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PRINCIPAL NOMENCLATURE

[Note: Equation numbers are given below where it may help to identify the
point of first introduction of a symbol.]

A(x,y) Factor in £(2Z) (36)

A0 Constant factor in $1 (46)

b(x) 1A(x,0) /0, (x,eH) (40)

C(y) Body curvature (48d)

F Froude number, U/(gL)ll2

£(2) Complex potential in outer solution (31)

G(X,Y;&,n) Green function used in inner region (63)

g Gravitation constant

H(x) (1/e)x(free-surface elevation)

H(x;e) (1/e)x(free-surface elevation in "naive expansion”) (9)

ﬁ(x;e) (1/e)x(free-surface elevation of wave motion) (9)

ﬁj(X;e) j-th term in expansion of H in inner region (55)

K(x) de(x)/dx (14)

L Typical body dimension

n Unit normal to body surface, directed into the body

U Forward speed

u, Constant = - C(0)¢0xx(x0,0) (48¢)

wW(Z) Complex function defined in outer solution (33)

X o/kK  (27)

X Horizontal Cartesian coordinate

Xg x-coordinate of downstream intersection of body and undisturbed
free surface or, approximately, of downstream stagnation point

Y y/e in outer solution (13); [y--sﬁ(x)]/e5 in inner solu-
tion (52)

Y Y-H in outer solution (27)

y Vertical Cartesian coordinate

yA Z+iY¥Y in outer solution (30)

o Exponent of € in outer solution (10),(11)

€ Small parameter of the problem = F2 = Uz/gL

ﬁj(x;O) Term in expansion of H(xj;e) (11)



0(x)

B (x)

u(Y)

v

o(x,y)
®(x,y;€)

3 (x,y3€)
5j(X,Y;e)
¢5(x,y50,Y)
¢g(x,¥)

- vi -

Rapidly varying phase function in outer solution (12)
e0(x) (12)

Source density on body surface (65)

Nondimensional wave number = 1/u§

Velocity potential of complete problem

Velocity potential in "naive expansion" (8)

Velocity potential for wave motion (8)

Term in expansion of ¢ in inner region (54)

Term in expansion of ¢(x,y;e) 1in outer region (10)

Velocity potential in double-body problem (48e)



I. INTRODUCTION

There have been two kinds of methods published for treating the

ship/wave problem for a ship moving at very low speed:

(1) First Ogilvie (1968) used an order-of-magnitude argument to
obtain a linear free-surface condition that would lead to the prediction
of a plausible wave motion at very low speeds. There were two essential
points: (a) the waves should have very short wavelength, and (b) the
waves should propagate on the nonlinear streaming flow around the correspond-
ing double body. In the linear wave problem, the apparent cause of wave
generation is an effective pressure distribution on the free surface, which
arises mathematically because the double-body flow does not really satisfy
the precise free-surface conditions. Ogilvie treated only the case of a
fully submerged two-dimensional body. Later, Baba and Takekuma (1975) extended
this concept to solve the problem of a three-dimensional surface-piercing body,
e.g., a ship. They went so far as to derive a wave-resistance formula based
on this approach. Maruo and Fukazawa (1979) extended this approach further,

using a coordinate transformation to simplify the analysis.

(2) Keller (1974) developed the first ray theory for the low-speed
problem. Inui and Kajitani (1977) used a procedure based on a method of
Ursell's (1960), which is essentially a ray method. Later, Keller (1979)
further developed his ray method with systematic asymptotic expansions, and
he applied his theory to a thin ship and a special class of "str=amlined”
ships. In Keller's ray theory, the waves are apparently generated only at
the stagnation points on the body; the amplitude and phase of the waves

are then modified gradually by the nonuniform flow around the double body.

There are difficulties in both methods. 1In the first, the linear
free-surface condition can be written in such a way that the terms on, say,
the left-hand side are rapidly varying wavelike quantities, while those on
the right-hand side are slowly varying in space. The latter are completely
known; they represent the fictitious pressure field imposed on the free
surface. The situation can be compared to the much simpler problem cited

by Keller (1979) (see his Appendix A):



u"(x) + kZu(x) = g(x) ,

where g(x) 1is analogous to the fictitious pressure distribution. If k

is very large, wave solutions of this differential equation represent very
‘short waves. The general solution of the above equation can, of course, be
written out explicitly, and it can then be expanded asymptotically for

k - . If the domain of x is -= < x < 4+ , the only part of the asymptotic
expansion that represents waves comes from the homogeneous problem, and its
amplitude and phase can be determined generally only if somehow they are

known at some point, possibly at infinity. In addition, there is a particular
solution, which can be represented asymptotically as a series in inverse

powers of k? ; it represents a slowly varying solution if g(x) is

slowly varying (as assumed). If the domain is restricted to, say, O <X <=,
the wave part of the solution depends entirely on the values of g(x) and

its derivatives at x = 0 and on the two boundary conditions imposed on

u{x) . So we can say that the generation of waves in such a case is unaffected
by the function g(x) except in a neighborhood of x = 0. This raises

a doubt about the fundamental supposition of the first method, namely, that

the waves are generated (mathematically speaking) by the fictitious pressure
distribution on the free surface. BAll that matters is the behavior of g(x)

near x = 0.

Dagan (1972) pointed out that the base flow on which the waves propagate
should not be just the double-body flow, as assumed by Ogilvie and others, but
at least two terms in the "naive expansion," which is the expansion that is
obtained if the problem is expanded formally and strictly in terms of power
series in the Froude number. Keller (1979) arrived at the same conclusion
and noted further that then the fictitious pressure distribution vanishes from
the wave problem. That is, the free-surface condition becomes homogeneous.

In fact, in Keller's (1979) ray theory, the wave part of the velocity
potential function satisfies the Laplace equation, which is homogeneous, as
well as homogeneous free-surface and body boundary conditions. Thus any
solution that is found can be multiplied by an arbitrary constant. Keller
introduced a so-called "excitation coefficient" for certain simple special
cases. Still, his method fails near the stagnation point of the double-body

flow: From the dispersion relation, the wave number becomes inifinte there,



and the amplitude of the waves becomes infinite too. Since, as Keller himself
pointed out, the generation of waves in the short-wave problem depends essentially
on conditions at the boundary point (consider again the simple differential-
equation problem cited above), the failure of the ray-theory assumptions near

a stagnation point seems to be crucial.

