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ABSTRACT

The exact ideal-fluid boundary-value problem is
formulated for a ship forced to heave and pitch sinusoid-
ally in otherwise calm water. This problem is then
simplified by applying three restrictions: 1) the body
must be slender; 2) the motions must be small in ampli-
tude compared with ship beam or draft; 3) the frequency

—1/2)

of oscillation, w , must be high, viz., w = O(e ’
where € 1is the slenderness parameter. The hydrodynamic
problem is then recast as a singular perturbation problem
which is solved to order 662 by the method of matched
asymptotic expansions. ( § is a motion-amplitude
parameter.) Formulas are derived for the hydrodynamic
heave force and pitch moment, from which added-mass and
damping coefficients can be easily obtained. The latter
are similar but not identical to those used in several
other versions of "strip theory;" in particular, the
forward-speed effects have the symmetry required by the
theorem of Timman and Newman, a result which has not

been realized in previous versions of strip theory. 1In
order to calculate the coefficients by the formulas de-
rived, it is necessary to solve numerically a set of
boundary-value problems in two dimensions, namely, the
problem of a cylinder oscillating vertically in the

free surface. At least two practical procedures are

available to this purpose.
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PREFACE

This is a report of a project which began early in
1966 when both authors were on the staff of the David
Taylor Model Basin (now a part of the Naval Ship Research
and Development Center). The initial work was done
primarily by Tuck. His contribution included the remarkable
theorem in Appendix A, without which the simple final
formulas could not have been obtained. He established
much of the general approach to the problem, including
the demonstration that the restriction to high frequencies
was the key to deriving a strip theory from slender-body
theory.

The project has suffered from rather erratic attention
since October, 1966, when Tuck left DTMB. It has been
carried along since then mostly by Ogilvie. He worked
out the analysis of the near- and far-field problems,
including the equivalent applied-pressure problem des-
cribed in Appendix D, and showed how the pieces fit
together in the matching of the expansions. The section
on calculation of force and moment was the result of a
joint effort while Tuck was at the California Institute
of Technology. Ogilvie completed the project to the
stage reported here while on the staff of the University
of Michigan.

Because of the distance separating the authors, it
has been impossible to collaborate on the writing of the
report. Therefore the text is the work of the first-
named author; he is responsible for any errors which
remain.

Besides the acknowledgment which appears on the
title page, mention should be made of the institutional
support received from the David Taylor Model Basin while
the authors were employed there, and from the University

of Michigan and the California Institute of Technology.
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Personally, it is a pleasure to thank Professor
J. N. Newman (Massachusetts Institute of Technology,
formerly of DTMB) for his helpful comments in the early
stages of the project. Also, we acknowledge our appre-
ciation to Mr. Young T. Shen (University of Michigan)
for pointing out an important error and for his critical
reading of the final manuscript.

Finally, it is appropriate to express our debt to
Professor B. V. Korvin-Kroukovsky of Stevens Institute
of Technology. We started this project with the avowed
intent of finding a mathematical justification for the
facts which he knew to be true about ship motions in
waves. The fact that we hope actually to have improved
on his results does not detract from his achievement
many years ago. Mathematically inclined ship hydro-
dynamicists have been slow to recognize Professor
Korvin~Kroukovsky's keen insight into the ship-motions
problem. We acknowledge here that this project would
not even have been started were it not for the remarkable

results of his insight.

Ann Arbor, Michigan T. Francis Ogilvie
March 1969



PRINCIPAL NOTATION

a. .
ij
al®
ij

h(x,y,t)
ho (XrY)
Hék)(Z)
i, 3.

JO(Z)

=]

1o

|~

added-mass coefficient (See Equation (17).)

value of a. for U =0

ij
damping coefficient (See Equation (17).)

value of bi' for U =0

3

line of intersection of S
free surface

0 and undisturbed

i =3 : vertical component of hydrodynamic
force on ship; i = 5 : hydrodynamic pitch
moment on ship (positive bow-up)
gravitation acceleration

function defining body in unsteady-motion
problem

function defining body in steady-motion
problem

Hankel functions (Bessel functions of the
third kind)

unit vectors in directions of x- , y- ,
z- axes, respectively

Bessel function of the first kind

length of ship

the vector: =-(v:V)v

i=1,2,3 : the x- , y- , z- component of
m; i=4,5,6 : the x-, y- , 2-
component of -(v-V) (rxv)

i=1,2,3: the x- , y- , 2z- component
component of rxv

73

See below under "Miscellaneous Conventions.

position vector, (x,y,z)
wetted surface of hull
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T,
ij
7 (K)

r(x,y,t)
n (XIY)

e(x,y,t)
K

u

Y
Y

£5 (£)

£ (t)
p

o(x) ,

o(x,t)

wetted surface of hull at rest in still
water

time variable

transfer-function matrix between gj(t)

and F.(t)

components in a decomposition of T, ;
See Equation (49). i]

forward speed of ship

(1/U0) x fluid velocity in steady-motion
problem, equal to V[x + x(x,y,z)]

Cartesian coordinates
waterplane half-beam at x
motion-amplitude parameter
Dirac delta function
slenderness parameter

free-surface displacement in general
problem

free-surface displacement in steady-motion

problem

c(x,y,t) - nix,y)

g/u°

fictitious (Rayleigh) viscosity
wz/g

or S

unit normal vector to S 0

heave variable (in units of length, positive

upwards)

pitch variable (in radians, positive bow up)

density of water (mass per unit volume)

source density per unit length in line
distribution of sources

L 1
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T wU/g

d(x,y,z,t) velocity potential in general problem and
in zero-speed problem

@i(x,y,z) a normalized potential function (See (35)
and (42a).)

d(x,y,z) ®3(x,y,z) (See (13) and (35).)

x(x,y,z) (1/U0) x perturbation-velocity potential in
steady-motion problem

V(x,y,z,t) time-dependent part of velocity potential,
equal to ¢(x,y,z,t) - Ux - Ux(x,y,)

Wi(x,y,z) a normalized potential function (See (36)
and (42b).)

w radian frequency of heave, pitch oscillations

Qi(x,y,z) a normalized potential function (See (37)
and (42c).)
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MISCELLANEOUS CONVENTIONS

1) Coordinates and orientation: The ship moves in the

direction of the negative x -axis. (Free stream moves
toward positive x .) 2z 1is measured upwards, y to
starboard.

2) 1Indicial notation: 1In a six-degree-of-freedom system,

denote the ship displacements by gj(t) r, 3 =1,...,6 .

El ’ 52 . €3 denote translational displacements in

X- , y- , 2z- directions, respectively. 54 ’ 55 P 56
denote rotations about these axes, respectively, in a
right-handed sense. All added-mass and damping coefficients
are denoted by aij and bij . See Equation (l17) for

interpretation.

3) Unit normal vector: Always directed out of fluid

4) Time dependence: Always taken in the form: el‘“t

5) Velocity Potential: Velocity equals positive gradient

of potential.

6) Fourier transforms: Denoted by an asterisk. For

example,

(o]

o* (k) = fdx e K% ()

-0

o*1k,1;2) = f fdx dy e”1(RX * )4y v,2) .

7) Order notation:

a) "y =0(x) " means: |y/x| <M as x—0 , where
M 1is a constant not depending on x .

b) "y =0(xz) " means: |y/xz| <M as x—0 and/or
z—0 , where M is a constant not depending on
x and/or 2z , respectively.

c) y = o(x) " means: |y/x|] — 0 as x-— 0 .

See Erdelyi (1956) for further definitions and properties.
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INTRODUCTION

For several years, both authors have been involved with
the problem of predicting ship motions in waves. Some of this
effort was reported in two papers presented at the Fifth
Symposium on Naval Hydrodynamics, sponsored by the Office of
Naval Research in 1964*. In one of these papers, an attitude
was adopted and expressed quite specifically that "rational”
methods were being sought rather than empirical formulas. The
word "rational" was used to imply that one should start with
an appropriate boundary-value problem, simplify it with reason-
able initial assumptions, and solve to obtain formulas for pre-
dicting ship motions. The other paper was clearly based on a
similar, if tacit, attitude.

It was somewhat apparent then and it has become steadily
more apparent since that more success was being realized by
the less "rational" methods. These more empirical methods may
all be loosely categorized as "strip theory," in that boundary-
value problems are initially formulated which are meaningful in
a two-dimensional sense only, that is, in planes perpendicular
to the mean direction of travel, and the two-dimensional
solutions are then adjusted to include certain three-dimensional
and forward-speed effects. A considerable amount of physical
insight goes into making these corrections, and the work of

Korvin-Kroukovsky (1955) is really a tour de force in engineer-

ing analysis of an incredibly difficult problem.

Recognizing that strip theory has been really quite success-~
ful in predicting ship motions, we set ourselves the task of
formulating a "rational" basis for strip theory. We started
with a complete and exact boundary-value problem (assuming, of

course, an ideal fluid) and then sought a set of simplifying

*
Ogilvie (1964), Newman and Tuck (1964)



assumptions which would reduce the results more or less to strip
theory. The goal was not just to provide a pedantic justifica-
tion for strip theory nor to satisfy a mathematician's sense

of aesthetics. While both of these might be worthwhile to some
extent, it was hoped that the resulting theory would not be
identical to existing strip theory, for the latter does have
some failings. In particular, every ship-motions theory based
on the strip-theory analysis violated a proven symmetry theorem
concerning the coupling between pitch and heave. Furthermore,
the numerical results from strip theory were not perfect, even
in an engineering sense. It was hoped that a more fundamental
approach to strip theory would help to correct these deficien-
cies, while retaining those properties of strip theory which
have been proven experimentally to be valid.

The present paper reports the first phase of this effort.
Herein is formulated the problem of a ship which is moving
with finite forward speed, forced (by some external means) to
undergo heave and pitch motions. We start with the full, non-
linear, free-surface problem, which is of course completely
intractable, and we seek a systematic procedure for simplifying
the problem to the point where it can be solved numerically.

There are three restrictions which we have had to apply
in order to achieve the simplification:

1) The geometry of the ship must be restricted in a
slender-body sense, i.e., the beam and draft must be small
compared with length, and the shape and dimensions of cross-
sections must vary slowly along the length.

2) The motions must have amplitudes small compared with
the cross-section dimensions of the ship. This requirement
permits the development of a theory which is linear in the
amplitudes of motion.

3) The frequency of oscillation in heave and pitch must
be large. Waves of this order of magnitude of frequency (which
could exist on an otherwise calm, infinite ocean) would have a
wavelength comparable with the beam of the ship.



It is the third restriction which causes the lowest-order
approximation to degenerate exactly into the strip-theory
results. It does not imply that the complete theory (including
incident waves) will be valid only for very short waves. One
must note that the frequency under consideration is the actual
frequency of oscillation; it corresponds to a frequency of
encounter, not to the frequency of any wave in an earth-fixed
reference frame.

There is another assumption which is no more than implied
in the actual analysis, but it sets very real limitations on
the applicability of the results. We assume throughout that
the Froude number is a gquantity which is of order unity with
respect to the slenderness parameter. It can be shown that
this, in turn, implies that the ship has a high forward speed,
not because a Froude number near unity is large in the naval
architect's estimation, but because it is equivalent to re-
quiring that the ship move faster than the waves generated
by its oscillations. It is well-known, for example, that any
linear analysis becomes invalid near the speed at which the
ship-generated waves have a group velocity equal to ship speed.
We are considering cases in which ship speed is always con-
siderably higher than the group velocity of the generated
waves.

The solution is based on a perturbation analysis, valid
as € — 0 , where € is the slenderness parameter. 1In the
case of no oscillations at all, that is, for steady forward
speed, the velocity potential for the perturbation of the
uniform flow is found to be of order 82 . When the ship
oscillates, the velocity potential is of order 63/2 , and so
this part of the potential dominates the steady-motion
potential. Moreover, this part corresponds precisely to strip
theory, in the most restricted sense: it satisfies the
Laplace equation in two dimensions; there are no three-dimensional
effects and no forward-speed effects. The body boundary con-
dition and the free-surface boundary condition are exactly

what we would obtain in formulating a free-surface problem for



an infinitely long cylinder (of cross-section identical to

a cross-section of the ship)oscillating in the free surface.
Thus the largest part of the potential arises because of the
oscillation, and this part does not depend on forward speed
in any way.

At first sight, this appears to be quite remarkable. It
has already been commented that our theory is really a theory
for high speeds, and yet the leading-order potential does not
depend on speed at all. If we formulate a zero-speed problem
ab initio with the same assumption regarding frequency, we
again obtain the strict strip theory as the first approxi-
mation. (In this case, we would really be dealing with waves
of length comparable to ship beam.) Perhaps one is inclined
to speculate that, if frequency of oscillation is high enough,
strip theory might give the correct first approximation for
all forward speeds, for it gives reasonable results at zero
speed and it is constructed to give valid predictions at high
speeds.

This cannot be, of course, for the solution will be
singular at some speed (for a given frequency of oscillation).
The conditions for the singular solution are often specified
by saying that Tt = 1/4 , where T = wU/g . Physically, one
must expect that two quite different patterns of solution are
possible: (a) At zero speed, there will be radiated waves
going out in all directions, including the forward direction.
(b) At high speed, there will be essentially no radiation
ahead of the ship. The condition 7t = 1/4 really marks the
boundary between these two regimes, and clearly, for very
large w , the speed at which the singular behavior occurs
approaches zero. But it cannot equal zero.

We must conclude from these considerations that the
analysis breaks down at some low speed. Since our lowest-
order solution does not exhibit a singular behavior at any
speed, we must expect that the higher-order solutions will be
singular, and the lowest-order solution may be just as invalid
as if the singularity had appeared straightaway at the first
step.



It has been observed several fimes in recent years that
practically any analysis gives reasonable predictions of ship
motions at zero speed, provided only that the analysis treats
buoyancy effects properly. Strip theory does treat buoyancy
effects correctly and completely, and so strip theory can be )
expected to give reasonable predictions at zero speed. There-
fore, for purposes of convenience, we shall frequently refer
to the strip theory results as "zero-speed results." This
practice will not be incorrect, but one should not assume
that there is a smooth variation in all quantities when one
gradually changes speed from zero up to high values.

