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Abstract

The feasibility and effectiveness of using an integrated system for the
adaptive control of a surface ship along a prescribed path in restricted
waters is investigated. The controller consists of four major components
arranged in two loops: an inner or control loop and an outer or gain update
loop. The inner loop consists of a Kalman state estimator and an optimal
stochastic control law which would provide effective control when subjected
to disturbances and measurement noise. The outer loop estimates the para-
meters of the system equations of motion to enable the controller to adapt
itself for the changes in ship characteristics which take place due to
changes in the ship operating condition and environment. The Brownian
motion process is shown to be an effective model for bias disturbances in
the design of the Kalman filter. A design criterion is proposed for the
selection of the appropriate value of the diffusion coefficient to achieve the
desired character of the disturbance model. A control loop designed using this
approach is shown to perform very effectively with typical disturbances.

The transient response of the control loop is, however, sensitive to
variations in two of the coefficients in the equations of motion. Weighted
Least-Squares (WLS) and Minimum Variance (MVE) parameter estimation algorithms,
which might be used to estimate these coefficients on-line, are investigated.
For effective parameter estimation, the ship must be excited to a sufficient
level of motion using an open-loop rudder command. Adaptive path control
would, therefore, have to consist of alternate periods of open-loop control
and closed-loop path control. The WLS algorithm is shown to be more appro-
priate for off-line estimation of time-invariant parameters. The MVE
algorithm shows promise as an effective on-line ship parameter estimator

for use in an adaptive system.
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Nomenclature

A state weighting matrix

a coefficient in Bech's equation, eq. (1)

ajj elements of state weighting matrix

B control weighting matrix, ship beam [m], or generalized

noise covariance matrix eg. (101)

b coefficient in Bech's equation, eq. (1)

bij elements of control weighting matrix

C optimal control gain matrix

Ek defined by eq. (84)

Sk defined by eq. (85)

Ck defined by eq. (86)

Ek defined by eq. (84)

Dy defined by eq. (87)

A4

Dk defined by eq. (88)

E Balchen's disturbance environment matrix, eq. (58)
Efl...] expectation operation

Ez[...] conditional expectation operation w.r.t. Zk-l
F 4-state system open-loop dynamics matrix

F'=sI + At F discrete form of F

Fe estimator open-loop dynamics matrix
Fn=U//§f_ Froude number based on ship length

Fs system open-loop dynamics matrix

fij element i, j of F, Fe’ or Fs

G 4-state system estimator control distribution matrix
G'=At G discrete form of G

Ggk-1 or G generalized measure of noise power, eq. (112)
Gg estimator control distribution matrix

Gs system control distribution matrix

g acceleration of gravity [m/sz]

H water depth [m]

He estimator measurement scaling matrix

Hs system measurement scaling matrix

I Identity matrix

lk innovation vector
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I3 B

ship yaw mass moment of inertia [kgmz]

nondimensional yaw mass moment of inertia

optimal control or Weighted Least-Squares cost function

RMS cost, eq. (70)

yaw added mass moment of inertia [kng]

nondimensional yaw added mass moment of inertia

Kalman-Bucy state estimator gain matrix

MVE parameter estimator gain matrix

discrete time index

ship length between perpendiculars [m]

length of batch update calculation period

length of the update cycle

length of the data window

identification frequency

coefficient matrix of Euler-lagrange equations, eqg. (36)

coefficient matrix of Euler-Lagrange equations, eqg. (50)

control vector dimension or ship mass [kgl;

nondimensional ship mass

sway added mass [kg]

nondimensional sway added mass

total yaw moment or yaw moment disturbance [Nm]

nondimensional N

derivative of yaw
[Nms/rad]
nondimensional Nr
derivative of yaw
derivative of yaw
derivative of yaw
nondimensional Né
derivative of yaw
nondimensional Né
derivative of yaw
nondimensional N

8
derivative of yaw

moment

moment

moment

moment

moment

moment

moment

w.r.t.

w.r.t.

w.r.t.

w.r.t.

w.r.t.

w.r.t.

w.r.t.

dimension of state vector

yaw angular velocity

lateral velocity [Ns]
lateral acceleration [Ns2]
drift angle [Nm/rad]

drift angle [Nm/radl

rudder angle [Nm/rad]

rudder angle rate [Nms/rad]

white noise disturbance vector eq. (58)

dimension of augmented state vector
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dimension of state vector

error covariance matrix in estimate of augmented state
X' or error covariance matrix in estimate of parameter
vector

discrete form of P

steady-state value of P

dimension of measurement vector
parameter vector

component of parameter vector

limits on parameter estimates, Table 10
parameter estimate vector

parameter estimate error vector

assumed parameter mean

process disturbance power spectral density matrix
process disturbance covariance matrix

dimension of disturbance vector or disturbance spectral
density :

disturbance covariance
diagonal element i,i of Q

measurement noise power spectral density matrix or
covariance matrix

equivalent noise spectral density matrix eqg. (101)
yaw angular velocity [rad/s]

nondimensional yaw angular velocity
nondimensional r of model simulation

yaw angular acceleration [rad/sZ]

nondimensional yaw angular acceleration

diagonal element i,i of R

solution to optimal control Riccati equation or slope
or maximum rate of change of disturbance

steady-state value of S

vector of known parameters (here just 1)

ship draft [m]

nondimensional correlation time of yaw moment disturbance

nondimensional correlation time of sway force disturbance
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nondimensional rudder control time constant

time [s]

nondimensional time

integration time step, sample time interval

ship speed [m/s]

weighted covariance matrix, eq.

(101)

longitudinal component of ship speed [m/s]

control vector

lateral component of ship speed [m/s]

nondimensional current velocity

measurement noise vector

weighting matrix in WLS cost function

process disturbance vector

elements of Wk

white noise driving disturbance models for N and Y

eigenvectors, eg. (37) and (51)

longitudinal axis of ship

state vector

augmented state vector

estimate of augmented state vector

simulated state vector used in the WLS algorithm

total sway force or sway
nondimensional Y

derivative of sway force
[Ns/rad]

nondimensional Yr

derivative of sway force
[Ns2/rad]

nondimensional Yé
derivative of sway force
derivative of sway force

nondimensionsl Y

B

derivative of sway force

nondimensional YG

derivative of sway force
[Ns/rad]
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w.r.t.

w.r.t.

w.r.t.

w.r.t.
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w.r.t.

yaw angular velocity

yaw angular acceleration

lateral velocity [Ns/m]
drift angle [N/rad]

rudder angle [N/rad]

rudder angle rate



transverse axis of ship

whole measurement history to time k-1
measurement vector for control loop
measurement vector for gain update loop
pseudomeasurement vector

assumed parameter standard deviation
drift angle [rad] relative to earth
effective drift angle relative to water
nondimensional B of model simulation
drift angular velocity [rad/s]
nondimensional drift angular velocity
4-state system disturbance distribution matrix
system disturbance distribution matrix
estimator disturbance distribution matrix
discrete form of T

element i,j of T

rudder angle [rad]

commanded rudder angle [rad]

Dirac delta function

numerical parameter in eq. (59)

lateral offset from nominal track [m]
nondimensional n

Gaussian white sequence in parameter model, eq. (83)
nondimensional n of model simulation
coefficient in Bech's equation, eq. (1)
eigenvectors, eq. (37) and (51)
nondimensional eigenvalues

position aleng nominal track [m]
Jordan-form eigenvector

water density [kg/m3]

measurement noise standard deviation vector used in
simulation (elemento i)

dummy time variable or correlation time

time constant in Bech's equation, eq. (1), or correlation

time
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1. Introduction

The problem of controlling surface ships along prescribed paths in
maneuvering situations is becoming increasingly important from operational,
safety, and environmental viewpoints. In these situations, ships are
subjected to short-term, essentially zero-mean disturbances due to passing
ships, current and wind variations, waves, and bank and bottom changes. Ships
are also subject to more long-term, non-zero-mean disturbances due to current,
wind, second-order wave forces, and banks. The dynamic characteristics of the
ships also change significantly depending on depth-under-keel, draft, trim,
and speed. These maneuvering situations can pPlace severe demands on pilots,
conning officers, and helmsmen thus making some form of automated control

desirable or perhaps even necessary in the future.

In this report, we investigate the use of two types of adaptive control-
lers for the path control of surface ships in restricted waters. In this
context, restricted waters include straits, channels, harbors, canals, rivers,
and harbors where the ship must steer a prescribed path and not just maintain
a prescribed heading. In our earlier work,! we investigated the use of non-
adaptive, optimal stochastic controllers for this purpose. These control
systems consisted of a steady-state Kalman filter and a steady-state optimal
state feedback controller. The Kalman filter uses noisy measurements to
generate an unbiased estimate of the state which is then used by the controller
to generate the rudder command. These controllers were shown to provide
effective control when a ship is subjected to short-term, essentially zero-
mean disturbances. Our earlier work did not produce controllers which could
accommodate more long-term disturbances without a mean offset from the desired
path. We also showed the desirability of an adaptive system which could
automatically account for changes in the dynamic characteristics of the ship

due to changes in depth-under-keel or other operating conditions.

In this work, we develop surface ship path controllers which can accom-
modate long-term disturbances with a zero-mean offset from the path and which
can adapt for changes in the dynamic characteristics of the ship. Our overall
approach is shown schematicallyrin Fig. 1. The control system consists of
four major components which are arranged into two loops. The inner or control
loop consists of a steady-state Kalman filter or state estimator and a steady-

state optimal state feedback controller. This inner loop is similar to the



control systems used in our earlier work! except that the design used here
can accommodate long-term disturbances. The outer or gain update loop con-
sists of an on-line parameter estimator and a second function which recalcu-
lates the steady-state filter and controller gains using the latest estimates
of the ship parameters. The gain update loop would be implemented batch-wise
or at a slower rate than the control loop. Thus, the control loop uses piece-
wise constant gains. The control and gain update loops would both be imple-

mented in an onboard digital computer.

disturbances noise
N,Y v
steering rudder output
> gear > ship —» sensors [__
angle § X
rudder t———-—-influences changing
command &, CONTROL LOOP ship characteristics
u’ optimal state Kalman measurements z
controller [ Py state - =
estimate % .
= | estimator
controller . f
. filter gains K GAIN UPDATE LOOP
gains C
gain update parameter parameter measurements z'
————————— — =

calculation | estimate p | estimator

FPigure 1. Overall Schematic of Adaptive Path Controller

A number of approaches can be taken to develop an adaptive ship path
controller. The preferred approach would be a design which would be robust
enough to provide effective control under all ship operating conditions with-
out adjustment. In general, this is not feasible. For years, ship heading
autopilots have included manual deadband and gain adjustments to accommodate
changing sea states. This approach can provide only limited adaptation and

requires proper operator action. An alternative approach would be to have



controller gains preprogrammed as functions of a few operating conditions such
as depth-to-draft ratio H/T and draft. This approach would be feasible but
could not cover all variables and would require more extensive knowledge of
ship characteristics than is usually available. The final approach, which
we use here, is to have the controller automatically establish the predomi-
nant part of the ship dynamics on-line thus permitting adaptation to changing

conditions.

Work has been underway in recent years on the development of adaptive
ship heading autopilots. Development in The Netherlands began with simplified

versions of Bech's second-order turning rate (&) equation; i.e.,

o0 l 1 . K 03 . K -
b+ =Y+ (ap® + by) = (T36 + §) . (1)
[Tl Tz] 172 1%

Honderd and Winkelman? assumed that T3=0 and that only b varies with water
depth. They designed a simple model reference adaptive controller for heading
control using a sensitivity model approach. van Amerongen and Udink ten

Cate3 ¥ developed a second model reference adaptive controller using a
stability (Liapunov) approach. van Amerongen, Nieuwenhuis, and Udink ten
Cate® also reported the development of a model reference adaptive controller
using a gradient based method. In this latter work, the é term in eq. (1)

was retained and both a and b were assumed to vary with depth. Some of
these heading autopilots have been successfully tested at sea. van Amerongen
and van Nauta Lemke® reported the most recent Dutch work on model reference

type adaptive heading autopilots in 1978.

In contrast to the Dutch work, a number of recent heading autopilot
designs include adaptive features which are preprogrammed; i.e., open-loop
schedules which are prescribed in advance. Oldenburg7 describes an autopilot
which adapts for speed, depth-under-keel and sea state in this manner. Ware,
Fields, and Bozzi® describe an autopilot which includes a pair of parallel
notch filters in which the notch frequencies are scheduled as a function of
vessel speed in order to provide adaptation to changes in wave encounter
frequency. Sugimoto and Kojima? report another example of a recent autopilot
design with preprogrammed gain adjustment. Their autopilot is designed to

adapt for loading condition, speed, and sea-state.



A third direction in adaptive heading autopilot development has evolved
from the work of istrém in Sweden. Astrdm!0 recently demonstrated the need
for adaptive ship heading controllers and noted that Killstrdm had used the
approach presented by istrém, et allls12 ¢4 design adaptive heading auto-
pilots for a number of large tankers. He noted that these have been tested
successfully and that one had been operating for more than one year at sea
(1976). K&llstrdm and his colleagues13 reported on this work in 1977. 1In
this approach, the system is modeled as a discrete, single-input, single-
output system (auto regressive moving average formulation) disturbed by white
noise. The unknown system parameters are then estimated by recursive least-
squares, extended least-squares or maximum likelihood schemes. A minimum
output variance control law is used. Volta and Tiano!“ have also developed
adaptive heading controllers based on the work of Astrdm and Wittenmark.ll
Simulation of these controllers was reported by Brink, Baas, Tiano, and

Voltal$ in 1978.

In this work, we are concerned with path control instead of heading control
of the ship. Our approach also uses multi-variable instead of single-input,
single-output methods. In restricted waters where path control is of
interest, the conditions which alter the characteristics of the ship, such as
water depth, can change fairly rapidly compared to the dynamics of the ship.
This creates a difficult on-line parameter estimation problem. Off-line
system identification methods have been applied to marine vehicles with
success in recent years. Abkowitzl® has used an extended Kalman filter
approach. Work in Sweden at Lund Institute of Technology and the Swedish State
Tank!7/18/19 nag ysed output error, prediction error, and maximum likelihood
methods to estimate linear and more recently non-linear surface ship steering
dynamics. The maximum likelihood method is also being applied to submarine
systems identification in this country.zo'21 Work in Japanzz'23 has utilized
Rkaike's Information Criterion for the identification of ship steering dynamics.
In general, these techniques utilize ship motion histories which are minutes
long during which the ship travels many ship lengths. The ship parameters to
be estimated must be constant during this period for successful identification.
It is usually considered necessary for the record length to be at least a few
times the longest time constant of the system for success using noisy measure-
ments. In restricted waters, the ship characteristics may not be even reasonably

constant over a length of time equal to the longest time constant of the system



which might be 50 to 100 s. and a ship length or two. This makes practical
on-line parameter estimation from noisy measurements very difficult in

restricted waters.

This report is presented in four principal parts. In Section 2, we
formulate the ship path control problem including a development of the linear
equations of motion, a discussion of measurement selection, and a development
of the design process disturbances which are used in the evaluation of system
performance using digital siﬁulation. In Section 3, we present the develop-
ment and evaluation of the inner or control loop part of the path controller.
This presentation also includes the optimal state feedback controller and
Kalman filter gain calculation methods used in the gain update calculation
function of the outer loop in Fig. 1. This section includes a review of the
shaping filter approach for process disturbance modeling which we used in our
earlier work! and which cannot accommodate more long-term process disturbances
without a non-zero mean offset from the path. We then present an alternative
approach using a random-walk process disturbance model which can accommodate
the more long-term disturbances. This section closes with a demonstration of
the need for adaptation in a surface ship controller used in restricted
waters. Sections 4 and 5 present the development and evaluation of two
separate approaches for the parameter estimation function of the outer or gain
update loop. Section 4 presents a batch type, weighted-least-squares para-
meter estimation scheme using a moving window of ship motion data. This is a
statistical approach which makes no use of the probable measurement noise
levels. Section 5 presents a recursive type, minimum variance scheme. This
is a probabilistic approach which utilizes probabilistic estimates of the
measurement noise levels. The final section, Section 6, presents our con-

clusions based upon this work.



2. Problem Formulation

In this section, we formulate the surface ship path control problem as
a linear, state-variable control problem. The selection of measurements and

typical process disturbances are also discussed.

2.1 Equations of Motion.

The development of the linearized, state-variable equations of motion
for a surface ship moving in the horizontal plane presented here is based on

24 and is presented in more detail in our earlier

the formulation by Fujino
work.! The coordinate system for the problem is shown in Fig. 2. The 0-£&n
system is fixed in space with the desired ship path along the £-axis. We
assume here that the desired path is a straight line. This simplification
does not alter the essential character of the control problem and is typical
in maneuvering situations where the ship is to follow a series of straight
path or leading line segments. The CG-xy system is fixed at the center of
gravity of the ship. The positive sense of the drift angle B, heading angle
Y, yaw rate r, and rudder angle § are shown. Neglecting the effects of pitch

and roll, the ship motion can be described by coordinates x, y, and ¢.

U B x,X,u

£d u = dx/dt
v = dy/dt
U = (u2+v2)1/2
cG N r = dy/dt
8 v, Y,v

0 /
Figure 2. Coordinate System for Path Control

The exact equations of motion of the ship are integro-differential equa-
tions in which convolution integrals represent the memory effect of the fluid
to previous motion.2% An alternative formulation yields differential equations

with frequency dependent coefficients. Fujino26 has shown that for the maneuvers



of interest here the frequency dependence is negligible and constant-coefficient
differential equations can be utilized. This assumption becomes less and less
valid as H/T*l. When the equations of motion are linearized about the nominal
path, the equation in the x-coordinate decouples so that the ship motion can

be given by,

dv .
(m&my) at = Yyv + (-mU+Yp)r + Y;r + Y66 +Y , (2)
(T, +7 ) S = Nv + Nor + Nov + No§ + N (3)
zz zz’' dt v r v § ’
an _ ..o
3t U(y-g) , (4)

which are valid for small deviations from the equilibrium straight-line,
constant speed U condition. An external sway force Y and an external yawing
moment N are included to account for disturbances which act on the ship. It
is common and convenient to utilize drift angle B instead of the lateral

velocity v so we can use,
v = -UsinB € -UB , (5)

to express eq. (2) and (3) in terms of the drift angle. These equations can

then be nondimensionalized as shown in the Nomenclature to yield,

@’ _

Tl A (6)
-(m'+m ')-648—'= Y ,B' + (-m'+Y )r' + Yorr' + Y 18" + ¥ (7)

y ‘dt’ g ! r s ’
(I'+J')£=N B' + Nouzr' + N=,B' + N §' + N! (8)
zz “zz’ 4t! g’ r g' 8! !

an' _ o, _ .,

g -V BT *)

dé' . _l_ L. ]

T T, ( c §'y . (10)

where we have now included a first-order model for the steering gear dynamics.
The control is the commanded rudder angle 8c'- The unit of nondimensional

time t' is the time it takes the ship to travel one ship length.