We present here the second part of a study to resolve these questions.
The first part is reported by Ogilvie and Chen (1982); it will be referred to
subsequently simply as "I". They derived a nonhomogeneous body boundary condition
for the wave part of the potential function. Their free-surface condition is
homogeneous, as required from the work of Keller. The nonhomogeneity of the
body boundary condition is, as we shall show, adequate for determining the

solution without any arbitrary additive or multiplicative quantities.

We use the method of matched asymptotic expansions to solve the low-speed
problem in two dimensions. Our outer region is a thin layer near the free
surface, far behind the body (in terms of wavelength). We use the generalized
WKB method to determine the nature of the wave motion in this region; this
method is very similar to a ray method. Then we formulate a near-field
problem, applicable to a very small region near the stagnation point. Con-
siderations of the flow properties near a stagnation point are found to be
sufficient for determining the near-field solution completely. Then matching

to the outer solution permits the latter to be determined as well.

The final formuia for the wave resistance, Equation (89), is surprising:
Wave resistance is proportional to yh8 , where U 1is the forward speed. We
believe that this is the correct asymptotic relationship, although it is not
likely to be useful to a naval architect. It clearly has no range of validity
in U in which its predictions overlap those from conventional wave-resistance
analyses. What is still needed is a small-U solution that gives this formula

as U > 0 and gives the results of conventional linear thoery as U -+ « .

There is an even stronger contrast between the low-speed theory and

conventional linear theory in the case of a submerged body. (The low-speed

. . . . -1/0
theory predicts that wave resistance is proportional to e / as U-~>0.)



Tulin (1982) has produced an exact theory that bridges the two. It will be
much more difficult to find a comparably general theory for the case of a

surface-piercing body.



II. OUTER SOLUTION BY THE WKB METHOD

We want to find a velocity potential LU®(x,y) for the streaming flow past
a two-dimensional body that intersects the free surface. The stream has speed
U in the positive-x direction. The undisturbed free surface lies on the x
axis, with the y axis directed upwards. We take the origin of coordinates
inside the body in such a way that the intersections of the body and the
undisturbed free surface are located at (-x4,0) and (x9,0) . The latter is
the one of primary interest in this paper, since it lies on the downstream side
of the body. All length dimensions have been normalized with respect to L ,
any convenient characteristic length of the body. The small parameter of the

problem is taken as
e = F?2 = u%/qL, (1)

where g is the gravitational constant and F is a Froude number. The shape
of the free surface is given by a relationship vy = eH(x) , where H(x) is to

be determined as part of the solution of the problem.

The statement of the problem is as follows:

[1.] Opy + ny = 0 in the fluid domain; (2)
(1] H(x) = = {1 - 02 - ¢2} ; (3)

2 Y

y=¢cH (x)
(X1 @Y = eHx@x on vy = eH(x) ; (4)
[F] B, + £{020,, +2040,0yy +020,0} = 0 on y = eH(x) ; (5)
Y XXX x¥y¥xy T *y%yy y i

0o
[B] = - 0 on the body; (6)
[R] |¢ - xl > 0 as x &> = and/or y > - ., (7)

These are the same as in (I), although the [K] condition was not explicitly

used there. Either the [F] condition or the [K] condition is redundant.

We assume that the solution can be divided into two parts:



LG =

®(x,y) 3(x,yi€) + d(x,y;e) ; (8)

H(x)

H(x;e) + H(x;e) . ) (9)

The first part, represented by a(x,y;s) and ﬁ(x;e) , is the so-called naive
expansion (see (I)); it is the formal solution that is obtained by simply sub-
stituting a power series in € into the conditions (2) - (7). It does not
represent a wavelike motion, although there is a corresponding free-surface
deformation near the body, which vanishes downstream as well as upstream. The
other texrms in (8) and (9) represent true wave motions (suggested by the nota-
tion ~ ). We further assume that the wave part of the solution can be

expanded as follows:

5(x,y;e) N e“+1$1(x,y;O,Y) + €“+2$2(x,y;®,Y) + ... 3 (10)

H(x;e) eaﬁl(x;e) + e“+152(x;6) T oees o (11)
Three new quantities have been introduced:

(i) o is a real number greater than unity. In (I), it was taken as
1 . Actually, that is simply the smallest possible value of «a
that leads to a linear problem for the wave motion. Now we must
use the nonhomogeneous boundary condition developed in (I) to
determine the correct value of a . Note that the difference in
the powers of ¢ between (10) and (11) results from the [H] con-
dition, (3) .

(ii) 0(x) is a rapidly varying phase function, which we shall also
write in the form

0(x) = 6(x)/c . (12)

We shall assume that 6(x) is slowly varying in the sense that
its derivative is of the same order of magnitude as 6 itself.

(iii) Y is a stretched coordinate:

Y =vy/e . (13)

Effectively, we treat this as a multiple-scale problem, x and Yy being used
to describe changes that occur on a scale comparable to the dimensions of the
body, © and Y being used to describe the details on the scale of the wave-
length. We imply here that the generated waves have wavelength that is o0(e) .
This is valid in the outer region, which means a region many wavelengths away
from the downstream stagnation point. The implication is not valid very near

to the stagnation point. The latter case is discussed in the next section.



The expansions (10) and (1ll) are called generalized WKB expansions. The
functions $i and ﬁi all represent wave motions that are supexposed on a

nonuniform, nonwavelike base flow given by ¢ and H .

Let us define

_de(x) (
K(x) = mr-vaull (14)
We note the following formulas for differentiations:

80 _ 33 o+lys = at+? [z /i
T T T (bt IR/elbigh v Ty 4 /eldpp) 4 eun as
3% _ 3% . s+l 3 a+2[3 s
5y | oy ¢ {¢ly'+[l/€]¢1y} TE {¢2y1'[1/€]¢2y} S (16)
dH _ dH , _qgc ~ a1 -
= - = + € {nlx-+[K/e]nle} + € {nzx-+[K/€]n29} t oeeo & (17)

Now we substitute (8)~(9) and (10)-(11l) into the conditions of the problem,
starting with the Laplace equation (2). Then we rearrange terms according to
powers of & and set the coefficient of each power separately equal to zero.
o-1

From the coefficient of ¢ , we obtain:

24 b =
(L] K?$100 + P1yy o . (18)
Similarly, from the coefficient of €& , we obtain:
w2y r - - e e e
[L] K?0r00 + P2yy {éy), + Ko + 28y ) - (19)

The letter subscripts indicate partial or total derivatives, as appropriate.

