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PRINCTPAL NOMENCLATURE

[Note: Equation numbers are given below where it may help to identify the
point of first introduction of a symbol.]

c(0) Curvature of body surface

C c(o)

E(z) Complex potential ccrrecponding to 5(x,y) (24)
fj(z) Complex potential corresponding to ¢j(x,y) (15)
g Gravitational constant
:gj(z) Complex potential, a part of fj(z) (16)

g(z) Complex: potential, a part of F(z) (25)

H(x) Free-surface shape frcm exocct solution (5)

H(x) Free-surface shape from naive expansion (9)

ﬁ(x) Free-surface shape from wavelike solution 5(x,y) (21) (31)
hj(z) Complex potential, a part of fj(z) (16)

h(z) Complex potential, a part of w(z) (23)

K a3r/de3 , evaluated at 6 = 0 (37)

k(z) [£5(2)172  (27)

L Typical body dimension

Pp (%) Function defined on y = 0 (13)

R{®) Function describing body shape (1)

Ro(e) Function describing shape of double body (34)

Radius in cylindrxical ccordinates
Forward speed of body (or speed of stream past fixed body)
X,y Cartesian coordinates (nondimensional)

z X +iy

Yn(x,y) Relg,(z)} (46)

€ FZ/gL , the small parameter of the problem

Np (%) Coefficient of €M in the naive expansion of H(x) (9)
0(2) Phase function, -(l/e)Lff(u)du (28)

) Angle coordinate in cylindrical coordinates



o(x,y)
?(x,y)
$(x,y)
on (x,y)
¥n (x,y)

- vi -

Velocity potential for the exact problem
Velocity potential for the naive expansion (8)
Velocity potential for wavelike motion (20) (30)
Coefficient of €M in naive expansion of d(x,y)
Relh,(x,y)} (47)

(8)



I. INTRODUCTION

The problem of ship-wave generation at very low speeds has fundamental
importance, although it is not of much interest to naval architects. At very
low speeds, there is little wave generation at all, and so low-speed wave
resistance need not be considered in the design of a ship. However, the usual
methods of predicting wave resistance at finite speed are not valid as speed
approaches zero, that is, the mathematical solutions on which these methods
are based are not uniformly valid at low speed. So there is a question how

low the speed must be for the standard methods to break down.

There is another practical reason for investigating the low-speed problem:
Inui and Kajitani (1977) found that the propagation of ship-generated waves
can be predicted more accurately if the waves are considered to propagate on
the nonuniform stream around a double body (the actual part of the body below
the undisturbed free surface plus its mirror image) rather than on a uniform
stream. A low-speed analysis leads naturally to such an approach. It may be
that "low speed" to a mathematician may not be very low at all to a naval

architect.

Over a period of decades, numerous authors have discussed the low-speed
limit of solutions obtained by standarxrd perturbation techniques. Such solutions
are based on the assumption that all perturbation velocities are asymptotically
small ir magnitude compared to the forward speed U of the body (or, if the
reference frame is fixed to the body, compared to the speed U of the streaming
flow past the body). The implications of this assumption become unclear if then

one lets U >0 .

Salvesen (1969) showed for a particular case that this is a singular limit.
Initially, he considered the forward speed as fixed. Then he expanded the prob-
lem statement in terms of a small-disturbance parameter, worked out the explicit
solution to three terms, and finally examined the behavior of the expansion as
U > 0 . At moderate speed, the second and third terms provided small correc-

tions to the linear solution. Then, as U decreased, the second-order term



became larger and larger until it dominated the first-order term. At still
lower speed, the third-order term began to dominate the second-order term.

It appeared that the problem was becoming more and more nonlinear as speed
decreased more and more. However, from a physical point of view, it is clear
that the fluid disturbance becomes smaller and smaller as speed decreases.

This apparent paradox is a result of nonuniformity of the expansion as U > O .

Ogilvie (1968) proposed a method of solution that was expected to remove
the nonuniformity. He reasoned as follows: At very low speed, the free sur-
face is hardly disturbed at all, and so a first approximation should be equiva-
lent to the double-body flow. In such a flow, if the fluid is ideal, the
magnitude of the perturbation velocity is everywhere proportional to U . 8o
one should not assume a priori that the perturbation velocities vanish much
more rapidly than U in the limit., Rather, one should take the double-~body
flow as the first approximation. Then perhaps it is reasonable to assume that

free-surface effects are small perturbations of this nonuniform base flow.

