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PREFACE

These notes cover the hydrodynamic aspects of air-cushion vehicles,
hydrofoil boats, planing craft, and water propellers. In each case, the
emphasis has been placed on a physical description of the problem, together
with a theoretical development of the results. Comparison of the available
theories with experiments has been supplied where possible.

In almost all of the problems discussed, the theory uses knowledge that
an engineer will have acquired in basic courses on fluid mechanics and engi-
neering dynamics. However, in a small number of sections, it has been neces-
sary to simply quote results, without being sidetracked by a lengthy mathema-
tical development.

Enough information is supplied so that the student will be able to
estimate the powering requirements of these high-performance craft. An
extensive bibliography is provided to enable further reading on detailed
aspects of these vehicles.

The chapters are written so that they can be read independently of each
other. For this reason, a small amount of repetition was necessary -- mainly
in the definition of symbols. The notation was chosen to be as uniform and
consistent as possible throughout the text. The principle exception to
notational uniformity is with regard to the use of the symbol L which can
mean either the length or lift according to the context. The formulas are all
presented in consistent units. A minor exception to this rule occurs in
Chapter 5, where it was decided to remain faithful to the planing-boat
tradition of measuring angles in degrees rather than radians.

I would like to extend my appreciation to Mrs. Paula Bousley for the
excellent assistance she gave me. Her help was in the area of typing the

text, laying out of the diagrams, and editorial advice. It would have been
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impossible to prepare these extensive notes, with such a high standard of

presentation, without being able to rely on her many skills.
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1. INTRODUCTION

1.1. Definition of High-Performance

Small high-performance craft are characterized as having a relatively
high speed for their size. That is to say, the Froude number is large. The
Froude number is defined by

F=vNgL , (1.1)
where V is the velocity, g is the acceleration due to gravity, and I is
the craft length. The "length" to use in (1.1) is often poorly defined in the
case of high-speed craft, since the effective, or hydrodynamic, length can

change considerably with respect to the speed.

Thus, for a planing boat, the effective wetted length becomes less as
the speed increases, and therefore, a beam Froude number is often used
instead., This is defined as

Fg = V/V/gB , (1.2)
in which B is the craft wetted beam. Savitsky (1964), for example, used the
beam to define the 1lift and drag coefficients, as well as the Froude number

(referred to by him as the speed coefficient).

Generally speaking, the higher performance, or speed, requires a consid-
erably increased installed power. This is because the drag is a strongly in-
creasing function of the speed. Thus, if we took the drag to depend on the
square of the speed, then the required propulsive power would be

P = DV (1.3)

I
o
%

(1 .4)

Thus, doubling the installed power, for example, results in an increase in

speed of only 26%.



A second difficulty with attempting to increase the speed is the

resulting poor ride in rough water.

Both of these problems -- too large a required installed power, and
unacceptable accelerations in rough water -- need novel approaches to the
design.

1.2. Typical Design Problems

The air-cushion vehicle (ACV) experiences less drag by being supported on

its cushion above the water. Problem areas of interest are:

1) How to minimize the lift power,

2) How to minimize the response to waves -- yet maintain adequate
stability. (These are conflicting requirements,),

3) How to achieve adequate control,

4) How to reduce the noise level which is characteristic of ACVs, and

5) How to reduce the high cost of construction and maintenance.

The hydrofoil is also based on the principle of lifting the craft out of
the water to reduce drag and motions in waves. Problems which are of concern

to designers are:

1) 'The choice of optimum foils to give maximum lift-to-drag ratio,

2) Avoid cavitation which results in a loss of 1ift and erosion of the
foils,

3) In the case of a high-speed hydrofoil, cavitation can not be avoided.
In this case special supercavitating sections are used to minimize
the effects referred to above,

4) stability has to be adequate,



5) The response to waves must be minimized. This conflicts with the
previous requirement. This is done either naturally or
artificially in the case of fully-submerged foils,

6) The achievement of adequate control, and

7) The transmission of the power to the water.

Finally, in the case of planing boats, we are usually confronted with the

following questions:

1) Maintaining a reasonably low resistance,
2) Minimizing the effect of waves -- usually in the form of slamming,
3) Avoidance of porpoising, and

4) The transmission of the power to the water.

1.3. Transport Efficiency for Different Craft

As noted previously in Sec. 1.1, one pays a penalty for high speed, in
terms of the installed power. The transport efficiency is defined as

NpRANS = WV/P (1.5)
where W is the craft weight and P is the power. 1In the case of ACVs we
should use the total installed power. The weight is taken as the total
weight. However, a case could be made in this definition for using the useful

payload instead.

It is clear that the effective lift-to-drag ratio of a vehicle is given
by the relationship:

(Wv/P)/n

(L/D)EFF.

NTRANS/N  » (1.6)

where n is the propulsive efficiency. Thus ngprayg Yrepresents the



efficiency of the entire vehicle, while (L/D)gpp, 1is the efficiency of the
craft alone.

For the air-cushion vehicle, we should write the following:

NP = np Pp + ny, P, , (1.7)
where Pp and P;, are the propulsion and lift powers, and np and n; are
the propulsion and lift efficiencies. The effective lift-to-drag ratio can

then be found from (1.6).

Fig. 1.1, taken from Mantle (1975), shows how the efficiency drops off
with speed for most craft. It also shows the relatively lower efficiency
obtained by the more exotic craft. The effects are very pronounced when we

consider the logarithmic scales that are being used.

The achievement level -- indicated by the von Karman-Gabrielli line of
1950 -- represents the best that had been obtained at that time. With

technological improvements, this line has been pushed upward.

1.4. Dimensional Analysis

Dimensional analysis is a useful tool in the design of high-performance
vehicles. It is used particularly when setting up model tests, to ensure that

the full-size craft is being properly represented by the model,

The following variables are of particular importance:



TABLE 1.1. Principal Dimensional Variables

Symbol Name Symbol Name
L craft length 1) craft weight
Pw water density s planform area
p air density h hover height
Hw water viscosity P power
M air viscosity m craft mass
g acceleration due to gravity Aw wave length
Pc cushion pressure T surface tension of
the water
0 air flow
N anqular speed of
hy, wave height . _ propeller
Pa atmospheric pressure D propeller diameter
D drag Pv vapor pressure of

the water

The above list is not exhaustive. 1In addition, not all the variables are
applicable in some cases. For example, cushion pressure pc , and hover

height h , have no relevance for hydrofoil boats and for planing craft.

For a model to simulate a full-size craft correctly, all the applicable
dimensionless parameters have to be preserved. The most common ones are shown

below:



From Mantle (1975, p. 3-19)
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Figure 1.1: fTransport Efficiency of Several Craft



=T

TABLE 1.2. Dimensionless Quantities

Symbol Definition Name

R pVL/u Reynolds number for the air
Ry PwVL/ Uy Reynolds number for the water
F V//Ef Froude number
ON (p‘-ﬂ—pv)/-;-pv2 cavitation number
We V/<_3-L/—'r Weber number
ky hy/L sea roughness number

J V/ND advance ratio
N* N//f7§- dimensionless frequency
Cp P/ Pyl cushion density number
Ca Pa/pwIL compressibility number

k ;pvz/pc pressure number
Co o/vL2 flow coefficient

The last four coefficients are relevant only to air-cushion vehicles. It
is common practice to use Froude scaling in model testing. That is, we ensure
that F is the same for model and prototype. This means that VvV « L1/2 , at
the same time, the air and water densities are generally the same for the
model and prototype cases. In addition, one must preserve ratios of lengths.

These include h/L , hy,/L , L2/s , and Aw/L .

An examination of Table 1.2 will show that it is possible to ensure that
almost all these dimensionless parameters can be kept the same for the model
by using Froude scaling. The notable exceptions are: the two Reynolds num-

bers, the cavitation number, the compressibility number, and the Weber Numbers.



Unfortunately, there is no way that the Reynolds numbers can be preserved
for the model, since we cannot substantially reduce the two viscosities on the
model scale. This means that any phenomenon related to frictional losses,
such as the drag, are pronounced on the model. Corrections are often made for

this discrepancy.

In a similar way, the surface tension of the water is beyond any reason-
able control, and so the Weber number is wrong on the model. The Weber number
basically affects spray generation, of which there will be much less on the
model, The implication is that skirt-wetting drag on a model hovercraft will

be too small. The Weber number is not important for other vehicles, though.

Regarding the cavitation number and compressibility number, these will
both be too large on the model, unless the air in the model basin can be
evacuated., This expensive procedure is sometimes carried out -- notably at
the Netherlands Ship Model Basin. The method is to scale the atmospheric
pressure so that (py -py) = L . Non-scaling of the atmospheric pressure re-
sults in too little (or delayed) cavitation at the model scale. This would be

unimportant if there were also no cavitation at the full scale.

Non-scaling of the atmosphere also affects the motions of air cushion
vehicles, because of compressibility of the air. Consequently, models

generally exhibit smaller motions than they should.

1.5. System of Units

All equations in these notes are dimensionally consistent. This means
that any consistent set of units can be used. Examples of units are given in

Table 1.3.
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TABLE 1.3, Some Common Units

Quantity S.I. Symbol English Symbol
mass kg slug
length m ft
time s sec
velocity m/s ft/sec
acceleration m/s2 ft/sec?
area m2 ft2
force kg *m/s2=N slug-ft/sec2=1bf
torque Nm lbf-ft
pressure N/m2=Pa 1bf/ £ t2
discharge m3/s ft3/sec
mass flow kg/s slug/sec
density kg/m3 slug/ft3
dynamic viscosity kg /sm slug/sec+ft
kinematic viscosity mz/s ft2 /sec
surface tension kg/s2 slug/sec2
anqular speed s-1 sec~l
work Nm=J lbf-ft
power J/s=W lbf-ft/sec




2. AIR-CUSHION VEHICLES

2.1. Types of Air-Cushion Vehicles

The simplest type of ACV is the so-called plenum-chamber craft, in which
air is just pumped into the cushion and allowed to escape around the edge of
the craft. Obviously, to gain extra clearance, one needs to expend more lift
power and hence a flexible skirt can be used to great advantage to reduce the

necessary clearance for traveling in rough water.

In the early days, the plenum-chamber design was superceded by the
peripheral-jet type due to the greater efficiency of the latter. fThat is, a
greater lift could be achieved for the same power. With the advent of more:
advanced skirts, however, the plenum-chamber has become more popular. These

vehicles are shown in Fig. 2.1.

For completeness we show the elements of the sidewall or sidehull ACV
(also know as a surface-effect ship, or SES) in Fig. 2.2. The SES has been
the subject of much study by the U.S. Navy. The ram-wing design is shown

in Fig. 2.3, but few models have been built and tested at full scale.

2.2, Lift Performance

The cushion pressure of a plenum-chamber craft, shown in Fig. 2.4, is
given by

Pc = W/S , (2.1)
where S is the base area, measured at the skirt hem., The flow through the
system can be obtained by applying the Bernoulli equation between a point in

the cushion and a point in the jet of air escaping from the craft, fThat is

-10-
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From Mantle (1975, p. 2-4)
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Figure 2.1: Plenun and Peripheral-Jet Craft
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From Mantle (1975, p. 2-7)
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Figure 2.2: Sidewall Craft and Surface-Effect Ships
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From Mantle (1975, p. 2-9)

Figure 2.3: Dynamic-Lift and Ram-Wing Craft
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1
p+ EDV2 + pgz = const, = pp , (2.2)

where p is the air density, v 1is the local velocity, and 2z is the height
above some datum. The constant pgp is the total pressure. The third term

(the hydrostatic one) is very small, and can be ignored. Thus:

1 1

Pc + ngc2 2

= Epve ’

where V. is the velocity of the air in the cushion and v, is the velocity
in the jet (assumed constant across its thickness). Obviously, Ve Vvaries
within the chamber. However, since the hoverheight is usually quite small,
typically 1/20 of the chamber height, we see that v./ve is about 1/20.

1 1
Hence, -pvc2 ~ -pve2/400 and can be neglected. Thus we have
2 2

] 2
pc = -DVe 0 (2.3)
2
The volume flow is given by
Q =ChD¢ Ve , (2.4)
where D, is the discharge coefficient, which takes into account flow con-
traction and viscous effects, and C is the craft perimeter. Combining these

results, we have
Q = Ctht/ch/p - (2-5)

The power required to provide this flow is given by

PL = @c r (2;6)

or PL = C}IDcPcV 2pc/p . (2.7)
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This analysis has ignored the efficiency of the fan and any ducting
losses, as well as any alleviation in lift due to the effect of forward speed.

The inlet ram recovery has also not yet been considered here.

The discharge coefficient (more precisely, the contraction coefficient)
can be found by an ideal-flow analysis in the neighborhood of the lip of the

Plenum. Useful results can be obtained from two-dimensional theory, which

yields values shown in Table 2.1.

TABLE 2.1. The Discharge Coefficient

6 0° 45° 90° 135° 180°
D¢ 0.500 0.537 0.611 0.746 1.000
1/2 n/(w+2) 1

A typical value of 6 is 45°, which gives a discharge coefficient only

7% more than the minimum.

2.2.2. Peripheral jet

We consider the simple thin-jet theory first. The arrangement of a
peripheral-jet craft is shown in Fig. 2.5, while the details of the thin-jet

approximation are shown in Fig. 2.6a.

By geometry we have
h=1r(1 + cos 68) , (2.8)

where r is the radius of curvature of the air jet.

Now, the concept of centrifugal force gives the normal acceleration in

the jet as
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Figure 2.6: Details of Thin-Jet and Thick-Jet Theory
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pr - p)/r = F/m ,

where the Bernoulli equation (2.2) has also been used. We utilize the simple

mean pressure across the jet, so that p = ps/2 , and thus

2 1

-(pp - -Pc)
o PT ~ oPe

a

or

2pp = Pc = Pe

B h/(1 + cos 0)

= pcdA/ptda ,

h
t(1 + cos 6)

This may be rearranged to give

Pc

Pr

where b 4

The thick-jet

pressure variation

We repeat the

Hence dp

Pp - P

2x
= ’ (2.9)
1 +x
t
= 5(1 + cos 6) . (2.10)

theory, shown in Fig. 2.6b, considers the details of the

across the thickness of the jet.

analysis, but for a stream tube of the jet as shown:

i
Q
]
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P dp 2 b4
or f _— - f dy .
p=0 Pr - P r o
P 2y
Thus [-1ln(pp - p)] ==,
p=0 r
2y(1 + cos ©)
and —[1n(pT - p) - ln(pT)] = o '
Pr - P 2y(1 + cos 0)
and ln"—'—'= - . (2.11)
Pr h
P
Hence, 1 - — = e~2x
Pt

Finally, we substitute p;, for p , and t for y , to obtain:

Pc
— =1 - e=2X (2.12)
P

Notes:

1) Thick-jet theory ignores the fact that r varies with y .

2) It also ignores the separation that occurs in the case of a real
fluid when the hoverheight becomes small. An example of this
separation is shown in Fig. 2.6c.

3) It can be shown mathematically that the thin- and thick-jet formulas
(2.9) and (2.12) approach each other as x becomes small.

4) This is also seen in Fig. 2.7, which compares the theories with

experimental results.

The volume flow can be calculated as follows:

t
g=c [ vay
y=0
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From Mantle (1975, p. 3-31)
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Figure 2.7: Thin- and Thick-Jet Theories Compared with Experimental Results
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t 2
=c [ [ -tpr - P]/2 ay
0 P

Now, from (2.11),

, 1/2 t
0= (_) c f /PT e-Y(1 + cosb)/h dy
P 0
R t
= (_) CVpp ——————— [e-y(1 + cose)/h]
P 1 + cosf 0
2p 172 h
() c——[1-etl1 +cos0)/m]
p 1 + cos6
and we obtain,
Ch 2prp 172
= —_— (1 - e™X%) 2.13
© 1 + cosb ( o) ) ’ ( )

2.3. Skirts

2.3.1. 'Te basic purpose

Skirts are used to increase the obstacle-clearing capability of an ACV,

thus permitting operations in a reasonable sea state.

Specific design styles include:
1) Jet extension or trunk,

2) Jetted bag,

3) Bag and finger,

4) 1oop and finger (or segment),

5) Peripheral skirt and jupes,
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6) Pericell,
7) Planing surfaces, and

8) Flexible bags.

The term "seal" is usually applied to (7) and (8) when used on
surface-effect ships, or sidehull hovercraft. These components are then used

at the bow and stern between the sidehulls.,

Fig. 2.8 shows the development and use of trunks and jetted bags, and
finally bags and fingers by the British Hovercraft Corporation. It is
interesting to note the peculiar "inside-only" half trunk, that was originally

used.

In Fig. 2.9 are shown illustrations of (a) a bag and fingers, (b) loop

and segments, and (c) jupes.

In Fig. 2.10, examples of (a) the pericell, and (b) seals that are used

for sidewall ACVs, or SESs, are given.

2.3.2., Stability
To achieve stability, some type of compartmentation is required in order
to prevent cross flow, so that the pressure in the cushion will be higher

under the "down side" of the craft.

This is shown in Fig. 2.11, which illustrates a variety of ways of

dividing the cusion by means of jets, bags, and fingers.

More specific information for the British Hovercraft Corporation SR.N4 is
shown in Fig. 2.12. It is seen that the cushion is divided into three vol-
umes., The cross-wise bags are split into two to increase the freedom of pass-

age of obstacles (such as waves) under the craft.
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From Mantle (1975, p. 5-2)
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Figure 2.,9: Basic Skirt Systems



-26-

From Mantle (1975, p. 5-3)
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From Mantle (1975, p. 5-14)
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The pressures used in the bags are also noted. Two additional features
of the bags are (a) the anti-plow web in the forward section, and (b) the
anti-bounce web in the side sections. The former is to prevent the bow skirt
from being dragged back too far in an extreme situation resulting in an aft
movement of the center of pressure, which would aggravate the bow-down trim of
the craft. The anti-bounce web acts to damp an inherent up-and-down motion

instability in the side bags, under smooth conditions of the sea.
Further details of the longitudinal keel are shown in Fig. 2.13.

Cones or closed fingers are used at the stern to prevent scooping of the

water,

The sizing of the holes, shown in Fig. 2.14, can be made to generate the
desired pressure in the bag, so that it will achieve the appropriate shape

when inflated.

2.3.3., Materials
The most commonly used materials are a woven nylon fabric cloth coated
with neoprene and natural rubbers such as styrene butadiene rubber, which have

been found to give the best results with respect to endurance.

The strength of the materials results mainly from the fabric cloth, while

the sealing and resistance to delamination is handled by the coating.

Special flagellators, devices which blow air and water over a specimen of

the skirt, simulate the flapping action of the skirt as it passes over waves.
This action causes the delamination, which is the main source of wear of skirt
fingers, whose life is typically 200 to 600 hours of operation,

Bags tend to last longer, perhaps up to 2000 hours of operation --
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From Mantle (1975, p. 5-15)
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Figure 2.13: Keel and Rear-Skirt Sections
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From Mantle (1975, p. 5-17)

FEED HOLE

Figure 2.14: Two-Dimensional Section of a Bag-and-Finger Skirt
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representing around 100,000 miles of travel.

Interestingly, abrasion of the skirt on hard ground is not a major factor

in skirt wear, as was originally thought,

2.4. Stability and Motions in Waves

2.4.1. Static stability of a plenum chamber in heave

We need to consider the fan and duct characteristics. This is done by
plotting the dimensionless pressure

¥ = pg/pw2D? (2.15)
against the dimensionless flow rate

¢ = uD® (2.16)
where pgf is the fan pressure rise, w is the rotational speed in radiané
per unit time, D is the fan diameter, and Q is the flow. The fan
efficiency is defined as

ng = PEY/PL (2.17)

where Pj, is the power absorbed by the fan.

Typical fan curves are shown in Fig. 2.15. The fans are categorized

according to the specific speed and specific diameter defined below:

Ng ¢1/2/¢3/4 = le/Z/(pf/p)3/“

and (2.18)

w1/4/¢1/2

Dg D(pf/p)l/q/Ql/z

If we assume that the ducting losses are proportional to the square of
the velocity (which will vary along the ducting), it will also be proportional
to the square of the wolume flow. This neglects any minor effect of the

Reynolds number. Hence, we have
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Pc = Pf - kp@® , (2.19)

whereas the fan curve (at constant speed, say) is defined by

pf = pe(Q) . (2.20)

We can now combine (2.1) and (2.19) to determine the equilibrium fan

flow:

= pe(Q) - kpo? (2.21)

nix

Notes:
1) B. (2.21) is nonlinear, but can be solved numerically, if pg(Q) is
known,
2) A graphical method can be employed, by plotting the curve Prequired
= g + kDQ2 on the fan curve. The intersection point gives the
solution.

3) The analysis assumed a constant engine speed. It could be extended

to include engine-fan coupling effects.

If we now displace the ACV from the equilibrium condition, we obtain the
pérturbation to the lift. (Bq. (2.1) does not apply in the non-equilibrium
condition.) Thus, we have

Pc = Pe(Q) - kp? with Q = ChdD'2pc/p -

Carrying out the calculation of the small changes:

dpg
dps = — d
Pc g Q
dPf 3 0
= (— - 2kpQ)(=~— an + — dpe)
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dPf I 1
= (52; - 2kDQ)(c DY 2pc/p dh + ChDg x E Y 2/pcp ch)
IPf Q Q
= — - 2k - dh ~— d ’
o p0)(§ an + o7 axe)
Q opf Q 9Pf
or 1 - —— - 2 dpc = -(— - 2kpQ)dh
[ ZPC(BQ DQ) ] Pc h(aQ DQ)
Q 3dpf
- (— - 2xpo)
dpe h 239
rhus 9pc i (2.22)
dh o (3Pf )
1 = —[(— - 2kpQ
2pc 99 Pc/Q/h

at egm.
Notes:
1) We first solve the equilibrium problem, to obtain the values of

and h . The value of p. at equilibrium is known directly from

(2.1).
2) The cushion stiffness is then computed from (2.22).

