

_ 2w * RPM
w = —m— (71b)

Besides, for each of these engines we also obtain all integer
multiples of these lowest harmonics from a Fourier analysis of
the excitation torque.

The set of order numbers is therefore

for the two-stroke engine: 1, 2,3, 4, ......
for the four-stroke engine: 1/2, 1, 1-1/2, 2, 2=1/2, eeeua.

We must compare all of these orders to the set of natural fre-
quencies in checking for critical speeds.
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First example: A two-stroke cycle engine runs at a speed of
90 RPM. What are the three lowest harmonics?

For order no. 1

21 <+ 90

€0 = 9.4 rad/sec

w =

The second and third order are at 18.8 and 28.2 rad/sec, respec-

tively.

Second example: If a resonance with the lowest harmonic
exists at 90 RPM, at which other speeds must we expect other

resonances?

Since w, = 9.4 rad/sec is a natural frequency of the system,
we get a new resonance at 45 RPM where the lowest harmonic is 4.7
rad/sec so that the second harmonic is now in resonance. And so
on, for 30, 22.5, ... RPM for the third, fourth, ... harmonic.

The critical speeds are counted by the number of nodes and
the order number, for example II/6. for the two-noded 6th order
critical.

b) Phase Relationships for Excitation

The combined effect of all sources of excitation in the system
(engine and propeller) must be determined properly accounting for

the differences in phase.
First looking at a single cylinder of the engine (the propeller

is analogous), we represent the torque by means of harmonic ana-
lysis

T=+t <+ E t elem elmmt (72)
o m
m=1

where to = steady average torgue

tn

amplitude of m'th excitation torque harmonic

€

o phase angle of m'th torque harmonic, usually measured

relative to the top dead center position of the piston
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w = lowest frequency of excitation corresponding to engine

cycle

Amplitudes tm and phase angles €, are most reliably derived
from direct measurement of the gas pressures p in the combustion
chamber, Figure 19. The piston force’'is P = p - A, A, = piston
area.

According to the geometry of the crank drive, one obtains for
the tangential force acting on the crankpin, approximately (Fig.

20)

PT = P e« {sina(l + % cosa) } (73)

where o, r, £ as in Figure 1l1l.
The torque is correspondingly

- o - 3 . 1 £
T=r - Pp,=r A, * pisina[l + 7 cosall (74)

|
) AR AN .

ENGINE CYCLE | ENGINE CYCLE -
TDC ™C '

Fig. 19: Gas pressures Fig. 20: Tangential force

T e e e— c— s

The foregoing treatment disregards the unbalanced mass forces
of the reciprocating drive. It may usually be assumed that the
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engine has been sufficiently mass balanced so that this influence
becomes negligible. Otherwise it would be no problem to add the
mass unbalance forces to the excitation. '

If in the earlier stages of design gas pressure diagrams for
the engine are not available one can rely on torque harmonics
information compiled for typical engines in handbooks such as the
BICERA manual referenced on page 25,

The phase angles €n are the same for all cylinders for each
harmonic. They may therefore be disregarded in the steady-state
response analysis if the engine is the only source of excitation
in a particular harmonic. But if propeller excitation is also
present the phasing of the engine relative to the propeller needs
to be accounted for so that the €n Must be known.

A further significant phase difference among the cylinder is

due to the firing sequence.

Suppose for example an eight cylinder four-stroke engine has
the firing sequence 1 - 3 -5 - 7 - g - 6 - 4 - 2, fThe crank
arrangement for such an engine is shown in Figure 21. It will
ensure that one cylinder fires eévery quarter of a revolution, or
every eighth of an engine cycle.

We may now construct a phase diagram for each order number
in which the full circle corresponds to one vibration or exci-
tation cycle. The phase diagram therefore illustrates the timing

3 1 1584

7 N N 42\ 35 { H
Y.\(n=7)\"’/ 6 \%‘: ’ I ’”H

54 8 3762
km= Y k'n:?_ km= 4’

Crank Diagram

Phase Diagrams

Fig. 21: Crank and phase diagrams
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of each firing relative to that of cylinder 1. Since in the
crank diagram the full circle equals.one revolution we have to
multiply each angle in it by the order number ( = vibrations/
revolution) to convert it into the phase diagram.

For the n'th cylinder, order number km

®%an T km " Yn (75)
For example for n = 7, km = 1/2, and the above engine, cylinder

7 fires after 3/4 of a revolution (y7 = 270 deg). Half a vi-

bration is completed during one revolution, hence the firing

occurs after 3/8 of a vibration has elapsed, a”27 = 135 deg.
The angles anj are required as inputs to the steady-state

response analysis.

c) Selection of Firing Sequence by Means of the Phase Vector

Sum

The selection of the firing sequence is governed by many factors,

for example:

1. Level of excitation in torsional vibrations.
2. Mass balance of the engine.

3. Crankshaft bearing loads.

4. . Crankshaft manufacturing method.

5. Induction and exhaust system.

For more details see W. Ker Wilson, "Crankshaft Arrangements
and Firing Orders", Marine Engineering and Naval Architect, Oct.

1961, and ASME Journal, Feb. 1962.
Let us assume for simplicity that we are only concerned with

the first of the above aspects, and let us discuss a method of
evaluating the vibratory characteristics of a certain given firing

sequence.
For a given mode shape, Figure 22, and order number km the

complex torgue amplitude of the n'th cylinder is

= £ e e mn (76)
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where tm = Amplitude of m'th torque harmonic, the same for
all cylinders (but not for the propeller)

a = Phase angle of m'th harmonic at cylinder n, ac-—

counting for firing sequence and, if desired, for
initial phase €

The work done by a torque harmonic at station n is propor-
tional to the amplitude A at this station. It is therefore
permissible to replace the actual torque t by an equivalent
torque at station 1 doing the same work

A

n .
tmn K? (at station 1). (77)

The effect of all cylinders for the m'th harmonic thus

equals
n

_ XL QL. 5 fa_ .
Tm = & A— t = t * A—. e =t » S (78)

1 n=

The quantity § is called phase vector sum, and its magnitude
is a measure of the resultant excitation. Figure 22 shows how it
may be constructed graphically for a given mode shape and order
number (km = 1/2). For resonant conditions the mode shape is the
normal mode known from the transient response analysis.

The phase vector sum is determined for all critical speeds in
the operating range. The firing sequence is then selected so as
to reduce the worst cases most.

Clearly, the firing sequence is of no influence if all amn=0,
21, ... This was the case for order number k = 4, Figure 21.

The engine speed at which this occurs is called a major critical

speed. 1In this condition the excitation impulses all add up alge-
braically (not vectorially) which is disadvantageous in particular

if in the given modes all amplitudes have the same sign.
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Major criticals occur at the order numbers

2n 3n for two-stroke engines,

Bevr’ “Pcyn’ 3Peyn’ v

0.5n 1l.5n .o for four-stroke engines,

cyL’ "cyr’ CYL’

d) Steady-State Response Analysis by an Adaptation of the
Holzer Method .
Given the torsional substitution system of Figure 23. It

consists of moments of inertia, In, and stiffnesses, kn’ as
before, plus excitation and damping. We consider one torque
harmonic at a time so that the excitation is given by its com-
plex amplitude Eﬁn' equation (76).

The damping is given as cylinder-damping (cn) proportional

to the absolute velocity at station n, and as shaft-damping

(cRn) proportional to the velocity difference between two neigh-
boring stations.

5 ]

/L 2
f | ke |
St |
I, R' IL ke {n "Z_N
Em, z;u. tﬂV) mN

Fig. 23: Substitution system

The situation at the n'th station is shown in Figure 24.

46



Law:

o kn-l kn o
- - \ [: - -
[£n -/ . CK”

Ln
trrm
On

Fig. 24: Mass n

The equation of motion of this mass follows from Newton's

I0n + €40y + CRru.1(0n=0 1) + CR, (0,70 ) +

k100 =0, 9) + kp(0,7041) =t (72
where t = T .« et
mn mn
Separation of variables is accomplished by
-7 . Siwt _ . Jivn | _iwt
On = An e = An e e (80)

Substituting, one obtains a complex algebraic equation
02T X ic wh
w InAn + 1cnwAn +
+ icr,_qW (An - An—l) + icp w (An - An+1) + (81)

+k,y B -E ;) +k, (& =t

n An+l) mn
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Previously, for the free vibration we had the analogous

real equation
-2 - - =
w AnIn + kn-l (An An—l) + kn (A An+l) 0 ("50")

n

from which we obtained the recursion

2 - -
w InAn kn—l(An An—l)

Zl ijzAj (52)
=1

If we sort the terms correspondingly now

—— 2 - 1 5 L A - x
An(w I 1cnw) + (kn_l + icg,_qw) (An An_y) +

(82)

+ (k 4+ icr,) (A t =0

n = Bp+1) - mn

we get the recursion

— o ’ 2 - . - - 3 _——
A (I_w ic w) + t (kn_l+1cRn_lw)(An A1)

= = n n mn
A = A - :
n+l n kn + icp w
n
(A, (I.0? - ic.w) + E_.)
5 - ;;; J 3 ' J mj (83)
n kn + 1cr,w

The following quantities are analogous:

Free vibration Forced vibration

An _ An

k. kn =k, + icr w

T.w? I.w? - ic.w

J J J

ML S E, (10?2 )4E_ L)

I.w°A, A.(I.w° - ic.w)+E .
j=1 J §=1 J 3 J mj
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On the basis of this analogy we can devise a modified Holzer
table to deal with the steady-state response problem, page 49.
The quantities in this table are complex and so are the arith-
metical operations. We have shifted the excitation terms to the
left-hand side so that the closing condition "right-hand side =
o, no free end torque at mass N" still applies. It means that
col. CDN must vanish now.

But the steady-state response problem is different in one
imporfant other respect. 1Instead of the natural frequency, the
unknown is now the amplitude function (mode shape) for any given
excitation frequency. We want to find the Kﬁ - vector in col.
C)for which the closing condition is satisfied.

We may proceed in the following steps:

1. Apply the amplitude KI = {1;0} to the system, but no
excitation, and determine the torque reaction at the

other end, col.@N: F = £+ if .

2. Apply the amplitude Xl = {0;1} to the system, but no
excitation, and f£find the torque in col.(:)N: G = g, +

ig2 where g, = —fz; g, = f1'

3. Set Xl = o, and apply all excitation torques Eﬁn’ finding
the free end torque, col. C)Iq: K = k1 + ik2 .

4. Equate
cF+cCG=-K (84)

and solve for the real coefficients c v c .

