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ABSTRACT

NONLINEAR RADIATION PROBLEMS FOR A
SURFACE-PIERCING BODY

by
Tzung-Hang Lee

Chairperson: Robert F. Beck

A Desingularized Eulerian-Lagrangian Time-domain Approach (DELTA method) is
used to investigate fully nonlinear radiation problems of surface-piercing bodies. At each
time step, a boundary-value problem is solved by placing fundamental singularities outside
the computational domain and satisfying the boundary conditions at prescribed collocation
points. This desingularization allows the use of simple isolated sources while retaining the
necessary accuracy.

A large outer region is investigated to postpone the free surface mean shift and wave
reflection from the truncation boundary. The outer region is divided into exponential
increasing panel sizes. The length, the first panel size and the panel number are found to be
the crucial factors determining the effectiveness of the outer region. The effectiveness is

relatively unaffected by forcing frequency and motion amplitude.



Both two- and three-dimensional problems are studied. A floating body is oscillated
vertically or laterally. For two-dimensional problems, results from the desingularized
method agree well with experiments and other algorithms. For three-dimensional heaving
motions, the results of the symmetry-plane method show good agreement with the quarter-
plane and Rankine-ring source approaches. Primary convergence and stability analyses are
also conducted. The convergence rate is slightly lower for swaying motions than heaving
motion because the singularity at the body-free surface intersection line (points) is more
crucial for swaying motions. The desingularized scheme is more stable than the
conventional boundary integral method. Large-amplitude computations are also performed
for an upright cylinder with a larger bottom. The results of computations demonstrate the

power of the DELTA method for use in offshore applications.
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CHAPTER 1

INTRODUCTION

1.1 Historical Review

The interest in time marching procedures to solve water wave problems has been
greatly expanded recently. One of the important advantages of the time-domain
analysis over the conventional frequency-domain analysis is that the time-domain
approach can handle arbitrary body motions. When body motion becomes large,
nonlinear waves are generated and higher-order hydrodynamic forces appear. These
phenomena can not be explained by linear theory since nonlinear effects are essen-
tially excluded. Therefore, time-domain calculations are necessary for fully nonlinear
problems since frequency-domain computations are only good for linear problems or

a few very specific body-exact problems.

For linear calculations, the frequency-domain methods are extensively used. In
the linear Neumann-Kelvin approach, the body boundary condition is applied on
the mean position of the exact body surface and a linearized free surface bound-
ary condition is used. These assumptions allow solutions to be developed using a
Green’s function technique. At steady forward speed, the frequency-domain linear
Neumann-Kelvin method encounters difficulties because the Green’s function is com-

plicated and difficult to compute. Nevertheless, results have been obtained by several



researchers including Chang (1977), Inglis & Price (1981), Guevel & Bougis (1982),
Wu and Eatock Taylor (1987), and Iwashita & Ohkusu (1992). However, if the body
boundary condition is not applied on the mean position, the result is a time variant
linear system. In the so called body-exact problem, the body boundary condition
is satisfied on the instantaneous wetted surface of the body while the linearized free
surface boundary condition is retained. In order to describe the fluid field and obtain

the hydrodynamic forces for large body motions, a time-domain approach is desired.

Finkelstein (1957) obtained the time-domain solution for the fundamental :

singularity. Discussions of direct time-domain solutions are presented by various
authors such as : Stoker (1957), Cummins (1962), Ogilive (1964) and Wehausen
(1967). A three-dimensional time domain model for arbitrary-shaped slender bodies
with forward speed was developed by Beck & Liapis (1986) and Beck & King (1987).
The extension of the model to include the exact body boundary condition for a
submerged body performing arbitrary motions has been developed by Beck & Magee
(1990) and Magee & Beck (1988). In this model, the linearized free surface boundary
condition and the radiation condition are satisfied by a free surface Green’s function.
Then, the body boundary condition remains the only boundary condition to be
satisfied. The integral equation is a Fredholm integral equation of the second kind
which can be solved by numerical techniques. Other researchers such as Krosmeyer
(1988), Krosmeyer et al. (1988), King et al. (1988), Ferrant (1989,1990) and Lin &
Yue (1990) also have successfully obtained results of free surface flow problems using

time-domain methods.

Longuet-Higgins & Cokelet (1976) first introduced the mixed Eulerian-Lagrangian

time-stepping scheme for solving two-dimensional fully nonlinear water wave prob-



lems. Faltinsen (1977) used a similar scheme to study the nonlinear transient problem
of a body oscillating on a free surface. In his work, he found the velocity potential
at each time step due to a distribution of dipoles and sources over the wetted body
surface as well as the free surface: tracing the fluid particles on the free surface to

advance the solution forward in time.

Vinje & Brevig (1981) continued the approach of Longuet-Higgins & Cokelet
to include finite depth and floating bodies but retained the assumption of spatial
periodicity. Baker, Meiron & Orszag (1982) used a dipole distribution on the free
surface where Dirichlet conditions were posed. Dommermuth & Yue (1987) used
the mixed Eulerian-Lagrangian method and postulated a far-field boundary match-
ing algorithm by matching the nonlinear computational solution to a general linear

solution of transient outgoing waves.

An initial boundary value problem is set up to study the free surface waves gen-
erated by body motions or to compute the hydrodynamic forces acting on a body. A
Desingularized Eulerian-Lagrangian Time-domain Approach method (DELTA method)
is one of many methods used to solve the boundary value problem at each time step.
Similar to conventional boundary integral method, the desingularized method refor-
mulates the problem into a boundary integral equation. The difference is that the
desingularized method separates the integration and control surfaces, resulting in
nonsingular integrals. The solution is constructed by integrating a distribution of
fundamental singularities over an auxiliary surface (the integration surface) outside
the fluid domain. The integral equation for the unknown distribution is obtained by

satisfying the boundary conditions on the problem boundary (the control surface).

The desingularization method was first developed by von Karman (1930) in which



an axial source distribution was used to determine the flow about an axisymmetric
body. The strength of the source distribution was determined by the kinematic body
boundary condition. A non-singular formulation of the boundary integral equation
method was proposed by Kupradze (1967). The exterior Dirichlet problem was solved
by using an auxiliary surface located outside the computational domain. Webster
(1975) investigated the numerical properties of the desingularization technique for
the external potential flow around an arbitrary, three-dimensional smooth body. A
singularity sheet was discretized into triangular source patches and the patches were
placed outside the problem domain with a proper distance. He concluded that the

use of this desingularization technique greatly improved the accuracy of the solution.

Heise (1978) examined the numerical properties of an integral equation system for
plane elastostatic problems, in which singular points were distributed on an auxiliary
boundary outside the solution domain. Martin (1981) obtained the non-singular
integral equation for water wave radiation problems by placing singular points inside
the body and applying Green’s theorem to the solution. Schlutz & Hong (1989)
obtained a non-singular formulation to solve two-dimensional potential problems.
The singularity of the fundamental solution was moved away from the body contour
thus desingularizing the kernels. Consequently, simple numerical quadratures can be
used to evaluate the integrals since special care is not required for these integrals.
Jensen, Soding & Mi (1986), Jesen, Bertram & Soding (1989) and Raven (1992)
applied the desingularized method to the steady wave resistance problem. A similar

approach is used by Bertram (1990) to simulate ship motions.

Cao, Schultz & Beck (1990, 1991a, 1991b, 1992) solved nonlinear problems for

waves generated by a free surface pressure disturbance or a submerged body by com-



bining the time-stepping scheme and the desingularized boundary integral equation
method. The so called ‘direct’ and ‘indirect’ methods were tested, and the results
of the comparisons in computational complexity and time consumed suggested that
the ‘indirect’ method was preferable. Cao, Lee & Beck (1992) extended the indirect

method to study nonlinear water wave problems with floating bodies.

When panel methods are used in conjunction with Rankine sources to solve non-
linear boundary value problems, the computational domain on the free surface must
be discretized into a large number of panels in order to properly describe the flow
field. This results in a large matrix of influence functions; consequently, a fast iter-
ative solver for large matrices is required. The General Minimal Residual Method
(GMRES) developed by Saad & Schultz (1986) and Olson (1989) can be used to

iteratively solve the system of linear equations.

A preconditioning matrix used with the iterative solver GMRES was explored by
Cao (1991). An appropriate preconditioning matrix was chosen to be the matrix of
influence functions at time equal to zero. A sufficiently small value of the convergence
tolerance was chosen so that the computational error was negligible compared with
the truncation error. It was found that the preconditioning saved over 80% of the

total CPU time in solving the system compared with the non-preconditioned matrix.

A ‘sawtooth’ instability on the free surface was observed by Longuet-Higgins
& Cokelet (1976) for a steady progressive wave in deep water. They concluded
that the instability was not caused by the time stepping procedure only; suggesting
that the growth of the instability may be partially physical, being similar to the
amplification of short gravity waves by horizontal compression at the crest of long

waves. Therefore, a smoothing technique should be applied to remove the instability



when necessary.

A similar smoothing technique is required when the local steepness of the waves is
large. Baker et al. (1982) and Lin, Newman & Yue (1984) both needed a smoothing
operator to reduce the instabilities when the waves were steep. Roberts (1983)
analyzed this problem using Fourier spectral representations for the position and
potential of a free shear layer and was able to remove the numerical instability by

modifying the highest Fourier mode.

A confluence of the body and free surface boundary conditions exists at the
intersection line. As a result, the solution exhibits a singularity at the intersection
line. Kravtchenko (1954) showed that the velocity potential for a two-dimensional
vertical wall moving horizontally is logarithmically singular at the contact point in
linear theory. Miloh (1980) studied the singularity for general three-dimensional flows
and found that this singularity persists even when full nonlinearity was introduced.
Peregrine (1972) derived a perturbation result for wavemaker problems in which the
free surface elevation displayed a t log (tanh(Z%)) behavior for small time ¢, where z
is the distance from the wavemaker. The two-dimensional result has been confirmed
and investigated numerically and experimentally by Greenhow & Lin (1983) and Lin
(1984). Nevertheless, Joo, Schultz & Messiter (1990) developed a Fourier-integral
method to avoid the artificial singularity at the intersection point by introducing a

small time expansion.

Vinje & Brevig (1981) treated the body-free surface intersection points as part
of the body boundary, and the position and potential at that point were obtained
by extrapolation. Their results were not completely satisfactory. Greenhow et al.

(1982) found it necessary to use experimental measurements to fix the locations of the



intersection points. For the two-dimensional wavemaker problem, Lin (1984) used a
Cauchy integral method and specified both the values of the stream function and the
potential at the intersection point. The stream function value was determined from
the body boundary condition and the potential value from the free surface bound-
ary conditions. For axisymmetric problems, Dommermuth & Yue (1987) applied
both body and free surface boundary conditions at the intersection points to solve

boundary value problems.

When numerically solving boundary value problems, a finite computational do-
main should be used. For constant forward speed problems, Cao, Schultz & Beck
(1990a) used a computational window moving with the disturbance. They adopted
a window shifting technique to investigate waves generated by a moving underwa-
ter disturbance using the desingularized Eulerian-Lagrangian time-domain approach.
When the window was shifted, one row of node points were dropped at the down-
stream side of the window and a row of new node points entered the window from
upstream. The upstream was assumed to be undisturbed, so that the velocity po-
tential and free surface elevation were both set equal to zero. In other words, a
calm water far field boundary condition was enforced on the upstream boundary.
The treatment also prevented wave reflection at the downstream boundary. This
approach has been shown to work successfully in numerical computations for cases
in which the disturbance moved with forward speed (Cao, Schultz & Beck, 1990,

1991a, 1991b, 1992 and Cao, 1991).

For zero forward speed problems, the technique of a shifting computational win-
dow is not applicable. There exists neither an ‘upstream’ where the calm water

condition can be imposed nor a ‘downstream’ where the node points possibly con-



taminated by wave reflection can be dropped off the window from time to time.
Consequently, the radiated wave reflects from the truncation boundaries and there
is a free surface mean shift if the far field boundary condition is neglected. In order
to avoid the free surface mean shift and wave reflection, a proper far field boundary
condition must be used or a special treatment on the truncation boundaries should

be applied.

Lindman (1975) used nonreflecting boundary conditions for simulations in which
the linear, time-dependent wave equation was solved. The method was used success-
fully only for nondispersive waves. For general nonlinear, dispersive waves governed
by equations which are more complicated than the wave equation, Chan (1975) pro-
posed a technique using artificial damping to absorb radiating waves. A damping
region was set up near the upstream and downstream boundaries of the computa-
tional domain to absorb waves incident upon it. Chan found that the efficiency of
this artifice depends heavily on how the damping term was added to the momentum
equations, on the magnitude and spatial variation of the viscosity in the damping
zone, and on the length of the damping zone relative to the wavelength of the var-
ious components in the wave system. This approach can be modified and used for
a nonlinear potential flow problem by adding an artificial pressure term to the dy-
namic free surface boundary condition outside the domain of interest. However, the

artificial pressure might causes waves to travel into the domain of interest.

Longuet-Higgins & Cokelet (1976) avoided the reflection problem by using peri-
odic boundary conditions. When the physical problem possessed spatial periodicity,
the computational domain was simply folded onto itself and the exterior boundaries

were eliminated. Vinge & Brevig (1981), Greenhow et al. (1982) were able to use



this assumption to study the dynamics of a floating body by keeping a relatively
large domain. However, the assumption of spatial periodicity or of fixed boundaries
at some distance is not quite realistic when an isolated body is present in an un-
bounded region. In addition, more field points are necessary to discretize a larger

domain, and thus, more computational effort is required.

Faltinsen (1977) matched the nonlinear inner solution to that of a Rankine dipole
in the far field in his study of the heaving motion of a two dimensional floating body.
Since wave effects are not present in the latter, Faltinsen found that unless the in-
terior computational domain was increased as a function of simulation time, the
computations would soon break down because the single dipole method, when used
in an initial boundary value problem, is valid only until the traveling wave reaches
the truncation boundary. Assuming a boundary integral formulation for the non-
linear interior domain with N s free surface points, N; must increase approximately
linear with time. The storage and computational effort per time step would increase
as O(N}, N}) in two-dimensional problems. The situation is even more critical for
three-dimensional problems. For this reason, the cost may become prohibitive, and
Faltinsen’s results, for example, were typically restricted to less than one oscillating
period. Thus, in Isaacson’s (1982) Eulerian calculation of the nonlinear diffration
by a vertical cylinder, where the fluid velocities were assumed to be zero on a fi-
nite truncation boundary, the motion for only a fraction of a wave period could be

simulated.