3) The heave natural frequency is given by Newton's law:

mz = F
9pPc
= —| x sz ,
dh |eqm.

where 2z is the vertical displacement, and m is the mass of the

craft given by

m=W4qg . (2.23)

The equation of heave motion is then
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- 9P¢ - 0
mz - 95}1_ 2 = .

Thus
mz + kz = 0 , (2.24)
kK = -s 3pc/3h , (2.25)
wp = Yk/m . (2.26)

4) This theory ignores compressibility effects which can be important
on a full-size craft, although not for a model of typical

dimensions.

2.4.2 Static stability of a plenum chamber in pitch or roll

A plenum (and a peripheral jet) craft is unstable in these modes unless
operated at a very low clearance. This instability is a result of the cross

flow under the cushion, which is seen in Fig. 2.16.

As the air flows from left to right in the diagram, it slows down, and
hence there is a pressure rise due to the effect of the Bernoulli equation.
The pressure distribution is such as to destabilize the craft. Three common

methods are used to prevent this cross flow.

1) Compartmentation has the effect of converting the craft into a

number of separate (or roughly so) chambers, each of which is stable

in heave,

2) Center-of-Pressure Shift is created by the effective increase in

area caused by the buckling of the skirt on the "down side" of the

craft.,

3) Pressure Rise or Pericell concept which yields a higher pressure in

the individual cells as they are blocked off on the "down side" of
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Figure 2,16: Destabilizing Cross Flow under a Plenum-Chamber Craft
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the craft.

These ideas are displayed in Fig. 2.17.

2.4.3. Motions in waves

The problem of computing the motions of ACVs in waves is a very complica-
ted one, which has not been solved in a completely satisfactory way. There
are many features of the dynamic system which should be modeled. These in-
clude the unsteady internal aerodynamics of the craft, and the influence of
compressibility of the air. The water surface is compliant and therefore the
hydrodynémics need to be considered too. The engine and fan, which are coup-
led together, fluctuate in speed during the cyclic motion of the vehicle. 1In
principle, all these aspects should be considered together when computing the

craft motion.,

An idea of the response to waves can be judged from some data given by
Stanton-Jones (1968), shown in Fig. 2.18, which depicts heave and pitch motion
results taken from a model of the SR.N2 hovercraft in regular harmonic waves,
One can see that the overall response is approximately the same as that for a
simple linear mass-spring-damper system. In this case, the dimensionless
damping is around 0.25 for pitching, and about 0.5 for heaving. For both

modes of motion, it would be desirable to increase the damping, if possible.

The data displays considerable scatter -- illustrating how difficult it
is to get repeatable results in such tests. Tt is surprising that shorter
skirts seem to give better results (that is, less motion) for the pitching
mode., The longer skirts do, however, give better results for the heaving
case. Unfortunately, these graphs do not show the effect of different wave

heights, so it is not clear how linear the system is.
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From Mantle (1975, p. 4-18)
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Figure 2.17: Methods of Achieving Cushion Stability
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From Stanton-Jones (1968, p. 512)
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The results in Fig. 2,18 were for a jetted skirt. A comparison of this
type of skirt with a bag-and-finger skirt is shown in Fig. 2.19. Again, the
scatter in the data is large, but the important point is that the use of the
finger skirt results in a much reduced pitch motion. This is one reason why

this type of skirt has become more popular.

The outcome of some theoretical calculations by Doctors (1976) is shown
in Fig. 2.20. 1In this work, the steady equations of flow were used to de-
scribe the air flow in the craft. The fans were assumed to be running at a
constant speed. Thus the operating point was considered to move up and down a

known fan curve, such as that shown in Fig. 2.15.

Three basic methods of calculation were considered. 1In the first one,
the so-called "over land" case, the water surface was taken to be rigid. Air
compressibility was ignored. 1In the "over water" case, the unsteady depres-
sion of the water was included in the calculation. 1In the third case, the
effect of air compressibility was included. The compressibility was included
to the extent that it would affect the mass of air within the cushion. As the
air speeds are relatively low compared to the speed of sound, the incompress-
ible Bernoulli equation was used for computing pressure-velocity relation-

ships.

It is encouraging to note the generally correct form of the resulting
response curves, when compared to the experimental results already discussed.
These curves also show the nonlinearity that exists, for the curves with
different hy/L dJdo not collapse together, as they would in a linear system.
Relatively strong effects of air compressibility and water compliance are also

indicated. The air compressibility is measured by the parameter

Ca = pPa/pPwdl ,
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From Stanton-Jones (1968, p. 513): SR.N5 Model
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where p, is the atmospheric pressure. This parameter is seen to be impor-
tant., Therefore, when conducting model tests, the atmosphere should be evacu-
ated to maintain its value. Otherwise, the model tests tend to be conserva-

tive. This point was also made by Mantle (1975, p. 4-13).

2.5, Resistance Calculations

2.5.1. Introduction

The resistance of an ACV is composed of a number of forces, which in
reality interact with each other in a very complicated way. However, most
authors consider each component of drag separately, and then simply add them
together, as follows: aerodynamic drag, momentum drag, cushion wave resis-
tance, skirt drag (wetting, wavemaking, and rough-water). We can therefore
write

D =Dy + Dy + Dy + Dgk + Dgk + D . (2.27)
w wm
A typical breakdown of the components is shown in Fig. 2.21.

2.5.2 BAerodynamic drag

This drag component represents the force required to drive the vehicle
along just above the ground (that is, there is no wave generation). The

effect of the lifting air flow is ignored. In the usual terminology, we have
1

Dy = -pWSpCp , (2.28)
2

where Sy is the frontal area of the craft, and Cp is the drag coefficient

based on Sp .

Notes:
1) The drag coefficient is in reality a function of the Reynolds number.

This effect is usually ignored. That is, model and full-size
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From Mantle (1975, p. 3-57)
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Figure 2.21: Drag Breakdown of Typical Large Air-Cushion Craft
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values are assumed to possess the same drag coefficient.
2) Typical values of Cp range from 0.25 for a well designed craft to
0.38 for an average shape to perhaps 0.50 for a badly designed

body.

2.5.3. Momentum drag

This drag component results from the need to accelerate the stationary
air around the ACV, that is sucked into the fan intakes, up to the speed of
the vehicle. Newton's law states that this force is equal to the time-rate
change of momentum of the air., That is

Dp = pQV . (2.29)
Notes:

1) On early craft, D, was a major part of the drag, because of the

large daylight clearances requiring a large value of O .

2) By the use of skirts, Q 1is greatly reduced, resulting in a

lowering of both lift-air requirements and propulsion power.

2.5.4. Cushion wave resistance

Introduction. The term "cushion wave resistance" refers to the drag

experienced by the ACV due to the production of waves by the pressure acting
down on the water.
The theory behind the calculation makes the following assumptions:
1) fThe water is inviscid. fThat is, the effect of viscosity is ignored.
The theory is therefore referred to as an ideal-fluid theory.
2) The relative level of the cushion pressure is small. This is defined
by the dimensionless pressure, or cushion-density parameter
Cp = Pc/Pwdl (2.30)

where p,, 1is the water density, and L is the craft length,
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Since the static depression under the ACV is given by
§ = pe/pg , (2.31)
We see that the cushion density is just
Cp = §/L . (2.32)
Therefore, Cp represents the ratio of the static cushion depres-
sion to the cushion length.
Typical values of the cushion density lie in the range 0.01 (a
"low-density" craft) to 0.02 (a "high-density" craft).
3) Surface tension is ignored.
4) The theory also assumes that the water is initially at rest and

extends to infinity everywhere.

Two-Dimensional Theory. A simple approach to the solution is to consider

the superposition of two semi-infinite pressure distributions, as shown in

Fig. 2.22,

The downstream wave profile is sinusoidal in form, and was given by Lamb

(1932), as
2pc
g1 = — cos [(x - L/2)g/v?] ' (2.33a)
Pwa

for the first (positive) pressure, while the downstream wave profile for the

second (negative) pressure is
2p¢
o = -~ — cos [(x + L/2)g/V2] . (2.33Db)
PwI
These expressions show that the effective origin of each wave system is where

the pressure jump occurs. The length of the wave is seen to be given by

A

2n/kg (2.34)

where kg = g/v2 ., (2.35)

Yl
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Figure 2,22: Superposition of Elementary Pressure Bands in Two Dimensions
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Eq. (2.33) indicates that the wave elevation is proportional to the

pressure. This is a consquence of assuming that p. is small in (2.30).

We can now combine the bow and stern wave systems to get the resulting

wave elevation:

L =81 +%2
4pc
= = sin(gL/2V2) sin(gx/v%) . (2.36)
Pg

This result shows that the amplitude of the waves is given by

4pc
A = — sin(qgL/2v2%) |, (2.37)
pg

and that we expect a maximum downstream wave at certain speeds. These speeds

occur when

1
1/2F2 = (n - -)“ ? for n = 1,2,3,.-0 . (2.38)
2

Physically, this situation reflects the fact that the bow and stern waves can
combine with each other at appropriate Froude numbers. The outcome is that
the wave-resistance curve has maxima, or "humps" in it. The following table

illustrates this point:

TABLE 2.2, Location of Resistance Humps

n Name of Hump Froude Number
1 Main Hump 0.564
2 Secondary Hump 0.326

3 Tertiary Hump 0.252
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On the other hand, we find that at

1/2F2 = nm for n = 1,2,3,..., (2.39)
no downstream wave is generated. This corresponds to the minima, or "hollows"
in the wave-resistance curve, when plotted against the speed. The first few

hollows are given in the table below:

TABLE 2.3. Location of Resistance Hollows

n Name of Hollow Froude Number
1 Main Hollow 0.399
2 Secondary Hollow 0.282
3 Tertiary Hollow 0.230

We are mainly interested in the wave resistance. It can be shown (see

Newman (1980, pp. 266-270)) that this is given by
pwd A2 . (2.40)

It is interesting to note that as the wave amplitude A is proportional to
the cushion pressure p. , so the wave resistance is proportional to the
square of the pressure, This has an important consequence for the wave

resistance of an ACV: any increase in overall weight results in a much bigger

increase in wave drag.

Substitution of (2.37) into (2.40) yields

4pc2

sin? (1/2F2) . (2.41)

DVV=
PwI

This formula is plotted in Fig. 2.23, where the resistance coefficient is
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defined as

Dy PwaL
Rg = — ¢ E (2.42)
W 2Pc

The diagram shows three curves. The curve corresponding to aL = ® repre-
sents the sharp-edged pressure band, which was the subject of the discussion
that led to (2.41). The strong interferences in the wave system are evident.
The curves corresponding to aL = 20 and aL = 10 involve smoothing of the
edges of the pressure distribution. The smoothing has the effect of reducing
the magnitude of the low-speed humps -- more in keeping with experimental

results.

Three-Dimensional Theory. The three-dimensional theory is more complica-

ted than the two-dimensional one in that there is wave motion transversely as
well as longitudinally. The details of the theory can be found in Barratt

(1965) and Doctors and Sharma (1970). The final result is

1 n/2
Dy = k3cos 6 (Pe? + Pg2 + Qo2 + Qu2) A6 , (2.43)
Towd 0
where
Pe cos cos
Po sin sin
= [[ p(x,y) (wx) {uy) dxdy , (2.44)
Qe S sin cos
Qo cos sin
and
k = kg sec?8
w = k cosf
u =k sinf . (2.45)

In order to use these formulas, one first chooses a pressure distribut-

ion, from which the four wave functions in (2.44) can be found as a function
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of the wave angle 6 . For example, a rectangular ACV can be represented by
a constant pressure p. over an area of dimensions L by B . 1In this case,

(2.44) yields

sin(wL/2) sin(uB/2)

Pe = 4pc

w u
(2.46)

and Pg =0Qs =Qy =0 .

In this example, three out of the four wave functions in (2.46) are zero
because the chosen pressure distribution has two axes of symmetry. The result
(2.46) must now be substituted into (2.43) using (2.45). The integration has

to be performed numerically.

A typical set of results is shown in Fig. 2.24, which are seen to resem-
ble those of the previous figure for the two-dimensional case. The case of
BL = » indicates a sharp pressure fall-off at the side edges (the case that
led to (2.46)). 1In addition, pressure distributions with side smoothing (8L =

10) are shown.

It is noteworthy that the simple two-dimensional results are an excellent
guide to the three-dimensional ones -- particularly in regard to the location
of the humps and hollows -- although the magnitude of these is different. For
smaller beam-to-length ratios (Fig. 2.25), there is a greater discrepancy
between two- and three-dimensional results for the wave resistance. The main

effect is a reduction in the magnitude of the humps.

Finally, Figs. 2.26 through 2.29 show the effect of considering water of
finite depth d . (In this case, (2.43) and (2.45a) have to be modified.)
The result is a greatly increased resistance when the critical depth Froude

number given by
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Fq = V/Vqd (2.47)

is equal to unity.

Comparison with Experiments. Some measured values of the wave resist-

ance, taken from Everest and Hogben (1967) are shown in Fig. 2.30. fTheir re-
sistance coefficient is equal to twice that of (2.42). 1In addition, they used

an inverse-speed scale to highlight the low-speed effects.,

These experiments tend to verify the general form of the wave-resistance
curve at the speeds of interest. fThe main and secondary humps are confirmed,
as well as the main hollow. The theory breaks down at lower speeds, because
the steepness of the waves becomes greater than about 1/7, when they become

nonlinear, thus violating the restrictions of the theory.

The generation of spray at low speeds also tends to cloud the issue of
comparing analytic and experimental results. It is interesting to note that
smoothing of the pressure at the edges (using finite values of alL and BL ,
referred to above) reduces the magnitude of the low-speed oscillations in the

resistance curve -- more in keeping with these experimental results.

2.5.5. Skirt drag

The problem of calculating the drag of the skirts or seals (in the case
of a sidehull ACV) is a very difficult one, and has not been achieved in a
theoretical manner. Mantle (1975) showed how attempts have been made to split

skirt drag into three simply additive components, as follows:

Skirt-Wetting Drag. This drag component refers to the frictional drag of

the water on the skirts in calm water. The data that was analyzed gave the

result:
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Dgx = 3.46x1076(h/1)-0.3%¢/5 q, , (2.48)
w
:
where gqy = -pyV2 (2.49)
2

is the dynamic head of the water. The equation is seen to include the effect
of the dimensionless clearance h/L , the circumference of the skirt C and
the water dynamic head. The planform shape is partly taken into account by
the appearance of the area S . This equation can be expressed dimensionless-

ly as

1 + L/B
Dskw/w = 0.0058 (h/L)=0 3% 0 x , (2.50)

(L/B)1/2
where the pressure number is defined as

1

Eq. (2.50) has been derived from (2.48) assuming a rectangular planform and
the ratio of water density to air density to be 838. The multiplicative

constant in (2.50) is known only very roughly.

Skirt Wavemaking Drag. The suggestion is made that the wavemaking drag

of the skirt is related to that of the cushion, already discussed, in the
following way:

where the cushion-density parameter has been given by (2.30). This formula
can be critized for a number of reasons: it ignores the fact that with
sufficient clearance all round, there would not be any skirt wave drag at all.
Also ignored is the fact that wave resistance is not additive in this simple-

minded way. At best, this formula gives reasonable results for typical ACvVs.
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The results of plotting (2.50) and (2.52) are shown in Fig. 2.31. The
large scatter in the data is evident, but the equations do give a guide to the

magnitude of these skirt forces.

Rough-Water Drag. Finally, Mantle suggested the following equation for

the additional drag associated with operation in rough water:

2hy, 5/3 _
] os qy (2.53)

Dy = 20x10™°
o [hc + hf

Qhere hy, 1is the wave height, hc is the cushion height, and hg¢ is the
height of the fingers. This equation can therefore be applied to a bag-and-
finger skirt., The non-dimensional form of this result is

2h, 5/3 1+ rL/B

Dy/W = 0.34] ] k . (2.54)
he + he (L/B)l/z

The rough-water skirt drag is plotted in Fig. 2.32. Even considering the
logarithmic scales being used, most of the data for different craft do col-
lapse quite well onto the suggested equation. This is true despite the fact
that the skirt designs (and hence their stiffness) vary widely for the cases

analyzed.

2.6. Powering Considerations

2.6.1. Introduction

The power required to drive an ACV essentially consists of that required
to overcome the various resistance components discussed in Section 2.5. In
addition, one must include the lift power. A further complication is that
during operation over rough water, there is a tendency for the waves to
deplete the cushion of its air. This air has to be replenished by the lift

system. This phenomenon is called wave pumping.
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From Mantle (1975, p. 3-58): L/B =
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From Mantle (1975, p. 3-60)
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Another point to consider is the effect of forward speed on the lift-fan
performance. Forward speed also results in some aerodynamic lift on the body
of the craft which reduces the required cushion pressure and the corresponding

lift air flow.

Summing the power components gives us the equation

P = max(Pr,Pyp) + Pp . (2.55)
The first two components of power mentioned in this equation refer respective-~
ly to the lift and wave-pumping terms. The last term Pp is the power re-

quired to overcome all the resistance components referred to in Sec. 2.5.

2.6.2., Cushion pressure and ram pressure

We first note that the general speed of the air flow over the top surface
of the craft will be greater than the forward speed of the vehicle.
Bernoulli's equation states that there will be a corresponding drop in static
pressure, causing an upward force, or lift, on the vehicle. We can therefore

improve on (2.1) for the cushion pressure, by writing
1
Pc = W/S - Cy, -pV2 , (2.56)
2

where Cj, is the lift coefficient due to the upper surface (based on cushion

area). Typical values of Cj lie in the range 0.30 to 0.40.

A second point to note is that part of the dynamic pressure of the free

air stream (related to the craft), namely

]
q = EpVQ , (2.57)

can be recovered by the lift fan.



-67-

2.6.3. Lift power for a plenum chamber

When we consider the flow of energy from the atmosphere to the cushion,
we obtain

Pc = Pf - kpQ? + €q (2.58)
where kp gives the diffuser losses, and ¢ is the intake recovery factor
that represents the fraction of the ram pressure (2.57) that can be retrieved.

Thus the fan pressure is given by

Pf = Pc + kp? - eq . (2.59)

Instead of using (2.5), the following equation is needed for the volume

flow:

1
Q= Cth/g(W/S - CL°5pV2)/p ' (2.60)

where use has been made of (2.56). Finally, the lift power is given by

Pr, = pg Q/ny (2.61)

where np 1is the fan efficiency.

2.6.4. Lift power for a peripheral jet

The total pressure in the air jet is represented by an expression similar
to (2.58), namely
Pr = pf - kpQ? + eq , (2.62)

where kp now represents the diffuser loss for this type of vehicle.

Using (2.12), we obtain the fan pressure
Pf = pc/(1-e72%) + xpo? - eq , (2.63)

while (2.13) gives the volume flow as

0 = (___) . (2.64)
1 + cosB p (1 - e—2x)l/2

The 1lift power for the peripheral jet is then

Py, = p£ Q/ng,
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as before.

2.6.5. Wave-pumping power

We start by considering a two-dimensional wave form given by
1

T = -hy cos[2n(x - vt)/A] , (2.65)
2

where hy/2 is the amplitude, A is the wavelength, t is the time, and x
is the longitudinal coordinate (moving with the ACV). The time-dependent part
of the cushion volume between this wave and the craft is given by
L/2
-L/2
while the time-rate change of this volume gives the flow associated with

cushion pumping:

L/2 .
-L/2
1 L/2

~ -hy BV[cos[Zn(x - Vt)/k]]
2 X = -L/2

-hyBV sin(wL/X) sin(2wvt/A) . (2.66)
The maximum instantaneous value of this flow is just

Qup = hyBV sin(wL/X) . (2.67)

The lift power required to supply the volume flow (in the case of a
plenum chamber) is given by
Pyp = PfQup/NL (2.68)

with pf given by (2.59).

The development of these equations assumes that the craft is traveling at
a constant height above a fixed datum, with no pitching. We have also consid-

ered that the velocity of the wave is small compared to that of the ACV.
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In addition, (2.68) represents an instantaneous maximum (positive) value of
Pyp « At an instant equivalent to half a wave period later, when the wave

pumping is actually negative, we would want to extract this power.

In most ACVs, this is not done, and the craft experiences vertical
accelerations from the wave-pumping effect. In some experimental craft,
however, such as the SES-1002 and SES-100B, a special heave-alleviation system
was installed. fThis system simply vented the excess cushion pressure to

atmosphere, with a resulting improved ride in rough water.

2.6.6. Power required to overcome drag

The drag components are given by (2.28), (2.29), (2.43), (2.50), (2.52),

and (2.54). Combining these, we have the total propulsion power as

Pp = (Dag + Dy + Dy + Dgx + Dgx + Dy)V/np (2.69)
w wm

where np is the efficiency of the propeller.
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3. HYDROFOIL BOATS

3.1 Types of Hydrofoils

3.1.1 Introduction

Hydrofoil systems can be categorized in a number of different ways: the
type of each foil element in the system (subcavitating, supercavitating,
super-ventilated), the placement of the foil relative to the water free sur-
face (surface-piercing or submerged), the grouping of the foils (laterally,
longitudinally, and vertically), and the method of stabilization used (by geo-
metric variations, proximity to the free surface, or by an automatic control

system). We start by considering the first aspect, namely the foil type.