The strip-theory results alone are not very interesting.
Not only are they rather trivial in meaning, but they also
give generally fairly poor predictions. Therefore we carry
the solution of the oscillation problem through another order
of magnitude, and it turns out that this part of the velocity
potential is of order e2 . Some interesting results are found:

(1) We obtain effects of interactions between the
oscillatory motion of the ship and the incident uniform stream.
Part of this interaction can be identified with certain of
Korvin-Kroukovsky's forward-speed effects, but we find other
terms. In particular, we find that there are just the right
interactions so that the Timman-Newman (1962) symmetry theorem
is satisfied. This is one of the most important results of
the paper. Until now, the users of strip theory have had only
intuitive, physical arguments on which to base their calcula-
tions of forward-speed effects, and it was known that at least
one term in their equations of motion had to be wrong. Now we
can show that we have results consistent with the symmetry
theorem*, and it is evident that the intuitive approach missed
some aspects of the problem.

(2) We find also a new interaction effect, unlike any
reported before. This is an interaction between the steady

flow around the ship and the waves caused by the oscillations.

*
Actually, our results show a stronger symmetry than proven by
Timman and Newman. See the discussion in the next section.



To some extent, it is analogous to the interaction discussed
in the previous paragraph, which is discovered only when we
consider the effect of the oscillating ship on the steady flow.
Now we find that the time-dependent displacement of the free
.surface also interacts with the steady flow around the ship.
The force and moment on the ship caused by this interaction
are of the same order of magnitude in our scheme as the ship
forward-speed interaction. We have not yet obtained any
numerical results for this effect, and so we can not assess
its practical importance. A large part of this paper is
devoted to the analysis leading up to this interaction. As
will be seen, there is considerable difficulty encountered in
simply formulating the appropriate boundary-value problems.

What we really want from all of this analysis are some
formulas by which we can compute added mass and damping
coefficients. We have a sequence of boundary-value problems,
and the solutions of these problems must be combined appro-
priately according to the perturbation scheme used. Then
the pressure must be computed and integrated over the hull
surface in such a way that the required coefficients can be
identified.

It appears at first that the force and moment cannot be

calculated until after we have solved numerically a host of

boundary-value problems. Fortunately, as it turns out, the
calculation of force and moment is not really so complicated.
By a considerable amount of mathematical manipulation, we shall
be able to eliminate from the final formulas practically all

of the velocity potentials which will have arisen in the
boundary-value problem. In order to use the final formulas,
one must solve just one kind of boundary-value problem:

For any cross-section of the ship, consider an
infinitely long cylinder of the same shape and dimen-
sions which is oscillating vertically in the free
surface. Find the velocity potential which satisfies
the kinematic boundary condition on the body and the
usual condition in two dimensions for outgoing waves
on the free surface.



This problem must be solved for enough cross-sections that the
solutions can be computed in a fairly smooth manner along the
entire hull. Such problems have been solved numerically in

at least two quite different ways, and computer programs exist
for carrying out computations of the potential and the pressure
over the surface of the body. (See Appendix B.)

Considering the complexity of the analysis, we find it
qguite startling to see how the final results are really both
simple and elegant. To make the results of this analysis
accessible to those who do not care to labor through the
lengthy details, the next section contains a precise statement
of the problem, a brief summary of the major steps, and a

listing of the final formulas.



FORMULATION OF THE PROBLEM; MAJOR RESULTS

We assume that the ship is moving with constant speed
U 1in the direction of the negative x -axis. The 2z -axis is
upwards, and the y -—-axis extends to starboard. The origin of
coordinates is located in the undisturbed free surface at
midship, so that the undisturbed incident flow appears to be

a streaming flow in the positive- x direction.

z

FIGURE 1.

Let the surface of the ship be specified mathematically
by the equation:

z - hix,y,t) = 0, _ (1)
and let the free surface be given by:
z - ¢(x,y,t) = 0. (2)

It is assumed that the fluid velocity can be represented as
the positive gradient of a scalar potential function,
¢(x,y,2,t) , which satisfies*:

(L), the Laplace equation, in the fluid domain:

e t O, + 0 = 0

XX vy zz

(3)

-e

*
See, for example, Wehausen and Laitone (1960).



(A), the dynamic free-surface condition:

g+ 0, + FIOZ + 02 + 021 = 20, on z = Tlx,y,0) 5 (4)
(B), the kinematic free-surface condition:

Oplx T O 0y T byt T =0, on z = g(x,y,t) ; (5)
(H) , the kinematic body condition:

¢th + ¢yhy - ¢Z + ht =0 , on z = h(X,Y,t) ; (6)

(R), a radiation condition, which will be discussed in detail
presently.

The hull condition, (H), can be stated in another way
which is particularly convenient in the ensuing analysis.
Let 3/0n denote the operation of taking a directional deriva-
tive normal to and into a cylinder with the same cross-section
as the ship at a given section. Then it is easily shown that

Equation (6) is equivalent to:

¢.h. + h
(H) %% - XXt ' on z = h(x,y,t) . (6')

/1+h;

We note that 293¢/3n is a component of velocity in the cross
plane.

Now we introduce two small parameters, both in a somewhat
vague manner:

a) € , the slenderness parameter, may be considered the
ratio of maximum beam (or draft) to length, or it may be inter-
preted in other precise ways. Its smallness expresses the
notion that the ship varies gradually in shape and size along

its length.
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b) § , the motion-amplitude parameter, is any convenient
measure of the smallness of the ship oscillations. The only
requirement which it absolutely must satisfy is that, as it
approaches zero, the oscillatory motion of all points of the
ship uniformly approaches zero.

We use the slenderness parameter, € , to formalize
mathematically our concept of slenderness. Far away from the
ship, at distances comparable with ship length, the details
of the ship shape cannot be detected, and one can be aware
only that there is a disturbance concentrated near a line, that
part of the x -axis between -L/2 and +L/2 . Analytically,
we must treat the nature of the disturbance as unknown. There-
fore, initially, we should find a farfield solution which would
be appropriate for any line-concentrated disturbance. It turns
out to be sufficient to assume that the disturbance is caused
by a line of pulsating sources plus a line of steady sources.
(The latter vanish in the zero-speed problem.) As € —0 ,
the ship shrinks down to a line, for both beam and draft approach
zero, and the disturbance vanishes altogether. The problem, of
course, is to determine how the disturbance behaves for very
small values of ¢ .

Near the ship, the disturbance depends critically on the
details of ship shape. Consider the blown-up view of a small
part of the ship shown in Figure 2. Since the cross-section
varies slowly along the length of the ship, the flow is pre-
dominantly the longitudinal component, which is nearly equal
to the free-stream velocity, on top of which is superposed a

small transverse component depending primarily on the rate of

Transverse &/ P
perturbation ——s [“‘-~N--:§b‘/ bt
component ‘\\\\ L

> U + o perturbation
U

FIGURE 2.
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change of cross-section and on the transverse motion of the
section of the ship. It is plausible to assume that these
transverse components of fluid flow will be much larger than
the longitudinal perturbations of the incident flow.

This physical picture does not differ significantly from
the description devised in the 1920's and applied to airship
problems. Modern slender-body theory formalizes the description
however, and this is done by means of one major assumption:

Derivatives of flow variables in the transverse
direction are larger than longitudinal derivatives
by an order of magnitude with respect to the
slenderness parameter.

For example, the velocity components are assumed to be related

in an order-of-magnitude sense as follows:

(34
S

22 = o9 = o/e) 5 = owp/e)

~e
Q

y

where ¢ is the potential of the perturbation velocity com-
ponent. Symbolically, we may write:

3/3x = O(1) ; 8/dy = O(e ) ; 8/3z = O0(e }) as e —0 . (7)

We should note that, in (6'), the operator 3/9n is a direc-
tional derivative operator in the transverse plane, and so it
also has the property:

1

3/9n = O(e ~) . . (7")

These properties are valid only in the near field, that is, in

72 _ O(e) . This assumption

the region in which r = (y2 + 22)
allows us to order various quantities according to their order
of magnitude with respect to € . Then, since we are develop-
ing an asymptotic theory, valid as €——0 , we neglect all

except the lowest order terms.
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We make one more assumption about orders of magnitude,
namely, that all oscillations are sinusoidal at high frequency.
We shall use the exponential form of the sine function, eimt ’
and, since the operator 23/3t is then equivalent to multi-
plication by iw , time differentiation also changes the order
of magnitude of the quantity operated upon. To be specific,

we assﬁme that:

w = o(e”?) (8)
which then implies that
3/3t = o(e /% (8")

Finally, we consider that Froude number, U/v/gL , is
O0(1) in terms of € . When convenient, we shall treat u, g,
and L separately as quantities which are O0(1l).

We are now ready to reconsider the body boundary definition,

as given in (l1). If there is no heave or pitch motion, we re-
place h(x,y,t) by ho(x,y) , l1.e.,

z - ho(x,y) = o . (9a)
*
We denote the heave and pitch variables by £3(t) and ES(t) .
Positive 53 represents an upwards heave displacement, and

positive ES represents a bow-up pitch rotation. For small

pitch angles, the body surface can then be defined:

z - ho(x,y) - E3(t) + xis(t) = 0. (9b)

*We use subscripts 3 and 5 because these are natural when
we come to study six degrees of freedom. Thus £&; , €2 , and
€3 denote translations of the ship along the x, y, and z
axes, and &4 , &5 , and &g denote rotations about these
axes, respectively.
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As stated in the Introduction, we require that the ampli-
tudes be small compared with ship beam and draft. The "small-

ness" of the motion amplitudes is symbolized by the parameter

§ . 1In order that the latter may not depend on the slenderness
parameter, € , we assume that
Ej(t) = 0(8e) . (10)

This assumption guarantees that the motion will vanish as

§ —>0 , even though € remains finite. It also guarantees
that the motion amplitudes will be small compared with beam,
even as € —0 .

All that remains in formulating the problem is to assume
that all dependent variables can be expressed by asymptotic
expansionslin terms of € and § , substitute these expansions
into all conditions, and reorder the terms with respect to the
small parameters. The details will be found in the appropriate
sections.

The Zero-Speed Problem. As a prelude to the major problem,

we consider first the case of heave and pitch motions at zero
forward speed. No new results are obtained for this case, but
certain difficulties with the radiation condition are already
evident here, and the treatment of this case adds much per-
spicuity to the analysis of the general problem.

In the far field, the solution can be represented as the
flow caused by a line distribution of pulsating sources. This
disturbance causes waves which radiate outwards in all directions.
The velocity potential for an arbitrary line distribution of
pulsating sources is known, and we use that solution to find
the flow behavior near the singular line. It turns out to be
of the form:

*
$(xX,y,2z,t) ~ 4mic(x) eiWt + vz - ivly|

*
Only the real part of this expression is implied. We shall
generally suppress the symbol "Re".
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Here, c(x)eimt is the density of sources at x on the
X —-axis, and v = wz/g . This result clearly represents an
outgoing wave in two dimensions, but the amplitude of the
wave is not known unless o(x) is known.

In the near field, the velocity potential is found to

satisfy the following conditions:

(L) ¢yy + ¢zz = 0 in z < 0 ; (12a)
(F) g¢z + ¢tt = 0 on z =0 ; (12b)
Ey(t) - xE (t) n ) = 0
(H) ¢ = on z - X,Y) = ; (12c)
n A+ nt °
y

Condition (L) is just the Laplace equation in two dimensions;
slender-body theory converts the 3-D problem into a 2-D
problem., (F) is the ordinary linearized free-surface boundary
condition which leads to the prediction of gravity waves. (H)
is the usual kinematic body condition which applies if a two-
dimensional cylinder is oscillating vertically with speed
é3(t) - xés(t) . It should be emphasized that these three
conditions are not exact; they apply to the first.term in an
asymptotic expansion of the velocity potential.

The near-field problem expressed by the above conditions
is incomplete in one important respect: Nothing is said about
the behavior at infinity. As is well-known, this means that
the solution is not unique. For example, there might be
incoming ambient waves. Of course, it is much more reasonable
to assume that there are only outgoing waves at large distance
from the body. Previous workers with strip theory have assumed
this, and it is correct. But it is a violation of the prin-
ciples of the method of matched asymptotic expansions to make
such an assumption. The solution of the above problem need not
be applicable at large distance from the body, and in fact it
is not valid far away, for we know that far away there are

waves going out in all directions, not just laterally. The
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only justification for this radiation condition is that it
agrees with the near-field limit of the far-field solution.
The potential for a line of pulsating sources satisfies a
radiation condition that is physically meaningful, and near
the singular line it represents (approximately) just two-
dimensional outgoing waves. It is the latter fact which tells
us that the near-field solution should represent outgoing

waves in two dimensions at infinity.

The above analysis would be rather pedantic except for
one fact: In the analysis of the forward-speed problem, there
arises a near-field boundary-value problem for which the con-
dition at infinity is far from obvious. It will be clear in a
later section that one must solve the far-field problem before
the near-field problem can be satisfactorily formulated. The
process will not be substantially different from that used in
the zero-speed case, just more difficult and tedious.

Once we have obtained a near-field radiation condition
from the far-field problem, we have no further use for the
latter. We want to find the force on the oscillating ship,
and this requires using the near-field solution to predict
pressure on the hull surface. The details may be found in the
appropriate section of this report; here we present only the
results.

For convenience, we introduce a normalized potential

function. Let ¢ (x,y,2z) satisfy the conditions:

(L) ny + @zz = 0, in z < 0 ; (13a)

(F) & - v = o0, on z =20, where v = wz/g; (13b)

(H) ° . =1 Y1l + hj on z - hylx,y) = o . (13c)
Y

In the zero speed problem, the potential function for the near

field can now be represented by:

¢(x,y,2,t) = + iwd(x,y,2) [E3(t) - xEc ()] . (14)
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The convenience of introducing the new potential function should
now be clear: it is independent of the heave and pitch motions.
We must find ¢ for a number of cross-sections of the ship;
having done that, we can immediately write down the velocity
potential for any given heave and pitch motions or, for that
matter, for unknown motions, using the notation in (14).