Equations (6) through (10) can be transformed into state-variable form;

i.e.,



(W] o1 0o 0o o Q] [o ] 0 o ]
r' 0 f22 f23 0 f25 r' 0 'Y21 Y22
8|8 _ |0 f32 £330 F35 BT} 0 g, Y31 Y32 E‘J ) (11)
S Y 10 -1 00 o [ Jo o |
8 0.0 0 0-l/p|[8'] |V, o o
. b - L = - -
or,
nxl mx1 gxl
X' =Fgx'+Gs u +Tg W . (12)

The coefficients of the open loop dynamics matrix fij and the disturbance
distribution matrix Yij are algebraic combinations of the stability deriva-
tives and mass and inertia terms in eq. (7) and (8).! For this study, we
utilize data obtained by Fujinozb"?j'28 for a model of the 290 m. tanker

Tokyo Maru. Fujino conducted planar motion mechanism (PMM) and oblique tow
tests of the model at various water depth-to-draft ratios H/T. Selected
characteristics for this vessel are shown in Table 1. The coefficients fij
and Yij obtained for the Tokyo Maru at 12 knots full-scale at H/T values of
1.30, 1.50, 1.89, 2.50, and «® are given in Table 2. As shown by FujinoZ“

this vessel is course unstable for the intermediate depth-to-draft ratios from

about 3.0 down to 1.75 as is typical of many large tankers.

characteristic Fuiig:is prototype
linear scale ratio, A 145.0 -
length between perpendiculars, m 2.000 290
breadth, m .3276 47.5
draft, m .1103 16.0
displacement 58.4 kg 179,100 LT
block coefficient 0.8054 0.8054
rudder area 3,390.0 mm? 71.29 m?
propeller diameter 53.8 mm 7.80 m
P/D 0.740 0.740
expanded area ratio 0.619 0.619
number of blades 5 5

Table 1. Characteristics of Tokyo Maru Model and Prototype.



H/T 1.30 1.50 1.89 2.50 %
fa2 -1.6508 -1.7136 -1.7657 -1.8177 -1.9515
fa3 9.3157 6.6235 5.7359 4.6112 3.1591
fos -0.55543 -0.79235 -0.88074 ~1.0416 -1.0410
Y21=f26 346.69 385.98 477.68 536.00 567.13
Y22=f27 4.8040 -2.2145 -5.0043 -5.8625 2.3365
f35 0.02974 0.13890 0.17199 0.23621 0.31507
£33 -1.0388 -0.71895 -0.52766 -0.54560 ~0.63651
f3g ~0.09995 -0.12092 -0.15607 ~-0.16639 -0.16163
Y31=f36 11.825 14.230 21.141 21.942 16.844
Y32=f37 -19.216 -23.123 -28.233 -31.490 -37.384
Table 2. Coefficients of Tokyo Maru versus H/T at F,=0.116

2.2 Measurement Selection.

(12 knots full=-scale)

All of the states in the ship path control problem as formulated in eq. (11)

are available for measurement.

The heading o'

can be obtained from a

compass; the yaw rate r' can be obtained from a rate gyro; the drift angle

B'=-v' can be obtained from a doppler sonar; the rudder angle §' can be obtained

from the rudder stock or less accurately from the steering gear rams.

The

lateral offset from the desired path n' must be obtained using navigation aids

such as DECCA Hi~-Fix or radar.

bias and zero-mean measurement errors and system transmission noise.

Each of these measurements may be subject to
In the

presence of this measurement "noise" and with the measurement of only selected

states, the complete state vector can be estimated using a Kalman filter!r29:30

provided all of the states are observable with the chosen measurements.

The authors have previously studied the observability of the ship path

control problem.1 It was shown that it is necessary to measure the lateral

offset n'.

Additional measurements improve the ability of a Kalman filter to

estimate all the states and thus improve the effectiveness of an optimal state

feedback controller.

The yaw rate r' is the next most effective measurement.

The heading y' is readily available and is the next most effective measure-

ment.

tiveness of a ship path controller which already measures n',r',

The drift angle B' measurement was shown to add little to the effec—

and y'. With

the steering gear model used in Section 2.1, there is little need to measure

the rudder angle since the state is known exactly given any initial condition

§' (ty) and the subsequent rudder command history Gé(t), t2t,. In any practi-

cal application, the steering gear would have its own, separate feedback

system; the first-order model included in eqg. (11) is just a means of intro-
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ducing a realistic rudder time response into our study. For the purposes of
the inner or control loop design, it is reasonable to assume a measurement
vector consisting of measurements of y¥', r', and n' each contaminated by

Gaussian, white noise; i.e.,

px1l 10000 vy
zZ =]01000jx+ |Vo] =Hgx+Vv . (13)
0oo01lo0 Vs

The concept of observability relates to the feasibility of estimating
the states of a system from a particular set of measurements. In an adaptive
system (or in off-line parameter estimation), a second objective is the
estimation of the parameters of the system from a particular set of measure-
ments and the system input history. Identifiability is the dual of observ~-
ability in this context. Astrdm and Killstrdm!® have studied the parameter
identifiability of the open-loop dynamics matrix parameters fij in the r'
and the B' equations in eq. (11). They showed that these parameters are
identifiable provided both y' and v' are measured. This conclusion requires
that the ship is controllable with the rudder which is known to be generally

1 In the

true and which has been demonstrated theoretically by the authors.
path control problem, ¥' and n' can provide the same identifiability as ¢°'

and v' as can be seen from eq. (9). Regardless, it is advisable to use all fea-
sible measurements in the parameter estimation so we assume that all states

are measured for use in the outer or gain update loop in Fig. 1. This gives,

nx1
z' =x+v' .

(14)

This full measurement vector is also used in some of the inner or control

loop designs which are presented in the following sections.

The final part of measurement definition is to establish reasonable
levels for the measurement noise v and v'. The white noise power spectral
density needed in our continuous system design approach can be estimated by
assuming the noise to be exponentially correlated with an RMS noise level cj
and a correlation time Tj. The Tj should be much faster than the time con-
stants of the ship and less than the system sampling time for the white

noise model to be wvalid. The power spectral density can then be estimated

by,

-10-



TS & 2(oj)21j . (15)
To evaluate the control system effectiveness in this study, we use digital
simulation with a fixed-stepsize Euler integration scheme. This has the
effect of approximating the continuous Gauss-Markov process, eq. (11) and

eq. (13), by a discrete Gauss-Markov Process. 1In these simulations, the
covariance of the computer generated random measurement noiée must be selected
to be consistent with the design noise power spectral density. To provide
equivalent state estimate error covariances, it is necessary that the simula-

tion measurement noise variance given by,

oz
12 . ZJJ
Gj Y (16)
where At is the integration stepsize.ls31 This can also be considered from
a more direct viewpoint. If the controller is implemented digitally in an
onboard computer with the system sampled each At, the measurement noise will
2

. ]
be a white sequence with variance gy -

The reference measurement noise levels used in this work are shown in
Table 3. 1In view of our earlier comments about the rudder model included in
eq. (ll), we assume exact knowledge of the rudder angle. Astrdm and Killstrém!8
note that all sensors have dynamics with time constants less than 1 sec. and
that the measurement errors are about 0.1° in y, 0.02°/s in r and 0.0l m/s
in v. Millers3? uses RMS errors of 0.2° in Y, 0.01°/s in r and 10 m. in N
Canner33 states that DECCA Hi~Fix crosstrack errors are as low as 1lm. when
the baseline is along the desired path as is done at the entrance to Europoort.
Astrdm and Kéllstrdm!® ang Bystrdm and K#llstrdm!9 have found errors in r of
less than 0.002 ¥s in systems identification of full-scale experiments. 1In
view of this data, the reference levels assumed in Table 3 seem reasonable.

The values for ry5 and cj' are nondimensional. The cj' are calculated by
eq. (16) assuming At'=0.005 (AtZ.24 s) which we use in our simulations.

A noise correlation time of 0.1 s. and a sampling time of .24 s. imply some
correlation but the resulting values for cj' yYield reasonable covariances
for a white measurement noise sequence. Dimensionally, the oj' are about 93

Percent of the assumed values for 05
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measurement source O'j ‘l'j r]j O'j !
Y compass 0.1° 0.1s 1.298x1078 1.611x1073
r' rate gyro 0.01°/s 0.1s 2.860%1077 7.563%x1073
Bt (v') doppler sonar 0.0l m/s 0.1s 1.118x10~8 1.459%x1073
n' DECCA Hi-Fix 3m 0.1s 4.559%x1077 9.549x1073
Table 3. Reference Measurement Noise Characteristics

2.3 Process Disturbances.

While operating in restricted waters, a ship can be subjected to a
wide range of disturbances. Many of these can be characterized as being
short-term relative to the time constants of the ship and as having essentially
a zero mean value. First-order wave forces, wind gusts, bottom ripples as
observed outside Europoort,3“ and passing ships can be included in this
category. Other disturbances remain long enough relative to the time constants
of the ship that they must be considered to have non-zero mean value. Second-
order wave forces and the effect of a lateral current, bank, or steady wind
are included in this category. For the purposes of this study, we define a
number of typical or design process disturbances which are used in simulations
to evaluate the performance of the various path controllers. These design

disturbances are defined briefly here.

Passing Ship. The lateral force Y' and yawing moment N' due to a

passing ship was selected as a typical short-term, essentially zero-mean dis-

turbance. The assumed design disturbance is shown in Fig. 3. This disturbance
is based on results originally presented by Newton35 for two Mariner vessels
passing in deep water. These results are considered to be representative
forces and moment histories and thus are reasonable for use in comparisons
here. Yung36 and Abkowitz, Ashe, and Fortson37 show that the magnitude of

the disturbances increase in shallow water as H/T*1 so the magnitudes in Fig. 3
are known to be low at the shallower depths. 1In Fig. 3, the nondimensional
time scale is in ship lengths and the ships are beam~to~beam at t'=0. These
lateral force and yawing moment histories are assumed to be independent of

depth under keel in our simulations.

~12-



N'xlOs 0 Y'xlO5

Figure 3. Design Passing ship Disturbance.

Lateral Current. The effect of a lateral current was selected as a

typical long-term, nonzero-mean disturbance for use in our ship path controller
simulations. In a steady current, the ship assumes an equilibrium condition
with §'=0 and ¢'=8' so that the effective drift angle relative to the water

Be' is zero. 1In this condition, there is no external hydrodynamic lateral

force or yawing moment on the ship. In our ship maneuvering equations, we

have assumed to this point that the drift angle 8' is with respect to the

earth. 1In shallow water, a doppler sonar would actually measure lateral
velocity relative to the bottom. In a lateral current ve' without an additional

disturbance, eq. (7), (8), and (9) should properly be written,

1 'dBe'_ ] -t ! 1 ..I T
= (m'+my ') T YB,Be + (-m'+Y, )" o+ LATE 25,6 ' (17)

(I' +J! ) E
44

zz) 37 = NgiBe' +N_,r +N-,ée' + Ng, 8, (18)

g:_'_—,'-= V- Be' + v . (19)
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Now if the drift angle relative to the earth B8' is introduced,

Be' = g' + Vc' ’ (20)

eq. (17), (18), and (19) become as follows in a steady current:

[] t d8'= 1 p— ' . .l t t
- (m'+m,, )dt YB,B + (-m +Yr,)r + Yo, r' o+ Y6,6 + YB,VC ' (21)
(I' _+J3°' )9£'= N_,B' +N_,r' + Ns B' + N.,8' + N_,v.°' (22)
zz 2z 4dt°’ [ r' B' 8! g'vc ’
an'_ v _ 4
G v -8 . (23)

Thus when using the drift angle with respect to the earth in eq. (11), a
steady current has the effect of applying an external lateral force and

yawing moment given by,

Y=Y v, (24)

and,
N' = NB'vb' . (25)

For design evaluation purposes, we have used eq. (24) and (25) to
establish the lateral force and yawing moment produced by a 1 knot lateral
current on the Tokyo Maru moving at 12 knots in an intermediate water depth
H/T=1.89. This disturbance was assumed to be constant for 15 ship lengths
and then to reduce linearly to one half this value at 20 ship lengths. This
design disturbance is shown in Fig. 4. These lateral force and yawing moment

histories are assumed to be independent of depth under keel in our simulations.

A
1.0

Y'/y

Y,

| -

N/ sl Yo' = .0023277

° No' = .0010262

0 + +— t + + ==
5 10 15 20 25 30

Figure 4. Design Lateral Current Disturbance
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ABC Harbor Entrance. As a final design evaluation disturbance we

selected an approximation to the lateral current disturbance experienced at
the entrance to Europoort (Rotterdam). This lateral current was included

in the ABC harbor definition recommended by the SNAME H-10 Controllability
panel for use in ship controllability studies.38 This proves to be a very
demanding test for a path controller. There is about a 1 knot lateral current
outside the entrance which increases up to about 2 knots at about 0.4 km
from the harbor entrance. The lateral current then reduces to zero at the
harbor entrance. In this situation, the lateral current produces two types
of forces and moments on the ship in addition to those resulting from the
use of the drift angle with respect to the earth in eg. (11). First, the
changing current will cause the ship to accelerate with respect to the earth
so additional inertial forces and moments will appear in eq. (7) and (8).
Second, the spatial current change over the length of the ship will produce a
changing lateral force along the hull which can be integrated stripwise
similar to the approach used by Newman3? to yvield a total lateral force and

yYawing moment on the ship.

All of the effects of the steady and changing lateral current at the
entrance to the ABC harbor can be moved to the right side of eq. (7) and (8)
and combined as net lateral force and yawing moment terms. With B' assumed
to be with respect to the earth, this net result is a disturbance history
similar to that shown in Fig. 5. This disturbance history is based on
similar results presented by van Oortmerssen? and has been verified by the
authors using a simplified strip theory approach. In Fig. 5, the ship's bow
reaches the harbor entrance (vc'=0) at t'=11.0; the stern thus reaches the
entrance at t'=12.0. The steady values for t'<6 in Fig. 5 have approximately

the same magnitude (1 knot lateral current) as those in Fig. 4 for t<15.

-15-
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Figure 5. Lateral Current Disturbance at ABC Harbor Entrance
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3. Control Loop Design

In this section, we discuss the design of the inner or control loop in
Fig. 1. This naturally includes the methods used for the calculation of
controller gains C and the Kalman filter gains K performed in the outer or
gain update loop. This section involves an extension of our earlier work!
and some of the introductory discussion included there and elsewhere29,30,41
will not be repeated here. We begin with a discussion of the optimal, steady-
state controller design and then proceed with development of the Kalman filter
which generates the state estimate used by the controller. The section
closes with a look at the need and requirements for an adaptive feature in a

path controller used in restricted waters.

3.1 Optimal, Steady-State Controller Design.

The control problem is to keep the ship along the desired track using
acceptable levels of rudder in the presence of disturbances while using noisy
measurements. The ship model is given by eq. (12) where in this subsection
we will assume the disturbance vector W consists of a Gaussian white noise
lateral force and yawing moment. Equation (12) describes a Gauss-Markov
process in which the state of the ship is completely described by its mean
value state vector g which follows eg. (12) with w=0 and by its covariance

matrix X where,

x(t) = Elx(t)] , (26)

X(t) = E{(x(t) - E(t)) (x(t) - g(t))T] ’ (27)

and E[...] is the expected value or ensemble average over the many possible
observations at time t. We will assume that the white noise disturbance has

zero mean and covariance given by,
Ew(t)w(t)T] = Q(t)6 (t-1) , (28)

where Q is the power spectral density matrix and & (t=-t) is the Dirac delta
function. We also assume there is no correlation between the initial condition

of the system X(to) and the disturbances w.

An optimal control design problem can be stated as establishing the

linear state feedback control law,

u=cCx , (29)
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which minimizes the linear quadratic cost function,
te
J = —-j (x"Ax + u'BWdt |, (30)

t

where A and B are weighting matrices at the designer's disposal. In this
problem, we wish to minimize n' while using acceptable levels of rudder §'
and §8;' . We can therefore assume all terms in the A matrix to be zero

except the a4, weighting on n'2 and the a weighting on 6'2 and assume a

55

nonzero B=bl weighting of Gé'z. To yield a reasonable weighting among these

1
terms and to accomplish the needed scaling of terms in eq. (30) we assume,

= -2 _

A = (ng) = 772.463 , (31)
= -2 =

agy = (65)_ = 131.332 , (32)
= 1y—2 =

bll (Gco ) 131.332 , (33)

based on a dimensional no=10.43 m. (slightly less than one-quarter beam) and
a dimensional 60=5co=5°. This indicates that we are willing to commit
approximately 5° rudder to path control when the ship deviates No from the

desired path.

The Separation Theorem?? states that the optimal control desired here
is obtained by assuming exact knowledge of the state for use in eq. (29)
and by neglecting the disturbance w in eq. (12). When the matrices Fg, Gg
A, and B are constant, the control which minimizes eq. (30) is given by,
- T
c=-B"lag's, . (34)
where S_ is the steady-state (S=0) solution of the matrix Riccati equation,

S = -SFg - FsTs + SGSB-IGSTS -a . (35)

An efficient way to obtain S_ is by Potter's algorithm which utilizes the
technique of eigenvector decomposition to obtain a closed-form solution for
S,- MacFarlane“? and Potter*3 first proposed this solution technique. It
was developed into a practical design tool by Bryson -and Hall“% who utilized
the QR algorithm to obtain the eigensystem in their OPTSYS computer program.
Potter™3 proved that S can be expressed in terms of the eigenvectors of the

2nx2n partitioned matrix,
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(36)

which can be shown to be the coefficient matrix of the 2n Euler-Lagrange
equations for minimizing eq. (30) subject to eg. (12). The eigenvalues of
M are in pairs which are symmetric about the imaginary axis in the complex
Plane. If the eigenvectors associated with the eigenvalues with positive
real parts are designated with the subscript + and those associated with the
eigenvalues with negative real parts are designated with the subscript - ,

the eigenvectors can be arranged as follows:

1
I
i
x = |7 (37)
i

The steady-state solution of eq. (35) is then given by,

Sp = A_(x2)71 | (38)

Equations (34) and (38) are used to calculate the controller gain matrices
in this work. The QR algorithm is used to obtain the eigensystem of M as

defined by eq. (36).