3.1.2 Type of Foil Element

Three types of foil sections are shown in Fig. 3.1t. The subcavitating
foil is the most efficient of these designs, because of its high lift-to-drag
ratio. The section of this foil resembles that of an airfoil section. In
fact, airfoil data is often used to assist in the design of hydrofoils. Aan
excellent reference for this information is the work by Abbott and von Doen-
hoff (1959), in which a collection of information for the NACA-series foils is
given., This data gives the lift and drag characteristics which can be applied
directly to the hydrofoil, provided the appropriate fluid density is used. It
is generally possible to ignore the relatively small effect of the Reynolds
number on the lift, except near the stall condition.

The lift coefficient for a typical wing section is shown in Fig. 3.2,
while the drag coefficient is shown in Fig. 3.3. These depend on the angle of
attack o . The moment coefficient is plotted in the two figures in differ-
ent ways. In the first figure, the moment is measured about the quarter-chord

point (x = c/4, where c¢ is the chord length), whereas in the second figure
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From Eames (1971, p. 116)

SUB - CAVITATION : =< 40 KNOTS

DELAYED CAVITATION: 40-60 KNOTS

Figure 3.1: Typical Hydrofoil Sections
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From Abbott and von Doenhoff (1959, p. 498)
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From Abbott and von Doenhoff (1959, p. 499)
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it is referred to the aerodynamic center (which happens to be quite close to
the quarter-chord point for this foil). The aerodynamic center is defined as
that point about which the moment coefficient is essentially constant -- at
least up to the stalling point. The section lift, drag, and moment coeffi-

cients are defined by the formulas

]
Cp, = L/;pvzc ' : (3.1)
1 ,
Cp = D/Epvzc ’ (3.2)
1
and Cy = M/-pV2c2 (3.3)
2

The numerator in each of these formulas refers to the two-dimensional
lift, drag, and moment, respectively. The graphs of experimental results show
that an increase in the Reynolds number delays stall, but otherwise has little
effect on the lift. The effect of viscosity on drag, of course, is substan-

tial because of skin friction. For this wing section, the center of pressure,

defined by
X =.M/L
Cm
= e C ’ (3.4)
Cr,

basically coincides with the aerodynamic center,

Turning now to the question of cavitation, we first note that the
pressure distribution on the foil can be approximately decomposed into three
parts, as shown in Fig. 3.4. The graphs show the contributions to the three
pressure coefficients. These pressures Pt » P2 + and p3 are defined as the
contributions due to thickness, due to camber at the ideal angle of attack,

and due to any additional angle of attack. The pressure coefficients Cp4
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From Abbott and von Doenhoff (1959, p. 78)
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Cpy , and Cp3 are the ratios of the respective pressures to the dynamic
pressure of the free stream 5pV¢ . Normally, an attempt is made to set the
foil at the ideal angle of attack (also called the shock-free condition), when
the forward sﬁagnation point is at the leading edge. In this condition, the
last coefficient Cp3 is zero.

The pressure on the surface of the foil is given by the formula
1
P = pg + pgd + (Cpy + Cp2 + Cp3)§pvi ’ (3.5)

where the contributions of the atmospheric (pa) and the hydrostatic (pgd) pres-
sures have been included. Under the assumption of thin-foil, or linear,

theory the pressure coefficients are equal to minus twice the relative wvelo-
city increment due to the respective cause, as noted in Fig. 3.4.

As the pressure coefficients are approximately proportional to the re-
spective causes, it can be seen that with sufficient thickness, camber or
angle of attack, or at a great enough speed, the absolute pressure could drop
to the vapor pressure py , at some point on the foil surface. (The pressure
coefficients in (3.5) are all negative over most of the upper foil surface,
due to the effect of the increased velocity on the pressure in the Bernoulli
equation.)

To avoid cavitation at these higher speeds of operation, it is possible
to utilize thinner foil sections. This reduces the thickness effect shown
in Fig. 3.4. Another solution to the difficulty is to make use of a delayed-
cavitation section, seen in Fig. 3.1. Such a section is also illustrated in
Fig. 3.5. Here a comparison in both the section shape and the resulting dis-
tribution of the pressure coefficient is made. The peak pressure has been
reduced, thus allowing some increase in the operating speed of the foil, with-

out the onset of cavitation.
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From Crewe (1958, p. 347)
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Unfortunately, there is a limit to our ability to prevent cavitation, be-
cause the foil section eventually becomes so thin as to be structurally too
weak. Under this condition, it is wvery undesirable to have a partially-
cavitating foil which would result in an unstable flow with unsteady lift and
drag forces on the foil. Furthermore, the resulting cavitation causes rapid
erosion over those parts of the surface where the cavitation bubbles collapse
into water again.

A preferable solution is to employ a so-called supercavitating section
shown at the bottom of Fig. 3.1. In this case, the whole of the upper surface
is enveloped by the cavity so that very little erosion occurs. The cavity
collapse occurs well behind the foil. Unfortunately, the lift-to-drag ratio
of this section is much worse then that of a subcavitating section.

Yet another possibility in foil design is to use a super-ventilating sec-
tion. This section is essentially the same as a supercavitating one, but is
intended for use at relatively high speeds -- but not so high that full cavi-
tation can be guaranteed. Air is led down from the atmosphere to the foil
surface, where it is used to ventilate the resulting cavity, which resembles

the vapor cavity already referred to.

3.1.3 Foil Placement

In early hydrofoil designs, the foils were of the surface=-piercing type.
That is, a portion of the foil (the tips) were designed to project through the
water at the design speed of operation. Such an arrangement provides automa-
tic heave stability, because a downward displacement (say) of the boat will
result in an increase in submerged foil area, and a correspondingly greater
lift force, which will return the craft to its equilibrium position.

Fitting the boat with foils such as these near the bow and the stern will

also ensure static longitudinal (or pitch) stability. Natural roll stability
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can also be ensured by suitable geometric shaping of the foil as seen in a
bow-on view. This point is illustrated in Fig. 3.6. It is necessary to ar-
range the slope of the foil near the water surface so that the local normal
vector intersects the centerplane of the boat above the center of gravity.
This intersection point is equivalent to the metacenter. It is clear that as
the boat travels faster, it will rise further out of the water. This means
that the position of the intersection point will be a function of speed, in
general. In other words, the roll stability varies with the speed. Because
of the well-known épv2 factor in 1lift calculations (see (3.1)), there will
be an additional influence of speed on roll stiffness -- as well as on the
heave stiffness.

Fig. 3.6 also shows that the supports which connect the foil to the hull
can provide additional roll stability when the boat is operating in the hull-
borne mode.

More recently, attention has been devoted to the use of fully-submerged
foils. The main advantage of this type is the much smaller response to waves
-~ thus giving rise to a smoother ride in rough water. In addition, the foil
efficiency is somewhat better because of the lack of spray losses associated
with the surface-piercing type. The better ride in rough water allows the
pursuit of higher speed, and consequently, the use of supercavitating sections
is often considered. Unfortunately, the lack of wave response also implies
that the submerged foil does not always possess sufficient natural heave and
roll stability. Thus, some means of automatic control system is required.

This control system is usually designed to adjust the angle of flaps set
into the foils, or perhaps to alter the angle of attack of all-movable foils.
A sophisticated system receives inputs from sensors which measure the craft's

motion relative to an inertial frame of reference, as the sea surface cannot



-80-

From Crewe (1958, p. 351)

CHANGE IN HYDROFOIL
LOADING DUE TO ROLL.

DIHEDRAL .
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- — —

ANHEDRAL,,
C.G. ABOVE O’
FOR STABILITY LE.
ANHEDRAL ALWAYS STABILISING IN PRACTICE.

Figure 3.6: Natural Roll Stability with Surface-Piercing Foils
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be used as a datum. Of course, the relative motion must also be continuously
monitored so that in the event of a very heavy sea, the boat will not be
forced to fly through the waves. Different types of responses, depending on
the sea state are therefore required. This is illustrated in Fig. 3.7. The
fully-submerged system has been the subject of research and development by the
US Navy.

A very common design philosophy is to use a main bow foil of the surface-
piercing type, which supports most of the boat's weight. An auxiliary, smal-
ler, fully-submerged foil, carrying the remainder of the load is fitted at the
stern. This combination of the two systems can provide positive longitudinal
(heave and pitch) stability, while roll stability is still derived from the
surface-piercing foil alone. This design is illustrated in Fig. 3.8(c). It
is desirable for a downward heave disturbance of the boat to result in an up~
ward lift force as well as a bow-up moment. In addition, a longitudinal mo-
ment should result in a counteracting moment with little change in lift. Both
these properties are possessed by this arrangement and choice of foils, which
is the most popular one in the western world. It is often called the Supra-
mar system.

A third system is the so-called Alexeyev design which is in common use in
Russia. This makes use of the fact that there is a small loss in lift on the
foil as it approaches the water surface. It is therefore possible to obtain
the necessary stability -- in heave, roll, and pitch, by placing the foils
very close to the surface at the design speed of operation. Because the
stiffness of this system is minimal, it can only be used in relatively calm
water, and at speeds very close to the design speed. It is therefore suitable
for use on inland rivers, as opposed to coastal routes, or the open sea.

A fourth design is that developed by the Defence Research Establishment
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From Du Cane (1974, p. 16)
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From Crewe (1958, p. 353)
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Atlantic (DREA) in Canada. Here, a main subcavitating foil carrying about
ninty percent of the boat weight is located slightly aft of midships. A
smaller surface-piercing superventilated foil is used at the bow to provide
the longitudinal stability. It is said that this arrangement provides good
behavior in a following sea.

The main features of the four systems discussed here are summarized in
Table 3.1. A comparison is made on the basis of hydrodynamic performance,
seakeeping, and other features. It is noted that the Canadian system is well
suited to operation in severe seas, while the Alexeyev system is better suited
for the other extreme, namely calm water. The US Navy system gives excellent
maneuverability and behavior in heavy seas. On the other hand, the Supramar
system has an acceptable performance in most areas, and is particularly favor-

ed for its engineering simplicity.

3.1.4 Foil Grouping

The question of the disposition of the foils around the craft will now be
briefly addressed. Fig. 3.9 shows the basic arrangement possibilities in the
horizontal plane. Regarding the longitudinal disposition of the foils, one
can make use of aeroplane, canard, and tandem systems. Early hydrofoil
designs were of the tandem arrangement, with the center of gravity located
amidships. It is more common now, however, to adopt the aeroplane design
because of its better longitudinal stability characteristics. However, as
noted in Sec. 3.1.3, the canard system can be made to work well in very rough
water,

Regarding the lateral arrangement, the choice is basically between split
and non-split foils as shown in Fig. 3.9. One can get greater foil area, and
hence 1lift, using the non-split style. Where the lift is adequate (for

example, at higher speeds), but additional roll stability is desired, then the
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From Du Cane (1974, p. 15)
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Figure 3.9: Longitudinal and Lateral Arrangement of Foils
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split arrangement is chosen because of its relatively larger track and hence
righting moments that are generated when rolling. The last comment would

apply to both the surface-piercing and the fully-submerged types.

3.1.5 Method of Stabilization

Some methods of achieving stability have already been referred to. Other
possibilities are shown in Fig. 3.10, which shows, in a more comprehensive
way, the different basic designs that were being tested in 1958. One arrange-
ment that was seriously considered at that time was the ladder-foil on the
Canadian boat Baddeck (ex Bras d'Or). That was a development of an original
craft built earlier in the century by Alexander Graham Bell (the inventor of
the telephone), and his associate Frederick Baldwin. Their work led to the
HD-4 hydrodome (the early term for a hydrofoil boat) which achieved a record
water speed of 70.86 mph on September 9, 1919. A detailed description of
their work on hydrofoils was reported by Parkin (1964).

Yet another method of obtaining stabilization is the Aquavion system in
Fig. 3.10. This idea utilizes a pair of planing surfaces projected ahead of
the boat. These act as feelers and sense the heave and roll of the craft rel-
ative to the water surface. One version of a mechanical sensor is called the
Hydrofin, and is depicted in Fig. 3.11. The system requires a mechanical
linkage between the feelers and the incidence control on the fully-submerged
foils. This design attempts to take advantage of the main favorable charac-
teristic of fully-submerged foils -- their relatively low sensitivity to the
waves on the water surface. This advantage is partly lost by the feeler ar-
rangement. As mentioned in Sec. 3.1.3, a better method of stabilization of
fully-submerged foils uses a system which essentially relies on position mea-

sured in an inertial frame of reference.
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Figure 3.10:

Typical Foil Configqurations
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From Du Cane (1974, p. 25)
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Figure 3.11: The Hydrofin Principle
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The chief techniques of stabilization which have been developed are

displayed in Table 3.2.

3.2 Comparison with Other Marine Vehicles

Fig. 3.12 compares the resistance-speed curves for hydrofoil boats, hard-
chine and round-bilge planing craft, and displacement ships. The curves in
Fig. 3.12(b) show that at low speeds, the displacement boat has the least re-
sistance, but the upward trend of the resistance curve is so great, as to make
it impractical for a large Froude number. A round-bilge boat (particularly a
fine one with a large length-to-beam ratio) has a form which delays the even-
tual very rapid increase in resistance, and is therefore more suitable for a
higher speed.

For still higher speeds, one is led to a hard-chine design -~ although
this would be unsuitablé at a lower speed. Fig. 3.12(b) indicates that a hy-
drofoil boat generally has a relatively high resistance at low speeds. How-
ever, for sufficiently high speeds, its resistance is lower than that of the
other types of marine vehicles shown.

The question of designing hydrofoils with different displacements and for
different speeds is raised in Fig. 3.13. It is well known that the 1lift on a
foil is proportional to its area, other factors being equal. This property is
stated by (3.1). Thus for geometrically similar foils traveling at the same
speed, the lift is proportional to the square of the foil span S :

L« s2 , (3.6)
while for geometrically similar boats, the weight depends on the cube of the
craft length ¢ :

Wwa g3 (3.7)
Thus, for the foils to support the weight of the boat, L =W , and we have

S « g3/2 for a fixed speed. (3.8)
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From Crewe (1958, p. 338)
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Fig. 3.13 illustrates graphically that (3.8) requires the span of the foils to
grow much faster than the linear dimension of the hydrofoil. Eventually, for
a large enough boat, the foils would weigh more than the hull!

Of course, by adopting Froude scaling for the speed, we would require
that the speed increases with the length of the boat. That is

vegl/z (3.9)
Under this condition, we should replace (3.8) by

S =« ¢ for a fixed Froude number. (3.10)

This shows that geometric similarity.gggig_be preserved by observing
Froude scaling. In practice, however, this cannot be done. Firstly, extreme-
ly high speeds are not desirable for econamic and safety reasons. Secondly,
cavitation becomes important at the higher speeds (above 40 kt), so that
{3.9) cannot be obeyed.

A similar problem is raised if we wish to design a hydrofoil of a parti-
cular weight to operate over a range of speeds. Because the lift in (3.1) de-
pends on the square of the speed, that is

L« vZ (3.11)
we require much smaller foils at higher speeds, as illustrated in Fig. 3.13.
The ladder-foil system is one successful attempt at a design which provides a
variable foil area to cope with different speeds. (The main deficiency of the
ladder-foil, apart from its complexity, is the lower hydrodynamic efficiency

of a multiplane arrangement.)

3.3 Thin-Foil Theory

3.3.1 Introduction

The computation of the lift developed by a two-dimensional foil is com-
monly based on three inviscid theories. The most general method utilizes a

distribution of mathematical sources and vortices around the surface of the
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foil. This is often called the panel method.

If we assume the surface to be divided into, say, n panels, with the
source strength constant on each panel, then there will be n unknown source
strengths, together with the requirement that there is no normal velocity at
the collocation point (or center) of each panel. The discretization of the
surface into panels is shown in Fig. 3.14. As stated, this method will gener-
ate a flow similar to that shown in Fig, 3.15(a): the pressure distribution
around the foil will generate no lift.

The solution to this difficulty is found by applying the Kutta condition.
This states the experimental fact that the flow should separate smoothly from
the trailing edge, as shown in Fig. 3.15(b). This can be achieved in our
mathematical model by adding a constant vortex density, of equal strength on
each panel, to the sources already referred to. The additional unknown quan-
tity is balanced by the requirement that the tangential velocity on the first
panel must be equal in magnitude to that on the last panel. This statement,
which represents the Kutta condition, is also equivalent to saying that the
pressure is the same on the first and last panels. Results in Fig. 3.14(b)
taken from Doctors and Kelly (1983) show the convergence rate of the lift on a
Joukowski foil based on an integration of the pressure distribution. It is
also known that the lift on a two-dimensional foil is given by

L = pVl ’ (3.12)
where I 1is the circulation per unit span around the foil. In the figure,
the results are dimensionless, in the sense that p and V have both been
set to unity. Three different source-distribution elements have been tested
here, and are referred to as the constant, linear, and tent elements. These
have been given the code numbers 30, 40, and 50, respectively. The figure

shows the slightly better convergence behavior of the tent element compared to
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(a) Ideal Flow:

Viscous
Wake

(b) Real (Viscous) Flow: T > 0

Figure 3.15: BApplication of the Kutta Condition
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the more popular constant element. All three elements converge in the sense
that as the number of elements n becomes large, the computed value of lift
L and circulation T approach the ideal value Tj; for the foil.

The resulting source distribution and tangential-velocity distribution
are shown for the constant-source element. There is little difference between
the case of 32 elements and the ideal result based on conformal mapping (see
Abbott and von Doenhoff (pp 46-63).

The next section deals with thin-foil theory which is adequate for many
of the calculations required in hydrofoil design. This is because of the thin

sections and the small camber and angles of attack that are generally used.

3.3.2 The Singularity Distribution

The assumptions of thin-foil theory allow us to represent the foil by a
combined source and vorticity distribution along the chord line, as shown in
Fig. 3.16. More details of the method can be found in Abbott and von
Doenhoff (pp 64-79), and in Parsons (1980, pp 93-122). We first note that
the upper and lower surface of the foil zy and 2z, , respectively, are given

in terms of the mean line g(x) and the local thickness t(x) , as follows:

1
Zu(x) g(x) + Et(x)

(3.13)

1
and zj(x) = g(x) - Et(X) .

Secondly, we utilize the fact that a point vortex of strength T will
generate a tangential velocity given by

ve = T'/2rr , (3.14)
where r 1is the distance from the vortex. One of the features of thin-foil
theory, is that the effects of thickness t(x) , and of camber g{(x) , in

(3.13) can be considered separately.
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z
thickness t (x) maximum camber g(xc)
upper surface zU(x)
angle of camber line g(x)
attack ! lower surface zL(x)
1 ) X
o c
chord line
pe——— ¥
\4 / c (nose-tail line)
free stream
velocity ¢ =1
chord length
(a) Nomenclature for Foil Section
vorticity vY(x)
S X
0
source density O (x)

(b) Representation by Singularity Distributions

Figure 3.16: Thin-Foil Theory
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It is clear that a source distribution on the chord line will produce a
profile that is symmetric about that line, and can therefore be used to gener-
ate the required value of t(x) . The pressure distribution over the shape
will be symmetric, and consequently, no lift is generated. 1In order to gener-
ate lift, the profile should possess some asymmetry relative to the free
stream. There must be an angle of attack and/or some camber. The problem is
therefore split up into a thickness (source distribution) and mean-line (vor-
ticity distribution) problem. This is illustrated in Fig. 3.17, in which the
mean-line problem is further split into the camber and angle-of-attack effects.

The vertical velocity on the mean line w(xX) can now be equated to the

induced velocity for the entire vorticity distribution:

c y(£)
Wx) = Via - g'(x0)] = - — 4 &
2T g X - £

dg . (3.15)

The right-hand side of (3.15) represents the integration of (3.14) over the
foil, taking T and Y to be positive counter-clockwise. Care has been
taken in (3.15) to distinguish between the "field point" x (where the boundary
condition is applied), and the "source point" { (representing a typical loca-
tion of the elementary vortex).

The solution of (3.15) is somewhat involved. Furthermore, it should be
carried out with the requirement that the vorticity approaches zero at the
trailing edge. Thus

Y(c) =0 . (3.16)
This ensures that the type of lifting flow illustrated in Fig. 3.15(b) is
obtained.

As already noted, the lifting solution represented by (3.15) can be de-
composed into the influences of angle of attack and camber., Some important

solutions are given in Table 3.,3. The effect of an incident flow angle «
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t(x)

Y

(a) The Thickness Problem

g(x)

(b) The Camber Problem

(c) The Angle-of-Attack Problem

zU(x)

zL(x)

(d) The Complete Problem

Figure 3.17: Decomposition of the Foil into Components
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has been incorporated by considering, in addition to parabolic and cubic

shapes, a flat plate at an angle aq .

That is «aq =

A .

Table 3.3 Elementary Solutions for a Thin Subcavitating Foil
Case Equation of Vorticity Distribution Lift Moment
Mean Line Coefficient Coefficient
1 1
g(x) Y(x)/V L/;pvzc M/;pvzcz
- 1
Flat - a1x - 2a4¥ (c-x)/x 2Tay -Tay
Parabolic - azxz/c - day (c-x)/x(1/2+x/c) 3mag ul+3)
15 45
Cubic - a3x3/c2 - 6a3/ (c-x)/x(3/8+x/2c+x2 /c2) —Ta3 gzna3
4

Examination of this table shows that the vorticity is zero at the trail-

ing edge (x = ¢) in each of these cases.

singularity at the leading edge (x = 0), where the theory breaks down.

The foils contain a square-root

This

breakdown affects the validity of the results in that region, but has only a

small effect on the lift and moment which are shown in the last two columns of

Table 3.3.