Kang(1988) derived the three-dimensional form of Faltinsen’s boundary match-
ing scheme for axisymmetric bodies. Park & Troesch (1992) applied Kang’s three-

dimensional far field closure to study the stability properties of free surface flows
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caused by an inverted cone undergoing forced heaving motion. They found that the
potential on the free surface drops exponentially when the waves generated by the
motions of a cone reached the truncation boundary; therefore, the computation must

be stopped.

For two-dimensional problems, a hybrid integral equation method was described
in Liu & Abbaspour (1982). They studied the diffraction of waves by an infinite
cylinder and solved the potential problem in the inner domain with a boundary
integral equation method. An analytical solution for the outer domain satisfying the
linearized free surface conditions and Sommerfeld’s radiation condition at infinity

were also used.

Dommermuth and Yue (1986) posed a far field closure by matching the nonlin-
ear computational solution to a general linear solution of transient radiated waves.
Through a matching of the two solutions on a fictitious boundary some distance
away, the outer linear wavefield can be determined and the boundary condition for
the nonlinear interior problem can be specified. Fundamentally, such a scheme is not
suitable for two-dimensional flow since the nonlinearity of the radiated waves per-
sists into the far field, and a simple matching of the two solutions on the boundary is
not acceptable. In three-dimensions, the energy density of the radiating waves must
decrease with radial distance. Therefore, a matching to a general linear solution
is plausible on the truncation boundary. However, the matching should be made
at a great enough distance so that the nonlinearity of the waves is weak. Further-
more, the technique will eventually spoil the results in the domain of interest if the
phases of the nonlinear and linear radiating waves at the matching boundaries are

not coincident.
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Grosenbaugh and Yeung (1988) considered the far field boundary to be a mate-
rial surface whose position changes with time in their study of nonlinear bow flows.
Thus, the positions of fluid particles on this boundary moved according to the same
equation that described the motion of free surface particles. The far field poten-
tial was represented by a linear time-dependent wave source which was proposed by
Finkelstein (1957). The approximation of the far field boundary condition was ob-
tained by taking the material derivative of pressure and neglecting quadratic terms.
The linearized far field boundary requires that the boundary be far enough away to
apply the linearization and no radiating wave was allowed to reach the truncation
boundary. Therefore, the method was only good for the cases of a two-dimensional

semi-infinite body with a forward speed.

Numerical stability problems occur in any numerical iteration scheme. Yeung
(1982) investigated the stability criteria using a simplified von Neumann analysis.
He assumed the velocity potential had a form of ¢retk=+ky where k is a wave num-
ber. The criteria derived was independent of the panel size and the type of the
boundary conditions, and of the form f = k-gg%tﬁ. Dommermuth & Yue (1986)
used a linearized von Neumann stability analysis to examine the stability of a mixed
Eulerian-Lagrangian technique applied to axi-symmetric flows. The same assump-
tion on velocity potential made by Yeung and a Taylor-series expansion were applied
to find the stability criteria for the explicit fourth-order Runge-Kutta scheme and
the fourth-order multi-step Adams-Bashforth-Moulton predictor-corrector scheme.

They defined a stability parameter, a Courant condition, as (At)? < s%.

Park & Troesch (1992) investigated the numerical stability of different time

marching schemes for a variety of two- and three-dimensional problems. Both Von
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Neumann and matrix analyses were applied to examine the stability of the conven-
tional boundary integral method. They found that the stability depends on the ge-
ometry of the specific problem, the far field closure and the time integration method.
Three-dimensional problems tend to be more stable than two-dimensional problems.
Moderate nonlinearities do not produce significantly different stability regions than
equivalent linear problems, therefore, they suggest that a preliminary stability analy-
sis can be completed on a linearized problem before the solution to the fully nonlinear
problem is attempted. They found that the stability can be determined in terms of
a local free surface stability index defined as FSS = ng%xﬁ . The upper limits of
the FSS number depend on the geometry and time marching scheme. Explicit Euler
schemes are unconditionally unstable while implicit-like and implicit Euler schemes
and fourth-order Runge-Kutta schemes are conditionally stable. A ‘Green’s function
constant ¢’ was used to improve the numerical stability, and the constant was found
to be extremely helpful in stabilizing the numerical scheme in two-dimensions but

not three-dimensions.

The convergency of a numerical scheme is also of critical concerned. Cao, Schultz
& Beck (1990) investigated the convergence properties of the desingularized Eulerian-
Lagrangian time-domain approach. In the study of the truncation effect of a infinitive
plane, the computational domain was extended by adding uniformly sized panels
and a quadratical convergence was found. When keeping the computational domain
unchanged but reducing the panel size (therefore, increasing the panel number), they

found that the numerical scheme converged linearly.

Newman & Lee (1992) tested the rate of convergence by increasing the number

of panels on the body and free surface. Two different discretization schemes, equal
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spacing and cosine spacing, were examined, and three corresponding algorithms are
utilized to evaluate the exciting force. The convergence rates are obtained and com-
pared. When the unequal spacing technique is used, a smooth change in their di-
mensions should be used. They found that the cosine spacing near the cylinder
corner and free surface led to more accurate results with fewer panels although the

maximum difference between the predictions of the two schemes was only %%.

1.2 Overview

The present work is an extension of the work of Cao, Schultz & Beck (1990, 1991a,
1991b) and Cao (1991), who succeeded in solving three-dimensional fully nonlinear
wave problems for submerged bodies and for two-dimensional solitons in shallow wa-
ter. The present study examines surface-piercing bodies in two and three-dimensions
using the Eulerian-Lagrangian method in conjunction with the desingularized bound-

ary integral equation technique.

In this work, consideration is only given to the zero forward speed radiation
problem in which floating bodies are forced to oscillate in a prescribed manner. As
usual, the fluid is assumed ideal and incompressible. No surface tension is considered.
The free surface boundary conditions are fully nonlinear, and the body boundary
condition is exact. The fluid in the far field is also assumed to be undisturbed and

the far field boundary condition ¢ — 0 is satisfied.

A fast iterative solver GMRES (Saad & Schultz, 1986 and Olson, 1989) is used
to solve the descretized three-dimensional boundary integral equations. A precon-
ditioning technique developed by Cao (1991) is adopted to work with the GMRES
method so that the speed of GMRES in solving the system is improved. A fourth-

order Runge-Kutta method with cubic-spline redistribution as necessary is used for
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the time stepping. For the problems we have investigated, this technique appears to

be numerically stable if a proper time step size is chosen.

The mathematical formulation of the problem is presented in Chapter II. The
flow created by the body motion is represented by a singularity distribution above
the free surface and inside the body surface. After the singularity strength at each
point is solved, the velocity of the free surface can be obtained and the position of
the free surface updated. Hydrodynamic forces can also be obtained using Bernoulli

equation.

In Chapter III, wave reflection and free surface mean shift are investigated. A
large outer region is designed to delay the wave reflection from the truncation bound-
ary and the free surface mean shift. The mean shift results because the far field
boundary conditions are ignored. Several outer regions in two and three-dimensions
are tested. The distribution factor < is determined so that a small number of
uneven panel spacings can be smoothly distributed in a large outer region. The ever
increasing spacing arrangement extends the virtual range of the domain of interest,

and wave reflection is delayed.

The stability and convergency properties of the method for two- and three-
dimensional floating bodies are investigated in Chapter IV and V, respectively. The
convergence rates for heaving and swaying motions are obtained. The Free Surface
Stability (FSS) numbers of the desingularized method are found, and the numbers
are compared with those of Park & Troesch (1992) and the Courant condition of
Dommermuth & Yue (1986). For two-dimensional cases, the numerical results for
the added mass and wave damping are compared with those of Vugts (1968). In

three-dimensions, the wave elevations and hydrodynamic force of an axisymmetric
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vertical cylinder are compared with those of Dommermuth & Yue (1987).

Finally, Chapter VI concludes the dissertation and offers suggestions for further

research.



CHAPTER II

MATHEMATICAL FORMULATION AND
NUMERICAL APPROACH

2.1 Initial-Boundary Value Problem

As shown in Figure (2.1), cartesian coordinates that refer to an absolute inertial
frame are used. The z-axis points upward and the  — y plane is coincident with
the still water level. The fluid domain, D, is bounded by the free surface, Sy, the
body surface, S, the bottom surface, S, and the enclosing surface at infinity, S,.
Nonlinear waves are generated by a floating body undergoing forced oscillations. The

problem will be formulated as an initial boundary value problem in the time-domain.

The fluid is assumed to be inviscid, incompressible and surface tension is ne-
glected. The problem is started from rest so that the flow remains irrotational. This

implies the existence of a velocity potential such that the fluid velocity u is given by

i(X,t) = v¢ (2.1)

where X = (z, Y, 2) is the field point and ¢ is time.
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Figure 2.1: Problem definition and coordinate system
2.1.1 Governing Equation and Boundary Conditions

By satisfying the continuity equation, the covering equation in the fluid domain

for the boundary value problem is the Laplace equation

A$=0 (in D) (2.2)

Proper boundary conditions must be applied on all the boundary surfaces. The

kinematic boundary conditions on the body surface and the bottom are given by

09 -

o Vi - iy (on Sp) (2.3)
a 7 e
5’% = Vi-fia (on Sp) (24)

where V; and V} are the velocities of the body surface and the bottom surface, and
fiy and i) are the unit normal vectors to the two surfaces respectively. Positive 7 is

defined as out of the fluid into the body.
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For an infinitely deep water case, equation (2.4) reduces to

vé — 0 (as z — —o0)

The boundary condition applied on the far field boundary requires that the dis-

turbance vanish at infinity such that

ve — 0 (on Seo)

The kinematic free surface boundary condition requires that the normal velocity

of the fluid and of the free surface are equal
Zn-2=0 (on S)

or

o, 0600 2606 04 _
at + Oz Oz + dydy 98z 0 (on 7). (2.5)

where n = 7n(z,y,t) is the free surface elevation. The dynamic boundary condition

requires that the pressure on the free surface equals the air pressure, p,ir

pa_t'r — _% — l v¢| 2 _ qn (on Sf) (2’6)

2.1.2 1Initial Conditions

For a three-dimensional initial boundary value problem, the initial conditions
correspond to starting the body from rest. The position of the free surface and the

velocity potential on free surface should also be given. When time is equal to zero,
¢ =0 (in D, at t = 0)
N, = 0 (011 Sf, at t = 0)

(2.7)
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where p, is the ambient pressure on free surface and is also set to zero. Equation

(2.6) and the above initial conditions implies that g—‘f is zero when time is zero.

The initial position and velocity of the body are prescribed as

X = X, (on Sy, at t =0)

v = v,(z,y,2) (on S, at t+ =0) (2.8)
where
X,  is a known initial body position in the absolute coordinate system

v,  is a known initial body velocity

2.1.3 Pressure, Forces and Moments

Once the velocity potential ¢ is determined, the pressure at any point on the

body surface can be evaluated using the Bernoulli equation

0
f = —a—f—%vaﬁlz—gz
56 1 ;
5~ GVe-—W) Vé-gz (on Sp) (2.9)
where
) 0 ~
-6%= a—‘f+%-v)¢

is the time derivative of the potential following the point on S moving with velocity
Vi. The second form of Eq.(2.9) is more useful when computing pressure on the
moving body. The forces and the moments can be calculated by integrating the

pressure over the body surface,

F= / / prisds (2.10)
S
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and

M= //pr(f"x 1) ds (2.11)

where 7 is the position vector of a body surface point to the origin.

2.2 Numerical Approach : the Desingularized Eulerian-
Lagrangian Time-domain Approach (the DELTA method)

A boundary integral equation method (BEIM) is generally used to solve water
wave problems if the fluid is ideal fluid and the flow is irrotational so that the Laplace
equation is the governing equation. The method has been successfully applied to a
large variety of two- and three-dimensional nonlinear free surface flow problems.
Longuet-Higgins & Cokelet (1976) used a mixed Eulerian-Lagrangian time-stepping

scheme for solving two-dimensional fully nonlinear surface wave problems.

Their time stepping procedure requires two major steps:

1. solving a boundary value problem in an Eulerian frame to obtain the velocity

on the free surface; and

2. updating the positions and velocity potential of Lagrangian points by integrat-
ing the nonlinear kinematic and dynamic free surface boundary conditions with

respect to time,

These in turn serve as the boundary conditions of the field equation at the next time

step.

In this thesis, the mixed Eulerian-Lagrangian scheme is used. The free surface
boundary conditions, equations (2.5) and (2.7), can be rewritten in terms of the

material derivative at a point moving with a velocity V¢é. By adding ¢ - 7 to
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both sides of (2.5) and ¢ - /¢ to both sides of (2.7), the kinematic and dynamic

conditions can be put in the form

Dth Ve (on S¢)

D¢ Dair 1 2

— = - ~ - S 2.12
= 5 Ivel =gz (enS) (2.12)

where the material derivative is given by

D__3_+ ¢
Di_ VeV

and the position vector of a free surface particle is X; = (z;, ys, 2¢).

For the present time-dependent form of the nonlinear initial boundary value prob-
lem, the technique of the desingularized Eulerian-Lagrangian time-domain approach
developed by Cao, Schultz and Beck (1990) is extended to solve boundary value
problems with a floating body oscillating in deep or shallow water. In contrast to
the conventional boundary integral equation method, the singularities in the DELTA

method are placed away from the boundary and outside the domain of the problem.

After studying both the direct and indirect versions of the DELTA method, Cao,
Schultz & Beck (1991a) suggested that the indirect version of the method was more
favorable because it was more efficient and easier to code. When initial boundary
value problems with infinite boundaries were considered in time-domain calculations,
the indirect method used less computational time and gave more accurate solutions.
In addition, the indirect version of the method showed no difficulty in handling irreg-
ular meshes.Considering these advantages, the indirect version of the desingularized

Eulerian-Lagrangian time-domain approach will be used throughout this thesis.