This was a new assumption, which Ogilvie implemented on a highly pragmatic
basis: He argued that there was little chance of solving the wave problem
unless it were a linear.problem, and so he tried to determine under what condi-
tions this would in fact be the case, and he obtained a partial solution for

the problem of a fully submerged two-dimensional hydrofoil (Salvesen's problem) .

Effectively, Ogilvie divided the flow field into two parts, the two being
characterized by vastly different length scales. In the double-body flow, the
fluid motion can be described on a scale comparable to body dimensions. The
wave motion, however, is described appropriately on a scale comparable to wave-
length. A suggestion of what this scale ought to be can be obtained from
classical (finite-speed) wave theory: Waves on a stream of speed U typically
have wavenumber «k = g/U2 and the corresponding wavelength is X = 2w/k =
2ﬂU2/g , where g is the gravitational constant. It seems appropriate then to
introduce a small parameter € = F2 = Uz/gL , where L is a typical body dimen-
sion and F is, of course, a Froude number. In the wave part of the solution,
differentiation of a field variable has an order-of-magnitude effect equivalent
to multiplication by the wavenumer, which is o(e™!) . This fact was used
systematically to order terms in the several conditions that congtitute the

statement of the wave problem.



This division of the problem into two distinct parts is based on a

plausible argument, but several fundamental questions remain unanswered;

(1) One can develop a perturbation expansion of the solution without
introducing the concept of the rapidly varying wave field. The expansion thus
developed has been called the "naive expansion."™ It appears on first sight to
satisfy the formal conditions of the problem. However, it cannot possibly
represent a wave motion (with short waves), and so it is incomplete or possi-
bly quite incorrect. How can one show formally that it is incomplete if it
satisfies the partial differential equation and all of the boundary condition?
How does one determine the relationship between it and a truly wavelike

solution?

(2) Dagan (1972) follows much the same reasoning as Ogilvie, but he
argues (persuasively) that the base flow should correspond to the two-term

naive expansion.

(3) Keller (1979) developed a ray theory based on the same fundamental
concept. Like Dagan, he used the two-term naive expansion for the base flow.
However, he argued that Ogilvie's linear free-surface condition on the wave
solution is defective: It contains terms on one side that are rapidly vary-
ing, but the terms on the other side of the equation are not rapidly varying,
and so, as Keller pointed out, they cannot be equal (unless both sides equal
zero, which is not an acceptable resolution of the difficulty). So Keller
set up the wave problem in such a way that the free-surface condition would
be homogeneous in the rapidly varying field quantities. This then leads to
difficulties in predicting how waves are generated. The only mechanism (from
a mathematical point of view) must exist at the body surface. However, a ray
theory cannot be used to predict what happens near a body in the presence of
the free surface, since the governing partial differential equation is ellip-
tic, and the pseudo-hyperbolic character of the ray-theory solution is not
valid there. The ray theory can be used only to predict how water waves will

propagate once they have been generated.

(4) It is not clear whether Ogilvie's approach resolved the apparent

paradox in Salvesen's perturbation expansion.



In this paper, we shall provide some answers to these questions, although
the actual solution is presented is a subsequent paper, Chen and Ogilvie (1982).

In particular, we shall show the following:

(1) The naive expansion in fact does not satisfy all of the boundary con-

ditions <f the problen.

(2) In showing that the boundary conditions are not completely satisfied
by the naive expansion, we obtain a nonhomogeneous boundary condition that will

have to be satisfied by the wavelike part of the solution.

(3) Asymptotically,K as e = 0 , Ogilvie's solution does not represent a
wavelike motion. We now believe that, in a strict asymptotic sense, the wave
resistance of a submerged body is ‘small of exponential order in this limit.

We have not been able to obtain a relationship between the expansion for € > 0

and Salvesen's expansion,

(4) The double-body flow is not analytic at the intersection of the body
and the undisturbed free surface. The singularity is very weak, but subsequent

terms in the naive expansion exhibit singularities there that are less weak.

Following Keller (1979), we conclude that the free-surface condition on
the wave part of the solution must indeed be homogeneous. Wave generation is
accomplished through the body boundary condition. Baba and Takekuma (1975)
and Maruo and Fukazawa (1979) followed Ogilvie's approach, in which the waves
arise from a nonhomogeneous free-surface condition; their results appear to

be questionable.