Furthermore, it is customary to design foils so that the vorticity

does not become unbounded (according to the linear theory) at the leading

edge.,

files, by employing a judicious choice of the constants

ay , ap

(13 7

This is achieved by appropriate combinations of the elementary pro-

etc.

This desired situation is referred to as the shock-free condition,

because the front stagnation point is at the leading edge, and the resulting

flow is smooth.

The lift and moment coefficients on such a composite foil will be given by
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CL

C, +CL +Cf + eae ’ (3.17)
1 2 3
and Cy = CM1 + CM2 + CM3 + see ' (3.18)

and the center of pressure is given by

x/c = Cr/Cy . (3.19)

In concluding this section on thin-foil theory, it can be observed from
(3.17) that a straight line will result from plotting the lift coefficient
against the angle of attack a . Thus, we may write

dCy/da = 2n . (3.20)
On the other hand, the exact (that is, nonlinear) inviscid-flow result for a
flat-plate foil is

dCr/da = 21 cos o . (3.21)
It can therefore be stated that for the usual range of angles of interest (say
a < 10°), the linear theory is within 2% of the nonlinear theory.

A greater difficulty is caused by the neglect of viscosity. This point
is demonstrated in Fig. 3.18, in which it is seen that the lift falls short of
the theory by about 22% at an angle of attack of 12° relative to the no-lift
condition. A modified theory which makes an allowance for viscosity is seen
to produce an improvement in the results. Fig. 3.19 shows the pressure dis-
tribution for the same foil. This figure also illustrates how the simple

theory overpredicts the circulation, and hence the 1ift.

3.4 The Influence of the Free Surface

As already mentioned in Sec. 3.1.3, the 1lift on a foil drops off as it is
brought near the free surface. This means that the efficiency of the foil is
reduced, and consequently an increased surface area is needed. This problem

was examined by Hough and Moran (1969) for two-dimensional foils, within the
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From Abbott and von Doenhoff (1959, p. 61)
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Figure 3.,18: Effect of Viscosity on Lift and Moment
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From Abbott and von Doenhoff (1959, p. 62)
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Figure 3.19: Measured and Theoretical Pressure Distributions
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framework of linearized theory, already discussed in Sec. 3.3.2. Although ex-
pressed in a different manner, their method basically uses equations related
to (3.14) and (3.15). These formulas have to be modified because the presence
of the free surface alters the simple inverse relationship between tangential
velocity and distance as expressed by (3.14).

Results of their work are displayed in Figs 3.20 through 3.22., Three
foils are considered. The first is a flat plate at an angle of attack a ,
corresponding to the first case of Table 3.3. The second foil is a parabolic-
arc at zero angle of attack, corresponding to a combination of the first two
cases in Table 3.3, with a3 = -ay . The third foil is a flat horizontal foil
with a flap set at an angle of attack. The flap represents the last fraction
of the foil given by either E = 0.3 or 0.5, as noted in the figures. In these
foils, the lift and moment will be proportional to the angle of attack, or the
camber, as the case may be. However this dependence is not immediately appar-
ent in the method of presentation of the data: the lift and moment coeffi-
cients are all plotted as a ratio to their values in an unbounded fluid. Figs
3.20 through 3.22 can therefore be conveniently used to apply correction fac-
tors to the formulas in Table 3,3.

Turning first to Fig. 3.20, we see that the effect of the free-surface is
always to reduce the lifting capacity of the foil -- particularly for lower
Froude numbers. It is interesting to note that at an infinite Froude number,
the reduction in lift is exactly 50% when the depth of submergence 4 ,
approaches zero. Upon examining the effects displayed in Fig. 3.21, it should
be noted that in the cruise condition for most hydrofoils, the Froude number
(which is based on the chord length) is extremely high, and can often be
approximated as being infinite.

The effect on the moment is shown in Fig. 3.22. This figure is mainly of
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From Hough and Moran (1969, p. 57)
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Figure 3.20: Effect of Submergence on Hydrofoil Lift
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From Hough and Moran (1969, p. 57)
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Figure 3,21: Effect of Froude Number on Hydrofoil Lift
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From Hough and Moran (1969, p. 58)
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scientific interest, as most of the longitudinal moment on a hydrofoil craft
arises from the relative forces on the bow and stern foils, and not from any
relatively small absolute shifts in the center of pressure on the individual
foils.

The graphical results for lift are also presented numerically in Table
3.4.

Regarding the pressure distribution over the foil surface, and its in-
fluence on the inception of cavitation, the method of Hough and Moran cannot
be used, except at the shock-free condition. This is because the linearized
theory breaks down at the leading edge, as already mentioned in Sec. 3.3.3. A
method proposed by Giesing and Smith (1967) overcomes this difficulty by sa-
tisfying the kinematic condition on the foil surface exactly. This technique
is an extension of the method used to generate Fig. 3.14 to include the free-
surface effect. (In the same way, the method of Hough and Moran was an exten-
sion of the linearized theory to include the influence of the free surface.)

Examples of computed pressure distributions on a foil near a free surface
are presented in Fig. 3.23. It is seen that the measured form of the pressure
is correctly predicted. However, the pressures are generally high by about
18%. The main cause of this discrepancy is viscosity, which also affects the
lift performance of an airfoil without a free surface. This point was refer-
red to already in Sec. 3.3.3, and was shown in Figs. 3.18 and 3.19. The theo-
retical pressure distribution can be brought into line with the experimental
one by reducing the angle of attack in order to give the same 1lift coeffi-
cient. Further confirmation of the method of Giesing and Smith is provided by

Fig. 3.24.
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Present method From Glesing and Smith (1967, p. 126)
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Joukowski Hydrofoil
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3.5 Supercavitating Foils

3.5.1 Introduction

It was mentioned in Sec. 3.1.2 that it becomes necessary to utilize
supercavitating sections at high speeds of operation. Such sections provide a
more efficient, and stable performance than a section designed for subcavita-
ting operation. Fig. 3.25 shows how a subcavitating section begins to cavi-
tate, The cavitation starts to occur at the point on the surface where the
pressure is lowest. The location of this point depends on the angle of attack
of the foil, among other things.,

Fig. 3.26 illustrates the flow around a supercavitating section. The an-
alysis of this flow is extremely difficult -- even within the restrictions of
potential-flow theory. This is because of the cavity-collapse region, which
is critical in determining the flow pattern. Obviously, the role of viscosity
and turbulence cannot be ignored in this area. However, results of great
practical use can be obtained under the assumption of an infinite cavity
length -~ where the collapse phenomenon does not influence the foil., This

corresponds to a zero cavitation number. The cavitation number is defined by
1
oy = (pa + pgd - pv)/;pv2 . (3.22)

Assuming that Oy 1is zero would be valid for the case of extremely high

speed, or Froude number,

3.5.2 Linearized Solution

A further simplification results from the assumptions of linearized flow.
This requires that the angle of attack and camber are both small as in Sec.
3.3.2. This theory was described by Newman (1980, pp 215-220). The

performance for three elementary foil shapes is given in Table 3.5.
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From Du Cane (1974, p. 45)
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Figure 3.25: Typical Cavitation Bucket Diagram
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Table 3.5. Elementary Solutions for a Thin Supercavitating Foil

Case Equation of Lift Moment Drag
Lower Surface Coefficient Coefficient Coefficient
of Foil 1 1 1
g(x) L/-pVic M/-pv2c2 D/-pVec
2 2 2
1 5 1
Flat - ax -7 —T -maq?
32 2
15 25 25
Parabolic - ayx? /c —Tay —Tao —wagy?
16 64 32
315 4725 35721
Cubic - a3x3/c? —Ta3 T3 Ta3
256 8192 32768

It is instructional to compare these results with those of Table 3.3 for
the corresponding subcavitating foil. That table does not contain a column
for the drag, as there is no drag on a two-dimensional fully-wetted foil in
inviscid flow. (The horizontal component of the pressure distribution around
the foil integrates to zero.) Of course one must add the frictional drag on
both sides of the foil for the subcavitating case, and on just one side of the
foil in the supercavitating case.

Regarding the 1lift for the flat plate, it is seen that this is one-quar-
ter of that for the subcavitating case. When one also considers the pressure-
drag contribution (in the last column of Table 3.5), it is clear that the
supercavitating foil is less efficient,

Just as for the subcavitating foil, we may generate a composite super-

cavitating foil for the elementary solutions, as noted by Tulin (1964):

CL, C, +C, +C + .. ’ (3.23)
1 2 3

1

Cy=CMq +Cq +Cy + eus ; (3.24)
1 2 3
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x/c = Cr,/CM ’ (3.25)

and Cp

[(CD1)1/2 + (ch)l/2 + (cD3)1’2 +.ee]? (3.26)

In the last formula, the sign of the square roots is that of the corresponding
value of the coefficient « in Table 3.5. That the section drag coefficients
in (3.26) are not simply additive should be clear from the fact that while we
can obviously add the elementary pressure distributions to give (3.23) and

(3.24), the horizontal components of these are affected by the foil profile.

3.5.3 The Influence of the Free Surface

One would anticipate that the proximity of the water surface must affect
the lift and drag characteristics of a supercavitating foil just as the be-
havior of subcavitating foils is altered. This problem has been examined by
Doctors (1984). The angle of attack and curvature of the foil were considered
to be small so that a linearized approach to the solution could be made. As a
result of the linearizing process, many of the quantities of interest are pro-
portional to the angle of attack a (the same is true even for a cambered
foil, if the camber is proportional to a). Such quantities include the upper
and lower elevations of the cavity yy and vy, , seen in Figs 3,27 and 3.28,
the lift coefficient ¢ in Figs 3.29(a) and 3.30(a), and the cavitation
number oy in Figs 3.29(b) and 3.30(c). The latter was defined in (3.22).
The drag coefficient Cp , on the other hand, is proportional to a2 , as
noted in Figs 3.29(a) and 3.30(b).

Figs 3.27 and 3.28 illustrate the rather strong influence of the Froude
number and depth of submergence on the cavity shape, which can suffer large
distortions, as the free surface is approached.,

In order to use this data one must first compute the reduced cavitation

number oy/a , using (3.22). This assumes that the required depth of opera-
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From Doctors (1984, p. 37)
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Figure 3.27:

Cavity Shapes for a Flat Supercavitating Foil
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From Doctors (1984, p. 38)
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Figure 3.28:

Cavity Shapes for a Parabolic Supercavitating Foil
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Figure 3.29: Performance of a Flat Supercavitating Foil
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From Doctors (1984, p. 40)
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From Doctors (1984, p. 41)
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tion d , and the angle of attack a have been chosen. The cavity length £
is then obtained using Fig. 3.29(b) for the flat foil, or Fig. 3.30(c) for the
parabolic foil.

The second stage is to use the cavity length to find the 1lift and drag
coefficients from Fig. 3.29(a) for the flat foil, or Figs 3.29(a) and (b) for
the parabolic foil.

It should be noted that the superposition laws for lift and moment given
by (3.23) through (3.25) hold for the present case (where the cavity length is
finite and the influence of the free surface is included). In the same
manner, the cavitation number can be constructed from a linear combination of
the contributions from elementary foils. Unfortunately, the law for combining
the contributions to the drag coefficient (3.26) does not apply here, being
somewhat more complicated in the present case.

Finally, it may be noted that the limiting values of the 1lift and drag
coefficient for infinite values of the Froude number, depth-to-chord ratio,
and cavity-length-to-chord ratio have been indicated on Figs 3.29(a), 3.30(a),

and 3.30(b). These were obtained from Table 3.5.

3.6 Three-Dimensional Effects

3.6.1 Subcavitating Foils

We consider here the problem of extending the results of Sec. 3.3.2 for a
thin two-dimensional foil to the three-dimensional case. Such a foil can be
represented by a vortex pattern as shown in Fig. 3.31. The vortex pattern
effectively consists of a line of bound vortices on the wing and a distribu-
tion of trailing, or free, vortices behind the wing. This is referred to as
the lifting-line model.

Details of this theory can be found in Abbott and von Doenhoff (1959),
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From abbott and von Doenhoff

(1958, p. 9)
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Figure 3.,31: Vortex Pattern Representing a Lifting Wing
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Glauert (1944, pp 137-155), and in Parsons (1980, pp 123-142). Wwhile lifting-
line theory can be applied to a wing with arbitrary spanwise loading, parti=-
cularly simple results are obtained if it is assumed that the loading varies
from zero at one tip to a maximum in the center and back to zero at the other
tip in an elliptic fashion.

For the elliptic load distribution, the vortices shown in Fig. 3.31
induce a constant downwash velocity over the span of the wing, resulting in a
spanwise-constant induced angle-of-attack correction, given by

ar = - C,/TA (3.27)
where Cp, is the three-dimensional lift coefficient, and A is the aspect
ratio of this wing. Now, the force generated by the wing acts normal to the
resulting flow (not the free-stream in this case). Thus, as a result of the
induced downwash, a three-dimensional wing has a drag (even in inviscid flow)
-- in contrast to the case of two dimensions. We may now write for the lift
coefficient:

CL = 2mag = 2n(a - agg + ag) ' (3.28)
where agp is the effective angle of attack in three-dimensions, a is the
actual angle of attack measured from the chord line as usual, and ar,o 1is the
angle of attack at which there is no 1lift (usually negative).

We can combine the above results to give

Cy, = m(a - arg) = 21A(a - apg)/(A + 2) . (3.29)

This equation shows that the lift-curve slope, namely dCp/da = m, is less

14
than the ideal two-dimensional result of 2w, but it approaches that value as
the aspect ratio becomes large.

This formula is plotted in Fig. 3.32, together with other theories and

some numerical results based on lifting-surface theory. This theory assumes a

distribution of vortices over the wing surface rather than simply using a con-
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centrated bound vortex. The lifting-line theory becomes progressively better
as the aspect ratio is increased.

In some cases, the two-dimensional lift-curve slope is given by mo o
that is, different from the ideal value of 21 for an inviscid flow without a
free surface. (See Fig. 3.18, for example.) Then (3.28) has to be adjusted,
and consequently (3.29) becomes:

m =mg/(1t + mg/mA) . (3.30)

3.6.2 Non-Elliptic Loadings

As noted above, computations for other loading cases can be made by the
lifting-line method. A common example, of interest to hydrofoil designers, is
the rectangular-planform wing. Details of this case can be found in Glauert
(p. 150). A comparison of the efficiency of a rectangular wing to an elliptic
one is given in Table 3.6. It can be seen that although the elliptic distri-
bution is known to be the most efficient (because of the uniform induced down-

wash), other practical shapes are not markedly inferior to it.

Table 3.6. Comparison of Rectangular to Elliptic Load Distributions

Aspect Ratio 2 4 6 8 10 @

cL,Rectangular

0.968 | 0.967 | 0.966 | 0.964 | 0.962 | 1
CL,Elliptic

3.6.3 Combined Influence with the Free Surface

The question of the three-dimensional effect in combination with the
proximity of the free surface is an important one. It applies to both sub-

cavitating and supercavitating foils. A full investigation of the problem
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has been carried out by very few workers, and is beyond the scope of this
course. The correct answer must involve, at the minimum, a lifting-line
approach in which the vortex whose behavior satisfies the free-surface
condition is used.

An expedient solution is to apply the three-dimensional correction
factors presented in Séc. 3.6.1 to the relevant two~dimensional data covered
in Sec. 3.4 for the subcavitating foil near a free surface, and in Sec. 3.5
for the supercavitating foil near a free surface. The use of correction
factors in the latter case would be most justified when the Froude number is
infinite (the case of practical interest), as there is no vorticity in the

cavity then, and the foil can be accurately represented by a lifting-line.

3.7 Calculation of Foil Resistance

3.7.1 Subcavitating Foils

The drag coefficient of a fully-wetted hydrofoil can be approximately
decomposed into a number of contributions as follows:

Cp = C +Cph +C + C (3.31)
D D0 DI Dw DT '

in which the terms on the right-hand side are the viscous, induced, wave, and
tip-loss drag coefficients, respectively.

The viscous drag is a result of the frictional drag on the foil, together
with the pressure drag caused by the lack of complete pressure recovery toward
the trailing edge of the foil. This coefficient has been measured for the
NACA sections, for example, already discussed in Sec. 3.1.2. If such data is
lacking for the section of interest, then one could utilize a suggestion men-
tioned by Du Cane (1974, p. 34), namely:

Cp, = 2Cp(1 + 1.2 t/c) + 0.11(Cy, - cL ), (3.32)
py
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where Cp is the flat-plate friction coefficient, t is the maximum thick-
ness of the foil, and CLi is the coefficient of 1lift at the ideal angle of
attack, that is, the shock-free condition, already discussed in Sec. 3.3.2,.

The first term of (3.32) is seen to include the friction on both sides of
the foil, as well as a correction for the effect of thickness. The second
term accounts for the lack of pressure recovery -- assumed to be a minimum at
the ideal angle of attack. As a test, this equation can be compared with the
experimental results of Fig. 3.3.

Regarding the frictional drag, one can consult the information presented
by Schlichting (1962), which is reproduced in Fig. 3.33. If we assume that
the flow is fully turbulent, then Curve 2 on this figure (the one-seventh
power law) may be used in the low-Reynolds-number region:

Cg = 0.074 R"}/5 for 5x105 < R < 107 , (3.33)
where R is the Reynolds number based on the chord of the foil:

R = pVc/u ' (3.34)
in which u is the viscosity of the water. An approximation suitable for a
larger range of Reynolds numbers (the logarithmic law) is given by

Cp = 0.455/(logqgR)<*%8 for 105 ¢ R < 109 , (3.35)
and is referred to as Curve 3 in Fig. 3.33.

The induced drag has already been discussed, and can be calculated as the
horizontal component of the "lift" force on the wing. As noted in Sec. 3.6.1,
the force acts at an angle ay to the vertical. Thus, we may write

cDI = cplag] (3.36)

and using (3.27), we have

Cp = Cpé/mA . (3.37)
I

The next term in (3.31) is the wave resistance. This can be computed by
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means of the amplitude of the downstream waves generated by an equivalent
lifting line. It can also be calculated on the basis of the induced downwash
velocity experienced by the foil. Adopting the second approach, it can be
shown (for example, Doctors (1984, Eq. (31)), that the downwash velocity at
the foil is given by

wy = koI' exp(~ 2kqod) ’ (3.38)
where kg is the wave number given by

kg = g/v2 . (3.39)

Now, we have the wave-induced angle of attack:

ag = = wy/V

kol
= = —— exp(- 2kpd) . (3.40)
v
The circulation can be expressed in terms of the 1lift by means of (3.12), so

that (3.40) becomes

koL
ay = -~ —= exp(- 2kpd)
W o2 0

1

Lastly, the wave resistance is given by a formula similar to (3.36):

= Cyp,|ay| (3.42)

Q
o
|

1
Ekoc Cr2exp(~ 2kqpd)

1

= Cplexp(- 2d/cF2) (3.43)

This formula is identical to that given by Du Cane (p. 36, Eq. (8)). An in-
spection of (3.43) shows that at a high Froude number F (which is based on

the foil chord), the wave resistance becomes negligible. This analysis is a
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two-dimensional one but should give reasonably accurate results in a typical
three-dimensional case.

A detailed discussion of the last term in (3.31) is beyond the scope of
these notes. The tip losses result from a number of effects including the
finite thickness of the foil at the tips ttip . For the case of zero lift,
the contribution from two wing tips to the total drag coefficient might be

approximated, as pointed out by Parsons (p. 138), by

Cp 0.11(ttip/c)2 for square ends ,
T (3.44)

- O.O4(ttip/c)2 for round ends .

The question of tip losses when the wing generates lift is more complicated

and will not be discussed here.

3.7.2 Supercavitating Foils

We may write the resistance of a supercavitating foil as

Cph =Cp + Cp o (3.45)
0 p

The terms on the right-hand side represent the viscous- and the pressure-drag
components, respectively. The wave drag is included in the pressure-drag
term, as is the induced drag. The tip losses have been ignored here.

Regarding the viscous drag, this can be estimated as the frictional drag
on one side of a flat plate. Thus we write

where Cp has been approximated by (3.33) and (3.35), and is plotted in Fig.
3.33. 1In contrast to the subcavitating case, where (3.32) is applicable,
there are negligible thickness and pressure-loss effects on the viscous drag
in the present case.

The main component of drag on the foil is due to the pressure distribu-

tion on the lower (wetted) surface. For the simplest case, we can write
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Cp = aCp, for a flat supercavitating foil. (3.47)
p

For foils with a curved surface, one has to resort to more involved calcula-
tions. The results of these are shown in Table 3.5 and are applicable to the
case when free-surface and cavity-length effects are ignored. More complete

information is presented in Figs. 3.29 and 3.30.

3.8 Calculation of Inception of Cavitation

Assuming one had access to detailed pressure distributions on the foil,

such as those shown in Fig. 3.4, then we could rewrite (3.5) as
1
Pv = Pa + pgd + (Cp + sz)zpvz ' (3.48)

since cavitation would start when p = py . We have assumed that the foil is

set at the ideal angle of attack, and thus Cp = 0 . We may rearrange (3.48)
3

using the definition of the cavitation number in (3.22):

ON = - (CP1+ sz) . (3-49)

Note that both CP1 and sz are negative, and that one is interested in
their maximum absolute values. (This assumes that these occur at approximate-
ly the same place on the surface of the foil.)

Thus, for example, we first select the speed and depth of operation of
the foil, The cavitation number is then calculated from (3.22) and substitu-
ted into (3.49). This method yields the maximum angle of attack a before
cavitation occurs.

