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TRANSLATORS' NOTE:-

In this paper the symbols used for the hyperbolic

functions have the following meanings:

sh = sinh

ch cosh

th

tanh



We consider the problem of non-steady motion of a surface
pressure distribution of arbitrary form p(x, y) over an area {i.
A coordinate system (0, %, y, 2) is fixed on the undisturbed
surface, where x is in the direction of motion and z is vert-

ically upwards.

The disturbance potential which is caused by this pressure
distribution is defined by the solution of Laplace's Equation,
Ap = 0 with the following boundary conditions:

On the free surface:

3,00, 28 _, 0% dvdy__ 00y o, %

at? ' Gx ax? 2V mat dt ox -~ %At 2
at z = 0. (1)
On the bottom:
QY=0 at z = -H. (2)

Jx

In expressions (1) and (2) all the variables are non-
dimensionalized with respect to 1, the half-length of the
pressure distribution (see Fig. 1), po, the characteristic
pressure, and g, the acceleration of gravity. The disturbance

potential ¢ can be represented by the following integral form:

- d+_/52 , 2 . ‘
$(x.y. 2,0 mf[[ﬁ(t) +B(t)ev“2’ﬁ z]ec(ax ﬁy)da(ojs

~0o ~00



We consider the case when i?uaa. Let us assume
a 3 - [or(x%5)18(y-Yo)]
xv 2 M/[dddp/[xzr Pu (x,,,) e ardy, .
Making the substitutions
o= Kcos8, B=K sin8 ,
we get
o £ . .
-KE xz; i[xcos8+ysin8] K
y(z,y,z)-r‘ﬂ[xdufa’a [At)e " Bit)e]e s (3)
-
and
20 g% =fk’dk’{ 8 ’[fr/j dpy 'u«[(x-x,)cosa+(y-y.)sig§{dyo . (2)
[
Py s
z LT p
Lt ol ! I ~——
J:
y.
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Fig. 1

Substituting (3) and (4) in (1) and (2), and equating
the integrands (because the equality must hold for all
k and 6), then expressing B in terms of A4 from equation (2)

and substituting in (1), we obtain



d?A

JF7 = t+rlheH + /lv(z/« 0038) ?t} (1/«:058) A d"(u.' 038) =

2~~ -cxpgco:6+305uve)
= (1+e jOCVU' ax,dy, (5)

Now let us introduce the function

—ik'casa-[v‘dt (6)

A,=A ¢ l »

To determine 4; we note that it satisfies the differential

equation
d DL+ A wthkH=1(¢.6,1)
az ( ’ (7)
where
~(KCo 85 - ;
f(/e,s,t)=g 3 )1[9“7 aPu LK{IO[058+%5meg7'I,dy,,, (8)
and 5i/&d1 ’ (8a)

Solving (7) with zero initial conditions,

, dA
t=20 .A"—'D, —a—tl_—

(equivalent to Y¥=0 and £$1=-0 ), by the method of variation

of the integration constant, we get

A,=(31rffcoj é‘ta’t) Sin é‘t—(afrf/ﬂn J‘tdt) cosdt +

1
+ (- nd { n (9)
( Tf{ta;é’z‘a'tg.osm t+6rf7’.m é‘tdt)t-ocaj dt,

where & = KthiH .



Therefore the disturbance potential is

oe . 4

¥ (x,y,2.t)= ——-, kdk| d8-A, - e
¢ - (10)

-N2  K(2H+X (N{xcos8 +ysin 8
X[e o (: )]e ( ysin 8)

ixco:afvdt

The wave resistance is obtained from

_ at
assuming that R is equal to the horizontal component of the
pressure acting on the area . In formula (11) all variables
are dimensional. In non-dimensional form it would be

ac
- x, dxd
po[’ /ﬁU( g) y
GC aPu az az =
— gy v - at z2=0,
axf ~ dxat
ax dx x (12)
9p. a3y =
/ "Pu el fﬁ’u = 0%y ‘fﬁ’ua atdxdy
- ‘7' +32-‘73 .