Two more points should be noted: (i) Very short waves are strongly affected
by surface tension, which we neglect. But we are intevested ultimately in the
problem of ship-generated waves, and even very "short" waves in that case should
be long enough not to be subject to serious alterations by surface tension. (ii)
In the submerged-body problem, our conclusions may not bc wvalid if the submer-

gence is very small (comparable to wavelength).



IT. PROBLEM FORMULATION

We consider a slow streaming flow past a two-dimensional body. Let the

body surface be given by an equation of the form
r = R(8) , (1)

where r = (x2+y2)1/2 and 6 1is the polar angle measured counterclockwise
from the x axis. The stream has speed U in the positive x direction.

The undisturbed free surface coincides with the x axis.

All lengths are nondimensionalized by a length L , which may be taken as
any characteristic body dimension. We seek an asymptotic solution expressed

in terms of the parameter
e = F? = u?/gL, (2)
where F is the Froude number and g is theacceleration of gravity. The
velocity potential is taken as LU®(x,y) , and so ¢ is also nondimensional.
The shape of the free surface will be given as y = eH(x)
The potential satisfies the Laplace equation,
[L] byx + &gy = O in the fluid domain, (3)

the body boundary condition,

)
[B] 5% = 0 on the body, (4)
the dynamic free-surface condition,
1
[H] H(x) = —{1—@2—¢2}| . (5)
2 X Y
y=€eH(x)

the free-surface condition combining [H] with the kinematic condition:

[F] 0, + e{020,, +20,0,0,,+020,0} = 0 on y = eH(x) (6)
y xrxx T EEFy Ty T PyPyy Y *) e :

and a radiation condition,

[R] ' |¢ B x] + 0 as x> -» and/or y > -« . (7)



The natve expansion exhibits one kind of approach tc solving such a problem.

Assume that &(x,y) and H(x) can be expanded in series in ¢ :

N

o(x,y) = 0(x,y;e) ~ ) €M, (x,y) ; (8)
n=0
_ N

H(x) = H(x;¢c) N X elng (x) . (9)
n=0

When these expansions are simply substituted into the problem statement, one

obtains the following set of problems:

(L] ¢nxx + ¢nyy = (0 outside of the body, y < 0 ; (10)

3%y,
[B] —_— = 0 on the body; (11)

on
[r] gt = {1-¢21}, (12a)
nx = - ¢0x¢1x ’ (12b)

- _Llg.2 21 _L_42
O R R R I R LR T I BT § COM S ST
1l 2 12 2
- §'{l"¢ox} {¢°x¢0xyy'+¢0yy} ’ (12¢)
all to be satisfied on y = 0 ;
{Fl ¢oy = 0, (13a)
1 2 d - '
¢1y = 3.¢0xx{1..3¢ox} = 3-(ngdg,) = p1(x) , (13b)
1 2
¢2Y - §-¢1xx{l.-3¢0x} = 300, P15P0xx

= = (ngby, *mog) = RGO . (13¢)

also to be satisfied on y = 0 ;
[R] |6y = x| > 0 X > - (14a)

and/or

|¢n| > 0,n21, y > -=°. (14b)

Of course, (12) and (13) can be continued for larger values of n .

The first term in the expansion, ¢0(x,y) , is the solution of the rigid-

wall problem, in which the free surface is replaced by a wall., We sometimes

refer to this problem also as the "double-body" problem. Notwithstanding the

interpretation in terms of a hypothetical rigid wall at y =0, there is a

corresponding free-surface disturbance, given by (1l2a). However, it is not a



wavelike disturbance. In fact, no matter how far this method of solution is

pursued, there will never be any real waves.

Clearly, this is not the correct solution, since we expect to find waves
behind the body. Nevertheless, the expansion (8) will have an important role
later, and so we note that, in principle, it can be solved completely. The
¢y problem can be solved by standard numerical methods. To proceed further,

let
¢ x,y) = Relfs(z)} , (15)

where fj(z) is a function of the complex variable 2z = x+iy . Also, set

fj (z) = 95 (z) + hj(Z) , J >0, (16)
where
1 [ ds pjls)
hy(=) = ;J"s':“;" ' “n

F
and F is the part of the x axis outside of the body. Then we have

ds pl(s) ds pi(s)
h'(z) = %J————J—— -> —ip:'i(x) +%)L———J——-— (18)

3 — ’
J s-z 740 s =X

the last integral being a principal-value integral. When these results are

substituted into (13b) and (1l3c), we find that
IM{gé(x-iO)} = 0. (19)

Thus gj(z) satisfies conditions just like fo(z) , the body boundary condi-
tion being written so that the combination gj+hj satisfies (11). The numerical
method used to solve for fo(z) can be used for all of the gj(z) .