3.2 First-Order Shaping Filter Approach.

In Section 3.1, we assumed that the disturbance vector w in eqg. (12)
was composed of Gaussian white noise. 1In our earlier workl, we developed
path controllers capable of handling short-term, essentially zero-mean
disturbances such as the passing ship disturbance shown in Fig. 3. This
disturbance acts in a correlated manner over about three ship lengths so the
assumption of Gaussian white noise disturbancesis poor for this problem. The
usual approach when a disturbance is correlated with characteristic times
comparable to those of the system under consideration is to model the distur-
bance as the output of a shaping filter which is driven by Gaussian white
noise. The passing ship disturbance in Fig. 3 can be reasonably modeled as
exponentially correlated processes with zero means. These can be produced by
first-order shaping filters. We therefore introduced the external yawing

moment N' and the external lateral force Y' as additional states defined by:

T, S%r =N b, (39)
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and,

day’
TY d? = -Y' + w2 , (40)

where correlation times TN=TY=1 ship length are reasonable assumptions based
on Fig. 3. These shaping filter equations are driven by Gaussian white

noise g?(wl,wz)T which has power spectral density Q. This model is equally
valid for the disturbance produced as the ship passes localized fixed objects

and other short-term disturbances.

To incorporate the disturbance model eq. (39) and (40) into the controller
design, the state vector x is augmented by the addition of states N' and Y'

to yield an augmented state vector x'. Equation (11) then becomes,

vl o1 o o o 0 o 1fw] [o 7 [ o 0 ]
1 1
r 0 f22 f23 0 f25 f26 f27 r 0 0 0
[ ]
5 8 0 £35 £330 £35 £y £., 1|8 0 ° 0
Fn' =11 0 -1 0 0 0 0 n'l+| O Gc'+ 0 0 wl
§'| lo o o o-1/ 0 o |ls'] 1/ o o |lwil
Ty Tr 2
N' 00 00 0 -l/p O N' 0 /gy ©
'] [0 0 00 o 0 -l/my|ly'] Lo ] 0o /7,
(41)
or,
. n'xl
X' =Fgx' +Gou+Tlagw . (42)

The upper right (5%x2) partition of Fo, in eq. (41) is Tg in eq. (11); i.e.,

f26=Y21' etc. The measurement eqg. (13) now becomes,

z=H, x'"+v , (43)

e =
where Hy is just Hg in eq. (13) with a (3%2) block of zeros added at the

right. The optimal control law is now given by,

u=cx' , (44)

where the control gain matrix is obtained as described above except the A
matrix must be extended to (7%X7) with additional rows and columns of zeros
for use with x' in lieu of x in eqg. 30 and Fe and G, must be used in eq. (34),
(35), and (36) in lieu of Fg and Gg. The optimal control gains are then

given by,
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c=-8"lg,"s_ . (45)

Having only the noisy measurements of three states included in z, the
state vector x' needed in eqg. (44) is not directly available. The Separation
Theorem states that it is optimal to use the control gains produced by eg. (45)
with a maximum likelihood estimate of the augmented state vector %f produced
by an optimal stochastic state estimator or Kalman-Bucy filter. The control

law then becomes,

u=cx' , (46)

X' = Fg X' + Ge u + K(z-He X') . (47)

When the system is stationary; i.e., a statistical steady-state with Fes Ggr

Fes Q, and R constant, the steady-state filter gain matrix K is given by,

T -
K=PHo R !, (48)

where P_ is the steady-state (P=0) solution of the matrix Riccati equation,

T T -

. T
P =F.P + PFy + IQlq” - PHe RIHP (49)

and Q is the power spectral density of the white noise process disturbance w
in eq. (42) and R is the power spectral density of the white measurement

noise v in eq. (43).

An efficient way to obtain P is again by Potter's algorithm which
utilizes eigenvector decomposition. In this case, P_ can be expressed in

terms of the eigenvectors of the 2n'x2n' partitioned matrix,

Fe

. (50)

M'=

=]

To-1
-Hg R “Hg

If the eigenvectors associated with the eigenvalues of M' with positive real
parts are designated with the subscript + and those associated with the
eigenvalues with negative real parts are designated with the subscript - ,

the eigenvectors can be arranged as follows:

FER b ) (51)
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The steady-state solution of eqg. (49) is then given by,

Po = =X} (A})7L . (52)

Equations (48) and (52) are used to calculate the Kalman filter gain matrices
in this work. The QR algorithm is used to obtain the eigensystem of M' as
defined by eq. (50).

At this point, we will present typical results for a path controller
designed using the first-order shaping filter disturbance models eg. (39)
and (40). These results illustrate the effectiveness and the limitations

1 that if a non-

of this type of design. The authors have previously shown
adaptive path controller is designed assuming constant ship characteristics,
the best overall performance is achieved with a controller designed for the
least course stable ship characteristics. For the Tokyo Maru this condition
is at about H/T=1.89 so the characteristics for this depth-to-draft ratio in
Table 2 are used in this example. The measurement noise power spectral
density R is taken from Table 3 assuming measurements of ¢', r', and n' in
eq. (43). The nonzero terms in the controller cost function weighting
matrices are defined by eq. (31), (32), and (33). The remaining definition
needed is the process disturbance power spectral density Q. Using the
passing ship disturbance in Fig. 3 as the design disturbance, the RMS

values of N' and Y' between t'=-2 and t'=1.4 are 0N=8.798x10'5 and
0Y=21.178X10'5, respectively. Assuming correlation times Ty=Ty=1 as noted
above, the nonzero terms in the power spectral density matrix can be taken

as,

2 = 1.548x1078 , (53)

2TNO'N

= 2TYoY2 8.970x1078 . (54)

The control loop was designed for the Tokyo Maru with the above
assumptions using the Michigan Terminal System (MTS) version of Bryson and
Hall's OPTSYS program.31'““ The resulting controller gains and Kalman-
Bucy filter gains are shown in Table 4. These results are different from
those reported earlier by the authors! due to the use of a corrected Froude

number of 0.116, the use of a zero weighting a;; on w'z in eq. (30), and
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the use of lower assumed measurement noise levels. The zero row in the K
matrix results because with our steering gear model the control history
Produces exact knowledge of the rudder angle. Therefore, the measurements
provide no additional information. All the nonzero gains in Table 4 must
vary with water depth if they are to remain optimal except c,,=2.4252 which

14
the authors have shown to be vessel, speed, and water depth independent.

contrcller gains cT Kalman-Bucy filter gains K
5.5421 4.6335 0.8400 -0.0021
2.6601 18.5075 12.2263 -0.3278
6.3895 3.3586 2.6208 -4.2929
2.4252 -0.0753 -0.5225 2.9000

-0.8499 0.0000 0.0000 0.0000
679.68 0.1164 0.1850 0.0440
-52.776 -0.0982 -0.1604 0.1654

Table 4. Optimal Gains for Tokyo Maru at H/T=1.89 and Fn=0.116-
First-Order Shaping Filter Disturbance Model

To illustrate the effectiveness of the design given in Table 4, we
simulated the Tokyo Maru under the control of this controller using the
SHIPSIM/OPTSIM computer program.31 Figures 6 and 7 show the results of a
simulation which begins with the ship one half beam (B/2=23.75 m.) off the
desired track with all other states zero. The filter is assumed to have been
operating for some time and is given exact knowledge of the state gfﬁ at
t'=0. 1In this simulation, the ship also passes another ship beam-to~beam at
t'=20. The magnitude of this passing ship disturbance is arbitrarily taken
as four times that shown in Fig. 3. Figure 6 shows the resulting lateral
offset response. The maximum overshoot at t'=5.3 is 1.6 m.; the maximum
deviation due to the passing ship is 6.2 m. Figure 7 shows the corresponding
rudder angle response. The controller provides effective control under
these conditions. It provides effective control when the ship is subjected
to the short-term, essentially zero mean disturbances for which the controller

was designed.

The weakness of the ship path controller designed using first-order
shaping filters, as defined above, to model the process disturbances is that
the controller cannot accommodate more long-term disturbances without a non-

zero offset from the desired path. Normal state-variable feedback controllers,
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as this approach produces, yield a proportional plus derivative (P-D) type control
law. To produce zero steady-state errors with a constant disturbance some type

of integral action is needed; i.e. a (P-I-D) type control law is needed. To

show the performance of the controller given in Table 4 with constant distur-
bances, the Tokyo Maru was simulated under control of this controller while

being subjected to the design lateral current disturbance shown in Fig. 4. The
initial condition is §?é?0 in this simulation. The lateral offset response is
shown in Fig. 8. Steady offsets of about 54 m. and 27 m. occur during the two
periods of constant disturbance. A 1 knot lateral current produces a steady
offset of over one ship beam. The corresponding rudder angle response is shown

in Fig. 9. The yawing moment estimate N' produced by the Kalman-Bucy filter is
showni in Fig. 10. The filter produces approximately constant but biased estimates
of N' and Y' during the periods of constant disturbance. The state estimates

have much smaller or no apparent bias errors. Comparing Fig. 10 with Fig. 4, the
filter estimates the 0.00103 yawing moment during the first 15 ship lengths to

be about 0.00072. The equilibrium rudder angles in Fig. 9 are zero and the
equilibrium heading and drift angles are equal. Thus, fromegq. (46) it can be
seen that a steady offset n' develops to "counteract" the steady errors in the

disturbance estimates N' and ¥'.
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3.3 Random Walk Approach.

As noted in the previous section, some type of integral control action is
needed to produce a zero offset of the ship from the desired path with a con-
stant disturbance. Attention has been directed recently toward the develop-
ment of stochastic state variable controllers with integral control properties
when using only incomplete, noisy state measurements. Among this work is that
of Holley and Bryson“® in which they applied a number of approaches to the
control of an aircraft landing in a crosswind. Alternative approaches which
are similar to that which we present here have been presented by Xwatny“6

and by Balchen, et al.“’
A reasonable first attempt at the treatment of a constant disturbance
might be to model the disturbance as a random bias; i.e.,

an'

FT=0 4 N0 =N, (55)

where Ny' is an unknown, random quantity. 1In this problem, models of this
type could be assumed for N' and Y' and the state vector could be augmented to
become §f=[§F;N5Y']T as done above with the first-order shaping filters.
Holley and Bryson“s have shown, however, that the steady~state Kalman filter,
as used here, does not exist for this Problem. This results because a time-
varying Kalman filter would yield statistically exact estimates of the random
biases so that in the steady-state the measurements will contain no additional

information on these disturbances.

A number of successful approaches do, however, exist for this control
problem. First, it is feasible to model the disturbances as first-order shaping
filters as in the previous section but with the assumption that the correlation
times are very long compared with the dynamics of the ship. Disturbance models
eqg. (39) and (40) would be used with the assumption that Ty and Ty are perhaps
100 ship lengths. It would be necessary to assume RMS values of the distur-
bances oy and Oy for use in eq. (53) and (54) and the design could then proceed
as in the previous section. This approach would continue to produce biased
estimates of constant disturbances but these estimates approach the correct
values as the correlation times are increased.%® Note that in this approach
it is necessary to make assumptions of both the correlation times and the

RMS disturbance values.
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A second approach was presented recently by Holley and Bryson.“s They
develop a state variable generalization of integral control in which a Kalman
filter is used to estimate the state vector X ignoring the disturbances and
then an integral of the output deviations is added separately to the control
law. They note that this approach produces a degraded transient response
compared with the use of first-order shaping filters with long correlation
times but that the controller is less sensitive to modeling errors. The
authors will be undertaking an investigation of this type of controller for
ship path control during the coming year and these results will be reported

separately later.

A third approach to the development of a state variable controller with
integral control properties is to model the constant or nearly constant dis-
turbances as a random walk. More precisely this model is an independent-
increment, continuous process and should therefore be called a Wiener-Lévy
process or Brownian motion. 1In this approach the disturbances are assumed to

‘be the integral of white noise; i.e., for this problem,

an' _

ac' o "n (6)
and

ay' _

a’ "y - =7

Note that now it is only necessary to estimate the power spectral density Q
of the disturbance white noise g?[wN,wY]T. Kwatny“s has used this modeling
approach to develop state variable controllers with integral control properties.

Balchen, et al*? have used a more general "environment" disturbance model,
w=Ew+n , (58)

where n is white noise. They then consider the random walk model as a special
case of this approach; i.e. E=0. We have chosen to investigate the effective-

ness of this disturbance modeling approach in this work.

Using eq. (56) and (57), the state vector X can be augmented with N'

and Y' so that eq. (11) now becomes,
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Or,
x' = Fex + Gou + W . (60)

In this formulation, € is a small quantity introduced so that Potter's algorithm
can be used to design the steady-state controller and the steady-state filter
which estimates x'. With =0, matrix M defined by eq. (36) with Fo and Gg used
in lieu of Fg and Gg, respectively, has four zero eigenvalues; matrix M’
defined by eq. (50) has two zero eigenvalues. MacFarlane“? has shown that
under these conditions general solutions for S, and P_ in terms of the eigen-
vectors of M and M', respectively, do not exist. As ¢+0, however, the steady-
state controller gain matrix C and the steady-state filter gain matrix K
approach limits. As an example, in the design presented in detail below the
gain C;g=995.32 when €=10"2, 998.50 when €=10"*, and 998.54 when e=1075. We
have, therefore, used e=10""% here. It is not necessary to include €#0 in

the implementation of the filter once the gains have been obtained.

The remaining definition needed to specify the control loop design is the
white noise w power spectral density matrix Q. General results for Brownian
motion can be used to obtain a direct, physical way to establish Q. If we
have a continuous, Brownian motion process y(t), it has a zero mean and the

following properties,“s
Ely(t)2] = 0%t , (61)
where 02 is the diffusion coefficient or variance parameter and,
E[(y(ty) =y (t;)?] = 02 (t -t,) (62)
2 1 2 71 !

provided ty>ty. The formal derivative of the Brownian motion is white noise

where the noise spectral density is given by,

q=02 . (63)
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Now if a white noise process is approximated by an equivalent white noise
sequence with time step At, Jazwinski*® shows that it must have a covariance

& which is related to the process spectral density q by,

a=3r - (64)

in order to provide a constant noise "power" level; i.e., constant area under

the autocorrelation curve. If At is taken as tz—tl,eqs(62),(63),and (64) yield,

- EH y(tz)-y(tl)]2] os)
q= —_— ,
Y

Further, if At is viewed as the integration stepsize used in the Euler
integration discretization of the continuous process we can use eg. (64) and

(65) to approximate the white noise power spectral density as,
q = At 82, (66)

where S is the maximum expected rate of change or slope of the continuous

process being modeled by the Brownian motion.

For the design presented here, eg. (66) was used to establish the distur-
bance model power spectral densities. Assuming that the yawing moment and
lateral force disturbances could change by approximately twice the values
produced by a steady one knot lateral current in one ship length we have

SN=O.002 and SY=O.005. With our At=0.005, eq. (66) then yields,

2= % -8
qll AtSN 2.000x10 ’

(67)

and,

1.250x10~7 . (68)

2
4y AtSY

The measurement noise power spectral density and remaining assumptions are
the same as in the previous section. With these assumptions, the control
loop was designed for the Tokyo Maru using the OPTSYS program. The resulting
controller gains and Kalman-Bucy filter gains are shown in Table 5. These
results can be compared with those shown in Table 4 for the design using the
first-order shaping filter disturbance models. The state feedback gains

Cll through Cls are the same in both approaches.
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controller gains cT Kalman-Bucy filter gains K
5.5421 4.6600 0.8798 -0.0019
2.6601 19.3843 14.1945 -0.3561
6.3895 3.7193 3.4862 -8.1031
2.4252 -0.0651 ~-0.5677 4.0000

-0.8499 0.0000 0.0000 0.0000
998.50 0.1358 0.2366 0.0907
-12.571 -0.1551 -0.2844 0.4719

Table 5. Optimal Gains for Tokyo Maru at H/T=1.89 and Fp=0.116 -
Random Walk Disturbance Model

To illustrate the effectiveness of the design given in Table 5, we
simulated the Tokyo Maru under the control of this controller using a one-
half beam initial offset with all other states zero and %(0)=§(0). This
simulation also includes a ship passing at t'=20 producing a disturbance
four times that shown in Fig. 3. Figure 1l shows the resulting lateral offset
response and is directly comparable with Fig. 6. The overshoot at t'=5.6
is 1.7 m.; the maximum deviation due to the passing ship is 3.5 m. Figure
12 shows the corresponding rudder angle response and is directly comparable
with Fig. 7. The controller provides control comparable to that provided by
the first-order shaping filter design shown in Fig. 6 and 7. The maximum
rudder angle in Fig. 12 of 35° shows that the assumed disturbance of four
times the values shown in Fig. 3 actually violates the validity of the linear
model. To illustrate the integral control properties of this design, we
simulated the Tokyo Maru under the control of this controller while being
subjected to the design lateral current disturbance shown in Fig. 4. The
initial condition is x=%=0 in this simulation. The lateral offset response
is shown in Fig. 13 which is directly comparable with Fig. 8. The maximum
lateral offset during the startup of the system is 34.5 m.; the controller
then returns the ship to the desired track in the presence of the constant one
knot lateral current. The maximum offset during the ramp current change is
about 9 m. The corresponding rudder angle response is shown in Fig. 14; the
Kalman filter estimate of the yawing moment disturbance N' is shown in Fig. 15.
Comparing Fig. 10 with Fig. 4, the filter produces essentially exact estimates
of the constant disturbance levels of 0.00103 and 0.000515. As desired, this
design provides effective control in the presence of constant external distur-

bances without a steady offset from the desired path.

-31-



ae

[ 7]

an

ETR
L1

2
T v am 12.00 800 2.0 24: nm 2.0 8.0
TINE

RANOOM WALK MODEL.OPTIMAL AT H/T=1.89,LARGE PASSING SMIP OISTAB

Figure 1l1. Lateral Offset Response to B/2 Initial Offset and Passing Ship -
Random Walk Disturbance Model Design

[ X ]

a0

—-0.00
[
N
3
3
b
b

20

DELTA

2.4

-0.60

8

-t

‘o0 w (r} 208 LT 2.0 2000 200 2.2 £ T
TIME

RANGOM WALK MODEL.OPTIMAL AT H/T={,89.LARGE PRSSING SHIP OISTR

Figure 12. Rudder Angle Response to B/2 Initial Offset and Passing Ship -
Random Walk Disturbance Model Design

-32-



au

ETR

517
&

[V (Y] 20 nn am . uU» xm »mn %0
TInE
RANDOM WALX MOOEL.OPTIMAL AT H/T=1,89,DESIGN CURRENT ,

Figure 13. Lateral Offset Response to Design Lateral Current =
Random Walk Disturbance Model Design

ase

8.4

L& ]

a20

DELTA

1T

aw

L T B kg A
i o ~

-8
m

3

.00 e [Y] 2] o am 240 nm .00 nm
TINE

AANOOM WALK MODEL.OPTIMAL AT H/Tal.89.0ESIGN CURRENT ,

Figure 14. Rudder Angle Response to Design Lateral Current -
Random Walk Disturbance Model Design

~33-



[ §-]

.
5
B

X103

ﬁ‘

8
LY V™) [y 2.0 .M 20 40 20 Y Y
TINE

AANDCM WALK MODEL.OPTIMAL AT M/T=1.29.DESIGN CURRENT .

