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some relevant quotes

Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et visa
versa...

(It is important to study differential equations...)

Sir Issac Newton (Arnold, (1978))

Ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour
ainsi dire, la seule bréche par ol nous puissions essayer de pénétrer dans une place
jusqu’ici reputée inabordable.

(What makes these periodic solutions so precious for us, is that they are, so to speak,
the only breach through which we can try to penetrate a domain that, until now,
had the reputation of being inaccessible.)

Henri Poincaré (Minorsky, (1962))
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PREFACE

This thesis represents an effort by one naval architect to analyze the important
and practical age-old problem of nonlinear ship rolling motion and motion stability
using the most modern methods available from other fields. Although some of the
methods used in this work may be unfamiliar to ship design naval architects, most
of the methods used herein represent the best and most recent techniques available
from applied mathematics, applied mechanics, mechanical engineering and electrical
engineering for analyzing periodically forced nonlinear time-varying systems. In the
recent past, when confronted with a highly nonlinear problem, one might be tempted
to say “give me a big enough computer and I can integrate any system of differential
equations, ordinary or partial...” This may not always be the most efficient or
enlightening method of analysis. This thesis specifically addresses this problem and
I hope will provide a convincing argument for the value of qualitative analysis of
differential equations.

Clearly, the emphasis of this thesis is the qualitative analysis of nonlinear differen-
tial equations. The specific system to be analyzed is the periodically forced nonlinear
roll equation in isolation or coupled with the other modes of motion. An important
discovery of this work is the complicated dynamics which may occur when a vessel
has an initially negative roll restoring moment and an eventual positive roll restoring
moment at some small but finite loll angle. Such a situation may occur because of the
presence of water trapped on the the deck of a small fishing vessel. Much of the em-

phasis of this work is devoted to analyzing this situation using an approximate model
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and applying specialized techniques to predict and analyze the surprising dynamics
that may occur. Although simulation of the approximate model is almost trivial to
apply to this problem, its results.are still interesting and enlightening. In addition
to using simulation to analyze this problem, we also apply various qualitative or
geometric analysis techniques. These methods include Melnikov’s method, the study
of invariant manifolds, lobe dynamics, Lyapunov exponents and bifurcation theory.

This work is meant to clarify and extend the simple analysis and realistic sim-
ulation that was performed as part of a previous project (Falzarano, (1988)). The
material included in this thesis involves applying existing techniques to the specific
problem at hand, clarification of certain aspects of existing techniques; explaining,
reporting and condensing from several diverse sources existing techniques; and finally
reporting some extensions of general theory and techniques to circumstances which
have not been previously reported. It is my hope that, after reading this thesis,
the reader will have a reasonably complete picture of what is available from other
fields to analyze similar problems and what types of interesting dynamic behavior

are possible for a small fishing vessel that is damaged or has water trapped on deck.
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CHAPTER I

INTRODUCTION

In this thesis we investigate the important naval architectural problem of vessel
capsizing with a loll angle due to damage or water-on-deck. This focus has been
motivated by a previous project (Falzarano, (1988)) in which a water-on-deck simu-
lation program was developed (Dillingham and Falzarano, (1986a and b)) and used
to investigate fishing vessel dynamics. However, the mathematical techniques we
describe to analyze fishing vessel capsizing are by no means limited to vessels with a
loll angle. On the contrary, we include the loll angle only because of the additional
interaction that may occur with the larger amplitude dynamics near the angle of
vanishing stability.

The techniques we describe are suitable for analyzing large amplitude vessel mo-
tions which may lead to capsizing. We consider the coupled roll (linearly coupled
to sway and yaw) motion in regular waves (single-frequency periodic-forcing), and
include a nonlinear roll restoring moment curve, and linear and quadratic damp-
ing. We investigate the various steady-state solutions and then analyze their phase
space boundaries. These boundaries separate the transient behavior that determines
whether one or another of these solutions will be the eventual steady-state. For
a moderate forcing amplitude, the eventual behavior of a given initial condition is
clear since the boundaries are simple. However, as the amplitude is increased be-

yond some threshold value, the eventual behavior is no longer clear. This threshold
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value can be predicted in terms of the physical parameters, using Melnikov’s method.
Preliminary simulation studies using parameter values representing the twice cap-
sized clam dredge Patti-B, exhibited aperiodic response of the periodically forced
system. On further investigation, the mechanism leading to chaos was shown to be
the transverse intersection of the behavior boundary curves. These boundary curves
are called invariant manifolds. Therefore, in this work we investigate the effect of
these intersections on the eventual behavior of the vessel.

Although the methods we describe are capable of analyzing the chaotic dynamics
that may occur following transverse intersection of the invariant manifolds, these
methods are not limited in being able to analyze only chaotic systems. Instead,
these techniques are generally applicable to the analysis of any periodically time
varying (periodically forced) nonlinear differential equation or system of equations,
and the surprisingly complex behavior that can occur. With this as a background,
we now describe the specifics. We begin with what we and others have done, and
eventually describe a method which allows us to study the dynamics which occur

after the manifolds have intersected.

Summary of the coming chapters

In Chapter II, we provide motivation for the current work by describing a few
actual small fishing vessel capsizings where water-on-deck was believed to be an
important factor. Next, we describe a previous ship stability project (Falzarano,
(1988)). Finally, we describe how some of the other nonlinear ship dynamics research
groups are analyzing similar problems.

In Chapter III, we describe the ship dynamics aspects of the problem. We begin
with the dynamically exact Euler’s equation of motion and the associated Euler angle
kinematics. Because expressions for general hydrodynamic forces do not yet exist, we

use linear, ideal flow hydrodynamics augmented by a nonlinear roll restoring moment,
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and linear and nonlinear (quadratic) viscous damping. To be consistent, we linearize
the dynamically exact equations, at which point, the roll, sway and yaw modes of
motion, for a symmetric ship, decouple from the other modes. We next describe our
water-on-deck or damaged approximation which may cause a loll angle. Throughout
this chapter, we describe the current state-of-the-art in determining hydrodynamic
forces, assess the various classic approximations, and relate this to what types of

dynamics analysis are available and what types of dynamics are possible.

In Chapter IV, we describe a numerical path following, bifurcation analysis and
stability analysis technique we used for analyzing periodic solutions of the Patti-B
without water-on-deck or damage subjected to a regular wave train. The goal of using
this technique was to assess the accuracy of the single degree of freedom constant
(with respect to frequency) hydrodynamics approximation which is commonly used
by other researchers of nonlinear ship rolling motion. In order to motivate this
assessment, we consider the physical problem of a vessel slowly turning while traveling

at a constant forward speed.

In Chapter V, we begin the description of the specialized techniques which are the
focus of this work. We describe the procedure to obtain a Poincaré map from a peri-
odically forced (time-varying) ordinary differential equation. Next, we describe the
important, increasingly complex boundary curves for 1) the undamped (conservative)
and unforced (autonomous), 2) the damped (dissipative) and unforced (autonomous)
and finally, 3) the damped (dissipative) and periodically forced (nonautonomous)
ordinary differential equations which are the successively more accurate approxima-
tions of the nonlinear roll equations of motion. The boundary curves are associated
with the nonstable saddle fixed points of the differential equations. These boundary
curves separate regions of qualitatively different dynamics. The boundaries in the
Poincaré map of the periodically forced equation are called invariant manifolds. For

a large enough forcing, these curves may intersect; in this case, simple boundaries
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no longer exist and aperiodic dynamics can occur.

In Chapter VI, we describe the Melnikov technique which is used to predict when
the previously described manifolds intersect. We begin by describing the simple
Melnikov technique suitable for analyzing the manifolds associated with the zero roll
(in the unforced system) angle saddle and small amplitude loll angle dynamics, and
next apply the technique to the manifolds associated with the saddle at the angle
of vanishing stability (in the unforced system) and possibly unbounded (capsizing)
motion. We then describe successively more accurate Melnikov analyses including
application to models with multiple degrees of freedom, and a more accurate descrip-
tion of the restoring moment curve. In order to approximately describe the multiple
degrees of freedom dynamics, we obtain two characteristics which must be satisfied
in order to be able to determine an equivalent single degree of freedom system from
the multiple degree of freedom system. When employing the more accurate represen-
tation of the restoring moment curve, we need to numerically evaluate the Melnikov
integral. Not limiting our analysis to the Melnikov technique, we next describe an
innovative chaos criterion due to Szemplinska-Stupnicka, (198X) which uses the clas-
sic harmonic balance technique. Finally, we describe how the manifold intersections

leads to horseshoe dynamics which are a necessary condition for chaos.

In Chapter VII, we describe an innovative technique developed by Wiggins,
(1990), called lobe dynamics. After the manifolds have intersected, it is no longer
easy to separate qualitatively different behavior. Lobe dynamics allows us to study
the dynamics inside the regions bounded by the intersected manifolds, called lobes,
in order to continue to predict whether or not an initial condition will eventually
become unbounded (the vessel will capsize), or will remain bounded (the vessel is

safe).

In Chapter VIII, we demonstrate the practical use of the previously described

techniques by applying them to the twice capsized clam dredge Patti-B. We begin by
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studying the bifurcation and stability of a vessel without a loll angle. We continue
by studying the various modern methods previously described. First, we study the
manifold intersections and evaluate the accuracy of using two different locally valid
cubic approximations to the righting arm curve by comparing them to a numerically
determined Melnikov function based upon a single globally valid quintic approxima-
tion. Next, we consider how to reduce the multiple degree of freedom system to an
equivalent single degree of freedom system. Most importantly, we study the dynam-
ics associated with the lobes in the plane and demonstrate the practical use of this
theory to predict safety and capsizing. We continue by showing some simulations
around the saddle for the vessel turning problem. Next, we show some qualitatively
different types of motion including harmonic, subharmonic and aperiodic. Finally,

we present some results for a combined externally and parametrically excited vessel.

In Chapter IX, we summarize the lessons learned during the course of the thesis.
Specifically, we describe the appliciability of the results obtained and the generality

of the techniques described.

Since no single study can completely answer all the questions associated with ves-
sel stability, in Chapter X, we suggest extensions of the work previously described.
As a first step in analyzing a random seaway, we describe how we might consider
multiple (finite) frequency forcing. Next, we describe how we could extend the
parametrically excited analysis to the case where the parametric and external forc-
ing frequencies are incommensurate. Finally, we describe a suggestion by Troesch,
(1990), on how we might use the previous techniques in a probabilistic ship stability
criteria. In such a criteria, this work would be the conditional probability of capsize

given probabilistically determined initial conditions.

The appendices are included so as to make this work relatively self-contained, yet
not to break up the flow of ideas with side topics and excessive mathematics devel-

oped by others. Appendix A describes the derivation of the Melnikov function and
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how the Melnikov function can be used to study the lobes. Appendix B describes the
extension of the Melnikov theory to include additional phase variables. This exten-
sion is called the Melnikov vector. The Melnikov vector allows us to study additional
phase variables when these variables are slowly varying functions of time as they are
in our system. We also attempt to describe some of the geometric complexities of
the more complete multiple degree of freedom problem which eludes simple analysis.
Appendix C describes the details of the monodromy matrix, which is used to assess
stability of periodic solutions and mechanisms for losing stability in such systems.
Appendix D describes how to quantitatively describe chaotic dynamics and the as-
sociated strange attracting sets which may occur. These numerical techniques are
called Lyapunov exponents, Lyapuonv dimensions and attractor reconstruction. Fi-
nally, Appendix E describes how a reference righting arm curve can be approximately

modified for the effects of water-on-deck or external damage.



CHAPTER 11

BACKGROUND

Motivation

The capsizing of small fishing vessels is a serious problem. It is one of the factors con-
tributing to make commercial fishing the most dangerous occupation in the United
States (Jons, Fuller, and Letorneau, (1987)). Of the many capsizing mechanisms, the
effect of water trapped on deck may be the most important. It is known to have had
a dominant effect in at least three capsizings. Patti-B is described to have had water-
on-deck just before her first capsizing (NTSB, (1979)). Survivors describe the Joan
La Rie as rolling in bad weather with water-on-deck, then suddenly being hit by an
extremely large “freak” wave and capsizing (USCG, (1984)). Eyewitnesses describe
the Hellan-Hansen in bad weather as heeled (lolled) to one side with water-on-deck
after having been hit by a breaking wave, then suddenly being hit by another large
wave, and finally capsizing (Dahle and Kjaerland, (1979)). These capsizings seemed
to be ultimately linked to the de-stabilizing effect of water-on-deck. In addition,
since the Patti-B seemed to have surpassed all existing stability recommendations
and still capsized, her capsizing seems to be related to additional dynamic effects not

considered in the current static criteria. In this work, we attempt to study nonlinear
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ship dynamics in a rational and systematic fashion in order to uncover some of these

previously neglected important effects.

Previous work

Given the importance of water-on-deck and its dominant effect in many vessel
capsizings, an initial investigation (Falzarano, (1988)) was undertaken. Accurate pre-
diction of forces and resulting motions from water-on-deck was a fundamental aspect
of that previous work. Other investigators have stressed the importance of predicting
water-on-deck effects, but have relied on experiments (e.g., Adee and Pantazopoulos,
(1986)). These experiments suggested the importance of the so-called pseudo-static
heel angle (loll angle) when water is trapped on deck. However, physical experiments
involve unknowns due to scaling and are extremely costly. Thus, they are limited in
the number of parameters that can be systematically studied. Numerical prediction
is more cost effective because of the availability of large scale computers and the ease
with which various parametric effects can be analyzed through simulation. How-
ever, numerical prediction techniques are limited by the speed and storage capacity
of available computers so that fully solving a given problem, although theoretically
possible, may be impractical. In addition, simulations rely heavily on accurate pre-
diction of initial conditions.

Since water-on-deck is believed to be the cause of numerous capsizings, an im-
portant aspect of the previous investigation (Falzarano, (1988)) was to develop a
realistic numerical model of the combined ship motion and water-on-deck problem
for a small vessel in a seaway. This method is carried out in two computer programs
that have different time-domain ship motions models (Falzarano, (1988)). The com-
puter program COMBINE is essentially the US Coast Guard supplied computer
program CAPSIZE (Paulling, (1979)) extended to include the numerical simulation
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of the dynamic effects of water-on-deck. The water-on-deck effect is predicted by us-
ing the two-dimensional numerical method of Dillingham, (1979&1981), as extended
by Dillingham and Falzarano, (1986a&b). The simulation includes a model for de-
termining how water flows onto/off the deck over the bulwark top, and through the
scuppers. The computer program SLOSH2D uses a linear time-domain approach to
determine the hydrodynamic restoring forces and the same water-on-deck simulation
procedure as COMBINE.

One aspect of the previous investigation (Falzarano, (1988)) was to analyze the
twice capsized fishing vessel Patti-B. Extensive numerical experiments were carried
out using the aforementioned computer programs. These numerical experiments
demonstrated sensitivity to initial conditions and system parameters. Although these
extensive numerical experiments yielded empirical criteria for the Patti-B capsizing,
further insight into the causes of water-on-deck capsizing was sought; rationally de-
rived criteria and guidance in undertaking these simulations was needed. In addition,
simplified classical ship stability calculations and linear dynamic stability analysis
were undertaken. The results of this analysis was also inconclusive and dissatisfying.
The current effort draws on the experience gained from the previous work (Falzarano,
(1988)), yet applies the most modern and best techniques available from other fields

to analyze periodically time varying dynamical systems.
Related studies

Of the current world-wide research in nonlinear ship rolling dynamics, only two
other research groups have considered the possibility of complex dynamics occurring.
These are the research groups at University College of London (Virgin, (1987)), and
Virginia Polytechnic Institute (Nayfeh and Khedir, (1986)). Both of these groups
have observed chaotic dynamics due to regular wave excitation of the single frequency

single degree of freedom roll equation with and without a static bias. This static bias
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may, for example, be due to a steady wind or shifted cargo. Both have determined
the route to chaos as the period doubling route. Our approach is unique in that
the important practical effects of water-on-deck with multiple degrees of freedom
have been investigated using Melnikov’s method, in lieu of the empirically observed
period doubling route to chaos used by others. This method results in an analytical
expression or criterion in terms of the physical parameters of the system (bilge keel

size and area of aft deck) to predict the possible occurrence of complicated dynamics.

Other ship stability research

Although the current engineering approach to analyze ship stability uses non-
linear statics, the idea of applying nonlinear dynamics is not new (Mosley, (1850)).
Although the use of scale model experiments is common (e.g., Paulling, et al., (1979),
Takezawa and Hirayama, (1986) and Grochowaloski, (1989)) using approximate time
domain simulation models to analyze extreme (nonlinear) ship dynamics possibly
leading to capsizing is also common (e.g., Paulling, et al., (1974), Elsimaillaway and
Miller, (1986) and Brook, (1986)). Much work has been done using the idea of stabil-
ity of motion using Lyapunov functions to predict the boundedness of motion (e.g.,
Odabassi, (1979), Ozkan, (1981) and Calderia-Saraiva, (1986)). In addition, approx-
imate perturbation schemes have been applied to analyze nonlinear roll motion (e.g.,
Cardo, et al., (1986), Nayfeh and Sanchez, (1988) and Virgin, (1987)). However,
ship stability and nonlinear rolling motion have somehow managed to stay outside
the mainstream of ship dynamics (hydrodynamics) research with the exception of
some primarily hydrodynamic works (e.g. Vinge and Brevig, (1982) and Braeethen,
(1987)). Due to the uncertainty of the environmental conditions, in order to then
apply any of these techniques to vessel design, they must then be incorporated into

some type of probabilistic criteria which considers the randomness of the environment

(Dahle and Myhaurg, (1986)).



CHAPTER III

FORMULATION OF THE SHIP DYNAMICS PROBLEM

Equations of motion

The equations of motion describing a floating body are in general nonlinear and
time varying. Depending upon the assumptions and approximations made, these
equations are difficult and possibly impossible to solve analytically. Therefore, ap-
proximations must be made in order to make any real progress. Many of these
approximations are both accurate and realistic. Some classical approximations will
be reviewed here. First, consider the zero frequency limit of the frequency depen-
dent coefficients. The slow motion derivatives used in ship maneuvering result. If
the motion is slow enough, the frequency dependent wave excitation and wave ra-
diation forces may be neglected. The equations are time independent and possibly
nonlinear. Second, consider small amplitude ship motion due to a single frequency
wave train; the hydrodynamic properties are constant but the excitation is periodic.
In the frequency domain, the sinusoidal time dependence factors out so that the
resulting equations are linear and time independent. Third, consider ship motion in
a following sea when the encounter frequency is very low; the response is dominated

by hydrostatics, but the roll restoring coefficient is periodic so parametric excitation
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occurs. The equations are linear but time-varying because of the periodically varying
roll restoring moment coefficient. Finally, consider small amplitude time-dependent
ship motion due to an arbitrary incident wave. This is transient ship motion. Since
waves are met, created, and diffracted, the system has memory, and is accurately
described by convolution integrals. The equations are linear but time-varying due to
the time dependent convolution integrals. The equations are called linear functional
or integro-differential equations. As the amplitude of the transient ship motion in-
creases, the equations become nonlinear and may be described by a Volterra series
(Bishop, (1978)).

The purpose of this research has been to gain a clearer practical understanding of
what characteristics make a vessel safe or unsafe when exposed to extreme weather
conditions. In order to accomplish this goal, the system of differential equations
describing the motion has been studied using explicit simplified models, alternative
representations of external forces, the methods of dynamical systems and nonlinear
oscillations. Particular attention has been paid to the nonlinear and coupled aspects
of the equations of motion.

The full nonlinear coupled equations of rigid body motion written in a body fixed
axis system are derived in a variety of references (Vugts, (1970), Abkowitz, (1969));

these equations are as follows:

X = mli 4 quw — rv — z6(q* +r?) + z6(pr + §)] (3.1)
Y =m[o+ ru — pw + z6(pg + ) + zc(qr — p)] (3:2)
Z = m[w + pv — qu + z6(rp — §) — z6(p* + ¢*)] (3.3)
K = Iup — (Iss — Ies)qr — Iss(* + pq) — mzg(v + ru — pw) (3.4)

M = Is5q— (Iss — Ina)rp — Isa(r? — p?) + mzg(t + qu — rv) — zg(w + pv — qu) (3.5)

N = Iget — (Lsa — Iss)pq — Iea(p — gr) + mzg(v + ru — pw) (3.6)



Figure 3.1: Ship coordinate system

Where (X,Y,Z,K,M,N) = X are the externally applied forces and moments in the
body fixed system, and (u,v,w,p,q,r) = u are the translational and rotational veloc-
ities in the body fixed system, z¢ and zg are the coordinates of the ship center of
gravity. In ship motions calculations, the origin of the coordinate system is usually
placed at amidships and at the design waterline. The I;; are the inertia about the
specified axes (¢ = j) or cross products of inertia (i # j). Here, the subscripts are
4 = roll, 5 = pitch, and 6 = yaw. The dots indicate derivatives with respect to time.

When studying large amplitude motion, the supplementary equations in the form
of a rotation matrix relating the inertial and body axis rotation rates (Thelander,
(1964)) must be considered. To avoid changes in body inertial properties about the
fixed axis system, it is standard (in all but infinitesimal motions such as linear ship
motions) to adopt the procedure of solving the equations of motion in a body fixed
axis system. When using a body fixed system, the rotating or body axis system
must be continuously related to the fixed or inertial axis system. Since the rotations
are now finite and not infinitesimal, Euler angles are introduced. The standard ship
motions axis system (see Figures 3.1 and 3.2), in lieu of the equilibrium axis system
commonly used in ship maneuvering, will be considered here. The following rotation

order will be used:
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CASE 1

YAW
PITCH
ROLL .

V-0t

Figure 3.2: Euler angles rotation sequence (Thelander, (1964))

1: yaw 3 right-handed rotation about the inertial z-axis, bow to port is positive.
2: pitch @ right-handed rotation about the yawed y-axis, bow down is positive.
3: roll ¢ right-handed rotation about the yawed and pitched x-axis, starboard down

is positive.

Furthermore, the supplementary system of differential equations relating the time
derivatives of the Euler angles (¢, 8, $) and angular velocities in the body fixed system

(p, g, r) must be considered.

(4) (1 sin(4)tan(6) cos(d)tan(®) | [ » )

6 =10 cos(¢) — sin(¢) q

\gb) \0 sin(¢) sec(9) cos(¢)sec(0)} \ T/

This implies that derivatives of the Euler angles are not exactly equal to body
fixed angular velocities. Kinematically, the translational quantities in the body sys-

tem (s, ys, 25) must be related to the inertial system (x,y,z).
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( cos(v) cos(8) sin(%)) cos(8) — sin(6) \
) A
sin(¢) sin(0) cos(zp) sin(¢)sin(f)sin(z)

w | = — cos(¢) sin(¥) +cos(@) cos(y)  +sin(¢) cos(8) Yy
Y, cos(¢) sin(8) cos(p) cos(¢) sin(f) sin(z)) K z
\ + sin(@) sin(y) —sin(@) cos(¢p)  + cos(¢) cos(8) )

It is important that the order of these rotations be followed, since finite rotations
are not vectors as are infinitesimal rotations. Therefore, finite rotations do not
commute. This fact can be easily demonstrated by considering two different rotation
sequences. As an example, consider v, 6, ¢, and ¢,8, 1, rotations of 90 degrees each.

After these two rotation sequences, the body will settle to two different orientations.

Linearization of the equations of motion

In order to obtain the linear seakeeping equations from Euler’s equation of mo-
tion, a systematic linearization is performed (Vugts, (1970)). The nonlinear inertial
terms drop out and the only nonlinear terms that are retained are the nonlinear roll
restoring moment and the nonlinear viscous roll damping. Furthermore, the kine-
matic relationship between the body fixed rotation rates (p,q,r) and the derivatives
of the Euler angles (¢, 9, $ ) becomes an identity.