2
(Two real equations for two unknowns).

5. Find Xl = c, + i c2, and all other amplitudes by running
the Holzer table with complete input (KI and all torques).

The closing condition must now be satisfied.
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6. The following other quantities can be read from the final
Holzer table:

3\
Column @ n = An+l - An = complex twist angle
Column(:)n = complex torque acting on shaft element kn
The stress in the element kn is 5 (85)
- abs. value of torque _ ICOl’@%I
section modulus pA
. _ mp? . . )
where Z = ¢ for a circular cross section.

5. SHIP HULL VIBRATIONS

5.1 Survey

The elastic structure of a ship hull is subject to numerous
vibratory effects which may be classified at least crudely from the
following viewpoints:

a) Transient versus steady-state vibrations.

Most technically significant shipboard vibrations are of the
steady-state type. They are caused by periodic excitation gene-
rated by the main engine, the auxiliaries, or the propeller.

Transient vibrations may be produced by the motions of the
ship in a seaway, wave impact, slamming, an anchor drop maneuver,
shocks, impulses and other transient loads. They may play a role
in the design if delicate shipboard equipment needs to be pro-

tected from impulsive loads or motions.

b) Hull girder versus local vibrations.

There are many ship vibrations in which, more or less, the
whole hull girder participates. These vibrations can be treated

in analogy to vibrating beams, and the motions at any station
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along the ship correspond to motions in the particular degrees
of freedom that a beam is capable of.

In distinction from these motions one also observes local
hull vibrations, i. e. accentuated motions of smaller parts of

the hull structure. The mode shapes of these motions are gen-
erally such that they could not be predicted from beam theory,
for example the vertical vibration of a deck relative to the
neutral axis of the hull girder. Vibrations of masts or super-
structures and deck houses are often of this type.

Hull girder vibrations may provide the excitation for local
vibrations, and the presence of local vibrations alters the
vibratory properties of the main hull girder. The distinction
is therefore somewhat artificial, and mainly serves the purpose
of justifying simplified, separate treatment of each of the
aforementioned categories.

c) Vertical, horizontal and torsional vibrations.

The main hull girder vibrations are classified according to
degrees of freedom and mode shapes.

1. Vertical vibrations are transverse, flexural vibrations

of the hull in the vertical plane. Free vibrations are
possible in mode shapes with 2, 3, 4, ... nodes,
2. Horizontal vibrations are analogous, but in the horizon-

tal plane.
3. Torsional vibrations result in twisting deformations of

the hull. Free vibrations result in normal modes with
1, 2, 3, ... nodes.

The torsional and horizontal vibrations are usually coupled.

Vibrations in ships have many similarities to those in other
elastic beam-like structures. But, as the following sections
will show in more detail, many particular difficulties arise from
the peculiarities of the ship's structure and its environment.
This may be illustrated by listing the force categories involved
in ship vibrations:

52



Inertia: Ship mass and hydrodynamic mass,
Damping: Structural and hydrodynamic damping,

Spring force: Elasticity of ship structure, differing

somewhat from bean,

Excitation: Engine and propeller excitation, wake, and

seaway influences.

5.2 Flexural, Shear and Torsional Stiffness

This section and most of those that follow concentrate on
the subject of main hull girder vibrations. We will treat these
vibrations in analogy to beam vibrations, and we must first
describe the properties of a vibrating ship according to the format
of beam dynamics.

We will first define the stiffness of actual beams and later
discuss the particulars of ships. Regarding the flexural stiff-

ness of a transversely vibrating beam a suitable beam stiffness
definition is known from the derivation of Euler's equation of
beam vibrations

My (x)

kl (X) = =- lﬂé'—ET= EI (X) (86)

where MB(x) bending moment at station x

yB(x) = bending deflection at x

E

modulus of elasticity

I(x) section moment of inertia about neutral axis
This equation is valid within the usual approximation of
linearized beam theory.
For the shear stiffness of a beam one obtains an analogous

"force-deformation" relationship which is derived in detail in a

53



special handout:

V(x)
= = -f— DE I
FROM BEAM THEORY (87)
=c‘;k—1?xixr)"K(X) . A(x) * G = KAG
where:
V(x) = shear force at station x,
yv(x) = shear deformation at station x
A(x) = cross sectional area
G = shear modulus
Z 2
k(x) = qay = 22 ;ax s (2) 4, (88)
X 12 (x) z 2
MIN
Z
s(z) = /MBX
7 b(z) -+ 24z = statical moment of cross
section above height Z.
b(2Z) = cross section width at height Z

For further details
times preferred K =
stress distribution

on the shape of the

see handout. The factor k, or - as is some-
1/k -, is a function of the vertical shear
in the cross section and consequently depends

cross section.

For a rectangular cross section we found in a home assignment:

k =1.2.

between zero at the

In the rectangle, the shear stresses vary strongly

ends and a maximum at the neutral axis.

To discuss the opposite extreme, let us consider the case of

an I—girder,A2

be ) i
Yy Fig. 25, symmetrical to its
| —— ] neutral axis. In this case the
- AT ; shear stresses in the web of
T ar the girder are more nearly
;Cft 4VZ ugifgrm.h For a crude estimate
] of the shear stiffness, let us
=k assume that a constant stress
N 41 ¥ N is acting in the web corres-
ponding to the actual value at
A the top of the web.
Fig. 25: I-girder
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Vix) * s(z) (89)

(z) ~ ©(h/2 - t;) = I(x) - t
h-t 2
F t /h . i
8(2) = Apacp * 73— * 3 (7= 2%~ Bpacgp * 3 (50)
h - t, 2 tod 3 h?
I(x) =2 - ApacE (____7_2) + 2bg —% + %% ~ 2 - Apace T 1T
(91)
(z) = V)t Apacg t B2 g
B2 -
2 . | = ot 2 = t
Arace (3] 2 (92)
= V(x)
AvEB
2 2
yo = /2 TDE g o VL /2 g, (93)
-h/2 GVAlpn  ~h/2
= _Vvi(x)
G * Augs
= V) _ .. = B
k2 = §$—— = G AWEB’ and k AWEB (94)

AWEB = cross sectional area of web

This derivation underestimates the stresses, and hence slightly
overestimates the stiffness, but is sometimes used for estimates.
In summary, relating the shear stiffness consistently to the
web area
Aypg (%)
C

k =
2

(95)
one finds for cross sections varying from I-girder to rectangle:
c=1.0 ... 1.2.

The torsional stiffness of simply-connected shiplike cross

sections (Fig.26) may be approximated according to Bredt's formula
for the torsion of thin-walled hollow cylinders
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My o
k3 = aTb. = Fm_ (96)
dx

torque at station x

o

= twist angle at station x
s = circumferential coor-

dinate
t(s) = thickness of shell
plating
A_ = area inside s-loop

Fig. 26: Shiplike hollow cross section

In applying the above stiffness definitions to ships we must
introduce corrections because ship structures differ significantly
from simple beams. The effects are illustrated in Figure 27 where
the normal and shear stress distributions are compared under three
assumptions:

a) If we deal with the hull girder by beam theory a bending

moment will produce constant normal stresses Oy in deck
and bottom, and a linear distribution in the web. Deck
and bottom are essentially free of shear stresses.

b) The actual stress pattern is predicted much more realis-
tically by plate theory, adapted to the box-like structure

of a ship. The center part of Figure 27 shows that the
normal stresses in deck and bottom drop from a maximum at
the corners to a minimum at the centerplane. At the
corner, plate theory predicts higher normal stresses than
beam theory. The web is experiencing higher stresses, and
consequently carrying a greater share of the load of nor-
mal stresses than one would expect by beam theory. The
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deck and bottom plating also experiences shear stresses
which are due to the bending moment and related to the
bending deflection. Consequently, they must not be
regarded in determining the shear stiffness, Ref. 8.

c) To simplify the practical determination of stresses the
concept of effective breadth is used in ship structural

analysis. The face plates of each cross section are
replaced with plates of suitably modified breadth, be’

so that the substitution system, treated by beam theory,
will have the correct amount of work done by the web

and face plates. The web is hence subjected to Ove at
the corner, and the same stress acts throughout the deck.

This defines the effective breadth:

b
b oo é ox(b)db

e g
XcC

(97)

The numerator integral has to be determined by plate theory.
In the literature results are presented for plates under harmonic
bending loads (H. Schade, SNAME 1953). Actual bending moment
curves, occuring in ship vibrations, may be treated by harmonic
analysis
o

_ . imx
MB(x) = EZ; Mi cos —— (98)

a = maximum distance between bending moment zeroes.

The effective breadth for a single bending moment harmonic is

1 + £3= sinh 931
b . = ' *b (99)
el 1l + cosh Eil

To find the resultant effective breadth we have to know the resul-

tant normal force in the face plates for each harmonic

X; = bgi * T%ci (100)
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(o] S
XCl

for the cross section of breadth bei’

Substituting, we get:

z x cos (i_ﬂ}i
b = i i 2al
e X. 17X
z 1 CcOSs (—2—
. —b a

1 Pei

the axial stress in the face plate, due to My computed

(101)

In many practical cases, the modes of hull vibration are found

sufficiently sinusoidal to neglect all but one bending moment

harmonic.

But it is important that the nodal distances and hence

effective breadth and stiffness differ from mode to mode.
In any refined analysis this necessitates a trial and error

procedure.
nodal distance, stiffness, and a new mode shape.

is repeated until satisfactory agreement is reached.

One estimates a mode shape, finds bending moment,
This sequence

In summary, flexural and shear stiffness depend on the effec-
tive breadth, hence on mode shape and dynamic loading as well as

on section geometry.
for both.

For the shear stiffness of a ship, because of the
of the hull girder to the I-girder treated above, the

approximation may prove satisfactory

k =G - . .
2 WEBS Awzs

where all longitudinal, vertically continuous members

included as webs.
The torsional stiffness of a ship may be computed

The same substitution system may be used

similarity
following

are to be

by equation

(96) although this neglects internal walls such as tweendecks,

bulkheads, or the doublebottom.

somewhat too low.
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Effects of elastic coupling between torsional and hori-
zontal vibrations are discussed in section 5.5.

5.3 Inertia Forces

An accelerated motion of a body submerged or immersed in a
fluid cannot take place without a corresponding accelerated motion
of all fluid particles in the fluid continuum. The accelerating
force must therefore provide the increments in kinetic energy
to the body itself, and to the fluid.

The presence of the fluid has the net effect of an increase
in inertia as will be discussed further.