(For example, K, = dK/dx , whereas ¢x = 0¢/93x . )

Next we substitute into the [H] condition, (3). Initially, all functions
of y and of Y must be evaluated on €H(x) and on H(x) , respectively.
Then we expand these functions in Taylor series as follows: ® (and its deri-
vatives) is expanded with respect to y = €H , Whereas $i is expanded with
respect to y =0 and Y = H . (The last is permissible if, as assumed,

o >1.) We note that, from the definition of the naive expansion,

Ey(x,eﬁ) = eﬁxax(x,eﬁ) : (20)



From the coefficient of €% in (3), we obtain:

[H] ﬁl(x,e) = - K(x)@x(x,eﬁ)$le(x,o;e,ﬁ) . (21)
Similarly, from the coefficient of g%l ,
Bl iy = - Be{Kdyg +$y, +KEI +Hxdy}  on y=o0, Y=&. (22)

Here and throughout this section, the notation " y = 0 ", as in (22), refers

only to 51 . As already mentioned, and as indicated explicitly in (21), we

evaluate @ on y = eH .

Following the same procedure with the [K] condition, (4), we obtain:

~

[K] b1y = KdgNg on y=0, Y=H; (23)

~ ~ -~ -~ g -~ ~ - y=0
KT §y, + bpy + Byymy = Bamy + Kiigbyg + Koynpg - ¢y, on = " (29

Y .

~

We can eliminate n between (21) and (23) (or, alternatively, start with

the ([F] condition, (5)). Then the $1 problem is given by the following:

(18)

~e

(L] K2$166 + $1YY = 0 in y<0, Y<H

(25)

T

0, Y=

-~ _2~
[F] b1y * K2®x¢1ee = 0 on y

Then we eliminate 52 between (22) and (24), which, together with (19), gives

the ¢, problem:

- . _ - . - , -
(L] K29p00 + $oyy = = {Kéy )y + Ky + 26 0} dn yzo0, YsH; (19
[F1 ¢, + K°32¢ = - $y + B ny + KA b, - Hé, . - KO-
2y x%200 ly xMx x'1g lyy x"1x0
: 27227 =2= = = =~ y=0., (26)
K QXH¢1GOy KOH 6100 = ByuM on [ I

Now let us solve the problem stated in (18) and (25). The independent
variables are © and Y ; we can consider x and y as if they were para-

meters. By a minor change of variables, we transform the first equation into

the Laplace equation. Let

X=0/K, Y=Y-H, (27)



Then (18) and (25) become:

$1xx + $1§§ = 0 in y<0, ¥<o0; (28)
-~ -2~ ~
b1g+ by = 0 om y=0, ¥=0. (29)

The slight change from Y to Y in (25) has enabled us to formulate a problem

with a free-surface condition given on the X axis.
We introduce complex variables % and E(Z) :

Z =X+ i¥ , (30)

~

¢, = Relf(z)} . (31)

(Of course, f also depends on x and y , but we continue to treat the
latter as parameters.) The Laplace equation, (28), is automatically satisfied
when $1 is defined as in (31). The free-surface condition, (29), can now be

rewritten:
Re{32(x,eM)E" + if'} = 0 on y=0, ¥=o0. (32)

Since we consider x (and thus H(x) ) as being fixed in (32), this condition

is valid for all X . Thus we can define a new function
W(zZ) = 3i(x,eH)E"(2) + if'(2) , (33)

which can be continued analytically into the upper half plane as follows:

Wz = -w@ , (34)

where the bars here denote complex conjugates. Since W(Z) is analytic in
the entire lower half of the Z plane, we now conclude that it is analytic in
the entire plane. Thus it must be a constant. From (29), its real part
vanishes, and, without loss of generality, we set its imaginary part equal

to zero also. Then
328" (2z) + if'(2) = 0 in the Z plane. (35)

This is an ordinary differential equation for E(Z) , which is easily solved:



- 10 -

f(z) = ax,y) exp{-iz/3} , (36)

where A(x,y) is an arbitrary constant with respect to X and ¥. In
general, an additive constant, say C(x,y) , can be added to (36), but it con-

tributes nothing to the wave solution, and so we set it equal to zero.

We require that f be a periodic function of ©O . We have not yet speci-
fied 6 = e0(x) , and so, without loss of generality, we can require that the
period be 27 . Substituting 2 = o/K +i¥ into (36) and taking into account

that K = 0'(x) = €0'(x) , this requirement is equivalent to the following:

0 O+27
- '—_-2—_' + 2'"' = - —:‘E’——‘_-' -
edx0 edx (6+27)
It then follows that
X
1 =2 -
o(x) = - p J dg/ e, (£,€H(E)) , (37)
X0

where once again, without loss of generality, we have set a constant of integra-
tion equal to zero. Substituting into (36) and then using (31), we have the

solution:
$,(x,y;0,¥) = Relf(2)} = Re{a(x,y) exp ((¥-H)/32) exp (i6(x))} . (38)
From (21) we obtain the wave-elevation function:
N, (x;0) = Re{b(x) exp (i6(x))} , (39)

where

b(x) = iA(x,0)/3,(x,eH) . (40)

From now on, for convenience, we drop the notation Re , but we imply that it

should be included in expressions like (38) and (39).

The situation represented by the solution $1 and ﬁl above is familiar
in applications of the WKB method: We now know the basic form of the wave
solution, but we do not know its amplitude anywhere. We know the phase func-

tion, 0O(x) , but the [complex] amplitude A(x,0) is completely unknown.

In order to obtain more information about A(x,0) , we must consider the

second-order problem, given by (19) and (26). The form of the left-hand sides



- 11 -

of (19) and (26) is identical to that of (18) and (25) , which gave the first-order
problem. So we can expect the second-order solution to represent waves like those
described in (38) and (39). That is, &2 will contain a part that satisfies the
homogeneous counterpart of (26), and this part will depend on the same phase func-
tion as that in $1 . In addition, we note that the right-hand sides of (19) and
(26) are linear in 61 and ﬁl , and so the solution of the nonhomogeneous prob-

lem will also involve the same phase function., So we now write:

~

= =2 :
$, = B,(x,y) exp{(v-H)/3;}exp {io(x)} , (41)
where 0O(x) is still given by (37) and AZ(X,y) is an unknown function.