An alternative method of obtaining hj(z) will be presented later.

The expansions (8) and (9) are not complete. It will be necessary to
augment them with terms that represent real waves and to obtain appropriate
conditions to be satisfied. An attempt to do this was presented by Ogilvie
(1968), and several investigators have followed his approach. Unfortunately,
this does not lead to the desired results. It is worthwhile to consider why,

which we do in the next section.



III. THE ANALYSIS OF OGILVIE (1968)

Ogilvie assumed that the solution consisted of (i) the rigid-wall solution

and (ii) a wave term:

2 (x,y) 0o (%,y) + €28 (x,y;5¢) (20)

H(x) ng(x) + el(x;e) . (21)

The new terms were assumed to have the property that

b, » 3, = O(3/e) ; H' = o(fi/e) . (22)

This assumption corresponds to the expectation that the waves will be very

short, with wavelength that is 0(e) (and thus wavenumber that is o(e™l) ).

When (20) and (21) are substituted into the free-surface conditions, the

free~surface condition is found to be:
23 +e32% . = e-(ngbp.) = ep}(x) (23)
%y Poutxx = €3x(No%oy) = ePI :

In this condition, ¢0 is to be evaluated on y = 0 and 3 on y = eno(x) .

In principle, it is wrong to evaluate ¢ on y = 0 , but Ogilvie (and others

following him) have devised arguments indicating that perhaps this can be done

anyway.

For the case of a submerged body (the only case considered by Ogilvie),

one can construct a partial solution, as shown by Ogilvie. Let

Re{F(z)} , (24)

5(XIY;€)

F(z) g(z) + h(z) , (25)

with ﬁ(z) given by:

[}

2z
S . dg k() _il0(z) -0(2)]
hi(z) = - —= I ds p, (s) J s -7 © . (26)
and
k(z) = [E5(z)17, (27)
z
o(z) = =~ %-J k(u) du - (28)
%

-8 -



The value of z, is arbitrary, since it vanishes when the difference,

[6(z) -06(z)] is introduced. When ﬂ'(z) is used in (23), it is found that it
satisfies the nonhomogeneous condition, leaving only a homogeneous free-surface
condition to be satisfied by §(z) . Of course, ﬁ(z) does not satisfy the
body boundary condition in general, and §(z) must be determined so that the

complete solution does satisfy that condition.

The partial solution ﬁ(z) was constructed in much the same way that one
finds solutions of problems with pressure distributions imposed on the free
surface (see Wehausen and Laitone (1960)). So one might assume that it repre-
sents a true wave motion that decays rapidly with depth. If that were true,
the term §(z) would not be really necessary, since ﬂ(z) represents extremely
short waves (if it represents waves at all). In such a case, we would have

found the solution.

In fact, if one were to compute the solution represented by h(z) , it
would undoubtedly exhibit a wavelike behavior. But this is not true in an asymp-
totic sense, as we now show. First, we note that ﬁ'(z) appears superficially
to be O(e~l) (see (26)). Now integrate by parts, first with respect to 7 and
then with respect to s . The result is the following:

L Joods B! (s) oi6(2) szc _-i6(2) des p (s)

T - s-C

~ ~
h'(2) B S=-2z ki

- 00

The first term is clearly O0O(l) and it does not represent a wave motion. The
second term appears to be of the same order of magnitude, but another integration
by parts (with respect to both ¢ and s ) 1leads to the result:

- “as p'(s) . ‘as p.(s) . ie(z) 2 s
h'(z) = %_J Py ie J 1 ice J ar o100

s-2z Tk (z) s—-2z - m

[mds [p'{'(s) p'l'(s)k'(c)}
J s -t k(@) x2(z)

. (29)

So the second term, also not wavelike, is O(eg) . The process can clearly be
continued indefinitely, and we see that we obtain a series in increasing powers

of € , none of the terms representing a wave motion.

The solution in (26) corresponds closely to the naive expansion. The first
term in (29) is identical to hi(z) in (18). The following terms in (29) could

be obtained from a naive expansion of the linear problem stated in (23).
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Thus Ogilvie's (1968) approach does not solve the problem of determining
the wave motion at very low speed. The results of evaluating (26) numerically
are not known, and they just might give reasonable predictions in the actual
physical situation, although they would be inconsistent from a perturbation-
theory point of view. It also appears that reasonable results might be
obtained if the body were surface-piercing, for then the integrations by parts
would not yield the trivial result found in (29). But that is not really the

direction in which to look for a valid approach.