Following standard practice (Vugts, (1970)), consider all velocities to be small rel-
ative to some reference quantity, or alternatively, consider the motion to be restricted
to a small neighborhood about the origin. This procedure can be generalized to con-
sider non-zero equilibria. Following this procedure, the above nonlinear equations of

motion become the linearized equations of motion and are as follows,
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X = mli + z¢4] (3.7)

Y = m[o + 267 — 2zap) (3.8)
Z = mw — z54] (3.9)

K = Lup — Ieat — mzgd (3.10)
M = Is5q + m(zeu — z6W) (3.11)
N = It — Igsp + mzgo. (3.12)

To first order, the rotation about a fixed or moving axis system become identical.
Determining the general (nonlinear) force vector X of equations 3.1-3.6 is difficult
if possible at all. For general body motion, it has not yet been done. It requires
solving the three-dimensional hydrodynamics problem of a body floating on the free
surface. Although various representations of these forces are possible, for simplicity
we follow Vugts (Vugts, (1970)) and consider small amplitude motion in an ideal
fluid. These normal forces are obtained by integrating the pressure over the body
surface. First order terms proportional to unit body motion (displacement, velocity
and acceleration) and incident wave amplitude are obtained. Forces ! proportional to
unit body displacement are the hydrostatic forces C, forces proportional to unit body
acceleration are called the added mass forces A, and forces proportional to unit body
velocity are called damping forces B. The forces due to the incident wave are called
wave exciting forces F(t). If the system is linear and the excitation is due to a single
frequency wave (i.e., F(t) = F,e*? ), then the matrices A and B are constant. The
matrix M is made up of the physical mass or inertias about the specific axis plus

the inertial and coordinate coupling. The elements of the matrices A;;, B;j, and Cj;

1 We note here that when we refer to forces and motions, we refer to generalized

forces and motions which are forces and moments, and translational and rotational
motions (displacements, velocities or accelerations), respectively.
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are the forces in the itk mode of motion due to a unit motion (acceleration, velocity
or displacement) in the jth direction of motion. The mass matrix M;; contains the
appropriate mass, inertial or coordinate coupling terms. The subscripts refer to the
mode of motion and are: l=surge, 2=sway, 3=heave, 4=roll, 5=pitch and 6=yaw
(see Figure 3.1). Considering only these forces, the well-known frequency domain

representation of the seakeeping equations are obtained,

(M + A)i + B + Cz = F(t). (3.13)

Note from the linearized equations that no inertial coupling exists between the
symmetric (surge, heave and pitch) and the asymmetric (sway, roll and yaw) modes
of motion. Moreover, owing to port-starboard symmetry of the underwater body of a
typical ship, there is no hydrodynamic coupling either. Therefore, for the remainder
of this work we will consider only the sway, roll and yaw equations. In order to
concentrate on the linear coupling between the asymmetric modes and yet not ig-
nore important (O(1)) nonlinear effects, we consider the linear seakeeping equations
supplemented with an empirically derived linear and quadratic viscous roll damping
and a calculated nonlinear roll restoring moment curve. We note here that other
investigators (Marshall, Nayfeh, and Mook (1973)) have considered the possibility
of a pitch-roll coupling when the roll and pitch natural frequencies are related by an
integer ratio. In lieu of this, we consider the possibly more general effect which is re-
alized when roll is parametrically excited by a passing wave. This is briefly discussed
in the “Applications and Results” chapter (Chapter VIII). The viscous damping
is calculated component-wise using the methods described by Himeno, (1981) and

the nonlinear roll restoring moment curve is calculated using the ship hydrostatics

computer program STAAF (InterCAD, 1983).

To express the system 3.13 in Cauchy standard form, multiply through by the

inverse of the mass and added mass matrix (M + A)~! and define y = &. The
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following equations are obtained,

y=—-B*y— C*z + E*(t) + g(z) (3.14)

z=y. (3.15)

Here the matrices B* and C*, and the vectors F*(t) and g(z), have already been
multiplied by the inverse of the mass plus added mass matrix. We note here that
the only phase variables of interest are sway velocity, roll velocity, yaw velocity and
roll displacement since nowhere in the equations of motion do forces porportional to
sway and yaw displacement appear. Therefore, our extra equation is one dimensional

and merely defines the derivative of roll displacement as the roll velocity.

Next, define

()

T

and finally, the system below is obtained,

z=Kz+ h(z,1) (3.16)

Where the matrix K contains all the linear time invariant force coefficients and the
vector h(z,t) are the nonlinear and time-varying forces. The calculation of the linear
hydrodynamic restoring forces are performed using the linear frequency domain ship
motions computer program SHIPMO (Beck and Troesch, (1989)). These coeflicients
are determined by solving a series of linear boundary value problem one at each

frequency.
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The frequency dependence of the hydrodynamic forces

The frequency dependence of the linear hydrodynamics is well-known (Newman,
(1977))(Vugts, (1970)) in the ship dynamics field. The frequency dependence is
easily demonstrated by considering the zero and infinite frequency limits of the lin-
ear combined free surface boundary condition. Recall, that the linear hydrodynamic
coefficients are determined as the solution of a boundary value problem using the lin-
ear frequency domain ship motions computer program SHIPMO (Beck and Troesch,
(1989)). One form of the boundary condition on the free surface for the velocity
potential is the combination of the kinematic and dynamic free surface conditions,
which results in,

o0*¢ 94 —0

TR (3.17)

For a single frequency excitation, with e*“t time dependence, the above relation-

ship (equation 3.17) becomes,

w?é + g%‘:i =0. (3.18)

In the limit as w — 0, the above boundary condition (equation 3.18) approxi-

mately becomes:

o6 _
> =0. (3.19)

This implies that we have no vertical fluid velocity at the free surface (2 = 0); we get
mirror image (opposite) double body motion for the heave, pitch and roll motions,
and the same image double body motion for the surge, sway and yaw motions.

Physically, we may consider the body motion to occur in a wall bounded infinite

fluid.
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In the limit as w — oo, the above boundary condition (equation 3.18) approxi-

mately becomes:

é=0. (3.20)

This implies that we have only vertical fluid velocity at the free surface (z = 0); we
get following image (same) double body motion for the heave, pitch and roll motion
and the opposite image body motion for surge, sway and yaw. Physically, we may
consider the body motion to occur in an unbounded infinite fluid.

Since two very different double body motions result at the two respective limits,
and a smooth transition must occur between these two limits, it is argued that the
added mass must be a function of frequency. Furthermore, since the double body
motions at the two limits correspond to motions in an unbounded fluid without waves,
the linear hydrodynamic damping vanishes at these two limits. However, between
these two extremes, waves are created and the linear hydrodynamic damping takes on
finite values. Therefore, the hydrodynamic damping is a smoothly varying function

of frequency, that is zero at zero and infinite frequency.
Empirically derived viscous roll damping

The viscous portion of the damping (linear and quadratic) is determined on a
component basis as described in Himeno, (1981), and as refined and incorporated
into SHIPMO (Beck and Troesch, (1989)). However, the viscous damping does not
necessarily follow the simple limits described for the hydrodynamic damping. The
mechanisms involved in viscous ship roll damping include:

Bp: The moment resulting from skin drag (friction).

Bg: The moment resulting from the bare hull arising from separation and eddies

mostly near the bilge keels.
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By: The moment resulting from lift forces due to an apparent angle of attack as
the ship rolls while underway.

Bgk: The normal, flow modification and wave making moment components due
to the pressence of bilge keels.

Bgpxn: The bilge keel moment due to normal pressure.

Bgpxu: The moment due to the flow around the hull being modified due to the
presence of bilge keels.

Bpxw: The modification to the wave making moment due to the presence of
bilge keels.

By: The moment due to wave making which is calculated using potential flow
and modified.

These various components are functions of speed, encounter frequency and the
presence and size of the bilge keels. According to Himeno’s data, the Br, By, Bw, Bexw,
are linear while the Bgg, Bexn, Bexn are nonlinear. The linear B; and nonlinear

B, damping coefficients can, therefore, be expressed as follows,

B, = Br + Br + Bw + Bpxw (3.21)
and
B; = Bg + Bpkn + BBkH- (3.22)

The total damping is therefore,

B(8) = B1$ + B:24|4. (3.23)

In linear ship motions programs, the standard approach is to use an equivalent
linearization which equates energy dissipation per cycle. This equivalent coefficient

is a function of the amplitude of the resulting roll motion $42 and must therefore be

2 The amplitude of the rolling velocity éSA is a constant with respect to time.

However, the roll velocity ¢ and the roll displacement vary as a function of time

(ie., ¢ = 4(t) and ¢ = (1))
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determined in an iterative fashion. The formula is as follows,

8 . .
B, = B, + 3—7r'Bz¢A¢A' (3.24)

where, ¢, is the amplitude of the roll velocity which may be harmonically approxi-

mated as,

ba =/ $? + $2w2. (3.25)

Finally, in order to avoid problems resulting from the absolute value function, Dalzell,

(1978) suggests using an equivalent nonlinearization as follows,
35¢°

4844
Although some work (e.g., Braathen, (1987)) has been done on calculating the eddy

.. 5.

1616~ b+ (3.26)
16

making roll damping forces using vortex tracking schemes, the use of such methods is

time consuming and still requires the other components to be empirically calculated.

From the above formulation, we obtain constant coeflicients at each frequency.
Although constant coefficients at the harmonic frequency is an approximation to the
nonlinear problem, the above formulation allows us to evaluate the importance of
the nonlinear roll restoring moment, nonlinear roll damping and the linear coupling

between the asymmetric degrees of freedom (roll, sway and yaw).

The approximation to the water-on-deck force

In a previous investigation, Falzarano (1988) utilized a simulation model which
simultaneously solved the ship motion and water-on-deck problem. The ship motion
was modeled using a linear time-domain model and an approximate nonlinear model

(time-varying hydrostatics). The water-on-deck was modeled by solving the shallow
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water hydraulics (Dillingham and Falzarano, (1986a & b)) problem at each time step.
Considering the importance of initial conditions and equation parameters in deter-
mining the eventual motion of a vessel with water-on-deck, and the impracticality of
analyzing general nonlinear time-varying systems analytically, the study of an ana-
lytically tractable explicit simplified model exhibiting similar dynamics is appealing.
By explicit, we mean a differential equation expressible in terms of simple functions
of the phase variables and time. Because is is necessary to solve a nonlinear system of
partial differential equations at each time step, the water-on-deck force is a general
function of time and cannot .be studied analytically. This investigation will focus
on evaluating the effect of various simplifications to the nonlinearity and equation
coupling and relating these dynamics to those of the more realistic, yet complicated
and computationally intense simulation model. Therefore, in this investigation, we
will study a simplified model, so that we can evaluate the effect of approximations

by using analytical techniques to predict capsizing.
Description of explicit simplified model

The equation of motion describing the single degree of freedom vessel roll motion

¢ with water-on-deck is as follows,

(I44 + A44)$ + -B44¢2 + -B44q¢z I ¢ l + A GZ(¢) = Faea COS(Wt + 74) + Fwod(t)- (327)

Where I,4 is the moment of inertia (in air) about the roll axis, A4, is the roll
hydrodynamic added mass coefficient, By, is the linear roll hydrodynamic and vis-
cous damping coeflicient, By, is the quadratic viscous damping coefficient, A is the
vessel displacement, and GZ(¢) is a polynomial approximation to the nonlinear roll
restoring moment curve. The single frequency (w) external wave exciting force has
amplitude F,., and phase angle v, (with respect to wave crest amidships). The force

due to the water-on-deck, F,,4(t), can only be calculated in a simulation computer
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Figure 3.3: Roll restoring moment curve unmodified and modified

code (Dillingham and Falzarano, (1988a & b)) by solving a system of coupled nonlin-
ear partial differential equations, it is not available in closed form. Caglayan, (1985)
suggests that the dominant dynamics of the water-on-deck problem can be approxi-
mated by a fixed weight to achieve the same pseudo-static heel angle (loll angle). In
order to evaluate the importance of the loll angle but to avoid a complicated implicit
analysis involving the time simulation of a coupled system of nonlinear partial dif-
ferential equations, the hydrostatic curve is modified due to the weight and moment

of water-on-deck as follows,

(I44 + A-44)$ + B44‘}.S + B44q¢Z | q.S I + A sz(¢) = Faea COS(Wt + ’74) (328)

The unmodified and modified hydrostatic curve GZ,,(¢) for a typical fishing boat
(e.g., Patti-B) with water-on-deck might look like Figure 3.3.

It can be shown that for the unforced equation (F,., = 0), the equilibria of this
dynamical system correspond to roots of the function GZ(¢) = 0. This is shown
by writing the above equation in Cauchy standard form # = f(z,t), and setting
# = 0. When the GM is reduced through zero (from no water-on-deck to the static

effect of water-on-deck), the stable upright equilibrium, ¢ = 0 and é = 0, bifurcates
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Figure 3.4: Pitchfork bifurcation diagram and phase portraits

into an unstable upright equilibrium and two stable equilibria at the plus and minus
loll angles +¢;. Locally, this bifurcation is the classical pitchfork bifurcation and
is illustrated below in its bifurcation diagram and corresponding phase portraits
(Figure 3.4).

Global bifurcation is related to a type of stability called structural stability of
trajectories (c.f., equilibria as in local bifurcation theory) which is caused by changes
in a system’s parameters and the resulting character of the phase plane trajectories
near fixed points are affected by those changes. Examples of important parameters
for our system include coefficients of the differential equations describing the vessel’s
motion. For the ship, important system parameters are the value or sign of the
coefficients or derivatives of the righting arm curve. The qualitative features of
the righting arm curve as affected quasi-statically by the vessel’s motion should be
studied, since they are important for the dynamics. Parameter values at which
stability changes occur are called bifurcation points (Seydel, (1988), Guckenheimer
and Holmes, (1986)). Local bifurcation theory attempts to study how the system
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Figure 3.5: Phase portraits with a) homoclinic and b) heteroclinic
connections

changes close to bifurcation points. Important changes in the system dynamics occur
at or near the bifurcation points (Thompson and Stewart, (1986)). Although the
qualitative aspects of the vessel’s righting arm curve, and how changes in it affect the
system’s dynamics were originally discussed by Zeeman, (1977), he did not consider

the possibility of a loll angle.

For the bifurcated (as a result of the loll angle) system described by equation
3.28 (one unstable and two stable equilibria) without damping or forcing, the phase
portrait will have two homoclinic orbits, each connecting the unstable saddle at
é = 0 and ¢ = 0 to itself (Figure 3.5a). For a typical ship (we do not consider self-
righting lifeboats which have an angle of vanishing stability at ¢,= 180 degrees), the
undamped unforced phase portrait will have a heteroclinic connection which connects
the saddles at the plus and minus angle of vanishing stability to one another and

visa versa (Figure 3.5b).

This phase portrait is described as structurally unstable, since once damping
and forcing are added, the homoclinic manifold (the phase space evolves with time
once forcing is added) breaks and may intersect itself. If this intersection occurs once

transversally (non-tangent), it can be shown that the manifolds intersect one another
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infinitely many times (Wiggins, (1990)). The intersection of these manifolds is a
necessary condition for complicated (chaotic) dynamics to occur. Dynamical systems
possessing homoclinic orbits 3 are among the few dynamical systems whose behavior
may be studied globally. The Melnikov method is one of few analytical methods
for the detection and study of chaotic dynamics in such systems (Guckenheimer and

Holmes, (1986)).

The importance of nonlinear roll dynamics

From a vessel safety standpoint, the most critical aspect of ship dynamics is the
roll motion, and it must be studied in great detail. Roll motion is highly nonlinear
because of viscous damping and restoring forces. Uncoupled ship roll motion in reg-
ular waves may be described by an extended* periodically forced Duffing’s equation
No closed form solutions exist for this equation in general. Moreover, for certain
parameter ranges, this equation is known to have subharmonic and even chaotic so-
lutions (Guckenheimer and Holmes, (1986)). By subbarmonic, we mean the period
of the response is some integer multiple of the forcing period. By chaotic we mean
the response is aperiodic; it never repeats itself. For examples of the various types
of solutions see the “Applications and Results” chapter (Chapter VIII). Although,
almost any system of nonlinear differential equations can be integrated numerically,

differential equations with chaotic solutions may exhibit an extreme sensitivity to

3 It should be pointed out here that once time dependent forcing is added we

must consider an extended phase space, adding time. Since the time dependence
is periodic, we may consider a Poincaré map sampled every period at the same
phase of the forcing. The details of the procedure for obtaining a Poincaré map
from periodically time-varying differential systems are described in the chapter on
Poincaré maps and invariant manifolds (see Chapter VI).

4 By extended, we mean a Duffing’s equation with linear and nonlinear

(quadratic) damping and perhaps a more complicated restoring force curve. By a

more complicated restoring force curve, we mean one expressible by a polynomial
of fifth order or higher.
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initial conditions and simulation results should be interpreted cautiously. These and
other characteristics are not usually encountered in linear systems. As Nayfeh and

Khedir, (1986) have stated,

These nonlinearities bring a whole range of new phenomena not found
in linear analysis. These include multiple solutions, jumps, frequency
entrainment, natural frequency shift, subharmonic, superharmonic, com-
bination and ultrasubharmonic resonance, period doubling, bifurcations
and chaos. It should be noted that not all of these resonance phenomena
produced by the nonlinearity do occur often and are significant in ship
motions. Some of them are probably uncommon and possibly not very
significant. However, the practicing naval architect must be able to recog-
nize all such phenomena when they do occur and should understand their
consequences so that he/she will be able to avoid a design that promotes
capsizing, and to evaluate the seaworthiness of a craft, and to recommend

appropriate actions to control or minimize these large motions.

Approximate analytic techniques are useful in assessing the qualitative and quan-
titative behavior of solutions and in checking numerical methods. The only technique
for obtaining solutions to general nonlinear ordinary differential equations is numer-
ical integration. However, the inexperienced numerical analyst could integrate for
a long time and never discover the most important or critical behavior. There-
fore, guidance on what types of behavior to expect is of practical use. Classical
qualitative analysis techniques usually apply to conservative autonomous systems,
linearizations about equilibria or weakly nonlinear systems (local analysis). Modern
geometric methods are continually being developed and refined, but consideration
of time varying and dissipative systems is not common. Both classical perturbation
techniques suitable for weakly nonlinear systems and modern global analysis tech-

niques can be used in evaluating the effect of water-on-deck on the nonlinear roll
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equation of motion; the emphasis of the qualitative analysis of this work will be on
studying the strongly nonlinear effects, global effects and chaotic dynamics.

Considering what analysis techniques are available, a more appealing alternative
to studying the exact equations, the solution to which may only be known as a result
of simulation, is to consider explicit simplified dynamical equations. These equations
should be embe(ided in the exact equations and exhibit behavior qualitatively similar
to the more exact system. Considering simplified models exhibiting dynamics that
are qualitatively similar to more complex systems is appealing because we can analyze
these simple systems analytically. Modifying the ship righting arm curve to model
the important effects of the weight and moment of water trapped on deck is the most
simple model proposed to be analyzed.

These assumptions result in a single degree of freedom nonlinear oscillator with
a hydrostatic restoring lever curve modified for the weight and moment of the water
trapped on the deck and the moment induced by the asymmetric loading of the tank
as the vessel is heeled. The details of how the modified roll restoring moment curve
is determined are contained in Appendix E, Modification of the Vessel’s Righting

Arm Curve.

The importance of chaotic dynamics in our ship dynamical systems

Preliminary numerical simulation results suggested that the ship dynamical sys-
tem with a lolled righting arm curve GZ(¢) may exhibit chaotic dynamics. The
importance of chaotic dynamics in dynamical systems is that the eventual state
of the system exhibits sensitive dependence on initial conditions, sensitive depen-
dence on system parameters, and a broad-banded frequency response. For these
reasons, chaotic dynamics is important in engineering systems, since engineers lose
predictability when examining these systems. Although unpredictable, chaos is tra-

ditionally believed to be bounded. One aspect of this project has been to investigate
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the effect of the chaotic motion versus the periodic motion of the system and to
determine if the chaotic motions tend to stabilize or destabilize the ship dynamical
system. The effect of chaotic dynamics in increasing or decreasing the amplitude of

the response will be evaluated.

An important practical consideration for ship dynamical systems is whether or
not a given initial condition will lead to a bounded steady-state motion or will cause
unbounded motion and eventual capsizing. In the undamped and unforced system
the idea of an escape from a potential well is clear. The potential well is obtained
by integrating the spring force with respect to displacement, or by considering the
basin of attraction of the stable fixed points. This theoretical idea is a very impor-
tant practical consideration for a ship dynamical system. In chaotic systems, the
possibility of chaos triggering an escape from the potential well (safe region) is an

important practical aspect that must be considered (Thompson, (1989)).

In lieu of studying the chaotic escape from a potential well, we will study Lobe
dynamics (Wiggins, (1990)); for details, see the chapter on Lobe Dynamics (Chap-
ter VII). Lobe dynamics allows us to study only the dynamics starting with initial
conditions inside the lobes created by the intersecting manifolds and to evaluate the
possibility of initial conditions being transported from inside the pseudoseparatrix
(safe non-capsizing region), to beyond the pseudoseparatrix (safe boundary) to the
unsafe capsizing region. Thompson’s idea of a chaotic escape from a potential well is
based upon Yorke’s idea of boundary basin metamorphosis (Grebogi, Yorke and Ott,
(1987)). However, practical implementation of these techniques requires studying a
fine grid of initial conditions for a number of parameter values and observing the
eventual behavior of all these initial data points. Conclusions can only be drawn if
a fine enough grid of initial conditions for numerous parameter values is analyzed.
However, the manifold intersections and resulting lobes which we study in this work

are a necessary first step for the numerous events (e.g., crises) empirically observed
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by Thompson and Yorke to occur. The Melnikov criteria and lobe dynamics allows
us to predict a priori whether an initial condition in the boundary region (basin) will
be safe (eventually achieve a bounded steady-state) or unsafe (capsize).

Since our system is periodically forced (i.e., time varying at a single frequency)
due to single a regular wave, we sample the system states once per period at the
same phase. Such a sampling is called a Poincaré map. The boundaries between
qualitatively different behavior (e.g., attracted to one or another steady-state) are
called invariant manifolds. For moderate forcing, these manifolds do not intersect,
and it is usually clear where future iterates of an initial condition will eventually set-
tle. These manifolds are calculated for a given system (fixed damping and restoring
moment curve) once for all time. However, as the forcing exceeds some threshold
value these manifolds intersect. We determine this threshold value, for a given sys-
tem, using the Melnikov method, (see Chapter VI). The regions bounded by these
intersecting manifolds are called lobes. We must carefully study the evolution of

initial conditions starting inside the lobes to determine their eventual state.

Overview of various approximations to be used

The various approximate models for degrees of freedom and ship roll restoring
moment curve to be considered in the coming chapters are summarized in this section.
Although we hope to be clear in the coming chapters about exactly what system we
are studying, we summarize these aspects here to avoid future confusion and pfovide

a convenient reference.
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degrees of freedom

In order to evaluate both the important effect of the linear coupling of the various
degrees of freedom and to practically analyze initial conditions in the plane, we

consider both single and multiple degree of freedom models.

1. Multiple degree of freedom model:

(M + A)i + B + Cz + G(z, %) = E(2). (3.29)

The elements of the matrices A;;, B;; and Cj; are the linear hydrodynamic
added mass and damping, and hydrostatic restoring forces in the ith mode of
motion due to a unit motion (acceleration, velocity or displacement respec-
tively) in the jth direction of motion. The mass matrix M;; contains the
appropriate mass, inertial or coordinate coupling terms. The subscripts refer
to the mode of motion and are: 2=sway, 4=roll, and 6=yaw (see Figure 3.1).
We note here that the vector G; contains only the roll nonlinear damping and
restoring force, and the vector F; contains the linear wave exciting force in all

three modes of motion.

2. Single degree of freedom model:

(Iga + A44)<$ + B44<i5 + B44¢,7q.S I ¢ | + A GZn(¢) = Fy cos(wt + v4) (3.30)

Where, I, is the moment of inertia (in air) about the roll axis, A4 is the roll
hydrodynamic added mass coefficient, By is the linear roll hydrodynamic and
viscous damping coefficient, By, is the quadratic viscous damping coefficient.
The A is the vessel displacement, and GZ,,(¢) is a polynomial approximation

to the nonlinear (possibly modified) roll restoring moment curve. The single
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frequency external wave exciting moment has amplitude Fy and phase angle v4

(with respect to wave crest amidships).

Various approximations to the hydrostatic curve

In order to completely analyze the important dynamics for the Patti-B we consider

two types of nonlinear roll restoring moment curves, GZ(¢) (see Figure 3.6 ).

1. Righting arm curve as designed

In our “Bifurcation and Stability Analysis of the Ship Dynamical System”
chapter (Chapter III), “The vessel turning problem” and “Simulation of the
some aspects of the vessel turning problem” subsections of the “Applications
and Results” chapter (Chapter VIII), we consider a standard GZ(¢) for the
Patti-B as designed. As designed, this vessel has stability far in excess of that
recommended by regulations (Falzarano, (1988)). These studies allow us to
evaluate the effect of frequency dependent hydrodynamics and the approxima-

tion of uncoupled motion (see Table 3.1).

2. Lolled righting arm curve

In the remainder of the work, we consider a lolled GZ(¢) curve as would occur
as a result of external damage and flooding or water trapped on deck. In this

analysis, we consider four different approximations (see Figure 3.6 and Table

3.1).

(2) Ninth order approximation
We use this most accurate ninth order polynomial because it well approx-
imates the shape of the calculated GZ(¢). We use this approximation in

the numerical determination of the invariant manifolds.
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Fifth order approximation

We use this fifth order approximation because a fifth order curve is the
lowest odd polynomial which can capture both the loll angle and angle of
vanishing stability. We use this approximation in the numerical determi-
nation of the Melnikov function section in the “Applications and Results”

chapter (Chapter VIII).