If detailed pressure coefficients are lacking, then an approximate pro-
cedure can be used. First, values of the pressure coefficient due to the
thickness effect Cp1 can be extracted from Table 3.7, on the assumption that

these are proportional to the foil-section thickness. The pressure coeffi-
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cient due to the camber can be computed by assuming that the load is distri-
buted equally between the upper and lower surfaces of the foil, and that it is
uniform over the leading fraction a of the foil, and then tapers to zero at
the trailing edge. This type of foil is called a NACA "a" series section.
This gives

1
cL_= - 2cpz[a + o0 - a)]

oxr -C = C (1 + a) . (3.50)
P, Li/

This formula only applies to the ideal case, at the shock-free condition.
At larger angles of attack, a strong suction is created on the upper surface
near the nose. At smaller angles of attack, a strong suction is created on
the lower surface near the nose. Either of these two possibilities invali-

dates (3.50).

1
The best value of - Cp is =Cy, and would occur if the loading were
2 2 i

completely uniform, that is a = 1 . This is practically impossible to

2
achieve. In practice, a value of - Cp such as -Cp, is a goal that can
2 ™ i

be achieved.
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4. PLANING CRAFT

4,1. Introduction

4.1.1. Types of Planing Hulls

Two basic hull forms are shown in Figs. 4.1 and 4.2. These illustrate
typical round-form and hard-chine designs that are in common use. Both of
these designs possess the two principal characteristics of an essentially
vertical and flat transom stern, together with an approximately flat and
horizontal bottom. The idea behind these two features is to promote the
planing behavior. The chine, shown in Fig. 4.1 is the discontinuity in the
hull surface.

Planing is generally said to occur when the boat is traveling fast enough
for the major part (say 50 to 90%) of its weight to be supported by hydrody-
namic forces -- rather than hydrostatic forces alone. The speed at which this
occurs depends on the details of the hull shape and, of course, the develop-
ment of the pheonomenon of planing is a gradual one. In fact, at very low
speeds, the hydrodynamic effect is a negative one. The speed of the water
over most of the hull surface is greater than that of the forward speed of the
boat, and this causes a drop in pressure. The suction forces the boat to
squat, and also to assume a trim.

It is only when the speed increases sufficiently for the flow to separate
cleanly from the bottom of the transom, that the form of the pressure distri-
bution on the hull surface changes markedly and generates an upward force and
a bow-up moment. For this reason, planing is commonly associated with the
transom of the stern becoming dry.

The speed of a planing boat is generally defined by means of the beam
Froude number, that is

Fg = V/YgB , (4.1)
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From Du Cane (1974, pp 4 and 5)

Deck Line

Transom

(a) Round-Form Type

Deck Line

Transom

-
-e”
o
-

(b) Hard-Chine Type

Figure 4.1: Types of Planing Hulls
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where V is the forward speed, g is the acceleration due to gravity, and
B 1is the beam (preferably measured at the transom). The Froude number based
on the beam, is often called the speed coefficient, and is a better measure
than the Froude number based on the craft length at rest, namely

Fo = V/V/gLg , (4.2)
where Lg is the wetted length of the stationary boat. The stationary Froude
number has little hydrodynamic significance, because the wetted length varies
with speed.

A third possibility is to use the dynamic wetted length L , when under-
way. That is,

F=v/gL . (4.3)
This Froude number is hydrodynamically meaningful like the beam Froude number.
Unfortunately it is not so convenient to use because the Froude number defined
this way is not proportional to the speed. Finally, it should be pointed out

that a volume Froude number is also popularly used in connection with planing

boats:

Fy = v//gvl73 , (4.4)
where V is the at-rest displaced volume of the craft.

The lift force is less on a round-form boat because of the Bernoulli
effect already referred to. The hard-chine form is therefore preferred if
very high speeds are desired. A further advantage of a hard-chine design is
that the wetted surface is more clearly defined. A disadvantage of the hard-
chine boat is the pounding and generally worse motions that this type ex-
periences in rough water. As a guide, Saunders (1957, Pe. 424) suggested
that planing occurs when Fp lies in the range of 0.62 to 0.89.

Fig. 4.3 depicts a racing boat with a rounded (in plan view) transom

stern. An important feature of this particular craft is the series of longi-
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tudinal spray rails (or spray strips). In addition to reducing the spray,
rather like miniature chines, they help to define the actual wetted surface
when under way. As the boat accumulates speed, it rises out of the water, and
successive spray rails come into play. The only two spray rails that materi-
ally influence the water flow in this way are the last ones on each side that
are still submerged. Spray rails are also fitted at the chine itself in order
to increase its effect. Occasionally, as shown in Fig. 4.2(a) a spray rail
may be attached to the hull at some point above the under-way waterline. The
only purpose of those rails is to keep the deck dry -- they do not affect the
planing behavior.

The discussion so far has concentrated on simple hulls. These are hulls
with one planing surface. Some hulls are constructed with a number of steps
in order to promote better longitudinal stability (pitching). Another varia-
tion is a hull fitted with sponsons, as shown in Fig. 4.4. When running at
speed, the boat is supported by three planing surfaces. One is near midships
under the main hull, and the other two are aft under the two sponsons. As the
extent of the wetted surface is very small at speed, the hydrodynamic action

is often called three-point planing.

4.1.2, Simple Planing Surfaces

The simplest planing surface is a flat one. This is illustrated in Fig.
4.5(a). The principal feature of the flow is the rise in the water level
ahead of the line of intersection between the undisturbed water surface and
the plane. Consequently, the dynamic wetted-surface length I is greater
than the submerged length Lj . Both of these lengths are different from the
stationary length Lo , previously mentioned. The leading edge of the wetted
surface is nominally defined to coincide with the location of the spray-root

line. The slight curvature that this line possesses (when projected onto the
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From Du Cane (1974, p. 10)
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plane) is usually ignored in any calculations.

The plane is wetted ahead of the spray-root line. This is more clearly
indicated in Fig. 4.5(b). However, it can be shown that the thickness of the
spray 6 1is closely proportional to the square of the trim angle 1t , for the
usual range of trims of interest. Since this is generally quite small, one
can ignore the 1lift of the pressure distribution on the plane ahead of the
spray-root region. The pressure distribution is seen to have its stagnation
value near the spray root. It falls off to zero at the trailing edge of the
plate.,

Fig. 4.6 shows the main features of a prismatic planing surface. This
differs from the flat surface in that a deadrise angle B is included in the
description of its shape. The use of deadrise results in a decrease in the
lifting capacity of the surface. This will be discussed later in these notes.
However, a deadrise surface has two main advantages: less motion in waves and
better directional stability.

Experiments show that there is almost no build-up or water rise under the
keel. Thus, contrary to the case of the flat planing surface, the spray root
starts at the intersection of the undisturbed water surface and the keel,

This is referred to as point 0 in Fig. 4.6. There is, however, a rise in
water level away from the keel. As noted in Fig. 4.6, the dynamic half-wetted
beam is given by §b1 » where bq 1is the half-wetted beam computed on the
basis of the intersection of the undisturbed water surface with the hull.

This factor of w/2 is an outcome of a simple two-dimensional theory which
assumes that the body is slender., It has been experimentally verified for
prismatic planing surfaces with various aspect ratios and deadrise angles,

and operating at different Froude numbers.
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From Savitsky (1964, pp 72 and 73)

b WAVE RISE

\

T SPRAY ROOT | FyEL WATER
'I N = SURFACE

(a) The Geometry

PRESSURE DISTRIBUTION

\"

LEVEL WATER
SURFACE

3=SPRAY THICKNESS
SPRAY ROOT

(b) Pressure Distribution

Figure 4.5: A Flat Planing Surface
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4.1.3. Other Features of Planing Surfaces

Some refinements to the basic prismatic form are illustrated in Fig. 4.7.
Thus warp, or twist, is defined in Fig. 4.7(a). Warp is reflected by the fact
that the deadrise angle is greater at the bow than at the stern. The parti-
cular body plan shown possesses a relatively large deadrise angle, and this is
referred to as a deep-vee design. The main advantage of warp is to reduce the
problem of motions in waves.

Fig. 4.7(b) illustrates the feature of buttock-line convexity, or rocker.
The lifting qualities of the hull are diminished by rocker. 1In fact, from the
point of view of the resulting lift-to-drag ratio of the boat, it would be
desirable to build the hull with a negative rocker. The hydrodynamic effect
is similar to that of camber in the case of a lifting airfoil or hydrofoil.
Unfortunately, it would be difficult to use negative rocker in practice,
particularly with regard to behavior in waves.

A shock-absorbing bow is shown in Fig. 4.7(c). Such a bow usually has a
deep-vee section with a non-constant deadrise angle. Details of this are
given in Fig. 4.8(a). The bow section is convex near the keel and concave
near the chine. Fig. 4.8(b) represents a typical history of bow-upward accel-
eration during an impact. The shock-free bow produces a more nearly uniform
force during the impact, and is therefore preferable from this aspect.

Finally, Fig. 4.9(a) illustrates the influence on wetted surface of a
combination of a deep-vee with a warped bottom, as compared to Fig. 4.9(b) for
a shallow vee with a small degree of warp. The first design results in a
wetted surface with a forward-facing "finger". Small changes in trim can
cause large variations in the length of the finger, which are considered to be
undesirable from the point of view of pitch motions.

The sections of this deep-vee design posses some concavity. Convex sec-
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From Du Cane (1974, pp 88, 118, and 119)

warp

)
\ Deadrise at Bow
Deadrise at Stern

(a) Deep-Vee Body Plan

Rocker H

f;r—h_m_-h_-_-"“"'fzgr——

A

fad e ————
———— -
——— -
————
X T
————

(b) Buttock-Line Convexity or Rocker Slope

—

\

Deep-Vee Bow

(c) Shock-Absorbing Bow

Figure 4.7: Other Features of Planing Surfaces
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From Du Cane (1974, p. 437)

®

WL,

OEEP VEED
WARPED BOTTOM
PLANING FORM
REDUCTION IN AREA AND STABILITY BOUNDARY AND AREA
---- CONSEQUENT ON CONVEXITY OF ECZZ23 OF WETTED SOFTOM
BUTTOCKS WHEN PLANING
Wi
\
SHALLOW VEE
LOW RUN
OF CHINE

NOTE FULL STABLE SHAPE
OF WETTED AREA

WETTED PLANING SURFACE AS ) BUT SHOWING INSTABILITY ARISING FROM TRIM BY THE HEAD.
THE LONG FINGER RESULTING FROM DEEPLY VEED CONVEX SECTIONS TENDS TO UNSTABLE SHAPE
BETWEEN a—a AND b—b.

Figure 4.9: Influence of Hull Shape on Wetted Surface
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tions are also frequently used. An example is presented in Fig. 4.3.

4.2. Two-Dimensional Planing Theory

We first approach the theoretical problem of computing the behavior of
planing in calm water by studying the two-dimensional problem. In this case,
the beam B is infinite. A number of researchers have worked on this prob-
lem. A simple panel method was developed by Doctors (1974), and will be dis-
cussed here,

Fig. 4.10 defines the problem and the nomenclature. An interesting dif-
ficulty encountered in the course of the solution, is that the wetted length
is not known beforehand. This difficulty is bypassed by assuming a dynamic
wetted length. 1If the resulting lift does not match the weight of the boat,
then the solution can be repeated by means of a iterative technique. In a
similar way, the depth of the trailing edge below the free surface h is un-
known. (In principle, it must be chosen so that the wetted length is equal to
the given value ¢ )

As viscosity is ignored, the planing surface can be represented by a
pressure distribution, which is decomposed into a series of overlapping tri-
angular pressure elements as shown in Fig. 4.10(a). The nominal length of an
element is 2a , so that we have

c = 2an , (4.5)
where n is the number of spaces. The number of elements is actually n - 1.
The profile of the planing surface is defined as z(x) .

Now, the disturbance generated at xj; by a pressure element of strength
pj and centered at X4 can be computed using the methods outlined by Lamb

(1932), and can be written as

P
Sij = — Kij( (%3 - x3)ko, ako) . (4.6)
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where p is the water density, and ko 1is the circular wave number given by
kg = g/V¢ . (4.7)
Being a linear theory, (4.6) predicts that the disturbance ¢ is proportional
to the strength of the pressure element. The dimensionless influence is plot-
ted in Fig. 4.10(b) for six different values of the parameter akg (which is
effectively the inverse of the square of the Froude number based on the ele-
ment length). In each case, the pressure element generates a rise in the
water level followed by the development of a downstream harmonic wave, whose

elevation is given by

PaLy 4
—— = — sin?(akg) sinl(x - xj)kgl . (4.8)
P5 akp

The second stage of the solution is to combine the influence of the ele-
ments, so that the total water elevation at the i'th point matches the profile
of the planing surface, plus the effect of the trailing-edge submergence h .
Thus we can write

n
) Ki-3 Pj = pg(zy - h) for i =1 ton . (4.9)
j=2
This set of equations contains n conditions, and has n unknowns (n - 1
values of pj and one value of h). The inversion of the equations can be done

in the usual way, and then the lift, moment, and drag computed by means of

summations of the pressure distribution:

n
L=2 ) pj , (4.10)
i=2
n
M=12a ) pjx; , (4.11)
i=2
n
and D = 2a ) pi z'(x;) . (4.12)
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Fig. 4.10(c) shows an example of the convergence of the pressure distri-
bution as the number of elements is increased. Typically 80 elements are suf-
ficient to give an accuracy of about one percent. The pressure shows the ex-
pected singularity at the leading edge, similar to that experience in thin-
airfoil theory.

The drag in (4.12) is experienced by the plate as the horizontal compo-
nent of the pressure force. It is also equal to the sum of the momentum flux
in the leading-edge spray jet (shown in Fig. 4.5), and the wave resistance.
We can express the latter in terms of the downstream wave amplitude (see

Newman (1980, pp 266-270)):

1
Dy = -pgAZ . (4.13)
4
The wave amplitude A can be obtained by summing the individual wave compo-
nents generated by each pressure element. The effect of the appropriate phase
shifts, caused by the origin of each element being different is included in

(4.8). Thus

n
sinz(ako) Z pi sinl(x - xj)kql

c:
akgpg i=2
4

= sinz(ako)[P sin(xkg) - Q cos(xkg)l ' (4.14)
akgpg

P n cos

where = z Pi (xikq) . (4.15)
Q i=2 sin

Thus, the downstream wave amplitude is

4
A =

sin?(akqg) vPZ + 02 , (4.16)
akopg

and the wave resistance from (4.13) is

4

Dy = sin" (akg) (P2 + @2) . (4.17)

pglakg)?2
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Results for the pressure distribution are shown for three elementary
planing profiles in Fig. 4.11. These profiles are given in the following

table.

Table 4.1: Elementary Planing Profiles

Case Equation of Profile
z(x)
Flat aqx
Parabolic azxz/c
Cubic a3x3/c2

In each case of Fig. 4.11, the correct hydrostatic pressure is predicted when
the Froude number is zero. Wwhen the Froude number is greater than zero, the
singularity in the pressure at the leading edge is developed. This corre-
sponds to the splash jet.

The lift, drag, wave-drag, and moment coefficients are defined in the

usual way as

1
CL = L/Epvzc ’ (4.18)
1
Cp = D/;pvzc , (4.19)
1
Cy = Dw/;pvzc , (4.20)
12
and Cy = M/-pVv3c? , (4.21)
2

while the center of pressure is just
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x/c = Cy/C, . (4.22)
Some of these coefficients are plotted in Fig. 4.12(a). The curves demon-
strate that the wave resistance approaches zero at a high Froude number, while
the lift coefficient increases, and eventually, at infinite Froude number,
equals one half of the corresponding values for an airfoil with the same pro-
file. Fig. 4.12(b) shows that the center of pressure approaches the airfoil
results at infinite Froude number. The curves of trailing~edge depth indicate
that the planing surface continues to rise as the Froude number increases.

Finally some attempts at determining optimum planing forms are displayed
in Fig. 4.13. Combinations of the elementary profiles in Table 4.1 were
generated as follows:

z(x) = aqx + axx?/c + azx3/c?

a1(x + rx2/c + sx3/c2) . (4.23)
This combination is referred to as a three-term profile, while setting s = 0
creates a two-term profile. The lift and moment coefficients for these com-

binations are obtained by the principle of superposition:

C C + C + C + 4 o e (4.24)
L L1 L2 L3

and Cum

c + C + C + o o . (4.25)
My T TMy T M,

Fig. 4.13(a) gives the values of r and s as a function of the Froude
number for the two- and three-term profiles which minimize the drag. The
asterisked curves represent the values of r and s if the spray jet is
eliminated. Fig. 4.13(b) highlights two interesting points. The first is
that there is not much gain to be had by using all three terms. Secondly,
elmination of the spray jet is seen to generate the optimum form for F > 1 .
Very high values of the ratio CLZ/CD can be obtained by this optimizing

method -- such as 17.9 at a Froude number of 3, compared to only 2.48 for a



2ouPWIOIIDg DBUTURTd TRUOTSUSWTIJ-OMJ

:Z1°F @anbryg

9ousbhrawgns UID]S pue SINSSIIJ IO IADJUID

(q) S3uaTOTII00D beIq pue IITT

(e)
o o
0¢€ S-Z 0-2 S-i ol S0
1 T T T o-L-
O0/U- e—mm—— \\“
o/ 22277
z< dso-
7/
€ /s
\\““\ \\
Pd
I |~ 7 -0
B \\\X/é 7
~ 7
I ’

QQ\ ;U ceccone
Y R—

9/,
02

45-2

0-€
(s8v *d ‘$.6T) SI03D0Q WOIJI



SUOTINQTIISTQ 9INSSIg

o/X

ol 8-0 S0 7-0

T T | i

8500 ysoydsonN *

0,.C
no = O
T b T

lgez-C = d

-159-

z0

70

74

douewroiiag butuerd umwtldo TRUOTSUSWTI-OMT

€1y Sanb1g

»

(L8y pue 9gpy dd ‘yr6T) sa0300Q WOIJ

S3U9TOTIIS0D beag-ol-pazenbg-331T  (q) S3USTOTIIS0D adeys (e)
d a
0-€ T4 07 Si 0l S0 0€ (¥4 02 Sl 01 50
! ! ! . l T T T T 0-2Z-
e 8sD) yspidsoN %
9SD) YSDYISON L €
[P=8§ — e
Jo\mou d ——— G-
nt z
£
€' " 0L -
-1€
, 1Y
’m m m m.o'
£ C
-19 //1/ W€
- / 7/
Loy £ Tzl o
s \\\\\\
-6 Ve
10
o /
- / 160
~ / w€
/ \
o’ /
02 £ : 0t



-160-

flat plate (in Fig. 4.12(a)). Unfortunately, the optimum form is obtained by
using a negative value of r (positive camber), which is not a practical
shape to use -- as noted in Sec. 4.1.3. It does point out, though, that an
attempt should be made to avoid negative camber (or rocker). TLastly, Fig.
4.13(c) displays examples of the pressure distributions which nearly possess

fore-and-aft symmetry.

4.3. Three-Dimensional Planing Theory

The theory of three-dimensional planing can be approached in the same way
as for the two-dimensional case. 1In constrast to the two-dimensional case,
however, there are only a couple of publications which are devoted to the true
three-dimensional situation -- that is, without making the assumption of
either a low-aspect ratio (B/L << 1), or a large-aspect ratio (B/L >> 1).

The work of Doctors (1975) will be cited in this section.

Fig. 4.14(a) presents the problem definition for both the flat plate
(similar to Fig. 4.5), and the prismatic shape (as in Fig. 4.6). The overlap-
ping triangular pressure elements used in Sec. 4.2, have now been replaced by
their three-dimensional equivalent -~ a type of tent function. These are
shown in Fig. 4.14(b). The tents have a rectangular base with a nominal
length 2a and a nominal width 2b. They overlap both longitudinally and trans-
versely to give a pressure distribution which varies bi-linearly between con-
trol points (the element centroids). An obvious difficulty is that one cannot
exactly model the curved shape of the wetted surface at the leading edge.

This shape is approximated by what is essentially a staircase representation.

The three-dimensional equivalent of the kinematic condition (4.9) for the
prismatic surface is

n
Kij Pj = pglax; + 2dy;/B - h) for i =1 ton , (4.26)

J=1
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where n is the number of elements on one side of the centerplane, and Kjj
is the dimensionless free-surface elevation generated at the i'th field point
(xj, yi) by a unit pressure element at the j'th source point (Xj, yj), to-
gether with its image at (x5, -yj). The effect of deadrise d is included in
(4.26). The set of equations (4.26) represents n conditions (one for each
field point), but n + 2 unknowns (one for each pressure, together with a
and h ).

Two additional equations are supplied by noting that the weight and its

moment are given by

1 n
-W= S ) p5 (4.27)
2 j=1
1 _ n

and -Wx = S z Pj Xj , (4.28)
2 j=1

where S is the nominal area of each panel, and is given by the relation

S = 4ab . (4.29)

The set of simultaneous equations (4.26), (4.27), and (4.28) were solved
by first assuming the extent of the wetted surface. From this, the paneling
could be carried out. The calculation of the coefficients Kjj , is rather
difficult to execute accurately, as they are represented by integrals of
oscillatory functions. Once the solution has been found, it is necessary to
check the Kutta condition. 1In the present technique, the Kutta condition was
satisfied by adjusting the extent of the wetted surface until the kinematic
condition was fulfilled at the trailing edge -- in addition to the interior
points already included in (4.26).