Figure 15. Yawing Moment Estimate with Design Lateral Current -
Random Walk Disturbance Model Design

As a final illustration of the effectiveness and limitations of the
controller given in Table 5, we simulated the Tokyo Maru entering the ABC
harbor defined in Fig. 5 while under control of this controller. The resulting
lateral offset response is shown in Fig. 16. The maximum deviation of 72.5 m.
is not excessive but the corresponding rudder angle response shown in Fig. 17 is
physically impossible. The controllers developed here just cannot accommodate
this extreme a disturbance. With the lateral current decreasing from 2 knots
to zero in just over one ship length an extremely large yawing moment is placed
on the ship. This is very difficult for a nonanticipatory (causal) control
system, as used here, to handle. A pilot would most likely create a yawing rate
just prior to the harbor entrance in anticipation of the large yawing moment
which he knows will be experienced at the channel mouth. A control system
could be created in a similar manner using a preprogrammed rudder control
based on time-to-go to the channel mouth. This "local" control feature could

be superposed upon a general control law of the type studied here.
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3.4 Necessity for an Adaptive Design.

In the previous section we showed that the path controller designed using
random walk disturbance models provided effective control with essentially
zero mean disturbances as shown in figure 11 and with the design lateral '
current disturbance as shown in Fig. 13. 1In these examples, the controller
was designed for the ship characteristics at its least course stable depth-to-
draft ratio, H/T=1.89, and then the ship was simulated to operate at this same
depth-to-draft ratio. The characteristics of the ship are, however, known to
change considerably with water depth as shown in Table 2. They will also
change with ship operating condition such as draft and triﬁ. We have
previously shown that if a constant gain design is to be used, the best over-
all performance is achieved by using the design developed for the ship's least
course stable depth-to-draft ratio.! With this design approach, the question
remains as to how much performance is lost by not adjusting the gains to be
optimal at each ship operating condition. Notice also that the model of the
ship (Fg) included in the Kalman filter implementation in accordance with
eq. (47) should be updated to reflect the ship characteristics in each
operating condition if these are known. An adaptive path controller is one
which can detect the existing ship characteristics and automatically adjust
the controller and filter gains and the Kalman filter model of the ship

accordingly.

To illustrate the effect of an "incorrect" water depth, we simulated the
Tokyo Maru under the control of the controller defined in Table 5 while being
subjected to the design lateral current disturbance shown in Fig. 4 in deep
water (H/T==). The resulting lateral offset response is shown in Fig. 18 as
the solid line. This response is comparable with that shown in Fig. 13 for the
same disturbance in the "design" water depth H/T=1.89. Also shown in Fig. 18
as the dashed line is the response which would result if the controller had
been redesigned (or adapted) to be optimal at H/T=» in lieu of H/T=1.89. The
loss in performance due to the use of a nonadaptive, constant-gain and constant
filter ship model design can be seen by comparing the two responses in Fig. 18.
The maximum lateral offset during the startup of the system increases from
50.2 m. to 63.5 m.; the maximum offset during the ramp change in disturbance
level increases from 13.8 m. to 18.5 m. While the transient response is
degraded, the controller does retain the desired integral control property and

returns the ship to the desired path in the presence of a constant disturbance.
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The rudder angle response corresponding to Fig. 18 is shown in Fig. 19; the
vawing moment estimate N' is shown in Fig. 20. Comparing Fig. 20 with Fig.
4, the filter produces incorrect estimates of the constant disturbances. The
effect of using nonoptimal filter gains and incorrect characteristics in the
Kalman filter ship model Fg is to produce an equilibrium, mean yawing moment
estimate of about 0.00199 during the first 15 ship lengths in lieu of. the
0.00103 shown in Fig. 4. This bias error in the yawing moment estimate and a
similar error in the lateral force estimate degrade the transient performance
but the controller has the very desirable property of producing the same
equilibrium, mean state as would the optimal controller. For example, both

the H/T=1.89 design and the optimal H/T== design yield,

(5] [-0.1428]
r' 0.0000
g' -0.1428
x(t==) = [A'| = | 0.c000| |, < - (69)
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when the ship is subjected to the yawing moment and lateral force shown in
Fig. 4 for t'<1l5 while in deep water (H/T=w). The equilibrium rudder angle is
nonzero here because the "design" disturbance in Fig. 4 is not exactly equiva-
lent to a lateral current when applied to the ship in any water depth other

than the H/T=1.89 for which it was derived.

For a path controller to remain optimal at each operating condition, the
controller gains C, the Kalman-Bucy filter gains K, and the ship model Feg used
in the filter eq. (47) must be adjusted. The change of the ship characteris-
tics Fg or Fo with water depth is shown in Table 2. To illustrate the effect
of water depth on the gains, Table 6 shows the optimal gains for the Tokyo
Maru at H/T=~. These gains produce the lateral offset response shown by the
dashed line in Fig. 18. The gains in Table 6 for H/T=> can be compared with
those in Table 5 for H/T=1.89. The controller feedback gains on B' and Y'

show the greatest variations.

controller gains CT Kalman-Bucy filter gains K
5.8752 4.6624 0.8842 0.0001
2.4635 19.4819 15.1516 -0.2571
1.9204 3.5844 2.8169 -10.9043
2.4252 0.0034 -0.4099 4.6587

-0.7955 0.0000 0.0000 0.0000
1126.44 0.1394 0.2548 0.0509
82.614 -0.0878 -0.1596 0.5079

Table 6. Optimal Gains for Tokyo Maru at H/T=w and Fp=0.116 -
Random Walk Disturbance Model

In Table 2, it can be seen that ten parameters in the linear state
variable equations of motion of the ship eq. (ll) vary with water depth.
These same parameters will also vary with draft, trim, etc. In considering
the use of an adaptive control system it is useful to establish how important
the variation in each of these parameters is to the response of the system.
If the variation of a parameter has little influence on or correlation with
the response, it will be difficult to establish that parameter from the
response. Fortunately, if a parameter has little influence on the response
it may not be necessary to estimate the parameter accurately or it may not be
necessary to adapt for the changes in that parameter at all. In our previous

work,1 we studied the sensitivity of the ship path control response to the ten
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parameters which vary with depth. This study was for somewhat different path
controller designs for the Tokyo Maru utilizing first-order shaping filter
disturbance models. These results are still useful, however, in this context
and are summarized in Table 7. 1In this computer experiment, a number of
controllers were designed and then their root mean square (RMS) responses to
the design disturbance and noise levels were established using the OPTSYS
computer program. These results were then combined into a single RMS cost

J which is proportional to the cost function used in the optimal control

system design; i.e.,

J=0'2+5.8818n0'2 +8'24+3 12 , (70)

where (.7.) signifies the RMS value of each quantity. This RMS cost provides

an appropriate single measurement of the effectiveness of each controller.

case cost J
1. all parameters adapted; optimal at H/T=» 0.00681
2. all parameters adapted except Y31'f35’Y22’ or f33 0.00681
3. all parameters adapted except f22 or Y32 0.00682
4. all parameters adapted except f32 0.00683
5. all parameters adapted except Yoy 0.00689
6. all parameters adapted except f25 0.00693
7. all parameters adapted except f23 0.00746
8. no parameters adapted; optimal for H/T=1.89 0.00783
9. only parameters f23, f25' and Y21 adapted 0.00683

all nonadapted parameters for H/T=1.89

Table 7. RMS Cost J for Tokyo Maru with Various Controllers at H/T=x -
First-Order Shaping Filter Disturbance Model!l

Shown in lines 1 and 8 of Table 7 are the RMS cost J for the controllers
designed to be optimal at H/T=«= and H/T=1.89, respectively, when both are
operated at H/T==. The RMS cost can be seen to degrade from the optimal
0.00681 to 0.00783 (+15%) if a nonadaptive design were used in deep water
with the design developed for the ship's least-course-stable depth of H/T=1.89.
To show the importance of each individual parameter we also designed a series
of controllers using all characteristics for H/T== except a single parameter
which was set at its value for H/T=1.89. This produces the response of a

controller which could adapt for all parameters except the one held at its
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H/T=1.89 value and shows the sensitivity of the response to that parameter.
In lines 2 through 7 of Table 7, it can be seen that only f23, 525' and YZl
have a significant effect on the RMS response. Coefficient f23 of B' in the
r' equation is by far the most significant parameter. In line 9 of Table 7
we show the RMS cost produced by a design which would adapt only for changes
in f23, f25, and Y2l while keeping the remaining seven parameters fixed at
their value at H/T=1.89. This RMS cost is within 0.3% of that achieved with
the optimal design shown in line 1. These results are very significant and
show that it is not essential that the adaptive path control systems to be
studied in the following chapters adapt for all ten of the parameters which

vary with water depth, draft, trim, etc.

To further investigate the point made in the Previous paragraph, we
designed a "partially-adapted” controller using all the assumptions of Section
3.3 except that the parameters f23 and f25 were taken for H/T=« from Table 2
while the remaining eight parameters were given their values at H/T=1.89. We
chose not to include Y21=f26 with f23 and f25 because this parameter appears
as a product with N' in eq. (59) and is thus very difficult to establish
on-line. The resulting controller and Kalman-Bucy filter gains are shown in
Table 8. These gains can be compared with those designed to be optimal at
H/T=1.89 and shown in Table 5 and with those designed to be optimal at H/T=e
and shown in Table 6. They can be seen to approach the gains shown in Table 6.
The gains in Table 8 represent those of a controller which would adapt only

for changes in f23 and f25 at a time when the ship is operating in deep water.

controller gains CT Kalman-Bucy filter gains K
5.5438 4.6552 0.8716 0.0010
2.4237 19.2058 13.8893 -0.2338
1.8986 3.2965 2.5069 -8.9281
2.4252 0.0343 -0.3727 4.2156

-0.7889 0.0000 0.0000 0.0000
922.36 0.1529 0.2524 0.0568
46.656 -0.1116 -0.1777 0.5040

f23 and f25 for H/T=x; other fij for H/T=1.89

Table 8. Gains for Partially-Adapted Design for Tokyo Maru at F,=0.116 -
Random Walk Disturbance Model
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To illustrate the effectiveness of the partially-adapted design given in
Table 8, we simulated the Tokyo Maru under the control of this controller
while being subjected to the design lateral current disturbance shown in Fig.
4 in deep water (H/T=w). The resulting lateral offset response is shown in
Fig. 21 as the solid line; this is directly comparable to the response shown
for the nonadapted design in Fig. 18. The response with the optimal design
for H/T==, the fully-adapted design, is shown in Fig. 21 as the dashed line
for comparison. The maximum lateral offset during the startup of the system
is 53.2 m. compared to 50.2 m. with full adaptation and 63.5 m. with no
adaptation. The maximum offset during the ramp change in disturbance level
is 13.9 m. compared to 13.8 m. with full adaptation and 18.5 m. with no
adaptation. Adapting only for changes in f23 and f25 thus provides transient
response very close to that provided by the fully-adapted, optimal design.
The rudder angle response corresponding to Fig. 21 is shown in Fig. 22; the
yawing moment estimate N' is shown in Fig. 23. Notice that the equilibrium,
mean yawing moment estimate during the first 15 ship lengths is about 0.00126
compared with 0.00199 with the nonadapted design in Fig. 20 and the exact
value of 0.00103 which would be produced by the fully-adapted, optimal design.
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Figure 21. Lateral Offset Response to Design Lateral Current -
Partially-Adapted Design and Design for H/T== Operating at H/T=w.
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Summarizing this chapter, we have shown that effective ship path
controllers can be developed using a random walk model for the yawing moment
and lateral force disturbances. This controller provides effective control
with short-term, essentially zero-mean disturbances as shown in Fig. 11 and
with more long-term, nonzero-mean disturbances as shown in Fig. 13. We then
showed that this controller experiences a degradation in transient response
when used at an "incorrect depth" or in any other condition causing the ship
characteristics to change from the values used in the controller design.

At an "incorrect depth" this controller is, however, capable of producing the
same equilibrium, mean response as would the optimal design. Finally, we
showed that adapting for changes in as few as two parameters in the equations
of motion can eliminate almost all of the degredation in transient response
experienced with changing ship characteristics. In the following two chapters,
we investigate two different approaches for the design of such adaptive ship

path controllers and evaluate their performance capabilities and limitations.
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4. Weighted Least-Squares Parameter Estimator

In this section, we present the derivation and evaluation of a Weighted
Least-Squares (WLS) parameter estimator which could be used in the gain up-
date loop of an adaptive ship Pﬁgh control system. This section is based
upon Cuong's Ph.D. Dissertation. The WLS approach requires no probabilistic
assumptions about the uncertainties of the measurements and the process dis-
turbances. It treats the observed measurement data in a deterministic rather
than probabilistic sense. The unknown system parameters are chosen so that
the response of a model of the ship dynamics provides a "best fit" to a finite
record of sensor measurements. This treatment of measurement data is called
"limited memory" or "moving window". The moving window concept was originally
proposed by Jazwinskius to handle the divergence problem of Kalman filters.
Dunn and Montgomery50 utilized Jazwinski's concept in a batch processing
manner to do the on-line parameter identification for the NASA F8-DFBW air-
craft. This approach is conceptually simple which made it a logical first

choice in our parameter identification investigation.

4.1 Derivation and Development.

The source of information for the parameter estimation algorithm is
the measurement vector z'. Sensor outputs are sampled and the results are
buffered in the memory of a control computer. After LW samples have been
collected, the parameter estimation algorithm starts processing this infor-
mation. Meanwhile, additional measurement data can be ignored until it is
time to buffer another window of data. The timing sequence is illustrated
in Fig. 24 where each graduated mark on the time axis represents a sampling
instant and:

» LU is the length of the parameter estimation cycle,

* IW is the length of the data window,

* LB is the length of the batch update calculation period.
A cycle of a typical parameter estimation process starts with a stabiliza-
tion period during which the ship is run under the control of recently
acquired parameter estimates and gain matrices C and K. This period allows
transients caused by the abrupt changes in the parameter estimates and gain

matrices to die out. This period is followed by the data window loading
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period in which LW samples of the measurement vector z' are collected and
stored in the estimator memory. The cycle is completed by the batch update
calculation period in which the parameter estimation and gain updates are
performed. This period produces a new set of parameter estimates and new
values for the control gain C and the Kalman filter gain K if the parameter

estimates are judged to be physically reasonable.

new parameter estimates p and gains
C and K are incorporated into
controller 1
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Figure 24. Timing Sequence for Weighted Least-Squares Parameter Estimator.

After another stabilization period, a new data batch is buffered and
then processed by the algorithm. In this manner LW memory locations per
measurement channel are needed for the moving window. When the states
change very slowly or the time constants of the system are long, the window
has to be very long. This can represent a large memory requirement. The
parameter estimation task can, however, be processed on a time-available
basis.

In the control loop development, the equations of motion of the ship
were expressed by the 5-state system eq. (11). The rudder angle § was in-
cluded as a state in order to introduce a realistic time response for the
steering system. We noted in Section 3.2 that the rudder angle time response
is known exactly if the rudder time constant, the initial condition do, and
the rudder command history are known. Therefore, &§(t) will be considered a

known function in this development. The system equations then become,
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The disturbances N' and Y' are considered to be stochastic processes in

eq. (71) but this assumption has no effect on the WLS development.

49
Cuong has shown that for a WLS parameter estimation algorithm to

be effective in estimating ship parameters all states must be available
for measurement. The measurement vector to be used in the gain update
loop is therefore taken as,

z' = x4 v, (73)

where v' is a Gaussian white measurement noise vector which is ignored
within the WLS algorithm. In general, the parameter estimation loop
requires a more accurate level of measurements than does the control loop.
In the simulations presented later in this section, the reference level of
the measurement noise vector V' is as shown in Table 9. This represents a
very small level of noise but is not necessarily the highest level which
could be tolerated.

measurement g, T. r.. o,
i j ij i
' (o] -9 -4
v 0.1 0.0ls | 1.2976x10 5.0943x10
° -10 -4
' 0.0016%/ 0.0ls | 7.7215x10 3.9298x10
8’ 0.08° 0.0ls | 8.2777x1071% | 4.0688x107%
n im 0.01 5.0651x10"° | 1.0065x10™3

Table 9. Reference Measurement Noise for Parameter Estimator v'

-47-



It was demonstrated in Section 3.4, that accurate estimates of only
two of the 10 coefficients in eq. (71), f23 and f25’ are essential to an
effective adaptive control loop. Our first approach was therefore to select

a parameter vector of minimum dimension, i.e.,

B = [pl, P p3, p‘l]T = [f,5, £, N', vt
in order to minimize the computational load. Cuongk9 has shown that this
parameter choice is a condition of underparameterization in which the WLS
algorithm converges to an estimate of p which is completely impossible
physically. Even though accurate estimates of the other coefficients in
the open-loop dynamics matrix fij are not really needed by the control loop,
these coefficients must be included in the parameter set to be estimated
by the parameter estimator. If they are not, the effects of errors in these

coefficients are interxpreted as changes in f23 and £ The parameter vec-

25°
tor to be estimated by the parameter estimator must therefore be taken as,

33

T
=B ,eeesp 1 = [6,., £, £ £, £, £, v, v11T. (74
E : A 22' F23’ T25' t32 35

Recall that the disturbances N' and Y' are estimated by the control loop
Kalman filter and these estimates are actively used for control purposes.
The unknown disturbances must also be included in the parameter set. If
they are not, the effect of the disturbances is interpreted as changes in
the system parameters. The disturbance estimates produced by the parameter
estimator are only a by-product of the estimation process and are not used

further.

For use in the WLS parameter estimator, the ship is modeled by the

T . .
state vector X, = [wi P B'm "n'm] and the following equations:

m

S o7 [l [ -
v 1 0 v 0] [0 o
~ ~
4 *n 0 P Py ol |*n P3 Ya1 Yoo
vilgr | T N 8 + |g v
ac’ 1By g Py Py O 1 |Bn Pg Ya1 Y3p
nt 1 0o -1 o | [n 0 o o
1L JU0) L } _J

(75)
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where the values of the coefficients in the T matrix are assigned constant
assumed values indicated by (.f.). These "known" coefficients are assigned
their value at the ship's least-course-stable depth-to-draft ratio H/T=1.89.
With P, = N' and Pg = ¥', the parameter estimator estimates the average

values of N' and Y'. These estimates, however, are not very accurate because
the Yij coefficients are kept constant at assumed values. The estimates

of N' and Y' include the effects of these errors. Since we are not interested
in the values of the disturbances, per se, this arrangement is clearly

acceptable.