Third order loll angle approximation

We use this polynomial approximation because our unperturbed trajecto-
ries are simple hyperbolic functions and we can analytically integrate the
resulting Melnikov integral. This curve well approximates the dynamics

around the loll angle.

Third order vanishing angle approximation

We use this polynomial approximation because our unperturbed trajecto-
ries are simple hyperbolic functions and we can analytically integrate the
resulting Melnikov integral. This curve well approximates the dynamics

around the angle of vanishing stability.
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Equation | Curve Chapter Titles (numbers)

3.30 1 Bifurcation and Stability (4) and Applications (8)
3.29 1 Bifurcation and Stability (4) and Applications (8)
3.30 2a Melnikov (6), Lobes (7) and Applications (8)
3.30 2b Melnikov (6), Lobes (7) and Applications (8)
3.30 2¢c Melnikov (6), Lobes (7) and Applications (8)
3.30 2d Melnikov (6), Lobes (7) and Applications (8)
3.29 2a Melnikov (6), Applications (8) and Appendix B
3.29 2c Melnikov (6), Applications (8) and Appendix B
3.29 2d Melnikov (6), Applications (8) and Appendix B

Table 3.1: Chapters where various approximations have been con-
sidered
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Figure 3.6: Pictorial comparison of various righting arms considered




CHAPTER IV

LOCAL BIFURCATION AND STABILITY ANALYSIS
OF THE SHIP DYNAMICAL SYSTEM

As important physical parameters are varied, the shape of the nonlinear roll
restoring moment curve leads to very interesting dynamical behavior. To systemati-
cally study these changes and analyze the resulting attractiveness or repulsiveness of
the new equilibria created or destroyed, local bifurcation theory must be considered.
Bifurcation and stability analysis refers to the appearance and disappearance of ad-
ditional solutions to systems differential equations as parameters are varied and the
changes in attractiveness or repulsiveness of these solutions. An example application
of bifurcation theory would be the way in which stability of solutions is gained or lost.
A detailed description of the mechanisms for gaining or losing stability is contained
in Appendix C, “Stability of Periodic Solutions and the Monodromy Matrix”.

Nonlinear dynamical systems have the characteristic that they may possess mul-
tiple solutions or attracting sets, some of which may be physically realizable (stable)
and some of which may not be. Bifurcation analysis is important to the study of ship
dynamics because bifurcations may lead to chaos. By this we mean that our generic
system may approach a chaotic dynamical system by changing a parameter resulting
in a sequence of progressively more complicated regular (periodic) dynamical systems
that approach a chaotic dynamical system at a so-called limit point. This is the so-

called “period doubling” route to chaos (Schuster, (1984)). Other investigators of
36
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chaotic ship dynamical systems (Nayfeh and Khedir, (1986) and Virgin, (1989)) have
analyzed this route to chaos for ship rolling motion. In this work, we instead study
chaotic dynamics by considering the invariant manifolds of the associated Poincaré
map and determine conditions for these manifolds to intersect. Intersection of these
manifolds is a necessary condition for chaotic dynamics to occur. Further discussion
of invariant manifolds and Poincaré maps is contained in Chapter VI, while an ana-
lytical technique (Melnikov’s method) to predict these intersections in terms of the
system’s parameters is described in Chapter VI.

The bifurcation and stability analysis contained in this chapter concerns the har-
monic response of a vessel with a positive roll restoring moment up to the angle of
vanishing stability. In other words, the stability analysis in this chapter does not
include the initially negative roll restoring moment and loll angle considered in the
rest of the work. However, even without the loll angle this work is unique as far
as we know in that the coupling of the nonlinear roll motion to the sway and yaw
motion, the nonlinear damping, an accurate polynomial approximation to the roll
restoring moment (a ninth order polynomial), and the frequency dependence of the
hydrodynamics are included. Consideration of all these quantities is accomplished
by using numerical path following techniques (e.g., Seydel, (1988), Doedel, (1986))
and numerically integrating the monodromy matrix to determine stability. There--
fore, this analysis is not limited to the accuracy and number of terms included in
an algebraic perturbation scheme as is the work of other investigators (e.g., Nayfeh
and Khedir, (1986)). Instead it is limited to the numerical accuracy and the size
and speed of the computer. Furthermore, an assessment of the inaccuracy caused
by neglecting the coupling and the frequency dependence of the hydrodynamics is

made. The coupling is found to be important.
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Numerical path following techniques

For simplicity, we initially consider the single-degree of freedom roll equation of
motion. We eventually describe how to extend this to consider the multiple degree
of freedom problem. In order to analyze periodic solutions to periodically forced
dynamical systems (e.g., our ship dynamical system), we look at the related au-
tonomous systems, by fixing time at various integer multiples of the forcing period.
Furthermore, we investigate the bifurcation behavior as the forcing frequency is var-
ied. Therefore, the forcing frequency is our bifurcation parameter.

In setting up the single-degree of freedom roll equation of motion for bifurcation
analysis, we follow the formulation for a similar problem used by (Seydel, 1988). In
applying numerical path following computer programs such as BIFPACK (Seydel,
(1988a)) to investigate harmonic solutions of periodically forced ordinary differential
equations, we equate the solution at zero time and after one period of the forcing.
In order to investigate how the magnitude and stability properties of steady-state
harmonic solutions change as the excitation frequency is varied, we consider the

following single degree of freedom roll equation of motion,

(Tas + Ass)é + Buud + Busgd | 6 | +GZ($) = Fycos(wt + 714) (4.1)

To begin, we divide through by the sum of the roll inertia and added mass and
define z; = ¢ and z, = ¢. Using these results, we convert our equation into Cauchy

standard form as follows,

1:1 = T2 (42)

_ B44$2 _ B44q$2 | Iy | _ GZ($1) F4
(L4a + Adg) (Tga + Asa) (Laa+ Asa)  (Laa+ Ay)

Tg =

cos(wt +4) (4.3)
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In order to determine steady-state periodic solutions at the forcing frequency,
we impose periodicity i.e., £1(0) = z1(T") and z,(0) = zo(T). However, since w =
27 /T and w is our bifdrcation parameter, we need to readjust our time step and
discretization each time we change w. Therefore, we rescale time and as a result our

boundary conditions become,

Tt=t=0<{<1 (4.4)

and therefore,

y1(f) = 21(t) and y,(F) = za(t). (4.5)
The time derivatives are defined as follows,

A _pd) 40 _ 40 (4.6)

di dt Tdf  dt’

Therefore, the equations of motion become,
y1="Ty: (4.7)

By, _ B44qy2 | Y2 | _ GZm(?h) + Fy
(Laa + Asq) (Jsa + Ass)  GM(Iy+ Aygg) (Laa + Asq)

Y2 = T(— cos(27t + 74))
(4.8)

with boundary conditions y;(0) = y1(1) and y2(0) = y(1).
The multiple degree of freedom problem is similar with the multiplication of all

terms by the inverted mass plus added mass matrix replacing the operation of simply

dividing by the roll inertia and added inertia. The equations become,

j =By — C'z+ F"(t) + g(c) (4.9)

T =y. (4.10)
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Here, the matrices B* and C*, and the vectors F*(t) and g(z) have already been
multiplied by the inverse of the sum of the mass plus added mass matrix. We note
here that the only phase variables of interest are sway velocity, roll velocity, yaw
velocity and roll displacement since nowhere in the equations of motion do forces
proportional to sway and yaw displacement appear. Therefore, our extra equation
is one dimensional and merely defines the derivative of roll displacement as the roll

velocity.

Stability of periodic solutions

To study the stability of the steady-state harmonic solutions, we numerically in-
tegrate the monodromy matrix following the techniques described in Seydel, (1988).
A summary of the relevant characteristics of the monodromy matrix are contained
in the appendix on the “Stability of Periodic Solutions and the Monodromy Ma-
trix” (Appendix C). These techniques require that the linearization of the dynam-
ical system be determined. Stability results obtained in this work are in general
those expected from classical perturbation analysis of the forced Duffing’s equation.
Specifically, at the vertical tangents of the magnification curve, (see Figure 4.1) we
obtain divergence bifurcations. These bifurcations persist even with the two added
degrees of freedom. At these bifurcation points, a pair of stable complex conjugate
eigenvalues of the map change to a pair of real eigenvalues. This loss of stability is
characterized by one eigenvalue of the map crossing the unit circle at one, so that, at
least one eigenvalue becomes greater than one. We note that as stability is gained, by
traveling in the reverse direction or leaving the unstable region, the reverse occurs,
so that, the eigenvalue greater than one crosses the unit circle at one to become less
than one (see Appendix C and Seydel (1988) for details). This bifurcation occurs at

the vertical tangents in Figure 4.1.
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Local bifurcation theory is discussed in (Guckenheimer and Holmes, (1986),
Troger and Stiendl, (1990) and Thompson and Stewart, (1986)) with differing em-
phasis and varying amounts of detail. Although these texts stress transforming a
given set of equations suspected of possessing such bifurcations into standard or
generic form for classical bifurcation analysis, the use of computer programs such
as BIFPACK (Seydel, (1988a)) eliminate this requirement. Programs such as BIF-
PACK allow the analysis of more general systems and eliminate the requirement to

algebraically reduce general systems to standard form.

Practical application of BIFPACK

To practically apply BIFPACK to the ship multiple degree of freedom dynamical
system, a good guess at the starting or initial value of the phase variables must be

known. For the single-degree of freedom problem, analytical estimates of starting
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values worked well, but for the multiple degree of freedom system vessel turning
problem a more reliable guessing procedure was required. This was accomplished
by integrating reasonable initial conditions until an approximately steady-state was
obtained. By reasonable, we mean within the basin of attraction of the desired
steady-state harmonic solution. Steady-state was obtained by integrating for as
many as 100 to 1000 periods of the forcing, visually observing (Poincaré sections)
and numerically comparing Poincaré points until no changes occurred as a result of
further integration. This technique allowed only the stable solutions (nodes or foci)
to be obtained. We note here that using this procedure, unstable solutions could be

obtained by simple reverse time integration.

However, we had to rely on BIFPACK to path-follow to the non-stable! (saddle)
type solutions (Parker and Chua, 1989)). These non-stable or saddle solutions could
not be obtained by integrating the equation in reverse time, as can be done with
unstable (foci or node) solutions, since, in the plane, the stable and unstable man-
ifolds (in the Poincaré section) are one dimensional and very difficult to find for a
periodically time-varying multiple degree of freedom system. Furthermore, even if
these manifolds were found, since it takes infinite time to move away from (i.e., you
never move off the saddle) or toward the saddle fixed point, special consideration
is required. Analysis of these manifolds (in the Poincaré map) for the time-varying
system is the subject of the next chapter (Chapter V). However, BIFPACK results
were sometimes used in determining the fixed points in the Poincaré map to be used
in these further studies. In addition, relating the BIFPACK results to those ob-
tained in the Poincaré map analysis greatly increased the practical value and our

understanding of both techniques (e.g., see Figure 4.2)

1 The saddle is neither stable, where in positive time it will achieve an w

equilibrium state nor unstable where in reverse time it will achieve an o equilibrium
state, instead it simultaneously has both stable and unstable manifolds.
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Figure 4.2: Invariant manifolds in the Poincaré map

Bifurcation theory and the slowly turning vessel

The bifurcation analysis of a vessel slowly turning in waves will form our system-
atic procedure for evaluating the importance of frequency dependent hydrodynamics
and multiple degrees of freedom upon nonlinear roll motion.

Vessel operators are frequently forced to change vessel heading to reduce undesir-
able extreme rolling motion. Experienced operators are well aware that one should
often turn into a sea to reduce motion amplitude. The consequent desirable effect is
to increase encounter frequency and often decrease the dynamic magnification and
the resulting response. However, the practical question that may be asked is what
else can unexpectedly occur during this and similar maneuvers?

To answer this practical operational question, we treat the idealized problem of
a vessel slowly turning in waves as a nonlinear bifurcation problem (see the “Ap-

plications and Results” chapter, Chapter VIII). Concentrating on the seaway effects
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on rolling, we will consider only wave (external) excitation and in one case the wave
induced parametric (internal) excitation. We will neglect all unsteady turning forces
especially those due to the rudder and propeller. We analyze the nonlinear roll prob-
lem in increasing levels of accuracy and complexity as follows:

1) Uncoupled single degree of freedom nonlinear roll motion with fixed hydrodynam-
ics.

2) Linearly coupled asymmetric modes; e.g., sway, yaw and nonlinear roll, with fre-

quency dependent hydrodynamics.

We will consider a vessel traveling in regular waves slowly turning through vari-
ous headings from stern, to beam, to head seas (see the “Applications and Results”
chapter, Chapter VIII). We also include the effect of a small vessel forward speed
(U << Cuyave) on the encounter frequency w, = wo — Uk cos(f)?. For the vari-
ous headings, the wave exciting force and wave induced parametric excitation will
change as the heading and encounter frequency vary. The bifurcation approach will
provide a framework in which to systematically consider the importance of frequency
dependent hydrodynamics (A;;(w), Bij(w) and Fi(w),1,j = 2,4,6) 3 and coupling be-
tween the nonlinear and possibly multi-valued steady-state roll motion and the other
degrees of freedom. The frequency dependence of the hydrodynamics and the cou-

pling have been neglected by previous investigators of nonlinear rolling in beam seas

As the vessel turns with constant forward speed (vary beta), the frequency
of encounter is changed due to the doppler effect of w. = w, — U« cos(f), where
w, is the encounter frequency, w, is the wave frequency, U is the vessel speed, «
is the wave number (= 27/}, ) is the wave length), and B is the heading angle.
Zero heading is when the ship is traveling with the waves and = is when the ship
is traveling into the waves.

3 The elements of the matrices A;j, and B;; are the added mass and damping

forces in the ith mode of motion due to a unit motion (acceleration, or velocity) in
the jth direction of motion. The subscripts refer to the mode of motion and are:
2=sway, 4=roll, and 6=yaw We note here that the vector F; contains the linear
wave exciting force.
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(e.g., Nayfeh and Kehdir, (1986)). We seek to determine the the accuracy of these

approximations for nonlinear rolling in beam seas and other headings.



CHAPTER V

POINCARE MAPS AND INVARIANT MANIFOLDS OF
MARINE DYNAMICAL SYSTEMS

As described previously, the intersection of the invariant manifolds in the Poincaré
map is the mechanism for chaos in the ship dynamical system. In this chapter, we
will describe the background needed to obtain and analyze the invariant manifolds
that we obtain for our periodically forced ship dynamical system. These are invariant
manifolds of the Poincaré map obtained by discretely sampling our periodically time-
varying nonlinear system at the same fixed time lag (constant phase) relative to the

external periodic forcing.

Poincaré maps

The study of two-dimensional autonomous systems in the plane is well developed
(Andronov, Vitt, and Khaikin, (1966)); this is probably because of the limited types
of behavior that are possible. It is common when analyzing a nonautonomous system
to define time as an additional phase variable and to study the dynamics in the re-
sulting extended phase space. Furthermore, if the time-dependence in the differential
system is periodic, then the resulting dynamics may also be periodic. Therefore, it
is reasonable to convert this extended phase space dynamical system to a Poincaré

map which samples states of the extended phase space once per period of the forcing.

46
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Two important questions immediately arise. First, how do we select the phase
at which we sample the dynamical system? Second, what if the behavior is not
harmonic or even periodic? The first question is easily reconciled by considering
Proposition 1.6.2 in Wiggins, (1988). This proposition states that for a periodi-
cally time-varying differential system any two Poincaré maps sampled at different
phases are C" conjugate. This means that there exists a C” r times continuously
differentiable diffeomorphism that relates any two Poincaré maps at different phases.
Practically speaking, what this means is that Poincaré maps at different phases are
qualitatively similar although they may have been rotated and deformed (c.f., Fig-
ures 8.30 and 8.31). The proof of this proposition is also given by Wiggins. The
answer to the second question is exactly why we use the Poincaré mapping technique
for periodically forced differential systems. The Poincaré mapping technique allows
us to assess the presence and tyﬁe of periodicity and possible lack of periodicity (e.g.,

the presence of aperiodic or chaotic response) in the dynamics.

Determining the Poincaré map

We now describe the procedure for converting a nonautonomous differential equa-
tion into a Poincaré map following (Wiggins and Shaw, (1988)). To begin, consider

an n-dimensional (i.e., R") nonautonmous differential equation,

% = f(x, 1), (5.1)

where the equation is n-dimensional. Therefore, both the phase variables, x and the
right hand side f are n-dimensional (i.e., x € R" and f € R") and the forcing is
periodic with period T (i.e., f(x,%0) = f(x,% + T)).

We now explicitly convert this nonautonomous equation to an extended au-

tonomous equation by adding time as an additional autonomous variable. We note
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Figure 5.1: The Poincaré section in the extended phase space
(Thompson and Stewart, (1986))

that the time dependence is periodic and that for every period of the forcing the

equation repeats itself, so we can write the system as follows,

% = f(x,0) with x € R" (5.2)
6 =1 with § € S! (5.3)

Therefore, we say the phase space is in the product space of the n-dimensional
euclidian space (i.e., R") and the periodic time lives on a one torous (i.e., S, R"xS?).
We now define the fixed time (i.e., t = ¢p) cross-section }_ on which ¢ is restricted

to the fixed phase tp, which is contained in the open interval from zero to T,

Y = {(x, )}t = to € (0,1} (5.4)

Here, t = 1, is the fixed phase of the Poincaré section.

We continue by defining a map P of the cross-section ) onto itself (i.e., 3°) as

follows,
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Figure 5.2: The Poincaré section in the cylindrical phase space

(Moon, (1989))

P:} >3, (5.5)

This is equivalent to a point x with time ¢, mapped to another point x with time
to+ T,

(x(t0)) — (x(to + T)) (5.6)

The map so defined is called a Poincaré map or a stroboscopic sampling. We
can consider the extended phase space (x,t) € R™**! (see Figure 5.1) or in order to
visualize the periodicity we may consider the phase space to wrap around on itself
(x,0) € R™ x S(see Figure 5.2).

In this work, we do not ever explicitly solve for the map. We instead integrate
the differential equation for integer periods of the forcing T' = 27 /w (ie., T, 2T,
3T...) to obtain successive iterates of the map. This procedure is general, and by
using it we are able to study harmonic, subharmonic and even chaotic solutions to

our differential equation. We add here that if more than one frequency is present this
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Figure 5.3: Phase portrait of undamped unforced pendulum (Guck-
enheimer and Holmes, (1986))

technique can be extended. If we have two frequencies and they are incommensurate!,
the motion occurs on a two torous which is the product of two periodic spaces (i.e.,

S! x 8') and we study the associated double Poincaré section (Wiggins, (1987)).

Iovari ifold

It is well known that the orbits of a two-dimensional conservative autonomous
system are easily calculated and expressible in closed form by solving the energy
equation for the velocity in terms of the displacement. An example would be the
trajectories describing the dynamics of the simple pendulum as illustrated in Figure
5.3. The undamped and unforced ship dynamics are similar except that the saddles
at +180° for the pendulum are replaced by saddles at the positive and negative
angles of vanishing stability (i.e., ¢, ) for the ship.

1 This means that the ratio of the two frequencies is not equal to the ratio of

two relatively prime integers (i.e., w1 /w; # p/q, where p,q € Z, recall Z is the set
of integers.
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Figure 5.4: Phase portrait of unforced damped pendulum (Parker
and Chua, (1989))

Referring to the figure (Figure 5.3), clearly the orbit connecting the two saddles
is important since it separates the libation or simple harmonic motion (inside) from
the rotational motion (outside). This special curve is called a separatriz.

Furthermore, if the system is not conservative, we can still determine trajectories
but this must usually be done numerically. However, these trajectories are still
invariant with respect to time and need only be calculated once for all time. The
separatrix of the undamped system is replaced by invariant manifolds; one set that
originates from infinity and approaches the saddle; and another set that originates at
the saddle and approaches the stable node. We will call the manifold approaching the
saddle its stable manifold and the manifold originating from the saddle its unstable
manifold (see Figure 5.4).

When time dependence is added to the differential equations of motion (through
forcing), the trajectories are no longer invariant with respect to time. If the time de-
pendence is periodic, we may be able to eliminate the time dependence by averaging
the equations (Hale, (1969)) and examining a related averaged set of equations whose

behavior is often similar to the Poincaré map of the system. Yet this similarity does
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not always persist for infinite time or when global bifurcations occur (Guckenheimer
and Holmes, (1986)). Although special circumstances exist where the similarity be-
tween the averaged equations and the related Poincaré map is preserved, this is not
a general rule. Systems such as our system are exceptions to this rule.

Our system possesses homoclinic and heteroclinic orbits in the unperturbed sys-
tem (without damping or forcing) and must be considered more carefully. Recall, a
homoclinic orbit connects a saddle to itself while a heteroclinic orbit connects two
different saddles. In our case, averaging does not detect the subtle global bifurcations
that occur because of the possibility of transverse homo(hetero)clinic intersections
occurring in our further perturbed system (with damping and forcing). In this case,
the invariant manifolds of the Poincaré map must be studied to detect these inter-
sections. Alternatively, we may apply perturbation methods that allow us to detect
such intersections. Such a method is the Melnikov method which we describe in the

next chapter.

Discussion on determining the invariant manifolds

In order to determine the invariant manifolds associated with a fixed point in the
Poincaré map, we should be more precise about what this means. In this description,
we follow Parker and Chua, (1989). The reduction of our extended phase space (in-
cluding time), continuous time system is a map or a discrete time system. Analogous
to the unforced conservative (or dissipative) pendulum where the manifolds associ-
ated with the saddle fixed points? separate the distinct types of behavior of libation
and rotation (and convergence to one or another bounded steady-state), we consider

the invariant manifolds of the saddles in the Poincaré map. Saddles are called non-

2 Considering the saddle as a fixed point and the manifolds as lines are only

completely true in R?. However, for simplicity, we will limit our discussion to RZ2.
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stable to distinguish them from stable fixed points and unstable fixed points®. We
define the stable invariant manifold as the set of points which, when iterated by the
map P, (i.e., ziy1 = P(z;)), k times (i.e., zi4x = P*(z;)) will approach the fixed
point z* as k — +o0o. We define the unstable invariant manifold as the set of points
which when iterated k times (i.e., ;4x = P¥(z;)) will approach the fixed point z* as
k — —oo. In our system, we recall that the Poincaré map is obtained by sampling
the system after accurately time integrating the continuous time differential system
for one period of the time dependent forcing (" = 27 /w). The invariant manifolds of
our Poincaré map are not a continuous line if we consider a single solution iterated
for many periods. The invariant manifolds are a continuous curve only if we consider
the set of all possible starting times. However, neglecting the fact that the invariant
manifolds of our Poincaré map is not a continuous curve is imprecise and may lead
to errors. Although when using computers, continuous time differential systems are
discretely approximated using finite difference schemes, our map is in fact a discrete
time system which we obtain by integrating our continuous time system for integer
periods of the forcing (i.e., ...-2T,-T,0,T,2T...). We also note here that if the invari-
ant manifolds correspond to a fixed point with negative eigenvalues the concept of a
single connected curve is much flawed, since we switch back and forth between the
two branches every other iterate. For simplicity, we overcome this shortcoming by
considering even iterates of the map (i.e., Ziy2, = P?"(z;)) which avoids switching
back and forth between the two branches.

In order to further understand the structure of the manifolds and the results
included herein, we highlight some of the details of the algorithms used to calculate
them. Similar to the continuous time system, our discrete time system also has

eigenvalues (m) and eigenvectors (). However, the eigenvalues are those associated

3 The saddle is neither stable, where in positive time it will achieve an w

equilibrium state nor unstable where in reverse will achieve an & equilibrium state,
instead it simultaneously has both stable and unstable manifolds.
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with the linearization A of the nonlinear map P (i.e. For a zero equilibria, z;41 =
P(z;) =~ Az;)*. Since we are no longer talking about a continuous time dynamical
system, the eigenvalues of A are multipliers where |m| < 1 is stable and m > 1 is
unstable®. For a saddle type fixed point z* in the plane, we have one stable eigenvalue
and associated stable invariant manifold W*(z*) and one unstable eigenvalue and
associated unstable invariant manifold W*(z*). We consider the unstable manifold
starting from the fixed point® and iterate away from the fixed point. We consider
the unstable half manifold that points in the direction of the unstable eigenvector
Wut(z*). Given a point on the manifold, if we iterate the map P forward (i.e.,
ziyr = P¥(z;) for £ > 1), we move away from the fixed point, and if we iterate
the map P backwards (i.e., ;4 = P*(z;) for k¥ < 1), we move toward the fixed
point. In order to find the fixed points of the map (periodic solutions), we set
H(z;) = P(x;) — =i, determine the Jacobian of H(z), (i.e., DH(z;) = DP(=z;) — I),
and solve the resulting nonlinear map using a Newton-Rapson technique (Parker
and Chua, (1989)). In order to begin our calculation, we approximate a point on the

manifold close to the fixed point (z*) by its linearization,

T = z* + an,, for some small a. (5.7)

If Z is very near z* (the fixed point) we can approximate the map by its lineariza-
tion, P, which is obtained by taking the lowest order term (i.e., the Jacobian matrix

D) in the Taylor series expansion of the nonlinear map P,

4 For nonzero equilibria, 7;4; = An;, A = DP(Z), where z = T+ 1,7 = fixed
point

5 Note here again that for |m| < 0 we have a subharmonic (period 2) system for
simplicity we might want to consider even iterates of the map (i.e., Ziy2n = P?*(z;))
and m? < 0!