When the desingularized method is used to solve the initial boundary value prob-
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lem, the nondimensional desingularization distance is set to be
Ly =13(Dy)°, (2.13)

where Iy reflects how far the integral equation is desingularized, D,, is the nondi-
mensional local mesh size (usually the square root of the local mesh area in a three-
dimensional problem and the local mesh size in a two-dimensional problem) and « is

a parameter associated with the convergence of the solution as the mesh is refined.

Cao, Schultz & Beck (1991a) conducted numerical tests in which an integral of a
constant source distribution over a square flat surface is evaluated at a point above
the center of the square with a distance given by equation (2.13). They found that
a = 0.5 and l; = 1.0 are about the optimum values for the performance of the
desingularized method. These two values are used for all calculations presented in

this thesis.

At each time step, the boundary value problem is

A = 0 (in D). (2.14)
¢ = ¢ (on Sy,). (2.15)
g—i = V, -7 (on Sp) (2.16)
;—:; = Vi-iiy (on Sg) (2.17)
vé — 0 (on Se.). (2.18)

where ¢, and Sy, are known from the previous time step.

With the given potential on the free surface and the known normal velocity on
the body surface and the bottom, the potential at any point in the fluid domain is

obtained by
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3(X) =//90(X3)XT—1XT,(ZQ’

where (2 is the integration domain outside the problem domain.

(2.19)

Applying the boundary conditions, the desingularized boundary integral equa-

tions for the unknown strength of the singularities o(X,) are :

. 1 . .
//n U(Xs)mdﬂ = ¢o(Xy) (Xy €Ta)
and
// t7'(.)-(‘,,)i ..._1—.,— dQ=X(Xf) (Xf € Fn)
Q on le - X,
where

X,  is the point on the integration surface,
X;  is the field point on the real boundaries
$o  is the given potential value at X §

X  is the given normal velocity at X ¥
Iy is the surface on which ¢, is given

I,  is the surface on which x is given

2.2.1 Discretization and Singularity Distribution

(2.20)

(2.21)

(2.22)

To solve the integral equation for a()-fs), the collocation method is used. Field

points are chosen along the real boundary and sources are distributed outside the

computational domain. A set of field points and the corresponding source points are

chosen along the contours, Sy, S, and S, as shown in Figure (2.2).
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Figure 2.2: Model for numerical simulations

Usually, the integral equation can be discretized into a system of linear equa-
tions to be solved at each time step. In the desingularized method, the sources are
distributed on the integration surface so that the source points never coincide with
the field points and the integrals are nonsingular. In addition, because of the desin-
gularization, simple isolated sources rather than a distribution can be used and the

equivalent accuracy in the solution obtained.

The singularities are distributed above the field points on the free surface in the
+z direction. Inside the body, the isolated singularities are placed along the normal
direction from the field points on the body surface. Numerical difficulties may occur
in the vicinity of a sharp edge. One of the difficulties is due to the discontinuity in
the unit normal of the surface. The other is that the singularity distribution may
cross over the bisector of two body surfaces or even the other side of the body surface

since the desingulérization distance is proportional to the local surface grid size.
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These types of difficulties can be avoided by careful discretization and desingu-

larization. The desingularization distance near a sharp corner is modified so that

the singularities are distributed on the bisector of the two body surfaces to avoid the

cross over of the singularities beyond the centerline or the body surfaces.

If we establish that N;, Ny, N, and N, are the numbers of the panels dis-

tributed on the free surface, the body surface, the bottom and the far field boundary

respectively, the boundary conditions are

Ni+Np+Np+Noo . . .
> 0(Xs5)G(Xiy Xoj)
Jj=1
(for :=1
Ns+Ny+Np+Neo
E O'(X,.,_,)a G(Xfu sj)
j=1
(for i=N;+1
Ny+Np+Np+Noo
) U(Xsa)a G(Xyi, X.5)
Jj=1

(fOT‘ i=Nf+Nb+1

Ny+Ny+Np+Noo . . -
> o(Xs) v G(Xyi, Xs5)
=1

(for i=Nf+Nb+Nh+1

#(X1),

Ny) (2.23)
Vi(Xpi) - (X s),
N¢ + Ny) (2.24)
Va(Xy) - in(X ),
Ny + Ny + Ny) (2.25)
Voo (X12),

Nf + Ny + Ny + Noo) (2.26)

where,
G(Xgi, %) :
fta sj) = 7= =
|Xﬁ ~ X,
¢ is the velocity potential
X i is the i** field point on the boundaries
X,j is the j™ source point outside the computational domain
Vi(X5) is the velocity of the

field point on the body surface

is the inward unit normal vector to the body surface, out of fluid
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Va(X ) is the velocity of the ** field point on the bottom
ﬁh()_f i) is the outward unit normal vector to the bottom, out of fluid
Vo ()-f i) is the velocity of the i™ field point on the far field boundary

and is assumed to be zero at all time

Combining equations (2.23), (2.24), (2.25) and (2.26), we obtain a linear system of

m algebraic equations

Apym X =B, (2.27)
where,

m  is the total number of field points
Anmxm is the influence function matrix with m x m elements
Xn  is the unknown source strength vector, a()?,) ,to be solved
B, is the known vector which contains the values of ¢ at the field points
on the free surface and the values of % at the field points on the body

on

surface and the bottom.

Once equation (2.26) is solved, V¢ can be evaluated on S t, and the kinematic and

dynamic conditions on the free surface can be integrated in time.

In order to solve the large scale linear equation system, a Generalized Minimized
Residual (GMRES) algorithm (Saad and Schultz, 1986 and Olsen, 1989 ) with pre-

conditioning developed by Cao (1992) is employed.

2.2.2 Free Surface Updating

A Runge-Kutta fourth-order scheme is used to update the potential and position

of the field points on the free surface. The grid spacing on the body surface are
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then repanelized with a semi-cosine distribution due to the change of wave elevation
at the intersection line. The collocation points distributed on the intersection line
satisfy the free surface boundary conditions and are constrained to slide along the

body surface.

2.2.3 Instability, Smoothing and Redistribution

Longuet-Higgins & Cokelet (1976) discuss a ‘sawtooth’ instability in their research
with breaking waves. After careful study, they found the cause of the instability
was partially numerical and partially physical. They used a smoothing technique to
suppress the development of this instability. Baker et al. (1982) and Lin et al. (1984)
both used a smoothing operator to reduce the instabilities when the waves became

steep.

It is now believed that such high-wavenumber instabilities are related to the
accuracy of the velocity calculations for the free surface particles. However, the real
reasons which cause the instability are still not clear and may well depend on the

numerical implementation used.

Dommermuth & Yue (1987) assumed that a root cause of the instability was
the concentration of Lagrangian points in the region of higher gradients. They de-
veloped a regridding algorithm to eliminate the instabilities without using artificial
smoothing. Dommermuth et al. found that the regridding technique was sufficient
and conventional smoothing techniques were not necessary. The regriding could eas-
ily be applied at the body-free surface intersection line, and there was no need to

find a smoothing formula for a particular problem.

In this thesis, a redistribution technique is used to suppress the possible numer-
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ical instabilities. After a certain number of time steps, the solution procedure is
interrupted and the field points on free surface are redistributed using a cubic-spline
technique. The calculations are then restarted with a continuation of the fourth-order

Runge-Kutta evaluation.
2.3 Nondimensionalization

The fundamental variables, p, ¢ and H are used to nondimensionalize all the
other variables. p is the density of the fluid, g is the gravitational acceleration and

H is the initial draught of the body. Thus,

H = 1.0 is the nondimensional draught
= X L .
X = T is the nondimensional position vector
= R . . . .
R = i is the nondimensional radius
— D, . . . .
D, = 5 I the nondimensional panel size

— is the nondimensional forcing frequency

€

Il

€
Sl K'
@ |y

is the nondimensional body velocity

Stg

is the nondimensional bottom velocity

R

The nondimensionalized system, the bar system, will be used but bars on all the
variables will be dropped from now on. The numerical results shown in this thesis
are all based on nondimensionalized variables unless otherwise mentioned. Also, pg;,
is the air pressure and is taken as zero. Consequently, the nondimensional governing

equation and boundary conditions are

Ap = 0 (in D) (2.28)
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vé
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CHAPTER III

FAR FIELD BOUNDARY AND FAR FIELD
BOUNDARY CONDITIONS

A proper treatment of the far field boundary is crucial to the study of wave
propagation problems. Cost and data storage limitations dictate the use of a small
computational domain which contains only a few dominant waves. One serious dif-
ficulty encountered is how to appropriately handle the far field boundaries during
numerical simulations, so that the region of interest will not be contaminated by

wave reflections and other effects, such as a free surface mean shift.

The free surface mean shift problem arises if the far field boundary condition is
ignored. The initial boundary value problem becomes ill-posed and the solution of the
boundary value problem is then not unique. A family of solutions may be obtained
by adding homogeneous solutions to the exact solution. The added homogeneous
solutions may introduce a positive or negative net flux into the fluid domain through
the unspecified boundary surfaces. Consequently, the mean position of the free

surface starts, to move.

For forward speed problems, Cao, Schultz & Beck (1990) avoided the mean shift
of the free surface by using a shifting window technique. For the upstream boundary,

a calm water far field boundary condition was enforced. On the downstream side, one

30
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row of node points were dropped whenever the window was shifted. The treatment
prevented wave reflection at the downstream boundary. For zero forward speed
problems, the technique is not adaptable because there exists neither an upstream
nor a downstream in the computational domain. The free surface mean shift problem

can not be resolved due to the neglect of the far field boundary conditions.

Wave reflection is also a critical concern for problems with a truncated computa-
tional domain. A simple but effective treatment of the far field boundary should be
set forth to delay the free surface mean shift and wave reflection from the truncation
boundary. Therefore, numerical simulations can be carried out for a long enough
time such that the convergence and stability properties of the DELTA method can
be studied and the hydrodynamic forces and free surface wave profiles obtained.

3.1 Investigation of Free Surface Mean Shift and Wave Re-
flection in Two-Dimensions

Numerical investigations of the free surface mean shift and wave reflection are
conducted. First, we consider a two-dimensional floating box undergoing vertical or
lateral forced oscillations. A coordinate system with z positive to the right and =z
positive upward is used. Initially, a relatively small truncated computational domain
(on the order of a wavelength) is chosen to investigate how the free surface behaves

when the far field boundary condition is ignored.

The fluid is infinitely deep. The floating box has a breadth, B, and an initial
draught, H , where B is equal to 2H . The free surface is discretized in such a

way that the variation of panel size near the intersection points is smooth.

Newman (1985) and Newman & Lee (1992) recommended a cosine distribution

of the grid points on the body surface to anticipate the singular flow at the sharp
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corners. They compared solution accuracy of equal-spacing and cosine-spacing dis-
tributions; finding that more panels are necessary for the equal-spacing distributions

to achieve the same accuracy.

In Chapter V, we show that the difference between the solutions obtained by
a semi-cosine and cosine spacings is within 0.025 % when equal numbers of panels
are used. But, the time step size used in cosine spacing should be much smaller
than in semi-cosine spacing considering the stability of the numerical scheme near
the intersection points. Therefore, a semi-cosine distribution with the smallest panel

distributed near the corners is used to panelize the surface of the box.

The body is started from rest and oscillated vertically or horizontally. The ve-

locity of the box is prescribed as

0 ift<0
U(t) =
*wa cos(wt) ift>0
where
T, . .
w = 3 is the excitation frequency
a = 0.1 is the oscillation amplitude

Figures (3.1) and (3.2) show the time histories of the free surface when the box
oscillates vertically and laterally, respectively. As can be seen, the mean position of

the free surface shifts as the numerical simulation proceeds.

Wave reflection is also observed in figures (3.1) and (8.2). The wave amplitude
is changed and the wave shape is distorted due to the reflection. Once the initial

outgoing wave train reaches the truncation boundary, the waves reflect back and
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the solutions are contaminated. The wave reflection problem can be investigated
by calculating some type of reflection coefficient. While wave reflection is physical,
the mean shift is purely the consequence of the improper application of the far field
boundary conditions. Both mean shift and wave reflection will contaminate the

results in the inner domain.
3.2 Large Scale Outer Region

If it were possible to use an infinitely large computational domain, then there
would be no problems with free surface mean shift and wave reflection because the
far field boundary conditions would be satisfied. However, it is impossible to use an
infinite computational domain in numerical calculations. In this thesis, a large scale
outer region is proposed to postpone the free surface mean shift and wave reflection

from the truncation boundary.

3.2.1 Free Surface Mean Shift

Forced periodic heaving motions of a floating box are used to investigate the free
surface mean shift problem. In order to determine the proper scope of the outer
region, five different sizes of the region are tested. The length of the outer region,
Loyt , of the first, second, third, fourth and fifth cases are 20\ , 40X, 60X, 80A,
100X respectively, where X is the linear wavelength corresponding to the forcing

frequency. In deep water, A is determined by the dispersion relation, A\ = f}%’- .

Figure (3.3) shows the mean position of the free surface changing in time for
swaying motions of a two-dimensional box. For each numerical simulation, the same
initial condition is used but a different size of the computational domain is applied.

The results show that the mean shift is detained as the range of computational
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domain is increased. When the length of the computational domain is greater than
or equal to 80A and the simulation time is less than 16 motion periods, the mean
shifting rate of the free surface is about 6.7 x 10~7 per period. Therefore, the lower

limit of the length of the computational domain is chosen to be 80X .

3.2.2 Wave Reflection

A series of two-dimensional numerical experiments using a large outer region have

been conducted and the parameters of the outer region selected.

In the numerical tests, the whole free surface domain is composed of two regions,
an inner region (the domain of interest) and an outer region. The number of panels
distributed in the outer region, N, , is chosen to be 20. The length of the inner
and outer region, L;, and L, , are chosen to be 4\ and 80\ . A numerical
wave probe, station A , is placed at a distance of 3\ away from the body. A
total of 160 grid points are used on the body surface and free surface (20, 120 and
20 segments on the body surface, the inner and outer domains of the free surface,
respectively). Uniform panel size, D,, , is used in most parts of the inner domain
except in the region near the body-free surface intersection point. The variation of
panel size should be smooth to reduce the numerical error caused by the change in

panel size. On the body surface, a semi-cosine spacing distribution is applied.