We express the force as follows:

F () = ZjTijgj(t) . (15)
We may look on the matrix Tij as a transfer function which
transforms motion variables into force components. The indices
i and j have the values 3 and 5 in the present analysis.
We shall find that, for zero forward speed, the transfer

function is given by:

T(O) = pwzj[ dS n ¢ ; (16a)
33
S
0
T(O) = pwzj( ds x2 nod. (16b)
55 S ’
0
(0) _ (0)__2f |
T3s = Tg, = pw < dS xnd . (16c)
0

(The upper index, (0) » has been introduced to point out that
these results are valid at zero speed only.) Here, n 1is an
abbreviation for 1/v1 + hé . The integrations are to be
carried out over the surfa¥e of the hull at its undisturbed
position.

Combining the three formulas above with the previous
formula for force, we see that knowledge of the velocity
potential, -¢ (x,y,2) , provides knowledge of the hydrodynamic*

*

Hydrostatic force and moment have not been included in the
above formulas. These must be computed (by elementary methods)
and added to the above.
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force and moment as well, if only we know the heave and pitch
variables. The latter are, of course, the major unknowns in
a ship-motion problem. In well-known fashion, one formulates
a pair of coupled differential equations for 53(t) and
Es(t) to be solved for these two unknowns. The hydrodynamic
force and moment, as computed above, are equivalent to the
terms which are usually written as added-mass- and damping-
coefficient terms. In a conventional form, we can rewrite

the above results:
2 .
= ZG[w a;y - iwb; IS (t) . (17)

The quantity aij is the added mass coefficient in the equation
for the i-th mode of motion, giving the force (moment) due to
the j-th mode of motion. A similar interpretation applies to
the damping coefficients, b,. . Comparison with the previous

1]
results shows that:

aid + (1/iw) by = pjg ds n o ; (18a)
. |
ald + (1/iw)pld = pjg ds x°n o ; (18b)
0
ald 4 (1/7impid) = alY 4 (l/iw)bég)
= - pjf dsS x n ¢ . (18c)
So

Thus we have obtained explicit formulas for added-mass and
damping coefficients. Furthermore, numerous workers have de-
veloped computer programs for finding just this function ¢
and for computing the integrals in these formulas. (See
Appendix B.)

The Forward-Speed Problem. The results collected above

for the zero-speed problem are rather trivial in that they

have been obtained many times before by simpler methods.
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Furthermore, they represent the most primitive kind of a strip
theory. Now we turn to the forward-speed case, in which some
new results are obtained. For the purposes of the present
section, we mention only the general approach to the problem,
and then we proceed immediately to the final formulas.

We first set up the steady-motion problem. That is, we
allow the motion-amplitude parameter, & , to be zero, and we
formulate the hydrodynamic problem for steady forward motion
under the usual assumptions of slender-body theory. Its
solution is to be considered valid in the asymptotic sense
as € —0 . In fact, we can obtain a sequence of problems,
leading to successively better approximétions to the exact
solution. The asymptotic series thus obtained has been con-
sidered in some detail by Tuck (1965), and nothing new is added
to it here.

Then, in effect, we subtract the steady-motion solution
from the exact solution of the complete problem and investigate
how the remainder behaves for infinitesimal values of ¢§ . It
appears readily that all conditions on this remainder are linear
in § , and so the solution is itself linear in terms of the
motion amplitudes. This problem, linear in ¢ , is still
rather complicated in terms of the slenderness parameter, ¢ ,
and so its solution is again reduced to the finding of an
asymptotic solution in terms of € .

In other words, the complete solution is expressed first
as a series in § and then each term is expressed as a series
in € . Only the first two terms with respect to ¢§ will be
considered, that is, the terms which are independent of and
linear in § . These are carried consistently to the same
order of magnitude in terms of € . Just as in the zero-speed
problem, we use the method of matched asymptotic expansions to
determine the € -dependence.

Although the analysis takes many pages, the ultimate
formulas for added-mass and damping coefficients are rather

simple. We give them here:
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)
_ (0) . _ w(0) |
d33 T 433 7 bjy = b33
_ . (0) _ . (0) |
8gg = 8gg i bgg = bgg i
2
ajzs = aég) + (U/wz) bég) - Im f2pwU/g)j; ds Qz];
[ 4
bys = b3 - u alY - Re (2pw2U/g)f; as @%}; (19)
(0) 2, . (0) [ 2
agy = ags’ - (U/w®) b33 + Im prwU/g)j; ds ¢°4;
(0) (0) [ 2 2
b53 = b53 + U a33 + Re f2pw U/g)f; ds 9 }.J

A few things have yet to be explained in these formulas, but

we notice immediately that all terms except those involving the
integrals depend only on the zero-speed added-mass and damping
coefficients. In other words, having calculated the zero-speed
coefficients, it is a trivial matter to obtain most of the
terms needed above.

The integral terms involve just the same potential
function that we have already discussed. Presumably the latter
has been determined in the zero-speed problem. But here the
integration is to be carried out over the undisturbed free
surface.

A bar has been drawn through the integral sign to call
attention to the fact that the integral does not really exist
as written. A special interpretation is required. If we
investigate the function ¢ , we find that it has an oscil-
latory behavior as |y| — , and so it cannot be integrated
to infinity in a straightforward way. But let us assume that

the oscillatory behavior of @ can be expressed:

o (x,y,0) ~ f£(x) e iVIYl (20)
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If we square this expression and subtract it from @2 , the
difference has a well-defined integral, and it is essentially
that integral that we imply in the formulas above. To be

precise, we define the integral as follows:

L/2 o
][ as 92 = [ax | ay (02 - £2e~21Vy,
L/2
_ 7%_ dx f2e—21vy0(x) , (21)
v
-L/2
where yo(x) is the half-beam at x . Thus, we subtract from

the integrand just enough to remove its bad behavior at infinity;
this yields an unwanted contribution at the lower limit,
y = yo(x) , which is removed by the single-integral term.

In order to facilitate comparison of these formulas with
those obtained by others, we exhibit below the corresponding
formulas as expressed by Gerritsma (1966). The latter are
representative of the results obtained by all who have followed
the approach of Korvin-Kroukovsky (1955). At the left, in

parenthesis, we indicate our notation for the coefficient given

fm' (x) dx

(b33) b = -/ﬁ'(x) dx

in the same line.

o]
I

(a33)

~e

~e

2
(age) A = _/ﬁ'(X) x2ax + S n'(x) xax + L oa;
55 2 2
w w
(a35) a = -[ﬁ'(x) x dx + ;% b ;

(a53) D = -lﬁ'(x) x dx ;
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(b35) e =JfN'(x) xdx - Ua ;
(b53) E =‘[N'(x) xdx + U a .

The integrals appearing here can be compared directly to those

we used above in defining the zero-speed coefficients. 1In fact,
(0)

Gerritsma's (a + b/iw) is exactly the same as our [a33

+ 639 7101 .
Three of the eight coefficients are given by the same

formulas in both analyses:

)

The forward-speed corrections in A (corresponding to our A
do not appear in our analysis. If there exists a rational
basis for these corrections, one must assume that they are higher-
order quantities in our perturbation scheme and are thus negligible.
If we ignore for the moment the integral terms in our cou-
pling coefficients, we find that our new formulas agree with
Gerritsma's except in one case: His D lacks the forward-speed

correction found in our In this case, we can state with

a .
53
considerable confidence that the usual strip theory must be
wrong; this correction has simply been overlooked. There are
two reasons for our confidence in such an assertion:

1) Timman and Newman (1962) have proven that and

a
35
ag (or d and D ) must have the symmetry that our results

exhibit .

[
As mentioned earlier, our results go somewhat beyond the

Timman-Newman symmetry theorem. Those authors showed that
the coupling coefficients can be expressed:
a I + aII
35 35 35
where ags is the pi?s?-to—heave added-mass coe%%icignt at
zero speed (called a35  in this report), and a3 9ives
the additional coupling due to forward speed. They prove that

a§5 = a£3 and that aﬁ% = - a%% , the latter being true only

for a ship which is symmetrical fore-and-aft. In our formulas,
the latter result is true regardless of whether the ship has
such symmetry. Such an outcome undoubtedly results from the

a
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2) Experiments by W. E. Smith (1966) at Delft, presented
in Figure 3 below, show that the D -coefficient has a fairly
strong speed dependence. The points in the figure represent his
experimental results, and the two curves show calculated values
of:

4 (0)

a) D = agy ,

(0) (0) , 2
b) ag, - Ub33 Ju’ .

Curve a), the broken line, is clearly in poor agreement with
his experiments, whereas the second curve shows rather good
agreement. It must be noted that our calculations do not
include the integral term in Agy and so the comparison is
not conclusive. Nevertheless, inclusion of one forward-
speed effect brings about such a dramatic improvement in
prediction that one has some basis for hoping that the other
term (the integral) has little effect in computation of the
g coefficient.

Some authors (e.g., Gerritsma (1967)) have camouflaged
their lack of symmetry in the d - D coefficients by com-
bining the unsymmetrical parts with the buoyancy-force
coefficients. However, one must compute the total force and
subtract the buoyancy terms; the Timman-Newman symmetry
theorem applies to the remainder.

Unfortunately, we have not yet computed any numerical
values for the integrals in the formulas for the coupling
coefficients. We can only note that at least these terms

satisfy the Timman-Newman symmetry theorem.

approximations which we make. However one is inclined to
speculate that it may be true in any linear theory. Compare,
for example, the well-known result that linearized wave-
resistance theory gives the same result for a ship going
backwards or forwards, regardless of hull symmetry (or lack
of it).
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THE ZERO-SPEED PROBLEM

The purpose of this section is just to show how the far-
field solution provides a radiation condition for the near-
field problem. The fact that the final formulas give accept-
able accuracy for the added-mass and damping coefficients
must be considered as good luck. Our analysis is based on the

—1/2) , and waves with this frequency

assumption that w = O(e
will have length comparable with ship beam. It has already
been commented that, at zero speed, a correct treatment of
buoyancy effects is all that is needed to yield good results,
and so our answers happen to be valid for wavelengths comparable
to ship length, even though they are based on a short-wave
hypothesis.

The far-field problem. At distances which are 0(1)

from the ship, the detail of the ship is lost; we see what
amounts to a singular line generating a pulsating disturbance.
In general, we might assume that there are pulsating sources,
dipoles, quadripoles, etc., along the singular line. 1In
practice, we need to include singularities with just enough
generality so that we can match the resulting potential
function to the near-field potential function; a line of
sources suffices. Accordingly, we assume that there is a line

wt

distribution of sources of density o(x)et spread along

the line y=2 =0, -L/2 < x <L/2 . 1In the absence of
the free surface, the source distribution would have a
velocity potential:

L/2 .
_ dg g(g)ert
1/2
[(x-£)2 + y% + 2°]

-L/2
It is necessary to modify this potential function to
account for the presence of the free surface. It is easily
shown that the free-surface conditions can be linearized, for,
as €-—0 , the disturbance vanishes altogether. It is not
at all clear which of the linear terms should be retained.
The reason for this uncertainty is that the differential

operators have various order-of-magnitude effects in various
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physical regions, and one must make extremely perceptive assump-
tions in order to obtain the proper free-surface conditions.
We avoid this difficulty by including (inconsistently) all of
the linear free-surface terms. One could afterwards make con-
sistent asymptotic estimates of the solution, if that appeared
desirable.

The solution of this problem has been given by Ursell
(1962) :

¢(x,y,z,t) = Bg[cb(x,y,Z) eiwt} ' (22)
where
L/2
$(x,y,2) = - 2[ dac(s)fkdk % 5, (k/(x-8) Zay?) . (227)
-L/2 i

The inner integral is a contour integral, indented at the pole
as indicated. The function in (22) is the solution of Equations
(3), (4), and (5) after they are linearized. It does not, of
course, satisfy the body boundary condition, (6), nor can it
generally be made to do so. It does satisfy a proper radiation
condition, viz., it represents outgoing waves at infinity. The
above solution can also be constructed by a slight modification
of Equation (13.17") in Wehausen and Laitone (1960).

Equation (22') contains too much information to be useful
to us; it is valid all the way from the line of sources out to
infinity. We want the inner expansion of this solution, that
is, its asymptotic form in the case of r = /;2+z2 = 0(e) .
Before finding this, we note that we can first assume that
y = 0(1) , and re-order quantities according to their orders
of magnitude. This still leaves us with an outer-region
solution, but it is just as good as the original solution for
our purposes, for we do not need the information about what is
happening at infinity. Since v = O(e-l) , and thus
vyl = O(e_l) r Wwe are considering a region which is many
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wavelengths removed from the line of singularities, even though

it is at a distance which is 0(l) .
2.1/2

Let R = [(x—g)2 + v~ . We note that R = 0(l) even
if x=§% . Also let
_ kdk kz
I = _[E_—v-e JO(kR) -
O—I\_)
We substitute for JO(kR) :
_ Ll..(D) (2)
J,(kR) = Z[H;” (kR) + H % (kR)] ,

where Héj)(kR) is a Hankel function (Bessel function of the
third kind). If kR 1is considered to be a complex variable,
H(l)(kR) becomes exponentially small as Im{kR} —> + « , and
Hoz)(kR) becomes exponentially small as Im{kR} —> - « .
Therefore we write I as two separate integrals, each contain-
ing one of the Hankel functions. For the first, we close the
contour as shown in Figure 4a; since the pole is outside the
enclosed region, and since the integral along the quarter-circle
contributes vanishingly little (as its radius goes to infinity),

the first integral is:

joo
(1) _ 1 kdk kz (1)
I = -Z-f k——_\)—-e HO (kR) .
0
—L
Y (b)

(2) FIGURE 4.
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The second integral is closed below, thus encircling the pole.
Therefore,
—-joo

(2 _ %.f £ &% {2 (kr) - miveV? 1% (vr) .

0
We combine the two integrals and change the variable of
integration, obtaining:

L=

I = -—riveV? H(()z) (VR) + ;lr-fdk k K, (kR)[ +

k+iv k-iv

ikz —ikz]
e e

Because of the change of variable, we have been able to rewrite
the Hankel functions in terms of the K -function, a modified
Bessel function of the second kind.

Now KO(kR) is a positive function, and so we have the

estimate:

o . ©

dk k K,(kR) etikz 1

K % v 2 5[ dk k Ky (kR)
0 0
VR
Thus,
I = -mive“? Héz)(\)R) + 0(e) .