When (41) is substituted into (19) and (26), it is evident that the equations
can be satisfied only if the right-hand sides of those equations are separately
equal to zero. This provides the further conditions needed for determining the
first-order solution. Substituting (38) and (39) into the right-hand sides of
(19) and (26), setting them equal to zero, and letting y = H , we find that:

iBK, + 2iKa, - 2ikAfl/B; + 28/8; = o, (42)
Byby - Byyb - 2iHA/8; - iB,,a/8, = o0, (43)
where we have used the fact that ﬁx = -EX5XX-+O(E) + Wwhich follows readily

from (3) and (4). We use this relationship again in (42), noting also that

K = -l/@i , to obtain the following:
Ay(x,O) = 1Ay (x,0) . (44)
Then we use this result and the definition (40) in (43) to obtain:

A, + B3 /0 = 0. (45)

This differential equation is easily solved: A(x,0) = A0/<I>X , where A0 is
strictly a constant. Thus we have found the form of A(x,0) , and so we have
for 51 :

$,(x,0;0,H) = {8,/% (x,€H) } 1O (46)

The constant A, can only be found from matching this solution with a near-
field (inner) solution. This situation arises because our fundamental equation
is an elliptic equation (the Laplace equation), and the typical WKR wave approxi-
mation is not valid in a region near the body, where elliptic behavior domi-

nates the wave behavior.



III. INNER SOLUTION BY THE SOURCE-DISTRIBUTION METHOD

The solution obtained in the preceding section represents a wave motion
with very short waves. To be precise, from (37) and (38), it is evident that
the local wave number is

0'(x) = - 1/eda(x,ef(x)) . (47)
Since, in general, 5x = 0(1) as € -+ 0 , we have
0'(x) = o(l/e) . (477")

The assumption in (12) was really an anticipation of this condition.

If, however, &, vanishes at some point, the wave number in (47) is
undefined at that point. Our conclusions must be reconsidered in a neighbor-

hood of that point.

We expect that there will be a stagnation point on the downstream side of
the body, presumably at the intersection of the body and the free surface.
Such a stagnation point will be located at y = g/2 , as shown by (3). We set
X = x5 at this point.*

x=% =0.

that 6x = Ey = 0 at the stagnation point, we create precisely the condition

mentioned above: The wave number is undefined. So we consider more carefully

At the stagnation point, we have ¢ If, separately, we require

the behavior of @ near (xo,a/2) . In Appendix A we show that

Sy (x4,6/2) = e?uy + o(e?) , (48a)
8y (xg,€/2) = 0O(e?) , (48b)
where
u, = - C(0)¢0xx(x0.0) ’ (48c)
C(0) = body curvature at y = 0 , (484)
¢0(x,y) = first term in an € expansion of 5(x,y).* (48e)

*As in (I), we shall also take x = X, at the downstream intersection of the
body and the x axis. Since the body is assumed to be smooth and to have a
vertical tangent at y = 0 , this practice should not cause significant error.

+¢0(x,y) is the solution of the "rigid-wall" or "double-body" problem, in which
the free surface is replaced by a rigid wall at y = 0 . See (I) for details.

] Qs =
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From these relationships, we now show that the wave number is O(l/es) in a

small region near (xo,€/2) .

We substitute (8) into the free-surface condition (5), eliminate the terms
that involve only the naive expansion, and then determine the leading-order
wavelike terms. In view of the estimates (48a) and (48b), we can, to leading
order, drop all terms except the following:

5 + 5525 vo0

y X XX -
This is directly comparable to the problem statement in (I), and it is also
equivalent to (29) above. However, it is now being used in a small region
near the stagnation point, where, from (48a), Ex = 0(e?) . (In other words,
we now use this condition everywhere for obtaining the lowest-order term in
the wavelike solution.) Thus we have

3

y + Oy 0(e%) v 0.

These two terms must be of the same order of magnitude, for otherwise @
would not represent a wave motion. Furthermore, since the potential satisfies
the Laplace equation, 9/9x and 3/9y should have similar order-of-magnitude

effects on & . These requirements can be satisfied only if
AT 3o = 0(e7d) (49)

when acting on ¢ , which is equivalent to the statement that wave number is

0(e™%) . This is valid only in a region near the stagnation point.

~

From (48a) we can also determine the order of magnitude of ¢ in the
neighborhood of the stagnation point. The complete potential, 3+ 0 , must
give no normal velocity component on the body. However, from (48a), Ex =
0(82) at the stagnation point, and so 85/8n = 0(e?) there. In order to
cancel this, we must have 85/8n = 0(e?) too at the stagnation point. But,

in view of (49), this is possible only if
& = o(e) (50)

near the stagnation point. (Note that this still does not give us o in (10)

and (11). Those expressions are not valid near the stagnation point.)
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The next problem is to formulate and solve a precise near-field problem

for matching with the outer solution from Section II.

We define the near field as a region in which

X - X = O(€5)
_ 9 ' (51)
y - eH(x) = o(ed .
It is sometimes convenient to define new near-field variables:
X = (x- xo)/»:5 ]
- (52)
Y = [y - eH(x)1/€®
We note the following rules for differentiation:
9 | =58 | R (x)--
5% - € ax _ & W (XFgo
(53)
2 o -5
oy oY

Since we shall solve the near-field problem just to one order of magnitude, we
shall have to use only the first term on the right-hand side of the first
formula of (53).

In the near field, we expand the potential:
o(x,y) = ®(x,y;e) + €78 (X,¥;€) + ... . (54)
From this expansion and (3), we find that we can also write:
H(x) = H(x;e) + e'H (X5¢) + ... . (55)
The free-surface condition, (5), can now be expanded as follows:

0 = By + s7<I>1y +oaee + e{[5x+e7¢1x+...]2[5xx+e7<1>1xx+...] + ...}

- 2= ~ =2 -3%
By + by + .. + €20+ il + efdgoe™38  +.ou} (56)

to be satisfied on y = €H = eﬁ-+35ﬁ1-+... , which is equivalent to Y = ﬁ1+ coe o
In the near field, ® and its derivatives can be evaluated at x = Xgr Y= €/2

with negligible (higher-order) error. Thus, for example,
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X

1l

Oy (X,€H) = B (x0,€/2) + (x-x) 8, (x4,€/2) + € (H-

1
59

®yy(x0,e/2) + ...