In the outer region, 20 exponential-like grid spacings are distributed. The grid
spacings Doy in the outer domain are designed to grow at a rate of 4 with the
largest spacing located at the far end of the outer region. The panel sizes in the

outer region are

(Douwt)N = (Do) - (v)NWV-1)/2 (3.1)
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for N=1~ N,
where
D,;  is the size of the first panel in the outer domain
v  is the distribution factor

The body is oscillated through one cycle and stopped. With good arrangement in
panel size near the junction of the inner and outer domains, the radiating waves will
transmit into the outer region and wave reflection is delayed. The effectiveness of
the panel size arrangement near the junction can be examined by computing the

contamination coefficient.

The contamination coefficient, C. , is defined to be the normalized RMS differ-
ence of wave elevation between a contaminated wave elevation curve and the standard

wave elevation curve, i.e.

RMS,

Cu(T,) = —= (3.2)
Ns
where
" N
7 = Efil US(i)2
) N
N the total number of points in the time record at station A
T, the duration of the time history used in the calculation of C.
7c(7) the ** contaminated wave elevation record at station A
7s(2) the ** standard wave elevation record at station A

A wave elevation curve is obtained by recording the time history of the wave

elevation at station A . The standard wave elevation curve is shown in figure
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(3.4) and is acquired by using a significantly larger inner domain in order to run
the simulation without wave reflection arriving back at station A . The waves are
produced by a single impulse of the body and the results are considered reliable as
long as the domain is big enough and the simulation is stopped before the wave front
reaches the border of the inner domain. The sizes of the inner and outer domains
for the standard curve are L;, = 40\ and L,, = 80\ , respectively. The panel

number in the outer domain, N,,; , is chosen to be 20.

An example of wave reflection from the outer domain is shown in figure (3.5).
L, and L,, are 4\ and 80X while N, is 20. The variation of panel size near
the junction of the inner and outer domains is smooth, which will be shown in table
(3.1) to be the optimum panel size arrangement in delaying wave reflection. Using
the same initial waves as in figure (3.4), the outgoing waves reflect back from the
outer domain after the time is greater than 7. . In other words, the outer domain
essentially postpones but does not eliminate wave reflection. Waves reflection at
station A is prevented until the simulation time is larger than T. . It will also be
shown in table (3.5) that —Le— is approximately independent of motion frequency.

period

Therefore, for L;, = 4\, L, = 80\ and Nowr = 20, ;Tﬁ'?i & 13 . Thus, if the

simulation duration, T, , is less than 7., there will be less than 1% wave reflection

for the optimum outer region configuration.

For perfect reflection, all of the outgoing waves are reflected from the junction of
the inner and outer domains and pass station A . The wave elevation at station A
will then include both the radiating and reflected waves. The reflected waves keep on
traveling toward the body, bounce back from the body surface and cross station A

again when timeis T; where T depends on the forcing frequency of the body, the
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Table 3.1: The contamination coefficients and distribution factors for various D,; on
the free surface, Noys =20, Lin = 4\, Loy = 80, forcing frequency
= Z, motion amplitude = 0.1, D,, = & , Lo =10

3 — 30’ period
D 4\ Xl a2 | e | oas | asie | a/30
¥ 1.0000 | 1.0147 { 1.0201 | 1.0249 | 1.0295 | 1.0339 | 1.0378

Co(T,) % | 9423 | 60.79 | 38.62 | 22.75 | 10.88 | 2.98 0.49

Doy A/40 | A/50 | A/60 | A/70 | A/80 | A/100 | A/200

0 1.0396 | 1.0409 | 1.0421 { 1.0430 | 1.0438 | 1.0451 | 1.0493

Ce(To) % | 1.12 5.75 | 15.97 | 28.78 | 39.21 | 61.24 | 92.37

location of the probe and the location of the reflecting boundary. The free surface
elevation then includes the radiating waves, the first reflected waves and the second

reflected waves.

If we want C. to only measure the contamination due to reflection of the outer
region and not include the reflection from the body, the duration of the wave elevation
record at station A, T, should be also less than T) . We place the wave probe
near the junction of the inner and outer domains in order to make 7. < T; , such

that the contamination coefficient can be properly measured.

As the contaminated wave elevation is approximately the sum of the radiating
waves plus the reflected waves, the contamination coefficient is around 1.0 for perfect
wave reflection. When there are no reflected waves, 7, is always equal to 7, and the
contamination coefficient will be 0.0. It should be noted that for highly nonlinear
waves which significantly change shape upon reflection, C. may become greater

than 1.0 because it involves the square of the amplitude difference.

Table (3.1) shows the resulting contamination coefficients, C. , for different
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values of D,; . The panel size at the junction of the inner and outer domains, D,, ,
is & . Figure (3.6) summarizes the results of the table (3.1) and some conclusions

can be drawn.

It can be concluded from table (3.1) and figure (3.6) that a sharp discontinuity in
panel size at the adjacent regions of the inner and outer domain result in significant
wave reflection. A smooth variation in D,,; with D, ~ D,, works much better.

Therefore, equation (3.4) can be rewritten as

(Dowt)n = (D) - (y)VV-1/2 (3-3)

fOI' N = 1~ Nout
where

D,,  is the panel size at the junction of the inner and outer

domains

As shown in table (3.1), the use of D,; = D,, results in only about 0.49% wave

contamination when p—e’-:"fﬁ = 10. It should be noted that for fixed values of D, ,

Noy: and L,y , there exists a single value of « .

Figure (3.7) shows the waves generated by the heaving box using large and small
computational domains and two types of outer region. The large domain is 40\

and is used to produce the standard wave elevation curve, 7, . The small domain

is 4A with D,, equal to %. The outer region, L, ,is 80\ and Nyt is

20. Two different values of D,; are used, D,; = D,, and D,; = 120D,, . Three

curves are shown. The first curve, the dashed line, is the wave elevation curve at
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Table 3.2: The contamination coefficient vs size of the outer region, N,.. = 20 ,
D, = 5’\3 , forcing frequency = %, motion amplitude = 0.1, L;, = 4X,

L =10
period

Lot 80A | 120X | 160X | 200X | 240X | 280X | 320X | 360\

C(T,) % | 0.49 | 0.63 | 0.82 | 1.34 | 4.15 | 7.98 | 17.28 | 26.53

station A computed using the large domain; the second one, the chain-dashed line,
is the small domain curve with a good panel distribution (Do1 = Dy), and the third
one is the small domain curve with a poor panel distribution (D,; = 120D,,). The
first and second curves are so close ( C. = 0.49% ) that their difference can not be
seen in the figure. This suggests that the small domain results are acceptable as long
as proper panel size distribution is used. The third curve shows how bad the small
domain results are contaminated by wave reflection if improper values of the outer

region parameters are used.

As concluded in the previous section, the outer region should be as large as
possible so that the mean shift on the free surface can be postponed. However, there
does exist an upper limit for the size of the region if only a fixed number of panels
are to be distributed in it. Thus, as the region size grows, the panel sizes increase too
fast and wave reflection occurs too early. Table (3.2) summarizes the contamination
coeflicients of different lengths of the outer region. D,, is set to be 3—’\0- and L;, is
4\ . For each case, a smooth spacing distribution is used in the outer domain with
the first spacing equal to D,, . The results show that the most appropriate size of

the outer region, L, , should be less than or equal to 80X . However, if L,,; is

smaller than 80X , then the free surface mean shift is too large as shown in figure

(3.3).



40

Table 3.3: The contamination coefficient vs size of the outer region, D, = 30,

forcing frequencies = % and %’r, motion amplitude = 0.1, L;, = 4),, ,

Lout = 1280),, , ;227 =10

Nous 20 22 24 1 26 | 28 | 30 | 32 | 34 | 36 | 38

Ce(T,) % | 38.47 | 19.63 | 7.54 | 2.84 | 1.41 | 0.78 | 0.46 | 0.39 | 0.35 | 0.32

When multiple frequencies are presented in the forced motion, D,, should be
set equal to the appropriate D,, of the highest frequency to properly represent the
shortest waves, and L., should be equal to the L., of the lowest frequency to
reduced the free surface mean shift. As an example, a two frequency motion system,
wi =% and w; = 2?" , is considered. The linear wavelengths of the two frequencies
are A, and ), respectively. A two-dimensional box is oscillated with forcing
frequencies, w; and w; , and D,; is set equal to D,, (i.e. D, = %1 ). The
lengths of the inner and outer regions, L;, and L, , are 4),, and 80X, (i.e.

64)., and 1280),, ). Therefore, N, is the only parameter to be determined to

delay wave reflection.

The standard wave elevation curve for the double-frequency motion system is
obtained by oscillating the box through one double-frequency cycle using a significant
larger domain. The L;, and L., are 40X, and 80),, , respectively. Table (3.3)
shows how the wave reflection corresponds to N, . As shown, the contamination
coefficient decreases as N,,; increases. The contamination coefficient becomes less
than 1% when N, is greater than or equal to 30. We may conclude that N,
should be modified whenever L,,, is changed. In order to effectively delay wave

reflection, a greater N,,; is necessary if a larger L,,; is used.

Table (3.4) investigates the effectiveness of the outer region as the inner domain
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Table 3.4: The two-dimensional distribution factor, v, vs uniform panel sizes on the
T

free surface, Nout =20, Lin =4X, Loy = 80X, forcing frequency = &

motion amplitude = 0.1, ”—ﬁ?ﬁ =10

D, A/20 | A/30 | A/40 | A/50 | A/60 | A/70 | A/80

vy 1.0353 | 1.0378 | 1.0396 | 1.0409 | 1.0421 | 1.0430 | 1.0438

Co(To) % | 0.42 0.49 0.53 0.59 0.66 0.72 0.77

panel size is varied. The contamination coefficient, C. , remains small regardless of
the uniform panel size, D,, . For a fixed N,,;, C. increases slightly because the
growth rate of panel size in the outer region increases as D,; = D,, is decreased.
This causes greater wave reflection. 4 changes slightly even though D,, varies by

a factor of 4.

The defined contamination coefficient is also used to investigate the performance
of the outer region for different motion frequencies. The sizes of the inner and outer
domains, L;, and Ly , are 4\ and 80X respectively. The motion amplitude is
0.1; the frequency range is from Z to ‘%’ . As seen from table (3.5), the effectiveness
of the outer region is not influenced by the frequency in the given range as long as
the number of grid points per wavelength remains unchanged and the duration of
the numerical simulation is less than T . It is also seen from table (3.5) that E%E

is approximately constant for the different frequencies and the given outer region

parameters.

In conclusion, the calculations have shown that the outer region is effective in
delaying mean free surface shift and wave reflection. The first panel size, Dy ,
should be set equal to the last panel in the inner region. The panel number in the

outer region, N,y , is critical. As L, increases, N,,; must also increase. With
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Table 3.5: The contamination coefficient vs oscillating frequency, N,,; =20, L;, =
4\, L,y = 80\, motion amplitude = 0.1, —Le— =10

? period

2r | 3r | a4

us £ Eus =
6 6 6 6

Forcing frequency

ol

Panel number/ XA | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30

Approx. L= 13 | 13 (13 { 13 | 13 | 13 | 13 | 13

period

C(T,) % 0.41 | 0.42 | 0.41 | 0.42 { 0.50 | 0.49 | 0.52 { 0.51

Loyt equal to 80X\, a minimumof N,,; = 20 has been found to be necessary. Using
optimum values of L,, , D,; and N, , and limiting 7T, to be less than T, ,
the contamination coefficient, C, , will be less than 1% regardless of frequency or
wave amplitude. For all subsequent two-dimensional simulations in this thesis with
single forcing frequencies, we shall use D, = D, , Nyt =20 and L, = 80\ ,
and the simulation duration should be less than 7. =13 periods.

3.3 Investigation of Free Surface Mean Shift and Wave Re-
flection in Three Dimensions

In three dimensions, the wave amplitude of the radiating waves decays at least as
fast as the square root of the radial distance whereas the energy density of the two
dimensional radiating waves persists and does not change with the distance. The
reflection effects and mean shift in three dimensions will therefore not be as bad as
in two dimensions. Therefore, a smaller outer region with fewer grid points can be
applied to examine the wave reflection in three-dimensions. The range of the outer
region is thus chosen to be half that of the two-dimensional case and 10 rows of grid

points are distributed in the region.

A right-handed rectangular coordinate system is used for the numerical simula-
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Figure 3.8: Collocation points distribution on the free surface in three dimensions

tions. The z— and y—axis lay on the horizontal plane, and the z—axis is positive
upward. A three-dimensional floating vertical cylinder undergoing forced oscillations
is considered to investigate free surface mean shift and wave reflection when no far

field boundary conditions are imposed.

The fluid field is assumed to be deep water and the cylinder is of radius R and
of initial draught H . The oscillation amplitude is 0.1. The radius is equal to 1.0

and the initial draught is set equal to its radius.

The radius of the inner region is equal to 2 and that of the outer region is
chosen to be 40\ . The inner domain of the free surface is discretized into 60
uniform segments in the radial direction. In the outer domain, 10 ever-increasing
grid spacings are employed in the radial direction. A semi-cosine distribution of 20
panels is used on the wall and bottom of the box. In the angular direction, uniform

grid spacings are used for all three surfaces.

As shown in figure (3.8), the circumference of the i* ring is larger than that of
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the (¢ —1)* one. The first ring, the body-free surface intersection line, is equally
divided into N, portions. In order to divide the free surface into panels with equal
sizes, the i** ring is uniformly allocated into N, + P.(i — 1) panels while the
(¢ — 1) ring is equally apportioned into N + P,(i —2) panels. The P, is an

integer and is determined by

2r A R)
AC

P, = Integer( (3.4)

where

AR is the radius difference for two sequential rings

AC s the arc length for any two successive grid points on the same ring
With AR= AC, P. is found to be 6.

Figure (3.9) compares the mean shift on the free surface for swaying motions in
two- and three-dimensions. The sizes of the outer regions are 80\ in two-dimensions
and 40X in three-dimensions. As shown, the free surface mean shift is slower in the
three-dimensional cases even though a smaller outer region is used.

Table (3.6) shows the resulting contamination coefficients, C. , for the different
values of D,; . The results of the numerical tests are shown in figure (3.10). When

Doy = Dy, , only about 0.35% wave reflection results for p—‘?—eﬂod = 3.