Furthermore, we can use the asymptotic expression for the re-

maining Hankel function, which yields:

. m
I = -igf2 VR V2 [hho(e)] = 0(e7VR

Returning to the double integral, we now have the following:

L/2
: 3 -ivR
0(x,y,2) = -2/77v eVZi™4[ 4¢ ‘-’E-)—‘liﬁ—- [1+0(e)] )

R
-L/2
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The integrand is in just the proper form for applying the
method of stationary phase, since v is a large parameter.

For -L/2 < X < L/2 , the contribution to the integral at the
point of stationary phase will dominate the contributions from
the ends of the interval (See Erdelyi (1956)), and so, applying
this method, we obtain:

b(x,y,2) ~ dmic(x) e (Z-ilyh) (23)

For the real potential, we have:

6(x,y,2,t) ~ Re{drmio(x) e’? ei(wt-V|YI)} . (23")

Equation (23') clearly predicts outgoing waves in two

dimensions. It is valid at distances from the source line where

y

y
pansion of the outer expansion.

0(1) , but no more simplification is possible if we now let

O(e) , and so Equation (23') also expresses the inner ex-

A simple physical explanation can be given for the above
result. If a wave generator has dimensions which are very large
compared with Qavelength, the waves can be sharply focused.
This is true whether one is studying acoustic waves, electro-
magnetic waves, or water waves. Our wave generator (the ship)
has length L , and the wavelength is 0(e) by comparison,
and so our system falls into this general category. At quite
considerable distances, one may expect the waves to be still
propagating uni-directionally, and this is just what happens.
Figure 5 is a photograph showing this phenomenon in a wave
tank. The waves are being generated by a small wavemaker in
the short side of the tank. The length of the wavemaker is
about one-eighth of the tank width, but it is much longer than
the length of the generated waves.

In the above solution, as given in (22), the potential was
represented simply as a superposition of the potentials of the
sources on the line. 1In the forward-speed problem, an entirely

different representation will be used, and it is helpful to



Length of wavemaker

Figure 5. Note relative lengths of wavemaker and of waves.
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point out now how that analysis will proceed, by considering
here the case of zero forward speed.

The solution will be given as an inverse double Fourier

transform:
1 e ikx * 12y+z/§ +2
¢(x,y,2) = - —-fdk o (k)f T ' (24)
? vk2+92 (w 1u)
where

[}

c*(k) = erxe—ikxc(x) .

- 00

In order to define the transform of o(x) , we simply set
o(x) = 0 for |x| > L/2 . The quantity u is discussed in
Appendix C; for now we consider it simply as a parameter which,
as it approaches zero, shows us how to define the improper
integral in the expression above. The solution given in (24)
will not be derived here. It can be obtained from the forward-
speed result by simply setting U = 0 . (See Equation (C3).)
First we examine the poles of the integrand. Since we
shall presently allow p —0 , we find easily that the

approximate positions of the poles are:

2 = izo o i/&vz—kz) - 4iw3u/92 .
For |k| < v , we can let u—0 and the & -integral will be
taken along a contour indented as shown in Figure 6a. For
k] > v , the poles are on the imaginary axis, even for u = 0 ,
and so the contour need not be indented at all, as shown in
Figure 6b.

In what follows, we shall assume that y > 0 . It is
readily checked that the final results hold for y < 0 if
we replace y by |y|

First we consider the case |k| < v . Define the

integral I :
12y+z/k2+£2

g



- 31 -

We form a closed contour as shown in Figure 7. The integrand

is analytic inside and on the contour except at the pole,

L = —%0 = —sz—kz . The integrals along the circular arcs

vanish as the radii of the arcs go to infinity.

integral I can be expressed:

I = - 2miv e—i/vz—kzy + vz
,/\)2_k2

Thus, the

JF -2y eiz/lz—kz e—iz»’lz—k2

+ dle + ’

e /222 + iv /22-%2 - iv

where the first term is the residue contribution, and the second

term comes from the integrations along the imaginary axis.

An upper bound on the integrals is easily obtained:

~gy+iz/2°-k? ~kly
die 1 -y _ e _
— f_ v dle = \)y = O(E) ’
Ikl 2%k £ iv x|
since y = 0(1) . If Jk|= o(e—l) , we have:
1= - o2me’F Ty o] .

If |k|= O(e_l) » a much stronger statement is possible:

= Ofe )
/12-k2 & iv

(k|
and so:

v2_k2

. . /2 12
I = - 2miv eVZ~1YVT-ky [1 + O(e—l/e)] .
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In the case of |k|>v , the stronger estimate is again

found to be valid. Thus, we can write for all cases,

2miv evz—i%vz—kzy

I~ ,
where we take the positive square root if v > k| , and we
2 2 L2 2,
take /VTU-k® = -ivk®-v® if v < |k| .

The potential function is now given by:

vz 4 ikx _* e—i'\)z-'k2y
¢(x,y,2) v 2ive J[ dke o (k) . (25)

/. (232

For small |k| , we can approximate
e-i/vz-kzy e-ivy
b
‘/\)Z_kZ Y v

If it were legitimate to use this approximation for all k ,
the integral would reduce simply to the inverse transform of
o*(k) » that is, to o(x) . In fact, it probably is legitimate
to do this. If o(x) were an analytic function of x , its
transform would act like e—Ikl as k —=» , and so any con-
tribution to the integral from the neighborhood of k| = v
would contain a factor e_lkI =o0(e™) = 0(e™/%) . fThus the
singularity in the integrand would have negligible effect on
the value of the integral. Now g(x) 1is certainly not analytic,
since it is identically zero outside of the interval

-L/2 < x < L/2 . So let us consider how 0*(k) is likely to
behave near |k| = v . The source density is probably propor-
tional to cross-section area, for any given frequency and
amplitude of oscillation. If the ship is pointed (neither

bluff nor cusped), this means that, near x = L/2 ,



- 34 -

(x-L/2)%, x <1/2,
og(x) «
o, Xx > L/2 .

The transform of a function with such a singularity behaves
like

* s
o (k) « e 1kL/2/k3
for large k . (See Lighthill (1958). ) The same argument
* -
applies at x = -L/2 . Thus, one may guess that o (k) = O(e 3)
near |k| = v . The contribution to the integral from the

neighborhood of the singularity will again be negligibly small,
although it will not be O(e /%) . Even for a blunt body,

the same conclusion will hold, although the basic assumptions
of slender-body theory cast some doubt on any results obtained
in such a case.

Since we apparently need to consider only the contribution
to the integral from moderate values of |k| , we use the
simple approximation of the integrand given previously, and we
find that:

d(x,y,2) ~ 2ieV(z-iy)Jr dkeikxo*(k)

- 00

ari o(x) eV(Z7i¥)

This is identical to the result in (23), which gives additional
*
credence to the plausible assumptions made above about ¢ (k) .
The near-field problem. We use the ordinary methods of

slender-body theory to simplify the conditions appropriate to
the near-field problem. The details will be omitted, for one
may refer to the later sections and simply set U = 0 therein.
If 8§ =0 , there is no fluid motion at all, and so one may
expect that the first problem will be linear in &6 . The first
term in the asymptotic series for the velocity potential will

here be denoted by:
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iwt}

&e_{¢(XIYI z)e

The function ¢(x,y,2) satisfies the following conditions in

the near field:

(L) ¢YY +4¢,, = 0, in z <0 ;
(F) ¢z - vo = 0, on z =0 ;
: E5(t)-xE ()
t 3 5

(H) ¢ _e'®" = , on z=h,(x,y) .

n /1 + h! 0

y

These should be compared with Equations (12). The discussion

following the latter is again appropriate. Here we only remind
the reader that the problem set by the above conditions is not
complete; we must add a radiation condition, given by (23).
Then the problem is properly posed, and one may proceed to
solving it—most likely by numerical methods. (See Appendix B.)
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STEADY FORWARD MOTION

The use of ordinary slender-body theory for solving the
problem of steady forward motion of a ship is in rather ill
repute. Neither author has been completely able to accept
this judgment, but aside from matters of faith there is good
reason to expect that the much malighed slender-body theory
may serve as a satisfactory basis for treating the ship-motion
problem, namely, that it has proved rather accurate in other
problems involving primarily the prediction of forces normal to
the mean direction of travel. Thus, in the prediction of
sinkage and trim in shallow water*, it has given good results
except near the critical speed for shallow-water problems.

More relevant, the present theory is based on slender-body
theory, and the formulas for added-mass and damping coefficients
appear to be at least as good as those obtained by strip theory,
which are known to be fairly accurate.

In this section, we do no more than collect a few results
which will be needed. Details may be found in Tuck (1965).

Let the velocity potential be expressed:
¢(x,y,2) = Ulx + x(x,y,2)]1 . (26)

The first term in an asymptotic expansion for X(x,y,z) in the

near field satisfies the conditions:

(L) Xgy t Xgy = 0
A S o= - -1 X2 on z =0 ;
U2 XX zyl ’
(B) X, = 0 on z = 0 ;
h0
X - X =

(H) T S on z = hy(x,y) .
0
Y

*
See, for example, Tuck (1966) and Tuck (1967).
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At large distance from the body, the potential behaves like
2

a(x)log r plus a function of x only, where r = /§2+z ’
and a(x) 1is proportional to the longitudinal rate of

change of cross-section area. This "radiation" condition must
be derived by matching the near-field solution to a far-field
solution. Otherwise, the boundary-value problem is set by
conditions (L), (B), and (H). Condition (A) serves to predict
the free-surface shape once the boundary-value problem has
been solved.

The following facts will all be needed later:

(1) o) = o(x) = o) = o(e?) .

(2) O(xy) = 0(x,) = of(e) .

(3) O(ny) = 0(x,,) = 0(1)

(4) xy(x,yo(x),O) = yé(x) , where yo(x) is the half-

beam on the plane of the undisturbed free surface.
We also call attention to the properties of x(x,y,z)
which are demonstrated in Appendix A.
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THE GENERAL PROBLEM: THE NEAR FIELD

The general formulation has been given in Equations (1)

to (6'). Now we introduce the following notation:
¢(lelzlt) = Ux + UX(XIYIZ) + lI»’(XrYert) 7 (27)

in which x(x,y,z) has the same meaning as in the preceding
section. Thus, V¥(x,y,2z,t) includes everything that must be
added to the steady-motion potential function. The hull surface

is again defined mathematically:

z - hy(x,y) - g5(8) + xE(t) = 0 (9b)
It proves convenient to define also:

C(XIYIt) = TI(X,Y) + e(X,Y,t) ’ (28)

where n(x,y) 1is the free-surface disturbance in the steady-
motion problem (the ¢ of the previous section), and 6(x,y,t)
includes all further disturbances found in the present section.
The problem now is to find the conditions to be satisfied by
v(x,y,2z,t) and 6(x,y,t) .

We make the assumptions about orders of magnitude stated

in (7), (7'), (8), (8'), and (10). It is fairly trivial to
prove that
(L) wyy + wzz = 0 . (29)

Thus, we again have a potential problem in two dimensions.
Fortunately, (29) is valid for the first two terms in an
asymptotic expansion of VY(x,vy,z,t) .

We use the body boundary condition in the form (6):
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(1) O = [U(l+x) + ¥yl [ng ~Eg] + [Ux,+b] hy

X y

= [UX,+0,1 + (£5-xE,) (30)
on z = hy(x,y) + &3 - x&¢

It is inconvenient to have to apply this condition on the
instantaneous position of the hull, and so we assume that the
expression in (30) can be expanded in a Taylor series about

the mean hull position. To carry this out, we apply the

operator
{1+ (65 - xE) 3/9z + ...}
to (30) and evaluate everything on z = ho(x,y) . The result
is:
o = Uhox - UXZ + nyho + Ipyhoy - wz + (g3—x£5)
[e] [e] [e] [51/26] [81/25] [51/26]
- UES + U(€3_X£5) (hoyXyZ-XZZ) + LI r

[ed] [e6]
on z = hO(XIY).

Under each term we have indicated its order of magnitude. This
can only be done with information yet to be obtained, but it
gives some extra clarity here to see the relative orders of
magnitude, and so we take this liberty. Some terms have been
dropped already because they subsequently appear to be of
higher order of magnitude.

In the steady-motion problem, the body boundary condition

can be written:
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0

0 = Uh y - sz + nyhoy ’ on z = ho(x,y) p

and so we subtract these three terms from the previous result,

leaving:

o0 = wyhoy -y, + (63-x€5)

- U€5 + U(£3—XE5)(hO X xzz)

"
v Y
on z = hO(X:Y) .

We can now wWrite this condition in our canonical form (CEf. (6')):

_?l ) Vg - hOy wY
y
_ €5 — x&g .\ U(E3-XE5)(hovxyz-xzz) - Ugg (31)
1+h /1+h8
Y y
el/2s] [£6] on z = hg(x,y) .

It is evident that we are carrying along two different orders
of magnitude, the two differing by 0(51/2) ; we shall continue
to do so. The lower-order term is, by itself, identical to the
normal velocity component in the zero-speed problem, as given
in (12c). The higher-order term leads to interactions.between
the oscillations and the forward motion. Equation (31) can
also be obtained by utilizing the body boundary condition
formulated by Timman and Newman (1962).

We perform the same analysis on the two free-surface con-
ditions, (3) and (4). For these, we assume that the potential
function can be expanded in a Taylor series about z = 0 .

The results are:
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(a) by + 90 = - Uy - U(xywy) ; (32)
[e6] (e3/2s)

B - 0 = UO6_ + Ux. 6. + U g . 33

(B) ¢, - 8, x + UX 0, + UX (33)
et/ 2s) [es]

Both are to be applied on z = 0 . We can eliminate 6(x,y,t)

from the two conditions, the result consistent to order 0(g8)

being:

(F) Veg * 9V, = - 200 - ZUwaty - Uy
[el/2s] [e5]

yywt (34)

Equation (31) suggests that ¢(x,y,z,t) will have an
asymptotic expansion starting with a term which is 0(53/26)
followed by a term which is 0(826). There is nothing in (L)
or (F) to contradict this suggestion, and, as we shall find,

r

it is completely compatible with the far-field solution. It
can be shown that the unsteady free-surface disturbance,
6(x,v,t) , is 0(e6) .