Consider the kinetic energy of the system at some intermediate

time
2T = M_Z% + p [ 2% av (103)
-V
MS = body or ship mass
Z = body or ship velocity
p = fluid density
dVv = fluid volume element
éF = velocity of fluid particle

The integration has to be extended over the whole fluid volume V.
In computing the hydrodynamic effects of accelerated motion

it is customarily assumed that the fluid is ideal and that a flow

potential ¢ exists that satisfies the Laplace equation at any time:

¢(x,y,2,t) = ¢_ (x,v,2) + F(t) (104)

o

It can then be shown that the velocities throughout the fluid are
related to each other, and hence to the velocity of the body by
time-independent factors. For example, if ¢o = c $o , we obtain
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for the velocity normal to the body surface

= -c 29 . F(r) = vy - F(E) (105)

-3
on N

and for the velocity vector somewhere in the fluid
-grad ¢ = -cF(t) + grad $o =V « F(t) (106)

The constant ¢ may assume any value, but the ratio of any two
velocities remains the same. In other words, the velocities
in the field are proportional to the velocity of the body.

We can therefore rewrite equation (103)

L] Z 2 *
2 = 32 (M + p [ |=| avi =% 2{My + M} (107)
Vg

This defines the hydrodynamic mass or added mass as

Z,\2
_5) av (108)

Z

The added mass depends on the shape of the moving body, but is
independent of the type of accelerated motion.

In ship vibrations - as in many ship motions problems the
added mass is computed on the basis of strip theory. The ship
is considered as composed of thin vertical slices or strips,

Figure 28, and the flow is assumed to be confined to the plane
of each strip without exchange of fluid from strip to strip.
The strip metnod thus converts tae three-dimensional Zlow

problem into a sequence of two-dimensional ones.

N #

Fig. 28: Strip method

J—
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The two-dimensional flow problems have been solved for a
great variety of shiplike section shapes. Conformal mapping
and many other techniques for boundary wvalue problems of poten-
tial flow are suitable to find the potential, the kinetic energy
and the added mass of given shapes. The same basic approach is
used for the vertical, horizontal, and torsional motions of the
strips.

The results are presented in the literature as coefficients
of added mass per unit length.

"hv

CV = —_— for vertical motion
p/2 m b?

\

Mw
C, = —m— for horizontal motion $ (109)

p/2 m T?

Jp .
C, = —m——— for torsional motion

o m T*

where

th, MhH’ JhT = hydrodynamic masses and mass moment of
inertia per unit length

p = density of fluid (mass/unit volume)
b = half - beam of section
T = draft-of section

Results for CV for a systematic family of shiplike sections,
the so-called Lewis - sections, were first obtained in Reference
9. Other important original work was done by Wendel, Reference
11, Landweber and Macagno, for CH’ and Kumai, for CT. For compi-
lations of the results see:

Lewis, Ref. 3: CV

Todd, Ref. 4: CV' CH' CT

Leibowitz and Kennard, Ref. 7: C
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Wendel, Ref. 11: Cv' CH’ (CT)

For further details see:

Landweber and M. Macagno, Added Mass of Two-dimensional Forms
Oscillating in a Free Surface, Journal of Ship Research, Nov. 1857;
also 1959 and 1960, extensions with new titles.

. Kumai, Added Mass Moment of Inertia Induced by Torsional
Vibration of Ships, European Shipbuilding, 1958.

Further references to pertinent work by Prohaska, Grim and
Vossers will be found in the above.

The results of the strip method have to be corrected to
account for three-dimensional flow effects. F. Lewis, Reference
9, derived the longitudinal reduction factor J (also longitudinal
inertial coefficient) for ellipsoids of revolution, defined as
the ratio of rigorous (3D) added mass to the strip method ap-
proximation, (2D). He treated two- and three-noded vibrations,

neglecting the influence of cross-section rotation. The actual
distances between vibration nodes can be taken into account.

J. L. Taylor, Transactions INA 1930, included the effects of
rotation, but assumed fixed nodal positions. His results for J
are lower than those of Lewis, References 3 and 4.

Both correction factors are not exact, but seem acceptable
in view of the other major simplification to apply these simple
body results directly to the ship, the added mass of each strip
being multiplied by J.

Refinements are, howsvar, possible on the basis of Kruppa's
results, Reference l14. Kruppa treated ellipsoids of three unequal
axes for arbitrary mode shapes with up to five nodes, including
rotational effects. He computed the raw data to be combined into
the longitudinal inertial coefficient.

Shallow water effects tend to increase the added mass which

is of significance for ship operations or vibration tests in

shallow water. Corrections can be found in Reference 4.
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5.4 Differential Equation of the Vertical Hull Vibration

 STATIC EQuUit/BEIUM ng_ .

'V'-: Ué +7).',
S/6N
LONVENTION

+M
\;:f/\/
7
v Ty

Fig. 29: Free body diagram of shiplike beam element

We will now derive the differential equation for the free
vertical vibration of a shiplike beam including the effects of
hydrodynamic inertia, rotary inertia and shear deformation. Figure
29 shows the forces acting on the element. The figure also il-
lustrates that the total deformation of the beam, v, is composeu of
a bending deflection Vg and a shear deformation v The ratio of
these contributions is unknown before the analysis.

From the equilibrium of forces:

d 52 )
5% dx = mdx v
at?
or > (110)
W A%y
X 3t 2
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From the equilibrium of moments:

33v_ )
g% dx = vdx - J'dx B
dt?ox
& (111)
or 3
v
oat2ox
/
where J' = ship and hydrodynamic mass moment of inertia, both
per unit length
M = bending moment
v,  _ . .
B = angular acceleration due to bending
at2ox

The deformation-load relationships yield with the stiffness de-

finitions of the previous sections

asz
M= -k (112)
1 ax2
v v
_ v _ ov _ B
VER, TR T e (113)

We separate variables by expanding deformation and load into an

infinite series of eigenfunctions (mode shapes):

v = v. et¥it (114)
=1 |
‘q iwst
Vg = L, ij e ] (115)
j=1
iw. t
v., = Z v._.*e ] (116)
Vo v
[++]
v = z: v, - et (117)
j=1 J
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M = Z M, + e*¥] (118)

where wj = natural frequency of degree j

v y Viooy V., Mj = amplitudes of motions and forces

i’ VB3 V' V3

in j'th mode.

Substituting equations (114-118) and dropping the subscripts
j we obtain a set of ordinary differential equations, valid for

any natural frequency w:

av

From equ. (110): - = -w?mv (119)
dv
. aM = 2y B
From equ. (111): Ix V + wd —ax (120)
dsz
From equ. (112): M = -k (121)
1 dx2
dv
_ dv B
From edqu. (113) : v = k2 a‘ E (122)
The purpose of the next transformations is to eliminate Vg
from these expressions, and to express M and V in terms of the
total deformation v. These relations will be needed in our
solution method. Subsequently, the equation of motion will be
derived.
For the bending moment, equ. (122) is solved for de/dx,
differentiated by dx, and substituted in equ. (121):
dv
By _V (123)
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dx k

a’v _ ;. 4 (l)_dVl)
2 2

A similar expression for the shear force is obtained by

equating the x-derivative of equation (121) to equation (120).
3 2.
d Vg dk1 d Va dv

. B
dx?® dx dx?

= 2 g
V+U)J_a§

dx 1

The third derivative of Vg is obtained by differentiating equa-
tion (124)

div

Qs
~

B_d'v_ ,daf1)|_dv d
ax? dx? dx? |k dx dx

d 1
dx Ez

=
-
3K

- 4V
2 dxz

Using equation (119)

atv _  _ 2 v _, 2 dm

P WM ax Y E& VY

3

Ty g @) gy & (L)
dx3 dx3 ax k2 kzdx

2 dm (.1.) 2 .9_(_1_)
ot v %, +wtmv = X,

Substituting equation (129) into (126), using (124):

- 2y L[ L), wimdv oo dm ;)
(L JEJ+wmd4kJ+k2&+w @ L

dk
2oy S L)Y o L - ( ) - 23:(Qv _ V
+wmvdx(k2)} = dz k}v+“’J(dx K,
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(125)

(126)

(127)

(128)

(129)
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Collecting terms proportional to V, and solving for Vv

V=

ik(dv+w—ﬂv)+m—v( )+u)mkv +OJJ'—V
dx ld k dx

(131)
weJ"'

2
eI 4 [k 4L
k, ~ax | "1 a&|k,

Equations (125) and (131) are the relations between mode shape
and load we were looking for.

-1+

The equation of motion can be derived by equating equation
(119) to the derivative of equation (122), substituting equation
(131) for Vv:

2 -
d K, (Y L &m g1, 42 dm £+mmk1v + wigr &
dx 2 k, d k
winy + < dax =0
dx 2
wJ' d d 1)
-1+ + = [k, &
k, = dx ( ! ax |k, ) ]
(132)

This is a fourth order linear homogeneous differential equation
with variable coefficients for the mode shape v(x). The four
integration constants which one would get upon integration have
to be determined from the boundary conditions

V() =v(@Q) =

(133)
The beam has free-free ends, i.e.
the ends.
If a mode shape is known or estimated it is possible, at
least by trial and error, to solve for the natural frequency w.
Equation (132) is the generalization of Euler's beam equation
which may be obtained from it by the limiting process

no shear forces or mcments at

68



J' >0

k, > o (134)
k1 + EI(X)
Hence
2
w2mv +g—£ %}? [—k d_v] (135)
1 dx2
which with
2
wv = -g—% (136)
dt

is equivalent to the partial differential equation

2 2 2 ,
a_ [EI(X) 3_V]+ m Y = (137)
ax? ax? at?

i.e. Euler's equation.

5.5 Differential Equation of the Torsional-Horizontal
Hull vibration

Figure 30 shows a situation sketch for an element of length
dx of a shiplike beam vibrating in the torsional-horizontal
coupled mode. The forces shown are acting in two different planes,
located at x and at x + dx.

The section center of gravity is denoted as C1 at station x
and C2 at station x + dx. They are separated by distance 4§
because of the curvature of the neutral axis & (x). The keel

point K is used as the origin.
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The shear center of the section is denoted as S, at station

x, and as S2 at station x + dx. The shear center line n (x)
may also be curved so that S1 and S2 are in general separated
by dn. The shear center is defined as the point through which
the shear stress resultant may be thought acting. For an open
section it may be located outside the section. (See e.g.
Timoshenko, Strength of Materials).

Any combination of shear force and torsional moment acting
upon an element at station x may be decomposed as a shear force
V acting through the centroid C1 and a free torsional moment
M. The elastic reaction of the element at station x + dx has
a resultant V + dV acting through the shear center Cz.