6 Actually near the fixed point, since if we start exactly on the fixed point it

will take infinite time to move away from it.
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Figure 5.5: Invariant manifold of the Poincaré map (Parker and

Chua, (1989))

P(z) ~z*+ DP(z*)(z — z*) (5.8)

P(ZT) = z* + amyn,. (5.9)

We choose a such that T is close to z*, close enough so that T is near W*(z*)
yet not so close that P(Z) does not move away from Z quickly enough. In order to
determine the other branch of the unstable manifold W*~(z*), integrate along the
eigenvector in the direction opposite to that which we just studied (i.e. —7,). In
order to determine the stable manifolds W*(z*), invert the eigenvalue m and use 7,.
A typical invariant manifold with the various elements described in this subsection
is labeled in Figure 5.5. Also included is a sketch of a manifold for m < 0, (a period

two subharmonic case).

varia. anifolds as daries ehavio,

Invariant manifold analysis as described in this chapter is of practical use. This is

because invariant manifolds separate distinct types of behavior. In particular, for the
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ship dynamical system, the stable invariant manifolds that originate from the angle
of vanishing stability separate safe (non-capsizing) behavior from unsafe (capsizing)
behavior (see Figure 5.6). Specifically, the non-intersecting manifolds in the Poincaré
map form a crisp basin boundary between the various oscillatory or growing steady-
state solutions that can occur. Recall, that an initial condition (¢, é,t = t,) of roll
displacement, roll velocity taken at some phase in the Poincaré section (recall time
is mod (27)) will never cross a nonintersecting invariant manifold at that phase for
any value of time 7.

However, the emphasis of this work is not on such well behaved and easily under-
stood systems, but on systems where the manifolds do intersect. As stated previously,
when these manifolds intersect once, it can be shown that they intersect infinitely
many times (Wiggins, (1990)). All order is not lost when these manifolds intersect.
However, a more systematic and careful study of the initial conditions that occur
within the lobes formed by the intersecting manifolds must be done (see Figure 7.6).
Although the details will be discussed in the chapter on lobe dynamics (Chapter
VIII), we will preview some of the important practical results here. Manifold in-
tersection and the resulting lobes may allow initial conditions inside lobes in the
safe (non-capsizing) region to be transported across the basin boundary by repeated

iterates of the map to the unsafe (capsizing) region and visa versa.

7 We know that the invariant manifolds are distorted and rotated as it evolves

through one period and we know that from successive iterates the points will, in
general, not cross the manifolds.
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Figure 5.6: Boundary between safe and unsafe region



CHAPTER VI

MELNIKOV’S METHOD APPLIED TO THE SHIP
DYNAMICAL SYSTEM

One of the few analytical methods available to predict the occurrence of chaotic
dynamics is the Melnikov method (Guckenheimer and Holmes, (1986)). Using the
Melnikov method, we start with an unperturbed system where the trajectories are
known and use these to determine the characteristics of the perturbed system. The
unperturbed system is usually a time-invariant integrable Hamiltonian system; sys-
tems for which we know a great deal. The perturbation must be small in some sense
but known explicitly. The Melnikov method allows determination of a criterion for
transverse homo(hetero)clinic intersections in terms of the parameters of the system.
In order to illustrate the basic idea, we start with a description of the homoclinic
system. The homoclinic system is more easily understood and consequently has been
thoroughly investigated. Later in the chapter we describe the heteroclinic intersec-

tions and eventually describe how the two types of orbits may intersect.

The homoclinic case

The undamped, unforced simple dynamical system describing the rolling of the

ship with damage or water-on-deck has a homoclinic saddle connection (see Figure

58
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6.1a). A homoclinic saddle connection describes how for the undamped autonomous
(i.e., nonforced) system the unstable and stable manifolds are the same trajectory
and how this trajectory connects the saddle (¢ = 0) to itself. This connection
surrounds the periodic orbits about the stable centers (¢ = x¢;). For the ship,
this corresponds to oscillation around either the positive or negative loll angle. As
described previously, the dynamics of such a system are well understood. It is known
that such an undamped system is structurally unstable, which is usually cause for
concern. However, Melnikov’s method is well suited to analyze such systems. When
damping is added to perturb the system, the saddle connection breaks with the flow
along the unstable manifold from the saddle ending up at the stable node (without
damping, this node was a center). The orbit to the saddle now originates from
infinity. The saddle connection is said to have been broken (see Figure 6.1b). Once
periodic forcing is added to further perturb the original system, the phase trajectories
are no longer constant but evolve with time (see Figure 6.1c). For sufficiently small
forcing and damping, it is known (Guckenheimer and Holmes, (1986)) that the fixed
points (they evolve with time or are in a Poincaré section) of the perturbed system

are in some sense close to those of the unperturbed system.

In addition, we can express the perturbed periodic orbits in terms of the unper-
turbed orbits (Appendix A). This means, that there exists an invariant manifold in
the Poincaré section of the perturbed system that originates close to the unstable
manifold of the saddle and another perturbed manifold that terminates close to the

stable manifold of the saddle in the phase plane of the unperturbed system.

The Melnikov method is used to calculate the distance between the stable and
unstable manifolds and to detect transverse homoclinic intersections. It will be
shown how the existence of transverse homoclinic intersections is a necessary (but
not sufficient) condition for complicated dynamics. For further details about the

relationship between transverse intersections and chaos, see the final section in this



60

(<

- i :{\l\(\q

Figure 6.1: Homoclinic orbits, a) unperturbed b) damped
c)periodically forced

chapter. The Melnikov method determines the distance between these two manifolds
by beginning with a dynamical system where the homoclinic solutions are known,
and perturbing this system slightly to determine what happens to these manifolds
as a result of the perturbation. The mathematical development of the Melnikov
method is described in Appendix A. This procedure results in a formula or criteria
for the distance between the stable and unstable manifolds in terms of the system
parameters and the phase. In order to apply the Melnikov method, we need to be
able to express our periodically time-varying dynamical system in the form,

k= £(x) -+ e8(%, 1)

x = (u,v) € R?.
where, f(x) is a known autonomous vector field (usually but not always a Hamiltonian
vector field) and g(x,t) is a periodically time varying perturbation of fixed period,
£(x) = (i(x), fa()) and g(x,1) = (51(%,2), 22(,1)).

The resulting formula is called the Melnikov function and is determined by cal-
culating an improper integral over all time (—o0 < t < +00) which is called the

Melnikov integral, M (o). The Melnikov integral is,
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Mto)= [ £(¢°(t)) A glg"(E),t + to)d (6.1)

or is equivalently,

M(to) = /:o £4(¢°(1)) - g(e°(t),t + to)dt. (6.2)

This integral! is expressed in terms of the unperturbed, f(x) and perturbed terms,
g(x,t) of the governing equation evaluated along the unperturbed trajectories, ¢°(%).
Therefore, we never need to calculate the solutions to the perturbed equations. This
results in a formula in terms of the system parameters and time. The system param-
eters considered in our case are the height of the vessel center of gravity, which is
related to the amount of damage or water-on-deck (see Appendix E), and the pres-
ence and size of fitted bilge keels. The bilge keels are important for the nonlinear
damping. For more details, see Himeno, (1981) or the chapter on “The Formulation
of the Ship Dynamics Problem” (Chapter III). Simple zeros, as t, is varied, of the
Melnikov function correspond to transverse homoclinic intersections.

The Melnikov integral has been calculated for a single degree of freedom roll equa-
tion of motion with a linear and quadratic damping coefficients and nonunity linear
and cubic roll resstoring coefficients. In our study of the homoclinic dynamics, we in-
tially use a locally valid (around the loll angle) cubic approximation. We use a cubic
approximation because the unperturbed trajectories are simple hyperbolic functions
and the Melnikov function can be analytically evaluated. We use a different locally
valid cubic approximation to study the heteroclinic trajectories. In the “Applications
and Results” chapter (Chapter VIII), we evaluate the effect of this approximation
by numerically evaluating the Melnikov function using a quintic approximation to

the roll restoring curve. The non-dimensionalized homoclinic equation for analysis

1 The symbol, A is the vector cross-product in R2. The f' is the normal to

f. The symbol, - is the vector dot-product in R2.



62

is as follows,

i+at+a,z|t|—z+kz®= fcos(wr). (6.3)

Expressing the perturbation as an O(e) quantity is required for the Melnikov
method. For our analysis, since ,a, and f are assumed small (i.e., ~ O(¢)), we
define €6 = a, €8, = oy and ey = f.

The homoclinic Melnikov function we obtained is just a generalization of the one
obtained by Holmes (Guckenheimer and Holmes, (1986)). Comparison to Holmes’
result was used to check our result. The resulting curves display wave frequency
versus required wave amplitude for homoclinic intersections for various quadratic
dampings corresponding to the size of possible bilge keels (Patti-B had no bilge keels)
and a linear restoring force corresponding to various metacentric heights. For specific
results, see the “Applications and Results” chapter (Chapter X). The homoclinic
Melnikov function calculated for a cubic approximation to the lolled GZ(¢) is as

follows,

M(mo) = +77rw\/%sech(f2—7£) sin(wTo) — 734?5 - %\/%641;45. (6.4)

The parameters considered describe the twice capsized Patti-B. Numerical exper-
iments have been performed and the trends of these versus predictions are similar to
those obtained by other investigators for mathematically similar simple mechanical
systems (Moon, (1988)),(i.e., regions of periodic and chaotic motion are mixed, e.g.
see Figure 6.2). Further, we also obtain regions of chaos and no chaos above our Mel-
nikov boundary, as we expect would occur since the intersections of the manifolds
predicted by the Melnikov method are a necessary but not a sufficient condition for

observed chaos (i.e., it is a lower bound).
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Figure 6.2: Regions of periodic and chaotic motion mixed (Moon,

(1988))

Subharmonic Melnikov function

As previously discussed, other investigators have considered the period doubling
route to chaos. By this we mean a sequence of period doubling bifurcations resulting
in an accumulation point where chaos occurs. Bifurcations to higher and higher
order subharmonics are known to occur in the neighborhood of the stable node
(¢ = £¢) and the region encircled by the homoclinic orbit. In numerically analyzing
the Poincaré map we noticed a sequence of flip bifurcations (period doubling) at the

stable node as the forcing was increased beyond a certain value.
Consideration of heteroclinic orbits

One important practical goal of this work is to investigate the question: does
chaos lead to capsizing? In order to answer this question, we must consider the
heteroclinic manifolds originating and terminating at the saddles in the Poincaré

map that correspond to the positive and negative angles of vanishing stability (i.e.,



64

¢ = +¢, ). Although the occurrence of transverse homoclinic intersections is well
understood, not as much is known about heteroclinic intersections. It is well known
that the phase portrait of an undamped, unforced pendulum has a homoclinic saddle
connection. The saddle point are at +180 degrees and -180 degrees; since the phase
space is periodic (6 € S') +180 degrees and -180 degrees are the same point, the
saddle connection is homoclinic. The phase space for a ship with an angle of vanishing
stability (saddle point) at some angle less than 180 degrees appears qualitatively
similar to that of the pendulum. Moreover, since the point +180/3 degrees is not
the same point as the point -180/8 degrees for 8 > 1, these saddles are not at
the same point (although they are symmetric for the unforced system) so the saddle
connection is heteroclinic. Much of the theory developed for homoclinic intersections
applies to heteroclinic intersections with subtle limitations (Wiggins, (1988)).

The Melnikov function for the heteroclinic intersections has been analytically de-
termined and compared to a similar one calculated by (Morosov, (1976)). The scaled
differential equation and heteroclinic Melnikov function for a cubic approximation

to the righting arm curve near the angle of vanishing stability are as follows,

i+ at +a,3 | & | +z — kz® = f cos(wr) (6.5)
w2 wm 21/26 86
M(r) = __\/-Z—CSCh(Vi) cos(wTp) + 3% + 15k;/2 . (6.6)

Recall, zeroes of the Melnikov function correspond to transverse intersections of the

stable and unstable manifolds.

Heteroclinic versus homoclinic intersections

Although homoclinic intersections have been extensively studied by other inves-

tigators in other fields (e.g., Guckenhiemer and Holmes, (1986)), they are not as
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important in ship dynamics as are heteroclinic intersections. Although homoclinic
connections have been shown to exist for ship dynamical systems (Falzarano, (1988))
due to the presence of a water-on-deck induced loll angle; the loll angle dynamics oc-
cur at a roll angle often much less than the angle of vanishing stability. The angle of
vanishing stability corresponds to a static loss of stability, or the angle at which the
roll restoring moment ceases to be positive.? In the damped and forced dynamical
system, there is a saddle in the Poincaré map corresponding to the angle of vanishing
stability. The invariant manifolds that originate (unstable) and terminate (stable) at
this saddle separate safe (non-capsizing) from unsafe (capsizing) eventual behavior
of the vessel. When the manifolds do not intersect, averaging and classical methods
of analyzing nonlinear systems work well and capture the system’s dynamics. How-
ever when these manifolds intersect, averaging may fail especially near the separatrix
(Guckenheimer and Holmes, (1986)).

In order to predict vessel capsizing, the intersections of the heteroclinic manifolds
are most important but it is also possible that the homoclinic manifolds may intersect
the heteroclinic. The dynamics of the system with a loll angle and an angle of vanish-
ing stability are similar to the system studied by (Shaw and Wiggins, (1988))3. They
have Duffing-like homoclinic connections similar to ours and pendulum-like homo-
clinic connections, while we have heteroclinic pendulum-like dynamics corresponding

to the saddle at the angle of vanishing stability +¢,.

2 Although bounded steady-state solutions may mathematically exist beyond

the angle of vanishing stability, they are practically unsafe since downflooding and
eventual vessel floundering may occur.

3 This paper is filled with analysis and results and is well worth reading in

order to gain additional understanding of a similar problem
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Evaluation of approximations and more realistic systems

As mentioned previously, the analysis of the complete six-degree of freedom dy-
namically exact (Euler’s equation of motion and Euler angle kinematics) and exact
expressions for the general externally applied hydrodynamic forces has not yet been
done. Although simulating the dynamically exact equations is quite straight for-
ward, analyzing these equations is algebraically intense and practically impossible
(even when using a symbolic manipulation program such as MACSYMA (Mathlab,
(1983)). In this section we describe various approximations and eventually seek jus-
tification for decoupling the roll equation from the linearly coupled asymmetric (roll,

sway and yaw) equations.

Coupling

We note a complication to the single degree of freedom dynamics is the coupling
of the ship rolling motion to the other modes of motion. Various higher levels of
approximation are commonly used in ship dynamics. Some of these are:

1) Neglecting damping, the roll motion may be approximately decoupled from
sway and yaw (Webster, (1989)). After decoupling, the coupled linear sway and yaw
equations are solved. Using the known sway and yaw motion, the nonlinear roll
equation is solved using numerical integration.

2) Because of the porf/ starboard symmetry of most ships, the linear symmetric
and asymmetric modes decouple dynamically (with respect to inertia and coordi-
nates), hydrodynamically (with respect to added mass and damping) and hydrostat-
ically. These approximations are similar to the approach used in linear ship motion
theory, except for the inclusion of nonlinear quadratic damping and consideration of

a nonlinear roll restoring moment curve. At this level of approximation, the non-
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linear coupled roll, sway and yaw equations, and separately surge, heave, and pitch

equations must be simultaneously solved using numerical integration.

3) The dynamically exact solution involves using Euler’s equations of motion for
a body fixed system and finite rotations, Euler angles (Chapter III). The complete
set of six first-order velocity equations must be solved using numerical integration.
Simultaneously, the three supplementary angular differential equations and another

three algebraic relations relating to the Euler angle kinematics must be solved.

All these levels of approximation are straightforward to carry out numerically
in simulations, and have been (Chapter VIII). However, in this work, we choose to
concentrate on analytical methods and to use simulations only to verify analytical
approximations. The algebraic complexity and interpretation of the results for the
higher degrees of freedom have proven difficult. For various levels of approximation,
the simulation results to date are qualitatively similar; although, as expected, quan-
titatively different. Specifically, the single degree of freedom (no decoupling) and
the six-degree of freedom models are most similar. In addition, the previous linear
dynamic stability analysis of the roll, sway and yaw equations shows that, although
the degree of stability is affected by the size of the damping, the sign of the roll
spring determines stability (Falzarano, (1988)).

Coordinate systems

Because it is much easier to visualize and analyze motion in the plane (either
a two dimensional phase plane or a two-dimensional Poincaré map), we wish to
determine how to obtain an equivalent two-dimensional (roll, roll velocity) system
from our four dimensional system (sway velocity, roll velocity, yaw velocity, roll). It
is common practice in the ship dynamics field to assume that single degree of freedom

roll motion occurs about a roll center (Webster, (1989)). However a roll center exists
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only if we have no damping and forcing. In an attempt to approximately determine
the elusive roll center for our damped and forced system, we have examined the
behavior of only two of the four eigenvalues and their corresponding eigenvectors of
our three degree of freedom system 4. The phase variables are the sway velocity, the
roll velocity, the yaw velocity and the roll displacement. Recall, the multiple degree

of freedom equation of motion ® is,

(M + A)i + Bz + Cz + G(z, %) = F(t). (6.7)

The elements of the matrices A;;, B;; and C;; are the forces in the ith mode of motion
due to a unit motion (acceleration, velocity or displacement)in the jth direction of
motion. The mass matrix M;; contains the appropriate mass, inertial or coordinate
coupling terms. The subscripts refer to the mode of motion and are: 2=sway, 4=roll,
and 6=yaw (see Figure 3.1). We note here that the vector G; contains only the
nonlinear roll damping and restoring force and the vector F; contains the linear wave
exciting force in all three modes of motion.

The eigenvalues/eigenvectors at the fixed points of the Poincaré map of the
damped and periodically forced system correspond to local behavior of the map
near the fixed points. The fixed points are the saddles corresponding to the zero heel
angle and the angle of vanishing stability and zero roll velocities. In each case, the
two eigenvalues/eigenvectors examined correspond to the least stable mode (m > 1)
and most stable mode (m < 1) eigenvalues of the multiple degree of freedom system.
These eigenvalues/eigenvectors are analogous to those of the single degree of freedom

system, but are not always similar.

4 We recall that because of the presence of a static restoring force in only the

roll mode of motion and the absence of such forces in the sway and yaw modes, we
need not consider the sway and yaw displacements. Therefore, we have four and
not six phase variables with our three degree of freedom physical system.

5 In order to analyze this equation we must convert this equation to Cauchy

form (Chapter IV)
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Various alternative coordinate systems have been considered. These coordinate
systems include:
1) The traditional ship motion coordinate system with its origin at amidships and
the waterline.
2) A center of gravity coordinate system with its origin at the center of gravity.
3) A so-called principal normal modes coordinate system with a) the origin of this
system translated in such a way that the sway-roll and sway-yaw inertial and hydro-
dynamic added mass coupling is eliminated and b) the axes rotated to a principal
axis so that the roll-yaw inertial and hydrodynamic added mass coupling are elimi-
nated.
4) A family of coordinate systems where the height of the origin is systematically
varied but the longitudinal location is always at the center of gravity.
For the family of coordinate systems, the requirements of minimization of the sway
velocity coupling and alignment of the least and most stable eigenvalues/eigenvectors

often conflicted.

Reduction to an equivalent system

In order to reduce the more exact multiple degree of freedom system to an equiv-
alent single degree of freedom system certain conditions must be satisfied. Here, we
investigate the existence of a translated coordinate system for which we have only
roll displacement and roll velocity intersections. To accomplish this, we try to min-
imize the sway velocity component of the least and most stable eigenvalues while we
maintain the direction of their corresponding eigenvectors to lie in a plane. It turns
out that, these two conflicting requirements cannot simultaneously be met in most

cases.

Another consideration is the correspondence between the local behavior as de-
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Figure 6.3: Wire-frame plot of invariant manifolds in three-
dimensions

scribed by the eigenvalues and their corresponding eigenvectors at the fixed points to
the global behavior as determined by integrating the invariant manifolds along these
directions . The answer to this question is that the global behavior (with respect

to lying in a plane) is well described by the local behavior in most cases (see Figure

6.3).

More exact polynomial fit to the GZ curve

Another extension to more realistic systems includes consideration of the exact
polynomial curve fit of the roll spring (i.e., up to a twentieth-order polynomial) in
the analytic Melnikov method. In the analysis so far, a cubic approximation to the
roll spring has been used in the Melnikov analysis. However, a globally accurate rep-
resentation has been used in the numerical determination of the invariant manifolds
and in the simulations. It is obvious, that at least a fifth-order polynomial is required

to accurately represent the GZ(¢) curve around the loll angle and to the angle of

6 We know that the global stable and unstable manifolds (nonlinear) are locally
tangent to the eigenvectors at the fixed point (Wiggins, (1988)).
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vanishing stability. A cubic roll spring (Duffing’s equation) is attractive since the
resulting unperturbed (Hamiltonian) trajectories are simple hyperbolic functions.
However, when a fifth-order polynomial is considered, the unperturbed trajectories
can only be expressed in terms of special functions (elliptic integrals and hypergeo-
metric functions) or alternatively, they must be numerically determined. This runs
contrary to the purpose of using the Melnikov method, the practical strength of
which is to start with a simple form known for all time a.x'1d perturb it. Using greater
than a cubic, the trajectories are still known for all time, but are no longer simple.

In order to consider these higher-order terms, we have to evaluate the improper
Melnikov integral numerically (Shaw, (1990), Ling, (1987), and Li and Moon, (1990)).
According to Shaw, the procedure to determine the Melnikov function numerically is
to numerically integrate along the unperturbed trajectory and then to approximate
the improper (doubly infinite) Melnikov integral over some large but obviously finite
time interval, such that convergence is achieved. In addition, it is often possible to
factor out parameters to make the results more general. The details of determining

the Melnikov integral numerically for our dynamical system can be found in the

“Applications and Results” chapter, (Chapter VIII).

Alternative criteria for complicated dynamics

The Melnikov criteria is a necessary, yet not sufficient condition for observable
chaotic dynamics and represents a lower bound in most cases. Noting the less than
satisfying agreement between theoretical Melnikov calculations and experimental
and numerical results, Szemplinska-Stupnika, (1987) has determined an alterna-
tive criteria. In a series of papers (e.g., Szemplinska-Stupnika, (1989) and (1987)
and Rudowski and Szemplinska-Stupnicka, (1987)), she and her collegues use the
method of harmonic balance and analyze the small and large amplitude oscillations

of the buckled beam. In lieu of analyzing the oscillatory part of the small amplitude



72
solution in isolation, she instead chooses to combine the minimum and maximum
displacement and determines under what conditions no stable small amplitude har-
monic solutions can exist. She reasons that this instability may lead to complicated
dynamics. She notes that comparison between her analytical results and numerical
results is promising.

In her analysis of the maximum amplitude of the response, she determines the
frequency of the horizontal tangent vp and the frequency of the vertical tangent v¢
(see Figure 6.4). We know from our experience with nonlinear oscillators that the
vertical tangent is a stability limit. She expresses the small amplitude solution as

z(t) = Ao + Ay cos(vt + 0)

Further she defines the maximum and minimum amplitudes as follows,

Apaz = Ao+ Ay and Apin = Ao — Ar.

She states, “Although one cannot prove that the point with horizontal tangent is
also a stability limit, a physical intuition says that the resonant branch of maximum
displacement Apaz(v) where dAmqz/dv > 0, should not be realized in physical sys-
tems.” Therefore, she concludes that if vp < vg, the system will be well behaved,
however, if vp > v¢ chaos may occur.

Since vp and v¢ are functions of both amplitude of the external forcing and
the damping, she continues by determining the value of external forcing required
for a given damping in order to get chaotic motion. Therefore, her results can be
compared directly to those obtained using the Melnikov technique. It turns out that
the Melnikov technique is a lower bound for the occurence of chaos, and that her

criteria are slightly higher than those determined using the Melnikov technique.