Table (3.7) shows the contamination coefficient for a variety of inner domain
panel sizes with D,; = D,, . With these D,, , the variation of panel size in the

outer region is smooth and the expected wave reflection is negligible.

The frequency sensitivity of the three-dimensional outer region is examined by

calculating the contamination coefficient with different frequencies. The inner do-
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Table 3.6: The contamination coefficients and distribution factors for various D,; on
the free surface, Nour =10, Lin = 2\, L,y = 40X , forcing frequency

= i i — = XA To  _
= 3, motion amplitude = 0.1, D, = %, eriod = O

D 4 ) A2 | A4 | A8 | A16 | A/30

vy 1.0000 | 1.1387 | 1.1451 | 1.1499 | 1.1545 | 1.1622 | 1.1688

C(T,) % | 87.33 | 40.47 | 18.76 | 6.13 2.08 0.62 0.35

Do A/40 | A/50 | A/60 | A/70 | A/80 | A/100 | A/200

0% 1.1695 | 1.1708 | 1.1720 | 1.1729 | 1.1737 | 1.1754 | 1.1796

Ce(T,) % | 0.82 2.25 5.07 | 16.78 | 23.27 | 42.58 | 84.35

Table 3.7: The three-dimensional distribution coefficient, v, vs panel sizes on the free
surface, Now = 10, L = 2X, L, = 40X forcing frequency = L

. « - T. —
motion amplitude = 0.1, orod =9

D A/20 | A/30 | A/40 | A/50 | A/60 | A/70 | A/80

0 1.1508 | 1.1688 | 1.1703 | 1.1765 | 1.1817 | 1.1860 | 1.1897

C(T,) % | 0.33 0.35 0.38 0.42 0.47 0.54 0.60

Table 3.8: The contamination coefficient vs oscillating frequency, Now: = 10, L;, =
2\, Loy = 40X , motion amplitude = 0.1, —Le— = 5

) pertod

Forcing frequency

L]
|

o
|

Panel number/ A | 20 | 20 | 20 | 20 | 30 | 30 | 30 [ 30

Ce(To) % 0.31 {0.33 1 0.33 ] 0.32 (0.36 { 0.35 | 0.36 | 0.34
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main is 2A and the outer domain is 40\ . The D,, are used to determine the

to 4= and the

panel sizes in the outer domain. The frequency is changed from A

JE]

number of grid points in the inner domain are 40 and 60. As shown in table (3.8),
the efficiency of the region is not a function of frequency if the number of grid points

: T.
per wavelength remains unchanged and pereod <9

For all the three-dimensional numerical simulations performed later in this thesis,
the outer region is chosen to be 40\ and 10 rows of grid points are distributed in the
radial direction of the region. The D,; is set equal to D,, and ~ is determined

from equation (3.3).
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Figure 3.1: Time history of the free surface for a heaving two-dimensional box in
infinite water depth, B = 2.0, H = 1.0, motion amplitude = 0.1
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Figure 3.2: Time history of the free surface for a swaying two-dimensional box in
infinite water depth, B = 2.0, H = 1.0, motion amplitude = 0.1
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Figure 3.3: Mean position of the free surface shifting in time for sway motions of a
two-dimensional box in infinite water depth, B = 2.0, H = 1.0, motion
amplitude = 0.1, forcing frequency = §
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Figure 3.4: Standard wave elevation curve for a heaving two-dimensional box in in-
finite water depth, B = 2.0, H = 1.0, L;, = 40, panel size = %, motion

amplitude = 0.1, forcing frequency = £
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Figure 3.5: Wave elevation curve for a heaving two-dimensional box in infinite water
depth, B = 2.0, H = 1.0, L;, = 4\, panel size = %, motion amplitude
= 0.1, forcing frequency = %
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Figure 3.9: Comparison of the free surface mean shift of swaying motions in two-
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quency = %
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CHAPTER IV

CONVERGENCE AND STABILITY
ANALYSES IN TWO DIMENSIONS

Primary convergence and stability analyses of the desingularized Eulerian-Lagrangian
time-domain approach for two-dimensional surface-piercing bodies are conducted in
this chapter. We consider a two-dimensional floating box undergoing forced periodic
oscillations in deep water. The box has a breadth, B, and a initial draught, H .
The inner domain of the free surface is divided into uniform grid spacings and a semi-
cosine distribution of panel size is used on the box surface because of the singular
flow at the corner. The outer region developed in the previous chapter is applied to

absorb radiating waves generated by the motions of the body.

The box is started from rest and its velocity is prescribed by

0 ift<O
Ut) =

T wasin(wt) ift>0

where

w  is the forcing frequency

a 1is the oscillation amplitude.

56
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Figure 4.1: Problem definition and coordinate system

4.1 Convergence Analysis

The convergence of a numerical method requires that the numerical solution
converge to the same solution as the computational grid spacing and time step are

refined.

A total number of 120 fixed wave probes are uniformly distributed over S;, to
serve as check poi-nts, such that the RMS of the free surface profiles can be calculated
even when the free surface is discretized into a different number of panels. For each
case, the cubic-spline method is used to interpolate the wave elevations, g , at check

points from the computed values of 5 at the field points.

As no exact fully nonlinear solution is available, the relative RMS difference of

wave profiles between cases is defined by

RMSipn = Ni e (1)
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where

z;x is the location of the i** check point in the k** case
Nins is the number of check points
7(zik+1)  is the wave elevation at i** check point in (k + 1)™ case

n(zix)  is the wave elevation at i** check point in k** case.

This error evaluation is then applied to analyze the convergency properties of the

numerical techniques.

4.1.1 Heaving Motion

As shown in figure (4.1), the length of the inner domain, L, ,is 4\ and that of
the outer domain, L,y ,is 80\ for each side of the computational domain, when
A is the linear wavelength corresponding to the forcing frequency of the motion.
For deep water, the linearized wave length is obtained by applying the dispersion

relation, A = 37"5 .

For heaving motion in two dimensions, only one side of the computational domain
needs to be computed because the fluid field is symmetric. Therefore, N;, grid
points are uniformly distributed on the inner domain of the free surface Sin , and
the outer domain S,,; is divided into 20 panels by 20 grid points. Also, a semi-
cosine spacing is used to discretize the side wall and bottom of the body surface into

Ny panels.

Figure (4.2) shows the typical time histories of the free surface profile due to

g

forced heaving motion of the body. The oscillating frequency is % » the motion

amplitude is 0.1, the N, is 120, and the duration of the motion is 10 periods.
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Time is increasing from the bottom to the top of the figure. As shown, waves
are successfully transmitted out of the inner domain and no wave reflection can be

observed.

As N, decreases, the uniform grid spacing D,, in the inner domain increases
and the corresponding distribution factor 7 is chosen to minimize possible wave
reflection from the junction of the inner and outer domains. N should be determined
in such a way that the size of the panel on the body near the intersection point is
about the same as the uniform panel size on the free surface. Therefore, the variation
in panel size is smooth near the intersection point. The least numerical error is
encountered when the panel sizes around the intersection point are approximately

the same.

Numerical tests are performed to check the convergence properties of the DELTA
method with respect to the forcing frequency and the panel size on the free surface.

Ny is increased from 60 to 300 in increments of 20. Three frequencies are chosen to

r =
3?7 1.75

be and ;%= and the corresponding linearized wavelengths are approximately

5

equal to 3B, B and % respectively. The results of the relative RMS difference
for the three frequencies are shown in figure (4.3). For all the three frequencies, the

convergence rate is third-order.

The results of the present approach are compared with the theoretical solutions
and the experimental results by Vugts (1968). In his work, a two-dimensional Lewis
form and vertical cylinders were tested. The Vugts’ solutions for heaving motion
were computed by using the linearized free surface boundary conditions while the

fully nonlinear free surface boundary conditions are applied in our calculations.

Three different stroke amplitudes, % = 0.05, 0.10 and 0.15, are considered. A
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time history of the computed hydrodynamic force is plotted versus that of the motion.
A phase shift between the two curves is found. When compared with the motion
curve, the in-phase component of the computed force is used to obtain the added
mass coeflicient, and the 90 degree out of phase component of the computed force is

utilized to get the wave damping coefficient.

The equations used to obtain the added mass and wave damping coefficients for

heaving and swaying motions are
f = a- (wzazz - z.‘-"b‘zz) (4.2)
where

f  is the computed hydrodynamic force
a is the oscillation amplitude
w  is the oscillation frequency

as, is the added mass coefficient

b., is the wave damping coeficient

(4.3)

Figures (4.4 ~ 4.6) show the comparisons of added mass coefficients from the
present method and the results of Vugts (1968). The breadth-to-draught ratio, % ,
is equal to 2.0. The added mass coefficients were plotted versus the forcing frequency.

The comparisons of wave damping coefficients are shown in figures (4.7 ~ 4.9).

Figure (4.10) presents the convergence of the added mass coefficient versus panel
number with the heaving amplitude equal to 0.15. As panel number increases, the
nonlinear solution converges to a value that falls between the experimental results

and the linear solution.
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4.1.2 Swaying Motion

The whole computational domain shown in figure (4.1) is considered for the nu-
merical simulations of swaying motion because the symmetry of the fluid field is no
longer valid. A total of ( 2N, + 40 + 2N, ) grid points are distributed on the inner

and outer domain of the free surface and the body surface, respectively.

Typical time histories of the free surface profiles due to forced swaying motions

of the body are shown in figure (4.11). The uniform panel size in the inner domain

A

is £ and the panel number in each side of the domain is equal to 90. The motion

is simulated up to 10 periods.

Thirteen cases are tested. 2N, = 60 is the first case and 2N;, = 300 is the
last. Grid points are uniformly distributed on S;, and the corresponding N, are
determined accordingly. The size of the inner domain is 2\ each side. With 60
fixed wave probes evenly spaced at each side of the computational domain, a total
of 120 probes are set up to be check points in order to compute the relative RMS

difference. As shown in figure (4.12), a third-order convergence is obtained.

We compare the fully nonlinear results of the DELTA method with the linear
theoretical solutions and the experimental results of Vugts (1968). Fifteen cases with
three swaying amplitudes and five forcing frequencies are tested. The amplitudes are
0.05, 0.10 and 0.15, and the frequencies are 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5. The
breadth-to-draught ratio % is equal to 2.0. Figure (4.13 ~ 4.18) present the results

of the comparison.

The convergence of the added mass coefficient versus panel number for swaying

motion is shown in figure (4.19). The oscillation amplitude is equal to 0.15 in this
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case. When the panel number increases, the numerical solution moves toward the
experimental results. The computed solutions might not coincide with the experi-

mental results due to the neglect of fluid viscosity effects.

When the oscillation amplitude and forcing frequency of motion increases, the
nonlinearity becomes important and the discrepancy between the linear and nonlin-
ear solutions increases. This phenomenon can be demonstrated by comparing the
computational results in figures (4.4) and (4.6) for heaving motion and figures (4.13)
and (4.15) for swaying motion. The results of the comparisons are shown in figures

(4.20) and (4.21).

4.2 Stability Analysis

The stability of a numerical scheme demands that the accumulated numerical
error does not increase during the process of simulation. The Free Surface Stability
number (the FSS number) introduced by Park & Troesch (1992) is used as a guideline
for the stability analysis of the DELTA method. The resulting FSS number is also
compared with the stability criteria, the Courant condition, derived by Dommermuth

and Yue (1986).

The FSS number is defined as

(At)?
Az

FSS =ng (4.4)

where

g  is the gravitation acceleration
At is the time step size

Az is the panel size
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Lz

P has corre-

Therefore, the Courant condition with an expression of (At)2 <é&

sponding F'SS number equal to 8.

Park & Troesch (1992) derived the FSS number by using the linearized free surface
boundary conditions in initial boundary value problems. The conventional boundary
integral equation method was used to solve the problem in two and three dimensions.
Even when the nonlinear free surface boundary conditions were considered, Park
et al. still used the linearized stability criteria to analyze the nonlinear results. A
Green’s function constant, ¢, was used to improve the condition of the matrix of
influence functions. They found that the conditioned numerical scheme was much
more stable than the unconditioned one. The stability of the scheme became much
better when ¢ was chosen to be less than or equal to 0.02. When no treatment was
made on the matrix (i.e. ¢ = 1.0), there existed a very limited stability region in
which the numerical scheme of the conventional boundary integral equation method

was stable.

We employ the fully nonlinear free surface boundary conditions to investigate
the stability properties of the desingularized Eulerian-Lagrangian time-domain ap-
proach. No Green’s function constant is used in our approach. The two primary
parameters for stability analysis are the spatial and the temporal increments, Az

and At respectively.

A two-dimensional box is initially at rest. When time is greater than zero, the

body is oscillated periodically. The inner domain is 4\ and the outer domain

is 80X . The amplitude of body motion, % » s 0.1. Eight series of numerical

experiments are then carried out. In the first four series of tests, the time step size

is varied. In the other four sets, the panel size is changed. The forcing frequency, w,
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for the first, the fourth, the fifth and the eighth series is 5+ For the second and the
sixth series, w is %z,f and w is 735 for the third and the seventh series. All series are

for heaving motions except the fourth and the eighth series which are for swaying

motions.

4.2.1 Time Step Size, At

In the first sequence of investigations, 120 grid points are equally distributed in
the inner domain (i.e. Az = & ) when the size of time step varies. Nine cases are
tested and results are examined. The number of time steps in one period, Nypn., is
increased from 30 to 150, and the increment between two consecutive cases is 15.
The relative RMS difference between the cases are shown in figure (4.22), and the

convergence rate of the numerical solutions show third-order convergence.

The numerical scheme becomes unstable if At > T . Figure (4.23) shows the
time history of the wave profiles when At = 215 and Az = ?:\—0 are used. As shown,
the instability grows as the numerical procedure progresses. Eventually, the scheme

will break down due to the accumulated numerical error caused by the improper time

step size.

By keeping the size of uniform panels in the inner domain at 3’\—0, a critical time
step size is found to be At = 0.0417. The corresponding critical FSS number is
equal to 9.76. The numerical scheme for heaving motions will be stable if the FSS

number is less than the critical FSS number.