The inertia force acts through the center of gravity (C1 ~
Cz), and the rotational inertia results in a free couple.

The shear center does not in general coincide with the
center of gravity of the section. Any horizontal shear force
V will therefore almost invariably be associated with a torsional
couple. This connection causes the coupling between the hori-
zontal and the torsional modes, as we shall see again from the
differential equation. The magnitude of the coupling effects

depends on the distance between those two centers, p(x) = n(x)
+ £(x).

It follows from the equilibrium of the elment that

am. = gv 828

Mp = J" —= dx + pdV + vdn (138)

at?
where J" = torsional moment of inertia, including hydrodynamic
effects
¢ = torsional displacement.

If in analogy to the treatment in equations (114) through
(118) we separate variables and look at one particular normal
mode
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o(x,t) = p(x) - et®t (139)

equation (138) becomes

dMp, av a
dx

= —wzJ"(b + p Ix + V 3= (140)

The other two equilibrium conditions, equations (110), (111), or

(119), (120) carry over from the case of pure flexural vibrations:

Force Diagram of Element
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d1 +dt + di;

pd5 + fdf

Deformations of Element

Fig. 30: Force and deformation diagrams for horizontal-torsional

vibration
av _ _ 2
d?{_ = w mv (119)
dv
dMm _ 24 B
I = Vel (120)

It must be noted that the total displacement v is now composed
of three parts: Bending, shear, and torsion (Fig. 30)., and in
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the absence of end constraints the shear center may be assumed

to be the center of twist about which the rotation takes place:

v = vy + vy + Vo (141)
where d vT = ¢ « d& + pd¢ (142)
or

dv

T _ 4 38 d¢

ax - ¢ dx TP X (143)

The load-deformation relationships are as before

dsz
M= -k (121)
1 de
dv. dv dv
= vV _ av _ B _ T
V=k 2=k |la&x - = % (122a)
- do
MT = k3 d—X (96a)

We now have a system of six simultaneous differential equations
for the couples flexural-shear-torsional beam vibrations, i.e.
three dynamic equilibrium conditions (140) to (120*), and three
load-deformation relationships (121), (l122a), (96a). These
equations, in connection with the definitions (141) and (143),
are sufficient to solve the free vibration problem. The free-end

boundary conditions are now formulated as

M=V= MT =0 at x = o0 and x = L (143-1/2)
In analogy to the developments in equations (123) through (132),
it is again possible to eliminate all deformation variables but

v and ¢, and to obtain direct expressions for M, V, MT in terms
of these variables. The results are (Ref. 8):
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1
M = —kl[dzv - v d(EJ s, 4 jds S dd ] (144)

2 2
V = 1 g— R + EEE v ] + w2mk L (L v +
d d 1 2 J! X 1| gx2 ) 1dx |k
e - | ERL | 2
dx {"1dx k2 k2

- d¢
My =k, 2 (146)

Correspondingly, one obtains for the equations of motion

2
0=m2mv+§§ 1 gf[k (d_v+w21£_‘l]+
a [, 4 (1) 923 ' lax? 2
dx 1 dx 2 .
2. d |1 2., dv _ d a | at as )] _ .., lac
ok & (EZ VIO % T ax [klai (¢a§ +p a;)] w?g (¢a§ +
d¢
e EEJ } (147a)
and
—d 1 d d_¢ 2on 2 2
0 = dx ) dn/dx [HE (ka dx T 0T + w mDV] + w my (147Db)

These equations become uncoupled if the shear centers are located
in the neutral axis,i.e. p = 0, and if the slope of the neutral
axis remains negligible, dn/dx -+ 0.

It is not intended to present a solution method for the
above set of equations. But section 5.6 deals with the analogous
case of coupled flexure and shear, and it will be evident that

a procedure analogous to the discrete disk initial value technique

74



presented there can be used. Such a technique is described by

Csupor in Ref. 8, Leibowitz and Kennard, Ref. 7, describe a

very similar procedure.

5.6 Solution Technigues, Natural Freguencies and Mode Shapes

a) The Discrete Disk Method

Many of the conventional solution techniques that can be
applied successfully to transient response problems in flexural
beam vibrations lead into difficulties when it comes to beans
subject to bending and shear. This will be illustrated by a
few examples in subsequent sections.

One method that avoids these difficulties rather elegantly
is the discrete disk method, which for the present purpose was
formulated by Csupor, Ref. 8. The description presented here
will follow Csupor's outline rather closely. (See also Adams
and Welch, TMB Report 582, July 1947).

The method starts with the approximation of substituting
a system of discrete masses (disks) for the actual, more or less
continuous ship mass distribution, Figure 31. The disks are ob-
tained by lumping the distributed mass at the centroid of any
given segment (integration process). The disks carry transla-
tional as well as bending rotational inertia. They are connected
by elements that represent the segment bending and shear stiff-
ness properties, but have no mass. The segment stiffness constants
can be obtained by applying unit loads to the ssgment ends and
determining the deformations on the basis of the local stiffness
coefficients. But frequently one can simplify the procedure by
arranging for segments of constant or almost constant stiffness.

Regarding the necessary number of segments, Csupor recommends
to use at least five times nin=FT + 2, where r = degree of
vibration, noin = minimum number of disks to produce the corres-
ponding mode shape. For example, for the first-degree, two-noded
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vibration 5 ° noin = 15 disks are to be recommended for a
sufficiently realistic approximation. It should be noted in
passing that the discrete disk method as just introduced is
the physical equivalent of the mathematical technique of
finite differences. This technique, which has been applied
to the ship vibrations problem extensively, leads to exactly
the same set of equations. Compare References 6 and 7.

Let us now first consider the equilibrium situation at
some segment between station i and station k =i + 1, Figure
31l. In analogy to equations (119) and (120) , shear force
and bending moment change from the left-hand side of disk i
to the left-hand side of disk k as follows:

- 2
de .
- 1 . = .

Fig. 31: Discrete disk system definitions (From Csupor, Ref. 8):

\
o ,
CEnTs !
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Discrete Disk Substitution System
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Figure 31: (cont.)
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Total Deformation Segment Matched to
Boundary Conditions

where hk = the length of the segment under consideration

Mo = constant part of bending moment within interval
The shear force is constant within the interval ( = Vk ), but
the bending moment has a linearly varying term ( = Vi © X, X =

distance from beginning of interval).
To obtain the load-deformation relationships for the segment,
we assume that the uniform segment stiffness coefficients are

known as a result of the lumping operation. For segment k:

k = bending stiffness

1k

77



k2k = shear stiffness

We can now define bending and shear stiffness constants for

the end deformations of the whole segment with bending or shear
loads applied, respectively. The first subscript will denote
the type of deformation (bending or shear), the second one the

type of load. The following equations are results of elementary

beam theory. All deformation quantities are for station k

relative to station i.
Bending deflection due to end load Vi s

3
K = fovk _ My
BVK ~ "V 3k

1k

Rotation due to end load Vk:

2
p _ %Bvk _ hy
BVk Vk 2 klk

Bending deflection due to end moment Mck:

f h2

X = _BMk _ 'k

BMk Mck 2 klk
Rotation due to end moment Mck:

%k _ M

BMK My kg
Shear deformation due to end load Vk:

r - Twvk _ Bk

vvk Vk ka

The total deformations of the segment may now be

expressed

(150)

(151)

(152)

(153)

(154)

in terms of these stiffness coefficients by means of superposition.
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For the segment translation:

i = fayk * fyvk * feux = Yk Bpyx * Kywk) * Mox © Feuk (155)
For the segment rotation:
O = ogyr * g = Vi Kpyk * Mok T Kpum (156)
The absolute deformations at station k are obtained by com-
bining the above segment deformation and the deformations at
station i, Figure 31l:
dv
_ _ _ . Bk
ve =V, - £ - h - g (157)
where
av dv_.
Bk _ Bi _ ¢
dx =~ dx k (158)

The equations (157) and (158) in connection with (148), (149),
(155) and (156) permit finding the deformations and forces at the
far end of the system for any given frequency w and given set of
initial values of the deformations at the near end.

It is therefore possible to construct an initial value solution
technique for the transient response problem, thereby avoiding
the complexities of a direct solution of the eigenvalue problem.
This is in general analogy to the Holzer technique for shaft
vibrations presented in section 4.2.

The steps of the procedure are as follows:

1. Estimate a natural frequency w.

2. At station 1, set V1 = 0, M1 = 0 (free~-free end).
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3. At station 1, assume v1 = 1. The mode shape is thus nor-

malized, the natural frequencies will not be affected.

4. At station 1, the bending deflection slope del/dx must be
estimated so that it will be compatible with the amplitude es-
timate v = 1. But the ratio of bending and shear deformations
is unkno&n at the beginning so that it is of advantage to express
the bending slope estimate as*

dv

Bl _ .
ax - ¢, "¢ - (159)
where C1 = estimated value of slope
& = unknown correction factor

The factor £ is carried through the computations as unknown.
All computational results for the deformation and loads will
therefore have a constant part and one proportional to £. They
may be treated as vectors of the form

G = {G ; G & } 2 G +GJ¢E (160)
and vectorial arithmetic may be used in the computation.

It is advisable to estimate the slope C1 as accurately as
possible to ensure numerical stability and rounding accuracy of
the computation. Csupor, Ref. 8, recommends:

(161)

where L = ship length, and Cln from the table:

Degree of vibration I II I1I v v

in

C 3.3 4.3 6.4 7.6 8.9

*This step is a little simpler than in Csupor's original procedure.
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5. From the above input the internal loads and deformations
can be computed station by station, using equations (148) and
(158).

6. This leads to two expressions for shear force and bending
moment at the last station N of the system:

VN+l = {C27 cag} (162)

M+l

{c“; csa} (163)

These expressions have to vanish together for any correct nat-

ural frequency estimate (free-free end condition).

(Shear force zero) (164)

li
o

C2 + C3€

(Bending moment zero) (165)

I
o

C“ + CSE

This is possible only if the two equations are linearly depen-

dent, or

2 3= 09 (166)

Otherwise, we may determine & to satisfy the shear force

equation, but there will remain a rest moment
M, = C + C_ &_g (167)
or vice versa for the rest shear force

Ve =.C, % C, &=0 (168)
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7. Plotting the rest quantities MR’ VR against the frequency
estimates results in diagrams similar to Figure 32. These
diagrams in connection with a mode count help to converge to

any desired natural frequency by iteration and interpolation.