At the beginning of the parameter estimation, the computer memory holds
the system states at the start of the data window and the rudder angle &'
and measurement z' histories during the data window. Using any set of the
parameters p, the buffered state at the start of the window, and the buffered
rudder angle history, the ship model eq. (75) is simulated through the same

time period as the window to produce x where k is the sample time index.

-m,k
This yields a set of model measurements H§m k which fill the data window
14
and a Weighted Least-Squares cost function or fit error J can be defined as:
LW
l ] T [}
= = - - . 6
g=3 ] (2') -Bx )7 W (zy HE ) (76)

k=1

The weighting matrices Wk can be used to adjust for dimensional differences
among the measurements or can be used to place more emphasis on matching
selected measurements or on matching the most recent measurements. The
weighting matrix is assumed to be diagonal so the cost function J can be

expanded to give,

1 2 2 2
= — L | I ] t Qt
7 =3 1§=1 [ (Z3 V'Rl Vit By T g )y Wy (2158 0w
- (77)
oy v |

The WLS parameter estimation problem is then to vary the parameter estimate
p to produce the parameter estimate vector p* which yields a minimum of this
cost function. This causes the response of the ship model as represented

by the model measurements to be a least-squares fit to the measured response.

The minimization of the Weighted Least-Squares cost function, eq. (77),
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can be accomplished iteratively using any of a number of numerical algorithms.
Dunn and Montgomery50 used a modified Newton-Raphson algorithm. It is diffi-
cult and expensive in this problem, however, to numerically estimate the
gradient of J needed by this algorithm. This is especially true if an on-
line application is desired. 1In this situation, a derivative~free algorithm
is very attractive. It is also desirable to make efficient use of previously
computed function values. After preliminary work with a number of alternative
methods, the DUD (Doesn't Use Derivatives) algorithm was selected for use
here. This algorithm was developed by Ralston51 and was presented by Ralston
and Jennrich 32 in 1978. CuongL+9 extended the DUD algorithm to the Weighted
Least-Squares problem and added additional search stopping conditions needed
for its application to the ship parameter estimation problem. The DUD
algorithm does not require the gradient of J as the name implies. Once the
algorithm is started, only one evaluation of J is needed in each optimiza-
tion cycle performed under normal conditions. DUD has proven to be an

effective and efficient search algorithm for this problem.

As noted above the diagonal weighting matrices W, in eq. (77) can

k
be used to assign different levels of importance to the various measure-
ments. They can be varied with the time index k to account for a lower
confidence in old data. They can also be used to achieve a non-dimensional-
ization of the various errors in fitting the model response to the data.

In our work, the Wk were chosen to be constant with time. Recall that in
the solution of the Linear-Quadratic-Gaussian state estimation problem,

the innovation is "weighted" by R—l, where R is the spectral density of
measurement noise. It is reasonable to use a parallel approach here and

select Wk=W=R . This accomplishes a desirable non-dimensionalization
and reflects the relative noise levels in each measurement. Using this
approach, the DUD algorithm was found to require about 17% fewer evalua-
tions of J to converge compared with runs using an equal weighting; i.e.,

Wk= I where I is the identity matrix.

The simulation of the ship model, eg. (75), begins from the buffered
state of the system at the start of the data window loading period. We have
found that when realistic noise exists in the system, it is preferrable to
use the estimate of the state at this point produced by the control loop

Kalman filter rather than the noisy measured states. The state estimate
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is an expected value of the state at the start of the window loading period
and is not strongly affected by the noise at that time which probabilisti-
cally might be large. It is undesirable in general, however, to use fil-
tered data in parameter estimation so all of the data in the moving window,
except the initial values, are taken directly from sensor measurements.

This ensures the maximum information content in the data base.

We noted above that the parameter estimates p* or § produced by the
DUD algorithm in the WLS parameter estimator are only used to calculate
updated controller gains C and Kalman filter gains K if the estimates
are judged to be physically reasonable. In our work, we performed this
validity check by noting the expected range of each parameter given in
Table 2 and the sensitivity study results discussed in Section 3.4 which
showed that the control loop needs accurate estimates of only the two
parameters, £ and £__. The validity check, therefore, utilizes the fol-

23 25
lowing logic:

* 1if either E23 or 225 is beyond the permissible range, as given
in Table 10, no update is made; i.e., the controller remains

unchanged;

« if §23 and 225 are within the permissible ranges but some of the

A

remaining estimates are beyond the permissible ranges, only f23

and %25 are updated in eq. (59);
* 1if all estimates are within the permissible ranges, all the fij
are updated in egqg. (59).
If an update is to be made, the new feedback gains C and filter gains K
are calculated as described in Section 3.3. The results are then incor-

porated into the controller.

Parameter Lower limit BZ. Upper limit B,
f23 2.10 12.00
55 -1.30 -0.30
. 0.42
f32 0.0
£ -1.30 -0.30
33
f35 -0.22 0.0

based upon experimental range + 30%.
Table 10. Permissible Ranges of Parameter Estimates for the Tokyo Maru .
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The development of the WLS parameter estimator is complete at this
point except for the addition of an open-loop excitation or input dither
signal which will be shown to be necessary in the next section. Before
proceeding, however, it is appropriate to review some of the alternative
parameter set choices which were found to be unsuccessful prior to our
choosing eq. (74). Cuongug discusses these in detail so only brief
comments will be included here. The following parameter choices were

considered:
° . ' = ' = ! = ',
Py = Yo1N'r Pg = Y5o¥'s Py = ¥ N'y Py = ¥3,¥'s

~

. = = ' = = ' = = H
Py = Ya1r Pg = N's Pg = Y300 Prg = Y70 Yoy = Ypor Y31 = Yayi

- A

¢ P7 = Yzll Ps = Y321 N'=N', ¥'=Y', ¥

22 = Ya2r Y31 T Yar-

In the first approach, the r and B equations included terms P, + Pg and

Pg + plO' respectively. The WLS algorithm quickly produced physically im-
possible results with the terms in these sums having very large, equal
magnitudes but opposite sign. In the second approach, the r and é

equations involved products of parameters; i.e. P.Pg and p9P10' respectively.

The coefficients Y2 and Y3l were given constant, assumed values. The DUD

algorithm failed tozconverge in this problem. The third approach would use
the yawing moment and lateral force disturbance estimates from the control
loop Kalman filter in the parameter estimator. This approach was not actually
tried but was discarded because it would produce a highly undesirable coupling

between the state estimation filter and the parameter estimator.

4.2 Time-Invariant Parameters Performance

In this section, we evaluate the performance of a WLS ship parameter
estimator when the parameters are time-invariant. With the WLS parameter
estimator each parameter estimation cycle is a completely independent
process. The only information used from the previous cycle is the old
parameter estimate which is used as the initial estimate in the DUD algo-
rithm search. This initial estimate affects the convergence rate of the
search but has negligible effect on the resulting parameter estimate.

Therefore, time~invariant parameters in this context requires that the
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parameters be constant only during each data window loading period. The
parameters could vary from one window loading period to the next. The
stepped bottom profile shown in Fig. 25 was therefore used in our simula-
tions to evaluate the effectiveness of the WLS parameter estimator with

locally time-invariant parameters. The timing sequence was selected so

that the window loading period would not overlap one of the discrete changes

in water depth. Ship parameters can of course change due to many causes;
i.e., draft, trim, water depth, etc. Rather than change the parameters in

a completely arbitrary and random manner, however, we chose water depth

as the independent variable to use to study the effect of physically possible

parameter changes.
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Figure 25. Stepped Bottom Profile

The signal-to-noise ratio is critical to the effectiveness of a WLS
ship parameter estimator. The signal here is the measurement vector z'
which is contaminated by the noise v' which will be at least as large as
shown in Table 9. For the measurements to contain information about the
dynamic characteristics of the ship, it is necessary that the ship trajec-
tory include motion which is large compared with the noise level. This
requirement is in direct conflict with precise ship path control which
seeks to eliminate any motion from the desired track. The information
content of the data window can be increased by increasing the amount of
ship motion and by lengthening the data window. In off-line systems iden-

tification of ship parameters the "data window" is usually many minutes
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in which the ship travels many ship lengths. It is usually considered neces-
sary for the record length to be at least a few times the longest time constant
of the system for successful identification using noisy measurement. The

tests are conducted with constant ship characteristics and in unrestricted
waters so that significant ship motion can be used. In path control in
restricted waters, ship motion must be restricted, calculations must be per-
formed on-line, and the ship parameters may change significantly over even

a ship length. Parameter estimation in this context is very difficult and

requires very low levels of acceptable noise and engineering tradeoff in design.

The parameters fij which the WLS parameter estimator must estimate are
the open-loop parameters of the ship. During path control, however, the
dynamics of the ship are governed by the closed-loop propertles of the ship
and the control loop. Further, Astrom and Wlttenmark have noted the fol-
lowing conditions as necessary for the convergence of a least-squares para-

meter estimator:

* the system must be persistently excited by the input signal;

* the input signal must be independent of any disturbances.
The estimation of open-loop ship parameters in the presence of disturbances
and the path control are basically incompatible and cannot be undertaken
simultaneously. Thus, an adaptive ship path controller must devote itself
alternately to parameter estimation using open-loop rudder commands and then
to path control. If the rudder commands are generated by the feedback con-
troller during the data window loading period, the input will be corre-
lated with the disturbances and it will not be possible to determine all
parameters. Further, the controllers used here will generally not allow the
level of ship motion needed for the parameter estimation. Adaptive path con-
trol must therefore accept increased ship motion during the window loading
period. The improved performance from having better parameter estimates must

offset the effects of the periods of open-locop control.

The open-loop input signals used in adaptive controllers are often
called dither signals. They usually have a zero mean to reduce the long

term effect on the system. In highly dynamic systems such as aircraft,
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the dither signal could be superposed upon the pilot's input commands

and continuous small dither signals have been proposed. In the ship path
control problem, the signal-to-noise ratio is such that the dither signal
magnitude must be so large that continuous use would be unacceptable. Al-
ternate periods of open-loop control using the dither signal with the
control loop turned off followed by closed-loop control without the dither
signal are used here. The purpose of the dither signal is to excite all
modes of the system and to maintain them at large enough amplitudes for
the parameter estimation to be successful. The signal should therefore

include all the open-loop natural frequencies of the system.

In this investigation the dither signals were chosen to be square
wave rudder commands of various amplitude and period. An alternative might
be the Pseudo—RandoT7Binary Sequences (PRBS) used in systems identification
of ship parameters. In general, the larger amplitude dither signals
excite the ship more and improve the effectiveness of the parameter esti-
mation. With a physical limit on rudder angle of about 35°, we have used
a dither rudder command GC' magnitude of 0.5 rad. in all the simulations
presented below. With short dither periods, the rudder does not have time
to reach this commanded value before the sign of the command is reversed.
A magnitude of 0.5 rad. already stretches the validity of the linear
system equations so higher values were not considered. The initial dither
signal (at the beginning of the window loading period) was given a sign
opposite to the rudder angle existing just prior to that time in order to
maximize its effect on the ship. Since the square wave dither signal is
used for only the finite window loading period (not continuously), it

can excite frequencies below the fundamental frequency of the signal.

4.2.1 Effect of Data Window ILength and Dither Period

Various simulations of the Tokyo Maru were performed to evaluate
the performance of the WLS parameter estimator. In our earliest work, we

simulated the Tokyo Maru under the control of an adaptive control system
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using a WLS parameter estimator when subjected to only 0.001 times the
reference noise level given in Table 9 while sailing over the stepped
bottom profile shown in Fig. 25. A short data window of only 0.2 ship
length was used with this low noise level; the parameter estimation was
performed once per ship length. Starting with an initial offset from

the desired path of n'=1'=0.1638 (1 beam) and using no dither signal,

the WLS parameter estimator failed to work. Since the simulation started
with a reasonably large initial condition, there was large ship motion

in the first two ship lengths and the measurements thus contained a rea-
sonable amount of information about the system. The estimator converged
in the first cycle and gave poor estimates which were in the permissible
ranges given in Table 10. By the second cycle, the ship motion had died
out to a large extent and there was much less information contained in the
response. As a result, even though the algorithm search converged, the
estimates were outside the permissible range. By the third cycle, the
path controller had suppressed most of the ship motion and the ship was
moving almost in a straight line. The small amount of information which
could be extracted from this mild movement was readily masked by the
measurement noise (even though only 0.001 of the reference level). The
DUD algorithm failed to converge. Without more ship motion a longer data
window would be of no value in this case. With the addition of a dither
signal with a period of 0.5 ship lengths and an increase in the data window
length to 0.5 ship length (100 samples), the WLS parameter estimator
quickly converged to estimates which were accurate to three significant
figures in all 12 update periods. These results confirmed the necessity

of a dither signal and validated the simulation software.

With the use of the reference level of measurement noise given in
Table 9, the WLS parameter estimator will only produce acceptable results
if the data window loading period is increased and the dither signal is
used. The effectiveness is also improved by increasing the length of the
dither period. Table 11 summarizes the results of the first update cycle
of simulations of the Tokyo Maru sailing over the stepped bottom shown in

Fig. 25 under the control of an adaptive path controller using the WLS
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parameter estimator when subjected to the reference level of noise.

are shown for various data window lengths and dither signal periods.

Results

The

initial value of each parameter is only used in the first cycle; in subse-

quent cycles the most recent valid estimate is used as the starting point

for the DUD algorithm seaxch.

With a data window length and dither period

of 0.5 ship length, the results failed the validity check and the algorithm

failed to converge at all after the depth change at t'=3.

Results are also

shown for a data window length of 5.0 ship lengths (1000 samples) and dither

periods of 0.5, 1.0, and 5.0 ship lengths.

period of 6.0 ship lengths was simulated.

In these cases, only one update

In general, the parameter esti-

mates are reasonably good and improve with the dither signal period.

initial correct WLS parameter estimates using
parameter value value window length (ship lengths)/
H/T=1.89 H/T=x dither period(ship lengths)
0.5/0.5 |5.0/0.5 |5.0/1.0 5.0/2.5
f22 -1.7657 -1.9515 1.2835* |-1.8179 |-1.8323 [-1.8582
f23 5.7359 3.1591 ~9.8155* | 2.8715 | 2.8902 2.9648
£ -0.88074 -1.0410 -0.93100 |{-1.0146 |-1.0229 |-1.0216
f32 0.17199% 0.31507 0.95165*| 0.36378| 0.32584 0.31693
f33 -0.52766 -0.63651 -3.1628%* | -0.72829] -0.64829 | -0.63519
f35 -0.15607 -0.16163 =0.13873 | -0.15646| -0.16053 [ -0.16101
offset n' at end of data window -0.0005 -0.2854 | -0.5706 -1.435
number of evaluations of cost J 68 60 107 66

* estimate outside permissible range in Table 10

Table 1l1.

Estimates Without Disturbances.

Effect of Data Window Length and Dither Period on WLS Parameter

The results shown in Table 11 for the 5 ship length data window and

0.5 ship length dither signal probably represent about the best estimates

that could be achieved with a WLS parameter estimation in a ship path con-

troller.

is about 83m or 1.74 times the ship beam.

The offset due to the dither signal at the end of the data window

Shorter window lengths and shorter

dither periods would reduce this value but produce less accurate parameter
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estimates. Simulations results with a 2.5 ship length data window

are shown in the next section. Since we showed in Section 3.4 that the con-

trol loop only really needs accurate estimates: of f23 and f25'

of the estimates of only these two parameters should be the basis of judging

the accuracy

the effectiveness of a WLS parameter estimator designed for use in an adaptive
path controller. A design tradeoff would be necessary to achieve the best
overall performance of the path controller. The longer dither periods could
not be used in a path controller but are of interest if a WLS parameter

estimator were to be used for system identification in unrestricted waters.

It is interesting to note in Table 11 that the short dither period
allows good estimates of the parameters in the f—equation (f22,f23,and f25)
but relatively poorer estimates of the parameters in the é—equation

(and £_.). The longer dither periods, however, significantly im-

(F3pr £33 35 :
prove the estimator's ability to estimate the parameters in the R-equation.
This can be explained by consideration of the system time constants and
eigenvectors. The open-loop eigenvalues and eigenvectors of the 5-state
model of the Tokyo Maru include two zero eigenvalues and a third associated
with the rudder time constant.1 The other two eigenvalues and the associated

eigenvectors for deep water are as follows:

A4 = =0.0992, 14 = 10.08 ship lengths,

54 = [-0.0933, 0.0093, 0.0054, 0.9958, O.O]T,
AS = =2.489, g = 0.402 ship length,

£ = [-0.3669, 0.9132, -0.1553, -0.0850, 0]".

Eigenvector §5 has a time constant of 0.4 ship length and is dominated by
the second component (r'f). A dither period of 0.5 ship length is effective
in exciting this mode and thus allows effective estimation of the para-
meters in the f—equation. Eigenvector §4 is dominated by the fourth com-

ponent (n'). Although B' is only a weak component of eigenvector £
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it is directly fed into the ﬁ-equation and n is the main component of § .
With a time constant of 10 ship lengths, this mode is more effectively
excited by the longer dither periods thus making the parameters in the

é-equation more identifiable.

4.2.2 Performance with Bias Disturbances

In a ship path controller application, the WLS parameter estimator
would also have to estimate the yawing moment and lateral force distur-
bances acting on the ship as included in eq. (74). To evaluate the per-
formance of the WLS parameter estimator with time-invariant disturbances,
we simulated the Tokyo Maru under the control of an adaptive ship path
controller using this algorithm while being subjected to a constant
l-knot lateral current as defined in Fig. 4 for t'<1l5. This disturbance
was held constant for 18 ship lengths; the reference measurement noise
level from Table 9 was used. The controller and parameter estimator were
intialized with ship parameters for H/T=1.89 but the ship was simulated
to be actually operating in deep water (H/T==). The initial conditions
for these simulations were the steady-state conditions for the control

loop; i.e.,

P o= §' = ' =§' = -0.1428,

r' =r'=n'=n7n"'"=0.0,

§' = &' = 0.1310,
0.001992 ,
0.003437

Nl
¢

The disturbance shown in Fig. 4 is not exactly equivalent to a lateral
current when the ship is at any depth-to-draft ratio other than H/T=1.89

for which it was derived so the steady-state rudder angle is not zero.