Ex(xo,e/Z) + 65X5XX + [85ﬁ14—€6Xﬁ'(x0)4-...]5 +

Yy tte

~ 5x(x0,€/2) N ezuo (57)
(See (48a)). The free-surface condition becomes, to leading order,
8.+ ud = 0 = H 58
1y u, 1xx on Y = H;+... (58)
The body boundary condition is as follows:
30 3% ,39)
—_ = — 4 - ce. =
an on 3 an i X
From the naive expansion, worked out in (I), we have
30
M = 0 on body, y < 0,
ﬁé_ = 2 = 2 d < < 2
" - syC(O)¢0xx(x0,0) = 2eyu on body, O y e/
Thus we require that
381
€ Sn = 0 on body, y < 0, (59a)
,89,
€ Sx = - 2€yu0 on body, 0 <y < g/2 . (59b)
In terms of near-field variables, the last condition can be written:
39, X .
% = - uo(l+-2€ Y) for X =0, -1/2et <Y < 0O . (60)
It would be consistent at this point to simplify this condition to 851/3X =

- uy and to apply it in - < ¥ < 0 . However, this would lead us to some

undefined integrals, and so we use (60) as stated above.

Consistency can be

achieved later. We supplement (60) with the further condition:

—= = 0 for X =0, Y < -1/2e% .

This is consistent with (59a) in a small region in which y = 0O(g) .

-~

(60")

Finally, it should be noted that, to leading order, @1 satisfies the

Laplace equation:
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lex + QlYY = 0 in the fluid region. (61)

The problem just formulated for 51 would be straightforward to solve
except for one difficulty: The free-surface condition, (58), is to be satis-
fied on Y = ﬁli-... . Usually in such problems it is easy to show that the
boundary condition can be transferred to the undisturbed surface with negli-
gible error, but such an operation is not trivial in the present problem.

In terms of near-field variables, we must note that 23/3Y = O0(1l) and ﬁl =
0(1) , and so a simple Taylor expansion cannot be used. In terms of the
original physical variables, we have Bél/ay = 0(51/85) and the boundary
has to be moved a distance eH-¢eH = esﬁl-k... = 0(e®) . This shows again

that the transfer is not trivial.

Nevertheless, it can be carried out. Our demonstration is not rigorous,
but it is convincing. We suppose first that (58) can be applied on Y = 0 .
Then we show that the solution so obtained satisfies the same condition

applied on Y = H1 (to an acceptable accuracy). We then presume that the
reverse is true, that is, that a solution satisfying (58) (as stated) also

satisfies (58) approximately when it is imposed on Y =20

If (58) is satisfied on Y = 0 , we expect the solution to take the

form
a>:L(XIY) = FO (x,y) + Fl (x,y) exp {is (er)/Es} ’ (62)

where the functions Fo(x,y) R Fl(x,y) , and S(x,y) all vary "slowly"” with
x and y , that is, 9/9x and 3/3y = O(l) when operating on these func-
tions. (Such a result is well-known for the corresponding "wavemaker prob-
lem." See Appendix B.) In fact, in the near field, Fl(x,y) is a constant,

and
exp {iS(x,y)/e°} = exp {iv(X+iY)} ,

where

v l/ug ’

and so we see explicitly that S(x,y) = v{(x—xo)-+i[y-eﬁ(x)]} , which indeed
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varies slowly with x and y . The function Fo(x,y) represents a nonwave-

like motion, a local effect, that decays with distance from the body.

There is negligible difference whether we evaluate Fo(x,y) + Fi(xyy)
and S(x,y) on Y=0 oron Y= ﬁ1+... » and so we need consider only the
exponential factor in (62), which does change rapidly with x and y . We

observe that

exp {iS(x,eH)/e°} = exp {i[S(x,eH) + e (H-H) Sy (x,€H) + ...1/e%}
= exp {iS(x,eH)/e°}- exp {iﬁlsy(x,eﬁ)}-{li-o(l)} .

Thus, if we evaluate the exponential function on Y = ﬁ1+... (which is equi-
valent to y = €H ) instead of on Y = 0 (equivalent to y = €H ), we effec-

tively multiply by a factor exp {iﬁlsy(x,eﬁ)}

Now we assume explicitly that (62) satisfies (58) on Y = 0 , that is,

(8,, + u3d )I = (py, + u’F )l
ly 0% 1xx ¥=0 0y 0% 0xx v=0

3 . 223% .
o (ﬁﬂ‘uog'x'z‘) [F) exp {18/65}]|Y_0 = 0.

The first term on the right-hand side varies slowly in x , whereas the second
term varies very rapidly. Then the sum can equal zero only if each term sepa-

rately equals zero. So we have

2
F + u,F
0 0" 0x =
¥ X on Y=0 (y=¢€H) .

|
(@

9 232 Cps 5
[5§-+ uosgij[Fl exp {iS/e°}]

On the other hand, let us evaluate the left-hand side of (58) on Y = ﬁl+...

~ 2~ 2
(8,, + uyd ]I = (Fy, + ujF ]I + ...
1 071 - 0 0c0
¥ XX Y=H1+... ¥ XX Y=0
M - ) 232 . 5
+ exp {1HISy(x,eH)}(5§-+ uoggia[Flexp (is/e>)] + ... .