M
1 i/’—\ 1/—\L /\l
1 ~ I\ , ~ =
l ! | l ,
V‘ ' | ; ! !

Fig. 32: Rest terms against frequency

For matrix variants of the discrete disk method see Ref. 8.

b) The Stepped Beam Method

In this approximate method the ship is replaced with a stepped
beam so that we get a piecewise continuous rather than a discrete
system. The situation is similar to the top of Figure 31 except
the segments are assumed to have constant inertia and stiffness
values.

This method was first introduced into ship vibration analysis
8.

tions and features of the method.

by Csupor, Ref. We want to give a summary of the main assump-
We refer to the original for
more details.

In principle, the continuous substitution system is a better

approximation for the actual
the same number of segments.
But
complicated treatment of the

more accurate solution.

ship than a lumped system having
One would consequently expect a
this is at the expense of a more

dynamics of each segment. The

discrete disk method can reach similar accuracy levels by intro-

ducing enough disks, but in that event it is possibly inferior in
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in computing time although a conclusive comparison remains to
be made.

The stepped beam method treats each beam segment by means
of the Timoshenko equation for the prismatical beam, which

includes rotary inertia and shear effects. This equation is

a special case of our equation (132), for k1 = const, k2 =

const, m = const, and J' = const.
4 ] 2 2 ]
a‘v ern+J_k d_v_%(l_wch_k. v =0
dx* 2 ax? 1 2

The solution of this equation is known, Refs.l, 6, 8:

v{(x) = A * sinh (ax) + B cosh (ax) + Csin(Bx) + D cos (Bx)

where

In applying this solution to a beam segment, we determine
the coefficients A, B, C, D, from the boundary conditions at
its left-hand end, equation (170) is then used to predict the
conditions at the right-hand end of the segment.

It is convenient to use the quantities VL’ Vii’ Viﬁ and
v££ to characterize the condition at the left-hand end (L).
The corresponding quantities at the other end (R) may then be
determined from the following matrix operation:

ViR T B T Vi
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where

Vi’ Vir = column matrices of the four vi-derivatives at
(L) and (R)
Ai = transformation matrix, determined from the con-

ditions outlined above.

In making the transition to the next segment, k, we must keep
in mind that the derivatives of Vi that is vi, v;, v;' are not
continuous at the segment transition, but Vi Vpi” M, and V

are. The step is made by satisfying:

_ _Vv
vé = v'! Ez (176)
M=-kv" -k w2 ¢ (177)

1 1 EZ

vV = ————:EL—T v" - ———Ei———T pv' (178)

l_w?-J_ 1 - w2 9o

k k
2 2

P as in equation (173).

These equations are the prismatic beam equivalents of equations
(123), (125), and (131) with p from equation (173).
The operation may again be written in matrix form:

Vkr, T Bi  Vigp T By Ay Vi (179)
where
;kL = column matrix of vi-derivatives at (L)-end of segment
k=1i+ 1,
B. = transition matrix from (iR) to (kL).
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The basic step of equation (179) is used in an initial value
procedure exactly analogous to that for the discrete disk system,
At the near end of the system, segment 1, we assume the

condition

1 & (180)

where a ’ a are set according to equations (177) and (178) with
the free—free end condition.

At the far end, by multiple use of (179), we predict a corr-
esponding matrix GAR’ which will satisfy the free-free end
closing condition only if the frequency estimate was correct.

The details concerning £, and the frequency interpolation
receive analogous treatment as explained under 5-6 A.

c) The Method of Successive Approximations.

In the technical literature the method to be presented next
is usually known as Stodola method after the man who applied it
to turbine rotor dynamics in a certain graphical form (Stodola,
"Dampf-und Gasturbinen", 1929). It was later adapted to ship
vibration problems by F. Horn. The basic approach is, however,
related to previously known mathematical techniques in the
treatment of differential equations. It seems that the first
application to beam vibration problems goes back to J. Morrow,
"Vibrations of Beams of Irregular Section," Phil. Mag., 1905. A
good description of Morrow's method was given by Todd, Reference
4. The Stodola variant is discussed in References 6 and 8. We
want to introduce the method for a shiplike beam with shear
deformation, but without rotary inertia. We can use equations
(119) through (122) as follows:

From (119): V=-0?| mvdx + C, (181)

o

From (120): For J' - o:
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x
M = -wZJ(T mvdxdx + Cx + C1 (182)

0o o0
From (121):

de . 1 £ = _ 3
az =@ ET (%) J{ mvdxdxdx + Cox + Clx + C2 (183)

From (122):

-3 —3— X3 — 3E—%
vix) _ 1 e L
" = f ET (%) f f mvdxdxdxdx T mvdxdx +
oo o) - _o qu - (184)
+Cx3+Cx2+Cx+¢C
o] 1 2 3

The same result could have been derived from equation (132)

letting J' » o. It should be noted that for J' 4 o no straight-
forward expression similar to (184) can be obtained and the
method meets with difficulties.

EXAMPLE :

The case of a ship hull girder in pure bending: k2+00.

Given information about the ship: I(x), m(x) = MSHIP(x)+M"(x)
< LX) MY = hydrodynamic mass
//%m”,OU Make sure that the ship is
ﬁfZU balanced statically:
7 X
_— =
L jLMSHIP(x) cgdx = A
o
# vrx) _ jLMSHIP(X).g°de = X g
L:f‘\%< CHayg yd .
i Z

ASSUMED MoDE SHALF
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First guess of mode shape from prismatic beam:

§£ 0 0.05] 0.1 0.15] 0.2 0.25] 0.3 0.35] 0.4 0.45} 0.5
1 0.95| 0.9 0.85{ 0.8 0.75] 0.7 0.65| 0.6 0.55
;ZLEL' + + + + + - - - - - -

VMAX 1.000(0.768|0.537{0.313(0.097/0.099}0.272|0.414 {0.521|0.586[0.608
SOLUTION PROCEDURE:
Step l.: Choice of amplitude scale.
The results will be independent of the amplitudes assumed since
only amplitude ratios and natural frequencies are of interest.

It is convenient to choose a value of Vmax SO that the

. . — 2 -
maximum acceleration, ayax = @ Vyax < 9-
Step 2.: Shear force.
A mode shape is estimated according to the table for v(x)/vMAX
Let the first estimate be denoted as v*(x)/vr . Then from
equation (119 and (181):

X %* X %*
V(x) = -~w? m(x)vMAX . %—lEL dx + Co = -j’W(x) %—L§L dx + Co
MAX a MAX

where W(x) = m(x)°'g = weight per unit length, including added mass.

Step 3.: Bending moment.

The dynamic bending moment is derived by integration of V(x),

using equations

X X X
*
M(x) = J’V(x)dx = .. = —J[[ W(x) - %—LEL dxdx + Cox + C1
S0 MAX

Step 4.: End conditions.

The vibrating beam must have free-free ends, i.e. zero shear
force and bending moment at x=0 and x=L. The condition at x=0
is met if we let Co = C1 = 0. But the condition at the far end
is not automatically satisfied for the first estimated mode

shape v*(x)/v To obtain a correct mode shape complying with

MAX"®

87




the end conditions the first estimate must be translated
and rotated. This may be done by trial and error as in a
longitudinal strength calculation, or directly, using

v(ix) = v¥(x) + ax + b,

finding a and b from the end conditions:

L L i 1,
IW(X) X(—x)dx =0 = fW(x) X——(}—{—)- dx + a fW(x)xdx
5 MAX o MAX

L
+ b-/.W(x)dx

¢]
X L x
. vix) :
Jﬁ[w(x) v dxdx = 0 =‘[J(W(x) vr(x) dxdx + a—k[W(x)xdxdx
o MAX VMax
o O OO0

X
+ ?ji[W(x)dxdx
o O

This represents two simultaneous equations for a and b with

(o]

the six integrals as coefficients.

Steps 2 and 3 must now be repeated for the corrected

mode shape.
Step 5.: Slope.

2
The bending moments are proportional to d M: , and inte-
gration leads to the slope curve, dx

dv_ (x) X
B _ 1 1 v (x) =
= - ijmf]w(x) - dxdxdx + T,
o oo
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Step 6.: Deflection.

From equations (122) or (184), for k2 > ®

XX
_ dv,, (x) - -

v(ix) =-[]’%%%l dxdx + C x + C = ——E———dx + Cx + C (*)
X) 2 3 dx 2 3

The integral can be plotted, and:EZ is determined so that

the curve is tilted into a horizontal position. The coef-
ficient %i allows us to shift the reference axis in order
to obtain a suitable two-noded shape. In order to compare

the resulting mode shape from (*) to that originally assumed,

v(x)/vMAX, we subdivide the curve found so that the ratios
C;j i\/// VMAX/VTOTAL and V/vTOTAL are the same
o as originally assumed.
/1/;( /L/ oTAL I Y
’%

On this relative basis one may compare the "pure shape" of
input and output. If the agreement is not "satisfactory"
the result is used as new input to Step 2, and another ap-

proximation is calculated.

Step7.: Natural frequency.

If the output mode shape sufficiently resembles the input
the natural frequency is obtained from the definition of

ayax 1R Step 1.:
w? = %———
MAX
The value of v is scaled off the resulting curve for v(x)

MAX
after reference line adjustment as explained in Step 6.
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If only the natural frequency is of interest a crude ap-
proximation of the mode shape will be sufficient.