A fundamental error in the above analysis appears to have been made in the

assumption in (20) and (21). One should write:

®(x,y) T(x,y;e) + e20(x,y;e) , (30)

H(x;e) + eH(x;€e) . (31)

H(x)

That is, the wave term must be added to the complete naive expansion (or to
at least two terms in it). When (30) and (31) are substituted into the free-

surface conditions, one obtains:
825y +e3%2,, = 0 . (32)

That is, the free-surface condition is homogeneous. The right-hand side of (23)
has been absorbed into the problem for ¢1 in the naive expansion (see (13b)).
Keller (1979) argued this for different reasons. It may also be noted that
Dagan (1972) insisted that the coefficient in (32) (or (23)) should be Ei

and not ¢é; , again for different reasons. We agree with Keller and with

Dagan.

The implication of (32) is that there is no "equivalent pressure distribu-
tion" on the free surface causing the creation of waves. In the case of the sub-
merged body, there appears to be no mechanism that can lead to the creation of
waves — a conclusion that is compatible with the result expressed in (29). For
the case of a surface-piercing body, we may expect to find a nonhomogeneous con-
dition in the neighborhood of the intersection of the body and the free surface.

This we shall show explicitly in the next section.



IV. A NONHOMOGENEOUS CONDITION FOR THE WAVE POTENTIAL

As already noted, it appears that the "naive" expansion, (8) and (9), satis-
fies the boundary conditions of the problem, leaving a homogeneous problem for
the wave potential. This is an unsatisfactory situation, since it is not clear
then how the waves ever come into existence. We need a nonhomogeneous boundary

condition to impose on the wave potential.

A closer examination of the naive expansion will show that it does not com-
pletely satisfy the body boundary condition in the case of a surface-piercing
body. It is the purpose of this section to show this and to derive the nonhomo-

geneity in the wave problem.

The clue to accomplishing this task can be found in (13a): If we find a
function ¢, that satisfies the Laplace equation in the lower half-space out-
side of the body, that function can be continued analytically into the upper
half-space because of its property in (l3a). We suppose that this function
satisfies the body boundary condition in y < 0 . There is no guarantee that
this function also satisfies the body boundary condition in y > 0 . And it
must be noted that part of the wetted surface of the body does in fact lie in
the upper half-space, since, from (5), H(x) = 1/2 (and thus y = €¢/2 ) at a
stagnation point. Similar conclusions can be drawn from (13b), (13c), etc.,

although the situation is not so obvious.
A. THE ¢, PROBLEM
From (l13a), we can write:

¢O(XIY) = ¢o(xl"y) . (33)

We assume that ¢0 satisfies the Laplace equation in the lower half-space (out-
side of the body) and that it satisfies the body boundary condition there, (11).
Our purpose now is to compute 8¢0/8n on that part of the body for which y > 0 .

We assume for now that the function defining the body, R(6) (see (1)),

has at least three continuous derivatives in a range |6| < €/2 . The most

- 11 -
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interesting case is that d3R/d63 #0 at 6 =0 . We assume that the body sur-
face is vertical at 6 = 0 , which implies that dR/d6 = 0 at 6 =0 .

As already noted, ¢, represents the streaming flow around the double body.
In -m < 06 <0, (1) describes both the actual body and the double body. We
introduce the following description of the double body, applicable in both 6 < 0
and 6 > 0

R(6) -7 < 8 <0,
r = Ro(e) = (34)
R(_e) I3 O < 9 < T .

In a neighborhood of 6 = 0 , we can expand R(8) and Ro(e) :

R(O) = R(0) + 2702R™(0) + 303K + ... (35)
- 1 2o 1 3
R,(8) = R(0) + 57 67R"(0) - 3T le]3x + ..., (36)
where

asr
K = —3 . (37)

ae

6=0

We now compute 8¢0/8n on r = R(8) . This quantity vanishes for 6 < 0 , but

not othexrwise. For the moment, it is convenient to write ¢, = ¢0(r,6) . In

-R(8) ¢g,. + [R' (8) /R(B) ] gg
2}1/2

polar coordinates, we can write the normal derivative:*
20 _
on {IR(6)12+ [R' ()]