In the last equation the first term is the horizontal
component of the pressure, the second is equal to the resist-

ance during steady motion, and the third term occurs only

because of the unsteadiness. We can obtain

J/f-z;fxdx da A, (f+e (t/(caw) G(k,8)e tkeos§:3 ’ (13)

) =fﬁue[x(1c056+ ysin e)dxdy ; (14)
(7]



oo n
and J= 177’7 /\'dl\‘fda .g_?ii (1 rg”")g““waswcoye)G(x 8)+J, (15)
o -z

The wave resistance can be evaluated from

p, r dA
pfr“ff"/’u dxdy- 4:2[”"” (e ) x

(16)
X(H(co:rﬂ)e‘“”as G« 68)de ,
On the basis of (9)
gjt‘ = Cyp 0c03 8t — Cgo 8'sind't + co3 ﬁt/fco;é‘tdt +5in Stf{.sm Stdt, (17)
And from (8)
[{co!é‘tdt fxzr ixcos8 SC !;t(H 2KH ,[[g_i:_ e-ix(x,cosh%.su&;) dy,dt:
=x(1+eZ”H)"G*(~, g)[ ve KO0 s Ftdt; (18)
ap —w(xco:8+ 5in8)
where G'(I( 8)—/[ ‘e J dxdg . (19)
Identically
[{:m ftdt =x (/+e )" ¢ (xe)fzre tcoss {S'm Stdt (20)

If the motion started from rest, i.e. v»>0, t¢+>0, then,

using (8), (9), (18) and (20),
‘?A —x (1+e"™)1 6% n0) P r.8,1), (21)
where

-iK 85
¢?x,o,t)= [co:é‘tﬁfe o co;d'to‘t +3m6’ﬁ}e m:md‘tdt]; (22)

R u d . * 6
.;o{-, fpua dxdy - “,/}d:( (wco:&)@(f,e)(}(x,a)¢(x,a,t)a’ ; (23)



and

dxcosr8-s —ixScos8
P 6t)=¢ [coaé‘tfzre cosOtdt +

-inScos8
+ sin Ot / ve " sin &tdt] .

(24)

Let us now use this solution to calculate the wave re-

sistance for the case of a constant pressure distribution

acting on a rectangular area with u = b/7 moving at a constant

speed over deep water. Let us assume that the speed changes

according to Fig. 2 below.

v

Fig. 2

For t + «, the required functions become:

2, .
U'(-ikcos8)
¢(Kv8,t)= J"-R’CO!IG'VQ '
(P, Sin(kcos8)sin(Ku sin @ . =
6*(1(.8)= L “‘.n)e (ret ) + ik cos8 G(x8) ,

' in8)-sin(x cos8)
G(K6)=14 sen(ku stnb)
(x,6) = 4p, KSin 8- K cos8

P .2 . .2
GG =32 puz sin {k‘u .s;tn 8) sun"(¥ cos8)
K°sSin®8-xcos8

(25)



R X . s2p, sinz(l(.u sin @ )sin'(x c036)
== [xd¥l(ixcos6)- u
pp?‘ 124 "/ /27 c048) K*sirf® x cos@ X

0o I
’ .
U(-LKcos6)
X i Tcoslg. 0! a6

Substituting

we obtain

te T P sin V) sin'd ol A Add
R___8px da t:um.ll-:()ﬂn
2l 7t -« )(.#‘ -d') Vaita? ¢ (26)
‘ -

The integrand has four poles on the real axis, at a = #A

and a = t/A/v (Fig. 3, below). To calculate the inner in-
tegral we use the theorem of residues. For the contour of

integration we take the semicircle Cr of infinitely large
radius in the upper half of the complex plane o, going under-
neath the poles as shown. Substituting A = t?/v? in (26),
we obtain finally, as a particular case of (23), the estab-

lished formula of B.P. Bolshakov.

loo

YA
v b -
U \UJ




e 2 F
16p,, L* Kt V- dt
R= y_pu sint —— sin? “¥ 7 ’ (27)
g 2 2 (t:-1)3
1
2gf
where = .
K=yt