Relationship between transverse intersections and chaos

We know that when two manifolds intersect transversely at a point g, they in-

tersect along a curve in the extended phase space, (see Figure 6.1c). Further, since
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Figure 6.4: Various cases for maximum amplitude (Rudowski and

Szemplinska-Stupnika, (1989)
the point ¢ must simultaneously be on the stable and unstable manifolds we must
have infinitely many forward and reverse iterates of ¢ (Wiggins, (1990)). These in-
tersections result in an infinity of lobes as we approach the saddle. These lobes
rapidly become compressed along the orbit and expanded normal to the orbit. This
distortion of phase space and their eventual re-intersection results in complicated
homo(hetero)clinic tangles and greatly complicates the resulting dynamics (see Fig-
ure 6.5).

Having rapid expansion and contraction of phase area in complementry directions
and eventual re-intersection is the physical mechanism for horseshoe dynamics (see
Figure 6.6). The existence of a Smale horseshoe given transverse intersections can be
mathematically proven using either Moser’s theorem or the Smale-Birkhoff theorem
(Wiggins, (1990)). For our purposes, these theorems are very similar yet differ in
the recurrence times they predict. These theorems essentially state that a dynamical
system which possesses a transverse homoclinic point has Smale horseshoe dynamics
and thus has: 1) a countable infinity of periodic orbits of arbitrarily high periods

(these are saddle type orbits), 2) an uncountable infinity of aperiodic orbits, and 3)
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Figure 6.5: Poincaré maps of intersected manifolds

a dense orbit. Therefore as a result of these two theorems, we have the necessary
(but not sufficient) condition for chaotic dynamics to occur. Nowhere is it stated
that we will have chaotic dynamics given transverse intersections. However, for this
route to chaos’, transverse intersections are required. This explains why even after
we have manifold intersections we do not necessarily get chaotic dynamics but may
instead get some kind of periodic solution. Moreover, horseshoes have chaos but
they are not necessarily attractive. This is so because although aperiodic motions
exist they may not be attractive (i.e., a strange attractor) and the chaos we describe
is a steady-state phenomena (i.e., not transient chaos). Throughout this work we
study steady-state harmonic, subharmonic and chaotic solutions and investigate the

transient motions that lead to them.

7 Other routes to chaos or stochasticity have been observed, predicted and
analyzed by various investigators. These include period doubling, crises, and KAM
theory (Schuster, (1984)). All these types of chaos are based upon horseshoes which
arise from similar global bifurcations (Shaw, (1990)). However, we concentrate on
predicting the transverse homo(hetero)clinic intersections using Melnikov’s method
because of its application to periodically forced dissipative systems, representative
of our ship dynamical system.
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Figure 6.6: Poincaré maps of re-intersected manifolds and tangles



CHAPTER VII

LOBE DYNAMICS FOR THE SHIP DYNAMICAL
SYSTEM

In order to study the eventual state of vessel motion originating in a given region
of the Poincaré section, when the invariant manifolds intersect, we must consider
lobe dynamics. This study is especially important in ship dynamics since movement
to some regions in the phase plane' may result in eventual undesirable motion; that
is capsizing! This technique uses numerically calculated invariant manifolds or the
Melnikov function to separate regions in the phase space which iterate to safe or
unsafe regions in the phase space. Thus, using this technique, we can predict the
evolution of all regions in the phase space or Poincaré map, even when the manifolds
have intersected. The details of using the Melnikov function to study lobe and size
is contained in the appendix on the Melnikov function (Appendix A).

We know for an unforced nonlinear equation with multiple equilibria there is of-
ten a smooth curve separating the basins of attraction of each of the equilibria. This
is easy to visualize in the phase plane. An example would be the unforced Duffing’s
equation with a negative linear restoring force coefficient. The stable and unsta-
ble trajectory beginning and ending at the saddle form a boundary between initial

conditions that will eventually settle at the right (4¢;) or the left (—¢;) equilibria

1 To be more exact, it is actually the Poincaré section.
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7
(see Figure 7.1). Once small forcing is added we may consider either the manifolds
of the averaged equations or the invariant manifolds in the Poincaré section. The
analysis of the forced (averaged) system would then be analogous to the unforced
equation. As previously discussed, caution must be exercised in situations where
unperturbed homo(hetero)clinic connections exist. This is so because the possibility
of the perturbed stable and unstable invariant manifolds intersecting will complicate

the dynamics and make the simple averaging analysis invalid (Holmes and Holmes,

(1981)).

Figure 7.1: Multiple attractors and basins of attraction

However, all hope is not lost when these manifolds intersect. We need not con-
sider all possible initial conditions throughout the phase space at all possiBle phases
(t,) of Poincaré sections; we need only consider the so-called tangle dynamics or the
dynamics inside the lobes (Rom-Kedar and Wiggins, (1990)). These lobes may be
calculated numerically (Parker and Chua, (1989)) by integrating for positive time
along the unstable manifold of the saddle and for negative or reverse time along
the stable manifold of the saddle. For the details of calculating the invariant mani-

folds associated with the saddles, see the chapter on “Poincaré Maps and Invariant
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Manifolds” (Chapter V). Starting exactly on the saddle, since we know it takes an
infinitely long time to approach or leave the saddle, without using specialized tech-
niques, we might naively integrate forever and never move away from the saddle.
However, since we do not know exactly where these manifolds are a priori we ini-
tially linearly approximate their location in order to move away from the fixed point.
We know the the global nonlinear manifolds are tangent to the eigenvectors at the
fixed point. For optimum accuracy, a compromise must be made between 1) not
being too close to the saddle point so that it takes a long time to move away from
the saddle and accumulate error and 2) not being too far from the fixed point so
that our linear approximation to the nonlinear manifold is no longer valid must be
made. Alternatively, we may approximate the size and location of the lobes using
the Melnikov function (Rom-Kedar, Leonard and Wiggins, (1990)). The details of
using the Melnikov function to study lobe size are contained in the appendix on the

Melnikov function (Appendix A).

The relationship between vessel capsizing and lobe dynamics

When the invariant manifolds of the Poincaré map do not intersect, the manifolds
form simple boundaries between the basins of attraction of the various equilibrium
solutions. These steady-state solutions may be bounded periodic motions or un-
bounded divergent motions. The bounded motions would be periodic motions which
may be either at the frequency of the external forcing (harmonic) or at some frac-
tion of this frequency (subharmonic)?. The invariant manifolds form the boundary
curves between the regions of initial conditions that result in bounded motion from
the regions of initial conditions that may result in unbounded motion (see Figure

5.6). The unbounded motion would physically be capsizing and the bounded motion

2 Also there may be additional response components at some multiple of the

forcing frequency (super or ultra harmonic).
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would physically be non-capsizing. We might consider the unbounded motion to
be attracted to infinity but for the ship all motion attracted to beyond the angle
of vanishing stability would be practically unbounded3®. Therefore, whenever the
invariant manifolds do not cross, we can clearly predict whether the vessel will even-
tually achieve a steady-state periodic motion or if its motion will steadily grow and
eventually become unbounded (capsize). We do not get simple boundaries when the
manifolds intersect and such simple conclusions are no longer valid.

When either the homoclinic or heteroclinic manifolds intersect themselves or one
another, the dynamics will not be simple and the boundaries no longer crisp. We note
here that it can be shown that only stable manifolds can intersect unstable manifolds
and visa versa. The intersecting manifolds may be associated with the same fixed
point (homoclinic) or different fixed points (heteroclinic). However, stable and stable
and unstable and unstable manifolds cannot intersect themselves or one another.
This would violate uniqueness of initial conditions. In general, same stability type
manifolds (Rom-Kedar and Wiggins, (1990)) from the same or different fixed points
can not intersect; otherwise, the intersection point would simultaneously be on two
different manifolds of the same stability type. When the manifolds intersect, all
order is not lost. To analyze the dynamics following manifold intersections, we must
carefully analyze initial conditions inside the intersected regions. All the interesting
dynamics occur inside these regions, called lobes, outlined by the tangled manifolds.
To do this, we use the systematic procedure described by Wiggins and his colleagues
in a series of papers and his new book (Rom-Kedar and Wiggins, (1990), Rom-Kedar,
Lenoard and Wiggins, (1990), and Wiggins, (1990)).

Practically speaking, this phenomena is important in that initial conditions start-

ing inside the region of previously bounded solutions may no longer be safe. The

3 Although bounded steady-state solutions may mathematically exist beyond

the angle of vanishing stability they are practically unsafe since downflooding and
eventual vessel floundering may occur.
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boundary between safety and capsizing is the so-called pseudoseparatriz. When the
heteroclinic stable and unstable manifolds intersect, the initial conditions inside the
lobe boundaries may on future iterates of the Poincaré map move to outside of the
safe region. This mechanism of capsizing may be described as an unezpected capsiz-
ing.

However, if the vessel is damaged or water-on-deck is present, our system’s phase
plane may possess two types of intersecting invariant manifolds. Our dynamics are
similar to that studied by Shaw and Wiggins, (1988) where they had small am-
plitude Duffing’s type homoclinic intersections and large amplitude pendulum type
homoclinic intersections. Qur dynamics are similar with their large amplitude pen-
dulum type homoclinic intersections replaced by our heteroclinic intersections due
to the manifolds originating at the saddles in the Poincaré map corresponding to
the positive and negative angles of vanishing stability. As a result of these two sets
of manifolds, another less likely but even more unexpected mechanism for escape
from the safe region may occur. This event occurs when the unstable homoclinic
manifolds intersect the stable heteroclinic manifolds. This event will cause initial
conditions lying close to the loll angle to be transported (along the unstable homo-
clinic manifold) to the safe boundary. We refer to the possible capsizing caused by

this event as totally unezpected capsizing.

Although possible, it is extremely difficult and time consuming to completely
analyze dissipative dynamical systems using the systematic procedure described in
(Rom-Kedar and Wiggins, (1990)). Because of dissipation, all lobes at all phases
(to’s) of Poincaré sections need to be analyzed. Without dissipation, phase area is
conserved and forward and backward iterates of the Poincaré map are equivalent.
Moreover, as a result of equation symmetries and because phase area being conserved,
different phase Poincaré maps satisfy additional symmetry conditions. The example

of an undamped Duffing’s equation described in (Rom-Kedar and Wiggins, (1990))
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makes extensive use of symmetries so that a single lobe analyzed for eight iterates of

the map accurately determines the systems lobe dynamics.

Practical aspects of lobe dynamics

We recall that lobe dynamics is a possible mechanism to transport phase areas
of initial conditions (lobes) which are inside the pseudoseparatrix (safe region) to
outside the pseudoseparatrix (unsafe region). The pseudoseparatrix is the curve
which connects the homoclinic point p to the intersection point g via the unstable
manifold of the saddle and connects g to p via the stable manifold of the saddle (see
Figure 7.2). Without transverse intersection of the manifolds, it was clear where
initial conditions might travel upon successive iterates of the map. One may fairly
accurately guess a possible route from the current location to the eventual steady-
state by simply not allowing the successive iterates to cross the invariant manifolds.
For this case, the manifolds are definite and smooth boundaries and the safety or
vulnerability of the vessel with given initial conditions can be assessed at a glance.
However, such is not the case with a dynamical system where the invariant manifolds
have intersected. Recall, that it can be shown that when a set of invariant manifolds
intersects once, they intersect an infinite number of times. This is so because the
single intersection point is simultaneously on both the stable and unstable manifolds
and therefore, must have an infinite number of forward and backward iterates which
asymptote to the saddle. These iterates are also intersection points and so from this
single intersection point we obtain an infinite number of intersection points.

For simplicity, we assume that the intersection preserves orientation, therefore,
we must have at least one primary intersection point between the intersection point
and its forward and backward iterates (see Figure 7.2). Primary intersection points
result in non-reintersecting lobes, the type of lobes which we will concentrate on in

our application of lobe dynamics.
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This infinite number of intersections results in an infinite number of lobes. Al-
though the lobes might be geometrically quite simple and distinct (separated) near
the intersection points, far from the saddles they eventually grow normally and are
compressed tangentially to the unperturbed orbit as they approach the saddle. More-
over, it can be shown (Wiggins, (1990)) that forward and reverse iterates of the outer
lobes will eventually intersect each other (see Figure 6.6) and this coupled with lobe
distortion may result in very complicated long-term dynamics and possible eventual
re-entrainment of phase area. Although consideration of all these aspects would
be required for a complete study of the long-term tangle dynamics, we choose to

concentrate on simple cases to demonstrate the practical use of lobe dynamics.

Considering only the most fundamental aspect of lobe dynamics, we know that we
may assume that only one lobe will transport phase area from inside to outside the
pseudoseparatrix and another will transport phase area from outside to inside. This
exchange of area will occur near the so-called turnstile. For a simple example, refer
to Figure 7.3. In this example, the inside lobe a will iterate to outside f(a), while
the outside lobe b will iterate to inside f(b). Therefore, the point q is the turnstile
for this example; that is the point where inside lobes iterate to outside and outside
lobes iterate to inside. We stated earlier that if the manifolds do not intersect, then
initial conditions starting in a basin of attraction corresponding to one equilibria will
iterate with time toward that equilibria. During this evolution, it will not cross, at
that phase of the Poincaré map, an invariant manifold boundary. Recall, that for a
continuous time system the invariant manifolds at the various phases will be different
but C" conjugate and, therefore, we must refer to iterates of the point’s evolution
and not the actual motion that occurs between Poincaré samplings. At first glance,
intersecting manifolds and lobe dynamics seem to violate this rule and, therefore,
requires further explanation. We know that although all Poincaré maps are similar

(C™ conjugate), they are different because the manifolds oscillate as the dynamics
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evolve in time. They may be rotated and slightly distorted from one another (c.f.,

Figures 8.30 and 8.31).

Figure 7.4 borrowed from Rom-Kedar and Wiggins, (1990) shows rather clearly,
using a series of Poincaré sections, exactly how a lobe boundary might evolve with
time as it passes through the turnstile during one period. For this case, we see that
the initial conditions do not actually cross the invariant manifold; the lobe evolves
and distorts with time and its area simply transports across the seemingly arbitrary
pseudoseparatrix as the manifold deforms outward. Studying the lobes in the neigh-
borhood of the turnstile is quite straightforward and yields useful information quite
rapidly. However, due to the distortion of the lobes as they approach the saddle
their intersections get rather complicated very quickly. To demonstrate this point, I
again borrow from (Rom-Kedar and Wiggins, (1990)) to illustrate how a stretched
and deformed lobe may intersect another lobe in a rather complicated fashion (see

Figure 7.5).

Referring to the figure, we can see how the initially safe inside initial conditions
(black) are transported in one iterate of the map to outside the pseudoseparatrix
into the unsafe region. By the second iterate, we can see that some initially unsafe
(white) area eventually becomes re-entrained due to secondary intersections of the
manifolds. In order to completely analyze a dynamical system, one must consider all
similar possible special cases. As you can see from our numerical invariant manifold
calculations (see Figure 7.6), we are not able to calculate more than a few lobes.
This is because, as mentioned before, the lobes quickly become tangentially com-
pressed and normally amplified and are, thus, hard to distinguish from other nearby
trajectories. This may be especially true in our system due to the dissipation. For
a practical application of the lobe dynamics to our ship dynamical system see the

“Application and Results” chapter (Chapter VIII).
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Basin boundary metamorphasis

Yorke and his colleagues at the University of Maryland (e.g., Grebogi, Ott and
Yorke, (1983), and (1987)) describe a series of changes that occur in the basin bound-
aries of which the intersection of the period one stable and unstable manifolds (the
case we study) is just the first of many. The manifold intersections described in the
previous sections are the events that cause the basin boundaries to initially become
fractal. They also discuss manifold intersections of period four saddles which re-
sults in dramatic changes in the basin boundaries. Also in this work they discuss
the mechanism of crisis. Crisis is the collision of a strange attractor and the basin
boundary and result in the destruction of the attractor. Although the phenomena
described by Yorke are interesting and give further understanding to the phenom-
ena described in previous chapters, they are sparse on analytical prediction. These
techniques rely heavily upon extensive simulation results which are time consuming
to implement. Yet these techniques do produce a practical description of the size of
the various basin boundaries.

This work has found engineering application by Thompson and his colleagues at
University College London, (e.g., Thompson, (1989a) and (1989b), and Thompson
and Ueda, (1989)) in which they describe the so-called engineering integrity diagram.
The engineering integrity diagrams demarcates the period one saddle intersections
(predicted by Melnikov), the intermediate period four saddle collisions, (the event
that substantially reduces the area of the safe basin), and the final crises where the
chaotic attractor collides with the boundary and for all practical purposes eliminates

the safe basin.
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Figure 7.2: Forward and backward iterates of intersection point

Figure 7.3: Lobe iteration through the turnstile
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CHAPTER VIII

APPLICATIONS AND RESULTS

In order to gain a clearer understanding of methods described in the previous
chapters, we apply these techniques to the twice capsized clam dredge Patti-B. The
Patti-B was previously analyzed and vessel characteristics can be found in an eariler
project report (Falzarano, (1988)).

We begin our analysis by using a numerical path following computer program
to study bifurcation and stability of a vessel slowly turning in waves. We use this
problem to evaluate the importance of the frequency dependence of the linear hy-
drodynamic coefficients and coupling between the modes of motion. Next, we apply
the geometric methods to analyze the Patti-B. We begin by comparing the numeri-
cally observed intersection of the invariant manifolds to the Melnikov prediction. We
note here the importance of choosing the correct axis system in order to reduce the
multiple degree of freedom system to an equivalent single degree of freedom system.
Next, we describe the details of determining the Melnikov function analytically and
numerically. Motivated by the importance of reducing the degrees of freedom, we
describe the conditions that must be satisfied in order to approximately reduce the
degrees of freedom. Next, we describe the importance of each of the homoclinic and
heteroclinic manifold intersections and the special case of the intersection of the un-

stable homoclinic and stable heteroclinic manifolds and show some typical results.
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Next, we describe how we can use the powerful tool of lobe dynamics (Wiggins,
(1990)) to predict whether or not an initial condition upon future iterates of the
map will be safe or not. We show some surprising results to demonstrate a practical
application of this method. Next, we show a series of results where we have tried
to find an intersection of the unstable homoclinic and stable heteroclinic manifolds.
Although Wiggins (1990) has rigorously shown the equivalence of different phase
Poincaré maps, we show some results to demonstrate how two different phases of
the Poincaré map look, in order to heuristically justify our only looking at a single
phase of the Poincaré map. We return to the vessel turning problem at this point
and demonstrate, using numerical integration, some aspects of the magnification
curves; these include the non-stable saddle, and traveling through resonance. We
return to the lolled righting arm curve to show three qualitatively different types of
behavior that the Duffing equation may have; they are harmonic, subharmonic and
aperiodic. We use this opportunity to demonstrate the usefulness of the three com-
mon methods of presenting integration results; these are a time history, a projected
phase plane and a Poincaré map. The final result we show in this section is a so-
called strange attractor which is the distinctive figure that bounded chaotic motions
form in the Poincaré map. In the next section, we continue to analyze and describe
chaotic motion in more detail. In this section, we calculate the Lyapunov exponents
and dimension for another chaotic response. Finally, we give a variety ofresults for

combined parametric and external excitation.
Vessel turning problem

Because this section does not include the lolled GZ(¢) curve as is included else-
where, the section may at first glance appear to be unrelated to the rest of the work;
however, this is not the case. In addition, this section may initially appear to be

something that can be easily solved using classical perturbation methods. Although
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one could readily solve the single degree of freedom constant hydrodynamics prob-
lem analytically using perturbation methods (e.g., Nayfeh and Sanchez, (1989)), one
would be hard pressed to solve the multiple degree of freedom frequency dependent
problem. However, using a numerical path following computer programs such as
BIFPACK (Seydel, (1988a)), solving the multiple degree of freedom frequency de-
pendent hydrodynamics problem is only slightly more difficult and computationally
intense than the single degree of freedom fixed hydrodynamics problem. In addition,
with path following computer programs there is no limit on the degree of nonlinear-

ity or coupling as is the case with a perturbation scheme. For all these reasons, the

practical results included herein were produced using BIFPACK (Seydel, (1988a)).

In this section, we study the clam dredge Patti-B with a constant forward speed
turning in waves. We use this problem to evaluate the importance of nonlinear-
ity, multiple degrees of freedom and frequency dependent hydrodynamics for the
Patti-B. Throughout this section, unless otherwise stated, we analyze the Patti-B
with the static righting arm curve with which she was believed (NTSB, (1979) and
Falzarano, (1988)) to have capsized (i.e., GM=1.755 feet), with a forward speed of 10
feet /second, in 300 foot long deep water waves. We consider the multiple degree of
freedom equations of motion. The frequency dependent hydrodynamics were calcu-
lated using the linear ship motions computer program SHIPMO (Beck and Troesch,
(1989)). The frequency dependence of the hydrodynamic coefficients is due to the

variation of the frequency of encounter as the vessel turns (Chapter III)!.

We note that using a linear ship motions computer program the response is

quantitatively similar to the nonlinear results, but important qualitative features are

1 As the vessel turns with constant forward speed (vary f), the frequency
of encounter is changed due to the doppler effect of w, = w, — Uk cos(B), where
w, is the encounter frequency, w, is the wave frequency, U is the vessel speed, &
is the wave number (= 27/, A is the wave length), and B is the heading angle,
zero heading is when the ship is traveling with the waves and # is when the ship
is traveling into the waves.
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ignored (Figure 8.1). Although the magnitude, away from the peak, is relatively
well predicted using an equivalent linearization of the roll damping (Chapter III).
Since, the linear ship motion program must use a linear roll restoring moment curve,
it misses the important features such as the bending back of the peak of the mag-
nification curve. This bending back results in a multivalued solution which must
be reconciled by considering the stability of the solution. The next plot shows that
slightly changing the magnitude of the metacentric height (Appendix E), which is the
initial slope of the GZ(¢) curve, dramatically changes the character of the resulting
response curve (see Figure 8.2). We see as the magnitude of this term is increased
slightly, from around 1.755 feet, how the magnification curve eventually pinches off
the bent back peak. These systematic changes explain the relationship between the
two seemingly unrelated types of curves, first, the relatively uninteresting single-
valued curves for high GM and second, the interesting multivalued magnification
curves for the lower GM’s. It should be noted here that after the peak is pinched off
from the main branch, it does not disappear, it just becomes unstable and difficult

to find.

Finally, we demonstrate the importance of multiple degrees of freedom and fre-
quency dependent hydrodynamics. In Figure 8.3, we compare the vessel’s response
while executing a very slow turn (vary $) in a five foot and seven and a half foot wave
amplitude seaway. We compare the more complete multiple degree of freedom solu-
tion with the commonly used approximate single degree of freedom roll equation. We
note here that the single degree response in a seven and a half foot seaway is roughly
equal to the multiple degree of freedom response in a five foot seaway. The single
degree of freedom approximation can cause substantial error. Although it is conser-
vative in this case, it need not always be and in any event it can be misleading. In
addition, we include a curve where the heading was kept constant (8 = 135degrees)

and the wave length is varied (Figure 8.4). Although keeping the hydrodynamics
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constant at the vessel natural frequency as the wave length is varied may be a rea-
sonable approximation for a constant heading, as the vessel executes a turn, this
approximation may no longer be reasonable. Therefore, we compare the constant
coefficients approximation to the more accurate frequency dependent coefficients for
only the varying wave length problem (Figure 8.5). The frequency dependence is
not found to be as important quantitatively as the number of degrees of freedom,
but we note the under and over prediction caused by this constant hydrodynamics
approximation.

In addition to finding solutions, we also evaluate the stability of given solutions
and the way in which stability is gained or lost. We evaluate these changes in
stability by observing how the eigenvalues of the map change with frequency, which
is the bifurcation parameter (see Figure 8.6). In addition, we can locate the fixed
points of the Poincaré map and establish their stability properties. Then using

other techniques, we can demarcate the basins of attraction of the various steady-
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state solutions (Chapter III). For the cases considered here, we found the stability
to be lost at the vertical tangent and regained as the peak was passed. The only
unexpected behavior we found was when the curve pinched off the unstable branch.
However, in the section on parametric excitation, the final section in this chapter,
we observe additional mechanisms for losing stability related to combined external

and parametric excitation.



96

Applications of geometric methods

In this section, we apply the modern geometric methods for analyzing dynamical
systems, previously described, to the problem of vessel capsizing with damage or
water-on-deck. Recall, we approximate water-on-deck or damage by modifying the
the hydrostatic curve which for our example includes a loll angle. The modern meth-
ods in contrast to the more traditional perturbation techniques are not limited to
small nonlinearity (weakly nonlinear systems) or small regions near equilibria (local
analysis). The modern methods, instead, are general and are able to consider large
ponlinearity and large regions in phase space which may include multiple equilibria
and the orbits or manifolds that connect or surround them. We specifically apply
these methods to analyze the clam dredge Patti-B’s capsizing mechanisms. We ana-
lyze the Patti-B because it has the dubious distinction of having capsized twice! Her
first capsizing (NTSB, (1979)) occurred in shallow water off of Ocean City, Mary-
land and she was salvaged. About two years later, Patti-B was at sea, far offshore
(USCG, (1979)) when she capsized again. The two Patti-B capsizings are especially
disturbing because she is typical of a large number of similar sized and designed fish-
ing vessels, and apparently met all the then existing recommendations (Falzarano,
(1988)). However, the fact that she had a proportionately large after deck prone to

trapping water may have adversely contributed to her unfortunate safety record.