The constant disturbance simulations used a parameter estimation cycle
of 6 ship lengths (LU=1200 samples) and three combinations of data window
length and dither period. The results of the first parameter estimation

cycle of these simulations are shown in Table 12. The results with window
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Tength of 2.5 ship lengths (500 samples) and a 0.5 ship length dither period
are excellent. Results with a 5 ship length data window and two dither periods
are shown as a reference point for the effectiveness of the WLS parameter es-
timator. These designs would be impractical in a path control application
due to the excessive offset from the desired path. These paths would also
clearly violate the validity of the linear ship model. The effects of the
assumed constant values for the Yij coefficients in eq. (75) on the estimates
of the disturbances N' and Y' can be clearly seen in Table 12. In addition

to allowing a more reasonable offset from the path, the reduction of the

window length from 5 to 2.5 ship lengths reduces the computation cost of

each evaluation of the cost J by about one-half so the shorter window length
results in about half the data storage and computational load with only a small

loss in parameter estimate accuracy.

initial correct WLS parameter estimates using window
parameter value value length/dither period (ship lengths)
H/T=1.89 H/T=c 2.5/0.5 | 5.0/0.5 | 5.0/2.5
f22 -1.7657 -1.9515 -2.0037 -1.9722 -1.9505
f23 5.7359 3.1591 3.2540 3.2007 3.1544
f25 -0.88074 -1.0410 -1.0424 -1.0415 ~-1.0406
f32 0.17199 0.31507 0.32362 0.33157 0.31412
f33 -0.52766 -0.63651 ~0.65439 -0.66466| -0.63414
f35 -0.15607 -0.16163 -0.16388 -0.16076| -0.1616°
N'x10 0.00000 0.10262 0.12987 0.12824 0.12648
Y'xlO2 0.00000 0.23277 0.35415 0.35960 0.34070
offset n' at end of cycle 0.1745 1.273 2.422
number evaluations of cost J 113 112 75
final cost Jx102 0.1059 0.2092 | 0.2095

Table 12. Effect of Data Window Length and Dither Period on WLS Parameter

Estimates with Constant Disturbances
To further illustrate the performance of the WLS parameter estimator
with a 2.5 ship length data window and a 0.5 ship length dither period when
subjected to a constant disturbance, the ship trajectory for the simulation

shown in Table 12 is shown in Fig. 26. Fig. 26 shows the lateral offset
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response of the ship for the first three update periods or 18 ship lengths
The dither signal has a zero mean rather than a mean value corresponding
to the equilibrium rudder angle for the constant disturbance when the
controller is using the initial parameters. As a result, the first dither
period gives the ship a strong motion to the right (n'>0). This produces
improved estimates in Table 12 compared with the corresponding results

in Table 11. As soon as the controller is updated with nearly correct
parameters at t'=6_0, the equilibrium rudder angle is essentially zero
and subsequent dither periods have less of an effect on the ship's

offset from the desired track. The maximum offset is almost one-half

ship length during the second update cycle. The simulation represents

a type of "start-up transient"” for the adaptive control system so the
lateral offset in the third update period more closely represents the

offset which the dither signal would cause in subsequent update cycles.

i 17/
0.5 T
0.4 -+ i
data window length 2.5
0.3 + dither peried 0.5
0.2 T
0.1 T
l? | t' ship lengths
0.0 =t :‘:.;\I/‘rfﬁlfl o
18
_O.l b
data window loading periods
-0.2 <+ —y pem———rp P

Figure 26. Lateral Offset Response to Constant Disturbance — WLS Para-
meter Estimator.

The parameter estimate results for the WLS parameter estimator simula-
tion shown in Fig. 26 are shown in Table 13. The estimates were acceptable
in each update. The Xalman filter ship equations and the gains C and X

were therefore updated at the end of each cycle. Since the initial parameter
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estimate for the second and third estimation cycles was the estimate

produced by the previous estimation cycle, the number of evaluations

of the cost function decreased significantly after the first update.

The accuracy of the estimates of the é-equation parameters appears to

decrease as the ship motion is reduced.

mates are very good.

used.

In general, the parameter esti-
Recall that the disturbance estimates are never

A shorter data window length might continue to produce parameter

estimates of acceptable accuracy with a smaller offset from the desired

path. Further design tradeoff studies could establish the best compromise.
initial correct WLS parameter estimates using
parameter value value 2.5 window length/0.5 dither period
H/T=1.89 H/T=w update 1 uypdate 2 update 3
f22 -1.7657 -1.9515 -2.0037 -1.9258 -1.9306
f23 5.7359 3.1591 3.2540 3.1177 3.1414
f25 -0.88074 -1.0410 -1.0424 -1.0414 -1.0405
f32 0.17199 0.31507 0.32363 0.36511 0.28817
f33 -0.52766 -0.63651 -0.65439 -0.72306 | -0.59633
f35 -0.15607 -0.16163 -0.16388 -0.16289 | -0.16275
N'xlO2 0.00000 0.10262 0.12987 0.12561 0.12541
Y'xlO2 0.00000 0.23277 0.35415 0.3%14°9 0.31570
maximum offset n' in cycle 0.1745 0.4779 0.1257
number of evaluations of cost J 113 22 19
final cost JxlO2 0.1059 0.1012 0.1035
update time 6 12 18

Table 13.

4.3 Time-Varying Parameters Performance

Parameter Estimates from Constant Disturbance Simulation

In this section, we evaluate the performance of a WLS ship parameter

estimator when the parameters are time-varying.

In the previous section,

we considered the performance when the parameters were constant during each

data window loading period which might have to be as long as 2.5 ship lengths.
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The parameters could however, change from one parameter estimation cycle to
the next. Here we consider situations in which the parameters change contin-
uously during the data window loading periods. We continue to use the water
depth as the independent variable which defines the changing parameters. We
consider two cases. First, we consider the situation in which the water depth
is changing continuously so that the ship coefficients are changing in a con-
tinuous manner. We then consider the situation in which the disturbances in
the parameter vector, eq. (74), change continuously during the data window

loading period as they would when the bPasses another ship or fixed obstruction.

4.3.1 Time-Varying Ship Coefficients

To evaluate the performance of the WLS parameter estimator with continu-
ously varying ship coefficients, we simulated the Tokyo Maru under the control
of an adaptive path controller using the WLS parameter estimator while sailing
over a downward sloping bottom. This simulation was performed without any
measurement noise using a very short data window loading period of only 0.2
ship length. fhe update cycle was 0.3 ship length. The bottom profile was
constructed to be level at H/T=1.89 during the first data window. The esti-
mator was initialized with parameter values at H/T=1.89 and this startup period
was introduced to allow the system to stabilize prior to experiencing a change
in parameters. From time t'= 0.35, which was the beginning of the second up~-
date period, the bottom began a downward slope in which the depth-to-draft ratio
increased linearly at a rate of 0.105/update or 0.350/ship length. The results
of the first 10 updates in this simulation are summarized in Table 14. In
many updates, the estimates were far from the true values. In many instances,
the algorithm produced parameter values which were beyond the permissible ranges
defined in Table 10. The estimates began to improve somewhat after the initial
transient caused by the abrupt change in bottom slope at t'=0.35. Notice that
the estimates do not approximate the mean value of each parameter during the
data window loading period as would be desired. Considering that the simula-
tion summarized in Table 14 is without measurement noise and used only a 0.2
ship length data window, we conclude that the WLS parameter estimator can not
effectively estimate time-varying ship coefficients. With realistic measure-
ment noise, the data loading window period would have to be at least two ship
lengths as shown in Section 4.2. The bottom slope used in the simulation sum-
marized in Table 14; i.e. about one draft in three ship lengths, is not un-

realisticly high.
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The failure of the WLS parameter estimator to effectively estimate time-
varying ship coefficients can be explained by considering the formulation of
the algorithm. The true ship response can be considered as the response of a
system of time-varying linear differential equations. The coefficients in
these equations vary continuously during the time period of the data window.
The ship model, on the other hand, is the time-variant system, eq. (75), and
we seek the parameter vector P* which minimizes eq. (77). We expect this para-
meter estimate to be within the permissible ranges defined in Table 10 and fur-
ther would hope that the estimates are the mean values of each parameter during
the data window loading period. There is no guarantee at all that the constant
parameter p* which minimizes eq. (77) will meet these objec¢tives. The results
shown in Table 14 show that even without measurement noise and using a unrealis-
tically short data loading window period the estimates do not meet these objec-

tives.

4.3.2. Time-Varying Disturbances

Even when the ship coéfficients are essentially constant during the data
window loading period, it is possible that the ship will be subjected to exter-
nal disturbances which vary over this period. To evaluate the performance of
the WLS parameter estimator in this type of situation, we simulated the Tokyo
Maru under the control of an adaptive path controller using the WLS parameter
estimator while sailing past another ship. The bottom was assumed to be constant
deep water (H/T=w). The ship was given zero initial conditions 5?3?0; the con-
troller and parameter estimator were initialized for parameters at H/T=1.89.
The reference measurement noise from Table 9 was utilized. The ship was simu-
lated for 15 ship lengths. It was simulated to pass another ship as defined
by Fig. 3 beam-to-beam at £=7. The WLS parameter estimation cycle was 5 ship
lengths. The data window length was 2.5 ship lengths; the dither period was
0.5 ship length. With an update pexiod of 5 ship lengths, three update cycles
were completed during the simulation. The effects of the passing ship were
felt from t'=5 through t'=8.5 so the disturbance was present during the first

part of the window loading period for the second update.

A summary of the results of the three update cycles of the simulation is
presented in Table 15. During the first update, the parameter estimates, par-

ticularly f23 and f25 which are needed by the control loop, are close to the
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true values. The disturbance estimates N' and Y' are within the noise levels
corresponding to these quantities. At the end of this update cycle, the para-
meters in the Kalman filter ship model were updated. WNew gain matrices C and
K were calculated and updated in the system. During the second update period
the passing ship disturbance starts to act at t'=5.0 when the ship is running
under the command of the updated controller. At t'=7.0, the disturbances reach
their maximum values of about:

N'xlOs

Y'xlO5

-20.4,

]

48.0.

The second data window was loaded from t'=7.45 to t'=9.95. During this

period, the disturbances declined from their peak values to zero at t'=8.50.
The DUD algorithm search was very slow to converge in the second cycle and the
results were bad. Three parameters were outside the permissible ranges defined
in Table 10. Since the estimate %23 was beyond the permissible range, there
was no update. During the third update period, the disturbance was gone.

The parameter estimates were good and the controller was updated a second time.

initial correct WLS parameter estimates using
parameter value value 2.5 window length/0.5 dither period
H/T=1.89 H/T=x update 1 update 2 update 3
f22 -1.7657 -1.9515 -1.9446 -0.62936* -1.9247
f23 5.7359 3.1591 3.2178 -1.8532* 3.0732
f25 -0.88074 -1.0410 -1.0428 -1.0017 -1.0434
f32 0.17199 0.31507 0.33260 0.18843 0.30193
f33 -0.52766 -0.63651 -0.53544 ~1.7884%* -0.70178
f35 ; -0.15607 -0.16163 -0.16275 -0.17338 -0.16349
N'x10 0.00000 varying -0.17504 -8.2745 0.11698
Y'xlO5 0.00000 varying 6.6942 67.778 -6.9666
maximum offset n' in cycle 0.0698 0.1394 -0.2154
offset n' at end of cycle 0.0698 ~0.0953 0.1511
number of evaluations of J 65 253 38
final J x lO2 0.1022 0.3642 0.1031
update time 5 10 15

*estimate outside permissible range in Table 10

Table 15. Parameter Estimates from Passing Ship Simulation
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We conclude from this simulation that the WLS parameter estimator cannot
estimate the parameters when there is a significant time-varying distur-
bance present during the window loading period. During the second update
shown in Table 15 the algorithm tried to approximate the time-varying
disturbances by constant quantities N' and Y'. 1In the process, it adjusted
the other parameter estimates to minimize the cost J. Since the relative
effect of the disturbances on J is much larger than the changes due to the
system parameters, the final estimates of the system parameters were sub-
stantially off. The system protected itself, however, through the check on
the validity of the parameters. When the parameter estimates in the second
update failed the validity check, no update was made and the controller con-
tinued to operate with the gains obtained in the first update. The slow
rate of convergence in the second update is also an indication that time-
varying disturbances were present during the data window loading period.
Thus, the estimation process could be stopped without an update after a
prescribed number of evaluations of the.cost function as further protection

against invalid results.

4.4 Computational Requirements

The WLS parameter estimator would place a fairly large dynamic data
storage and computational load on an onboard computer. The parameter esti-
mation and gain update calculations could, however, be performed on a batch
basis as time is available. 1In developing the simulation program used in
our work, we made no serious effort to conserve storage locations or CpPU
time. The program was therefore very expensive to run. The Euler integra-
tion step-size used in the various simulations presented above was taken as
0.005 ship lengths or about .24s. For convenience, this was also used ag
the sample time. 1In a practical application of a WLS parameter estimator
on a ship such as the Tokyo Maru, the sample time could easily be extended
to perhaps 1ls. With a data window of 2.5 ship lengths at the 12 knots used
in our simulations, the data window would require 120 locations for each of
the four measurements and the rudder angle plus an additional 4 locations
for the initial state. The DUD algorithm as used here would require another

4057 storage locations. This would give a total number of dynamic storage
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locations of 4661 for the implementation of the WLS parameter estimator

A WLS ship parameter estimator would therefore be feasible but it would

place fairly heavy storage and CPU time demands on an onboard computer. If
dynamic storage were a limiting factor, alternative search algorithms could

be considered. For example, the Nelder and Mead SIMPLEX algorithm was used
in some of our earlier work. This algorithm generally required more iterations
than DUD to converge but would require only 81 additional dynamic storage
locations. This would give a total number of dynamic storage locations of
only 685. The reduced storage would be offset by a greater CPU time require-

ment.
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5. Minimum Variance Parameter Estimator

In this section, we present the derivation and evaluation of a Mini-
mum Variance Parameter Estimator (MVE) which could be used in the gain up-
date loop of an adaptive ship paEg control system. This section is based
upon Cuong's Ph.D. Dissertation. The MVE is a probabilistic digital fil=-
tering technique which can be used to determine a set of parameters of the
ship equations of motion. The filter gains are chosen to minimize the trace
of the estimate error covariance matrix. It is a recursive filtering tech-
nique where the new parameter estimate is formed from the previous estimate
plus a proportional constant times the innovatioﬁ. The filter gains and pro-
pagation of the error covariance can be calculated recursively based on pre-

vious values and recent measurements.

The derivation of this parameter estimator parallels the derivation of
the state estimation Kalman filter. It is more complicated, however, because
the measurements are contaminated with both additivgqand multiplicative noise.
This method was first proposed by Kotob and Kaufman for a linear system
with measurement noise, time-invariant parameters, and no process disturbances.
They used this filter to estimate the system parameters of the F-8 DFBW air-
craft. They showed it to be more efficient and effective than an Extended
Kalman Filter and a Weighted Least-Squares Parameter estimator in three simu-
lated performance tests. They also proposed an extension for time-varying
parameters. Here we extend the MVE approach to accommodate zero-mean process

disturbances and time-varying parameters.

5.1 Derivation and Development

The Minimum Variance Estimator is a linear parameter identification
scheme which has three inherent restrictions. First, the equations of motion
must be linear in the estimated parameters p. Second, in order to separate
the state estimation problem from the parameter identification problem, it
is required that all states be available for measurement. Finally, the al-

gorithm as developed here can accommodate only zero-mean process disturbances.

The ship path control problem must be formulated to satisfy the restric-

tions of the MVE. First, the linearity requires that there be no coupling
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among the estimated parameters. This condition is automatically satisfied
if we choose the parameter vector to be:

T

,f 33,f35] . (78)

R = [£y5rE53:T5s
The separation condition demands that we utilize the 4-state system because
we can measure only ¢',r',8', and n'. The external yawing moment N' and
side force Y' are not available through direct measurement. Any attempt
to use their estimates from the Kalman Filter in parameter estimation will
represent a coupling between state and parameter estimators which we want
to avoid. Fortunately, the precise knowledge of the disturbances is not
necessary in this case since we only need the covariances of the disturbances

in the calculation of estimator gain.

As mentioned earlier, the MVE is a recursive filtering technique which
makes it well suited to real-time operation. A possible timing sequence for
this algorithm is shown in Fig. 27. The parameters are not identified at
every measurement sample time. In this case, the parameters are estimated
at intervals of £ =10. (The derivation of this algorithm requires that
£>1.)a preliminary study was carried out to compare performance of an esti-
mator with £=2 with that of an estimator with £=10. Although the higher
identification frequency estimator increased the computational load five
times, it did not present any clear4§pt superiority compared with the lower
frequency estimator. For £=10 and the sample time assumed in this work,
the estimator would have about 2.4 seconds for each update each cycle. This
represents a realistic computational time allotment. Being a recursive
technique, the MVE has a very small dynamic data storage requirement.

At each recursive step, the algorithm needs two consecutive measurements

vectors z'k_l and z'k, the recent rudder angle 5'k 1 the last parameter esti-

mate Ek 2 and the last estimate error covariance matrix Pk 2 This in-
measurement
z! oo z' sequence
k-1 -k £
A Y S T [N N YO O Y O I I T
A A parameter
Br.y¢ By estimate

sequence ({=10)

Figure 27. Timing Sequence for Minimum Variance Parameter Estimator
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formation requires only 34 storage locations. The entire algorithm could

be implemented with less than 100 storage locations.

The Minimum Variance parameter estimation algorithm is derived for a
discrete time system of equations. The continuous ship system equations
from Section 4.1; i.e.,

X =Fx +GS' + Tw , (72)

must therefore be transformed into a system of difference equations. These

differential equations can be represented by,

X - x
=k+1 —k _ '
Y Fe— —F§k+G6k+I‘1k,
or,
= '
Xpel T + AtE‘]_}gk + AtGS X + Atl‘y_k _ (79)

If we let F' = I + AtF, G' = AtG, and I' = AtT, the dynamics of the ship

can then be represented by the difference equations,

= ! (] ]
Xppp “F2, +G6T +T'w, (80)
or,

g 1 At 0 o] [ 0 0 0
' 0  Ll+Atf__ Atf 0 r AtE Aty AT wr| (BL)
r 22 “%%23 . 25 | o L T 22 |,
1 - ] ~ A ~
8 0 atf,, lestf,, o |8 BEE K| ety 4 ¥, k
n' At 0O -At 1 ' 0 0 0 k

n
k+1 k ko=

The disturbances are now represented by two discrete stochastic sequences

{N'k} and {Y'k} which we assume to be independent. The Yi coefficients
~

are given constant, assumed values Yij as in Section 4. All four states

are assumed to be available for measurement; i.e.,

H = + 1
2 TEXLTYL (82)

where the noise {z&(} is a Gaussian white sequence with covariance matrix R.