The second and the third series of tests follow the same analysis algorithm used
in the first series. 120 grid points are uniformly distributed in the inner domain of

the free surface for both series. It is found that the critical F'SS number is 9.58 for
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—_ T 3 =
w= 77 andis 9.53 for w = 125 -

In the fourth series, the distribution of grid points for swaying motions is similar
to that in the last three sets of the investigations. The time step changes as the
panel size stays fixed, and nine cases are tested using the same set of time step sizes
as that in the first series. The values of the relative RMS difference are shown in

figure (4.24), and a third-order convergence of the numerical results is found.

The instability also appears in the numerical simulations of swaying motion when
At is greater than 3—6 . The instability increases as the calculation proceeds. Finally,
the accumulated numerical error becomes too large to proceed with the computations.
By adjusting the size of the time step, the numerical scheme becomes stable again

when the time step is 0.0397. The critical FSS number here is 8.83.

4.2.2 Panel Size, Az

In the fifth set of tests, the number of panels in the inner region changes as time

step size is fixed and equal to 3—7; . The period of heaving motion is 6 while the

corresponding frequency is % for all cases. The size of the uniform panels in the

inner domain decreases from % to % , and the amount of decrement is equal to
A
246"

The scheme is stable for the first 7 cases in which panel sizes are larger than % .

The convergence rate of the wave profiles is found to be the same as that obtained

in the convergence analysis for heaving motion, a third-order convergence.

In order to investigate the stability properties of the DELTA method in the sense

of panel size, the time step size used in this series remains unchanged and the panel

size is adjusted between % and

61

246 - When panel size is smaller than or equal
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to 0.0233), instability occurs. This leads to an FSS number equal to 9.22 which is
slightly smaller than the critical FSS number obtained in the stability analysis for

time step size.

The same process for stability analysis used in the fifth series of numerical ex-

periments is applied in the sixth and the seventh, and the fixed time step size is %

for both series. Note that the oscillating period, T , is equal to 27" . Therefore,
different values of w result in different fixed time step sizes. After modifying the

panel size on the free surface, the critical FSS number is 9.17 for w = 71.75 and is

9.20 for w = 71.25.

In the eighth series of numerical experiments, all of the parameters are the same
as those in the fifth set of tests except the motion is a swaying motion instead of a
heaving motion. The numerical schemes of the first 7 cases are found to be stable.
The instability occurs as the size of uniform panels become too small to meet the
stability criteria for swaying motions. The scheme remains unstable until panel size

is greater than or equal to 0.0248)\. The corresponding critical FSS number is 8.66.

4.3 Discussion

The convergence and stability properties of the DELTA method are cross-examined
by using the panel and time step size analyses. The numerical results show that the
scheme does converge, and a third-order convergence is found for a two-dimensional

floating box.

Overall, the fully nonlinear solutions agree well with the experimental results by
Vugts (1968). The results are compared when the forcing frequency is 0.5 < w <

1.5 . With a moderate oscillating frequency and motion amplitude, all the results
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coincide with each other. However, some differences are found. On the low frequency
side, the discrepancy between the experimental results and the nonlinear solutions
may be due to the inviscid fluid assumption. Also, this discrepancy may be due to
numerical errors because it is very difficult to measure added mass and wave damping
at low frequencies. The nonlinearity of the numerical results becomes stronger as the
strength of the disturbance gets bigger. On the high frequency side, the results of
the fully nonlinear model approach the experimental results as the motion amplitude

increases.

Piling up of the field points on the free surface occurs in the vicinity of the
intersection points when the Lagrangian description is used to update the free surface
position. The numerical error may arise due to the irregularity of the panel size. In
addition, the numerical scheme might become unstable because the piling up reduces
the local panel size and forces the local FSS number to exceed the critical FSS
number. Therefore, it is necessary to redistribute the field points when the situation

occurs.

After closely studying the convergence rate of the relative RMS difference of all
numerical simulations, it is found that the rate for the sway motions is slightly lower
than that for the heaving motions. The reason for the variance may be because the
singularity at the body-free surface intersection points is more crucial for swaying
motions. The argument is confirmed by testing the convergence rate of the results
of a submerged two-dimensional cylinder oscillating both laterally and vertically. As

shown in figure (4.25), the rate is the same for the two motions.

The results of the numerical experiments suggest that the convergence rate is

not affected by the value of the oscillating frequency. A third-order convergence is
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achieved for the three frequencies tested and the FSS number is relatively indepen-
dent of forcing frequency. The results of the numerical experiments suggest that
the frequency is not a crucial factor for the convergence and stability of the DELTA

method.

The numerical scheme is slightly more stable in the analysis of time step size than
in the analysis of panel size. In other words, the stability of the DELTA method is
more sensitive to the change of panel size than that of time step size although the

same order of convergence is achieved in both analyses.

The critical FSS numbers are 9.17 for heaving motion and 8.67 for swaying
motion in two dimensions. Both of them fall in the unstable region of Dommermuth
& Yue (1986). For heaving motions, the resulting critical FSS number of the DELTA
method shows a similar stability limit as Park & Troesch (1992) when the Green’s
function constant ¢ = 0.02 is applied in their computations. They have shown
that a proper value of the constant can improve the condition of the matrix of
shape functions substantially. However, no special treatment is employed in the
DELTA method to modify the condition of the matrix. This indicates that the
stability of the indirect version of the DELTA method may be surperior to that of
the conventional numerical methods used and tested in the work of Park & Troesch

(1992) and Dommermuth & Yue (1986).

Even with the small differences in the convergence rate and the FSS number,
the singularity at the body-free surface intersection point does not stop the DELTA
method from solving the boundary value problem and obtaining correct results. No
special treatment is necessary to take care of the intersection points. Without ex-

ceeding the stability limits of the method, the numerical scheme is stable and the
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computational results converge. So far, the DELTA method has shown good ability
to manage the singularity at the intersection points for motion where the velocity is

low enough such that there is no spray root.
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Figure4.4: Added mass coeflicient vs frequency for a heaving two-dimensional box
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Figure 4.5: Added mass coefficient vs frequency for a heaving two-dimensional box

in infinite water depth, B = 2.0, H= 1.0, L;, = 4\, Loy = 80\, motion

amplitude = 0.10, panel size = %
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Figure 4.7: Wave damping coefficient vs frequency for a heaving two-dimensional box
in infinite water depth, B = 2.0, = 1.0, L;, = 4, L, = 80, motion

amplitude = 0.05, panel size = %



74

——— Calculation(Vugts,1968,barge) O  Present calculation
— =— Calculation(Vugts,1968,Lewis form) & Experiment(Vugts,1968)

__.L_l_J._

0.0 : ,
0.0 05 1.0 15 2.0

Frequency

o)
!

Wave damping coefficient

Figure 4.8: Wave damping coefficient vs frequency for a heaving two-dimensional box
in infinite water depth, B = 2.0, T' = 1.0, L;» = 4\, Lo = 80), motion

amplitude = 0.10, panel size = 3"—0

——— Calculation(Vugts,1968 barge) O Present calculation
e === Calculation(Vugts,1968,Lewis form) 4 Experiment(Vugts,1968)

_,LLJ_..

0.6

0.4“ a

0.2- .,

0.0 l T T
0.0 0.5 1.0 1.5 2.0
Frequency

Wave damping coefficient

Figure 4.9: Wave damping coeflicient vs frequency for a heaving two-dimensional box

in infinite water depth, B = 2.0, H = 1.0, L;, = 4, L,.: = 80\, motion
A

amplitude = 0.15, panel size = 3



Added mass coefficient

1.3+

1.2 -

1.1+

1.0+

75

O——-~= Present calculation
= Experiment(Vugts,1968)
—— —— Calculation(Vugts,1968,barge)

0.9
0.0

I I | T 1
<0.0 400 60.0 80.0 100.0

Panel number

Figure 4.10: Added mass coefficient vs panel number on the inner domain of the
free surface for a heaving two-dimensional box in infinite water depth,
B =120,H =1.0, L;, = 4), L,,, = 80), motion amplitude = 0.15,

forcing frequency = %, panel size = A

30



76

3t/20

=

o

o
|

Free surface elevation

————”
——

-20.0 -10.0 0.0 10.0 20.0

Distance from origin

Figure 4.11: Time history of the free surface profile for a swaying two-dimensional
box in infinte water depth, B = 2.0, H = 1.0, L;n = 3, L,y = 80),
motion amplitude = 0.1, forcing frequency = 3» panel size = 3—’\0-



77

10
1

10° o

1072 0

107°

Relative RMS difference

1074

Ll
[o]

_5 :
5.0%10

10

Panel number

Figure 4.12: Convergencce of RMS error in free surface elevations for a swaying two-
dimensional box in infinite water depth, B = 2.0, H= 1.0, L;, = 2),

Loyt = 802, motion amplitude = 0.1, panel size =



78

——— Calculation{Vugts,1968,barge) O Present calculation
2 O —— — Calculation(Vugts,1968,Lewis form) & Experiment(Vugts,1968)

?, a _'l_.._J—
06 /
5
o =8
o 1.04 -
<
g
g
. "
< 0.0 I T T
0.0 0.5 1.0 1.5 2.0

Frequency

Figure 4.13: Added mass coefficient vs frequency for a swaying two-dimensional box
in infinite water depth, B = 2.0, T = 1.0, L;, = 2, L,y = 80, motion
amplitude = 0.05, panel size = %
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Figure 4.14: Added mass coefficient vs frequency for a swaying two-dimensional box
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Figure 4.17: Wave damping coefficient vs frequency for a swaying two-dimensional
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Figure 4.18: Wave damping coefficient vs frequency for a swaying two-dimensional

box in infinite water depth, B = 2.0, H = 1.0, Li, = 2, Loy = 80A,
A

motion amplitude = 0.15, panel size =



81

o———— - Present calculation
———--- Experiment(Vugts,1968)

—— —— Calculation(Vugts,1968,barge)

0.8

0.6 ‘\
0.4 \

Added mass coefficient

0.2 | I I | '
0.0 200 400 60.0 800 100.0

Panel number

Figure 4.19: Added mass coeflicient vs panel number on the inner domain of the
free surface for a swaying two-dimensional box in infinite water depth,
B =20, H=1.0, Ly, = 2\, L,,; = 80\, motion amplitude = 0.15,
forcing frequency = %, panel size = 5’};
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Figure 4.20: Comparison of added mass coefficient for a heaving two-dimensional
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Figure 4.21: Comparison of added mass coeflicient for a swaying two-dimensional

box in infinite water depth, B = 2.0, H = 1.0, Li, = 2, L,y = 80),
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Figure 4.22: Convergencce of RMS error in free surface elevations for a heaving two-
dimensional box in infinite water depth, B = 2.0, H = 1.0, L;, = 2],
L,y = 80X, motion amplitude = 0.1
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Figure 4.24: Convergencce of RMS error in free surface elevations for a swaying two-
dimensional box in infinite water depth, B = 2.0, # = 1.0, L;, = 2),
L,,: = 80, motion amplitude = 0.1
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CHAPTER V

CONVERGENCE AND STABILITY
ANALYSES IN THREE DIMENSIONS

In this chapter, the desingularized Eulerian-Lagrangian time-domain approach
(the DELTA method) is extended to initial boundary value problems in three di-
mensions. The properties of convergence and stability of the method are analyzed
by considering a three-dimensional surface-piercing body oscillating horizontally or
vertically. The coordinate system is a right-handed rectangular system with the z—
and y—axis in the horizontal plane, and the z—axis vertically upward. The assump-
tions are the same as in the two-dimensional case, i.e. the flow is ideal, incompressible

and irrotational. The surface tension and fluid viscosity are neglected.

The convergence of the DELTA method for a submerged disturbance with forward
speed in three dimensions was investigated by Cao, Schultz & Beck (1991a). In
their study of the truncation effect of a infinitive plane, the computational domain
was extended by adding uniformly sized panels and a quadratical convergence was
found. When keeping the computational domain unchanged but reducing the panel
size (therefore, increasing the panel number), they found that the numerical scheme

converged linearly.
The indirect version of the DELTA method is applied to solve problems in which

88
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unbounded boundaries are taken into consideration. The system of equations is
solved iteratively by using the GMRES method (Saad & Schultz, 1986 and Olson,
1989). A fourth-order Runge-Kutta method is also applied to march the solution pro-
cedure forward in time. A cubic-spline technique is utilized to regrid the field point
distribution on the free surface. This lessens the numerical instability in the vicinity

of steep water profiles or the intersection line where grid points may accumulate.

We consider a three-dimensional floating vertical cylinder periodically oscillating
in deep or shallow water. The radius of the cylinder is R and the initial draught
is H . The cylinder is started from rest and oscillated vertically or laterally. The

velocity of the body is prescribed as

4

0 ift<0

U(t) =« + wa cos(wt) ift >0

+ wa sin(wt) ift>0

where

w  is the forcing frequency

a is the oscillating amplitude

A cosine start introduces a large impulse into the fluid field because of a step in
body velocity of + wa. On the other hand, a sine start has a zero initial velocity but a
step in acceleration. Numerical experiments using both types of starts are conducted.
The results of a cosine heaving motion are compared with those by Dommermuth &
Yue (1987), and the two types of starts are used in both heaving and swaying cases

to study the convergence and stability of the DELTA method.

The convergence and stability analyses of the DELTA method have been numer-

ically investigated for a three-dimensional floating body with zero forward speed.
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The size of the mesh and the time steps are two principle parameters in the tests.

The results are presented and discussed in the following sections.

5.1 Heaving Motion

For heaving motions of three-dimensional axisymmetric bodies, the fluid field is
circumferentially symmetric. This property is then used to reduce the size of the
computational domain required to solve the initial boundary value problem. Three

simplified numerical schemes are plausible.

5.1.1 Simplification of Axisymmetry Problems in Three Dimensions

The first scheme is to reduce the order of dimensions from three dimensions to
two dimensions. Rankine ring sources can be used in a Green’s theorem boundary
integral formulation to solve the field equation (Dommermuth & Yue, 1987). The
approach was used to study the growth and collapse of a vapour cavity near the
free surface; the heaving of an inverted vertical céne starting from rest and a floating
upright cylinder also starting from rest. This approach will be called Dommermuth’s

method hereafter.

The second scheme is to compute only one quarter of the whole computational
domain due to the feature of symmetry in the fluid field. The free surface profiles
and hydrodynamic forces are obtained by summing up the effects from the four
portions. This method is most commonly used. Simple bodies such as the hemisphere
and cylinder have been studied by Beck & Liapis (1987) and others. Complicated
structures such as the Tension Leg Platforms (TLP) with four or six columns were

investigated in both the frequency- and time-domains by Korsmeyer etal. (1988).