We now evaluate ¢0r(R(6),6) in terms of values on (Ro(e),e) . For example,

(38)

¢or(R(9),3) = ¢or(R0(9),9) + [R(G)-Ro(e)]¢orr(Ro(6),9) + cee o (39)
From (35) and (36), we have
- L1.43
R(6) —Ro(e) = 51(6 + cee 4 6 >0 . (40)

Carrying out details in this way, we find that

99

0 - K 2 1.3 ] i
9 = e——— | (Rp(0),0) + =6°3¢ + o(8'"y . (41)
| _rie) [Ry(0)12 %0g(Ro 3 Ogo

We note also that

*We take the unit normal outward from the fluid.
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Ry(8) = Ry(0) + 0(6?)
90 (Ro(0),8) = ¢g,(Rg(0),0) + e{R5(0)¢0re+¢oee} + 0(63)
009 (Ro (0),0) + o(ed) ,

the last result following from the facts that ¢, (Rg(0),0) = 0 and RG(0) = O .

Thus (41) simplifies:

3y 4K 3 4 3
—_— = — ¢ (R (o)'o) + 0(61) = 0(8°) . (42)
o | —Rr(6) 3[R (012~ 10660

This quantity will have to be canceled by a contribution from the wave potential.

If it happens that K = 0 , the leading-order term in (42) will be 0(ed) ,
provided that d°R/d6° # 0 at 6 =0 .

In a formal sense, one can claim that ¢, does indeed satisfy the body
boundary condition, even for y > 0 , since ¢0 is simply the first term in an
asymptotic solution, and the body boundary condition requires only that 3¢g/on
=0(l) on r = R(8) . This is a legitimate point of view, of course, If we
follow it, we would then expect the quantity in (42) to show up in the statement
of a higher-order problem, and we might suppose that we could then cancel it with
an appropriate contribution from the higher-order solution. However, it does not
work out this way. At each stage of the solution of this problem, we shall find
another quantity more or less like that in (42), always in violation of the body

boundary condition for 0 < y < g/2 .

Another special case is possibly of comparable interest: Let the shape in
y < 0 be described as above, but assume that the body is continued above y = 0
by vertical walls. Then we can write for the body geometry:
R, (6) » 6 <0,

r = R(8) = (43)
RO(O) sec6 , 6 >0 .

In this case, the body curvature is not generally continuous at 6 = 0 . From

the general formula for curvature,

[R(6)12 - R(B)R"(6) = 2[R' (0)]2
{IR(8)12 + [R" (8)]12}3/2

c(e) =

14
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we have for 6 4 0 :

R(0) -R"(-0)

c(-0) 44
R%(0) ' (ad)
whereas for 6 + 0O we have:
c(+0) = 0 .

If these happen to be equal, the preceding analysis covers the case. So let
us now assume that the limiting curvature from below is not zero. The analysis
is still similar to the preceding, and we find that, for 8 > 0 ,

3%

= c(-0) 82 {& 2 - 3

= c(-0) 82 {Z[R(0)1%¢g_ (Rg(0),0) 4’099} + 0(83) . (45)
r=R(0)

So the error in satisfying the body boundary condition above y = 0 is 0(e?)

in this case.

In deriving some of the above results, we implied that ¢0(r,9) can be
expanded in Taylor series. This is not really true at the stagnation points,
where in fact this potential is not analytic unless the function R,(6) is
also analytic. However, the singularity is extremely weak, and the expansions
used above are valid as far as they have been carried. This point is discussed

further in the Appendix.

B. THE ¢; PROBLEM

In the ¢, problem, there is an error in satisfying the body boundary con-
dition just like the error described above in the ¢0 problem. Since we must
multiply ¢3 by & in the expansion of ®(x,y:;€) , this error is o(e') (for

the case of continuous curvature at 6 = 0 ).

There is another error in the ¢1 problem. Because of the nonhomogeneous
free~surface condition on ¢1 , (13b), we find an error of lower order of magni-
tude than above when we try to satisfy the body boundary condition above y = 0 .
This error is not negligible even if d3R/d63 =0 at 6 =0 , and so we assume
that this derivative does vanish thexe. However, we assume that the curvature

at 6 = 0 does not vanish, that is, C(0) # O .
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We again write ¢1(x,y) in terms of a function of a complex variable, as
in (15) and (16):
$y(x,¥) = Re{f(2)} = Relg;(z)} + Re{hy(2)} .