As in the zero-speed problem (See Equations (13) and (14)
and the accompanying discussion), it is convenient to define
normalized potential functions which do not depend on the motion
variables. In the forward-speed problem, we find it desirable
to define several sets of such potential functions. First, we

note the following definitions from Appendix A:

v 2 . -1/2

n3 = (l+h0 ) :
y

Y 2 -1/2

ng = - x(l+h0 ) :
Y

Y _ 2, -1/2

m, = (xyzh0 Xzgz) (1+hy ) ;
Y Yy

v 1 _ 2 -1/2

mg = (-1 X (xyzhoy xzz)](l+h0y) .
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The guantities n, are the six components of a generalized
unit normal vector, and the m, are related to the rate of
change on the hull of the vector v , the fluid velocity in
the steady-motion problem. With this notation, we define

the potential functions, @i(x,y,z)(i = 3,5) :

@in = ng on z = h,(x,y) ;
(35)
. - vd. =0 on z =0 .,
i i
z
Since éj = ing » we can show that the potential function
w.-za(iNngj) has a normal derivative on the body given by
the second term on the right-hand side of (31), and on the
free surface (that is, on 2z = 0 ) it satisfies the same
condition, (34), as ¢ alone. Thus, we still have two
nonhomogeneous boundary conditions to satisfy. We divide
the job between two sets of potentials. Define Wi and
Qi by these problems:
Win = m; on z = hy(x,y) ; |
; (36)
Wi ~ vTi =0 on z =0 ;
z
\
Qi = 0 on z = ho(x,y) ;
n ? (37)
Q; - Ve, = -(l/g)[2®i + 2Xy®i + nyéi] on z =20 .
z X y
If we define:
. 2
v(x,v,z,t) =Z. [1w<1>j + U‘Pj - w UQj]Ej(t) ’ (38)

]

we find that it satisfies all boundary condition previously

imposed on ¢ .
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The first set of new functions, @i , 1s obviously
very closely related to the ¢ introduced in (13). 1In

fact, the present o is identical to the previous & '

and our @5 can be ghown to be just =-x® . Thus, the
@i —problem is really just the zero-speed problem again.

The second set of new functions, Wi , satisfies the
ordinary homogeneous linearized free-surface boundary
condition, and on the body it supplies the effects of inter-
actions between oscillations and the incident stream.

The third set is unlike either of the other two.

Qi has zero normal derivative on the hull, but on the free
surface it is nonhomogeneous in a way not encountered before
in our analysis. 1In fact, if we were to apply a pressure

distribution,

p; (x,y,t) = ipmugi[chix + 2xyc1>i + nycpi] ' (39)
y

on the free surface, we would obtain exactly the same
boundary condition for a velocity potential as the condition
on —szQigi .

One can make an analogy between the preoblems for Wi
and Qi . The former arises because we must satisfy the
body boundary condition on the instantaneous position of
the body surface. 1In the steady-motion problem, yx satisfied
a condition on the undisturbed position of the hull, and so
X must now be corrected. This correction can be obtained
approximately by making Y satisfy (31), in which the second
term on the right-hand side leads to the effect being con-
sidered. Thus, Ti is an oscillatory correction to the
steady-motion potential which comes about because the latter
satisfies a condition on the wrong boundary.

The situation with Qi is similar but slightly more
complicated. There is, first of all, a kinematic effect
at the free surface entirely comparable to that on the body.
If we were to correct for just this effect, the right-hand

side of (34) would contain the terms



- U, - nywty - nyywt = gluoe,  + nyey - Ux, %1

These terms have enough direct similarity to the pertinent
terms of (31) to show the analogy. (The basic difference
in nature between the surface of the body and the free
surface accounts for the superficial difference between the
results.) 1In addition, however, there is a dynamic condition
on the free surface, and this leads to a further effect of
the same kind. Because the steady-motion potential satisfies
the dynamic condition on the wrong surface, one must add an
oscillatory pressure distribution to affset the error. This
pressure has the effect, as it turns out, of doubling two of
the three terms written above. We conclude that the potential
functions Qi represent an interaction effect which is just
as legitimate as that represented by Wi .

None of the above boundary-value problems is complete
yet, for we have not provided radiation conditions. We
might proceed intuitively and suppose that the potentials
should represent outgoing waves at infinity. We would,

in fact, be correct--with respect to Qi and Wi only.

This will be discussed further when we come to match the
near-field solution to the far-field solution.

Even without any considerations of matching asymptotic
expansions, we can see immediately that there is trouble
with the Qi -problem. Let us suppose that we have solved
the x -prodemand the @i -problem, the latter indeed
representing outgoing waves. Then the problem for Qi
involves a fixed impermeable body (R ;= 0 on body)
and an imposed pressure distribution oh the free surface,
specified in Equation (39). One might consider that this
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is a well-known solved problem. (See Equation (21.17),
Wehausen and Laitone (1960).) But the formula for the
answer requires, first of all, that the praessure distri-~-
bution be absolutely integrable, and ours is not, for it
oscillates sinusoidally all the way to infinity. There
is still more serious trouble. If the pressure were set
equal to zero, the boundary condition would allow for the
existence of "free waves" of wave number V . The equivalent
pressure as given above includes one part which has exactly
the same time and space periodicity as the free waves. The
situation is quite analogous to driving an undamped linear
oscillator at its natural frequency; no steady-state solution
is possible and, starting from rest, the response grows in
time without limit. In the present problem, one may consider
that the free surface provides the mechanism of an oscillator,
undamped except for the possibility of radiation damping.
Since the pressure excitation extends to infinity without
abatement, even radiation damping cannot stabilize the
resulting motion. It appears that no solution is possible
for the Qi -problem.

However, in Appendix D, we formulate a problem which
can be solved and which, after certain limiting operations,
can be considered to be equivalent to the present problem.
Neglecting for the moment the presence of the body, we
assume that there is an applied pressure distribution on

the free surface given by:
1w
p(x,y,t) = Re[p(x,y) %] (40)
where

P(x,y) = py(x) vyl (40")
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This artificial problem includes the essence of our
difficulty*. It is shown in the Appendix that a possible
solution can be obtained which has an outer expansion

given by:

o (x,y,t) v L eV Re [ipo(x) (-z + i|y|) et (Wt - “'Yl’] . (41)
og

If we interpret po(x) e—i\)ly| as the oscillatory part of
(39), this asymptotic behavior should apply also to the
terms in ¢ containing Qi . Physically, this outer
expansion appears to represent outgoing waves which have an
amplitude increasing linearly with distance from the origin.
(Compare the analogy with the undamped spring-mass system.)
The fact that this outer expansion is ill-behaved at infinity
causes no concern, because it is the outer expansion of an
inner expansion, and the latter is not expected to be wvalid
at infinity. All that we must insist upon is that it should
match the inner expansion of an outer expansion, and this it
does.

Outer expansion of the inner expansion. Since we have
defined: '

- : _ 2
Y(x,y,z,t) = Zj [Lwes + U¥y - wiURilE,(t) (38)

the outer expansion of the time-dependent near-field solution
can be expressed in terms of the outer expansions of éj ’
¥, , and Qj . We now assume that the first two have outer

J
expansions given by:

*After solving this problem, we could calculate the resulting
normal derivative of the potential function on the body surface,
then formulate a second problem involving a nonhomogeneous
boundary condition on the body and a homogeneous free-surface
condition. The second problem would be identical in form to
the problems for Qi and Wi .
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twey (x,y,2) 5 (£) ~ ay(x) eVZilut = vyl _ 5 3/25) (42,

U¥j (x,y,2) Ej(€) v by (x) eVZellut = vlyD _ 525 | (42D)

where aj(x) and bj(x) can be determined from the
(numerical) solution of the relevant near-field problems.
The justification for this assumption comes in the matching
to be performed presently. The orders of magnitude shown are
based on all of the available near-field information.

The functions Q. will have one component in their
outer expansions which are of the same form as those in
(42a) and (42b). The only difficulty arises because of the
term ¢. in (37). 1In view of the discussion leading up

to (4l),xwe see that we can set:
— ¥
Pg(x) = 2pU aj (x) . (43)

The velocity potential for such an applied-pressure problem

would satisfy:

ilwt = v|y])

¢, - v$ = —2ira§(x) e on z =20 .
From (37) and (42a) we see that:
2 . . .
-w UEL (t . - . = - 2%, + 2y . 9. + b, . (t
W EJ( )[QJz vQJ] it[ ij Xy 3 Xyy J]1w£3( )

v -2ital (x) el (Wt - vy D
J

Thus we can identify the asymptotic behavior of —szEij
with the asymptotic behavior of the potential in the arti-
ficial applied-pressure problem. In addition to the growing-
wave behavior, there will be a simple outgoing wave of
constant amplitude, and so we take as the asymptotic form

of Q. :
3
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~uuR, (x,y,2) €4 (£) » oy (x) eVt (Wt viyD

2
(e8] (42¢)

vz i(wt - v]y])

—2iTa5(x) e’ “(z - ily|) e

[ed]
For ¢(x,v,z,t) we have:

bey,ze) v L fag ) - zital(z - ily)] eV? e (¥t - viy])
J
[e3/261  [es] (44)

This is a two-term outer expansion of a two-term inner ex-
pansion. (Note that we consider y = 0(l) in deciding
where to cut off this expansion. Thus the growing-wave term
is the leading term, and the terms containing bj(x) and

c(x) are both 0(e?s) , that is, negligible.)
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MATCHING THE EXPANSIONS

In Appendix C, we present the details of the far-field
problem. It is necessary to obtain a far-field solution with
only sufficient generality that it can be matched to the
near-field solution. The solution in the appendix pertains
to the flow around a line of pulsating sources. It is not
necessary to include any higher-order singularities. 1In
fact, there is reason to suppose that singularities of any
kind could be used (provided they have the proper lateral
symmetry), for the inner expansion of the far-field solution
is shown to represent outgoing waves and it is not at all
evident that the nature of those waves depends on the precise
kind of singularities assumed.

In any case, having assumed a line of sources of density
1wt

o(x) e » we show in Appendix C that the far-field solution

is:

: - . , [2 2
6 (x,v,2) olut _ _%elwt J(dkelkxc*(k) df exp ify + zvk“ + 2

Je(k) vk2 + 22 - é(w + Uk) 2

-0

which has a two-term inner expansion:
. vz . : . i(wt - viy])
dri e " lo(x) - 2it(z - ily])o'(x)] e . (45)

This inner expansion must match the outer expansion of the
near-field solution, given in (44). We see that one need

only set:
4mic (x) = Z a, (x) (46)
J

and both terms match. Thus, we can select the source
strength on the basis of the solution of the ®j ~problemns,
and the strange growing-wave terms automatically match. It

is this result that justifies much of what went before, viz.,
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the interpretation adopted for the Qj -problems and the
form assumed for the asymptotic behavior of Qj ’ Wj ’
and Q. .

J 3/2

It may now be noted that o(x) = O(a.) = O(e §) .

In (45), the two terms are 0(83/26) andJ 0(826) ’
respectively. The second term is higher order than the

first, which contrasts with the result found in (44). This
occurs because y = O(e) in (45), which is an inner expansion
of an outer expansion, and y = 0(l) in (44) , which is an
outer expansion of an inner expansion.

Having found the outer solution and matched it to the
inner solution, we can henceforth ignore it, for it has
served its only purpose, namely, to provide a radiation
condition on the inner solution. It may well be appreciated
now that the boundary-value problem set by (37) could not
be solved without the insight provided by the outer solution.
The whole interpretation of the applied-pressure problem
and thus of the Qj -problem could not be justified (or
perhaps even suspected) without the knowledge that the 2+«D
flow appears to be a superposition of ordinary outgoing
waves plus growing outgoing waves at large distance from

the ship.
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FORCE AND MOMENT ON THE SHIP

In principle, the computation of this section is very
simple. We use the near-field expression for the velocity
potential, substitute it into the Bernoulli equation, multi-
ply the pressure by appropriate direction cosines and lever
arms, and integrate over the hull surface. In effect, this
is all that we do.

But we want the results to be in a usable form, and
this requires that, at the least, (1) we should keep to a
minimum the number of boundary-value problems which must
be solved numerically and (2) we should avoid having to
perform longitudinal differentiations on these velocity
potentials. (The reason for the second demand is that the
numerical solutions all pertain to boundary-value problems
in two dimensions; derivatives with respect to x would
have to be found by processes of numerical differentiation.)
It takes a considerable amount of manipulation to satisfy
these demands, and, as one might suspect, the Qj -functions
cause most of the difficulty.

Before starting on this program, let us gather together
a number of formulas which will be needed. The potential

function is given by:
o(x,y,2z,t) = Ux + Ux(x,y,2) + ¥(x,y,z,t) . (27)

The first two terms satisfy the conditions of the steady-

motion problem. For large [yl '

x(xX,¥y,2) « log(y2 + 22)1/2 + a function of x . (47)

If we set v = V[x + x(x,y,2)] , then v has the property:

fni(y-vq))ds = —fmicbds ' (48)
So So
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as proven in Appendix A. In Equation (48), ¢ may be any
differentiable scalar function of (x,v,2z) , but, in our
application of the theorem, ¢ will represent ®3 or @5 .
(See (35), which is repeated below.)