The third scheme is an extension of the second approach with more symmetry
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planes applied. In the second method, only two symmetry planes, z = 0 and y = 0,
are used to divide the whole domain into four symmetrical sub-domains. As the
number of symmetry planes increases, the number of sub-domains grow. By keeping
the total number of field points constant, the number of grid points distributed in
one single sub-domain decreases accordingly. Consequently, the size of the influence

matrix that need to be solved is greatly reduced.

A. Numerical Implementation

In this thesis, the second and third approaches are applied to obtain the wave
profiles caused by forced periodic heaving motions of a floating vertical cylinder. The
results of these two approaches are compared, and the RMS of the resulting wave

profiles are computed.

The draught-to-radius ratio, % , of the cylinder is 1.0. A deep water case
is considered, and the size of the inner domain is 2) , where the )\ is the linear
wavelength corresponding to the forcing frequency of the motion and is obtained by
applying deep water dispersion relation, A = z—’{ . The oscillation amplitude, 7 is

0.1, and the forcing frequency, w , is chosen to be 3

Similar to the two-dimensional cases, the free surface is divided into two regions,
an inner domain and an outer domain. In the radial direction, the spacings are
uniform in the inner domain while exponential-like spacings are distributed in the
outer domain. The first spacing of the outer domain is placed right next to the
border of the inner domain, and its size is set equal to the uniform panel size in the
inner domain, D, . The size of the i* spacing is equal to D,, - (7)E-1/2 (see
equation 3.4). The distribution factor v is then determined by the D,, and the

scope of the outer region, 40\ . The singular flow at the sharp edge of the body is
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anticipated by using a semi-cosine distribution on the side wall and bottom of the

cylinder.

In the second approach, the uniform panel size is 5’\6 for the inner domain of

the free surface. A total of 60 rows of field points with N, grid points on each
row equally spaced in the angular direction are distributed on one quarter of the free
surface. The outer domain contains 10 rows of grid points. N, rows of grid points

with N, points on each row are allocated on one-fourth of the body surface.

The same arrangement of grid points on the surfaces in the second method are
used in the third method. But, instead of distributing N, points on each row and
using 2 symmetry planes, only one point is located on each row and Hgﬂ symmetry

planes are applied.

In order to determine a proper number of symmetry planes to obtain accurate
results, the relative RMS difference of free surface profiles at the end of the tenth
period for different numbers of symmetry planes are calculated. The relative RMS
difference is defined in the fourth chapter (equation 4.1). Figure (5.1) shows the
convergence of the relative RMS difference versus symmetry plane number. The
results of the numerical experiments suggest that the number of symmetry planes
should be greater than or equal to 60 such that the relative RMS difference is less
than 107% . Figure (5.2) shows typical time histories of the wave profiles for a
heaving vertical cylinder when 60 symmetry planes are used. The time is increasing

from the bottom to the top of the figure, and the temporal increment is % = 0.8.

A proper discretization scheme should be determined to panelize the body surface
so that accurate computational results can be obtained. A uniform spacing scheme

is one obvious option.
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With the size of panels proportional to the cosine of equally-spaced increments
along a circular arc, a cosine spacing distribution was suggested by Newman (1985)
and Newman & Lee (1992). When a cosine spacing scheme is used to discretize
the body surface, the smallest panels are distributed at the sharp corners and the

body-free surface intersection line in order to anticipate the singular flows.

A semi-cosine spacing distribution is another plausible consideration, in which the
idea of the cosine spacing is followed but only half of the circular arc is used. The
smallest panels are distributed near the sharp corners of the body, and the largest

panels are placed near the intersection line.

- - : AA A A A A A
A series of tests with panel size, Az, equal to 20 15 i8> 350 35 350 ig and

é\_o are conducted, and the size of the inner domain is chosen to be 2)\. A cosine

start is used, and the motion amplitude is 0.25. The number of symmetry planes is

us
3-

60, and the forcing frequency is

A total number of 120 fixed wave probes are uniformly distributed over the free
surface to serve as check points, such that the relative RMS difference of free surface
profiles can be calculated even when the free surface is discretized into different
number of panels. For each case, the cubic-spline method is used to interpolate the

wave elevations, 7 , of the check points from the computed values of n at the field

points on the free surface.

Figure (5.3) shows the convergence of free surface elevations of a heaving three-
dimensional vertical cylinder. The three discretization schemes are tested, and both
deep water and shallow water cases are studied. For shallow water, the relative
RMS differences are higher than those of deep water due to the existence of the

bottom. The discrepency in the relative RMS differences of the three discretizations
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decreases as the size of panels is reduced. However, the resulting convergence rates

are independent of the bottom condition.

Both semi-cosine and cosine spacings are superior to uniform spacing. When
the desingularized method is tested, no significant difference (within 0.025 %) be-
tween the numerical results of semi-cosine and cosine discretization schemes is found.
However, the local FSS number near the intersection line is much higher for cosine
spacing distribution when time step size is the same for the two distributions. This
is because the mesh size at the intersection line is much smaller in cosine spacing
than in semi-cosine spacing. In other words, bigger time step size can be used to
obtain an accurate solution and keep the numerical scheme stable when semi-cosine
distribution is utilized. Therefore, the semi-cosine spacing is applied to discretize

the body surface in z direction for both heaving and swaying motions hereafter.

Figure (5.4) shows the comparison of the wave profiles of the second and third
methods at different periods for a forced heaving motion of the body. 60 symmetry
planes are used and the computation is carried up to 10 periods. Table (5.1) shows
the relative RMS difference of free surface profiles of the two methods at the end
of every period. As shown, the results of the two approaches agree with each other
very well, and the largest relative RMS difference computed is 4.73 x 10~ at the
fifth period.

The relative RMS difference does not increase as the simulation continues. How-
ever, the numerical effort for the calculations in the third method is much less than
that in the second method. This is expected because the matrix size of the second
method is much bigger than that of the third method. Therefore, the third method,

the symmetry plane approach, is preferable and used for further calculations for heav-
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Table 5.1: The relative RMS difference of the free surface elevation at the end of
each period of the second and third methods

Time 2T | 3T | 4T | 5T | 6T | 7T | 8T | 9T | 10T

RMS(x10°) | 3.93 | 4.15 | 4.32 | 4.73 | 4.58 | 4.61 | 4.70 | 4.67 | 4.69

ing motion in three dimensions. Using the third approach in the DELTA method,

the shallow water results are then compared with those obtained by Dommermuth

& Yue (1987).

The number of symmetry planes used for the simulation is 90 and the draught-
to-radius ratio, % , of the cylinder is 0.5. A finite depth case is considered in order
to compare with the results of Dommermuth & Yue (1987). The water depth is &,
where % = 1. Two sizes of the inner domain, L;, , are used, L;, = 4R and

L;, = 9R . The oscillation amplitude, % » 18 0.5, and the forcing frequency, w , is

chosen to correspond to an Airy wavelength A of 2R, i.e. w?=3.13.

Figure (5.5) presents time histories of the nonlinear vertical force on the cylinder
computed by Dommermuth’s method and the third method. As shown, steady state
for the nonlinear force is reached within two periods in both cases. The two nonlin-
ear forces show good agreement considering that two completely different numerical

techniques are used.

Figure (5.6) compares the wave profiles of Dommermuth’s approach and the third
approach at the specific instants, % = 4, 8 and 10 for F = 0.5. Generally, the
results of the two methods show good agreement. However, no instability near the

intersection line is observed in the results of the DELTA method while irregularity

is seen in the results of Dommermuth’s approach. The occurrence suggests that the
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DELTA method is more stable than the conventional boundary integral equation

method used by Dommermuth & Yue (1987).

From all the comparisons made above, the multiple symmetry plane approach is
shown to be reliable and promising in obtaining correct solutions to initial boundary
value problems. Therefore, the method is utilized to analyze the convergence and

stability properties of the DELTA method for heaving motions in three-dimensions.

5.1.2 Convergence Analysis

The convergence characteristics of the desingularized Eulerian-Lagrangian time-
domain approach are examined using two analysis parameters, time step size and
panel size. When one of the two parameters changes, the other one stays fixed. The
outer region is 40\ and the inner domain is 2\ . Both shallow water and deep
water cases are tested. The heaving amplitude is equal to 0.25H where H is the

draft of the body. The period of oscillations, T, is equal to 6 and the corresponding

ud

frequency is equal to 3

N;, grid points are distributed in the inner domain of the free surface, S;, , and
the number of the grid points on the outer domain, S,u ,is 10. The distribution
factor v is determined by equation (3.3) to discretize S,,; such that wave reflection

from the junction of the inner and outer domains is minimized. 90 symmetry planes

2)

are applied, and the uniform segment length in the inner domain is equal to = .

60 fixed wave probes are equally spaced in the inner region and utilized to compute
the relative RMS difference of the instantaneous free surface positions at the end of
the sixth period. By using the cubic-spline technique, the position of the check points

are interpolated from the computed values of the free surface elevations of the field
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points at each instant of time.

A. Panel Size, Az

Nine numerical experiments are carried out with the number of grid points, Nj, ,
increasing from 20 to 100 in S;, . The increment of grid points of the two successive
cases is 10. The outer region, S,y, is divided into 10 panels, and the panel sizes in the
region increase with an order of 4. The time step size is set equal to At = 0.025T

for all cases in this series of numerical experiments.

Figure (5.7) shows the relative RMS difference of the cases with different numbers
of grid points in the S;, for deep water. The first case has Nj, equal to 20, and

Nin is 100 in the ninth case. The convergence rate is found to be second-order.

Also shown in figure (5.7) are shallow water results. The relative RMS difference
is bigger in the low panel number side and the solution converges slower than those
in deep water case. However, the final converge rates of deep and shallow water cases

are the same.

B. Time Step Size, At

Time step size is the principle variable in this sequence of tests with the panel

size fixed at % . The number of time steps in one period is increased from 25
to 80 with an increment of 5 for the twelve cases. Figure (5.8) shows the relative
RMS differences of the deep and shallow water cases and a small discrepancy is
observed when the time step size is larger. The numerical solution convergences

with a second-order convergence for both deep and shallow water cases.

The analysis is extended to check the relation between the forcing frequency and

the convergency of the desingularized scheme in deep water. Time step size is the
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. . . » _ T - T — ud
principle analysis parameter. Three frequencies, w = 3) W= 775 and w = 7%=, are

used. As shown in figure (5.9), the convergence rates of the relative RMS difference

are the same for the three frequencies, a second-order convergence.

5.1.3 Stability Analysis

The FSS number defined by Park & Troesch (1992) is used to analyze the stability
criteria of the DELTA method for heaving motions in three dimensions. The critical
FSS number obtained by Park & Troesch (1992) and Dommermuth & Yue (1986)

are 9.33 and 8 respectively.

Two series of numerical experiments are conducted for two variables, time step
size and panel size. The outer domain is 40X . The inner domain is 2\ for the
analysis in time step size, and 1)\ for panel size analysis. The same oscillation

period and oscillating amplitude as those in the panel size analysis are used.

A. Panel Size, Az

In this set of investigations, panel size is the principle analysis variable. Time

I
30

divided into 10, 20, 30, 40, 50 and 60 uniform panels.

step size is equal to and remains unchanged through the series of tests. S, is

The results of the tests in deep water show that the scheme is stable for the
first five cases in which the sizes of the panels are large enough to keep the numerical
scheme stable. For the sixth case, the instability grows as the computations continue.
By adjusting panel size to regain stability, the critical panel size is found to be
0.0181A and the corresponding FSS number is 11.87. The same tests are conducted

for shallow water cases and the same stability number is achieved.
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With the cylinder oscillating in deep water, the stability of the numerical scheme
is also tested at two other frequencies, w = 175 and w = 7=, It is found that the

critical FSS number for w = %z and w = ;% are 11.76 and 11.80 respectively.

B. Time Step Size, At

The primary analysis parameter is the time step size in this series of tests. The
size of the panel is chosen to be :;\—0, and the time step size is increased from % to

% . Seven cases are tested and the temporal increment is equal to % .

The simulation process becomes unstable in the last case, At = 0.057, and the
time histories of the wave profiles is shown in figure (5.10). The instability clearly
starts at the body-free surface intersection line. The simulation is finally forced to
stop because of the improper time step size. Stable computations are possible when
the time step size is less than or equal to 0.04687. The critical FSS number is then

determined to be 12.71 for both shallow and deep water.

The dependency between the forcing frequency and the numerical stability is

investigated at two other frequencies, w = 175 and w = ;%=. The fluid field is

assumed to be infinitely deep. When forcing frequency equal to w = 175, the critical

FSS numbers is 12.58. The FSS number is 12.63 as the frequency is w = %

1.25°

The results for heaving motion show no difference in stability criteria and conver-
gence rate regardless of the presence of the bottom. As the bottom effects are more
crucial in heaving motions than in swaying motions, the numerical tests for stability

and convergence analyses in swaying motions will be conducted in deep water only.
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5.2 Swaying Motion

For sway motions of a three-dimensional axisymmetric floating body, the fluid
field is symmetric only in the direction of the body motion. The Rankine ring
source and multiple symmetry plane approaches are not suitable for swaying motion
simulations due to the lack of a circumferential symmetry property in the fluid flow.

Therefore, the only plane of symmetry is the 0 — z — y plane.

It is important to remember that the DELTA method has no difficulty in handling
irregular meshes because the method does not require surface integrals over panels.
A series of fictious concentric rings are applied on the free surface. As shown in figure

(3.8), the rings are of different radius and distributed in the radial direction.

The free surface is divided into two regions, an inner domain and an outer domain.
The radius of the inner region, Ri,, is equal to 1), and that of the outer domain
is chosen to be 40X . In the r direction, the inner domain of the free surface
is discretized into N, rings with an uniform interval, Ar;, = %ﬁ , between
rings. The outer domain is distributed with 10 rings of field points, and the spacings
between two succesive rings in the region grows with an order of v . As in the two-

dimensional problems, the panel size of the first ring of panels in the outer region is

set equal to the last ring size in the inner region ( Ary, ).