It is also convenient to introduce the notation:

Y1 (%,y) Relg,(z)} , (46)

by (x,y) Re{h,(z)} . (47)
Instead of introducing an expression like (17) for h;(z) , we now set

hy(z) = -3 £5(2){1- (£(2)12} . (48)
Then we observe that

Bi(z) = ¥y - vy, = - 3@ {1-35@12) . (49)

Breaking the last expression into real and imaginary parts and using properties

of f;(z) already established, we find that

; (50a)

Re{hj(x)} b1, (%,0)

N~ ©

- Infhi (0} = ¥ (x,0) Pogull “300 | = 4, (x,00 . (500)

y=0

The last result shows why we introduced the expression in (48): It takes care

of the nonhomogeneous part of the free-surface condition, just as the expression
in (17) did. The new form of hl(z) alsc has the useful property given in (50a).
(If the form in (17) has this property, it is cextainly not obvious.) The other

part of the complex potential satisfies a homogeneous free-surface condition:
- Im{gj(x)} = Yly(X,O) = 0. (51)

The function Yl(x,y) must be determined so that (51) is satisfied and so that

the sum v, (x,y) +¢¥;(x,y) satisfies the body boundary condition on ¢;(x,y) .

The contrast between (50a) and (51) is crucial to what follows: wl(x,y)
is an odd function of y (except possibly for an additive constant), whereas
yl(x,y) is even with respect to y . It is this fact that leads to the major
error in the satisfying of the body boundary condition, as we now demonstrate.

We should determine yl(x,y) so that it satisfies (51) and also so that
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oYy
— = -—é-n— for -mr <8 <0 . (52)

Just as with ¢0 ;, we cannot prescribe Yy further, since the determination of
Y; in y < 0 completely determines y, in y > 0 . From (50a) and (51), it
then follows directly that

AL + ida £ 0< 86 <
on on or T . (53)

So vy, does not cancel the effect of Y, in this region. 1In fact, it pre-

cisely doubles it. Thus we find that

0 2 A5 T 2 ido! £ <8 4
Sn T *Ta T 2 fer O : (34)

Since Y,;(x,y) has been completely specified already, we can conveniently use
it for the calculation of 3¢1/3n on the body above the line y = 0 . This
normal velocity component on the body surface will ultimately have to be can-

celed by the wave-motion solution.
The expression for the normal velocity component on r = R(6) , given pre-
viously in the form in (38), can be rewritten:

8y, i6 R(6) ~iR' (6)
—- = - Re{e'” h!(z) 5 =]
n | _r(e) . YR% +R'#

. (55)

We need to evaluate the right-hand side just for small 6 (or y ). A few sub-

sidiary results are useful:

Rz = - = {og  (x0,0) + iyeg  (x0,00} , with x; = R(0) ; (56)

e® = 1440 2 14, (57)
Xp

. "
R(B) - iR'(8) = xy - i6R"(0) = x, - ELO (58)

0
(R2 +r'2]"V/2 = 1 | (59)

XO
Substituting all of these back into (55), we find that
oY
1 el

on A E-y{¢0xXx(x0’0) + C(())q>f)x:<(x()'0)} ! (60)

r=R(6)
One further simplification can be made. From the boundary condition on

¢0 (see the Appendix), we have
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Using this in (60) and then finally returning to (54), we have our desired
result:

20

on r=R(6)

Since the upper limit of the wetted body surface is at y = €/2 , we see that
the quantity in (62) is O0(e) . However, it must also be multiplied by € in
the asymptotic expansion of the full solution, and so the error in satisfying

the body boundary condition is 0O(e2) .

The potential ¢1(x,y) , like ¢0(x,y) , is not analytic at (xO,O) . It
is interesting to compare their behavior in a neighborhood of this point. If
we set [ = (x-xo)-+iy , we find from the Appendix that fo(z) has a term that
is proportional to c”log . On the other hand, fl(z) will contain whatever
singularities are contained in both g,(2) and hl(z) . Using the result of
the Appendix in (48), we find that the leading singular term in h;(z) is pro-
portional to C3log £ , which is still a very weak singularity. However,
gl(z) must have a term of the form czlog I . To show this, we note that (60)
is valid for y positive or negative. This same expression gives ayl/an for
© > 0 but it gives the negative of ayl/an for ©6 < 0 . Therefore Byl/an
must be proportional to lyl . Such a property requires that gl(z) have the

form stated.