Fig. 4.15 displays a comparison of results obtained by this theory for a
flat plate (B = 0) with experimental results determined by Savitsky (1964).
The relationship between the stationary length Lo with the average dynamic

length Lp is first shown in Fig. 4.15(a). The agreement is good to within
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4%. The small effect of Froude number is predicted by the theory. Fig.
4.15(b) examines the variation of the immersed wetted length Lj with the
mean dynamic length Lp . The predictions are seen to be even better here.
The negligible influence of Froude number on Lj is also demonstrated by the
theory. Finally, the lift coefficient is plotted in Fig. 4.15(c). The
general variation of the lift with both the dynamic wetted length and the
Froude number are correctly predicted. However, the predicted 1lift is low by
up to 30%.

The case of deadrise is shown in Fig. 4.16. Three amounts of deadrise
are considered: d/hg = 0.25, 0.5, and 0.75, where hy is the stationary
submergence of the transom. 1In addition, two different beam Froude numbers
are taken into consideration.

Fig. 4.16(a) displays good correlation for the relationship between
stationary and dynamic wetted lengths, The small influence of the deadrise is
correctly predicted too. The immersed wetted length in Fig. 4.16(b) is not so
well predicted, compared to the case of the flat plate in Fig. 4.15(b) ~-
although the correct trends are indicated. Finally, the overall trends for
the lift coefficient in Fig. 4.16(c) are demonstrated by the technique. This
includes the lack of influence of deadrise in the linear theory. However, the
large scatter of the computed points emphasizes the difficulties encountered

in the calculation of the Kij in (4.26).

4.4. Empirical Methods for Prismatic Forms

4.4.1. Zero Deadrise Angle

We first consider the case of a flat plate, as shown in Fig. 4.5. A
number of experiments have been carried out by Savitsky and Neidinger (1954)
for this case. Results of their experiments for the wave rise are plotted in

Fig. 4.17. The dimensionless wetted length (or dynamic length), and the
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From Savitsky and Neidinger (1954, p. 37)

-4

B TEST RAN

B SYMBOL| SOURCE € o€
BEAM| T Fg

B o) ET.T. 9" l4*-15°/.60 - 4.0

o SOTTORF | 11.8"[2%-11%(2.3-5.5

5.9"|2%17%5.5-13.)

& | sameraus .
11.8" [2%20°[3.5 - 6.9

X SHOEMAKER| 16" |2°-8°2.0 - 7.1

Equation (4.32)

Figure 4.17: Wave Rise for a Flat Planing Plate
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immersed length are defined in terms of the beam:
A =1L/B (4.30)
and Aj = Li/B . (4.31)
The experimental results are seen to collapse about a curve defined by
1.60 Aj - 0.30 A2 for 0 < A < 1
A= for 2° < 1 < 24° and 0.60 < Fg < 25.0 ,
Aj + 0.30 for 1 € Aj < 4
(4.32)
where T 1is the trim angle in degrees. It can be added that the wetted
length was found to be practically constant across the width of the plate:
that is, the spray-root line is almost straight.
The weight W supported by the plate was found to be approximated well
by the formula

]
Cr, = W/-pv2p? (4.33)
0 2

t1+1(0.0120 A1/2 + 0.0055 A5/2/Fg2) for 2° < 1 < 15° , 0.60 < Fg < 13.0 ,
and A < 4.0 . (4.34)
This function is plotted in Fig. 4.18. It shows how the lift drops off with
increasing beam Froude number, if the trim and wetted-length ratio are fixed.,
Fig. 4.19 is included as a test of accuracy of (4.34). The best agreement
occurs when the trim angle is greater than or equal to 4°. It is interesting
to note that the linear theory expounded in Secs 4.2 and 4.3 indicates that
the lift is proportional to the angle of trim. The experimental data shows

that the dependence on trim is slightly stronger than that.

4.4.2. Non-Zero Deadrise Angle

We now consider the extension to the case of a constant-deadrise surface.
Fig. 4.20 is a plot of the difference between the keel wetted length Ly and

the chine wetted length L. , which are illustrated in Fig. 4.6. This length
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From.Savitsky (1964, p. 80)
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Equation (4.34)

[ 11

Figure 4.18:

Lift Coefficient for a Flat Planing Surface
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300

Equation (4.35)
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Figure 4,20:
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Chine Wetting for a Prismatic Planing Surface
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difference can be computed on the basis of the discussion in Sec. 4,1.2, and

is given by

B tan B
Mos Ik Lo = s

for FB > 2.0 L] (4035)

Not unexpectedly, the length difference is greater for larger deadrise angles.

The mean wetted-length ratio is now defined as

A = Lp/B (4.36)
1
h B t
Y G L) (4.38)

The last formula can be derived by a considering the geometry shown in Fig.
4.6, together with (4.35) and (4.37). It should be noted that the mean wetted
length Ly only refers to the load-bearing part of the prism. The spray area
ahead of the spray-root line basically contributes only to the drag.

The lift of a prismatic surface has been approximated by the formula

Cr,

1
W/-pV2 B2 (4.39)
B 2

CLO - 0.0065 B cLo°-5° for Fg > 1.0 , (4.40)

in which the deadrise angle B8 is measured in degrees, This formula is plot-
ted in Fig. 4.21. It shows that a prismatic surfaces suffers a small loss in
lifting capacity compared to a flat surface with the same beam and mean wetted
length. A test of (4.40) is provided by Fig. 4.22 wﬂich shows good correla-
tion with the experimental points.

It is important to know the center of pressure when considering the
equilibrium of the craft. Savitsky and Neidinger pointed out that the first

3
term in (4.34) represents a dynamic lift that acts at a point -L; ahead of
4
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rom Savitsky (1964, p. 81)

0.5

B /-3=|o°
///:g'f’°
20°
I //// 23
d 02 _ % /
iy 4
Ll ]
N Ol 0.2 0.3 04 0.5
CLo /

Equation (4.40)
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the transom, while the second term represents a hydrostatic force that would
1

act -Ly ahead of the transom. The moments can now be used to compute the
3

location of the center of pressure:

<l -1(%x0.0120 Al/2 -;-xo.ooss )\5/2/F32)
Lp/Im = —T<T(6.6120 X172 ¥ 0.0055 A5 2/55%) )

This analysis ignores the effect of deadrise, which would influence the
numerator and the denominator of this equation in the same direction, but by
different amounts. This result may be simplified to give

Lp/Im = 0.75 = 1/(5.21 Fp2/A2 + 2.39) for 0.60 < Fg < 13.0 and A < 4.0 .
(4.41)

This result is plotted in Fig. 4.23. The center of pressure is seen to
3

approach a point -L, ahead of the stern as the beam Froude number approaches
4

infinity. The formula is tested against experimental data in Fig. 4.24. The

fact that the trim and the deadrise angle do not play a role in (4.41) is

justified by these results.

4.4.3. Calculation of Drag

The normal pressure force N and the frictional force Dp that act on a
planing surface are shown in Fig. 4.25. The force diagram shows that the drag
can be written as

D=Wtan T + Dp/cos T . (4.42)
The first term in (4.42) is straightforward. The frictional force in the

second term can be written approximately as

]
Dp = EpVhZSFCF . (4.43)

where Vy is the average velocity of the fluid over the bottom, Sp is the

effective frictional area, and Cp is the coefficient of friction.
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From Savitsky (1964, p. 83)

D =WtanT
p

~i

Q) FRICTIONLESS FLUID

D=WtanT + DF/cos T

DF/cos T
WtanTt

b) VISCOUS FLUID

Figure 4.25: Drag Components on a Planing Surface
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The average velocity can be estimated by considering the dynamic 1lift
component of (4.34), together with the deadrise correction (4.40):

Cp, = 0.0120 Al/271.1 = 0,0065 B(0.0120 Al/271.1)0.6 | (4.44)
which can be used to compute the dynamic part of the load:
1
Wq = EpVZBZCLd . (4.45)

Thus the average dynamic pressure is

pPg = W3/AB2 cos T

CLdeZ/ZA cos T . (4.46)

Savitsky's analysis ignores the cos B factor which should properly be
included in the denominator of (4.46). Finally, we can apply the Bernoulli
equation between some point upstream where the velocity is V , and an average
point on the planing surface, where the velocity Vm 1is presumed to exist.
The height of this point relative to the datum is ignored in this calculation,
since the hydrostatic part of the lift was deliberately excluded from (4.44).

Hence,

1
Vo = V(1 - Pd/EPVz)l/Z

v(1 - CLd/A cos 1)1/2 (4.47)

This formula has been plotted in Fig. 4.26. The graphs show how decreasing
the wetted-length ratio or increasing the deadrise angle both reduce the value
of the average velocity on the bottom.

Returning to (4.43), we note that Sp can be computed from the relation-
ship

Sp = ApB%/cos B , (4.48)
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where Ap is the friction-wetted-length-to-beam ratio. It takes into account
the frictional forces on the spray area, seen in Fig. 4.27. Savitsky and
Neidinger suggested that it could be calculated from the formula

Ap = A + AN , (4.49)
in which the correction AA is plotted in Fig. 4.28. However, in his later
paper, Savitsky (1964) indicated that the figure should not be used for T
less than 4°. For T less than 4°, he advised that A)A should be set to
zero.

Finally, the coefficient of friction in (4.43) can be computed using one
of the standard formulas for the drag on a flat plate. These formulas require
the value of the Reynolds number based on the frictional length and the
average velocity. That is

R = pVp(BAg)/u . (4.50)
where u 1is the water viscosity. A recommended pair of approximations for
the coefficient of friction is the one-seventh-power-law formula:

Cp = 0.074 R™1/5 for 5x105 < R < 107 , (4.51)
and the logarithmic-law formula:

Cp = 0.455/(logqgR)2+58 for 105 < R < 109 , (4.52)
which were given by Schlichting (1962). 1In addition, the standard American
Towing Tank Committee (ATTC) roughness should be included:

4.5. Calculation of the Equilibrium Condition

In this section, we will apply the information presented in Sec. 4.4 to
the problem of determining the performance of a planing boat in which the
following data is supplied: the beam B , the deadrise angle g , the weight

W , propeller shaft-line inclination € and its displacement from the center
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of gravity f , the location of the center of gravity ahead of the transom
Lg , and above the keel Hg , and the speed of the boat V . We are interest-
ed in determining the running trim angle 1t , the wetted length at the keel
Lx and at the chine L, , the total resistance D , the keel draft h , and
the required propeller thrust T . These quantities are shown in Fig.
4.29(a).

We can resolve the forces on the boat parallel to the keel to obtain

Tcose€ ~-WsinT -Dp=0 |, (4.54)
and normal to the propeller-shaft line to get

N cos € - Wcos(tT +€) +Dp sine =0 (4.55)
For equilibrium of the moments about the center of gravity, we have

M=Tf - Nc-Dpa=20 . (4.56)
In these equations, f is the moment arm for the thrust, N is the normal
force on the hull, and c¢ is the arm for its moment about the center of grav-
ity, which is given by

€¢=Lg =~ Lp (4.57)
The arm for the moment of the frictional force is simply

1 ”
a = Hg - ;B tan B . (4.58)

The effective power is given by the formula

Pe = DV . (4.59)
The draft of the keel at the transom is just

h = Lx sin 7 . (4.60)

The difficulty in solving these equations lies in the fact that the trim
angle is not known beforehand; it must be chosen to satisfy the equations of
equilibrium. The Savitsky long-form method for the solution is listed in
Table 4.2. It starts with an assumed value of <t , from which the moment M

in (4.56) can be computed directly. If M is not sufficiently close to zero,
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From Savitsky (1964, pp 89 and 90)
Lc

L W

G
\
\J l/
/
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(a) The General Case

(b) The Case of Concurrent Forces

Figure 4.29: Equilibrium of a Planing Boat
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then the value of T should be adjusted, and the calculation iterated.

A modification which is more suitable for hand calculations is to use two
trial values of Tt , and to employ linear interpolation to find the value
corresponding to zero moment.,

In Step 4 of the process, (4.40) must be inverted. That is, CLO is
required from the other variables in that equation. The value of CLO can be
obtained from Fig. 4.21. Alternatively, (4.40) can be solved using either the
Newton-Raphson method, or the method of repeated substitution. The latter is

easily programmed by writing the (n + 1)'th estimate as
cLén+1) = Cp + 0.0065 B[CL(()“)]"-6

where the superscript (n) refers to the n'th estimate. 2 good starting pro-
cedure is to take CLél) = C;, .+ This iterative technique converges to four
significant figures in about five iterations.

Similarly, at Step 5, we need to invert (4.34). This time, PFPig. 4.18 can
be used. A method suitable for numerical computation, is to rewrite the equa-

tion as

A(n+1) {FBZ(CLO/TI'IIK‘“)ll/Z - 0.0120)/0.0055}1/2

with the first estimate taken as A(l) = (FBZCLO/O.OOSS tl.1)2/5

A simplification to this method is to assume that all the forces on the
boat act through the center of gravity. The situation is shown in Fig.
4.29(b). 1In this case, no iteration is required, as the moment equation
(4.56) is automatically solved. However, (4.41) has to be inverted. That is,
we need to find A in terms of Fg and Lp/B . The procedure has been
simplified by the production of a nomogram in Fig. 4.30. This technique is

called the Savitsky short-form method, and is listed in Table 4.3.



-186-

Table 4.2: Savitsky Long-Form Method

Step Quantity Meaning Source
1 T Running Trim Estimate
2 Fp Beam Froude number (4.1)
3 CLB Deadrise lift coefficient (4.39)
4 CLO Flat-plate 1lift coefficient (4.40) or Fig. 4.21
5 A Mean-wetted-length ratio (4.34) or Fig. 4.18
6 CLd Dynamic-1lift coefficient (4.44)
7 Vi Average bottom velocity (4.47) or Fig. 4.26
8 AX Spray correction to wetted length Fig. 4.28
9 Ap Frictional-wetted-length ratio (4.49)
10 R Reynolds number (4.50)
11 Cp Coefficient of Friction (4.51) or (4.52)
12 ACp ATTC standard roughness (4.53)
13 Sp Frictional wetted area (4.48)
14 D Frictional drag (4.43)
15 D Drag (4.42)
16 T Propeller thrust (4.54)
17 N Normal force (4.55)
18 Lp Center of pressure (4.41) or Fig. 4.23
19 c Arm for normal force (4.57)
20 a Arm for frictional force (4.58)
21 M Moment on boat (4.56)
22 T Repeat (1) through (21) until M=0,
or use interpolation, to find T
23 Pe Effective power (4.59)
24 Lk Keel wetted length (4.35)
25 Lo Chine wetted length (4.35)
26 h Draft of keel at transom (4.60)
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Table 4.3:

Savitsky Short-Form Method

Step Quantity Meaning Source
1 Fgp Beam Froude number (4.1)
2 CLB Deadrise lift coefficient (4.39)
3 CLO Flat-plate lift coefficient (4.40) or Fig. 4.21
4 Lp/B Center of Pressure (4.57) with ¢ =0
5 A Mean-wetted-length ratio (4.41) or Fig. 4.30
6 CLO/'rl'1 Reduced flat-plate coefficient (4.34) or Fig. 4.30
7 T Running trim Steps 3 and 6
8 CLd Dynamic-1ift coefficient (4.44)
9 Vi Average bottom velocity (4.47) or Fig. 4.26
10 AX Spray correction to wetted length Fig. 4.28
1 AR Frictional-wetted-length ratio (4.49)
12 R Reynolds number (4.50)
13 Cp Coefficient of Friction (4.51) or (4.52)
14 ACp ATTC standard roughness (4.53)
15 Sp Frictional wetted area (4.48)
16 Dp Frictional drag (4.43)
17 D Drag (4.42)
18 T Propeller thrust (4.54)
19 Pe Effective power (4.59)
20 Lx Keel wetted length (4.35)
21 Le Chine wetted length (4.35)
22 h Draft of keel at transom (4.60)
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Again, the graphical aspects can be avoided in a numerical procedure.
The solution for (j, at Step 3 is identical to Step 4 in the long-form
, o]

method, and has already been described.

At Step 5, we can rewrite (4.41) as
Lp

A+ = —/l0.75 - 1/(5.21 F2/IA(R)12 4 2.39)]
B

with the first estimate being A(l) = (Lp/B)/0.75 . This method also

converges rapidly.

4.6, Modifications to the Basic Prismatic Form

4.6.1. Warp

Many planing craft possess a certain amount of warp or twist, so that the
deadrise angle increases from the transom stern toward the bow. This feature
is shown in Fig. 4.7(a). A small amount of experimental work has been carried
out on models, and was reported by Savitsky and Brown (1976). They suggested
that the formulas presented in Sec. 4.4 could still be used, but with a change
of interpretation given to the symbols.

For the lift formula (4.34), an effective trim angle should be used.
This is defined as

Te =T + 0,12 6 in (4.34) ' (4.61)
where T is still the trim angle, but now measured at the keel only, while 8
is the angle of the run of the chine (the chine therefore has a running trim
of T +8 ). The deadrise angle B is now the deadrise angle only at the
transom. The fact that (4.61) increases the effective trim angle by only 12%
of the chine-run angle, even though the average geometric trim has been in-
creased by 50% of the chine-run angle, implies that the lion's share of the
load is carried by the surface of the bottom near the keel. The effect of in-

creased deadrise is ignored in (4.40), however,
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Regarding the calculation of the drag in (4.42), it is advised that the
average geometric values of the trim and deadrise angles should be used. That
is

1

and Be = tan"l(tan B + A tan 6) in (4.48) . (4.63)

It will be noted that the use of warp will increase the 1lift slightly, and the
drag somewhat more, so that the lifting efficiency of the planing surface is

reduced.

4.6.2., Variable Beam

Hadler, Hubble, and Holling (1974) carried out a number of computations
comparing the predictions of the formulas given in Sec, 4.4 with the experi-
mental results on the Series 65 planing-hull forms. They stated that the best
agreement was achieved when the following were used: (a) the mean beam B
over the chines, and (b) the deadrise B8 at half the chine length ahead of
the transom. Their comment regarding the deadrise is compatible with the

advice given in Sec. 4.6.1.

4.6.3. Transom Flaps

The use of flaps was investigated by Savitsky and Brown (1976). The
nomenclature together with some results of their use are shown in Fig. 4.31.

Their study showed that the flap lift is given by
1
AW = 0.046 cs§ -pVv2 (4.64)
2

where ¢ 1is the chord of the flap, s is its span, and § is the flap
deflection in degrees. This increment in lift will be part of the total boat
weight W in (4.42). The flap experiences a form of drag given by

AD = 0.0052 AW(T + §) ’ (4.65)
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while the frictional force has already been included in the calculation
(4.48), since the flap is assumed to be made of part of the original hull,
The bow-up moment exerted on the boat, about its center of gravity is

AM = [0.6 B + c(1 - s/B) - Lglaw , (4.66)
where Lg 1is the longitudinal center of gravity ahead of the transom.
Finally, the torque required to keep the flap deflected against the hydrody-
namic moment (the hinge moment) is given by

H = 0.139 c AW . (4.67)
Formulas (4.64) through (4.67) have been validated for the following ranges of
the relevant variables: 0 < ¢/Ly € 0,10, 0< §< 15°, 0< 1T < 10° , and
2 < Fg< 7 . Additionally it was found that the transverse location of
part-span flaps (s < B) was unimportant.,

When performing the equilibrium calculations with flaps, the drag
increment AD (4.65) must be added to the frictional drag DfF in (4.42),
(4.54), (4.55), and (4.56). The moment increment AM (4.66) must be included
in (4.56). The craft weight W must be decremented by the amount AW (4.64)
for the purpose of computing the lift coefficient Cj in (4.33) or (4.39).
Similarly, the center-of-gravity calculation (4.57) must take into account the
flap moment (4.66).

Fig. 4.31(b) shows that the full-span flap at a deflection of 2°, used
in the example, reduces the overall drag by 10%. The optimum trim angle is
also reduced. Fig. 4.31(c) shows the effect of increasing the flap area, for
two different flap deflections. While both flaps reduce the drag, the larger
one with a émaller angle is superior.

It should be remarked that the use of flaps is hydrodynamically equiva-
lent to adding negative rocker, or positive camber. As noted in Sec. 4.2,

this feature can improve the lift-to-drag ratio.
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4.6.4. Appendages
Skegs. A thin skeg will generate a negligible lift. According to Hadler

(1966), its drag can be estimated from the formula
1
AD = Epth(ZS)CF , (4.68)

where S is the area of one side of the skeq, and Cp is the coefficient of
friction based on the skeg length and the mean bottom velocity Vp , given by
(4.47). This drag component acts in a direction parallel to the keel of the

boat.

Propeller Sshaft and Strut Bossing. The drag is assumed to act parallel

to the keel and is given by
! 2
AD = PV 2d(1.1 sinde + mcp) (4.69)

where 2 and d are the length and diameter of the shaft, while ¢ 1is its
inclination relative to the keel. This formula takes into account both pro-
file and frictional forces. The latter can be estimated from the coefficient
of friction for the shaft Cp , which depends on the Reynolds number calcula-
ted on the basis of boat speed and shaft diameter.

Equation (4.69) is claimed to be valid if this Reynolds number lies in
the range 103 to 5.5x10°, The lift, which acts normal to the shaft is given

by
1
AW = Epvzld(1.1 sinde cos ¢€) o (4.70)

For the purpose of computing the moment in the equilibrium equation (4.56),
these two forces can be assumed to act at the midpoint of the shaft.

Fully-Wetted Struts and Rudders. The drag may be calculated from the

formula
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.
AD = EpV2(2S)CF[1 + 2(t/e)?2 + s0(t/c)*1 (4.71)

where S is the area on one side and t/c 1is the thickness-to-chord ratio.
The coefficient of friction Cp depends on the Reynolds number based on the
boat speed V and the rudder chord ¢ . The formula can be used if the
Reynolds number is greater than 5x10°.