Adaptations of the method to higher degrees are errorprone
and not to be recommended, Reference 8.

d) The Energy Theorem and Rayleigh's Principle

The kinetic energy of a vibrating beam with both types of
inertia is

3%y 2

L 2 '
_ m [dv J B
T=4 {7% 7 (——atax

and the potential energy with both types of stiffness
2

v=12 k + k

2 1 2

Substituting a motion in any particular normal mode shape

} dx (188)

9

vy, 2
-5 } dx (189)

2
Va
ox 2

v (x,t) = v(x) - eiwt (190)
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L

T = % (-w?) é (mv2 + J' véz) ax et (191)
v=17] (k v'2 + k v'?) dx e2iut (192)
2 é 1 B 2 VvV
From the energy theorem %E (T + V) = o:
L 2 2
(k v2% + k v}°) dx
w? = 6%,\Vz 2V (193)

L
2 ] 1 2
é (mv® + J Vg ) dx

This equation is exact for any correct mode shape. But it may
also be used as an approximation if we substitute reasonable

estimates instead. An admissible function for this purpose is

defined as one satisfying the geometrical boundary conditions of
the problem and being differentiable twice. It needs neither

satisfy the dynamical boundary conditions (shear force and bending

moment) , nor, of course, the differential equation.
Rayleigh's principle states then that the quotient (193) has

a minimum for the correct eigenfunction. Each estimate of Vg

vy results in an upper bound for m;, and one must skillfully select

admissible functions that result in low approximations.
Unfortunately this method is of no immediate usefulness in

ship vibrations because we do not have even a crude estimate of

the separate bending and shear deformations. Egquation (193)

may help, however, to discuss the effect of small changes in

svystem parameters if the original mode shapes are known.
= =

e) Empirical Formulas

There have been many attempts to estimate the natural fre-
quencies of the hull at an early stage of the design by means
of quick, approximate formulas. Since the characteristics of
the design are known only crudely at this time, one is interested
in formulas based on a few significant parameters whereas the
more subtle influences are accounted for by means of more or less

empirical coefficients.
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Regarding the transverse beam modes, we want to keep in
mind that according to the energy method the natural frequency
expression is of the following general form, equation (193):

L 2 L 2
k vic dx + k wv!©° dx
= {g 1 B é 2 v (193)

w;
? 2 J
1 ]
$ mv dx + 5 J VR dx

Any simplification of this formula will inevitably result in
some scatter in the correlation of measured data so that we
must not expect a single empirical coefficient. All the for-
mulas to be presented in the following must be used with care
and should be limited to ships of similar mass and stiffness

distributions.

l) Fundamental frequency of vertical vibration
An old, but still relatively successful formula is due

to Schlick (INA 1894):
N = ¢\/Z— (194)

where
N = fundamental frequency in cycles per minute

I, = moment of inertia of midship section about neutral axis
in%?ft?, counting only the continuous longitudinal members

A = displacement in long tons
L = length of ship in ft
¢ = an empirical coefficient

Schlick gave the following values for ¢:

¢ = 1.568 « 10° for very fine ships (destroyers)
¢ = 1.435 « 10° for fine ships (passenger liners)
$ = 1.279 + 10° for cargo ships, full lines

92



Todd, Ref. 4, found a little different values and recommended:
¢ = 1.3 » 10° for large tankers in full load

6 = 1.12 * 10° for cargo ships at about 60 percent of their-

full load displacement

We note that Schlick's formula contains the bending stiffness and
translational inertia influences of equation (193), but does not
directly account for the influences of shear and rotary inertia.

A formula given by Todd and later modified by Todd and Marwood
is of similar nature, but has the advantage that only the prin-
cipal characteristics of the ship are involved, but not I (see

Reference 4). Todd's equation:

L ] 3 .
N=2g~ /22D (195)

N = frequency in cycles per minute
B = molded beam in feet
D = molded depth at side in feet
A = displacement in long tons
L = length between perpendiculars in feet
B = empirical coefficient, with:
B8 = 61,000 for large tankers, fully loaded
8 = 45,000 for cargo ship, 60 percent loaded

Burrill's formula (NECI 1934-35) tries to account for shear

effects in order to reduce the variation in the coefficient:

Iy (196)

AL? (1 + %T)(l + )

where

N = frequency in cycles per minute
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2 3 2
r = 3.5 D°(3a® + 9a“° + 6a + 1.2) (197)

L2 (3a + 1)

= J. L. Taylor's shear correction factor

I, = moment of inertia of midship section in (feet)*

A = displacement in long tons

L = length between perpendiculars in feet
B = molded beam in feet

T = draft in feet

D = depth in feet

a = B/D

¢ = empirical coefficient, where Burrill found ¢ = 200,000
* 5%

For some other, generally more elaborate formulas, see
References 4, 5 and 6.

2) Fundamental frequency of horizontal vibration

If we assume the distributions of ship stiffness and inertia
to be similar in the vertical and horizontal modes the natural
frequencies would be related as

- ]
Ny N xx Ay
N T AT (198)
v XV H
where
I

xv’ Igg = vertical and horizontal midship moments of inertia

N 8

displacements in vertical and horizontal modes in-

cluding added mass effects

For the two-noded vibrations this ratio was observed to be
fairly uniformly between about 1.3 and 1.5, References 4 and 6.
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3) Higher flexural modes
For a uniform beam with free end conditions the lowest three

natural frequencies would have ratios as 1:2.76:5.4 for any of

the flexural modes.
For ships the steps are smaller. Reference 6, on the basis

of the average of seven ships, recommends the simple rule (for

vertical and horizontal modes) :
1:2:3:4: ....

Zggg, Reference 4, quoting numerous observations, gets to
the same conclusion regarding the average, but shows a fair
amount of variation with ship type. While tankers conform with
the above average rule, ore carriers exhibit greater, and pass-

enger and cargo ships smaller variations than average.

4) Torsional freguencies

The fundamental torsional frequency can be estimated by

g * k
N =60 ¢« k 3 (199)
A + (B + D?) - L

where, in any consistent units:

Horn's formula:

molded beam

= depth

length

= acceleration of gravity (Length/second?)

-1 o w
i

= displacement
k = torsional stiffness, defined as in equation (96)

A w
Il

empirical coefficient

Horn found k = 1.58, 3.00, and 4.07 for the first three tor-
sional modes (Werft, Reederei und Hafen 1925). In the case of

a Mariner ship the ratios of these values were found to be
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similar, but in one other case even the fundamental mode showed
a big discrepancy in k, References 4 and 6. Experimental evi-
dence is still too scant for any definitive conclusions.

Kumai suggested the slightly more elaborate formula: Ref-

erences 4 and 5:

g k
3 (200)

where, in any consistent units:

2
A( 1 + n)ro L

N = natural frequency in cycles per minute
C, = prismatic coefficient

g = acceleration of gravity (length/second?)
k3 = torsional stiffness as in equation (96)

A = displacement
r, = radius of gyration = 0.306 /Bz + D?

n = coefficient of torsional mass moment of inertia

L,B,D = length, beam, depth of ship
A = coefficient obtained by Kumai by analysis of tapered
beam. For values, see Reference 5.

5.7 Propeller Excitation

The impressive amount of work done in the field of pro-
peller excitation may be appreciated by looking at References
18-34, which are perhaps representative, but far from complete.
Propeller bearing and hull surface forces have both received
considerable attention from analysts and experimenters.

a) Bearing forces

l) General discussion’

Bearing forces (propeller forces) are experienced by the
propeller operating in a nonuniform wake field in the vicinity

of the hull and its appendages. The propeller transmits these
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forces into the hull by way of the shaft bearings.

The total effect of hydrodynamic excitation at the pro-
peller may be resolved into six components: three forces
and three moments, Figure 33. The longitudinal force, FX'
and the moment, QX’ represent thrust and torque variations
that excite the shafting system and whose reactions are taken
up by the thrust bearing and the engine. The other four
components, F_, F_, Q. Qz, excite the ship hull through the

Yy z Y
stern bearing, and some neighboring bearings if the stern frame

is not perfectly rigid.

The analysis of the bearing forces starts from a given
wake velocity field. This velocity field may be obtained either
from direct model test (wake survey), or from data for similax
ships. In this context, it is of great value that a large
amount of wake survey data, derived from numerous single-screw
and twin-screw models tested at NSRDC.(ex DTMB) , has been pub-
lished by Hadler and Cheng, Reference 30. These data are fur-
nished for various typical stern configurations. The results
are presented in the form of harmonic compohents of the
longitudinal and tangential wake velocities, V. and V., res-

L
pectively. For example, for the case of a single screw (starboard-

port symmetry),

o

VL (r, 9) = Z ay (r) «» cos k O (201)
k=0

v, (r, 2) = 2: b, (r) - sin kx O {2352)

T =0 k

where O = angular coordinate in propeller plane, Figure 34.

To illustrate the basic force mechanism by which the wake
fluctuations produce force oscillations, let us consider the
simple case of the flow about a foil in a slowly varying inflow

(quasi-steady case), Figure 35,
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Fig. 35 : Velocity diagram
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The l1lift of the foil for a small angle of attack, a = v/V,

is from thin airfoil theory:

L ~ p/2 V% c +» 2m0 = mpcvV (203)

p = fluid mass density
¢ = chord length
L = 1lift per unit span

Introducing the perturbations év, 8V, we obtain the lift

increment:
SL = mwpc (VSv + véV) (204)

We may now regard the element as a propeller blade element,
which defines the role of advance and rotational speeds and
pitch angle B, as in Figure 35. If we assume a wake variation,
§s, reducing the net advance speed and increasing the angle of

attack, we read from the figure:

Sv= 6s cos B elmt (205)
. iwt
§V ==8s ¢« sin B +* e (206)

Substituting (205) and (206) into (204):

wt

8L = mpecds (V cos B -~ v sin B) el (207)
and with V cos 8 = Qr, @ = angular velocity of propeller, r =
blade section radius, and (v tan 8)/V << 1l:
~ iwt
8L * mpc Qrds e (208)
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The integral of this expression over the radius would represent
a crude two-dimensional, quasi-steady approximation of the
variable lift acting on one blade.

Several refinements are, of course, necessary. The most
advanced theory on this subject was recently presented by
Tsakonas, Breslin, and Miller, Reference 29. This theory is
an unsteady lifting surface propeller theory properly allowing
for the helicoidal vortex wake, blade interference, finite
aspect ratio and arbitrary velocity distribution in the wake.
The theory is valid for small angles of attack, thin blades
without cavitation, and negligible drag effects. Further simp-
lifications were necessary in the numerical evaluation of the
theory. But the correlation of the theory with tests taken
behind wake screens was surprisingly good despite all approx-
imations.

The result of the hydrodynamic theory is an expression for
the 1lift of a blade element at radius r of the n'th blade, being
at the instantaneous angular position 0 + ©,s Figure 34.

Leod

- . o1k (0+0p)
dLn = Re {ZO Ck e }

— dr, k0 = wt = kQt (209)
where
@ = angle of reference blade, n = 1
On = Eﬂ%&:ll + N = number of blades,

and Ck = complex amplitude of k'th harmonic.

Note that, contrary to the simple case of equation(208) ,the force
has a phase lag relative to the corresponding wake harmonic
because of unsteady effects.

The longitudinal, transverse and vertical component of the
lift element are (Figures 34 and 35):
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den = dLn cosB
dFyn = dLn sinB cos (O+On) > (210)
szn = dLn sinB cos (@+On)

/

where 8 = hydrodynamic pitch angle.