V. CONCLUSIONS

There are two principal conclusions:

(1) The solution of the complete problem should be broken into two
terms, as in (30) and (3l), with the first representing the so-called naive
expansion. This procedure leads to a homogeneous free-surface condition on

the wave part of the solution.

(2) The naive expansion fails to satisfy the body boundary condition
on the small segment between vy = 0 , the level of the undisturbed free surface,
and the actual location of the stagnation point, which is located at y = €/2 .
The normal component of velocity on the body, resulting from this fact, is
given approximately by (62). The wave part of the solution has to cancel

this velocity component.

The wave solution is derived by Chen and Ogilvie (1982). It may be noted
that the form of their solution differs in one respect from that supposed in
(62): The power of € 1in the second term of the solution is initially taken
as unknown, a quantity to be determined during Ehe solution process. In fact,
the wave term turns out to be higher order than stated in (62). 1Its order of
magnitude is completely specified eventually by the requirement that there be

a stagnation point on the body at y = £/2 .

- 18 -
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APPENDIX. SINGULARITIES IN THE NAIVE EXPANSION

In the first term of the naive expansion, ¢0(x,y) . there is a stagnation
point at x = x5 = R(0) . This is to be expected, of course, in view of the
interpretation of ¢0 in terms of the double-body (rigid-wall) flow. It is
indicated explicitly by the combination of the conditions (11) and (13a). A
stagnation-point flow is so elementary and so well-behaved that one can easily
overlook the fact that it may well be singular (in a mathematical sense). We

show this explicitly here.

We rewrite the body boundary condition on ¢0 , (13a), in a form similar

to (55):

3¢ [ i0 _, Ry (8) - iRp(0))
—0 = - Rele™" £'(z2) — = 0. (al)
on 0 VR20+R62 J

r=R0(9)
Since we are considering the flow around a double body, we have taken the equa-
tion describing the body as in (34). Our purpose is to show that, in order to
satisfy this condition, fo(z) cannot be analytic at (xo,o) . Furthermore,

we wish to determine the nature of the nonanalytic behavior there.

Our approach is to expand the quantities in (Al) with respect to the singu-
lar point, The expansion of Ro(e) has already been given in (36), from which
the expansion of Rb(e) can be found trivially. Of course, there is no diffi-
culty in expanding the factor exp(if) for small 6 . It is then convenient

to change from 6 to y by using the relationship

Yy = Ry(8) sin 9
R} x
= X0 + {—2"-——6‘1]63 Foeee (A2)

(When not otherwise noted, derivatives of RO(G) are to be evaluated at 0 .)

Putting all of this together, we obtain

2 " R" 2

.a R -iR' (8 i
[0 Rg(® ZiRG(O) 1 [_o__g___l_iﬂ +oeee . (B3)
VR%-+R62 2 xg xg x% xg

We note that corresponding to (A2) we can also write:

- 20 -
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X - x, = Ro(e)cose - X,
- _ Yo 0,21 3
= 3 6x0C+6K6 + eee W (n4)

In these expressions, C is the body curvature at 6 = 0

cC = c(0) = — T - (a5)
X0
(Cf. (44).) We assume that curvature is continuous for the double body.
We can satisfy the boundary condition if we set, with 7 = z =X, s
£0(2) = 2,02 + a3 + Azt + L0+ (logZ) (B + ... . (26)
We write the derivative of this expression,

£0(2) = 2A,0 + 38302 + (42, +B) % + ... + 4B,z%log L + ... . (A7)

We evaluate this on the body, using (A2) and (A4), and substitute into the body

boundary condition. We find that the coefficient of each power of y equals

zero if
1 2K
A2 =3 d)oxx(XO,O) : AS = - C A2 : BL+ = 31Tx8 A, . (A8)
That is,
- 1 2 3 3 2K .y
fo(z) = 3 ¢0xx(x0,0) {C - CCY + AL+ ...+ 3nxg t'logig + ...}.

(n9)
The fourth derivative of fo(z) is undefined (infinite) at (xo,o) . Thus we

have found the leading singular term in the double-body-flow potential.
From (A9), we find immediately that
fg(x0+i0) = ¢0xx(x0'o)
(a trivial result), and also that
f%'(x0+i0) = = 3 C(0) ¢0xx(x0,0) .

Since the last expression also equals ¢0xxx-+i¢°xxy , and ¢0xxy(x,0) = 0 from

(13a), we have the result needed in (61).
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