If the rudder penetrates the water surface, an additional drag due to

spray must be included:
1
AD = 0.24 -pV2t,2 (4.72)
2

in which t; is the maximum rudder thickness at the water surface.

Ventilated-wWwedge Rudder. A surface-piercing wedge rudder with a trailing

cavity has a drag which can be estimated from the formula:
! 2
AD = [2Cp + A(t/c)2(1 + gh/V2) + 0.24 t,2/s + Bl-pv?s , (4.73)
2

where Cp 1is the frictional-drag coefficient for one side of the rudder,
which depends on the Reynolds number based on the boat speed and the rudder
chord ¢, t is the maximum thickness, g is the acceleration due to
gravity, and S is the area on one side of the rudder. The second term
accounts for the cavity drag, in which A = 2/1 for a simple wedge section,
and A = 8/91 for a convex-parabolic section whose sides are parallel at the
end. The second term also contains a correction for the cavitation number
being a function of the rudder height h . The third term represents the
spray drag (4.72). The fourth term is an additive correction which should be
applied if the aspect ratio is less than 2.5:

B = (2.5 - h/c)2/150 if h/c < 2.5 . (4.74)
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Strut Palms. If struts are attached to the hull by means of non-flush

palms, then one can approximate the additional drag as
1
AD = 0.75 Cp(h/8)1/3wh-pvZ , (4.75)
2

where Cp is a drag coefficient whose value would be 0.65 for a rectangular
shape with rounded edges, h and w are the height and width of the palm,
and § is the boundary-layer thickness at the location of the palm. The
latter can be estimated, from Schlichting (1962, p. 537), as

§ = 0.37 x(pVgpx/w)~1/5 (4.76)
where x is the distance from the palm to the spray root.

Interference Drag. Finally, an additional component of drag arises from

the flow distortion where struts and rudders meet the planing surface. These

can be estimated as

1
AD = EpV2t2[0.75(t/c) - 0.0003/(t/c)2] , (4.77)

and are seen to depend primarily on the strut (or rudder) thickness t and

chord c¢ .

Effect on the Equations of Equilibrium. The Savitsky long-form method

can easily be modified to include the effect of the appendages and flaps. We

replace (4.54) through (4.56) by the three equations:

Tcos € ~WsintT - (Dp+ ) ADj) =0 , (4.78)
(N + ) AWj)cos € -~ W cos(T + €) + (Dp + ) ADj)sin € = 0 , (4.79)
anrd M = Tf - Nc - Dpa + z AMj = 0 . (4.80)

In these equations, the ADj are the contributions to the drag parallel to
the keel from the appendages, while the AW;j; are the contributions to the
lift normal to the keel. The AM; are the bow-up moments. For a flap, this

is given by (4.66). For the other appendages, one must multiply the relevant
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lift and drag increments by the appropriate lever arms.

4.7. Other Aspects of Planing Boats

4.7.1. Porpoising

Porpoising is defined as the combined nonlinear oscillations of a boat in
pitch and in heave of sustained or increasing amplitude, which occurs while
planing in smooth water. The energy for driving this unwanted motion is
derived from the forward momentum of the boat. Porpoising is peculiar to
high-speed planing hulls. The motions can be so severe as to throw the boat
completely out of the water and to cause severe structural damage .

During part of the cyclic behavior, the boat might assume a nose-down
attitude which could lead to the craft diving, or tripping over the bow.

Porpoising limits are plotted in Fig. 4.32. The experiments showed that
for any particular deadrise angle, there is a trim angle (as a function of the
lift coefficient), at which porpoising will begin. Lowering the trim angle
always increases the margin against porpoising. It is also seen that increas-
ing the deadrise angle increases the margin against porpoising.,

As pointed out by Savitsky (1964), the optimum trim angle from the point
of view of lift-to-drag ratio is usually higher than the safe angle from the
viewpoint of porpoising. Thus it is generally necessary to run the boat at a
somewhat unfavorable trim angle. This problem can be partly alleviated by the
use of deadrise.

It should also be emphasized that the pitch moment of inertia does not
affect the porpoising limits in Fig. 4.32. The moment of inertia will, of

course, affect the frequency of any resulting motion.
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From Savitsky (1964, p. 92)
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Figure 4,.32:

Porpoising Limits for Prismatic Planing Hulls
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4,7.2. Motions and Accelerations in Waves

Savitsky and Brown (1976) presented formulas for computing the added
resistance of a planing boat at three different Froude numbers. These results
were obtained from a series of tests on models. The chief outcome of these
experiments was to illustrate the nonlinearity of the phenomenon of planing-
boat motions: the motions are not proportional to the wave height.

For the added resistance in waves, the results are:

AD H1/3 L’
— = 66x1075( + 0.5)— + 0.0043(T - 4) at F = 0.60 , (4.81)
pr2 B v

where H1/3 1is the significant wave height, and L is the boat length. This
formula indicates that deadrise has no effect. The precision is * 20%.

AD 0.3 H1/3/B

T
(1.76 - = - 2 tan3g) at F = 1.19 (4.82)
W 1 + 2H1/3/B 6

where W is the boat weight. At this speed, there is an effect of deadrise,

but the length is seen to be unimportant. The precision is also * 20%.

AD 0.158 Hy/3/B
= at F = 1.79 I3
pgB® 1 + (Hy/3/B)[0.12 B - 21(V/B3)(5.6 =~ L/B) + 7.5(6 - L/B)]

(4.83)
where V 1is the stationary displaced volume of the boat. This formula
ignores any influence of trim or deadrise angle. It has an accuracy of * 10%.

A single formula for the average impact acceleration at the center of

gravity, for a range of speeds, was found. It is

— Hi/3 1,5 B \V2B?
acg = 0.117( — + 0.084)2(5 - 53)-5—- ' (4.84)

in which the precision claimed is * 20%.
The average impact accleration at the bow is
apow = acgl! + 1.13(L/B - 2.25)/F] , (4.85)

with a precision of * 20%.
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Equations (4.81) through (4.85) have been validated for the following
ranges of the variables: 3.5x10~3 ¢ V/L3 < 8.75x10~3 s 3<KL/B<C5, 3°<K 1

< 5°, 10° < B < 30°, 0.2¢< H1/3/B < 0.7, and 0.60 < F < 1.79 .

4.7.3. Series Tests

Some systematic series of planing-hull forms have been tested. Three
important ones are the Series 62, 63, and 65 of the David Taylor Model Basin
(now the David Taylor Naval Ship Research and Development Center, in Bethesda,
Maryland). These are reproduced in Figs. 4.33 through 4.37.

Details of the Series 62 are shown in Fig. 4.33. They are a hard-chine
boat whose beam varies along the length. The figure shows that the models
differ only in the length-to~beam ratio: other geometric properties, such as
deadrise angle, buttock shape, and percentage beam variation are the same for
all models. Length-to-beam ratios of 2 to 7 were tested. Information on the
results for this series can be found in Hadler and Hubble (1971) and Hubble
(1974).

Beys (1963) carried out tests on the round-bottom Series 63. The length-
to-beam ratio of this series varies between 2.5 and 6. As indicated in Fig.
4.34, these are all geometrically similar and can therefore be represented by
a single body plan.

Series 65 (see Hubble (1974) and Holling and Hubble (1974)) was divided
into two sub-series, both being suitable as hulls for hydrofoil boats. Series
65~A in Fig. 4.35 is recommended for the airplane-type configuration, while
Series 65-B in Fig. 4.36 was designed for the canard-type arrangement. These
are both hard-chine forms, but some of the sections are seen to possess
convexity -- in contrast to Series 62. (Series 63 is the softest of the three

series considered here.)
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Fig. 4.37 is included in order to point out the fact that Series 65 do
not only incorporate variations in length-to-beam ratio. Inspection of the
figure shows that there are a total of six different variations of the dead-~
rise angle over the boat length.

These series were tested over a number of different Froude numbers Fy ,
length-to-beam ratios 1L/B , longitudinal center of gravity Lg/L , and
slenderness ratios L/V!/3 , a designer can use the tabulated results for
other values of the parameters by interpolating between the appropriate sets

of data.
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From Hadler and Hubble (1971, p. 368)
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From Hadler, Hubble and Holling (1974, p. 24)

By =27.9° By=20.0°
MODELS 5250, 5248

By =iae°
MODELS 5198, 4966-1, 5204 MODELS 5281, 5249

MODEL : .
5204: L /B, = 9.34, Lp/d = 45.0

L /.= 22.4

Figure 4.35: Hydrofoil Craft Hull (Airplane-Type) Series 65-A
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From Hadler, Hubble and Holling (1974, p. 25)
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Figure 4.36: Hydrofoil Craft Hull (Canard-Type) Series 65-B
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From Hadler, Hubble and Holling (1974, p. 27)
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5. PROPULSION

5.1« Introduction

The three most common propulsors for small craft are subcavitating pro-
pellers, supercavitating propellers and water jets. Fig. 5.1, taken from
Alison (1978) indicates how the efficiency of these three devices might be ex-
pected to vary with forward speed. It is seen that the subcavitating propel-
ler is the most efficient in the low-speed range. At higher speeds, where a
subcavitating propeller begins to cavitate, its efficiency drops off rapidly.
In this situation, a supercavitating propeller will give a better performance
-- though not as good as that of a subcavitating propeller at low speeds.

Ideally, one might expect waterjets to be more efficient, since with good
duct design, the flow can be decelerated before encountering the pump, which
can therefore be made to operate in the subcavitating mode. In addition, the
problem of propeller-shaft inclination is avoided. However, the frictional
losses in the duct are always very large. Waterjets are also inconvenient
from the point of view of the installation, as a large part of the boat is
wasted in order to accommodate the ducting.

A fourth possibility shown in the figure is a surface-piercing propeller.
This is also called a partly-submerged propeller. In the proposed high-speed
mode of operation, this propeller would be ventilated.

Fig. 5.2 illustrates most of the propulsion arrangements that have been
tried out in the last century. An example of the operation of the vertical-
axis propeller (Voith-Schneider) is shown in Fig. 5.3. 1Its main advantage is
the ability to develop thrust in any direction because of the available cyclic
control of the pitch angle of the individual blades. However, it has a lower

efficiency than a standard propeller. For the sake of completeness, Fig. 5.4
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From Harvald (1983, p. 221)

Figure 5.3: Different Maneuvers with Voith-Schneider Propellers
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From Harvald (1983, p. 219)

— ==
COURSE OF SHIP

Figure 5.4: A Feathering Paddle Wheel
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has been included. This shows the mechanism of a feathering paddle wheel. 1In
this design, the floats (or paddles) are maintained almost vertical to the
water surface, thus raising the efficiency by around 10% above that of a
fixed-float paddle wheel. One of the main problems associated with the use

of paddle wheels is to locate them on the boat so that the proper immersion is
achieved.

A ducted propeller is shown in Fig. 5.5. A well designed duct (or
nozzle) will enhance the flow into the propeller making it more uniform,
thereby increasing the efficiency of the propeller and reducing the possibili-
ty of cavitation. Additionally, the pressure distribution over the duct will
generate a favorable thrust. This thrust gain exceeds the frictional losses
of the duct when the system is highly loaded. Fig. 5.6 shows the main compo-
nents of a waterjet propulsion system.

Fig. 5.7 is a companion to Fig. 5.1, in that comparisons on the basis of
efficiency are made. The performance of a propeller is usually defined by
means of the thrust coefficient

Kp = T/pn2p% (5.1)
and the torque coefficient

Kg = o/pn2p% , (5.2)
where T is the thrust developed by the propeller, p is the water density,
n 1is the rotational speed in the revolutions per unit time (seconds), D is
the diameter, and Q is the torque absorbed by the propeller. These two
coefficients are a function of the advance coefficient

J = Va/nD (5.3)
where Vp is the speed of advance, which is the velocity of the water in the
wake of the ship, where the propeller is located. (Of course, the action of

the propeller disturbs this wake velocity.)
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From Harvald (1983, p. 217)
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Figure 5.5: A Ducted Propeller
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The open-water efficiency is defined for the propeller operating in this
condition, without reference to any other complicating features. Hence, this
efficiency is the ratio of the rate of useful work done, to the power absorbed
by the propeller:

no = TVa/Quw ,

where  is the angular speed of the propeller. Thus, we have

Ng = TVa/Q(2rn)
Kp J
= — — . (5.4)
KQ 27

The abscissa used in Fig. 5.7 is a loading coefficient in which the
diameter of the propeller has been eliminated. The diagram shows that the
subcavitating propellers (as represented by the Wageningen B-Series Screws)
are almost the most efficient in a lightly loaded condition. An interesting
development is the use of contrarotating propellers. These are seen to be
slightly more efficient as they do not create a rotational wake.

It is also noted that the cavitating propellers (such as the Gawn-Burrill
screws) are less efficient, while the vertical-axis propeller possesses the
lowest efficiency. The nozzle is seen to improve the performance of a
heavily-loaded propeller. However, it is only a hindrance in the lightly-
loaded case because of its viscous drag.

When the propeller is installed behind the boat, a number of additional
phenomena complicate the situation., We first note that the wake velocity is
related to the boat speed V by means of the equation

va= (1 -wv (5.5)
where w 1is the Taylor wake fraction. In fact, the wake fraction varies in
the neighborhood of the propeller, so that an average value should be used in

(5.5). Fig. 5.8 shows the wake distributions measured on models of different
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From Harvald (1983, p. 170)

MODEL SCALE

Figure 5.8: fThe wWake Distribution for Victory Ship Models
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scales. 1In addition, the influences of the rudder and ship-model roughness
have been investigated. The wake is a result of three main features of the
flow: the first is the lessening of the velocity near the ends of a body (in
the stagnation region) and is a potential-flow phenomenon. The second is the
influence of the free surface, and would depend on the Froude number. The
third is due to the boundary layer on the hull and depends on the Reynolds
number, It is the last effect that is studied by changes in model size in
this diagram. The smaller models display a stronger wake. In the case of a
propeller located under a prismatic planing surface, the wake fraction is
relatively small.

The propeller increases the water velocity over the stern of the boat,
and this reduces the pressure in that region. As a result, the thrust must be
greater than the bare-hull drag Ry . We can therefore write

Rp = (1 - &) , (5.6)
where t is the thrust-deduction factor.

The hull efficiency takes into account the two effects defined by (5.5)
and (5.6). It is defined as the ratio of the useful rate of work done on the

boat to the rate of work done by the propeller on the water. Thus

Ny = RpV/TVp

(1 -t)/01 - w) . (5.7)
Another feature of the boat-propeller interaction problem is the non-
uniformity of the flow in the wake, which is ignored in (5.5). Thus, the
efficiency of the propeller behind the boat is defined as the ratio of the
rate of work done by the propeller on the water, to the power absorbed by the
propeller (in the boat wake):
ng = TVa/Qp(2mn) , (5.8)

where Qp is the torque required to drive the propeller in the non-uniform
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wake. The ratio of the efficiencies in (5.8) and (5.4) is called the relative
rotative efficiency, and is simply given by the ratio of the torque behind the
ship, to the torque in the open water:
nr = ng/ng = /O . (5.9)
The quasi-propulsive coefficient includes all the hydrodynamic effects
referred to above. They are summarized by (5.4), (5.7), and (5.9). We write
np = NgNgNR - (5.10)
The overall picture can be completed by considering the shaft efficiency
Ng , which accounts for the losses in the shafting and gear boxes. That is

N =nNygno Ng Ng (5.11)

5.2. Geometry of the Propeller

Two drawings of a four-bladed propeller are shown in Figs. 5.9 and 5.10.
These show typical features of a subcavitating propeller such as the blades,
whose sections resemble those of a cambered foil -- with some modifications to
reduce cavitation. BAn important feature of the propeller is its pitch. This
is defined as the distance the propeller would advance if it did not slip in
the water. The pitch can be computed from the blade pitch angle ¢ shown in
Fig. 5.10.

Ideally, one would want the pitch to be constant with respect to the
radial distance. This means the pitch angle should decrease with the radius.
However, in a wake-adapted propeller, the pitch is decreased somewhat near the
hub in proportion to the reduced velocity encountered by that part of the
propeller. The pitch distribution is shown in Fig. 5.10, as well as in Fig.
5.11. In the second figure, both a wake-adapted (radially-variable pitch) and
an open-water (constant-pitch) geometry are illustrated.

The example propeller possesses rake which is a backward inclination of
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the blades as seen in the side view of Fig. 5.11. The use of rake improves
the water flow into the propeller when mounted behind the ship. It also in-
creases the clearance between the blades and the hull, which reduces the
vibration problem. Many propellers also have some degree of skew, or sweep-
back of the blade tips, as seen in the axial view of Fig. 5.11(c). The blade
shown in Fig. 5.11(b) does not possess any skew.

We will now consider the main geometric description of a marine propel-
ler. The pitch ratio is defined as the ratio of the pitch to the diameter:

Tpitch = P/D . (5.12)

The disk area is the entire area swept by the propeller:
m
ag = -p2 . (5.13)

The projected area Ap 1is the area of the blades (excluding the hub), as seen
in an axial view. The projected-area ratio is the ratio of this quantity to
the disk area:

rp = Ap/Ag . (5.14)
The expanded area Agp is the area obtained by considering the blade sections
to lie on cylindrical surfaces. The arc length of these sections can be laid
out on straight lines perpendicular to the radial reference line, after having
rotated them from the helical surface through the angle ¢ to the propeller
plane. The area of the resulting shape is called the expanded area. The
expanded-area ratio is the ratio of this quantity to the disk area:

rg = Ag/Ag . (5.15)
Another quantity, which is not used so frequently, is the developed area Apn .
This can be obtained by simply developing the blade area. That is, only the
rotation through the angle ¢ is carried out. This leads to the developed-

area ratio:
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rp = Ap/3Ag . (5.16)
It is interesting to note that the actual wetted surface of the blades is not
considered an important quantity in the description of the propeller. How-

ever, both the expanded and the developed areas are good approximations to it.

5.3. Momentum Theory

A simple theory which gives an upper limit to the efficiency of a propel-
ler is based on momentum and energy considerations of the flow. This is
illustrated in Fig. 5.12. The flow in the race ahead of the propeller has an
axial velocity equal to the speed of advance Van o Its speed increases to the
value Vg at the disk of the propeller, and finally reaches the value Vo =
Va + 2Up some distance downstream in the wake. The propeller race contracts
as the flow increases -- in accordance with the principle of conservation of
mass.,

Fig. 5.12 also shows the variation of the pressure in the race, which can
be computed on the basis of the Bernoulli equation, except in the immediate
region enclosing the propeller.

Momentum considerations give the thrust on the propeller as the product
of the mass flux and the downstream velocity increment:

T = ﬁ(Vz - VA)

pRAgV1(Vy ~ Vp)

PAoV1(2U,) . (5.17)
The thrust is also given by the difference of the pressure just ahead of the
propeller p;t and that just behind it P17
T = Aglprt - p17) . (5.18)
The Bernoulli equation applied between the upstream station and a point

just ahead of the propeller disk gives
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From Harvald (1983, p. 200)
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Figure 5.12: Momentum Theory
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1 1
Evaz + pg = Epv12 + p1+ , (5.19)

where pg is the upstream static pressure.
We can also apply the Bernoulli equation between a downstream point and a

point just behind the propeller:

1 1
Ep(vA + 20p)2 + pg = -pV42 + pq~ . (5.20)
2

Subtraction of (5.19) from (5.20) produces the result

20Ua(Va + Up) = p1~ - ppt '
and using (5.18),
= T/Ag , {5.21)
and from (5.17),
= pVq(2Up) . (5.22)
Thus we obtain the equation
Vi =Va+ Uy . (5.23)

This states that half of the downstream axial velocity increment occurs ahead
of the propeller.
We can also compute the ideal efficiency as the ratio of the rate of

useful work done to the rate of work done by the propeller:

Ny = TVa/TVq

VA/(VA + UA) ’ (5.24)
using (5.21). At this point, we introduce the thrust-loading coefficient as

follows:
1
Crp = T/;vaon , (5.25)

which should be contrasted against the thrust coefficient Kp defined by

(5.1). Substitution of (5.21) now gives
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1
Cp = 20Up(Vp + UA)AO/;DVAZAO

4l(up/vp) + (up/va)2l .
The meaningful one of the two solutions of this equation is

Ua/Va = (-1 +Y/1 ¥+ Cp)/2 . (5.26)
Finally, we can substitute (5.26) into (5.24) to give

ng=2/(1 +/1 + Ccp) . (5.27)
We can see from (5.26) that the velocity increment Up increases as the
thrust loading increases. More importantly, (5.27) shows that the ideal
efficiency can be raised by lowering the thrust loading. This implies using
the largest possible propeller diameter. 1In practice, there is actually an
optimum propeller diameter because of viscous effects which have been ignored
in the present theory. The open-water efficiency no (5.4) is also less than
the ideal efficiency ((5.24) and (5.27)) because of viscous effects,

A refinement to this momentum theory is to include the induced tangential
components of the flow. It is found that the value at the propeller Up is
one-half the downstream increment 2Up -- similar to the situation for the
axial velocity increment. Also, the ideal efficiency (5.27) is reduced. The
influence of these induced velocities on the inflow to a blade section is

shown in Fig. 5.13.

5.4. Subcavitating Propellers

5.4.1. The Propeller Curves

As noted in Sec. 5.3, the geometry of a propeller is defined by the
quantities P/D , Ag/Agp , and Z (the last variable being the number of

blades). Its performance is given by Kp , Xg, and ng , as noted in Sec.