¥Y=0
Each term on the right-hand side is separately equal to zero (to the order of
magnitude considered here), and so we see that (58) is approximately valid if
applied on Y = ﬁ1+... . Thus we have shown the stated result: If (58) is
satisfied on Y = 0 it is also satisfied approximately on Y = ﬁ1+... . Now
we assume that the converse is true, which means that we can simplify our

boundary-value problem by imposing (58) on Y = 0 .
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The solution will be constructed with the following Green function:

G(X,Y;E,n) = ;—nlog [(x-£)2+ (y-n)211/2 4 51;1og [(X-£)2+ (v+n)2]1/2
+ %-]Lﬁ— ek(Y+n) cos k(X-&g) - M ev (¥+n) sin v(X-£&) . (63)

k-v
0

M is a constant to be determined. The integral is to be interpreted in a
principal-value sense (denoted by the bar through the integral sign). This
Green function gives the potential at (X,Y) corresponding to a unit source
located at (£,n) . However, an additional wave disturbance has been intro-
duced with the M term. The above Green function satisfies the Laplace
equation and the free-surface condition, (58). It represents the following

wave motion very far away:

+
Gy (X,¥;&,n) ~ - v(Mtl) ev(Y n)cos Vv (X-£) as X-f > feo | (64)
Using this fundamental solution, we express the solution of our problem in

the following form:
0

51(X,Y) = Ju(n) G(X,Y;0,n)dn + De\)Ycos vX , (65)

-0
where u(n) is an unknown function to be determined so that the body boundary
condition, (60) and (60'), is satisfied. The extra term on the right-hand side
of (65) is easily recognized as a solution of the homogeneous problem, since it

yields no contribution to 51x at X =0

We substitute (65) into the body boundary condition, obtaining:

28, 1 . on - ug(l+2ety) , -1/2e% < v <o,

33X EWMY)-vMe f u(n)e dn = (66)
oo 0, Y < -1/2e% .

This is a very simple integral equation for u(Y) . The solution can obviously

be expressed in the form:

Y
W) = wy(v) + B, (67)
where
—2u0(1+-2e“y) , =1l/2e% <y <o,
o (¥) = (68)
o, Y < -1/2e* .

Substituting (67) and (68) back into (66), we obtain the value of E
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4u,M 2l - b
_ _ fupt _ 287 v/ 2¢e
E = (1 ={1- e }J ” (69)
The constants M and D are not yet known, but otherwise we know everything
in (65), and so we have obtained a solution that satisfies (i) the Laplace

equation, (ii) the free-surface condition, and (iii) the body condition.

Farlier, we assumed that there was a stagnation point at (xo,e/2)
(lor X =0, Y=0). We now find that this condition is sufficient for
determining the constants M and D . From (54) and (53), we have

3 30
o _ 3(P+ 2991

g—'@ Say+.... (70)

From the formulation of the & problem, we know that

3% 727 - _ 542 3 5
dy = —E(I)X(DXX = —-g“C (0)¢OXX(XOIO) + o(e”) , (71)

the last estimate being valid at the stagnation point (See Appendix A). So we
must have
LTSRN €3c2(0)0, (%4,0) = e3uldy._ (x9,0) (72)
oY Oxx "0 0¥0xx "0
at X=0, Y =0 in order that 23%/9y , as expressed in (70), may vanish at
the stagnation point. However, from the solution as given in (65), we find
that 851/8Y is undefined (infinite) at this point unless u(0) = 0 . To see

this explicitly, we differentiate (65):

Y

“ 0
Ll t
=1 = J pmy 2800 4y ypeVY (73)

oY X=0 . Y

From the definition of the Green function, (63), we have

[=3

sl L[.l R 1]+1.)£dk..k._e._k‘“”’
BYX=£=0 2mi{Y - n Y+ n T k-v
[ kn
1{d&ke o yvaso0 .
m k-v
0

The last expression behaves as -1/mn as 1n -+ 0 , which shows that the integral
in (73) diverges as Y > 0 , unless it happens that u(0) = 0 . So we now

impose such a condition on 1y , and this then determines M :

0 = p(0) = Hg (0) + E
4upM 2et -v/2¢et
= —2uo—l__M (I—T{l—e } ‘

where we have used (67), (68), and (69). Solving for M , we obtain:
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1 1
M = —_ ~ I
1 - (4e/v)[L~ exp(-v/2e™)] 1-4e"/v (74)

It is useful also to note the following consequences:

E = -py(0) = 2u,, (75)
2u{e¥-1-2e} , -1/2¢* <v <o,

u(y) = (76)
2uoe\)Y R Y < -l/2€l+ .

The above choice of M guarantees that 51Y remains finite at the stag-
nation point, but it does not yet lead to (72). 1In order to ensure that (72)
is satisfied, we must evaluate the integral in (73) as Y - 0 and then choose
the value of D appropriately. The evaluation of the integrals will be found

in Appendix C. From these results, we obtain:
2 N
D = edugdg,, (x,0)/v = edughy  (x0,0) = e3c* (045 (x0,0) . (77)

In summary, we note that the solution in the inner region is expanded as
in (54), ) being the naive solution that was worked out in (I). The next
term, 2751 ; is obtained in the form given in (65), with u(Y¥) given in (76)

and D in (77). This completes the inner solution for our purposes.

Before matching this inner solution with the outer solution, it is worth-

while to comment on some unusual aspects of the foregoing analysis:

(1) Normally in using matched asymptotic expansions, one obtains inner
and outer expansions each of which is nonunique in some way. Matching of the
two expansions then removes the nonuniqueness in each. However, in our prob-
lem, we have obtained a complete (unique) near-field solution, at least to
leading order of magnitude. This appears at first sight to eliminate the
possibility of satisfying a radiation condition in the far field. 1In fact,
this is precisely what happens, and fortunately too, for there is no radiation
condition possible in the far field. 1In steady-motion problems, we usually
specify that there should be no waves upstream; this is an adequate radiation
condition in two dimensions. In our problem, however, the downstream waves
appear only in a surface layer of vanishing thickness, and these waves are
effectively isolated from the upstream fluid region. One might say that there

is no upstream region at all, at least insofar as it might affect the waves
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downstream of the body. Then one must seek an alternative condition to make
the solution unique. As described above, we have used the sclution behavior

at the stagnation point to provide such a condition.

(ii) The Green function introduced in (63) is rather unusual because of
the presence of the last term. The contribution of this term to 51 is
interesting. Effectively, it produces a second solution of the homogeneous
problem. The one obvious solution of the homogeneous problem is the last
term in (65). But one can construct others if some degree of singularity is
tolerated at the origin. The M term in the Green function produces a solu-
tion of the homogeneous problem with precisely the singular character at the
origin that is needed to cancel the singular velocity that would otherwise
arise from the source distribution. This is what was accomplished in deriving

the value of M in (74).



IV. MATCHING OF INNER AND OUTER SOLUTIONS

We now use the inner solution, which is completely known, to determine
the unknown amplitude and phase of the waves in the outer region. From (8),

(10), and (38), the outer solution can be written:
o(x,y) = B(x,vie) + % Lexp [(v-H) /331 Re {a(x,y) exp [10(x)1} . (78)

The rapidly varying phase function, ©0(x) , was given in (37); the complex

amplitude function, A(x,y) , was partially determined:
A(x,0) = Ay/dy(x,eH(x)) , (79)

where Ao is a complex constant. All that remains to be determined is Aj

and o . We accomplish this by matching @x(x,eﬁ) in the two regions.