TWO - DIMENSIONAL PROBLEM:-

In this case the velocity potential can be expressed as

P(x,%,t) =_/[(Acou’z+ Csin KX)ChKZ +
Q

+ (Bcos kx + Dsin Kx)sh A'z] dx , (28)

where A, B, ¢, Dare unknown functions of ¢ and k. For the

solution we employ (1) and (2). Assuming apu/at = 0, the

right-hand side of (1) can be written as a Fourier integral:

XV %: %/a’-/«l %ﬁ coax(u-x)du =

-_-.ff"(x, t)cos kx dx [fz(k’,t)é'ifi Kx dK ,
0 . o
where
-1

' !
é(x,t)= %E/puxsin Kudu; f;(x,t) =— %/puxcou udu.
-1

After substituting (28) into (2) we obtain the following

system of equations:



AShwH = Bch vH

Csh kH = Dch kH | ? (29)
B=Ath KkH|
D=Cth kKH (30)

Substituting (28) in (1) and equating the coefficients

of cos ka and sin kx we obtain the following system:

02A 2 ac dv
S5 T KB- ki - 20K —F —K c—{(xt)
(31)
92c dA
S5 KDk zr’c+2wat +/\’ A £, (x,t)

Eliminating B and D from (31) and (30), we have

2 ac
+[kthKH /«zr]A zwat K—C—,( (%,t)
(32)

62
d’c 2,42 A
‘-ﬁ;—[/«tnm-xv]c—z at—x—A £, (x.t)

Multiplying the second equation by < and adding to the

and introducing

xS xS N
A =Ae ;¢ =ce 5= fvat

first,

we obtain the following differential equation for ¥, which is

represented as
W=A+iC;

d'w,
Sk + KhKW, = {ee.ty,

/(e,t)=e”5 [{,’(x,t)+i{",(x,t)],

where



10

The solution of this equation with zero initial conditions

is
Wl=%;fdl—y‘{c05ftdt— %&ﬂsinzﬁ‘a’f+
4 ; . .
+ (é,//smé't‘a’t)tzogoffn(- é—ﬁ(ca:zf’fdt)t{tg St . (33)
If the motion starts from rest, the two last terms be-
come 2zero. Then
W= 200 oo Gt - 201 in grat (34)
4 4
The functions 4, ¢ are
- -(Ks (35)
A=Re(we ),
and C = Jm(vqc'ixf). (36)

The velocity potential is then

Y(I,Z,f)=f {Re (W,e—i“) [chxz+ tth-Shuz] cofﬂ.i +
0

+Jm(we'" ) [chez +then- shea] sin Rx} d (37)

where W ; is given by (34) and s = [fv dt.

The wave resistance is

1 2
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Substituting (37) in (38) and reversing the order of

integration, we obtain

f oo . [- 4
d
pk{ =-x/pu—a-% dx—lf!/(’kt (<P-G)a’x-//(7; [Jm(f!’-e)]dx, (39)
(] -7 .
: ~tKS
where ¢(l(,t)=W,€ :

{ _
9("’)=/Pu€ iz (40)
%

Using these solutions for the case of constant speed,

we get Lamb's formula for the resistance:

2
R:ieu_ Sinz_g.e_ N (41)
y

The results of the investigation of the wave resistance
for the case of a constant acceleration, using (39) and the
approximate method of Stationary Phase, are presented in
Fig. 4 below. The hump speed for this motion is consider-
ably less than for the case of steady motion.

40t
1.0

05
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Formulas (23) and (39) are recommended for the de-

termination of wave resistance for non-steady motion.

REFERENCES: -
1. Bolshakov, B.P. "The Wave Resistance of a Surface
Pressure Distribution." Proceedings of the Scien-

tific Society of Shipbuilding, Vol. 49, 1963.

Sretensky, L.N. "On the Motion of a Cylinder under

the Free Surface." Proceedings of the Central Aero-

Hydrodynamics Institute, Vol. 346, 1938.