Following an approach similar to that used in Section 3.3, the parameters
can be modeled as Brownian motion processes. In this discrete formulation,

the parameter vector, eq. (78), is therefore modeled as,
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By By ¥ Dyp” (83)

where {lk} is a Gaussian white sequence with diffusion coefficient matrix ¢.
The parameter { defines the frequency of identification.

£>1 throughout this work.

It is required that
The diffusion coefficients can be selected with
ease using the properties of the Brownian motion process as developed in

Section 3.3.

In order to estimate the unknown parameters in F' and G', it is necessary

(81) so that §k+l

+ the unknown and known parameter vectors, respectively.

to rearrange eq. is expressed explicitly in terms of P—k

and ik In this par-

ticular problem, the known parameter vector is simply S .= [1] . The revised

system equations become,

1™ Sk Bt D Sy *IT Hp
or, B - -
—xk+l'l- ) 0 0 0. 0 o tf_zz
xk+l,2 - Atxk,2 Atxk,3 At(S'k 0 0 0 f23
xk+l,3 0 0 0 Atxk’z Atxk'3 AttS'k f25
%11 4 0 0 0 0 0 0 fsz
L I L - 33
- [ F35)]
xp,1 tAe o i 0 ° k
Xk, 2 ¥Va1 S%Maa) VY
+ xk'3 + Aty31 AtY32 Y,k ’ (84)
xk'4 + At(xk,l-xk,3)J 0 0 |

T , \
where §k=[xk,l’xk,2'xk,3’xk,4] . Note that C. and D, are matrix functions

k k
, ; el vyt . . -
of Xy - Substituting X =2 oY X into C:k and Dk’ these matrices can be de
composed into deterministic and stochastic components which depend on ilk and
1) . :
v seiarately, J..Ie. , ' A y
(ik) = C(gk) - C(gk) =C - Ck ’
where we define, -
o} 0 0 0 0 0
1 ] 1 ( O
3 = ae k2 %k3 Sk 0 0
! (85)
1 1) 1
O 2y, %'y, %'k
0 0 0 0
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and,

0 0 0 0 0
v v v 0o o 0
c=At |'k,2 Uk,3 0 , (86)
0 0 ' ' 0
Y%,2 'k,3
0 0 0 o0 0 o

and use the same notation for E&( and z&{ as used for qu above. Similarly,

we can write,

. A \'4
=z - ' = -
D(ik) D(g_k) D(zk) Dk Dk ’
where,
-, . -
zk'l +Atzk'2
A Z'
D = k,2 , (87)
zl
k,3
! + At(z’ -z
| %k, 4 %17 %k,3’]
and,
' [ ]
Vk,l + At v K,2
L}
v Vk,2
— ]
Pk = V%3 - (88)
] + [) - ]
Vi,a T AR TV s) ]
Using these definitions, eq. (84) can be rewritten as,
1 ) A 4 A ¥ L}
2l T YT G 7GRy F (B DSt T,
or,
' b ¢ ¢ D ' 89
- = - - 1
Zr+l T PkExT GRkx T GkRBr T DSkt Yyyp T, - (89)

The left-hand side of this equation can be defined as a pseudo measurement

vector, i.e.,

p 8, _Ds (90)
Zysl - Zker” PiSx

Equations (89) then becomes,

re A v v

= - - 1 1
2l T SRk T GBx T PEk F ¥ Y TEL - (91)
Notice from its definition that £k+l can be directly calculated from z 'k+1
and z' . Therefore, we can treat the pseudomeasurement as a form of obser-

k
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vation which is corrupted by tI:e multiplicative noise term Ekak and the
additive noise terms zlk+l and Dkik . Shifting the index by one step back-
ward, eqg. (91) becomes,

A v v

= - — L 1
k= k-1 Bx-g” Ck-1 Bgp” Pyop Sy TR *TWL L

IN?

(92)

where we have used By1~ Byu 2 because eq. (83) approximates the stochas-

tic process {p (t)} by the stochastic step function { B-k} .
We can now define the innovation vector at time k as,

I, =2 -Elz' |Z

. =2 5 1, (93)

k-1
where the second term on the right-hand side is the conditional expection

of _z_'k with respect to the whole measurement history; i.e.,

z = {E'o’ EI

k-1 1’ 2 b

27770 Epa

Noting that,

R ' '
Zx T C-1 By-p T Dxg Syg FUWL YL
then,
A FaY "N
' =
Elz) |2, 11 =Co i By p *+ Dy Sy q-

if the process disturbances {w k} are restricted to zero-mean processes. Thus

. fal lal ~
Iy 2% Ck1Byp” Pkop Sg-1 v
or,
~ ~n A
= - . 94
Ix= 2, 7 C-1 Rk (94)
Substituting eq. (92) into eq. (94) vields,
A N o) v v , I"
I " C%1Rg-f ~ -1 Byg-g” k-1 Bxp ™ Px-1 Syop *¥R FTI¥,
and if we introduce the error in the parameter estimate; i.e.,
~ A tay
Ry “Ex~ Ry -
this becomes,
A ~ v v , - (95)
= = - - + + .
Ix Ch-1 Bx-f = Cx-1 Bygp T Dgop Sy tEY LAV
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Using an approach parallel to the Kalman filter derivation, we can
assume that the parameter estimate §J< can be given by the following scheme,

A A

By " Ryeg * R Iy (8)
where the gain matrix Kk is to be established. Subtracting eq. (83) from
eqg. (96), we get,

~ ~

B "By "R LIk g - (97)
If we multiply eq. (97) by its transpose, we get,
~ ~MT ~ ~ T T _ T T ~ T T ~T
B BEx "By-2 Brp* Nedule®™ * g Mg *Ryp 5%t KeLiByop

T.T T ~ T ~T
T Dpeptk T Nk T Bx-glk-g T DxpRy-p (38)

Defining conditional expections as follows:
E, v ] = EBIv |Z ;1 ,
~ T
P = Byl

_ T
®=E [n,n.1,

the conditional expectation of both sides of eq. (98) with respect to the

whole measurement history Zk_lyieldS,
T T ~ T T ~T
Pk T Pkp TREE LI+ e+ E R, ,I IR +KE (1D ]

T T T ~ T ~ T
Fplhyp I 18 7 KB, gy ol “ BBy o0, o1 - E g o8, o1 (99)
Lkg
Cuong  has evaluated the various conditional expectations on the right-

hand side of eq. (99) for the case when £>1. If these results are sub-
stituted into eq. (99), we arrive at the following expression for the
pPropogation of the estimate error covariance,
- AT T ~ AT T
e T Pt ® 7T Ko Cken P T Peg Cken Mot R(Sr Progp Ckor * Reqri-1ly
(100)

where we define an equivalent noise covariance matrix Req as,
(101)

4 1o 17T
Req,k—l Uk-l + B+ R+ T Qwr ’
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and where R is the measurement noise covariance matrix and,

A v T vT y 4 "
Uk—l = Ez [Ck_l Py gByp Ck—l 1 , weighted covariance matrix,

A v T
B=E D g Sy 18k1 D1

A T
= w isturb. i trix.
Qw Ez Qlk—l-—k-ll , disturbance covariance matrix
Elements of these matrices will be developed further below. Minimiza-
tion of the trace of the estimate error covariance P will produce a minimum
r

variance estimate of the parameters B, - Stationary conditions for the mini-
mization of the trace of P, are obtained by setting all derivatives of eq.

k
(100) with respect to the elements of K, equal to zero; i.e.,

2%, [C T 2 ot
K lC%-1 Pt Ck-1 * Req,k-1 17 %Pxp -1 = O -

Rearranging this, we get the following expression for the filter gain:

=p, ,0& & .Pp ,0 4w p 7L (102)
K = Pr-2 k-1 (%1 Px-2 Ck-1 * Req,x-1 .

Using eq. (102) to simplify eq. (100), we arrive at the following form of

the error covariance matrix,

N
pk = Pk_Z + & - 13( ck__l Pk—Z . (103)

If the unknown parameters are time-invariant, the parameter model diffusion
coefficient ¢ is zero in this expression.
The B matrix is defined below eg. (10l) as a conditional expectation

v v
involving the product D

k=151 which in this case is just Dk-l given by
eq. (88). Eq. (88) can be used in the definition of B to yield,
[ 2 22 2 ]
9y + (At) a, Atc2 0 0
Ato§ a2 0 0
B = . (104)
2 2
0 0 o] -Ato
0 2 2 +3(At)2 @+ o2)
L 0 "At03 04 l 3 B

The matrix B is, therefore, a constant matrix which depends entirely on the
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measurement noise variances oi and sampling time At. The disturbance power
matrix I"QWI"T can be developed next using the definition of Qw below eq.
(101). wWe have assumed that {N'k} and {YE{} are independent stochastic
processes with zero means. We can assume that these disturbances can be

modeled as white noise sequences. The Qw matrix then becomes,

]
T &0
Q = Ez I:"—Vk-lzk—l] = |8 _ci !
0 At

where q& and qé are the spectral densities of +the corresponding continuous

white noise disturbances N' and Y'. Using this result the disturbance
power matrix becomes,
' [ o 0 0 o ]
- -0 (q§7§l + qé?gz ) (@¥51Y4; + 2T,..,) O
ro 1'% gt = O N~§l 31 ~2Y 22732 . (105)
O (ag¥a¥ay * YanYsy) (Ag¥3p * 9yY¥3p) o
e 0 0 0

The disturbance power matrix is, therefore, also a constant matrix.

The weighted covariance matrix Uk-l is defined below eq. (101) as a
v

conditional expectation involving the vector Ck—l Br.g which is given by,

M % T

' '
v 1% ko132 Pecp,1 * Vkel,s Pr-g,2)
C E - .
k-1 Tk-L At (v + ! )
k-1,2 Px-2,4 ¥ Vk-1,3 Px-2,5

0

- -l

The presence of unknown parameters pk-ﬂ,i within this matrix presents com-
putational difficulties. These parameters are known to be within a

known finite range so for the purposes of evaluating Uk-l’ it is reasonable
to assume that the parameters are Gaussian random variables with known means

and variances; i.e.,

Elp;] = p

[
Q
-
o8

I
=
[ 8]
o)}

B((p, ~5,)7)

-77-



The mean Ei can be taken as the mean of the probable range of the parameter
and a; might be taken as half of the probable range of the parameter.
Assuming that the various components of the measurement noise are orthogonal,

the weighted covariance matrix then becomes,

0 0
0 a a 0
u_, = () . : (106)
23 33
0 0 0 0
L .J
where,
.2 =2 2,2 =2
a22 = [02 (a + pl ) + 03 (a2 + P, ) 1,
a,_ = [02 p. p. + 02 p. p.l
23 2 Py Py ¥ 93 By Pgl
_ 2 -2 2 2 =2
a33 = [02 (a + P, ) + 03 (as + P ) I
The weighted covariance matrix is, therefore, also a constant matrix Uk 1= U

which can be calculated in advance. The entire equivalent measurement noise
covariance can therefore, be calculated in advance. If the unknown parameters
are time-invariant the variances a, are zero in eq. (106). The U and R
matrices might then be updated perlodlcally using the latest estimates p in

lieu of the assumed mean values p

54
Kotob and Kaufman noted that a substantial bias was observed to appear

in the parameter estimates using their time-invariant parameters MVE algo-
rithm. These biases were caused by the dependence of the additive and mul-
tiplicative noise terms in eq. (91). They developed a "bias reduction"
scheme to reduce or eliminate this bias. We will follow their basic approach
here to develop an bias error correction procedure for the general time-
varying parameters case. Postmultiplying both sides of eq. (102) by the ex-

pression inside the bracket, it becomes,

& p 8T 4
Ke -1 Fx-t Sx-1 Req,k-1 = Fx-g k— y

Rearranging this expression, we arrive at:

= - a AT
%Req, k-1 = Pr-p = K -1 Pr-p! k1 - (107)

We can now solve eq. (107) for the term in the brackets, substitute this
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. . AT - .
result into eg. (103) and then postmultiply by ck-l Réq,k—l to give,
AT -1
Kk = [Pk 2] Ck—l Réq,k-l . (108)
Using eq. (94) and eq. (108) in eq. (96) yields,
A A AT -1 ~ AT -1 A A
= + - - .
By “RBppg * B =01 G Rt By~ GeorReq,k-1%%-1B k-2 ! (109)

In order to reduce the bias in estimating p, an extra term can be added to
Fal
the above expression. This term should contain and Pk-¢and B, 2 SO we can

choose,

N
[2-ole By

where the gain matrix G is yet to be determined. Equation (109) then

k-1
becomes,

A A AT -1 »~ AT -1 AT n
B TByp * PB0) G R k-1Zk T Ck-1Req,k-1%%-1Rk-2 * Cx-1Ry-g! -

(110)
We can now take the expectation of both sides of eq. (110) and impose the

additional condition that:

N A
lim  Elp, ] ¥ lim E[p, ,] .

k—» k=

This assumes that after initial transients die out and the estimator is
tracking a change in parameters, the parameter change between the parameter
estimates is small. If the parameters are time-invariant this condition

is exact. With time-varying parameters, the effectiveness of this assump-
tion must be evaluated by simulation. Noting that [Pk- ¢] is always nonzero,

the expectation of quantities inside the bracket in eq. (110) must be zero;

i.e.,
AT -1 ~ A -1 A A A
E[Ck"l Req,k—l Ek Ck—l Req’k—l ck_l P—k—f_ + Gk_l Ek"ﬂ ] = 0. (111)
Equation (111) can now be used to establish the gain G _1- The expres-
sion, b y
C = C

k-1 = k-1 " k-1 ¢

can be used in eqg. (92) and this can be substituted into eq. (11l). Next the

. A v
expression Ck l= c +

A
k-1 k-1 can be used to eliminate C _, and its

k-1
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transpose from the terms involving gk_zgnd gk—ﬁ . Utilizing the fact that

ad Y . anaé ' and & ¢ and w and & . and B
Ck-p 4 Cyr Dy @mdC v and ., C k=1’ k-1 Pe_t

are orthogonal & the expectation in eg. (l1ll) then reduces to,

T -1 -~ T -1 YT -1 b4
. = . R c + E[C, R o ]
BlRep) " BlO 1R, k-1%k-11 "B ] * (BIC 1R i1 Cm1! * Bl 1Req, k-1%-1

For an estimate to be unbiased, it is necessary that,

A
lim E{p,_J = lim E(p _
1 k é Ko k é

which will be true if,

A -1 A%
Gk_l = E.[ck_lReq,k_lck_l] . (112)

This term is a generalized measure of noise and disturbance power.

The matrix Gk—l can be developed explicitly for this problem using the

expressions for Ck—l and R;é,k-l = [tij]. The expectation term by term
yields,
r~ 2 2 -
t2202 0 , 0 t2302 , 0
0 223 0 2393 ©
2 0 0 0 0 o] 0 < (113)
Gk"l= (At) 2 0 2
t3262 0 t3302 0 0
2 2
0] t3203 0 t33c3 0
0 0 0 o) 0 0 J

The matrix Gk-l is thus a constant matrix which can be calculated in advance
. - . . 2

knowing the elements of Ré; and the measurement noise variances ci .

The final parameter estimate equation is obtained by adding the bias error

correction term to eqg. (96) giving,

Ta)

~ N
= -+ - .
Bp“Brg *ReL * -G Ry, - )
This completes the derivation of the Minimum Variance parameter estimator.

The complete algorithm is summarized below.
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5.2 Algorithm Summary

Since the derivation of the Minimum Variance parameter estimator has
been long and complicated, it is useful at this point to present an algo-
rithmic summary of a typical recursive cycle. The equivalent noise spectral
density R.eq can be calculated and stored in advance using egs. (101), (l04),
(105), and (106). If the unknown parameters are time-invariant, the variances
@, are zero in eq. (106). Likewise, the generalized noise power matrix Gk—l
can be calculated and stored in advance using eg. (113). Let k be the value
of the time index at the next parameter estimate. The parameter estimation
cycle is provided with the previous parameter estimate gqome and the current
estimate error covariance matrix Pk—ﬂ which were stored from the previous

cycle. The recursive estimation cycle proceeds as follows:

1. At t'=k-1l, a set of measurementslg'_

k=1 and the rudder angle

5&_1 are sampled;

A A
2. These data are used to calculate ck—l and Dk-l using egs. (85) and

(87), respectively;
3. At €=k, a second set of measurements E&< is sampled;

4. The pseudomeasurement vector g. is calculated from its definition;

k

i.e., A

k - Zx T Dg-p Sx-1 (90)

N2
[
N

5. The filter gain matrix is calculated using eq. (102); i.e.,
%%

e . er -1 (102)
% T Pref k-1 -1 Preg Cpe1 tReg!

6. The updated error covariance matrix Pk is calculated using eq. (103);

i.e.,
A
Py S Pp *O-K C P, (103)

where diffusion coefficient matrix & is zero in the time-invariant parameters

case;

7. The innovation vector is calculated using eq. (94); i.e.,

~ A fa)

Ik TZx7 1 Byyg G (94)

A
8. The new parameter estimate 120 is calculated using eqg. (114); i.e.,

Fal N
gk TR PR TR DG ey, (114)
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and again ¢ is zero in the time-invariant parameters case.

This completes one parameter estimation cycle of the Minimum Variance
Parameter estimator. Compared with the the Weighted Least-Squares method,
it is very elegant and powerful. It is potentially capable of estimating
time-varying parameters in real time. Recalling that the computational
requirement for the WLS method was quite large, the load imposed by the
MVE would be small by comparison. As developed here, the MVE cannot,
however, accommodate bias disturbances which can be handled by the WLS

approach. We evaluate the performance by the MVE in the next section.

5.3. Time-Invariant Parameters Performance

In this section, we evaluate the performance of the MVE ship parameter
estimator when the parameters are time-invariant. Simulations were conducted
with and without zero mean disturbances. From Section 4.2 we would expect
that for the MVE to be effective with disturbances, the system must be persis-
tently excited by an input signal which is independent of the disturbances.
Simulations have confirmed this requirement. We therefore continue here to
use alternate periods of (1) open-loop control using a dither signal with the
controller turned off and (2) closed-loop control using the controller. We
continue to use a square wave input rudder command 6; of 0.5 radian ampli-

tude and 0.5 ship length period for the dither signal in this section.