The circumference of each ring is increasing as R increases. Therefore, the
larger ring is equally divided by more grid points so that the arc length of any two
successive grid points on the same ring is equal to Ary,. For example, the first ring,
the ring on the body surface, is evenly allocated into N, panels and the iy ring

has N, + P,(i — 1) uniform panels where P, is found to be 6 in Chapter III. The

total number of grid points on the whole free surface is QN"+6(N;"_1))'N‘" . Ny is
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decided after NV, is determined so that the arc lengths and the uniform ring interval

are about the same.

5.2.1 Convergence Analysis

The convergence properties of the DELTA method in swaying motions is studied
by two series of numerical experiments in which different panel sizes and time step
sizes are used as the investigation parameters. The numerical experiments for the

initial boundary value problem in deep water are conducted.

A system of check points is set up on the free surface by using 60 symmetry planes
with 40 fixed wave probes equally distributed on each plane in the radial direction.
Therefore, a total number of 2400 check points are used to calculate the relative

RMS difference of the numerical results.

Before any relative RMS difference can be computed, the free surface elevations
of the check points should be obtained. The variation of wave elevation in one mesh
is assumed to be bilinear so that the elevations of the check points is obtained by
interpolating the positions of the field points. However, the error in approximating
wave elevations at the check points may exist because of the bilinear assumption.

The error is reduced as the number of field points is increased.

A. Panel Size, Az

The number of rings in the inner domain is increased from 10 to 50 with an
increment of 5 for nine numerical simulations. The N;, and N, in the first
case are equal to 10 and 10 respectively. The N;, is 50 in the ninth case and the
corresponding Nj is equal to 55. The relative RMS difference of the nine cases is

plotted in figure (5.11). As shown, the results converge faster when the grid points
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are few, for example N;, = 10, 15 and 20. The convergence rate of the numerical
solutions becomes stable when the mesh size becomes smaller, and a second-order

convergence is the ultimate convergence rate.

B. Time Step Size, At

Figure (5.12) shows the relative RMS difference of the ten cases. With the N;, =
30 , the number of time step sizes in one period is changed from 80 to 25. The
decrement of the time step number per period is 5. The convergence rate is also

second-order.

5.2.2 Stability Analysis

The length of the inner domain is 1 A and that of the outer domain is 40 ) .
The period of oscillation, T , is equal to 6 and the corresponding frequency is
equal to % . The definition of the FSS number by Park & Troesch (1992) is again

used to investigate the stability properties of the DELTA method for fully nonlinear

three-dimensional swaying motions.

A. Panel Size, Az

In this series of numerical experiments, time step size is set equal to % through
the series of the experiments. The Nj, is increased from 6 to 24 with an increment
of 3. The scheme is stable for all the cases but the last one, N;, =24 . By keeping
the size of time step unchanged, the proper Ar;, is found to be 0.0432) to keep

the numerical scheme stable, and the corresponding FSS number is 11.20.

B. Time Step Size, At
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The number of time steps per period is changed from 60 to 20 with a decrements
equal to 5. The N, is set equal to 30. During the numerical experiments, the
scheme remains stable until the time step size exceeds % . At this time step size,
the irregularity shows on the free surface profile. The stability can be recovered by

reducing the time step size to 0.04567 . The corresponding FSS number is found to

be 12.07.

5.3 Discussion

The convergence properties of the DELTA method in three-dimensions is inves-
tigated. The convergency rate for swaying motions is slightly lower than that for
heaving motions. It is difficult to isolate the reason for this discrepancy. However,
one of the most important causes may be because of the existence of the body-free

surface intersection line. The singularity is more crucial for swaying motions.

The critical FSS numbers of the DELTA method for the heaving and swaying
motions of a three-dimensional vertical cylinder are greater than the limit of the FSS
number of Park & Troesch (1992) and the Courant condition of Dommermuth &
Yue (1986). This result suggests that the indirect version of the DELTA method has
better stability properties than the conventional boundary integral equation method.
In the stability analysis of both motions, the critical FSS number for the time step

size analysis is slightly larger than that in the panel size analysis.

Three forcing frequencies, w = 3 w = 77z and w = &, are used to investigate
the frequency dependence of the numerical scheme. Table (5.2) lists the convergence
rate and the critical FSS number for the three frequencies. The results show that

the convergency and stability of the numerical scheme is relatively independent of

the forcing frequencies used in our numerical experiments.



Table 5.2: The convergence rate and the stability number for the tested forcing fre-

quencies
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forcing frequency

@
3

w

1.76

L«
1.25

convergence rate

second-order

second-order

second-order

stability number (Az)

11.87

11.76

11.80

12.71

12.58

12.63

stability number (At)

The existence of the bottom does not affect the stability of the numerical scheme
when the forcing frequency is 3- The convergence rate is also the same in shallow
and deep water cases. Therefore, a conclusion based on our numerical results is that
the stability and convergence of the DELTA method are not affected by water depth,
H , for forcing frequencies higher than 3. For lower forcing frequencies, the % ratio

is larger and the bottom effect may be stronger, and the above conclusions may have

to be modified.

The body-free surface intersection line does not cause difficulties in solving bound-
ary value problems when the DELTA method is applied. The expected singularity

at the intersection line was smoothed out by the properties of desingularization.

The field points in the vicinity of the intersection line tend to pile up on the
upstream side and to scatter on the downstream side for swaying motions. In order
to avoid numerical errors caused by the grouping, the field points on the symmetry
plane of the motion were redistributed where necessary. While there is no upstream
nor downstream for heaving motion, the regridding technique is still used to reduce

numerical instabilities.

The results of the quarter plane method and the multiple symmetry plane method
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show good agreement. The two results agree up to 5 significant digits when the
number of symmetry planes is equal to 60. However, the computing time used
for simulations is much less when the multiple symmetry plane method is used.
Therefore, the multiple symmetry plane approach is preferable for the simulation of

an axisymmetry body experiencing heaving motion.

The same initial boundary value problem is solved by using the DELTA method
and the conventional boundary integral equation method by Dommermuth & Yue
(1987). The comparison between the two numerical results show good agreement.
The linear force is also compared with the two nonlinear hydrodynamic forces. As
shown in figure (5.5), at the downstroke of the heaving cycle, the discrepancy between
the linear and nonlinear forces is small because the bottom is far away from the free
surface. A significant difference during the upstroke of the motion is shown between
the linear and nonlinear forces. This is because the vertical force is obtained by
integrating pressure over the bottom of the cylinder which is close to the free surface
during the upward part of a heave cycle. Nonlinear effects strongly dominate the
results, and non-sinusoidal waves appear. The nonlinear forces have mean shifts and
are much larger than the linear force. The results show that the nonlinear calculations
have avoided the need to calculate the first, second and higher order forces or the
slowly varying forces separately. That is, nonlinear computations determine the
total effect of all components of hydrodynamics forces without extra programming

and computational effort.

The vertical force acting on an upright cylinder with a larger bottom has also
been computed. The radius of the lower cylinder is 1.5 and the radius of the upper

cylinder is 1.0. The depth of the upper cylinder is equal to its radius and is 2 times
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the depth of the lower cylinder. Two cases with heaving amplitude equal to 0.25 and
0.5 are examined. The time histories of the hydrodynamics forces and the heaving
amplitudes are shown in figures (5.13) and (5.14). In figure (5.13), nonlinear effects
are not obvious and the mean shift is small because the amplitude of motion is
modest. When the motion amplitude is increased, the nonlinearity increases and
the mean shift becomes large as shown in figure (5.14). At the peak of the force
curve, the vertical force is well in phase with the motion because the bottom of
the cylinder is deeply submerged under the free surface. The force is almost a pure
added mass effect. As the cylinder moves upward, however, the bottom is closer to
the free surface and a phase difference appears between the curve of the force and
the motion. This is a consequence of wave damping. The results demonstrate the

power of the DELTA method and are promising for offshore applications.
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CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

The convergence and stability of the indirect version of the desingularized Eulerian-
Lagrangian time-domain approach (the DELTA method) have been investigated for
wall-sided axisymmetry surface-piercing bodies in two and three dimensions. Both

shallow and deep water cases were studied.

6.1 Conclusions

When heaving motions of three-dimensional axisymmetric bodies are studied,
the multiple symmetry plane method is preferable to the quarter plane method. The
results of the two methods show good agreement. However, more computational
time is necessary for the quarter plane method while the multiple symmetry plane
method requires much less computation time. The lower limit of the symmetry plane

number is 60 so that the results can be performed correctly.

The indirect version of the DELTA method is robust in handling the singularity
at the body-free surface intersection line. No extra programming or computational
effort is necessary to manage the singularity. In addition, the method demonstrates

no difficulty in treating irregular meshes because the method does not require any
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line or surface integral.

When the Lagrangian description is applied to update the solutions, a redistri-
bution scheme is necessary for swaying motions to avoid the piling up of the field
points near the intersection line (points). For heaving motions, the redistribution is

also used to reduce the numerical instabilities.

The DELTA method is robust in simulating the motions of floating bodies with
complicated shapes. The fully nonlinear hydrodynamic force of a vertical cylinder
with a bigger bottom is computed. The vertical force shows a strong nonlinearity
when the motion amplitude is large. A mean shift on the computed hydrodynamic
force also appears and the time history is no longer sinusoidal. This suggests that the
effects from nonlinear hydrodynamic forces are important. Therefore, the method
is promising for further application to floating structures with arbitrary shape. A
direct and practical application will be analyzing the motions of and hydrodynamic

forces acting on a floating offshore structure.

A third-order convergence for a two-dimensional floating body is obtained for
both heaving and swaying motions. However, the rate is slightly higher in heaving
cases than in swaying cases. For a three-dimensional floating vertical cylinder, the
convergence rates for both motions are slightly over second-order. Similar to that in
two dimensions, the rate is lower for sway motions. It is belived that the difference
in the convergence rate is due to the singularity at the body-free surface intersection
point. The statement is checked by comparing the convergence rate of the heav-
ing and swaying motions of a submerged cylinder in two dimensions. No difference
is found between the two convergence rates, therefore, the comment is confirmed.

In general, the convergence rate is higher in two dimensions than in three dimen-
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sions. This may be because the numerical errors caused by the computations and

interpolation are larger in three-dimensions.

For the DELTA method, the critical Free Surface Stability numbers (the critical
FSS number) at which the solution becomes unstable are 8.67 and 11.20 for the initial
boundary value problems in two dimensions and three dimensions, respectively. No
special treatment of the matrix of influence coefficients is necessary to stabilize the
numerical scheme. Both numbers are located in the unstable region of the FSS
number by Dommermuth & Yue (1986). The FSS numbers of the present method
are also greater than those obtained by Park & Troesch (1992) when no Green’s
function constant is used in their calculations. This leads to the conclusion that
the stability of the indirect version of the DELTA method is better than that of the

conventional boundary integral equation method.

6.2 Suggestions for Further Work

The present method of desingularization is an O(N?) algorithm. The GMRES
scheme is also an O(N?) algorit:hm even with the influence matrix preconditioned.
The fast Multipole Expansion Method has been developed and studied by Rokhlin
(1985), Greengard & Rokhlin (1988), Greengard (1990) and Krosmeyer (1990). A
N-body potential problem is investigated. The influence among the N bodies is
evaluated by using multiple expansions so that the operation count is reduced from
O(N?) to O(NlogN). In an actual implementation of this method, it is essential to
apply the multipole expansions only to well separated regions (Tryggvason, 1991).
The adaptive method can also be used to divide the regions into sub-regions as
necessary in order to improve the accuracy of the solutions. For very large scale

computations, the time for the calculations is expected to be substantially reduced
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without losing the solution accuracy by combining desingularization, preconditioning

and multipole expansions with adaptive capability.

The application of parallel processing to solve the influence matrix iteratively
may allow the use of the multipole expansions and adaptive methods to become
more practical. The fundamental algorithm of the two methods require many IF
statements to group the collocation points. When IF statements are used in the
inner most DO loop of the program, the speed of the vectorized calculation is sub-
stantially reduced but the speed of parallel computations is not affected. Therefore,
parallel calculations show great potential for the same order of magnitude in speeding

up computations as was obtained by vector processing over scalar calculations.

The application of a large scale outer region is only a temporary fixed up to
postpone the free surface mean shift and absorbing the radiating waves. Therefore,
an appropriate treatment at the truncation boundary is necessary to run long time

simulations.

A moving window technique is desired so that a small computational domain can
be utilized to handle the zero forward speed problem of a floating body experiencing
very large swaying motions. The technique has been successfully developed and
used by Cao, Schultz & Beck (1990, 1991a, 1991b, 1992) for submerged bodies and
surface disturbances with forward speed. When the moving window technique is
applied to a large amplitude swaying motion problem, the special treatments used
on the upstream and downstream boundaries in the forward speed case are not
applicable since there exists neither the upstream nor the downstream. The body
keeps on moving back and forth and the upstream now becomes the downstream later.

Therefore, a new algorithm to, handle the open boundaries of a moving window is
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desired so that the technique can be used.

Wave breaking problems should be studied. The method developed so far can
only handle the problems of floating bodies moving with low speed (Cao, Lee &
Beck, 1992). As the speed of a floating body increases, waves generated by the
motion become larger. In a fully nonlinear calculation, the waves generated by
body motions may overturn and wave breaking happens near the body-free surface
intersection line. In order to continue the computations after wave breaking appears,
a means of distributing sources in the extreme regions should be modified and the

re-entry of the fluid particles onto the free surface must also be considered.

Jets occur when the speed of a body is too big or the impact of an incident wave
is too strong. Vorus (1992) investigated the formation of a two-dimensional jet flow
by setting up a planing hull impact problem and assuming no gravity effect in jet
calculations. The present method should be adjusted in order to manage the jet

problems in which the gravity effect is included.

The combined effects of the incident and diffraction waves is very important for
practical seakeeping problems. However, fully nonlinear exciting force problems have
not yet been solved. Part of the difficulty is defining a fully nonlinear wave field. If
the wave field can be completely defined, the basic difference between the radiation
and exciting force problems is only a modification of the body boundary condition. A
nonlinear interaction between the radiation forces and the exciting forces is expected
in the fully nonlinear computations. A natural consequence of the fully nonlinear
calculations is the second and higher order forces and moments. Therefore, no extra
numerical effort need to be made. The results of the nonlinear computations can be

utilized as a guide line to design safer offshore structures.
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