The time-dependent part of the potential function has

the following form in the near field:

vix,y,z,t) = Z:{iwé. + Uy, - wZUQ.]g.(t) ' (38)
3 J J 3473
where the sum is taken over j = 3,5 , g3(t) and gs(t)
are the heave and pitch variables, respectively, and the 2-D
potential functions Qj ’ Tj , and Qj are defined by the

conditions:

(=)l
0
o
(o]
o]
N
Il

hy(x,y) 5 @jz - v<I>j =0 ,o0on z=20; (35

inj(x,y,z)gj(t) a aj(x) evzei(wt - VIYI)

an = mj , on z = hO(X,y) ; sz - vTj =0 ,on z=20; (36)
UWj(x,y,z)gj(t) " bj(x) eVZl (ut = viy]) as |y|— ; (42b)
Qj =0 on z = ho(x,y) ;
n (37)
. = V. = =(1 [2@. + 2y &. + @.] on z = 0 ;
B3, TV T /e 20y o+ 2y iy T vy®s

"*’ZUQJ' (x,¥,2) €5 (£) ~ c  (x) eVZoilut - v]y])

vz ilwt = v]|y])

—2i1a5(x) e’ (z - ily]) e
as |y|—e . (42¢)

The orders of magnitude of the various quantities should be

recalled too:
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O(e) ;

©n
I
o
™
-
i

0(82).

e}

i
O
m

N
>

il

The properties of nj and mj are listed in Appendix A.
The first step in calculating the force and moment is to
express the pressure in the fluid. From the Bernoulli equation,

we obtain the estimate:
- % = gz + wt + %-BU+Uxx+wx)2 + (ny+wy)2 + (sz+wz)2 - Uz]
vogz + wt + wa + nywy + szwz ’
[e] [es] [e3/%61 [e3/2s] [e3/26)

the second result being valid after we drop all quantities

which are o(€3/26) . Note that we shall be evaluating the
pressure on the hull, and so the hydrostatic pressure term

is 0O(e) . We could substitute the coordinates of a point

on the hull, 2z = ho(x,y) + 53(t) - xgs(t) , into the above
expression and we could then integrate directly to find the

force and moment. However, it is much more convenient to be

able to evaluate the pressure on the undisturbed or mean position
of the hull. To do this, we assume that the pressure expression
can be expressed as a Taylor series about the undisturbed posi-

tion of the hull. To a consistent approximation, we find that:

- R _ = -
0 gz +g(£3 xES) + wt + wa + nywy + szwz .
The first term gives just the ordinary buoyancy restoring
force and moment, and so we shall ignore it hereafter.

The hydrodynamic force (moment) can now be written:
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F o (t) = fnipds ,

5o

where 1 = 3 gives the vertical force and i = 5 gives
the pitch moment. We substitute the pressure expression
into the integral (omitting the buoyancy term), and we use
the theorem of Appendix A to rewrite the result:

F; (t) = —“pf as (% [ni(iw)z - Umi(iw)]cpjgj

So
son, L [(iwvy, + (iw)39.]g.) )
i g j 3153

It is convenient to break this into several parts, as

follows:
F,(t) = ZTijEj t) ,
J
where
_ m{0) (1) (2)
Tiy = Tyy + Ty o+ T3
and
(0 _ _ ,. 12 .
Tij = -p(iw) ./-ds nin :
S0
oY) - o (iw) U [ dS[n.v. - m.e.] ;
ij ij it3" !
s0
(2) _ _ ;. 3
Tij = -p(iw) U‘[ ds nin .

So

(49)

(49')

(49a)
(49b)

(49c)
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We now treat each of these components in turn.

Tig) . It is easily seen from (49) that the first,
Tég) + is the only one that does not depend on U , and so

it yields the zero-speed formulas. No simplification is

really possible. Comparison of (35) and the result in

Appendix A: ng = —xn3[l + 0(52)] » shows that
q’s (x,y,2) = —X<I)3 (x,y,2) . (50)
Using these facts, we write out Tig) for the four cases
at hand:
(0) _ _ .. .2 .
T3y = p (1w) -/-dS ny o3 ; (51a)
So
(0) _ _ ;i 2 2 .
Tge' = p(iw) J[ ds n5 x ¢y i (51b)
So
(0) _ .,(0) _ .2
Ty = Tg3 = pliw) ‘[ dS n, x5 . (51c)
So

Ti%) . In order not to carry along extra constants,

2AJ

let us define:

(1) _ _ .. (1)
Tij = -p(iw) U Iij ' (52)
where
(1) _ _
Iij = ./‘ds (nili‘j mi®j) .
So

Using (35) and (36), we replace n, and m, in this integral

by @i and Wi , respectively:
n n
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Case 1. Let i = 3j . The integral is in just the

form for applying Green's theorem, except that the surface

of integration must be closed. We add to the surface S0

three more surfaces: the undisturbed free surface, F0 ’

a vertical control surface far away, S_ 1 and a horizontal

control surface at great depth. If the above integral
is taken over all of these surfaces, the result must be
zero. Obviously, the surface at great depth contributes

nothing, and so we have:

(1) _ _ - - -
;0 = ds (e, v¥. Y. o) ds (o, ¥, Yo oe,) .

n n n n

F S
0 [+

(Note that we are applying Green's theorem to potential
functions defined in two dimensions only. Thus, we need
no control surfaces parallel to the y-z plane.) The
integral over FO contributes nothing, for ¢, = 9
on z =0 (and similarly for Yi ), and so thenintegfand
is zero if we substitute from (35) and (36). Similarly,

we can use the asymptotic estimates of @i and Wi for

large |y| to show that the integrals over the surface §_

vanish. Thus,

p(1) _ (1)

33 = Tg5 =0«

Case 2. For i # j , the result is different. We

add and subtract a quantity, as follows:

(53a)



1D o [ as (0, ¥ -
35 J 3 ¥s

J ds (®3 WS - ¢3W5 ) + J[ das (@SWS - WB @5)
S n n S n n

0 0

The first integral contributes nothing, as can be shown by

an argument like that used in Case 1. 1In the second integral,

we substitute from (36):

(1) _ _
I35 = u[.dS (m5¢3 m3®5) .
S0

From Appendix A, we draw the fact that m5 = --(n3 +xm3)[l + 0(52)] 4
which we substitute into the last equation, obtaining:

(L _ _ ]
I35° = =) n3
5o

¢, ds .

3

(1)

A similar analysis can be performed for 153 » and we find
that, ultimately:

(1) _ (L) _ . _ .U (0
T35 = T53 = p(iw) U _f n3®3 ds = e T33 . (53b)
5o
Tig) - The problem here is gquite different from those

we have just studied, for the functions Qj satisfy a homo-
genous condition on the hull and a nonhomogeneous condition
on the free surface. Moreover, Qj has a more complicated
behavior at infinity.

Again, we define an integral Iég)
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(2) _ _ ,. .3 (2)
Tij = -p(iw) U Iij ’
where
1{2) - fds n.Q. = fds (0. Q. - ¢.0. ) .
1] ) 1] ln J 1 Jn
So So

We have used (35) to introduce @i , and the extra term
which we have added is equal to zero, since an = 0 on
Sy +» by (37). As before, we use Green's theorem to rewrite

0
this integral in terms of integrals over Fo and S :

(2) _ _ - - -
n n n
F, S e
The surface S, cannot really be at infinity, of course,
but we assume that it is far enough away (at |y| = R )

that we may use the estimate in (42c).

First we consider the integral over F0 . We use the
boundary conditions on @i and Qi ((35) and (37)):
- f ds (<I>i Qj - @in ) = - jds [v@iﬂj - \)(bin
F n n F
0 0
2 2 1
+ 0.1 =0. + =x. 0. + = ¢.
q)l(g ix 93, T gty J”
L/2 R
2 .
= == dx dy ¢.(20. + 2y 9.
g [ Y 9;(205 + 2%, iy
-L/2 Yo (%)
+ ®.) .
Xgy J)_

Since the problem is symmetric about y = 0 , we have
reduced the domain of integration to one side of the ship,
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and we have introduced the function yo(x) to denote the

half-beam at any x . The term containing ny can be
integrated once by parts:
R R R
d .0. = ¢. 9., - d ¢, o. + 9.0,
fyxyy13 Xy®i%3 fyxy[lyj lJY]
Y (%) Y, (x) vy, (x)

When we take note of (47) and also use the fact that
%S= —x®3 » we find that in all cases the terms containing
X cancel each other except for one contribution from the

lower limit in the integration by parts, and we have left:

L/2
= 2
F, Z1./2

L/2 R

-4 dx_[ dy ¢.9. .

g9 13

X

“L/2 Ty, (x)

In the integral over S_ , we must use the asymptotic
estimates for @i and Qi , as given in (42a) and (42c).
We assume that we can differentiate these estimates, and,
noting that 3/9%n = 3/3y , we obtain:

L/2
- - = 2_i —ZiVR '
[dS (@ian @inn) gv e f dx ai(x) aj (x) .
S =L/2
We combine this with the previous result:
L/2 L/2 R
(2) 2 4
I/ == dx d. 0. - = dx dy ¢.60.
ij 9‘/1: SRS LS gfL [ Y Pt
k2 ° —/2 Ty, (%) (55)
L/2

2i _-2ivR '
+ gv e Jr ax ai(x)aj(x) .
ZL/2
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Clearly, we have trouble with the last term if we try
to let R go to infinity. However, it may be observed that
there is a similar trouble with the second term, for the
integrand oscillates with undiminishing amplitude as vy
goes to infinity. Perhaps it is not surprising that these
two difficulties cancel each other, and we now show this.
For large y , we have:

¢i¢jxfu afx)aﬁ(x) e2V(z = iy)

We subtract and add just this quantity in the integrand of
the second term of (55):

L/2 L/2 R
(2) _ 2 _ 4 _ v —2ivy
Iij g_/- dx[xy@in]= x) ‘[- de[dy[Qinx aiaje )|
~L/2 Y=Yq ~L/2 Ty, (x)
L/2
2i ' =-2ivy, (x)
+ gv dx ai(x)aj(x) e 0 .
-L/2

In the last equation, we can now set R = « without further
complications.

There is one final simplification which is possible
because ¥ has the wvalue yé(x) when it is evaluated on

y
S, at z = 0 . (This follows from the wall-sidedness of
the ship.) First we consider the case i = j . We note that:
4a [ 2 2 -Zivy] o 2 _ 2 -2ivy
s dy @i aje = yo(x) @i aye
YO (X) Yy = yo (x)

>}

_ v —2ivy
+ 2 dy[@iéix a;a;e ]
Y (%)

(2)

Then we have for I. :
ii
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2 2 .
~L/2 v = yo(x)
! 2 2 =-2ivy
- ¥o(x) %i - a;(x)e |
Y = ¥4(x)
(o] ~ . ‘
-4 2 _ 2, . -2ivy, |
dx[ dy l@i ai (x)e | /1
Yo (%)
L/2 . .
= § f dx {\%e"zl\)Yo (X)ai(x) a.‘!L (x) + yé(x)ai(x)e—Zl\)yo(x)j
~-L/2

We see that two terms have canceled each other, and the last
term became the longitudinal integral of a perfect differential.
If the ship ends are such that the slender-body assumptions

are not grossly violated there, that last term must vanish.
Finally, we perform an integration by parts on the first

term, and under the same assumptions as before we find that:

1 (2)

ii -0
and so:
Tf?) =0 . (56a)
ii

For the case that i # j , we do not get zero. Again,
we use the fact that @5 = ~X03 which also implies that

a. = -Xa, (See (42a).) The steps are similar to those

5
above, the only variation coming in the results of the
partial integrations with respect to 2z . We note first

that, for i =3 and j =5,
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oo}

d -2iv '
& | avloses - ayeagme™ ] <« - ype[ege;
Yo (%) _
- a3(x)a5(x)e—21Vﬂ
Y = ¥q(x)
-2ivy
+ 2‘[ dy 0,9 - a,(x)al(x)e
4 [3 54 3\¥/ &g ]

yO(X)

+-j’dy[®2 - ag(x)e-Zivy] .

3
yO(X)

(The last term on the right-hand side has an opposite sign
if we take i =5 and Jj =3 . It is this term which
leads finally to a non-zero result.) The rest of the
steps will be omitted, since they are nearly identical to

those in the analysis just preceding. We obtain finally:

L/2 oo

(2) _ 2 [ 2 _ 2 -2ivy
I35 = 3 j’ ax dy‘?3 a3(x)e
_ i 2 -2ivy, (x)
§3a3(x)e 0 '

and the same expression with opposite sign for Iég) .

For TS?) we have:
1ij
3 L/2 oo
(2) _ (2) _ _ 2p(iw) U 2 2 ~-2ivy
T35 = —T53 = ————————'j— dx dy[®3 - a3(x)e ]
I T2 ly

i

2 -2ivy . (x)
2\)a3(x)e 0
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The integral expression is exactly what we denoted by

2
Jﬁ ds ¢3

F

in (19) and (21). Thus we have come to our final analytical
results. '

All that remains is to identify these results with the
ordinary added-mass and damping coefficients. Recall that
we have omitted the buoyancy restoring forces from our
results. Therefore, the quantity which we labeled Fi(t)
in (49) includes just the force components which are

associated with ship velocity and acceleration, viz.,

F,(t) = JZ T 585 (8) = - § [a; 4&5(8) + by &, ()]
_ 2 .
= EJ: [w¥a;; = (Gw)bgle (E) .

Thus we have:

_ 2 . .
Tij = W [aij + bij/lw] :
_ 2 T 1
a;y = (1/w®) ReLTijJ ;

byj = - (1/w) Im[zy,] .

The complete expression of these results has been written out
in (18) and (19).
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APPENDIX A. VECTOR DEFINITIONS AND RELATIONS

In formulating the near-field problem and in deriving
force formulas, we have used the components of two generalized
vectors, n; and m; . (See, for example, Equations (35)
and (36).) 1In this appendix, we provide a complete defini-
tion of these vectors, show some of their properties, and
then prove a theorem relating n. and m, . The theorem
is essential in deriving the final, simple formulas for force
on the ship.

We make a number of definitions:

1) S0 is the hull surface in its undisturbed position,
bounded above by the plane 2z = 0 . It is assumed to be

wall-sided at the free surface.

2) C0 is the line of intersection of SO and the
plane z = 0O .
3) v 1is a unit vector normal to S0 , directed into
the hull.
4) v is a vector function with the properties:
a) V.v =0 in the fluid domain,
b) Vxv = 0 in the fluid domain, and
¢c) v-v =0 on Sy

In the applications of our theorem, v is the (normalized)
fluid velocity in the steady-forward-motion problem, that is,

v = V(x + x(x,vy,2)) .

5) n. i=1,...,6 , is given by:

n;i + nyj + nik =y ;

n4i + ngj + n65 = rxy , where r = xXi + yj + zk
6) m. i=1,...,6 , is given by:

m;i + m,Jj + mok = -(vV)v = m ;

myi + mgj + mgk = —(p°V) (£xy) = £xm + yxy .