Comparison of analytical and numerical Melnikov calculations

In this subsection, we intend to answer two questions. First, can we get trans-
verse homoclinic and heteroclinic intersections for a typical ship dynamical system?
Second, how well do the analytical approximations made compare to the more ex-
act numerical integrations of the manifolds (Parker and Chua, (1988))? In order to

answer these questions, we consider the single degree of freedom Melnikov function
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for a variety of coordinate systems. We desire a single degree of freedom system at
this point because the transverse intersections are much easier to detect. We will
investigate multiple degree of freedom systems in the coming sections. In all cases,
we consider a modified righting arm curve which has an initial loll angle (Appendix

Specifically, we present results for the homoclinic and heteroclinic Melnikov func-
tion for a variety of coordinate systems (Figures 8.7 and 8.8). These coordinate
systems are: 1) the standard ship motions axis system with its origin at the water-
line (SHIPMO, zgo = —1.88’), 2) a center of gravity coordinate with its origin at
the center of gravity (CG, zgo = 0.0’), and 3) a principal normal modes coordinate
system with its origin translated to a location eliminating all coordinate coupling
including added mass (pna, zgo = 1.0'). We note, for the principal normal modes
coordinate system and higher frequencies, the required wave amplitude for the het-
eroclinic intersections are actually less than those for homoclinic intersections. Al-
though this seems counter-intuitive, it may be due to the relative importance of the
various terms in the two Melnikov integrals. We avoid these higher frequencies in
our analysis. The large differences between the various curves shows the importance
of transforming to the correct axis system in order to obtain an equivalent single
degree of freedom system?. Choosing the correct, or at least a best approximation
to uncoupling the roll from the sway and yaw prior to extracting the roll equation
from the multiple degree of freedom system will be discussed more fully in a later
subsection on “Reduction of degrees of freedom to an equivalent system”.

However, once we have decided upon a coordinate system and extracted the roll

equation from the multiple degree of freedom system, the comparison between the

2 We note here that the Melnikov result for the multiple degree of freedom

problem would be independent of coordinates; However, our goal in selecting an
equivilent single degree of freedom system is to approximately decouple the roll

equation of motion from the other degrees of freedom. The differences reflect the
importance of coupling.
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analytical Melnikov predictions and those determined by numerically determining
the manifolds is reassuringly close. We see a typical result (Figure 8.9) for wave
encounter frequency of w. = 0.45 radians/second and amplitude of 7, = 0.1625 feet
where the manifolds are just beginning to intersect. We refer to the analytically
predicted homoclinic Melnikov results (Figure 8.7), specifically the solid line (i.e.,
SHIPMO), and notice the value of the curve is about 0.15 feet.

Consideration of the previous results suggests the importance of extracting the
correct equivalent single degree of freedom system from the multiple degree of free-
dom system. Along with the coming subsection on “Reduction of degrees of freedom
to equivalent system”, we discuss this problem more fully in Appendix B. For the
purposes of the Melnikov vector, we require the unperturbed system to be uncoupled
with no damping and no forcing. We include everything else in the perturbation.
Since we are able to do this, we are able to express the additional degrees of freedom

(i.., sway and yaw) as slowly varying oscillators (Wiggins and Shaw (1988)).

For the purposes of a closed form Melnikov estimate, we initially approximate each
the homoclinic and the heteroclinic righting arm curve with a different locally valid
cubic approximation. As stated previously, this is done because the unperturbed
homo(hetero)clinic orbits are simple hyperbolic functions. Due to the limitations of
a cubic approximation to the righting arm curve, it is not difficult to see that each
of these two approximations are only locally valid at their respective saddles and are
very different globally. Specifically, the homoclinic approximation is valid only up
to the loll angle and neglects the angle of vanishing stability while the heteroclinic
approximation is only valid about the angle of vanishing stability and totally ne-
glects the loll angle. However, the numerically determined Melnikov analysis uses a
more accurate quintic polynomial approximation to the righting moment curve. The
numerically determined manifolds use a still more accurate ninth order polynomial

approximation. At this point, we digress in order to compare the approximate ana-
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lytic results to the more accurate numerical approximation of the Melnikov integrals

in the next section.
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Determination of the Melnikov function

In this section we discuss the details of determining the homoclinic and hetero-
clinic Melnikov integrals analytically and numerically.

Recall, the Melnikov function is as follows

M(to) = [ F@E) Agle®®),t +to)dt, (5.1)

or is equivalently,

M (to) = ./_t:o @) - g(¢°(2),t + to)dt. (8.2)

In the previous chapters, we have already given the analytical results for both the
homodclinic and heteroclinic Melnikov function. Each was determined using a differ-
ent locally valid cubic approximation to the roll restoring moment curve. In Figure
8.10, we compare the two scaled (rescale time so that w, = 1) cubic approximations
to the righting arm curve to a scaled quintic approximation.

In order to evaluate the accuracy of these approximations it seems reasonable to
formulate a numerical Melnikov integration procedure. The numerical results could
then be compared to the analytical estimates to assess the accuracy of the two locally
valid cubic approximations. Recall, the benefit of approximating the roll restoring
moment curve as a cubic is that the homoclinic and heteroclinic trajectories can be

expressed analytically in terms of hyperbolic functions.

The homoclinic Melnikov analysis

Recall, our scaled homoclinic differential equation is,

i+az+ o] t|—z+kz® = fcos(wr). (8.3)
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In order to get this equation into the form for the Melnikov method (see Appendix
A), a,a, and f are required to be small (i.e., ~ O(¢)). We define €§ = a,€b; = o
and ey = f. The unperturbed homoclinic trajectories corresponding to this equation

with (z,2) = (1, z2) defined are,

(z1,22) = \/%(sech(t), —sech(t)tanh(t)) (8.4)
In Figure 8.11, we start at time zero and observe how an initial condition travels
toward the saddle. By reversing time we could trace out the unstable manifold of the
saddle (reflected about the roll axis), or alternatively, we could multiply the whole
expression by minus one and obtain the other stable manifold (reflected about both
axes). From the figure, since the points all have the same time step (dt = .1 seconds)
you can see that it takes finite time to get arbitrarily close to the saddle point but it
takes an infinite time to actually land on the saddle. Alternatively, if one starts on
the saddle it takes infinite time to leave the saddle. Therefore, in our numerical work,
we either start away from the saddle and approach it or we linearly approximate the
unstable manifold of the saddle in order to start away from the saddle. Finally,
in Figure 8.12, you can see the justification for truncating the numerical Melnikov
improper (infinite upper and lower limits) integral after a very short finite time. This
is so because the roll velocity quickly asymptotes to zero.

Using the specified homoclinic trajectories, the analytic Melnikov integral is,

M(t) = \/% sin(wto )~y [_ :o sin(wt)sech(t)tanh(¢)dt
~62 ;wsechz(t)tanhz(t)dt | (8.5)

+ 00
5, (2)32 /_ " sech?(t)tanh?(t)]sech(t)tanh(t)|dt.
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Evaluating these integrals we obtain the following Melnikov function,

2 wT, . 4 2 [2_ 4
M(m) = +'y7rw\/;sech(7) sin(wT) — -3—k6 - k\/;éq 5 (8.6)

Alternatively, for a more general form of the roll restoring moment curve, we may
numerically determine the homoclinic trajectory (;,z2) and numerically evaluate

the following integral,

2 . +oo 9 oo 2 +o0
M(t) = 2\/; sm(wto)'y/O sin(wt)z,dt — 2679- /0 zidt — 25q(-];)3/2/0 73|z, |dt

(8.7)
The heteroclinic Melnikov analysis
Recall, our scaled heteroclinic differential equation is as follows,
i+ai+ai|z|+z—kz® = fcos(wr). (8.8)

The unperturbed heteroclinic trajectories corresponding to this equation with vari-

ables redefined as above are,
(1, 72) = ——=(tanh(t), —=sech?(2)). (8.9)
vk V2
In Figure 8.13, we start at time zero and observe how an initial condition travels
toward the saddle. Again, from the figure, you can see that it takes finite time to get
arbitrarily close to the saddle point but it takes an infinite time to actually land on
the saddle. Finally, in Figure 8.14, you can again see the justification for truncating
the improper (infinite upper and lower limits) Melnikov integral after a very short
finite time because the roll velocity quickly asymptotes to zero.

Using the specified heteroclinic trajectories, the analytic Melnikov integral is,
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400
M(t) = —\/;-%cos(wto)'r/ cos(wt)sech2(7‘5)dt
+o0
+6¢ . sech4(7‘§)dt (8.10)

+o0
+¢5q(#)3/2/_°° sech4(7‘§)|sech2(7'5)|dt

Evaluating the various improper integrals we obtain the following Melnikov function,

77rw\/_ 2+/26 84,

M(7) = 7% CSCh(\/—)COS(wTO) L TRRET -,

(8.11)

Alternatively, for a more general form of the roll restoring moment curve, we may
numerically determine the heteroclinic trajectory (z;,z;) and numerically evaluate

the following integral,

1 +o0 § rtoo 3/2 2
M(t) = —2\/55 cos(wto)'y/0 cos(wt)zodt + A /0 z3dt+26, ( ) /0 z3|zo|dt
(8.12)

Numerical evaluation of the Melnikov integral

In both cases, use was made of the oddness or evenness of the various integrals in
eliminating trivial integrals and in setting up the remaining integrals for numerical
integration. Having an analytic solution of the Melnikov function will allow us to
evaluate the accuracy of the algorithm we develop. Our numerical scheme must

satisfy the following,

2 / F(t,w)dt ~ 2ZFN(t w)At. (8.13)

i=1

We know from the definition of the integral that these two will be exactly equal in



105
the limit as N goes to infinity (lim N — oo), and At goes to zero (lim At — 0)3. We
found that our At was some function of w (e.g., G(w)) since the oscillatory nature
of the integral ultimately determined the size of our At.

We note here that although the numerical evaluation of the Melnikov integral does
not lead to a simple formula in terms of integer constants and simple functions as the
analytic formulation did, we are able to factor out most of the system parameters.
For a given righting moment curve, we need only evaluate the Melnikov integral at
each frequency. The numerically determined Melnikov function will then allow us
to evaluate the required wave amplitude for intersections given a fixed linear and
quadratic damping coefficient. This procedure is more general and does not require
the unperturbed homoclinic and heteroclinic trajectories to be expressible in terms
of simple functions; nor does it require the resulting improper Melnikov integrals to
be readily available (e.g., Gradshteyn and Ryzhik, (1980)).

For our numerical evaluation of the Melnikov integral, we choose a fifth-order
polynomial that approximates the exact GZ(¢) curve, with the same loll angle ¢
and angle of vanishing stability ¢, (see figure 8.14). Although the conservative tra-
jectories can be expressed in terms of elliptic integrals and hypergeometric functions.
these special functions would also need to be evaluated numerically along with the
resulting Melnikov integrals. Therefore, phase plane analysis of the conservative sys-
tem was used in order to find the integration starting point in the phase plane. From
these starting points, a fourth order Runga-Kutta and losoda, a NAAS (CCMemo
407, (1979)) self-correcting integration code was used and compared to the phase
plane analysis results (see figures 8.15 and 8.16). These results (¢, z;,z;) were then
inserted into the improper Melnikov integral and numerically evaluated using a trape-

zoidal rule. Convergence studies were undertaken to determine how small a At was

3 Note here that for our numerical approximation of this integral t,,,, is

fixed at some large number and as At changes the number of interval N changes
accordingly. So that for fixed %4, we have the im N — oo and lim At — 0
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required to be and what was the required maximum time (i.e., tmaz) in order to

approximate the infinite upper limit.
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Reduction of degrees of freedom to an equivalent system

As discussed in the coordinate systems section of the chapter on the Melnikov
method (Chapter VII), in order to be able to analyze (using lobe dynamics for exam-
ple) a simplier system, we desire to know if it is possible to reduce the multiple degree
of freedom system to an equivalent single degree of freedom system. We conjecture
that this may be done by considering the eigenvalues of the Poincaré map and nu-
merically integrating along the most dominate eigen-directions. We know that for an
unforced and undamped linear system this is possible using simple techniques (i.e.,
principal axes). However, our system is nonlinear and it has damping and forcing,
and we know it is not possible to exactly decouple even the linear system (Schuarz
and Ma, (1988)). As stated previously (Chapter IV), in order to carry out this ap-
proximate reduction, we begin by observing that the most stable and least stable
eigenvalues often mimic the single degree of freedom eigenvalues. In evaluating if
the single degree of freedom and multiple degrees of freedom eigenvalues and eigen-
vectors are similar, there are two often conflicting requirements on these quantities.
First, the eigenvalues should have minimum sway and yaw velocity relative to the
roll displacement and roll velocity. The yaw velocity is often very small, but the
value of the sway velocity varies. Second, the two corresponding eigenvectors should
lie in a plane.

Tables 8.1 and 8.2 show for vertical variations in the location of the origin of the
coordinate system for a fixed wave amplitude and wave frequency. In these tables,
. 240 is the distance between the ship center of gravity and the origin, (5, is the sway
velocity, (4, is the roll velocity, e.v. is the eigenvalue. We note that zero sway velocity
occurs between z,,=.5 feet and .625 feet for the least stable eigenvalues but occurs
between z,,=.625 feet and .75 feet for the most stable eigenvalues. As you can see,

only in very few cases are the two previously mentioned requirements simultaneously
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2g0 CZv C4v €.v.

-1.88 | -.290649 | -.231528 | 25.3142

0 0723217 226169 | 23.541
8] -.0135644 | -.22268 | 22.4019
625 | -.000800453 | .221714 | 22.0954
.75 0149986 | -.220717 | 21.7829

Table 8.1: Least stable eigenvalues for w = .45 and n = .5’

Zgo C2v Cav e.v.
-1.88 | -.300466 | -.227303 | .0418515
0 .0819356 | .231118 | .0396976
R} -.0247267 | -.227296 | .041807

.625 | -.0106784 | -.226057 | .0425171
75 -.00324916 | .224709 | .0433037

Table 8.2: Most stable eigenvalues for w = .45 and n = .5’

satisfied. Figures 8.18 and 8.19 show two sets of wire frame plots which graphically
illustrate that satisfaction of the two requirements is often conflicting. The first figure
(Figure 8.18) shows the two eigenvectors to lie in a plane both locally and globally,
but the size of the (translational) sway velocity (x in the figure) is as important
as the (rotational) roll velocity (y in the figure). The second figure (Figure 8.19)
demonstrates that, although we may be able to substantially reduce the size of the
sway velocity relative to the roll velocity. The eigenvectors may no longer lie in a

plane. In both cases, we are looking down the roll axis.
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Figure 8.18: Wire-frame showing vectors in a plane yet large sway

Figure 8.19: Wire-frame showing small sway yet vectors not in a plane
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Intersection of the manifolds

In this section, we study the intersection of the invariant manifolds of Poincaré
maps for the vessel Patti-B. We note here that for the vessel with a lolled GZ(¢)
curve (see Chapter III and Appendix E) there are two sets of invariant manifolds.
First, are a set of homoclinic invariant manifolds which originate at the saddle in
the Poincaré map corresponding to the zero roll angle of the unforced system. The
unstable manifold starts from this saddle and eventually encircles the stable focus
corresponding to the loll angle. The stable manifold begins at infinity and eventually
ends up at the saddle. Second, are a set of heteroclinic manifolds that originate from
the saddles in the Poincaré map corresponding to the plus and minus angles of
vanishing stability in the unforced system.

We digress here for a moment to recall that only stable manifolds can intersect un-
stable manifolds and visa versa. This is due to uniqueness of initial conditions, that
stable manifolds cannot intersect other stable manifolds nor can unstable manifolds
intersect other unstable manifolds otherwise the intersection point would simultane-
ously have to be on two manifolds of the same stability type, which is not possible.
Moreover, such a point would be asymptotic to two different points as ¢ — oo or
t — —oo0.

We begin by repeating the results of the section on the comparison of the analyt-
ical and numerical results. We can see in Figure 8.20 that for the delta kg of .80 feet
the manifolds intersect at very small wave amplitudes. We note here that the homo-
clinic intersections alone result in interesting dynamics but probably not capsizing.
Since these motions are often bounded, they are not as important if considered in
isolation, but we will return to the importance of the homoclinic unstable manifolds

later.

The next result we show is the intersection of the heteroclinic invariant manifolds.
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Before these manifolds intersect the boundary between safety (non-capsizing) and
danger (capsizing) is crisp although it may be very contorted. We show here (Figure
8.20) that for a wave frequency of .5 radians/second a wave amplitude of 2.5 feet
will result in heteroclinic manifold intersections. As a result of this intersection, the
initial conditions beginning inside this apparently safe region may diverge beyond
the pseudoseparatrix to the unsafe region upon future iterates of the map. We refer
to this event as an unezpected capsizing.

The final intersection related event that we describe in this section is the intersec-
tion of the unstable homoclinic manifold with a stable heteroclinic manifold. Initial
conditions near origin and along the unstable homoclinic manifold will be dragged
beside the unstable manifolds to the stable heteroclinic boundary and into a lobe.
Again a whole region of initial conditions inside this lobe will be transferred from
the seemingly safe region to unsafe region outside. We refer to this event as a totally

unezpected capsizing.
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Since we were not able to locate an intersection of an unstable homoclinic and
stable heteroclinic manifold, we only show pictorially in Figure 8.22 what could
occur. Studying the arrangement of the manifolds, it seems as though the required
wave amplitude for unstable homoclinic and stable heteroclinic manifold intersections
must be greater than that for unstable heteroclinic and stable heteroclinic manifold
intersections. Although, we cannot prove this conjecture we state it as a hypothesis

as follows:

Conjecture By graphically considering the various possibilities, it seems reason-
able that for unstable homoclinic and stable heteroclinic manifold intersections the
required wave amplitude (ezternal forcing) must be greater than that for unstable

heteroclinic and stable heteroclinic manifold intersections.

Although we can determine the Melnikov function for each the separate homo-
clinic and the heteroclinic intersections, since we do not have any € = 0 structure to
perturb for the unstable homoclinic and stable heteroclinic manifold intersection, we
do not yet see a way to determine the corresponding Melnikov function. Otherwise,

this conjecture could be easily shown.
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Practical application of lobe dynamics

In order to demonstrate the surprising ship dynamics which can occur when the
manifolds intersect, we study the motion of the clam dredge Patti-B excited by a
wave of frequency w, =.5 radians/second and amplitude 7, = 3 feet. Since the vessel
speed is zero, the encounter frequency is equal to the wave frequency (we = w,)

First, we consider the three initial conditions (see Figure 8.23): a) one within the
shaded lobe (2), (¢o,q'$o) = (-.50,0.0); b) one outside the lobe at a lesser initial roll
angle (1), (¢o, #o) = (-.40,0.0); and c) one outside the lobe but at a greater initial roll
angle (3), (¢o, $o) = (--59,0.0). Considering the most fundamental aspects of lobe
dynamics as described in the chapter on lobe dynamics (Chapter VII), we know that
one lobe will transport phase area from inside (safe) the pseudosepartrix to outside

the pseudosepartrix (unsafe) through the turnstile.

0.2007}

x(2)(rol) vel rod/s)

1 1 ¥ U LA 1
-1.00 -0.80 -0.80 -£.40 -0.20 o.00 9.20 0.40 0.680 .80 1.00
x(1)Croll rod)

invoriont monifolds of Poincore map (w=.5,n=3.0')

Figure 8.23: Lobes for Patti-B

Considering lobe dynamics, we predict that initial condition (2) will iterate from
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its current location inside the pseudosepartrix (safe) lobe to outside the pseudosep-
artrix into the possibly unsafe region. When initial condition (2) (see Figure 8.23)
is cast into the unsafe region, it has a negative roll restoring moment and may be
vulnerable to capsizing. Upon simulating the system, we observe initial condition

(2)(Figure 8.24) iterates outward and capsizes soon afterward.

Using statics as a guide, we might be tempted to just decrease the initial roll
angle. For a small enough initial roll angle, we would hope the vessel does not
iterate outward and eventually settle to a bounded steady-state motion. Decreasing
the initial roll angle and keeping the same zero roll velocity, we obtain initial condition
(1). Considering lobe dynamics, we do not expect this initial condition to iterate
outside. As expected, upon simulating the system, we see (see Figure 8.24) initial
condition (1) does not iterate to outside but stays within the bounded region. The
vessel eventually settles to a bounded steady-state subharmonic oscillation. The

Poincaré sections are indicated by arrows in Figure 8.24.

Using this limited amount of empirical evidence, and ignoring lobe dynamics,
one might propose a safety criterion demanding a roll angle less than the vulnerable
initial roll angle. However, this does not always work as we shall show. To disprove
the proposed criteria, we consider an initial condition (3) (see Figure 8.23) with
an initial roll angle greater than (2) and the same zero roll velocity, but outside
the lobe. Considering lobe dynamics, we do not expect this initial condition (3) to
iterate outward. Upon simulating the system, we see this initial condition (3) does
not iterate outward and eventually settles to a bounded steady-state subharmonic

solution (see Figure 8.24).

The usefulness of lobe dynamics is thus clearly demonstrated using these simple
examples. Here an initial condition with larger roll angle (3) is eventually more
safe than an initial condition with smaller roll angle (2). However, the smaller roll

angle was inside a lobe (see Figure 8.23) and we correctly predicted it would iterate
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outward.

Considering lobe dynamics, all initial conditions inside lobes are not vulnerable.
To demonstrate this, we consider an initial condition outside the pseudoseparatrix
but inside a lobe. Considering lobe dynamics, we predict the initial condition (4)
(see Figure 8.23) (¢, $o) = (+.729,0.021) will iterate from outside (unsafe) to inside
(safe). Upon simulating the system, this does occur (see Figure 8.25).

Finally, we reverse time integrate from the given locations in the Poincaré maps
to demonstrate the extreme sensitivity to initial conditions which this system has.
Note how close the three trajectories are for negative times and how rapidly they
diverege for positive times.