The effect of all blades is obtained by summation. It will
be shown in section 2 that in this summation only the forces of
blade frequency, N2, or its integer multiples, are retained.
The results for the blade-frequency forces are:

. \
de Re {N . elNQt C } cosB dr

N

iNQt

N .
dFy Re {7 e (CN___1 + CN+1)} sinB dr (211)

~

sz = Re {g; eiNQt (CN_l - CN+1)} sing dr
/

Corresponding expressions are obtained for the moments,
Reference 29. The total propeller force is obtained by radial
integration of the above expressions. It is interesting to
note that these formulas reveal the reasons for the beneficial
effect of propeller blade skew-back on bearing force excitation,
which has been observed frequently. If the complex amplitudes
CN’ etc. are sufficiently out of phase radially remarkable
cancellation effects may take place.

It is also worth noting that the outer radii seem to be
contributing more to the thrust fluctuation (cos R) than the
inner ones, and conversely for the other two forces.

However, the main conclusion from equation (211) is the
fact that only forces of blade frequency and its multiples are
acting on the propeller (ANf). The blade frequency term (A=1)
is practically by far the most important part.
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Further, one observes that:

1. The thrust variation de (and the torque variation de)

of an N-bladed propeller is proportional to the blade-
force harmonic of order N, CN’ and is caused by the

corresponding wake harmonic.

2. The lateral and vertical forces, dFy, sz, (and the
corresponding moments de, sz) are proportional to
combinations of the blade-force harmonics of order
(N-1) and (N+l) and these wake harmonics cause the
excitation.

Therefore, to get a complete picture of blade-frequency
propeller excitation, we must look at the radial distribution
of the blade-force harmonics cN—l' CN' CN+l' both by amplitude
and phase.

This information in conjunction with wake data (e.g. Hadler
and Cheng, SNAME 1965) will guide the designer in selecting the
number of blades from the vibrational viewpoint.

It must be added, however, that regarding surface force
excitation the propeller does not act as a filter. All harmonics
present in the wake result in pressure variations of blade fre-
quency and its multiples) that are transmitted to the hull

surface.
2) Proof

We want to prove now that only the forces of blade frequency,
NQ, and its integer multiples, ANQR, are acting on the propeller
whereas all other blade forces cancel each other when summing
up over all blades. Starting from (210) for the longitudinal,
transverse and vertical components of the lift element we

obtain by summation for an N-bladed propeller

x® N
dF_ = Re Z C, ° elk(e+®n)}cose dr (212)
X k=0 n= k
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dF_ = Re E: c, ° elk(e+en)- cos (0+0_ ) sing dr
y Y K n

(212)

We can now derive two addition theorems

Re {eik(e+en) . cos(@+@n)} = cos[k(6+0 )] - cos(@+@n) =
= 5 {cosl(k+1) (040, ) T +cos [ (k-1) (o460 )T} =
2 n n

B % Re {?i(k+l)(e+en) . ei(k—l)(e+enq

(213)

Re ﬂgik(9+9n) . sin(e+enq. cos[k(6+0)] - sin(e+0_) =

= 5 {sinl(k+1) (e+6 ) 1-sinl(k-1) (6+0 ) ]}

N N

Im {ei(k+l) (0+0) _ i(k-1) (@+en)}

- He ié_l (of (k1) (040) __i(k-1) (e+en)}

(214)
Substituting (213, (214) in (212)
] N :
de = Re Z Zl Cx elk(e'*'en)} cosf dr
k=0 n=
) N
dF. = Re {3: z: C (el(k+l)(@+en) + el(k-l)(o+en4} sing dr
Y 2 k=0 n=L K
0 N ) .
sz = Re.{%r }: Ck el(k+l)(e+@n) - el(k-l)(®+eny} sinB dr
1 x=0 n=1
(215)
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These expressions contain summations of the form

=] -] N
n= n=

k=0 =0

where g = (k-1), k, or (k+1)
_ 2m(n-1)
and On = —5

It can be shown that
i 2mg(n-1) N for g = AN, A = integer
i iq@n - N
e = e
n=

= (217)
n=1 O for g $ AN
Resubstituting k for g = AN, with 0 = Qt
\
(-]
dF_ = Re z: N «C elxNQt cosBf dr
X — AN
A=l
) ,
_ N Z iANQt .
dFy = Re {é = e (CAN-l + CAN+1)} sinB dr (218)
_ N Z iANQE _ .
dF, = Re 2 & e (CAN-l CAN+1%' sinf dr )

b) Surface forces

Surface forces have been found to be more important than
bearing forces in twin-screw vessels, but also with some single-
screw stern arrangements, Reference 18. Much new knowledge has
been acquired about these effects in recent years, References 3,
12, 13, 21-23, and 27.
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The basic effect is easily described. As the blades of the
propeller pass by the stern frame and other adjacent parts of
the hull structure, they cause a cyclic pressure perturbation
at the hull of blade frequency (and of the multiples of blade
frequency). The pressure disturbances are caused by both the
thickness and loading of the blades (displacement flow and
circulatory flow).

The effects are magnified by the nonuniformity of the wake
and the presence of the hull (image effect).

The prediction of propeller-induced field pressures is
possible at various levels of refinement. In reference 21,
Breslin and Tsakonas presented a theory, accounting for thick-
ness and loading (lifting line model), for the free-field
pressures of a uniform~-wake propeller. The pressures could be
expressed in simple asymptotic formulas, and good correlation
with tests was obtained. In Reference 13, Tsakonas, Breslin,
and Jen discuss the effects of a nonuniform wake.

The presence of a wall is more difficult to account for,
except in the case of a flat plate parallel to the propeller
axis at which the pressures would be intensified by a factor
of 2 (image effect). In Reference 27, Breslin and Eng showed
a procedure of calculating the intensification effect for a
ship-shaped boundary by means of the three-dimensional potential
flow program of Hess and Smith. They also used a refined lifting
surface theory by Kerwin, Reference 31, to predict the propeller-
induced pressures. The whole procedure was too time-consuming
for design purposes, and further efforts to cut ine computer time
would be of significance.

Until these difficulties are resolved, the designer can use,
as a simple shortcut, pressures predicted by Tsakonas, Breslin,
and Miller, Reference 29, or the asymptotic formulas of Breslin
and Tsakonas, Reference 21. In this connection he would have
to apply semiempirical intensification factors tailored to suit

the shape of a ship.
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Let us assume then that from any of these procedures we
shall have available expressions for the vertical and transverse
components of the hull surface forces of excitation by amplitude
and phase. After beamwise integration of the corresponding
pressure components, we obtain forces per unit length.

iwt

Py (x,t) = p, (x) + e
. (219)
Pp (x,t) = By (x) - ™*

where
pv(x,t), EV(X) = vertical force per unit length, and its
complex amplitude
pT(x,t), Ef(x) = transverse force per unit length, and its

complex amplitude

5.8 Steady-State Response

Several methods have been applied to the steady-state response
analysis of ship hulls, Reference 6, notably modal analysis, the
impedance method, analog computer techniques, and the finite
difference method. The method of modal analysis, well-known in
beam vibration theory, meets with some fundamental objections when
damping is involved, but has proven practically acceptable, Ref-
erence 6. Finite difference techniques (discrete disk substitution
system for ship) have been successful and are fairly universally
applicable.

In the following a new solution technique shall be proposed
which is based on a stepped beam approximation of the ship. It
is an adaptation of Csupor's transient response technique of
Reference 8. The fact that mass, damping and excitation remain
continuously distributed variables in each beam segment gives the

method some superiority over the discrete disk system, but at

108



the expense of more computational effort in the treatment of each
beam segment. In most other respects the two methods are exactly
analogous. The equation of motion for the forced vertical vibration

is derived from Figure 36:

Equilibrium of forces:

3% _ 7 3V —
m;;dx—-é—idx Cs—EdX'l‘p(X,t)dX
or \ (220)
v 3%v W =
= 4 -
ML Tow P E
where m = mass per unit length, including hydrodynamic mass
¢ = damping force coefficient per unit length
= Smw, S ® 0.03, Ref. 6
p = complex excitation force per unit length
v = complex total displacement
V = complex shear force
Equilibrium of moments:
= 3%V,
M_F - g B (221)
x dt?9x

where M = complex bending moment

VB

complex bending displacement

JI

rotary inertia of beam element

The load-deformation relationships are in correspondence to

the stiffness definitions (86) and (87)

9%y
1: (222)

M =-k

ox
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. STATIC. EQUILIBRIUM LINE

sign convention

=X, +M 1Iry ,p(x’t)
\\\ri/l )+M
+'£r +\/
+Vv +\—/
N
o =g+

e— X ——=

barred quantities are complex

Fig.36:Free body diagram ot shiplike bean element
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aV ~c 3{7_
T=k —Y =%k (EX- B) (223)
2 X

Vv = complex shear displacement

Separation of variables is accomplished by

T(x,t) = v(x) - et \

Ty (x,t) = Ty(x) - oMUt

Vix,t) = V(x) - etut $ (224)
M(x,t) = M(x) - elvt

B(x,t) = p(x) - et )

Substituting and dropping the time-dependent terms:

av —

From (220): g = -0’mv + icwV - p
— av.
Y 2ey VB
From (221): d_X =V + wd —ax
a% (225)
From (222): M = -k B
1 gg?

— av,
= _ dv _ B)
From (223): V = kz(ag dx

This set of four complex differential eqguations is used to
deal with the dynamics of each beam segment. The stepped beam
method keeps the quantities m, ¢, p constant within each segment.
In a preliminary step of the procedure the equation of motion is

determined for each segment with its given parameters. It is
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then possible to prescribe boundary conditions at the left-hand
end of a segment and determine the conditions at its right-=hand

end.

Suppose we give the quantities Vins Vipe GiL' Vi1, at the
left hand end (L) of segment i. The corresponding quantities
at the other end (R) are then

Vig = A, Vi (226)
where
siL’ ;;R = matrices of the Vi -derivatives at (L) and (R)
A; = transformation matrix for beam segment

In making the transition to the next beam element, k, we use
that v, Gé, M, and V are continuous, but v', ¥v", ¥™, are not
because of shear deformation effects. In making the transition
we use equations (225) and the conditions

Vir T Vkr’ VBir T Vekn’ Mir = Mg Vi = VkL

In matrix form the operation may be summarized as

KL i Vir = BjA; vip (227)

<
f
w

= matrix of v, - derivatives at (L) - end

kL k
of segment k =i + 1.