For convenience in the main problem (and for the future),

we list here some expressions for n. and m, . including
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slender-body approximations:

~ 0 0%y o )1 = o(e)
n, = = - + 0(e = O(e
1 Y1 + h§, + h5y /1 + hEy
- hy - h
n, = Y = —X 1+ o0 = o)
Y1 + h2 + hj VY1 + h3
Ox y Oy
n, = 1 - 1 [1 + 0(e?)] = 0(1)
/1 + h§_ + hf, /1 + h}
Y
y + zh 5
n, = yn; - zn, = [l + 0(e™)] = 0O(e) ;
1 + hj
n = zn, - Xn = -xn,[1 + 0(82)] = 0(1l) ;
5 1 3 3 i
n = Xn, - yn = xn,[1l + 0(52)] = 0(1) ;
6 2 1 2 :
m = “XxxT1 T Xxyn2 T Xxz™3 O(e) ;
= -(x,.n, + x,.n) [1 + 0(e2)] = 0(1) ;
My = Xyy2 Xyz"3 € !
m, = ~{(x..n. + x..n3)[Ll + 0(e2)] = o(1) ;
3 Xzy 2 Xzz™3 !
Mg T XyM3 T Xghp *oymy - ozmy = O(e) ;
= -(n, + xm) [1 + 0(e2)] = o(1) ;
m5 = n3 xm3 = H
= (n, + xm,) [1 + 0(e?)] = 0(1)
m6 = n2 xm2 € = .

-
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We now prove:
Theorem. Let ¢(x,y,2z) be a differentiable scalar

function. Then, for i =1,...,6 , the following is true:

f[mi¢ + n,(y-v¢)lds = —fdzni¢(1§-y) ’
So o
where C0 is followed in a counterclockwise direction,

looking down on the ship.
Proof. We prove the theorem first for i =1,2,3
One of the standard forms (see Milne-Thomson (1968), Section

2,51) of Stokes' theorem is:

Jwm < wwas = [ apy -
S

0 o

By the use of various vector theorems, the integrand of the

surface integral can be rewritten:

(xV) x ¢ = ¢y x (Vxv) + ¢ (v VY - v(¥v-Y9) + (v:'v) Vo ~ ¢pu(V-v)

= ¢(peWNY - w(y-Vp) ,

the last equality following from application of the properties
of v given previously. Thus, the surface integral is:

Jtwmy - ywvpias = - [tom + viv-veras
So S0

In the line integral, because the ship is wall-sided, we

can write:
é& == d2(1_<><y) ’

and then we again use some standard theorems to show that:

(kxp) x ¢y = ~[y(k-¢y) - k(v-9y)]

= -v¢(k-v) ,
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the last equality again following from the properties of
v . This gives the theorem for n =1,2,3 .

For i = 4,5,6 , we start with another variation of
Stokes' theorem:

Jastwm x o) xx = [@xow xx .
C

So 0

The integrand of the surface integral can be manipulated into

the form
[(uxV) x ¢v] x £ = ¢[rxm + yxy] + (rxp) (Vv-V)¢ ,
and the integrand of the line integral into
- d% ¢ [(kev) (vxr) - (kxxr)(v-v)] = - d& ¢ (k-v) (vxr)

which then completes the proof.

For application in this paper, we need only the cases

i=3,5. For i = 3, the line integral vanishes because

the ship is wall-sided and thus n, = 0 on C0 . For i=5,
the line integral also vanishes, for both r and 1y lie

in the plane z = 0 and so ng = je(exp) = 0 .

It may be noted that, for other modes of motion (i =
1,2,4,6) the line integral will not necessarily vanish
identically, but it will be negligible, for it is higher
order than the surface integral. 1In the slender-body analysis
for v , we obtain (k-<v) = 0 for the lowest order approximation
of v . (This is the rigid-wall boundary condition on x .)

Thus, the line integral will start with a term involving
the second approximation of v .
The utility of this theorem lies in the fact that it

enables us to convert surface integrals involving derivatives

of ¢ into integrals which involve only the values of ¢ .
Thus, with ¢ representing ®3 or @5 , we avoid the
necessity of performing numerical differentiations in the
longitudinal direction.



- 71 -

APPENDIX B. NUMERICAL SOLUTIONS OF THE 2-D PROBLEMS

In the formulas presented in (19), it is clear that one
must numerically solve the boundary-value problem of a cylinder
heaving on the free surface. From this solution, one must ob-
tain, in particular, the value of the potential on the mean
position of the body and the value of the potential on the
position of the undisturbed free surface. Two different
methods have been reported in the literature for solving this
problem, and they are described briefly in this appendix.

The first practical solution, valid at arbitrary frequency,
for a problem of this type was published by Ursell (1949).

He solved the problem for a half-immersed circular cylinder

by representing the potential & as the sum of an infinite

set of multipole potentials, each of which satisfies the
free-surface boundary condition and each of which is multiplied
by a coefficient such that the complete series satisfies the
body boundary condition. Ursell truncated the series after

six terms and determined the coefficients by satisfying the
boundary condition at nine points on a quarter circle, in a
least-squares sense.

Ursell's method has been extended to non-circular cylinders
by numerous workers. The method consists of mapping the ship
section onto a circle by a conformal mapping of the type:

a a a
z*¥ = [ + El + BE —% + ce.
g [
where z* =y + iz in our notation; the section is represented
in the complex ¢-plane by the circle |[z| = constant. The

free-surface boundary condition is altered by this operation,
so that Ursell's result cannot be used directly. However,

a set of multipole potentials can still be written down
which satisfy the modified free-surface ¢ondition, and so
the solution may be completed in a manner similar to that of
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Ursell. If the mapping is terminated with the term a3/C3 '
the ship sections generated by this two-parameter family are
called "Lewis forms," (See Lewis (1929)) and this family has
proved remarkably useful since it encompasses forms not unlike
many of the commonly-used shapes of ship sections. As an extra
advantage, its two parameters al and a3 can be related
explicitly to two more basic parameters of the section, viz.,
the beam/draft ratio and the section-area coefficient. Hence
the possibility exists that if all sections of a ship are
adequately mappable by simple Lewis forms, results for all
coefficients may be obtained when the only information supplied
is beam, draft, and cross-section area curves of the ship.
This possibility has been exploited by several workers using
Grim's (1960) version of the Ursell method.

The Lewis-form representation may be inadequate for some
ship sections which have been proposed or are in use, and
so Porter (1960) and Tasai (1959) extended the Ursell method
to allow the solution of & to be obtained for (in principle)

any number of coefficients a in the mapping. The major

difficulty in this procedure ias been the development of a
practical technique for finding the ay 's from a given set
of offsets. This difficulty has been overcome in various ways
by Landweber & Macagno (1965), Bermejo (1965), Smith (1966),
and Von Kerczek & Tuck (1966), and the mapping method for
solving the boundary-value problems may be considered to be
thoroughly tested and proven.

An entirely different method has been developed by
Frank (1967). He avoided the mapping problem altogether by
using an integral-equation approach. He assumed that the
potential could be represented by a distribution of wave sources
over the boundary curve C(x) of the section; the varying
strength of these sources is an unknown function which must
be determined from an integral equation obtained from the
boundary condition on the body. This integral equation is

solved by standard numerical methods similar to those used
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by Hess and Smith (1962). It is assumed that there is a
constant source strength over each of many discrete small
elements of C(x) ; the boundary condition is satisfied at
one point of each element, leading to the problem of inverting
a matrix of influence coefficients. In principle this method
can be applied to sections of quite arbitrary shape, becoming
exact as more and more offsets are used. The computer time
taken varies as the square of the number of points, and so
there is an incentive to use the least possible number of
points. 1In practice, from seven to forty-five offsets have
been used, and it has been found that adequate results can
often be obtained for conventional sections with just

seven offsets.

One defect of Frank's method is that it breaks down at
certain discrete frequencies. This is a failing of the integral
equation method; it has no apparent physical significance.

If a coarse mesh of surface elements is used, the failure
spreads into a frequency band around each of the singular
frequencies. Fortunately, the frequencies at which this
failure occurs can be predicted, so that at least the phenome-
non can be anticipated if it occurs in an important frequency
region.

One important advantage of Frank's method is that it has
been used also for predicting the force due to lateral motions.
Thus it is available for the sway-yaw-roll problem. In princi-
ple, the mapping technique can probably also be used for this
problem.
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APPENDIX C. EXPANSIONS OF THE FAR-FIELD VELOCITY POTENTIAL

There are three parts to this appendix: (1) derivation
of the velocity potential for a line of pulsating, translating
sources; (2) the high-frequency asymptotic evaluation of this
potential at distances from the singular line which are O0(1) ;
(3) the inner expansion of the expression found in part (2).

Derivation of the velocity potential. Conditions (3),

(4), and (5) must all be satisfied asymptotically as e—0 ,
and in addition we must satisfy an appropriate radiation
condition. We accomplish the last of these automatically by
introducing into (4), the Bernoulli equation, an artificial
Rayleigh viscosity. This device is extremely convenient,
which is about all that justifies its use.

We assume that p is a positive constant and introduce
into the Euler equation an extra term representing a force

opposing the velocity perturbation:

| @
g

+ (g-V)g = —%Vp - gVz - u(g - Uvx) ,

where q is the fluid velocity. It is then easily checked

that Equation (4) is modified by the addition of an extra term:
1..2 2 2 _ 1.2
9T + 9y *+ L0 + 00 + 671 + u(¢ - Ux) = 5U° .

Like (4), this condition is to be satisfied on z = z(x,y,t) .
At an appropriate point, we allow u to go to zero. The
resulting solution, as is well-known, then has the proper
behavior at infinity.

Generally, in the outer solution, one assumes that
differentiation with respect to space variables has no
effect on the order of magnitude. If we accept such an
assumption and also retain our assumption about the effect of
time derivatives, we find an unsatisfactory situation: there
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can be no gravity waves. At great distances, one certainly
expects to find waves and nothing else, and so not all of
the above assumptions can be retained.

We circumlocute this obstacle in -he following way: We
include (inconsistently) all terms which could possibly be
of importance in the far field and we obtain the solution
to this more general problem. The real difficulty is that
the far-field includes several regions in which there are
different behaviors of the solution. Thus our initial
solution covers all of these regions. Then, in the second
part of this appendix, we obtain estimates of the solution
which are valid for y = 0(1l) but not at infinity.

In the limit, as e—0, there is no ship at all, and so,
for very small values of ¢ , we may expect that the solution
(other than the uniform-stream term) is o(l) . Therefore,

if we set:

¢(x,y,2,t) = Ux + Re{¢(x,y,2) eiwt} , (c1)

we may retain only those terms which are linear in ¢ and ¢ .
The appropriate boundary condition on ¢ 1is then found to be:

(iw + Ug% + u)2¢ + g¢, = 0 on z = 0 ,

where we have added an extra term of no consequence involving

2
TR

Let there be a line of sources on y=0, =z = Zg < o,
with linear density o(x,t) :
int
T}

o(x,t) = Re{o(x) e . (C2)

(Starting with sources below the undisturbed free surface
simplifies the solution somewhat. We shall presently set

2y = 0 .) The method of solution, which will not be presented
here in detail, is to replace the Laplace equation by a

Poisson equation:
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V20 (x,y,2) = 410 (x)§(y)6(z - z)

form double Fourier transforms* of the differential equation
and of the free-surface condition, solve the resulting
ordinary differential equation in =z , then invert the

transforms. The final result, with z, = 0 , is:

(C3)

@© oo
_ 1 ikx df exp iy + z/ﬁ + 22
q)(XIYIz) - -E dke g (k) T 2
- ¢£2 + 22 - é(m + Uk - i)

- 00

A slightly different expression of the same solution has
been given by Newman and Tuck (1964).

It is at this point that we wish to set u = 0 .
However, such a step leaves the inner integral undefined,
because there is generally a pole of the integrand which then
falls on the real & -axis. We must investigate how such
a pole approaches the real axis as u—0 , and then we indent
the contour of integration appropriately.

Let us define:

o2}

I(k) = J[ df exp ity + zvk? + z”

k2 + 22 —é(w+Uk—iu)2 '

(C4)

-0

*Our definition of the transforms is:

o« [0}

£* (k) = fdx £(x) X% . f£(x) = (1/2m) ]dk £x (k) ik

— O -0

The other transform is obtained by replacing x and k by

y and & , respectively.
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k0 = -w/U = - x1 ; (C5a)
r RO -
k= -k [(t + 3) A Y B O . e
1 2 2
8Vt
(C5b)
r-- 1. .. e
k2=—.<1_(r+%)+/T+l/41m-|<(r+/?+i+—l—+..)
d 2 o
8vV1
(C5c)
— 2 _ _ 2
we recall that: « =g/U° ; 1 = wU/g ; v = /g
We may note that, for k = ko ; there is no pole at all;
this is a special case. There are three cases to be con-
sidered: 1) k, <k ; 2) k, <k <k, ;:; 3) k < k. .
1 2 -1/2 1 2
It should be noted that ko = 0O(e )  and that both
1/4

kl and k2 differ from k by a quantity which is 0O(e~ )

0
Furthermore, all three are negative.
Case 1). Since both k and & vary from - to +%
we show how the two terms in the denominator of the integrand

vary:

'™y

C LD

>
G HIlJ K . L
r———— el
K2 Ko ki @

-
J

1 . .
{rg(w+Uk—1u)2 as a function of k
H

'mf

J —

K j L
/£2+k2 as a function of 2

14
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pa .
The quantity /12 + k2 is shown for a particular value
of |k| . For k > k, (the present case), the real part
of (1/9)(w + Uk - iu)2 > |k| . Thus, as u—0 , there

will be two values of ¢ at which the two terms will be
equal and therefore there will be two poles on the real
{, —axis. From the above figures, it is clear that the

proper indented contour is as shown here:

lo #
A 2,
by = e\/lz(w+Uk)4 - k2
g /AZHL? = E(w+Uk) 2

R s

w v =\)(l+'—w—)
Case 2). PFor k2 < k < kl , we find that

Re{(1/g) (¢ + Uk - iu)2} < |k|.. Thus, even for u =0,

there is no pole on the real § -axis. The contour in the

2 -plane looks like this:

$ 4lx]
®
o
el —————
. o[k )2 Uk|4 $-2 244,
o = w57 - [ I 0 ;
-i|k| _ v(l + % 2

There are still two poles, but they fall on the imaginary
axis.