For the moment, let us omit the Re notation in (78), just as we did

earlier. We write out &, (x,y) :

_ . H' 2(Y-H)©®
o, (x,y) = by(x,y;e) + €°‘+1[Ax(x,y) +A(x,y){—§7——(—.—3—)—§5+ i0" (x)}}
q)X <I>X
« exp [ (Y-H)/32]+ exp [10(x)] . (80)
On y = eH (or Y =H *), this simplifies:
o, (x,eH) = 0, (x,eH;e) + e“*l[Ax(x,O) +A(x,0){—g—2+ 10" (x) }] * exp [10(x)]
X
S PN (80°%)

Now we change over to near-field variables, as defined in (52). We note that

1 1
o' = - —=——=- Vv--g73 as X >0 ;
(x) edx (x,€H) € ug S
0G) = - ¢ Jx = v - 27X | X
€ xe“u%[l4—0(e3)] esu% u% :

0

*Note the difference in the definition of Y in the inner and outer regions:
Y=y/e¢ in the outer region (see (13)), whereas Y==[y--eH(x)]/e5 in the inner
region (see (52)).

- 22 -
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The estimate (48a) has been used here. Now we keep just the leading term in

(80'), with X fixed:

. 2
o (x,€l) N B (x,efize) - i(ag/ud) ¥ C T/ (81)

This is the result that we will match to the inner solution.

The inner solution was given in (54), (65), (76), and (77). Let us find

the derivative that matches (81):

]

oy (x,Y) by (x,yi€) + e7[<§1xxx + 51YYX] + ...

5x(x,y;e) + Ezélx + ... .

We must evaluate this as X > «» in order to perform the matching. Introducing
(64) into (65), differentiating with respect to X , and evaluating the result-

ing integral, we find that

Y
3

L . v 2 3 : 2
v —v{4s ujpcos VX + Dsin vx} e v - e3¢ (O)¢0xx(xo,0) sin X/uo

X
+ e.. . (82)

In (82), the term containing cos vX comes from the integral in (65), and the
term containing sin vX comes from the homogeneous solution in (65). As is
apparent here, the latter is of lower order of magnitude and thus dominates in

(82).

Now we match these near-field results with the real part of (8l), the

result being that
A, = =-C°(00¢% (x,,0) (83)
0 Oxx ‘70’ :

We also find that
o = 11 . (84)

We can substitute back into the formulas for ¢ or for ¢, in the far field.

The latter, in particular, gives us:
5 6 X

- - - c>(0)¢ (x4,0) i
@x(x,EH(x)) = @x(x,eH;e) + igll ggx 0r exp |- a& S
3 »

2
X (85)

Q

o |H
=

This is our final form of the solution in terms of ¢ .



V. WAVE RESISTANCE

Exact nonlinear formulas are readily available for computing wave resis-
tance if the fluid velocity and free-surface disturbance are known. From
Wehausen and Laitone (1960), Equation (8.6), for example, we have:

eH (x)

R = o0l I ay {07 Ge,y) - [0 txuy) - 112} + 2 p 912202 (x) , (86)

—o0
where R is the wave resistance, and all other quantities are as previously
defined. The right-hand side can be computed at any x downstream of the

body, but we simplify the task by letting x - « .

The general far-field expression for d4(x,y) has been given in (80). As

X > +o , the following approximations can all be used:

R
—
s

14
o
-
ol

n

(@

2%

- - (87)
H=0, H = 0 ;

0'(x) = - 1/¢ .

Noting that A is a real constant and taking the appropriate real parts in

0
(80) (see (78)), we obtain the asymptotic estimate,

y/€

Oy (x,y) = 1+ ellae’ “sin[0(x)] , (88a)

valid as x =+ +e . Similarly we find that
oy G,y) = ellae? Ccos (0(x)] - (88b)
Moreover, from (2), (11), (39), and (40), we also have:

H(x) = - ella sin [0(x)] . (88c)

Carrying out the integration in (86), with the upper limit of the integral

replaced (consistently) by zero, we obtain finally that

=y ...R ~ 1 23 2 = l 23,10 12
= 8
CW = ( / ) 5 2 € AO 2 € C (O)q)o (XO ,0) 7 ( 9)

- 24 -



- 25 -

where, as before, C(0) is the body curvature at the intersection of the body
and the undisturbed free surface and ¢o(x,y) is the first term in the naive
expansion (the potential for the double-body flow)., Cy is the wave-resistance

coefficient for the 2-D body.

It can hardly be surprising that the wave resistance depends on the shape
of the body only near the free surface, since the wave motion occurs entirely
in a very thin layer, in fact, in a vanishingly thin layer, near the level of
the free surface, and the wave motion is induced by the peculiar nature of the
streaming flow on the body near this level (see (I)). Furthermore, we assumed
that the body has a vertical tangent here, and so it is also reasonable to

expect that the curvature should have a dominant effect in creating waves.

If the curvature were zero at y = 0 , we would expect the generation of
waves to depend primarily on higher-order derivatives of the body shape in
this same region. Presumably wave amplitude and wave resistance would then be

of even higher order than in the case presented.

We can only speculate now what would be the result if the body contour
were analytically straight in some finite neighborhood of y = 0 . Our specu-
lation is that waves and wave resistance would be small of exponential order

as in the case of a submerged body.
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APPENDIX A, STAGNATION-POINT CONDITIONS ON &

Here we obtain the estimate given in (48c¢) and (71).
From (I), from the definition of the naive expansion,

o, N ¢0x + e¢lx + ... .

On the body very close to the free surface,

b3 T T

If the body shape has continuous curvature and a vertical tangent at y = 0 ,

we have, from Equation (42) of (I),

o, = o(ed) .

From Equation (62) of (I),

¢1x = - 2y’C(0)¢0xx(x0,0) for 0 <y <¢ege/f2,
body

where C(0) and ¢,(x,y) are given by (48d) and (48e). Putting these results

togéther gives us:
Bx(x ,2) = - e2C(0)d,. _ (x,0) (A.1)
Xxolz - € ¢0xx XOI ’ o
the relationship given in (48a).