<

These equations are used internally in the actual solution
procedure. The technigue proceeds in the following steps:

1. Assume the amplitude GEL = {1; o} at the left end of the

— -
beam, but Vi = O and no excitation in the system. Set V;L and
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§;h corresponding to the free end conditions. Find the complex

rest moment and shear force at the far end. For example Vﬁ =
£ + if .
1 2

2. Apply the amplitude v.. = {o; 1}. The rest shear force

1L
would now equal

VR = -f2 + 1f1

= . ! =
L {1; o} and Vi

{o; 1} in successive steps with no excitation. Determine rest

3. Analogously, apply the slopes V;
quantities.

4. Apply ViL = V'iL = o0 at the near end, but all the exci-

tation, and find rest gquantities.

5. By superposition, find a linear combination of the first
four inputs that cancels the effect of the excitation at the far
end so that the free-end conditions are satisfied there. This will

lead to a system of equations for four unknowns.

6. With properly determined coefficients, repeat calculation
with all inputs and excitation applied to determine actual response.

The end conditions will be satisfied automatically.

7. Evaluate response, decomposing amplitude and phase of the

complex quantities.

This method has not yet been applied, but should have similar
properties as the discrete disk or finite difference method.

Interesting results from steady-state response computations
are reported in: W. B.Hinterthan, W. R. Fontaine, "Prediction of

Hull Vibration," First Conference on Ship Vibration, Hoboken, 1965.
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6. PREVENTION AND CURE OF SHIP VIBRATION

In preventing ship vibration problems while the design is
still on paper and in curing trouble by alterations in the
finished stage, we rely on essentially the same catalog of
measures, although obviously there are differences in the fea-
sible scope. 1In the following no special distinction will be
made between these two stages, and it will be self-evident to
what extent certain measures are applicable in each case.

The literature is full of special case histories, which
are recommended for reading, and good surveys are given in
References 4, 5 and 6.

Reference may also be made to my paper "On the Steady-State
Ship Hull Response," presented to SOBENA in August 1968, where
a rational design and selection process is discussed under the
assumption that comprehensive information on the vibratory
behavior of the hull is available. 1In contrast, the following
will deal with current practice where decisions are often
hampered by lack of full, reliable evidence.

Before discussing measures for vibration reduction we must
define standards of acceptable vibration. The question has a
subjective element because beside the possibility of structural
failure by dynamic loads and fatigue, vibrations are also ob-
jectionable because of their effect on the human and his working
and living environment.

The tolerable level of vibration amplitude depends much on
the frequency, whereas the sensitivity to accelerations is fairly
uniform throughout the frequency range. Most suggested sensitivity
scales are therefore pertinent to accelerations. (Conversion:
a=(2mf)2ey,v=2n7fy, y=displacement amplitude, v =
velocity amplitude, f = frequency, cps). To give a few examples
(for more details see originals, and Dieudonné, TINA 1959):

Lewis, U.S. Navy, Ref. 3:
v € 0.75 cm/sec for tolerable vibration.
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Kumai, Ref. 5; thresholds of unpleasantness:
a < 0.015 cm/sec? for horizontal vibrations,
a € 0.03 cm/sec? for vertical vibrations.

We now want to turn to a discussion of vibration reducing
measures. The basic strategies may be listed as follows:
1. Reduce excitation
2. Avoid resonances
a) by selection of operating speed
b) by choice of mass distribution
c) by choice of stiffness distribution
3. Increase damping (not actually feasible)
4., Introduce new degrees of freedom.

Excitation reduction.

Periodic shipboard excitation may be due to the main engine,
the propeller, and the auxiliaries.

Shaft frequency excitation is in general due to unbalance.

Engine unbalance is a particular problem of reciprocating engines
(diesels) whose cylinders have unbalanced mass forces (horizontal
and vertical). A multi-cylinder engine with a rigid base can be
mass-balanced so that the resultant excitation force and moments
are minimized. Complete mass-balance of force and moments requires
a minimum of six cylinders for four-stroke engines, and twelve
cylinders for two-stroke engines. For more details about fav-

orable cylinder numbers, see marine engineering literature.

Propeller unbalance may be due to differences among the
blades in their mass or pitch distribution. For some recommen-
dations on propeller manufacturing tolerances, see Reference 3.

Unbalance of the shafting system may be caused by misalignment

and static deflections of the hull. It may result in flexural
criticals of the shaft (whipping).
The hydrodynamic reasons for propeller blade frequency
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excitation (and blade frequency multiples) have been explained .
in the sections on bearing and surface forces. These forces
depend on the wake field and many characteristics of propeller
design and stern configuration.

The clearances of the propeller are a most significant

parameter. Figures 36 and 37 (from Tachmindji, McGoldrick,
"Note on Propeller-Excited Hull Vibration," JSR 1959) show the
trends for the propeller-induced pressure variations. The
maximum pressure fluctuation occurs in a plane a little ahead
of the propeller. This suggests generous forward axial clear-
ance, but also a fair amount of distance from the rudder. The
benefits from sufficient tip clearance are similar, but returns
diminish rapidly beyond t/d = 0.15. This constitutes only a
single case, and for more detailed information one may refer to
the asymptotic formulas by Breslin and Tsakonas, SNAME 1959.

Rake in the propeller is a means of providing more forward
axial clearance at the expense of rudder clearance.

In practice, the tip clearance was sometimes increased by
cropping the blades if the corresponding increase in RPM could
be afforded.

The beneficial effect of skew-back on the bearing forces has
been mentioned in section 5.7. Similar advantages may be ex-
pected for the surface forces.

The occurence of cavitation has adverse effects on bearing

and surface forces.
Obstructions in the propeller inflow regime (condenser

scoops, etc.) ought to be avoided to enhance low propeller exci-
tation.
Avoidance of resonances.

The chances of avoiding resonant conditions throughout the
range of operating speeds and loading conditions are practically
nil. Figure 38 (from McGoldrick and Russo, SNAME 1955) shows
the resonant hull frequency bands for S.S. Gopher Mariner, and
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Figure 36 — Variation of Pressure Amplitude
with Axial Distance from Propeller

Figure 37— Variation of Pressure Amplitnde
with Radial Tip Clearance ¢ (in a Plane
Ahead of the Propeller Plane)

Figure 38 — Frequency of Hull Vibrations
versus Propeller RPM Based on Experi-
mental Data, GOPHER MARINER, with

Torsional Effects Neglected

(From Figure 1 of Reference 6 .

The above figures were reproduced
from Reference 34.
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the shaft and blade frequencies as a function of the propeller
speed. The shaft frequency is between the two-noded horizontal
and the two noded vertical resonance in the range of 85 to 115
RPM. But the blade-frequency for 4 to 6 blades can not avoid
being in reconance with some of the higher modes at speeds
fairly close to the full power condition.

Fortunately, many of these resonances turn out to be of
tolerable severity so that in the present example a four-bladed
propeller could even by afforded.

The freedom in the choice of mass and stiffness distributions

for the hull girder is also very limited. The effect of some
systematic variations in ship proportions, arrangement (engine
room location), loading, and structural stiffness, on the
dynamic response of the hull is discussed in a reference by

R. G. Kline and R. W. Clough, SNAME 1967. See also Reference 4.

It should be noted that concentrating weights near nodal
points tends to increase the natural frequency of the corre-
sponding mode. Conversely, locating the machinery space and
other light spaces near nodal points will tend to reduce the
natural frequency.

In the same context it must be kept in mind also that engine
unbalance exciting forces will do no work in points of zero dis-
pPlacement (nodes) whereas the unbalance moments do no work where
the slope is zero (antinode).

The natural frequencies in ballast have been found to be
somewhat higher than in the full load condition as one might
expect. Todd, Reference 4, states that the differences in the
two-noded vertical frequencies were in excess of those computed
from Schlick's formula.

Resilient mountings.

Mounting shipboard equipment on soft springs may be done for
two reasons: To protect the equipment from the effects of ex-
cessive motions of its base (transient or steady-state); or if
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the component is a source of excitation itself, to reduce the
effect of this excitation upon its vicinity and the hull girder
in general.

In both cases the natural frequency of the mounting must be
low compared to the frequencies it is supposed to filter out.
The function of the installation may be understood from the dy-
namics of a simple mass-spring system. In the first case, we
use the fact that a base-excited system shows vanishing motions
of the mass at high excitation frequencies. In the other case,
we take advantage of the property of a mass-excited system that
the force acting on the base point approaches zero for high
frequencies.

Care must be taken to avoid the ill effects of bottoming of

the mass due to impulsive loads.

Local vibrations, sprung-mass effects.

Local vibrations are a frequent occurrence aboard ships.
Vibrating panels of decks, bulkheads, the shell plating, masts,
parts of the superstructure, struts, skegs, rudders and other
appendages are typical examples.

Most of these vibrations occur at relatively high frequencies,
near and above the highest hull modes (6V, 4H) that are of sig-
nificance. These frequencies are the resonant frequencies of the
local structural elements.

Because of the resonant nature of these vibrations a small,
otherwise unnoticeable amount of excitation, transmitted through
the hull girder to the base of the local element, is sufficient
to cause significant vibrations.

The analysis of local vibrations can best be accomplished by

treating the vibrating elements as sprung masses. In the general
case, one would work with a substitution system consisting of a

lumped, effective mass and a system of spring supports, capable
of moving in six degrees of freedom. This model serves to predict

the local resonant frequencies. See References 6 and 7 for some
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rules for the lumping operation, and for the dynamic analysis
of the system. '

The presence of local modes may influence the dynamic pro-
perties of the main hull. McGoldrick, Reference 6, states that
this is of significance if the local mass is above 0.5 percent
of the displacement and if the local natural frequency is within
the range of significant hull frequencies (< 800 cpm). The
effect may be understood as an extended analogy of the absorber
effect described in section 3. One observes that:

a) The hull natural frequencies below the local resonant
frequency are lowered, those above are raised.

b) The additional degree of freedom results in one addi-
tional resonant hull mode. The two hull modes neighboring
to the local resonance may be very similar modes, only
differing in the phase between mass and hull. One of
these modes may be counted as the additional mode.

The cure of local vibrations is often relatively simple.
Moderate stiffening is usually sufficient to remove the resonance.
Stiffening is most effective in the antinodes of the mode shape.
In panel vibrations it may be possible to reduce the free span
by redistributing stiffeners without installing more weight.

For more recommendations, see References 4 and 6.

Local Stern Vibrations.

In some instances significant vibrations have occurred in
ship sterns that could not be fully explained by beam theory,
the motions in deck and bottom structure being inconsistent with
simple flexural hull modes. Reference 5 gives an interesting
case study.

As an explanation for the effects, several interesting hy-
potheses are advanced in Reference 5 (in the order of significance):
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