Extreme sensitivity to initial conditions is a characteristic of dynamical systems
with complicated dynamics (see Figures 8.24 and 8.25). For a further description of
Lyapunov exponents, a technique which can be used to quantify extreme sensitivity

to initial conditions, see Appendix D.
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The search for a totally unexpected capsizing

We discussed in the subsection on the intersection of the manifolds that it may
be possible that an initial condition near the origin (in the phase plane) may be-
come unbounded. We call this event totally unezpected capsizing. This is possible if
the unstable homoclinic manifold intersects the stable heteroclinic manifold (Figure
8.22). Recall, the conjecture that the required wave amplitude for this intersection
(unstable homoclinic and stable heteroclinic) must be greater than that required for
the purely heteroclinic intersection. For the case considered in the “Practical applica-
tions of lobe dynamics” subsection (w. =.5 radians/second, and 5, =3.0 feet), when
we increased the wave amplitude in order to find a totally unexpected capsizing, the
unstable homoclinic manifold grew more compact. It, therefore, appears as though
no such intersection can occur at this frequency (i.e., w, =.5 radians/second). We,
therefore, investigated lower and higher frequencies (i.e., w. =.45 and w, =.55 radi-
ans/second). We were also unsuccessful in finding the unstable homoclinic and stable
heteroclinic intersections at these frequencies (see Figure 8.26, 8.27, 8.28, and 8.29).
Please note the very compressed unstable homoclinic manifolds near the origin for
the w, =.55 radians/second, and 7, =2.5 feet case (Figure 8.29). According to Shaw
(1990), finding the unstable homoclinic and stable heteroclinic intersection may be
possible with a different wave exciting force which is periodic but not sinusoidal (e.g.,

consider a Fourier series).
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Samples of Poincaré maps at different phases

The phrase that “two Poincaré maps at two different phases are C* conjugate,”
and the explanation that “a C™ diffeomorphism exists between these two maps” may
have been confusing to the more applications oriented reader. We, therefore, show
two examples of Poincaré maps of the ship dynamical system which are the same
except for their sampling phase. You can see in these two figures that the map is just
a mirror image about the roll velocity axis (Figures 8.30 and 8.31). Figures 8.30 and

8.31 have sampling phases of {, = 3.1132 seconds and ¢, = 8.4 seconds respectively.
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Comparative simulation studies

One of the important goals of this work was to minimize simulation by gaining
a deeper understanding of the structure of the phase space or Poincaré map. With
enough understanding and experience of what types of behavior to expect, under
what circumstances, we may practically eliminate simulation for many nonlinear
problems as we already can do with most linear problems. However, simulation
is an analysis technique with which most engineers are familiar and have trust in.
Therefore, in this section, we demonstrate with simulation some of the characteristics
which our qualitative methods suggest. However, at the outset, we should be aware
that we may still encounter phenomena and behavior that cannot be explained by
our limited analysis techniques. When this occurs, we should not give up all faith in
qualitative analysis and reject our techniques for all similar problems, but we should
re-evaluate the assumptions and approximations inherent in our application of these
techniques in order to explain their shortcomings. We carried out a few simulations
in the previous subsection to demonstrate the eventual and initial behavior for the
lobe dynamics problem. In this section, we will carry out a few additional simulations

in order to demonstrate some further points.
Simulations of some aspects of the vessel turning problem

Using classical perturbation techniques, it can easily be shown (Schmidt and
Tondl, (1986)) that the nonlinear magnification curve is unstable from the lower
vertical tangent to the the vertical tangent at the peak (the dotted region in Figure
8.32). Since the saddle is not repelling or attractive, we refer to the saddle as
nonstable (Parker and Chua, (1989)). Saddle manifolds are important in forming
the boundaries between basins of attraction of other fixed points that are stable

(Chapter V). What we do in these simulations is to start with an initial condition
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slightly on one side or the other of the saddle and watch where they end up. Figure
8.32 shows the magnification curve with a vertical line at the simulation frequencies.
Figure 8.33 shows a simulation slightly (about floating point accuracy; i.e., 1 x 10-8)
in the direction of the low amplitude solution. After a number of cycles, the curve
eventually jumps down off the saddle to the low amplitude solution, the so-called
“in phase branch”. Figure 8.34 shows a simulation slightly (about floating point
accuracy; i.e., 1 x 1078) in the direction of the high amplitude solution, the so-called
“out of phase” branch. After a number of cycles, the curve eventually jumps up to
the high amplitude solution. Although the jump up is not as dramatic as the jump
down, it demonstrates the extreme sensitivity to initial conditions of motion near
the saddle. Depending upon which side of the saddle the initial condition is on, it

will go to one stable steady-state or the other.
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Figure 8.32: Magnification curve for simulation near the saddle

Another interesting phenomena we sought to investigate was the well-known jump

phenomena. Initially, we rapidly swept from low to high frequency. The simulated
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roll amplitude did not seem to follow the magnification curve. This behavior was
quite perplexing until we evaluated our approximation. Although we assumed w = 0
we actually had & # 0. Such non-stationary phenomena are described in Mitropolsky,
(1966). The w # 0 phenomena is dominated by the transient behavior and thus,
bears no resemblance to the assumed & = 0 steady-state phenomena. Eventually,
we started right at the vertical tangent and very slowly increased the frequency and

did observe a jump as shown in Figure 8.35.
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Figure 8.35: Simulation traveling through resonance
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Some qualitatively different motions

In order to analyze the motion resulting from nonlinear systems, various qual-
itative and quantitative analysis techniques are required. Some of these tools are
familiar to the ship dynamicist but uniquely applied, while others are very special-
ized. Most ship dynamicists are familiar with time histories, but not as familiar
with the phase plane or Poincaré map. Although the time history is a useful visual
technique to observe steady-state harmonic response, it quickly loses its usefulness
for more general types of motion. For steady-state subharmonic motion, the motion
may be viewed using the phase plane. In the phase plane, any two state variables
may be plotted. For example, displacement versus velocity is most often plotted.
From this plot, the order of the subharmonic response can be assessed. For steady-
state aperiodic response, both the time history and the phase plane are insufficient.
The dynamicist must then consider the Poincaré section. Since our system is time-
varying, the trajectories in the phase plane may cross each other. In order to over-
come this difficulty, an extended phase space with time added must be considered,
or alternatively, the phase space may be sampled at integer multiples of the forcing
period. The plot of the sampled phase variables is called a Poincaré section. For
steady-state harmonic response, the Poincaré section is a single point. For subhar-
monic response, the Poincaré section is a finite number of points equal to the order
of the subharmonic (number of periods to repeat). For the aperiodic response, there
is an infinity of points in the Poincaré section. However, the infinitely many points
describing the chaotic response often fall in an orderly or at least distinctive pattern.
The resulting figure in the Poincaré section is called a strange attractor.

In the following figures, we give some examples of the three representations (time
history, projected phase plane and Poincaré map) for the ship dynamical system for

the three types of motion (harmonic, subharmonic and chaotic). In the figures, you
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type of response | degrees of freedom | 7,
harmonic single 4 ft
sub-harmonic 6-dof 2 ft
aperiodic single 11t

Table 8.3: Qualitatively different motions w,= .4 rad/s, 8 = 90 deg

can see the periodic forcing and the various types of response. We note here that
these are steady-state responses since the transients were not plotted. The figures
are arranged as sets of time history, projected phase plane and Poincaré map for the
harmonic response (Figures 8.36, 8.37, and 8.38); the same for subharmonic of order
six (Figures 8.39, 8.40 and 8.41) and the same for the aperiodic response (Figures
8.42, 8.43, and 8.44). Finally, we let the aperiodic response evolve for about 300
periods and we begin to see the form of the strange attractor (Figure 8.45). Table

8.3 summarizes the ship and environmental data used in generating the data.
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Evaluation of chaotic dynamics

One specialized technique used to evaluate chaos is the determination of the
Lyapunov exponent (Wolf, et al., (1985)) of the response. The Lyapunov exponent
relates to the exponential divergence of neighboring trajectories, a characteristic of
chaotic vibration. For motion converging to a fixed point like a stable node, all
Lyapunov exponents must be negative. For periodic motion, at least one Lyapunov
exponent must be zero. For chaotic motion, at least one Lyapunov exponent must
be positive. It is required to have at least three independent phase variables or two
phase variables and time available for chaotic vibration. For a continuous system
(for a map), we must have one positive exponent (one multiplier greater than one)
corresponding to the chaotic motion, one zero exponent (equal to one) corresponding
to the periodic motion, and one negative exponent (one multiplier less than one)
corresponding to the contracting motion. Since phase volume must contract for a
dissipative system (with damping), it can be shown, that the sum of the Lyapunov
exponents must be negative (Berge, Pomeau, and Vidal, (1984)). Further details
of the technique of Lyapunov exponents, is contained in the appendix on Lyapunov
exponents (Appendix D).

In order to demonstrate the practical utility of Lyapunov exponents, we present a
set of figures for the Patti-B which includes a time history (Figure 8.46), a projected
phase plane (Figure 8.47), a Poincaré section (Figure 8.48), and a time history of
the Lyapunov exponent calculation (Figure 8.49). All these results are for over 850
periods and we begin to see the shape of this strange attractor even more clearly than
the one in the previous section. We note that the Lyapunov exponent is a useful
qualitative (a positive exponent implies chaos has occurred) and quantitative (we
associate a number with the exponential expansion) measure of chaos. In addition,

we can calculate a number which describes the dimensionality of the so-called strange
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attractor. For a chaotic attractor, this number is not an integer as we expect for
regular attractors. The dimension of a fixed point is zero and for a limit cycle the
dimension is one. It has been conjectured by Yorke and Kaplan (Froehling, et al.,

(1980)) that the Lyapunov dimension is related to the Lyapunov exponents as follows:

‘Y
df = ] -+ 2‘=1 ! (814)
| Aj1
where j is defined as follows,
j
d x>0 (8.15)

1=1

The exponents are ordered from largest to smallest (Appendix D). This means
that j is the sum of positive (with zero defined to be positive) exponents divided by
the next smallest. For the case considered, the steady-state Lyapunov exponents we
calculate are (+0.0415647,+0.0, —0.063931); plugging these into the above formula
we obtain 2.64952 as the Lyapunov dimension of this attractor.

In addition to Lyapunov exponents, other techniques including double Poincaré
sections (Wiggins, (1988)) and cell-to-cell mapping (Hsu, (1987)) exist to analyze

and compare the nonlinear dynamics.
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Parametric excitation

Parametric excitation is an important dynamic effect in ship motions. As such,
parametric excitation has been studied extensively in the ship dynamics field (e.g.,
Paulling and Rosenberg, (1959), Paulling,(1961), Blocki, (1980), and Kerwin, (1959)).
Probably the most extensive experimental and computational study in this area was
carried out during the 1970’s at the University of California, Berkeley (Paulling, et al.,
(1979)). In addition to an extensive amount of experimental data, this project pro-
duced the nonlinear ship motion simulation computer program CAPSIZE. CAPSIZE
is unique in that it calculates the exact hydrostatics at every time step. Recently,
DeKat and Paulling, (1989) added to and improved the earlier program. This im-
proved computer program is called KAPSIZE. KAPSIZE’s most notable refinement
is the addition of time domain hydrodynamics.

Although the experimental and simulation results are quite extensive in the Berke-
ley work, little theoretical analysis was included. Moreover, the theoretical analysis
that was done, was for an undamped linear parametrically forced equation without
external forcing. Relating this simplified analysis to a more exact treatment of the
problem can be misleading and confusing for three reasons. First, when damping
is considered, the region of instability decreases (Jordan and Smith, (1987)). Sec-
ond, when the nonlinear spring is considered the previously unbounded motion often
achieves a finite value (Minorsky, (1962)). Third, when external forcing is added
to the parametric excitation, interesting interaction occurs (HaQuang, and Mook,
(1987M)).

Considering all these shortcomings, we undertook some preliminary analysis of
the combined externally and parametrically forced nonlinear ship roll equation of
motion with linear and nonlinear damping and an exact roll restoring spring. Our

analysis includes an O(e€) approximation to the harmonic component of the time
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varying restoring moment §GM which is determined by considering the slope at the
waterline. This results in a time dependent righting moment curve as can be seen in
the following equations and in Figure 8.50.
If we include parametric excitation we obtain the following single degree of free-

dom differential equation,

(I + Aas)d + Buud + Buagd | ¢ | +GZm(4,t) = Fycos(wt + 7a) (8.16)

where, GZm(9,t) = MM“—’QIGZ,,,(@.
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Figure 8.50: Parametric excitation (Bovet, (1974))

The large amplification of the combined externally and parametrically excited
system versus the purely externally forced system is quite dramatic (see Figure 8.51).
In addition, we obtain invariant manifolds (Figure 8.52) similar to those of the purely
externally forced system (Figure 4.2). However, more importantly is the fact that

the dynamic instability occurs long before static instability (Figure 8.51). We note
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here that this dynamic loss of stability along the upper branch of the magnification

curve may be the divergence instability described by Schmidt and Tondl, (1986).
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CHAPTER IX

OBSERVATIONS AND CONCLUSIONS

Considering the results if this thesis, we believe it is now clear how various im-
portant physical factors affect nonlinear ship dynamics and possibly capsizing. This
thesis considered the effect of the static roll restoring moment, nonlinear damping,
and external wave excitation on the resulting dynamics. In addition, we also saw
what characteristics of the vessel righting arm are most important. These include the
angle of vanishing stability, the loll angle, and the magnitude and slope of the right-
ing arm curve at any point. Away from zero roll angle, the nonlinear terms in the roll
restoring moment are important. We can also see from the lobe dynamics analysis
the extreme importance of initial conditions in assuring vessel safety. We note how
slight changes in the parameters of the system can result in dramatic changes in the
character of the resulting dynamics. Examples of this include the pinching off of
the upper branch of the magnification curve as the metacentric height is increased
and the intersection of the manifolds as the forcing is increased beyond a certain
threshold value, and the surprisingly complex dynamics which may result. We also
see how important the parametric excitation is in both increasing the magnitude
of the vessel response and also introducing new types of behavior which were not

previously observed.
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Importance of initial conditions without manifold intersections

By far, the most important practical result of this work is the application of
the idea of invariant manifolds of the Poincaré map to analyze the boundedness of
large amplitude ship rolling motion. The invariant manifolds are the boundaries be-
tween qualitatively different dynamics, for that phase of the Poincaré map. By using
the Poincaré mapping technique, we can consider the entire phase space of interest
for highly nonlinear, damped and periodically time-varying differential equations,
which the forced roll equation of motion is. Before these manifolds intersect, the
boundary between capsizing (unsafe region due to unbounded eventual solutions)
and non-capsizing (safe region due to bounded eventual solutions) behavior is clear
(see Figure 5.6). Given a particular ship configuration (inertia, added mass and
linear and quadratic damping coefficients), operating condition (described by a par-
ticular righting arm curve) and environmental condition (regular wave forcing), we
can determine the corresponding invariant manifolds and easily determine whether
a given initial condition of roll angle and roll velocity at a particular phase of the
forcing (i.e., (%o, bo,t = t,)) will capsize (eventually become unbounded) or will not

capsize (remain bounded).

Importance of initial conditions with manifold intersections

Once the manifolds intersect, we can still determine the eventual fate of the
motion originating from given initial conditions. This can be done easily for a few
periods of the forcing but becomes more difficult for longer times because of the
complicated re-intersection of the manifolds. We can determine at what value of
the forcing the manifolds intersect using the Melnikov method. After the manifolds

intersect, we must study the initial conditions inside the resulting intersections called
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lobes. Although it is not difficult to determine where initial conditions inside the
lobes will iterate to after a few iterates (time integrations for integer periods of the
external forcing) of the map, because of the eventual re-intersection of the lobes, it
is more difficult to predict the eventual state (after many iterates) of the motion (see
Figure 7.5). However, for lobes near the so-called turnstile (see Figure 7.3), we are
able to predict whether an initial condition (¢o,<i;o,t = t,) inside one of the lobes

will iterate from inside to outside or vice versa (see Figures 8.23, 8.24 and 8.25).

Importance of hetroclinic and homoclinic intersections

A vessel with an initial loll angle will have two sets of invariant manifolds. One set
originating from the saddle corresponding to zero roll angle and two sets of saddles
corresponding to the positive and negative loll angles. The manifolds are called,
respectively, homoclinic and hetroclinic intersections. Intersection of the hetroclinic
manifolds separate the boundary between the safe and unsafe regions into lobes.
Some inside (safe) lobes may eventually iterate outside (unsafe); we refer to this
event as an unezpected capsizing (see Figures 8.23 and 8.24 condition (2)). Another
possible event that can occur is when the unstable homoclinic manifolds intersect the
stable hetroclinic manifolds. This capsizing mechanism could force initial conditions
near the origin to iterate outside the safe region (see Figure 8.21). We refer to this

capsizing mechanism as a totally unezpected capsizing.

Conditions necessary to reduce degrees of freedom

In order to be able to simply analyze (in the plane) whether initial conditions
are safe or not requires reducing the linearly coupled, damped and forced multiple

degree of freedom system to an equivalent single degree of freedom system, but this
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is not always possible. Although it is possible to analytically decouple an unforced
and undamped system, it is not possible for even the linear damped and forced sys-
tem to exactly decouple the modes of interest (Shahruz and Ma, (1988)). However,
we have determined conditions which must be met in order to approximately obtain
an equivalent single degree of freedom system corresponding to the more complete
multiple degree of freedom system. These conditions require reducing the sway ve-
locity while assuring the eigenvectors still lie in a plane for the most stable and least
stable eigenvalues. We recall that the global (nonlinear) manifolds are tangent to

the eigenvectors at the fixed points.

Importance of physical parameters

e effect of nonlinear roll restoring moment curve
The character of the nonlinear roll restoring moment curve was the single most
important physical parameter studied. This is reassuring since current ship
static stability criteria consider only the righting arm curve. The zeroes of
the nonlinear roll restoring moments correspond to the fixed points for the
damped system. Once forcing is added, these fixed points become periodic
orbits or fixed points in the Poincaré map. Therefore, the character of the
static roll restoring moment is also important in determining fixed points for

the forced and damped system.

e effect of roll damping
The effect of including nonlinear roll damping versus solely linear roll damping
was found to be important quantitatively and not qualitatively. Including non-
linear roll damping resulted in a decrease in the amplitude of the roll motion,
but did not cause any qualitative changes. The magnitude of the forcing and

damping will determine the area in the Poincaré map for safety. By consider-
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ing the Melnikov function, the damping will also determine the required wave

amplitude for intersections.

effect of forcing magnitude and frequency

The effect of the forcing was most important in periodically perturbing the
differential equation. As stated above, the magnitude of the forcing determined
the area in the Poincaré map for safety and whether or not intersections will

occur.

single degree of freedom versus multiple degrees of freedom

The results of the bifurcation and stability analysis of the harmonic solutions
suggested that consideration of the multiple versus single degree of freedom
problem was qualitatively very important (see Figures 8.3 and 8.4). Studying
the quantitative effect of the multiple degrees of freedom versus the single
degree of freedom was not as clear when the invariant manifolds were studied.
This was because the Poincaré maps for the multiple degree of freedom system
are four dimensional and more difficult to study than the two dimensional

system, (Appendix B).

effect of frequency dependence in the hydrodynamic coefficients
The bifurcation and stability analysis of the harmonic solutions suggested that
the frequency dependence of the hydrodynamics (A;; and B;;) was not very

important (see Figure 8.5).

effect of water-on-deck

The effect of considering water-on-deck or damage was to substantially reduce
the magnitude of the static roll restoring moment curve and possibly change its
character and result in a loll angle. This loll angle resulted in the unperturbed

homoclinic connection and an additional type of complicated dynamics.
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e effect of adding parametric ezcitation
Combined external and parametric excitation is important in both increasing
the magnitude of the vessel response and also introducing new types of behavior

which were not previously observed.

Generality of techniques

Finally, the techniques described in this thesis are more general then the specific
application of a vessel rolling with an initial loll angle would suggest. An obvious
generalization would be to analyze a righting arm curve without a loll angle. In
this case, we would have only the hetroclinic intersections and would not have the
possibility of the combined homoclinic and hetroclinic intersections occurring. All
the previous analysis would be applicable. Another more general problem would be
to consider a static heel bias due to a steady wind force for example. This is the case
considered in existing ship stability weather criteria and it would be interesting to
compare the dynamics with and without this bias. For this case we would have to
calculate a new Melnikov function but one has already been calculated for a similar
system (Namachchivaya and Hilton, (1987)). Another application would be to further
study parametric excitation. Although we have already started the bifurcation study
of the combined externally and parametrically forced system and calculated one set
of invariant manifolds (Figure 8.52), we might continue our analysis by calculating
the Melnikov function. Again a mathematically similar system with only parametric
excitation has already been analyzed (Ariaratham and Xie, (1989)), and a system
with combined external and parametric with incommensurate frequencies has also

been analyzed by Yagasaki, Sakata and Kimura, (1990).



CHAPTER X

FUTURE WORK

In this thesis a preliminary attempt was made to evaluate the effect of various
approximations. In the various areas some work has been done but the complexities of

the most general ship dynamical system may prove these problems to be unsolvable.

Multi-frequency forcing

A possibly more realistic analytical model of the system dynamics would include
multi-frequency forcing. Since sea waves are irregular, the single frequency excita-
tion although tractable may be unrealistic. Wiggins, (1988) has applied the Melnikov
method to a single degree of freedom nonlinear oscillator with multi-frequency ex-
citation and has found the resulting quasi-periodic motion to exhibit larger regions
of chaotic dynamics. Recall, it is well-known that the linear hydrodynamics (added
mass and damping) coefficients are frequency dependent. If the frequency depen-
dence of the hydrodynamics is found to be important for multiple frequency forcing,
the idea of an extended phase space as proposed by Schmiechen, (1973) and used
by other ship dynamics researchers in the United States (McCrieght, (1986)) and in
Germany (Sharma, Jiang and Schellin, (1988)) could be applied.
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Parametric excitation and a bia

Parametric excitation is interesting both dynamically and practically. Prelimi-
nary results of a single case indicate many new and interesting phenomena may occur
when combined external and parametric excitation are present. Although much ex-
perimental and simulatjon work has been done by other investigators (e.g., Paulling,
(1979)) only the linear parametric instability without external forcing or damping has
been analytically studied. We suggest addressing these shortcomings of the previous
analysis in more detail. We suggest studying additional aspects and the additional
phenomena that may occur.

Physically, parametric excitation may be due to the time-varying hydrostatic
forces or because of water moving onto and off the vessel’s aft deck as suggested
by Troger (Troger, 1989). If the external wave excitation and water-on-deck forces
are occurring at different frequencies additional analysis is required. A system with
combined external and parametric excitation with incommensurate frequencies has
been analyzed using perturbation techniques (HaQuang, and Mook, (1987)). The
solely parametrically forced system has been analyzed using modern methods (e.g.,
Melnikov) by Ariaratnam and Xie, (1989). The combined parametric and externally
excited system with incommensurate frequencies has been analyzed by using aver-
aging and Melnikov by Yagasaki, Sakata, and Kimura, (1990) and shown to have
chaotic dynamics.

It is well-known to naval architects that ships with a bias may be most vulnerable
to capsize. This bias may be due to a steady force as a result of wind acting or a
cargo shift. Further investigation should evaluate this effect upon the safe basins of
attraction, escape from a potential well (capsize), and lobe dynamics. In the biased
case, the saddle connections are no longer symmetric. Previous investigators (e.g.,

Nayfeh and Khedir, (1986) and Virgin, (1987)) have found complex dynamics in a
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similar system by the period doubling route. In addition, Namachchivaya and Hilton,
(1987) have used Melnikov methods to analyze the dynamics of mathematically sim-

ilar systems.

Development of a probabilistic stability criteria

In order to eventually apply these techniques to vessel design, we must incor-
porate them into some sort of probabilistic criteria (e.g., Gilbert and Card, (1990))
which considers the randomness of the seaway. Troesch (1990) has suggested using
modified linear ship motion theory or nonlinear simulation in order to determine the
probability of achieving a certain initial condition. Further, we could use the results
of this work as the conditional probability (Parsons, (1990)) of capsize given a joint
probability describing the initial conditions. Integrating these two numbers over a
large but finite area of the phase plane, we could determine some measure of vessel

safety and risk.

Other vessel types

Finally, these techniques are not limited to the study of extreme rolling motion
of a displacement hull form. Using experimentally determined coefficients, Troesch
(1990) has recently applied the stability and bifurcation methods we describe here to
analyze the strongly coupled heave-pitch porpoising instability experienced by plan-
ing hulls. In a region where linear stability analysis predicts a single stable solution,
he determined a similar stable nonlinear solution but also discovered a nonstable sad-
dle type solution. Numerical simulation showed the saddle to be associated with the
boundary between the bounded stable motion corresponding to the linear solution

and a previously unobserved unbounded motion!



APPENDICES

156



157
APPENDIX A

The Mathematical Details of the Melnikov Function

Derivation of the Melnikov function

As described in the main text, the Melnikov method is used to calculate a distance
(the Melnikov function) between the stable and unstable manifolds of a perturbed
dynamical system. Zeroes of the Melnikov function correspond to crossings of these
manifolds. According to the Smale Birkhoff Theorem (Guckenheimer and Holmes,
(1986)), crossings of these manifolds are a necessary but not sufficient condition for
complicated dynamics to occur. Following (Guckenheimer and Holmes, (1986)), the
derivation of the Melnikov function is as follows:

We begin with a periodically time-varying dynamical system of the form,

& = f(z) + eg(z,1);

r = (u,v) € R?.

Where, f(z) is a known autonomous vector field (usually but not always a Hamil-
tonian vector field) and g(z,t) is a periodically time varying perturbation of fixed
period, f(z) = (fi(), f2()) and g(=,%) = (612, ), 92(z,1)).

Using the result of a Lemma from (Guckenheimer and Holmes, (1986)), we know
that the perturbed manifolds, g, may be uniformly approximated to O(€?) as the
sum of the unperturbed manifold, ¢°, (see Figure A.1) a yet to be determined O(e)

term, €q, as follows,
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g2 (t, o) = °(t —to) + g} (t, to) + O(€?) and g¥(t, to) = ¢°(t —to) +eqi (¢, 20) + O(?).
This implies that,

g2 (¢, to) — ¢°(t — to)| ~ O(¢*) and

lg2 (£, o) — ¢°(t — to)| ~ O(€?).

Using the above results, it can easily be shown that solutions lying in the stable
manifold can be uniformly approximated by a solution to the following variational
equation (Jordan and Smith, (1987)),

¢3(t,t0) = DF(a°(t — t0))ai(t, o) + 9(g°(t — %), %),
and a similar result holds for ¢}(t,%o).

Next define the separation of the manifolds as

d(to) = g2(to) — g¢(to)-
where g*(to) and ¢?(%o) in the above equations are the unique closest points lying on
the normal to ¢°(t — to) given by,

F(¢°(0)) = (= f2(¢°(0)), f1(¢°(0)))-

Using this we define the unique signed * distance between the closest points on the

perturbed manifolds as,

i) = LMD =10 | o1 A1)

Alternatively, (Rom-Kedar, Wiggins, and Leonard, (1990)) derive a possibly more

useful form which is as follows,

f4(4°(0)) - (g2(to) — 4i(to))
d(to) = € + O(€?). A2
(to) F(@*(0) () (82)
The A is the usual vector cross-product in R? and - is the dot-product.