To obtain (71) (and also (48b)), we start from the free-surface condition

(5), which is still valid (by definition) if ¢ is replaced by ® . Thus

3. - —.2[3%3 33 e (x) -
3, = -e?{e 8+ 28,30+ @y@yy} on y = eH(x) .

On the right-hand side, the first term is the lowest-order term, and so, sub-

stituting from (A.1l), we obtain:
% g . 502 (014 0
Y(Xorz) = - e°C ( )¢0xX(xO( ) r

the desired result, (71).
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APPENDIX B, COMPONENTS OF THE INNER SOLUTION

In (62), the inner solution was written as the sum of two parts:

-~

o, (X,¥) = Fglx,y) + F (x,y) exp {iS(x,y)/e’} (62)

where it was stated that Fo(x,y) ’ Fl(x,y) , and S(x,y) all vary "slowly"
with x and vy , although this expression represents waves of very small

wavelength.

Such statements can be verified directly in the analogous "wavemaker

problem:"
bgx * bgy = O in ;‘ g 8 (B.1)
b, = £(y) on x=0, y<o0, (B.2)
v - ¢y = 0 on vyv=0, x>0 (B.3)

This is the mathematical statement of the problem if the vertical wall, x =0 ,
moves with normal velocity component f£(y) exp (iwt) , where w® 1is the radian
frequency of the motion and v = mz/g is the corresponding wave number. The
potential for the problem is ¢(x,y) exp (iwt) . Of course, a radiation condi-
tion must also be imposed. This problem is very similar to the near-field

problem considered in Section III.

The wavemaker problem has been studied by many people, and we can write

down the solution directly:

d(x,y) = $(x,v) + $(x,y) , (B.4)
where
‘I’(,X,Y) = e\)y [A; sin vx + Bcos vx] , (B.5)
$(_x,y) = Jdk A(k)e—kx(kcosky+\)sinky) . (B.6)
0

The term in (B.5) containing B is the solution of the homogeneous problem,

and so B 1is arbitrary. The constant AO in (B.5) and the Ffunction A(k)
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in (B.6) are given hy the following:

0
Bg = 2 J ayfy) e ; (B.7)
5 0
A(k) = - ——5——— | @y £(y) (kcosky+ vsink A B.8
( r (k2v2) _my (y Y y) (B.8)

In the above problem, if we allow Vv (or ww ) to become very large, it
is immediately obvious that éx and $y are O(v@) . We can express this

symbolically by writing
=~ T = 0(v) . (B.9)
Since 5 represents waves of wavenumber v , this is all rather obvious.
What is not so obvious is that

% 3y = oW (5.10)

when they operate on $(x,y) , even if v »> © . To show this, substitute (B.8)
into (B.6), interchange order of integration, and write the potential in terms

of a function of a complex variable =z = x+1iy :

0 > ~-kz
$(x,y) = - 2 Re dnfm) | &€ (kcoskn + vsinkn)
'Y - nf | aciyy n n
-0 0
1 (0 i iv(z+in)
_ 1 z-iny _, -iv(z+in i .
~ Re [J an£(m) {1og {—Z+in 2e E, ( 1\)(z+1n)))J ,
—c0
where
dt e-_t . .
El(u) = —x the exponential integral .
u
As v »> « , note that
e—vu
< .
El(vu) v va for |arg ul 3n/2

Using this asymptotic estimate, we now find that, as v > « ,

0
~ LA _ l 1 _ 1
¢x - 1¢y = T J dnf(n) [Z-in z+in + O (l/\))] H
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0
N LA 1 1 1
-1i = = =1dnf(n) - + 0(1 ;
bax T Moy “J nEm [(z—in)2 (z+in) 2 (/v)}

-—&0

etc. This is the result indicated by (B.10). It means that $(x,y) varies

"slowly" even if the wavenumber becomes asymptotically large.
In the problem in Section III, we had the free-surface condition
Voy + bxx = 0O on y =0, (B.11)

instead of (B.3). The solution can be written as in (B.4), with $(x,y) given
by (B.5) and
®
6 (x,y) = J dkA(k) e “¥(vcosky - ksinky) . (B.12)
0
In this problem, one can show that
0

A, = 2 J dyf(y){l-—evy} ; (B.13)
_mz .
Ak) = —m I dy £ (y) {\)(1- cosky) + k sin ky} . (B.14)

Then it is straightforward to show results identical to those obtained above

for the wavemaker problem, as summarized in (B.9) and (B.10).



APPENDIX C. EVALUATION OF SEVERAL INTEGRALS

We chose the arbitrary constant M in the Green function (see (63)) to
ensure that Bél/BY would be bounded at X = 0 even as Y > 0 . The result
was given in (74). This left the constant D , which first appeared in (65),
as a still undetermined quantity. Its value was to be found by substituting
from (73) into (72). To carry this out, we have to evaluate the integral in
(73) for X =Y =0 . 1Its value turns out to be negligible, but this result

is not obvious, and so we derive it here.

From (73) and (72), with Y = 0 in the former, we have

0
3.2 _ 3G
e u,¢ (x,,0) = vD = J dnu(g) == . (c.1)
0"0 0
XX I Y X=¥=0
£=0
(Recall that v = l/u% .) Following (73), it was shown that
36 _o1faxke™
oY X=¥=0 T k-v
£€=0
The value of pu(n) was given in (76). We substitute these results into (C.1):
2 2u v dk k
e3u0¢0xx(xo,0) - vD = -—;Q J dn e n —7;:%7—
—c0 0
2u, (9 ® kn
T TN ]tgk_e_
™ k-v
~1/2¢" 0
quge* [C 11 ~k/2¢e"
0 /2¢€ 1
- - =11 - c.
v 'f A= - gHi-e J (c.2)
0
4110€‘+ 25"*
voo— v {Y +1°g_—4"—\)‘_+ } as v > =, (C.3)

where Y is Euler's constant. The expression in (C.2) is found after some
manipulation of the preceding line, and the estimate in (C.3) follows from

standard asymptotic estimates of exponential integrals.

The right-hand side of (C.3) is O(e”loglﬂ , whereas the first term on
the left-hand side is 0(83) . So we conclude that

2
D = elupdg, (x0,0)/V . (C.4)
as stated in (77).
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