Case 3). For k < k2 , the situation is quite
comparable to Case 1), except that the poles approach the
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real ¢ -axis from the opposite directions.

& —

0

k4 ky2
Yo = V\/(“%} - (U} k2422 = v (1 + %‘—)2

0

The solution can now be written:

© =] B ——
i
i

, ' ¥y
6(x,y,2) = —%'/-dkelkxo*(k)[— di_exp ify I z/k® + % Lo (e
C(k)vk2 + 22 - S(w + UK)

-0

where it is understood that the contour of the £ -integration
is taken appropriately according to the value of k . There
are no special difficulties with the k -integration which

need be discussed.

The potential for y = 0(l) . For convenience, we shall
assume that y > 0 . A simple modification of the following
procedure shows that we can set y = |y| in the final

results and they will then be valid for all |y| = 0(1)
We consider again the three cases defined above and
obtain for each an estimate of the integral 1I(k) .
Case 1). (kl < k) The integrand of I is analytic
in the upper half-space except on the imaginary axis above
% = 1ilk| , and the factor eily is well-behaved for y > 0 .

Therefore we complete the contour as shown:
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We now have:

' ; 2 2
I = 27i Res(go) - J[ ds eXE{llY + z2/k° + ¢ ]

/&2 + 92 - %(w + Uk)2

FAB

The residue can be computed easily by 1'Hospital's rule:

Uk|}2
sy - - i o B P
VoSt -
r a1+ 292]

The integral down and back the imaginary axis can be

rewritten:

_] - i dyg exp[ﬂ,y+lz/2, —k lf dyg exp[-zy—lz;lz _k2],
Zap lk|i¢&2 - k2 - -(w + Uk) 2 P l-i/zz - k2 - —(w + Uk) 2

) , the following estimate of the integrals
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is valid:

1 23| o -
j- dsg expi:%y + iz 2 Ji < f ag e M
' ltivzz - k2 - é(w + Uk) ' lkl/QQ - k% ¢ ——(w + Uk)
g
= % jF dasg e—zy[l + o(l)] = 0O(e)
k|
For 8-1/2 = 0(k) , a stronger estimate is possible:
dg exp[—zy + iz/0°% - sz < e—]kly dg exp[-(2-]k])
A ) - ./
Iklii/lz - x? - =(w + Uk)zl |k | 02 - K2
- o(e l/fe) -

In either case, then, the integrals are O0O(e) , and we find
that:

. Uk|)2
I =- ZTiJi_f = exp v[;iy\ﬁl + %? 4 i
Ve - )2 . :

+z 1+ 38200 5(e) .
; W

Case 2). We complete the contour as before, but now
the pole is inside the contour, on the imaginary axis. The
stronger estimate above for the integrals along the imaginary

axis can again be obtained, leaving only the residue term:

_ 2n(1+%k]2

I EEE

- exo v |y /[E]7 - 1 2
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Again, we may note that, although this case includes the
special case that 20 = i|k| , there is no difficulty, for
in fact the pole vanishes as k—k, and 20—¢ilk0| .

Case 3). The procedure is the same, and we find that:

Uk}2
5}2 exp v[iyxﬂi + %%}4 -{%’2
Vi

omi f1 4+ UK
> w
+z(l + 95)2]+ O(e) .
w

1= '
\/h + 9554 - (

w

We can collect all three cases together, as follows. Define:

o0 = T ET

where we take a branch cut in the k -plane between k

2
and kl » and we use the value of the root on the lower

side of the cut. Then:

1+ [(]—k)z Uk(2
I = -2ri - - exp v[—iyf(k) + z{l + ——) CF Oo(e) ,
and:
¢ (x,y,2) = 2i-f-dkeikx0*(k)

[1 + k)2
w . Uk} 2
. exp[}vyf(k) + vz(l + = }+ O(g) (C7)
£ (k) v

It may be noted that, if we define:

then:
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£(k) = (I/kn) % Vik - k) (k= K,) (k - k) (k - k

4) :
Thus we see that there are four square-root singularities
in £(k) , but two of them are complex.

Fcrmula (C7) should be compared with (25), the latter
pertaining to the zero-speed problem. We now make the
same assumption that we did there, viz., that o*(k) drops
off rapidly enough with large |k| that we can use a
small- |k| approximation for the integral I . For
k = 0(8—1/2) , we have:

1+ %) - ns o1t =om
{]5}2=O(€) ’
and so:
fF(k) = {1 + %%)2 [1 + O0(e)] .

We can now simplify (C7) considerably:

o (x,y,2) ~ 2i-[‘dkeikxg*(k)eV(z - iy){l +

-0

Uk ) 2
w . (C8)

This is as far as we can go with the estimate for y = 0(1)

The inner expansion of the far-field expansion. We

now assume that y = O(e) . Then the exponential canr be
rewritten:
. Uk} 2 . z
e\,-(z - 1y)(l + 7;) - e(z - iy) (v + 21k + k° /k)

L viz - iy) ' k2 1
= V! Y L+ (z -dy)fatk + ] + ... .

Noting the following Fourier-transform properties,
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oo
-

i ikx
ﬂ‘} dke o*(k) ,

o (x) fL

o' (x) 2—17?j dke K¥ko* (k)

- 00

[o0]

o" (k) = ..i [dkelkxkzo*(k) r

27

- 00

we substitute the approximation for the exponential into

the integral and obtain:

Q

o(x,y,z) ~ 21 ev(Z ~ 1¥) [dkelkxc*(k)
+ 21(z - iy) Idkelkxkc* (k)

+ I(z - iy) [dkelkxkzc*(k) Foan

= aqi V(2 ~ 1Y) [c(x) - 2it(z - iy)o' (x)

- %(z - iy)o"(x) + ... } .

Each successive term in the braces is 0(81/2) times

the preceding, and so it is not proper for us to keep

all three terms. (We have previously dropped terms which
were Of(e) times the leading term in various expressions.)
But it is consistent to keep two terms, and they are just

the terms we need:

(x,y,2) ~ ami e¥(Z ~ i“"’[o(x) - 2it(z - inI)o'(x)} . (C9)



- 85 -

We have replaced y by |y| , and this result can be used
as the inner expansion of the outer expansion on either
side. When combined with the time factor, this solution
represents a sum of ordinary outgoing waves plus outgoing
waves increasing linearly in amplitude. This is the result

desired.
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APPENDIX D. THE APPLIED-PRESSURE PROBLEM

In order to make sense out of one part of the near-field
problem, it is necessary to be able to interpret the following
problem:

Given a two-dimensional pressure field applied on the

free surface:

M&u=&FMewﬂ,

where

p(X) - poe-j\)lxl ,

2 -1
v=uw/9 =0, "),
find the velocity potential. The undisturbed free surface
is here taken as the x -axis, with positive y measured
upwards. Since this problem is related to the original
near-field problem, the result must be valid in particular

for |z| = |x + iy| = O0(e) , as €—0 , which means that

v|z| = 0(1) . We shall then need to find the outer expansion
of this inner solution, at which point we shall consider

that |z| = 0(1) and wv|z| = (el .

This problem is not well-posed as stated above. If
we look up the general solution of such problems in, say,
Wehausen and Laitone (1960), we find that the expressions
there are not even defined for the given pressure field.
Therefore we define a preliminary problem which can be solved.

Let:
p(x) = pye RIxl — 3kix|

where 1y 1is a real positive constant, and we require that
k # v . After finding the velocity potential for this case,
we shall let wp—0 and, after that, k—v . 1In this way,
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we obtain a well-defined solution, but it should be emphasized
that it is only a solution. We could obtain other solutions
by a different choice of limiting operations. The special
virtue of our result is that it provides an inner solution
which can be matched to the outer solution.

It may be noted that we have used " j " as the
imaginary unit, contrary to our usual practice here. The
reason is that we shall follow the convention used in this
problem by Wehausen and Laitone(1960) and others, namely,
using two imaginary quantities, i and j . Each is equal
to (-1)%/2

cannot write: 1ij = -1 . The point of this device is to
jwt
e

» but they cannot be combined. That is, we
allow the use of the complex notation, , for the time
dependence while we also use functions of a complex variable,

Im " for the

z =Xx + iy . When indicating " Re " and
real and imaginafy parts of a function, we must always
suffix an i or a j to the symbol to show whether we mean
the real or imaginary part with respect to i or i .

For the benefit of readers who may not be familiar with
this technique of using two imaginary units, we list here a

few simple properties which are easily proven:

1) (1 - 4ij)(1 + ij)
2) (1 - ij)(a + 3b)
3) (1 +1ij)(a + 3b) = (1 + ij)(a - ib)
4) (1 +if)? =201 + if)

5) (1 - ij)% = 2(1 - i5) .

6) ™% = (1/2)11 7 i9)ed% + (1
7) B - (/231 T inelt 4 1

0 .
(L - ij)(a + ib) .

i5)e 3% .

I+

I+

ijle .
It should also be noted that contour integrals in the z -plane
should involve just functions including the unit i . For

example,
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[ee]
-
I

3 -jks . . }
j dse” -2 Jf%f &1 + i9)etkS 4 (1 - ijyeTikS |
S ]
V4

-

We now proceed to the solution of the problem. Let

the real velocity potential be expressed:

¢(X,y,t) = R__elLf(Z,t);} '
where
_ 7 jwt
£(z,t) = Re; [£(z)e ] )

The velocity potential can then be written in terms of

f(z) , and we find that the appropriate expression is:

+co
£(z) = e 1VZ (__i_ J( ds p(s) j’d;e
L mo9 2

(D1)

[s2]

(1 - ij)w des b(syelvs | |
9 Zoo

Using the Plemelj formula (Muskhelishvili (1953)), we can
readily check that this result satisfies all conditions in
the linearized problem. Our formulation of the problem
differs from that in Wehausen and Laitone (1960) in that we
ejmt to express the time dependence, rather than

. We should be able to obtain the above result from
that in Wehausen and Laitone (1960) by changing their j to
-j , but their result is apparently in error throughout by

a factor of (-1) .

use
- W
e] t

For x—% o the above result reduces to

[o0]

£(z) — _e“Ye*JVX{Qll_E;igl} jfds b(s) efdVs
g =
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The integral here can be evaluated simply for the assumed

pressure distribution. 1Its value is

2py (u + Jk)

w2+ (4 + 3K)2

r

which obviously is infinite if both y =0 and k = v .
This demonstrates clearly that we must proceed carefully.
First we let upy—0 in the expression for £(z)

There is no difficulty with the single-integral term in
Equation (D1l), but the double-integral term requires some
manipulation. We divide the infinite interval of the

s -integration into two semi-infinite intervals, -

to 0 , and 0 to + «» , and we perform one integration by
parts with respect to s . We can then carry out all of
the required operations and let u—0 with well-defined

results. We obtain for f(z) :

2uwp,k s A ivs ;
£(2) =y O V| a5y - ).
mpg (k™ = v7) . s B
juwp ‘kz [ ds o~ Jks
+ 0 (iv - jk) ejkz ds e
2 2
mpg (k™ - v7) S

= ® -jks
-(i\)+jk)e3kzjd——-—————se :
Each contour integral is carried out either above or below
the x -axis; the contour may not cross the axis.
In order to perform the second limit operation, namely,

letting k—v , we let
k=v-8, |6/vi << 1 .

We also assume that [6z| << 1 , which implies that [z]
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is bounded, and so our results will not be valid as
|z|— « . There follows a tremendous amount of rather
tedious algebra, all for the purpose of identifying how
the various quantities depend on &8 , as &6——0 . The

integrals can be expressed in terms of standard exponential

integrals:
- t
El(z) _ J'dt e ,
t
z
in which we assume that there is a branch cut from - «
to 0 along the negative real axis. (See Abramowitz and

Stegun (1964)) We note the following intermediate results:

o . —jo

ds elVS ds e~ ° .

—_ = = El(—lvz) , for x>0,
Z S ~ivz

= El(-ivz) + 271 , for x < 0 ;

m 3

r -ivs

; ds e = E, (ivz) ;

J s

4

- ivs

| ds e — . B (ivz) ;

4 s

El(—ivz) - 271 , for x >0,

Nk~‘ﬂ
o
n
n {0
i
H
<
n
]

El(-ivz)', for x < 0 .

Also,

. _ . § _-ivz 2
El(ilkz) = El(ilvz) + e + O0(87)

-e

e*ikZ _ o*VZ (1 3 j52 + 0(6%)) .
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Using all of these facts, we obtain finally:

wpo

f(z) = [e—lszl(—ivz)(—l - 2ivz) + e*V7E  (ivz) - 2
2mpgv
+ e %3 + i sgn x) (L + 2ivz) + 0(6)} .
This is the inner solution--valid for |[z| = O(e) . Since

v o= O(e-l) » we note that all terms included here are of
the same order of magnitude. We also note that the solution
breaks down if we formally let |z|— ® . This should not
be a matter for concern, for it should be recalled that
the near-field solution is not expected to be valid at
infinity.

We now want to find the outer expansion of this near-
field solution. To do so, we consider |[z| = 0(1l) , which
allows us to use the asymptotic formula for the exponential

integral for large magnitude of the argument:

B

-2
El(z)we—[l-l—!+gi J .
V4 Z Z

Keeping terms consistently of just the lowest order of ¢ ,

we obtain:

wp

£(z) ~ —2 iz(j + i sgm x) e *V?
pg
WP 4] :
= 97 (1 Fi§)(-y ¢ 3x) eV FIVX e x 2 o .
ele}

We may note that, when differentiated, this expression gives

two kinds of terms, (a) a wave-like term proportional to

e V% | and (b) a term which is a product of z times
-ivz

e .

Finally, we recombine this result with the time

dependence and obtain the real velocity potential:
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_w vy . _ . j(wt * vx)
o(x,y,8) v oz e’ Resljpy(-y * jx) e ]
This is the outer expansion of the inner expansion. It
represents a sum of (a) ordinary outgoing waves and

(b) outgoing waves with amplitude increasing linearly in X
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