1 The sign of distance function describes the relative orientation of the

manifolds. It measures the distance between the stable and unstable manifolds. A
positive distance implies the stable manifold is inside the unstable while a negative
distance implies the opposite. Therefore, it is obvious that a zero distance implies
that the manifolds have intersected.
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Figure A.1: Notation for intersecting manifolds

Finally, we define the Melnikov function as follows

M) = [ F(@0) Ag(e°(t - to), t)dt. (A3)
In order to show that the Melnikov function represents the distance between the
two perturbed manifolds, we again follow (Guckenheimer and Holmes, (1986)) and
consider the time dependent distance function,
A(t, to) = f(4°(t — to)) A (g5 (2, t0) — 4i(t, %0))
A(t, o) = A¥(L, to) — A%(2, to).
Alternatively, we may define the scaled distance between the manifolds in terms

of the above quantity as,

eA(,1t)
1£(¢°(0))]

To start the derivation, we take the time derivative of both sides of the time

d(to) = +0(&). (A.4)

dependent distance function and obtain,

44’ (tt) A’d(tt’“) = Df(q°(t — t0))g°(t — to) A g2 (¢,t0) + F(¢°(t — to) A &(t,%0). (A.5)
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Recalling that ¢° = f(¢°), we obtain,
A’ (t,t0) = DF(2°)f(a°) A ¢ + F(¢°) A (DF(°)gi + 9(¢°1))-
Simplifying, we obtain,
A’ (t,to) = traceD f(¢°) A* +£(¢°) A 9(a 1)-
If the unperturbed system is Hamiltonian then the traceD f(¢°) = 0. Integrating

the remaining term from #¢ to co we get,

A (00, to) — A*(to, to) = /t+°° AP —to) A (Pt — to,)dt.  (A.6)

Here, we note that as ¢ — oo, A* goes to p (the saddle point). Repeating the

above procedure for the unstable manifold, we obtain,

A" (to, to) — A¥(—00,t0) = /_t; F(&°(t — o) A g(a°(t — to), 1)) dt. (A7)

Combining the above two results, we obtain,

eM(to)

4to) = 172 )]

+ O(€?). (A.8)

It is now clear that the perturbed trajectories of the differential equation need
never be calculated. All that is required is to know the unperturbed trajectories
along which the perturbed differential equation is evaluated. Being able to analyze
the perturbed dynamics without ever having to calculate the perturbed trajectories
is the benefit of using the Melnikov method. Using Melnikov’s method allows us
to never calculate the perturbed dynamics, even though we obtain a simple expres-
sion describing the characteristics of the perturbed system in terms of the equation

parameters.
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Using the Melnikov function to study lobe size

One of the results of Wiggin’s lobe dynamics theory (Rom-Kedar, Leonard, and
Wiggin’s, (1990)) is to use the Melnikov function to approximately (O(e)) determine
the lobe area. The simplest case is a lobe bounded by two primary intersection points
(pip’s) of the perturbed stable and unstable manifolds. We note here that it is the
primary intersection points that correspond to the zeroes of the Melnikov function.

The lobe might look like Figure A.2. The area of the lobe p(L) can be obtained
by integrating (ds) along the unstable manifold between the two primary intersection

points ¢; and g;. This is,

02
u(s) = / I(s)ds. (A.9)
q1
The height of the normal from the stable manifold to the unstable manifold, I(s)

is approximately equal to the distance between the stable and unstable manifolds

measured normal to the unperturbed manifold; i.e.,

I(3) = |d(to, €)| + O(€?). (A.10)
Recall, this distance d(to, €) is just the unscaled distance used in the derivation of

the Melnikov function in the previous section. Therefore, we can express the height

between the two manifolds in terms of the Melnikov function, M (%o) as follows,

M)l
1) = Tt

Using the chain rule for derivatives, to redefine the differentials, we rewrite the

+ O(€?). (A.11)

differential distance (ds) along the unstable manifold in terms of a differential time

(dto) along the unperturbed manifold as follows,

ds

ds = S=dto = [|F{gu(~to)| + O(6)]dto. (A.12)
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Figure A.2: Lobe created by intersecting manifolds

We also need to determine the new limits of integration in terms of the new time
variable, these are ¢,(—%01) = g1 and q,(—to2) = q2 (see figure). Substituting, all of
the above into the area integral, we obtain,

IM(t0)| 2 _ €
wo) = [Tlre s + 0@l —to)| + 0@t (A13)

Simplifying, we obtain

u(s) = /:o '° IM(to)|dto + O(&). (A.14)

The above integral is approximately (O(e)) the lobe area determined using the
Melnikov function. Although the lobe arrangement is usually not so simple when
there are other than primary intersections, we can determine the area in those cases
too. In addition, this adds another powerful interpretation of the Melnikov function.
In the non-dissipative system, knowing the area and behavior of one lobe allows
you to determine its and all other lobes behavior for all time. This is so because
of area preservation, (i.e., every lobe is a forward and backward iterate of another).

However, in the dissipative system where area is not preserved such is not the case
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and we need to study all lobes for all times. For an example application of this
technique see Wiggins, Rom-Kedar, (1990). In this work, they calculate the escape

rate for a non-dissipative Duffing’s equation.
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APPENDIX B

Discussion of the Melnikov Vector

Following Wiggins, (1988), we determine the effect of multiple degrees of freedom
upon the Melnikov calculation. This formulation is called a Melnikov vector and is
a generalization of the Melnikov function calculation in two dimensions. In order to
determine the effects of the additional degrees of freedom upon the dynamics, we
follow an extension of the original Melnikov theory described in Appendix A. The
multiple degree of freedom theory is explained in a number of references including
Wiggins and Holmes, (1987), Wiggins, (1988) and Wiggins and Shaw, (1988). The
general theory for a variety of classes of systems is completely discussed in Wig-
gins, (1988). However, Wiggins and Holmes, (1987) and Wiggins and Shaw, (1988)
describe the theory applicable to our specific case, the case of a slowly-varying oscil-
lator. The determination of the Melnikov vector (i.e., the multiple degree of freedom
analogue to the Melnikov function) is essentially the single degree of freedom system
(two phase variables) with the addition of two slowly varying terms.

In order to reduce our multiple degree of freedom system to the form described by
the slowly varying oscillator we transform our coordinate system in two steps. First,
we move our coordinate origin to the location where the roll-sway and sway-yaw
inertial and added mass coupling are eliminated. This translation is analogous to
an origin at the center of gravity for a system without hydrodynamic cross-coupling.
Second, we rotate our axis system so that the roll-yaw inertial and added mass

cross product of inertia are eliminated. Again, this rotation is analogous to rotating
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to a principle axis system if the added mass is ignored. Upon carrying out these
coordinate system transformations, our system is now in a form required for the
theory of slowly varying oscillators described in the preceding references.

The theory of slowly varying oscillators, described by Wiggins and Shaw, (1988),
is very similar to the simple Melnikov function calculation described in Appendix
A with some subtle modifications. Because of the slowly varying terms, instead of
a single homoclinic or heteroclinic orbit in the unperturbed system, we now have
a family of such orbits parametrized by the slowly varying coordinates. What is
required to determine is which member or members of this family is or are the
one or ones of interest. This is determined by applying Theorem 2.2 from Wiggins
and Shaw, (1988). This theorem states that by averaging the perturbations to the
slowly varying coordinates and determining for what value or values this is equal to
zero while evaluating the homoclinic or heteroclinic variables at the fixed points will
determine the family member(s) of interest. According to equation 2.13 of Wiggins
and Shaw, (1988), two terms appear in the Melnikov vector for the slowly varying

oscillator. The expression for the slowly varying Melnikov vector is as follows,

Mto)= [ VH(G(t)) - 9(g3(to), t +to)dt - 2 (e [ gt to), ¢ + o)
(B.1)
where, VH = (%,%%,g—z,g% .

The first term is analogous to the terms for the single degree of freedom Melnikov
function while the second term considers the effect of the slowly varying coordinates.
It turns out for our case, we get a linear system for our reduced perturbation, and
that, when averaged, this becomes zero for zero values of both sway and yaw velocity.
In addition, our Melnikov vector is a scalar due to dot products of trivial functions.

As a result of all of this, our multiple degree of freedom Melnikov function is just the

single degree of freedom Melnikov function with the previously mentioned coordinate
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system transformations carried out.

We note here that Wiggins and Shaw, (1988) contains a concise discussion of
the relationship between transverse homoclinic (heteroclinic) intersections and the
Smale horseshoe for a three phase variable system. Although, our problem is four

dimensional we believe the extension is completely analogous.

In order to understand the multiple degree of freedom problem it is useful to
visualize the geometry of our system. The problem with our system is that the
Poincaré maps are four dimensional and we cannot express this graphically. There-
fore, we must rely on a three dimensional graphical representation, drawn on a two
dimensional sheet of paper, and the concepts of co-dimension (Arnold, (1988), and
Guckenhiemer and Holmes, (1986)) used in local bifurcation theory. As a result of
a brief discussion with Professor VI Arnold the exact arrangement of our system is
clear. To illustrate these ideas we draw a three dimensional figure before and after

intersection and annotate it so as to reflect the additional dimension, (see Figure

B.1).

Although for theoretical reasons it is often desirable to reduce a multiple di-
mensional system to the so-called center manifold (Carr, (1981))(Guckenhiemer and
Holmes, (1986)), for our system this is not practical or maybe even possible. This
is so because the center manifold is a local idea that is borrowed from local bifur-
cation theory and our interest is in the global behavior of the system. In order to
apply center manifold theory, we must determine the stable, unstable and center
subspaces and extract the center subspace. Once we divide the spectrum into these
three subspaces, we know from the center manifold theorem that a center manifold
exists. Although, the stable and unstable subspaces are unique the center manifold
is not. Our problem is similar, yet not the same as center manifold problems in two
respects. First, in center manifold problems we often have all eigenvalues less than

one and study the behavior of those equal to one (i.e., the center manifold), in our
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problem we are interested in the most stable and least stable eigenvalues and the
center manifold is not as important to us. Second, center manifold theory is part
of local bifurcation theory, and applies to the behavior at or very near fixed points.
We know that the global manifolds are tangent to the local manifolds which can be
approximated by the eigenvectors. However, we are interested in behavior far from
the fixed points and cannot be sure how the manifolds evolve.

Since we are unable to numerically determine anything but a one dimensional
trajectory using our modified software (Parker and Chua, (1989)), we can not de-
temine general intersections of the stable and unstable manifolds. However, we might
want to consider whether an intersection is even possible for a given geometry. Since
we have a one rapidly expanding eigendirection (unstable), one rapidly contracting
eigendirection (stable), and two slowly evolving directions, it seems as though we
have a three dimensional stable and a three dimensional unstable manifold evolv-
ing from a two dimensional homo(hetero)clinic “point” (Arnold, (1990)). Therefore,
considering the idea of co-dimension (Guckenhiemer and Holmes, (1986)), the inter-
section of these two three dimensional manifolds in our four dimensional space will
be two dimensional (i.e., 3 + 3 — 4 = 2). The other possible cases are summarized in
Table B.1, if the sum of the dimensions is less than that of the space, then no inter-
sections will likely occur (Guckenhiemer and Holmes, (1986)). In the table dim(W?*)
is the dimension of one manifold, dim(W?) is the dimension of the other manifold,
while dim(inter) is the dimension of the intersection. However, since our multiple
degree of freedom system has only one unstable mode corresponding to the single
degree of freedom unstable mode, we have a three-dimensional stable manifold and a
one dimensional unstable manifold. Therefore, we have a zero dimensional (points)

intersection in the Poincaré map (i.e,, 3+1—4 =0).
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dim(W?) | dim(W?) | dim(inter)
3 1 0
2 2 0
3 2 1
3 3 2

Table B.1: Possible intersections of two manifolds in R*

3% partubie manifeld

39
Stable maniid

“*' :“‘MQCRM-
<0 Spece |

Figure B.1: Multi-dimensional manifolds a) before and b) after inter-
section
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APPENDIX C

Stability of Periodic Solutions and the Monodromy Matrix

Following Seydel, (1988), we study the stability of periodic solutions. In order
to study the stability of a given periodic solution we investigate the stability of
neighboring trajectories.

If we begin with a differential equation as follows,

y =1(y,7) (C.1)

with initial conditions y(0) = z and solution trajectory ¢(t;z).
In order to examine the stability of this equation, we consider slight deviations
(do) from the initial conditions (z*) and study whether this deviation grows or decays

with respect to time (see Figure C.1),

d(t) = p(t; 2" + do) — (2; 2"). (C.2)

Since we are considering periodic solutions, we study the solution after one period

(T = 27 /w) as follows?,

1 Recall, although we have a nonautonomous differential equation, we may
consider an extended differential equation (adding time as a independent variable)
and eventually considering a map.

2 For autonomous differential equations, the period of the periodic solution is

often unknown and part of the solution. However, we study harmonic solutions of
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y(e)}
z* y*
2*+d, 7 \/\/\
d(t)
- - t
0 T
Figure C.1: Deviation of known solution with respect to time (Seydel,
(1988))
d(T) = ¢(T; 2" + do) — (T;2") (C.3)

‘We begin by expanding d(T) in a Taylor series about the known (given) initial

value as follows,

9p(T;z")

dT) = 0z

do + higher order terms, (C4)

and study the linearized Jacobian matrix,

3p(T; z")

oz (C.5)
This linearized matrix is called the monodromy matrix and studying its proper-

ties will determine if (do(t)) grows or decays with respect to time. In order to better

understand the properties of the monodromy matrix, we continue to manipulate it.

Since, ¢ solves the differential equation, the following is an identity,

periodically forced differential equations with time periodicity T. Although it may
happen that subharmonic solutions arise by the flip or period doubling bifurcation
as the parameter ) is varied, we only found this to occur for the combined externally
and parametrically forced case we studied.
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i’id-”;_;z_) = f(p(t;2), ) for all t. (C.6)

Continuing, we differentiate the above equation with respect to z to obtain,

4 0p(Tsz) _ 0f(e(tiz), ) Op(t;,2)

dt 0z ) 0z (C.7)

Since ¢(0; z) = z, we know,

dp(0;2)
o =1 (C.8)

Considering the above results, we are able to infer that the monodromy matrix
(the above expression evaluated at time T) is the fundamental solution matrix ®(T’)
at time T. Recall, that the fundamental matrix & is the solution to the following

initial value problem,

® = fy(y*,\)®, with initial condition matrix ®(0) = I. (C.9)

Summarizing the above manipulations, we obtain the following definition from

(Seydel, (1988)),

Definition  The n? monodromy matriz M of the periodic solution y*(t) with period

T and initial value vector z* is given by the following,

M =&T) = ﬁ”%;zl (C.10)

with ¢ and @ defined by the above manipulations.

From Floquet theory, the stability of the periodic solution y* can be studied
by considering the eigenvalues of the monodromy matrix. We note here that by
considering the stability after one period we have reduced the given extended (add

time) continuous differential system to that of a discrete map (take time away again).
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The stability of the system is now based upon whether or not the remaining n-1
eigenvalues (the periodic time eigenvalue is one) are less than one (stable) or if any

one of them is greater than one (unstable).

Change in stability with respect to the parameter (Bifurcation)

Recall bifurcation theory is how the number and stability properties of solutions
change as a parameter is varied. Of most interest to us for application to the ship
turning problem is how the stability properties change. Using classical methods, we
can calculate the stability properties of the single degree of freedom problem with
fixed parameters (hydrodynamic coefficients). However, for the generalized problem
with multiple degrees of freedom and frequency dependent hydrodynamic coefficients
stability cannot easily be determined. For such generalized problems BIFPACK is
well suited. What type of singular points we can have for a two-dimensional map
is illustrated in Seydel, (1988) and for continuous time three-dimensional systems in
Tondl and Schmidt, (1986).

The mechanism for losing stability in a map is determined by where one or more
of the eigenvalues of the map are when they cross the unit circle. Losing stability
occurs when an eigenvalue crosses the unit circle from inside (|z(Ao)] < 1) to outside
(l#(Xo)] > 1), while gaining stability is acé:omplished by the reverse. The three ways
of losing (gaining) stability, determined by the location of the eigenvalue as it crosses
the unit circle, are as follows (see figure),

a) Divergence bifurcation where pu(Xo) = 1,

b) Flip or period doubling bifurcation where u()\o) = —1,

c) Hopf bifurcation where S(u()o)) # 0.

In all our studies to date, (with one exception) the mechanism for gaining or

losing stability has been by the divergence bifurcation. In the single case where
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Figure C.2: Mechanisms for losing stability (Seydel, (1988))

parametric excitation due to time-varying hydrostatics was included, a series of flip

or period doubling bifurcations were observed.
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APPENDIX D

Quantifying Complicated Ship Dynamics with Lyapunov

Exponents

In the previous chapters, we have described the occurrence of chaotic dynam-
ics in ship dynamical systems. One characteristic of nonlinear dynamical systems
exhibiting chaotic dynamics is an extreme sensitivity to initial conditions. This ex-
treme sensitivity to initial conditions is quantified using the Lyapunov characteristic
exponent. The Lyapunov exponent is just a generalization of the eigenvalues of a
fixed point in an autonomous system and the Floquet characteristic exponent that
describes the stability of periodic orbits (Parker and Chua, (1989)).The Lyapunov
exponent characterizes the exponential divergence of neighboring trajectories in a

general dynamical system.

Lyapunov Exponent from Governing Equation

The Lyapunov spectrum of exponents is physically the long term evolution of an
infinitesimal n-sphere of initial conditions (Wolf, et al., (1985)). This n-sphere will
evolve into a n-ellipsoid because of expansion and contraction of the phase space
with time (see Figure D.1).

The Lyapunov exponents expressed in terms of the lengths of the various principal
axes p;(t) is as follows,

for the continuous time system, we have
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Figure D.1: Evolution of an initial condition sphere with time (Moon,

(1988))
o 1o pi(t)
A= Jlim ; log, 2i(0) (D.1)
and for the discrete time system,
. 1 pi(k) 2
m; = k_{?o klp‘(o) | (D‘2)

The exponents A; are ordered from largest to smallest. In order for chaotic
dynamics to occur we must have at least one positive exponent. We note here
that 2% is the linear growth of the first principle axis, 2(*1+*2)* is the area growth
of the first two principle axes and 2(+X+X)t j5 the volume growth. Since the
sum of the exponents must be negative for a dissipative system and since it can be
shown (Parker and Chua, (1989)) that any continuous time system will have a zero
exponent, it takes at least three dimensions (one may be time) in order have chaotic
dynamics. For a three-dimensional chaotic system, the signs of the exponents will be

(+,0,—). Although the nearby trajectories will exponentially diverge, since motion



176
is often bounded over time the phase volume becomes folded (see Figure D.1).

The exponential divergence of nearby trajectories reflects the reason we have
extreme sensitivity to initial conditions. We may also think of the positive Lyapunov
exponent as an exponential expansion and eventual folding to be a way of destroying
information. That means we may consider the exponents to reflect the number
of bits/second gained (-) and destroyed (+) (Chua and Parker, (1989)). Bits per
second is the reason for the base two logarithm. Given a finite numerical precision
and a positive exponent, it is easy to calculate the time interval required to lose all

information about the initial state of a trajectory.

Numerical Implementation Problems and Cautions

In the numerical implementation of an algorithm to calculate the spectrum of
Lyapunov exponents, two problems arise. First, is the problem of exponential growth
of the trajectory of interest (i.e., the one with positive exponent). Second, is the
problem that the integration path eventually lines up with the largest trajectory
making the calculation of the remaining exponents unreliable.

The first concern may be addressed by defining the Lyapunov exponent as a

product,
1
/\1 ~ ﬁln ” 6.'27(KT, 5230,1‘0) ” (D3)
L 1o TT 1l 62
1l g *)
A = T I;ln | 62 || . (D.5)

Using the above equations, the exponent is always renormalized to unity at the

beginning of each time step.
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The second concern may be handled by repeatedly reorthogonalizing the vectors
using the Gram-Schmidt orthogonalization procedure, as often as needed. This is as

follows,

0

v, = D.6
= ol (D-6)
' V2 — (v2’vi)vi

o = D.7
2= Ton = (v 01)% | (D-7)

o = 03T {vs, v3)vy — (vs, ¥1) . (D.8)
37 vy — (vs, vh)vh — (vs, V1))

The above procedure seems to address the reasonable concerns of numerically
estimating the Lyapunov exponents from a differential equation or map. This calcu-
lation may be used as an additional way to prove that chaos is present in a dynamical
system. In addition it can be used to quantify the exponential divergence of neigh-
boring trajectories and sensitivity to initial conditions. Yet the technique should not
be applied in isolation or blindly since it may lead to incorrect conclusions. We have
used this technique only to verify the prescence of chaotic dynamics and to estimate

the exponential divergence of neighboring trajectories.

Reconstruction of an attractor from a time-series

Using the above ideas and the idea of attractor recomstruction due to Ruelle
(Eckmann and Takens, (1985)), one can in theory reconstruct an attractor and its
properties from a time history of a single phase variable. This technique has been
extensively studied and developed by Wolf, et al., (1985). In practical applications
of this technique a large amount of data from numerical simulations or physical
experiments is required. In order to apply this technique we start by choosing a

point on a reference trajectory called a fiducial trajectory and a nearby point. We
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i

Figure D.2: Lyapunov exponent from a time series replacement (Wolf,
et al., (1985))
follow these points until they have sufficiently diverged. We then search the data file
for a replacement point and trajectory. The replacement must be sufficiently close
to the first points current position along the fiducial trajectory and have a minimum
orientation error (see Figure D.2). The formula to estimate the largest Lyapunov

exponent is as follows (Wolf, et al., (1985)),

21 L) (D.9)

- tO k=1 &2 L’(t k-1 )

The figure (Figure D.2) shows how the points evolve with time and how replace-

ments are selected.

Relationship to Lyapunov dimension

As stated previously, the repeated stretching and folding of a given phase volume
due to the presence of Smale horseshoes in the phase space or Poincaré map results
in a fractal like character of basin boundaries to maps of initial conditions. A way
to characterize the fractal nature of the non-simple basin boundaries is the so-called

fractal dimension. While simple objects have integer dimensions, fractal objects
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have non-integer dimensions. For example, a point has dimension zero, a line has
dimension one, an area has dimension two and a volume dimension three. However,
a fractal object may densely but not completely fill a given area or volume. The
fractal dimension measures how filled a certain volume is with trajectories. A simple

geometric construction and formula to determine fractal dimension is

log(N (e))
o Tog(1/e) ° (D.10)

Where N is the number of square boxes with dimension on the side of ¢ required

d = lim,_,

to cover a given attractor. As the boxes get smaller and smaller the ratio converges
to an accurate measure of the fullness of the attractor.

It has been conjectured by Kaplan and Yorke (Froehling, et al., (1980)) that the
relationship between the dynamic Lyapunov spectrum of exponents and the static

information or fractal dimension is as follows,

J X\

dy = j+ =12 D.11
= Pl (D41
Where is j is defined as follows,
J
dA>o0. (D.12)

=1

Recall that the exponents are ordered from largest to smallest. This means that,
j is the sum of positive (with zero defined to be positive) exponents divided by the
next smallest.
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APPENDIX E

Modification to the Righting Arm Curve

From hydrostatics, we know that the height of the center of gravity is related to
the initial slope of the righting arm curve GM and the shape of the righting arm
curve GZ(¢) (Rawson and Tupper, (1978)). For a constant displacement ! and only
changes in the height of the center of gravity, we can derive any righting arm curve

from the reference righting arm curve as follows,

GZnew(¢) = GZre_f(¢) - GnewGrefSin(¢)' (E'l)

In order to modify the vessel’s righting arm curve, we determine the static effect
of the water-on-deck by using the classical hydrostatic approximation to the effect
of slack liquid tanks. This approximation is exact, at the zero frequency limit. It
neglects the effect of water on flow or off flow either through the scuppers or over
the bulwark tops. This approximation also neglects the effect of deck exposure.
Considering all the approximations, the amount of water is small so that its weight
is small with respect to the vessel’s displacement. The motion is slight (infinitesmally
small) so that the nonlinear effects of water over the bulwark top or deck exposure
are neglected.

First, we determine the decrease in metacentric height due to the added weight of

the water-on-deck. From hydrostatics (Rawson and Tupper, (1978)), it is as follows,

1 This is approximately true when a small quantity water comes aboard
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Figure E.1: Derivation of modified righting arm curve from reference

__gw
5GM, = N (E.2)

where g is the distance of the water centroid above the vessel center of gravity.

Second, we determine the decrease of metacentric height due to the water-on-
deck’s off-center moment as the vessel heels. Recall, this linear approximation ne-
glects water spilling over the bulwark top and the water exposing the deck. This
decrease in metacentric height is,

sGM; = 2L, (E.3)

L]

where I; is the transverse area moment of inertia of the planform of the water-on-

deck.
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