5.1.
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From Harvald (1983, p. 201)

ZERO LIFT /-
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Figure 5.13: Diagram of Velocities at a Propeller Blade
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A practical way of obtaining a propeller design for a boat is to select
one from a series, which has already been tested. This procedure eliminates
much effort as well as any uncertainty in the design analysis. One of the
better known propeller series is the Wageningen B-Series screws, which was
first described by van Lammeren, Van Manen, and Oosterveld (1969). This
series was an outgrowth of the A-Series screws, and included improvements to
reduced cavitation problems and to enhance their performance during backing
maneuvers. The series covers the following ranges of the abovementioned
variables: 0.5 < P/D < 1.4, 0.30 < Ag/Ag € 1.05, and 2 < 2< 7 . The
design of these screws is given in Fig. 5.14.

Representing the performance of such a propeller series requires a
daunting number of graphs. The process of interpolation between curves and
graphs has been simplified by the generation of mathematical representations

of their performance, as follows:

(T)

Kp = )) Cs,t,u,v 3% (P/D)t (Ag/Ag)Y 2V
s,t,u,v
and (5.28)
(Q)
Ko= 1  Cs,t,u,vJ% (B/D)t (Ag/ng)® 2V .

s,t,u,v
In addition, there are polynomials to compute corrections AKp and AKg if
the Reynolds number at the characteristic radius (r = 0.75 R, where R is the

propeller radius) is above two million. The Reynolds number is defined here

as

Ro.75R = PYVa% + (21nx0.75 R)Z cg,75r/M ' (5.29)
where c¢g 75r is the characteristic blade chord, and pu is the viscosity of

the water. These polynomials were given by Bernitsas, Ray, and Kinley (1981).
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A set of typical propeller curves is given in Fig. 5.15. Only K¢ and
KQ as functions of J are required in order to state completely the perfor-
mance of the propeller. However, it is convenient to also plot the efficiency
No « It can be seen that the thrust is a maximum when the advance coeffi-
cient is zero (maximum propeller slip) and it drops to zero when the propeller
slip is near zero. The efficiency vanishes at both these extremes, but
reaches a maximum value at some intermediate condition,

The condition for no thrust can be estimated from Fig. 5.13. The slip is

zero when the relative inflow velocity vector is parallel to the chord of the

blade. Hence

Va(T=0) P

£

(2rn)r 2nr

tan ¢ =

That is Vp(qp=g) = nP .
From (5.3), we have
Jp=g = Va/nD

np

nD

= P/D . (5.30)
Verification of (5.30) is given by Fig. 5.16 where the propeller curves are
plotted for a number of pitch-to-diameter ratios. The equation is only
approximately correct because it ignores the effect of camber, amongst other
details of the blade profile.

These standard curves are useful for presenting the performance charac-
teristics of propellers, but not for making a selection. The method of selec-

tion depends on the data that is available.



IoTT18doxd ® I03 Saaan) TedTdAL :GT°G 2anbTg

fet
0l 8°0 90 70 Z'0 0 , 0 0 0 0
// I/I/
R RN 7 4 L o01'0 10 100
// \ Y Z 020 2o 200

Oy

-231-

~] Ol S 0§50 S0 00

V/«V\A 9 € 0£0 €0 €00
7

T~ 8 Y 090 %0 %00
/

AN/

4] 9 090 90 900

//I 71 L 0L0 (o L00

F(/
X
¢

9t e 080 80 800

| g
O __

81 6 060 60 600

0z oL 001 10 ot'o
0 PWAy % tw Oy

(TvT "d ‘€86T) PTRAIRH woxd



-232-~

(0A)443030 3N0HOL

00°0

¥0°0

80°0

4N1)

91°0

0co

(ULATD ISnayy pue xs3swerq) suoTinTossy umutldo I03 Putyoaeds :9T7°G 2iInbTA

8;:4mumou.uuz¢>aa

08°0 00090 .

L0

oo™

0co

0v0

(LA)44300 LSNYHL

0S9°0
Mmmggm&mm&

0¥l Ol 0S'0=0/d
=04/3Y 530518 S Yod
mMHmwmnm ZMOYHZMQQB

(01 *d ’‘ezgeT) Aey pue sesjtuiog woxd

09°0
AIN3IOI443

08°0

00t



-233-

5.4.2. Resistance and Diameter are Known

A common situation is one in which the required thrust and propeller dia-
meter are known. We will assume that the choice of the number of blades has
already been made, usually on the basis of minimizing vibration. Furthermore,
we will consider the expanded-area ratio to be known. This quantity is chosen
with the intention of preventing, or minimizing, the extent of cavitation.

The avoidance of cavitation will be discussed in a later section.
Thus the problem reduces to one of finding the optimum propeller speed.

We define the coefficient

'1‘/pn?-D‘+
(Va/nD) 2

Kp/32

Rp/(1 - t)pn2D"

(V(1 - w)/nD}2

Rp/pD2V2(1 - £)(1 - w)2 (5.31)
where (5.1), (5.3), (5.5), and (5.6) have been used. This special loading
coefficient was chosen to eliminate the unknown propeller speed.

In the example chosen by Bernitsas and Ray (1982a), Rp = 275.4 kN ,
p =1025 kg/m3 , D=5.486m , V =8.237 m/s (= 16 kt) , t = 0.155 , w=
0.252 , and ng = 1.018 . This choice of data gives Kp/J2 = 0.278 . The
variation of Kgp with J has been plotted in Fig. 5.16, so that its inter-
section with the Kp curves of the propeller gives the matching point. The
matching point depends on the pitch-to-diameter ratio chosen. A curve of
efficiencies has been drawn on the figure, and this givesn a maximum value of
no = 0.69 at J = 0.88 when P/D = 1.20 .

This procedure can be automated. Fig. 5.17 shows the optimum values of
the parameters n,, J , and P/D as functions of KT/J2 . A large number

of graphs such as this, covering a wide range of parameters (Zz, Ap/Ag, and



OPEN WATER EFFICIENCY
0.40 0.60 0.70 0.80

0.30

0.50

-234-

From Bernitsas and Ray (1982a, p. 50)

T [ ] |
WAGENINGEN B-SERIES PROPELLERS
CURVE FOR OPTIMUM RPM PROPELLERS
FOR S BLADES AE/A0 = 0.45,0.65,0.85,1.05
1 N g Ny = 0-69 S
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Figure 5.17: Optimum Revolution Propellers (Diameter and Thrust Given)
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KT/JZ) was given by Bernitsas and Ray (1982a).

5.4.3. Delivered Power and Diameter are Known

In this example, we wish to find the optimum revolutions when the
propeller diameter and the power absorbed by the propeller Pp are given.
The following coefficient is formed:

9/pn2D%
(Va/nD) 3

KQ/J3 =

Ppng/2npn3DS

[V(1 - w)/nD]3

Ppng/2mpD2V3 (1 - w)3 (5.32)
Again, the technique of eliminating the unknown value of n has been used.

The example given by Bernitsas and Ray is the same as in Sec. 5.4.2,
except that we are now given Pp = 2859 kW instead of the value of Rp . The
special coefficient becomes KQ/J3 = 0.0641 . This curve has been plotted in
Fig. 5.18. Again the intersections with the Kg curve from the propeller
gives the efficiency for different P/D ratios. The optimum values are found
to be np = 0.69 at J = 0.88 when P/D = 1.20 . (The power chosen here is
compatible with the first example, and therefore the results are the same.)

As before, a more direct solution is available by means of Fig. 5.19,

which gives the optimum solution as a function of KQ/J3 .

5.4.4. Resistance and Revolutions are Known

In this example, we refer to Bernitsas and Ray (1982b). The appropriate

coefficient is
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From Bernitsas and Ray (1982a, p. 108)
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Figure 5.19: Optimum Revolution Propellers (Diameter and Delivered Power Given)
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’I‘/pn?-DL+

b
“2/3 (Vp/nD) %

Rp/(1 - t)pn2D*

[(V(1 - w)/nDI"

RpnZ/pV* (1 - £)(1 - )% . (5.33)

Since the diameter D has been eliminated from the coefficient (5.33), this
method can be used to optimize the diameter. As an example, we take Rp =
275.4 kN , p = 1025 kg/m3 , n = 1.283 s~! (= 77 rpm) , V = 8.237 m/s
(= 16 kt) , t = 0.155, w=0.252, and ng = 1.018 . The special
coefficient is the KT/J“ = 0.361 . This function has been plotted in Fig.
5.20. The intersection point with the Kg curve depends on the value of P/D
chosen. The optimum is seen to be given by ng = 0.70 at J = 0.85 for
P/D = 1.10 .

Fig. 5.21 shows how the same results can be obtained in a more expedient

manner.

5.4.5. Delivered Power and Revolutions are Known

The appropriate coefficient in this case is

Q/pn?D3

Ko/J% = ———t
o/ (Va/nD) 5

PDnR/ZHpn3DS

(v(1 - w)/nD]®

Ppngn2/2mpvS (1 - w)S . (5.34)
Again, the unknown diameter does not appear in the coefficient.

Our example is the same as the previous one, except that we take Pp =
2820 kW , in place of stating the revolutions. The coefficient becomes
KQ/J5 = 0.0822 . Fig. 5.22 shows the curve represented by this function. The

intersection with the Ko curve that gives the highest efficiency yields the
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From Bernitsas and Ray (1982b, p. 46)

a
sT T T T
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Figure 5.21:

Optimum Diameter Propeller (Revolutions and Thrust Given)
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results: ng = 0.70 at J = 0.85 for P/D = 1,10 .
The optimum case is found more easily when using a graph designed around

the special coefficient. That is shown in Fig. 5.23.

5.4.6. Other Methods

Other techniques of presenting propeller data are in use. An example is

the Bp-8 diagram, one of which is shown in Fig. 5.24. These two symbols

are defined as

Bp = nppl/2/v,5/2
(5.35)
and 8

nD/VA ’
where n is the propeller speed in revolutions per minute, Pp is the de-
livered horsepower, Vp is the speed of advance in knots, and D 1is the pro-
peller diameter in feet. These coefficients are dimensional, and cannot be
used with a consistent set of units unless a correction factor is used. Addi-
tionally, the first coefficient suffers from the fact that it is only correct
for fresh water. It must be modified if the propeller is to operate in salt
water.

A comparison of (5.35) with the previously defined consistent coeffi-

cients ((5.34) and (5.3)) would show that

Bp = 33.12 (Kg/J5)1/2

(5.36)
and [

101.3/3 .

(A further complication is that Pp in (5.35) is an open-water value, which
is a factor nRp larger than the behind-the-ship value used in (5.32) and
(5.34)). Therefore, the purpose of a Bp-8 chart is similar to that of the
method outlined in Sec. 5.4.5. That is, the delivered power and revolutions
are known, and the aim is to find the best diameter. Nevertheless, the
presentation in Sec. 5.4.5 seems to be better in that a number of propellers

are included on one diagram, so that the options available to the user are
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From Bernitsas and Ray (1982b, p. 104)
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clearer,

Another inconsistent coefficient which has sometimes been used is

By = nul/2/v,5/2 (5.37)
where U is the thrust power (the product of the propeller thrust and the
wake speed), but measured in horsepower. It can be shown that

By = 13.21 (Kp/d*)1/2 (5.38)
Again, this coefficient must be corrected for use in salt water. Its applica-
tion would be similar to that described in Sec. 5.4.4,

It is also possible to produce Bp1-6 and By'-§ diagrams for the
cases when the diameter is specified and the optimum revolutions are to be
found.

Another approach to the problem of propeller selection is to use an
optimizing procedure based on a mathematical representation of the propeller
performance (5.28). Markussen (1979) described a method in which both the
revolutions and the diameter could be optimized. Unfortunately, there is
generally a restriction on the propeller diameter, so that this global optimum

does not represent a practical selection.

5.4.7. The Influence of Reynolds Number

Although the model propellers are tested at only one Reynolds number
(5.29), the results can be corrected for other cases by estimating the
frictional drag on the blades. A sample of such results are shown in Fig.
5.25. The torque coefficient is seen to drop with increasing Reynolds number.
This is in accordance with the known behavior, for example, of the friction
coefficient for a flat plate. Of course, part of the torque is due to the
induced drag on the propeller blades, and is unaffected by the correction to

the friction component.
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The thrust coefficient is not affected by the Reyﬁolds number. This
result is equivalent to the fact that the Reynolds number has negligible
influence on the lift of a wing -- at least up to the stall angle.

The results of Fig. 5.25 show that the efficiency of a propeller increas-

es with size. That is, uncorrected model tests are slightly pessimistic,

5.5. Cavitation Inception

If a propeller is overloaded, the pressure on the suction side of the
blades (the back) will drop to the vapor pressure and cavitation will occur.
An example in which the propeller is just slightly overloaded is given in Fig.
5.26. Here, the propeller is working in a wake where the advance velocity is
less near the top. Thus the effective angle of attack (see Fig. 5.13) is
greater, which would encourage back cavitation when the blades approach the
top. Furthermore, the ambient pressure is less in this region. These two
features encourage cavitation near the top position.

As the propeller load is raised (by increasing the slip), the cavitation
area will increase too. Excessive cavitation should be avoided if possible
because of the loss in efficiency and the blade erosion problem.

The situation which leads to cavitation can be estimated by considering
the propeller to be on the point of cavitation at some location (say r =
0.75R) on the propeller. The representative cavitation number for the

propeller is then

]
60.7r = (pa + pgd - Pv)/;DVRZ , (5.39)

where p, 1is the atmospheric pressure, g is the acceleration due to
gravity, py is the vapor pressure, and VR 1is the relative velocity at the

representative radius. This is given by the formula
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From Harvald (1983, p. 150)
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Figure 5.25: The Influence of Reynolds Number on Propeller Characteristics
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[Va?2 + (2wnx0.75 R)2]1/2

<
el
il

valt + (0.75 m/a3)21172 (5.40)
We shall assume that the blade operates at the ideal angle of attack, and that
linear theory can be used (the section is thin and the camber and effective
angle of attack are small). Thus, we can write for the upper and lower

surface of the blade,
1
P=patpgd+ (Cp ¢ sz)EpVRz ' (5.41)

where CP1 and sz are the pressure increments per unit dynamic pressure,
due to the thickness and lifting ef fects, respectively.

We may now combine (5.39) and (5.41) with p = py . We also use the plus
sign in (5.41), corresponding to the upper surface (the back). Thus

Progress with this simple theory can now only be made by making some
assumptions about the particular propeller being considered. For a thin
section, we can write the thickness effect as

Cp. = - k(t/c) . (5.43)
1

We now assume that the load is distributed equally between the upper and lower
surfaces of the blade, and that it is uniform over the leading fraction a of
the section, and then drops linearly to zero at the trailing edge. A foil
that generates this type of loading is referred to as a NACA "a" series

section. We obtain for the ideal 1lift coefficient of the section

1
c, = - 2Cp2[a + o0 - a)]

or Cp - CLi/(1 + a) . (5.44)

We can combine (5.42), (5.43), and (5.44) to give
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09.75R = k(t/c) + ¢, /(1 + a) . (5.45)
i
Finally, we define the propeller thrust loading coefficient as
1
Te = T/EpVRzAp , (5.46)

where Ap is the projected blade area. It is easy to see that we can replace
CLi in (5.45) by T in (5.46), as the pitch angle 8 in Fig. 5.13 affects
both the useful lift and the projected area in the same way. Thus (5.45)
becomes
00.75R = k(t/c) + 1o/(1 + a) . (5.47)
As a simple case, we can consider a cavitation-perfect propeller. The

blades of this propeller would have zero thickness (t = 0) and the loading

would be uniform (a = 1), This gives

1
00.75R = ETC for a cavitation-perfect propeller. (5.48)

A more practical propeller is represented by the Wageningen series. The ratio
of blade thickness to chord at the representative radius for these propellers

was given by van Lammeren and others (1969) as

Ag 4
t0.75r/€0.75R = (0.0185 - 0.00125 Z)/(2.073 — =) . (5.49)
Ag 2

If we choose a four-bladed propeller (Z = 4) with an expanded-area ratio of
0.70, we obtain tg,75gr/cg,75r = 0.03721 . We can take the thickness distri-
bution to correspond to a NACA 12 series section (see Abbott and von Doenhoff
(1959, p 321)), for which we can put k = 2.55 in (5.47). Assuming also that
a = 0.8, then (5.47) becomes
00.75R = 0.0949 + 0.555 1. for a typical propeller . (5.50)
Fig. 5.27 shows the results of experiments relating the thrust loading

coefficient to the characteristic cavitation number. The experimental curves
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give the thrust that can be achieved for different levels of cavitation that
are tolerated on the propeller. It is interesting to note that (5.50)
predicts when cavitation will occur at the r = 0.75 R section, corresponding
to about 25% cavitation. This equation roughly agrees with the experiments,
The cavitation-perfect propeller, defined by (5.48) is seen to considerably
overpredict the condition for cavitation.

The simple theory in this section can be improved to include nonlinear
effects as well as the fact that VR varies along the length of the blade.
An estimate for the projected area is needed for (5.46), when using Fig. 5.27.
This was given by Comstock (1967, p. 77) as

Ap/Ap = 1.067 - 0.299(P/D) . (5.51)

5.6. Supercavitating Propellers

5.6.1. Wageningen B-Series Screws

The Wageningen B-series was described in Sec. 5.4.1, and is illustrated
in Fig. 5.14., Wwhile these were designed for subcavitating conditions, they
can also be used in the supercavitating mode. Of course, a loss in efficiency
must then be anticipated. Fig. 5.28 gives the performance of a four-bladed
screw with an expanded-area ratio of 0.85, for pitch ratios of 1.2 and 1.4.

It is seen that the performance now depends on the cavitation number

defined by
1
o = (pg + pgd - pv)/;pVA2 . (5.52)

When ¢ is éufficiently large, no cavitation occurs, and the previously
discussed subcavitating results can be used. The experiments show that when
the slip is small (J is large) and the loading Kg is small, then the influ-
ence of the cavitation number is less. It is noted that the efficiency, as

well as the thrust and the torque are all less when the cavitation is taken



~-252-

wexbetrq uotieitae) oTdwrs :/.Zz°G 2anbTg

q A e .
L adS/("a - vy + "@) = ¥T0g
01 60 80 L0 90 SO b0 £0 20 I'0 SO0
S00
%02 %0 %S %% 2
3av18 ¥3113d0¥d 40
X9V8 NO NOILVLIAVO 3OVANIOHId ONIMOHS SIHOLINS 10
~
9]
1}
S
NI
O
2
H [N
20  »
20
»0
s0

(60 °d ‘L96T) 3YOO3SWOD WOIJ



-253-

From van Lammeren, van Manen, and Oosterveld (1969, p. 303)
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Figure 5.28: Supercavitating Wageningen Screw (as a Function of J)
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into account -- particularly at low values of the advance ratio.

Blount and Fox (1978) replotted these results to a base of KT/J2 . An
example of their graphs is given in Fig. 5.29. As noted in Sec. 5.4,2, this
is a more convenient way of plotting the results when the thrust and diameter

are known, as the optimum propeller and revolutions can more easily be chosen

then.

5.6.2. Gawn-Burrill Series Screws

The Gawn-Burrill screws were specifically designed to operate in the
cavitating mode, unlike the Wageningen screws. The basic geometry of these
screws is presented in Fig. 5.30. These propellers have three blades and the
blade-area ratio lies between 0.5 and 1.1, while the pitch ratio is between
0.6 and 2.0. The blade face is flat and has a constant pitch (it is not wake
adapted). The blade outline is elliptical.

Some results are presented in Fig. 5.31. This particular figure shows
how the original experimental results were corrected for the speed effect
(because of the tunnel blockage) and for the pressure effect (cavitation
number). The overall trend of the behavior is the same as for the Wageningen
screws: when the slip is large, the cavitation number is more important, and
its influence is to reduce the efficiency, thrust and the torque.

The performance of these screws has also been plotted on a base of

KT/J2 , by Blount and Fox (1976). An example of these is given in Fig. 5.32.

5.6.3. Newton-Rader Series Screws

The geometry of this series is shown in Fig. 5.33. Like the Gawn-Burrill
screws, the Newton-Rader propellers are three-bladed. The pitch ratio was
varied from 1.0 to 2,0 and the blade-area ratios from 0.5 to 1.0 in the tests.

Fig. 5.33 shows how the leading edges of the blades were modified twice to
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From Blount and Fox (1978, p. 155)
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Figure 5.29: Supercavitating Wageningen Screw (as a Function of KT/JZ)
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From Blount and Fox (1978, p. 156)
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Figure 5.29: (Continued)
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From Gawn and Burrill (1957, p.713)
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Figure 5.31:

Supercavitating Gawn-Burrill Screw (as a Function of J)
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From Blount and Fox (1976, p. 37)
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Figure 5.32: Supercavitating Gawn-Burrill Screw (as a Function of KT/JZ)
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and Fox (1976, p. 38)
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achieve freedom from face cavitation and to obtain a high efficiency at the
design operating conditions.

An example of the performance is shown in Fig. 5.34. The character of
the influence of cavitation number is seen to be quite different from that of
both the Wageningen and the Gawn-Burrill series. The performance, particular-
ly the efficiency, drops off markedly at high values of the advance ratio,
rather than at low values. This feature was noted by Newton and Rader (1961)
and was explained by the fact that the blades are more cambered than in the
other propeller series.

Finally, Blount and Fox (1978) have also plotted the results of this

series using a base of KT/J2 « An example is given in Fig. 5.35.
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From Newton and Rader (1961, pp 96 and 97)
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Figure 5.34: Supercavitating Newton-Rader Screw (as a Function of J)
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From Newton and Rader (1961, p. 297)
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From Blount and Fox (1978, p. 165)
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Supercavitating Newton-Rader Screw (as a Function of KT/JZ)
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From Blount and Fox (1978, p. 166)
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