The need to excite the system can be illustrated further by considering
equations (85), (87),(90), (94),(102), and (114). The MVE parameter estimator
eq. (114) shows that the estimator improves its estimates primarily through
the term Kkzk . The estimator gain eg. (102) shows that the gain K is directly
proportional to GE_I.A The innovation vector Ek

A
to depend upon C Dk 1’ and the measurements E:k’ From their definitions
A

is shown in egs. (94) and (90)

k=1’

in eqs. (85) and (87), C_, and B,

measurements Ei—l' As a result, if the ship is closely controlled along the

desired path so that the measurements tend to zero both Kk and ;k tend to zerxo

and the estimator cannot improve its estimates. For the parameter estimator

respectively, depend directly upon the

to be effective, the measurements must contain non-zero states which are large
compared to the measurement noise levels. Periods of open-loop control using

a dither signal are therefore needed.
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To complete the design of the MVE parameter estimator for time~-invariant
parameters for the Tokyo Maru a number of design choices must be made to define
the equivalent noise covariance matrix Réq defined by eq. (101), define the
generalized noise power matrix G defined by eq. (113), and to initialize the
error covariance matrix Pk which is propogated in accordance with eq. (103).
Recall that with time-invariant parameters, the diffusion coefficient matrix ¢
associated with the parameter model eq. (83) is zero. We used the reference
measurement noise level from Table 9 to establish the measurement noise
covariances needed to calculate the matrices R,B,U, and G. The discrete
measurement noise standard deviations ¢! in Table 9 were squared to form the
noise variances 0; needed in the diaéonal measurement noise covariance
matrix R, the B matrix defined in eq. (104), the weighted covariance matrix

=U defined in eq. (106), and the generalized noise power matrix G G

Ug-1 k-1"
defined in eq. (113). With time-invariant parameters, the variances a, in

the weighted covariance matrix U are zero. To complete the definition of U,
we chose the "mean" values of the parameters needed in eq. (106) to be near

the midpoint of the permissible ranges of the parameters defined in Table 10;

i.e.,
f22: El= -1.7%0,
f23: 82= 6.250,
f32: €4= 0.175,
f33: P -0.785.

To complete the definition of the eguivalent noise covariance matrix
Réq' the disturbance power matrix P'QwF'T defined by eg. (105) must be es-
tablished. The ?ij coefficients in eqg. (105) were assigned assumed, constant
values for H/T=1.89 from Table 2. The remaining required quantities are
q& and q&, the assumed spectral densities for the continuous white noise
disturbances N'and Y', respectively. The choice of these quantities has
a major impact on the effectiveness of the MVE parameter estimator. If
these gquantities are selected to be too large, the disturbance power matrix
tends to be "large" and the equivalent noise covariance matrix Req also
tends to be "large". It can be seen in eq. (108) that the parameter estimator
gain matrix Kk is proportional to R;; . If Réq is "large", the estimator gain
matrix is "small" and the parameter estimator will change its estimates very

slowly. This is true even when the innovation vector I, contains significant

k
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information . The speed of response of the parameter estimator is, therefore,
directly controlled by the choice of q& and qé. We initially assumed these
quantities to have the values given in egs. (67) and (68), respectively.

These values are slightly larger than the spectral densities derived from

the pggsing ship disturbance shown in Fig. 3 and given in egs. (53) and (54).
Cuong has shown that using these values the MVE ship parameter estimator
response is far too slow to be of any value in an adaptive ship path control
application. We therefore chose these quantities to be based upon approxi-
mately 0.1l times the passing ship disturbance shown in Fig. 3, i.e.,

2.00 x 10710, (115)
9

1.25 x 10 ° . (116)

H
£

]
R

These assumed disturbance spectral densities produce a MVE parameter estimator
which responds at an acceptable rate. These assumptions complete the defini-
tion of the disturbance power matrix and therefore also the egquivalent noise

covariance matrix Réq and the generalized noise power matrix G.

The final quantity to be selected is the initial estimate error covariance
Po' This assumption is not critical to the effectiveness of the MVE estimator.
It affects the initial rate of convergence somewhat but its effect dies out
fairly fast. To obtain an initial Po it is reasonable to assume that all ini-
tial parameter errors are independent Gaussian random variables with zero
means. Hence, all off-diagonal elements of PO are zero. The diagonal terms,
which are the error variances, remain to be chosen. They can be selected
based upon the expected range of each parameter. In the simulations, we
used the following initial estimate error covariance which assumes that the
error covariances are the square of the difference between the respective para-

meter values at H/T== and H/T=1.89 shown in Table 2.

[ .03452 0 0 0 0 0 ]
0  6.640 0 0 0 0
> - 0 0  .02568 0 0 0 o
0 0 0 .02047 0 0
0 0 0 0 .01185 0
0 0 0 0 0 -00003091 |
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To evaluate the performance of the MVE parameter estimator with time-
invariant parameters, we simulated the Tokyo Maru under the control of an
adaptive path controller using the MVE parameter estimator defined above.

The simulations presented here represent a type of startup condition for the
controller. The Kalman filter ship model, path controller gains C, Kalman
filter gains K, and the parameter estimator were all initialized for deep
water ship characteristics. The ship and Kalman filter were given zero

initial conditions 553?0. At the start of the simulations, the depth-to-draft
ratio was abruptly changed to H/T=1.89 or viewed differently the adaptive

path controller was tufned on with the depth-to-draft ratioc H/T=1.89. The
depth-to-draft ratic was then held constant to produce time-invariant ship
characteristics. The reference measurement noise from Table 9 was utilized.
The dither signal was a square wave rudder command Gé of 0.5 radian amplitude
and 0.5 ship length period. The dither signal was utilized only for the first
2.5 ship lengths of each 6.25 ship lengths. This corresponds to an LW=2.5

ship length data window and-LU=6.25 ship length update period for the WLS para-
meter estimator. The MVE parameter estimator frequency was chosen as 10 sample

times or about 2.4 seconds.

The Tokyo Maru was simulated under the control of the MVE parameter
estimator adaptive path controller while being subject to (1) no external
disturbances, (2) the passing ship disturbance shown in Fig. 3 with the ship
passing beam-to-beam at t'=7, and (3) fairly small, continuous white noise
disturbances with cN= 2xlO-S and cy=5x10-5. The simulation conditions and
the approximate ship path for the simulation with the passing ship dis-
turbance are summarized in Fig. 28. The ship reached a maximum offset of
n'=.01738 or about one beam at t'=3.8. Since the simulation represents a
startup transient for the controller, the effect of the subsequent dither
periods is generally less. The parameter estimate results for the first
10 ship lengths of the three simulations are summarized in Table 16. Since
there are 200 estimates for each parameter in the 10 ship lengths, Table 16
presents only the initial guess and the minimum, maximum, mean, and final

values of the estimates for each parameter. The RMS error in each estimate,
200

RMS(pi) = E (§i -p
k=1

i.e., 2 12 (118)

i'k !
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Figure 28. Simulation Conditions and Approximate Ship Path == Constant
Bottom Example.

is also shown as a basis for evaluating the effect of the disturbances on
the estimator performance. Recall that the control loop requires effective

estimates of only the two most sensitive parameters £

and f2 The esti-

23 5°
mates of these two parameters and f32 are good. The other parameter estimates
are slow and generally ineffective. The disturbances do not significantly
degrade the performance and in some cases the estimates improve due to the

additional ship motion.
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The estimates of parameters f23,f25, and f32 from the simulation with the
passing ship disturbance are shown in Figures 29, 30, and 31, respectively.

The true values are shown by constant, dashed lines. The simulation results
with the reference noise level from Table 9 are shown as the solid lines. The
simulation results with 0.00l times of the reference noise level are sketched
approximately as long, broken dashed lines in Figures 29, 30, and 31 for refer-
ence. The estimate of parameter f23 shown in Fig. 29 converges to near its
true value in about 3 ship lengths. The estimate of parameter f25 shown in
Fig. 30 converges to near its true value in only one ship length. After about
t'=4 it-varies about the low noise estimate which appears to have a small bias
error. These estimates appear to be more than acceptable for use by an adap-

tive path controller. The estimate of parameter f£ shown in Fig. 31 is

slower to converge and shows two jumps at the end gi each dither period. The
effect of the dither signal can be seen fairly clearly in the low noise esti-
mates in Figures 29, 30, and 31. The additional ship motion produced by the
passing ship disturbance which acts from about 6<t'<8 appears to help the

parameter estimates move closer to their true value.
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The simulations presented in this section show that the MVE ship
parameter estimator can be effective in estimating the two parameters
needed by an adaptive path controller, f23and f25, when these parameters
are constant. This performance does not deteriorate with significant
zero-mean disturbances. The performance with time-varying parameters is

evaluated in the next section.

5.4 Time-Varying Parameters Performance

In this section, we evaluate the performance of the MVE ship para-
meter estimator when the parameters are time-varying. As in Section 4.3.1,
we use the water depth as the independent variable which defines the changing
parameters. We simulated the Tokyo Maru under the control of an adaptive path
controller using the MVE parameter estimator while sailing over two bottom
configurations. The controller design was identical to that developed for
the Tbkyé Maru in the previous section except that it was extended to ac-
commodate the time-varying parameters. Two design changes are necessary.
First, non-zero parameter-variances ai must be utilized when the weighted
covariance matrix Uk—l is calculated in accordance with eqg. (106). We
utilized the square of half the range of each parameter in Table 2 as the
assumed variance. Finally, a non-zero, diffusion coefficient matrix ¢
must be included in the parameter estimator equation, eg. (114), and in the
estimate error covariance propogation equatiocn, eq. (103). This diagonal
matrix is composed of the diffusion coefficients for the Brownian motion

processes which were used to model the parameters in eg. (83).

The diffusion coefficient matrix ¢ can be established using the
properties of the Brownian motion process developed in Section 3.3. There
we showed that the power spectral density of the continuous white noise in
the Brownian motion models for the disturbances could be approximated by,

q= Atsz, (66)
where S is the expected rate or change or slope of the continuous process
being modeled and At is the integration stepsize used in the Euler integra-
tion discretization of the continuous process. Now in the derivation of the

MVE parameter estimator we modeled the parameters by discrete models, eq. (83),
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where the discrete time step is the estimation period or £At. The element

¢ii if the diffusion coefficient matrix is the variance of the white sequence

ni in eq. (83) so using eq. (64) we have,

= g = -
¢11 1 e
or using eq. (66), 5 (119)
s
b1 -

* We approximated the ¢ii using eq. (119) by assuming that the parameters could
diffuse the difference between their values at H/T = 1.89 and H/T = @ in
Table 2 in the nondimensional time of about 1.5 ship length. The results

are summarized in Table 17 for £= 10.

difference | slope S ¢ii
p= £,,| 0.19% 0.1314 | 1.726 x 107>
P,= £,5]  2.716 1.8218 | 3.319 x 10°*
Py= £, 0.169 0.1133 1.284 x 107°
Py~ 3, 0.151 0.1011 | 1.023 x 1073
p.= £, 0.114 0.0770 5.924 x 10~
Pg= £y5| 0.00586 | 0.00393 | 1.545 x 107°

Table 17. Design Diffusion Coefficient Matrix

We simulated the Tokyo Maru under control of an adaptive path controller
using the MVE parameter estimator while sailing over a rising bottom and a
falling bottom. These simulations were performed (1) without external distur-
bances and (2) with the passing ship disturbance shown in Fig. 3 with the
ship passing beam-to-beam at t'=7. The simulations were begun with zero
initial conditions; i.e., 5?2?0. The dither signal had a 0.5 rad. magnitude
and 0.5 ship length period. The periods of open-loop control using the
dither signal and closed-loop control using the path controller were the
same as used in the previous section. The reference measurement noise level
from Table 9 was utilized. For these simulations, the initial parameter
estimates were assumed known and, therefore, the initial estimate error

covariance P, was taken as zero in lieu of using eq.(117).
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For the rising bottom example, the bottom was assumed to start at a
depth-to-draft ratio H/T=10.0 (corresponding to deep water characteristics).
The depth then decreased one draft per ship length until t'=8.7 at which
point it reached H/T=1.30 and remained constant. This corresponds to an
upward bottom slope of 5.5 percent. The simulation conditions and the
approximate ship path for the simulation with the passing ship disturbance
are summarized in Fig. 32. Even though the bottom was smoothly rising,
the parameter profiles were more irregular. The resulting parameter his-
tories show two regimes; i.e.,

* a slowly varying region from H/T=10.0 to 2.5;

* a quickly varying region from H/T=2.5 to 1.30.
This example was, therefore, very demanding of the MVE parameter estimator.
If the MVE is designed for the more slowly varying parameters, the estimator
is too slow to track the variation in the second phase. On the other hand,
if it is designed for large parameter variations, its estimates are more
sensitive to noise and random disturbances. The MVE design studied here,
as reflected in the parameter variation slopes used to obtain ¢ in Table 17
is more appropriate for the parameter variation in the first phase of this

example.

In the rising bottom example, the parameter estimator was initialized
with the correct deep water parameters. The simulation was performed for
15 ship lengths. The results of the first 10 ship lengths of the two rising
bottom simulations are summarized in the upper half of Table 18. The table
shows the initial value, final value, and true final value for each para-
meter. The RMS exror in each estimate calculated using eqg. (118) is also
shown as a basis for evaluating the effect of the passing ship disturbance
on the estimator performance. Again recall that the control loop requires

effective estimates of only the two most sensitive parameters, £ and f25.

In general, the presence of the passing ship disturbance helps t§3improve
the accuracy of most parameter estimates. This behavior can be explained
by noting that the ships pass beam-to-beam at t'=7 so the disturbance,
occurring mostly during the duration of the second dither signal, increased
the ship motion. 1It, therefore, increased the information content in the
innovation vector. It can be seen from these simulations that f33 and f35
are insensitive parameters; their estimates tend to stay near the initial

values. Parameter f22 is also fairly insensitive. Parameter f32 is slightly

~-92-



more sensitive. Parameters f23 and f25 are the most identifiable parameters

as expected form the sensitivity study.
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Figure 32. Simulation Conditions and Approximate Ship Path — Rising Bottom
Example.

"~ 2l
The paths of the parameter estimates f23 and £,_ produced by the MVE

parameter estimator are shown as solid lines in Fig?533 and Fig. 34, respec-
tively, for all 15 ship lengths of the rising bottom simulation with the
passing ship disturbance. The correct parameter values are shown as dashed
lines on these figures. The assumed parameter variation slopes used to estab-
lished the diffusion coefficient matrix ¢ in Table 17 are also shown as solid
straight lines for reference. The very rapid parameter change at about

t'=7.5 is clearly seen. The estimates g and g follow the true parameter

23 25
values fairly well during the slowly varying portion of the simulation. The
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effect of the passing ship disturbance can be seen beginning at about t'=5.5.
The passing ship disturbance ends at t'=8.5. The MVE is unable to track the
rapid rise in parameters beginning at t'=7.5. It is able to follow f23 well
up to the very rapid change which begins at about t'=8.5. At this point, the

parameter change becomes more rapid and the dither signal is stopped.

The estimate of 525 is worse in this period. The parameter estimator was
still reacting to the passing ship when the rapid change in the parameters
began to occur and required a few ship lengths to catch up. Recall that the
ship is very stable at the final water depth and, therefore, the dither sig-
nal excites less ship motion and the parameters are specially hard to estimate

in the final condition.
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Figure 33. Estimate of f23 by MVE Parameter Estimator -- Rising Bottom with
Passing Ship Example
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For the falling bottom example, the water depth was assumed to in-
crease such that the dépth-to—draft ratio increased linearly from H/T=1.30
to H/T=2.50 in 10 ship lengths. This is a much less drastic change in
ship characteristics than present in the rising bottom example. The simu-
lation conditions and the approximate ship path for the simulation with the
pPassing ship disturbance are summarized in Fig. 35. The parameter estimator
was initialized with the correct ship parameters and the simulation was run
for the 10 ship lengths. The results of the two falling bottom simulations
are summarized in the lower half of Table 18. 1In general, the RMS errors

are greater with the passing ship disturbance. The final value of the

path
control
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Figure 35. Simulation Conditions and Approximate Ship Path — Falling
Bottom Example.

_97-



estimate of f23 is, however, closer the true value with the disturbance.

As observed before, f and f2 re the needed and the most identifiable

23 s @

parameters.

The paths of the parameter estimates %23 and fés produced by the MVE
parameter estimator are shown as solid lines in Fig. 36 and Fig. 37, respec-
tively, for the falling bottom simulation with the passing ship disturbance.
The correct parameter values are shown as dashed lines on these figures.

The assumed parameter variation slopes used to establish the diffusion coef-
ficient matrix ¢ in Table 17 are also shown as solid straight lines for
reference. The estimates follow the true values fairly well. At the begin-
ning of the simulation, the ship is so stable that the dither signal has
little effect. As a result there is little ship motion and very little in-
formation available to the parameter estimator. The estimates tend to stay
near their initial values. After about 2 to 3 ship lengths, the ship motion

N A
becomes large enough that the estimates f and f25 start tracking the true

23
parameter profiles. The effect of the passing ship disturbance, which is

felt from 5.5<t’'<8.5, is clearly evident.

In general, these simulations show that a MVE ship parameter estimator
can be effective in estimating time-varying ship characteristics. The dif-
fusion coefficient matrix ¢ selection must, however, be consistent with the rate
of parameter change encountered by the ship. The estimator performance de-
grades during periods of external disturbances, but in the long run the ship

motion caused by the disturbances can result in improved parameter estimates.

5.5 Parameter Identifiability and Measurement Importance

A useful by-product of the study of the MVE ship parameter estimator
is a rough indication of the identifiability of each parameter and the rela-
tive importance of the various measurements to the estimation of the unknown
parameters. The numerical values of the optimal parameter gain matrix Kk
give this information. The principal part of the parameter estimating scheme

is given by eq. (96); i.e.,
A )
Ekl = Ek-£+ Kkl Ek' ’ (96)

where,
I = (i ,i.,i_,1i ]T
=k 1'7273" 74 k!’
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At any time step k', each element kmn of the gain matrix Kk' represents an

optimal weighting factor on the innovation in with respect to the parameter

A
estimate P Furthermore, the innovation i1 relates to the measurement of

w',iz to the measurement of r!', i3 to the measurement of R', and i4

Hence, the magnitudes of kml'kmz'km3

indication of the relative importance of these four measurements to the esti-

to the
measurement of n'. , and km4 give an

mate pm.

Since the various measurements have different magnitude scales, the
most revealing form of Kk' is to "normalize" each column of the gain matrix

by the existing magnitude of the associated measurement. Likewise, since

each unknown parameter has its own magnitude scale we can further "normalize"
each row of the gain matrix by the existing magnitude of the associated para-

meter. A typical result is shown in Table 19. In general, the magnitudes

of the rows of Table 19 compared vertically indicates the relative identi-

fiability of each of the associated parameters. Coefficients f , and

32’ f23

f_. are therefore- the most easily estimated parameters. The magnitudes in

5
tie,columns of Table 19 compared horizontally indicate the relative impor-
tance of each of the associated measurements to the estimation of each of
the associated parameters. This indicates roughly where money should be
spent to improve the accuracy of the measurements. Since the control loop

needs effective estimates of only f23 and £ 5s an adaptive ship path con-

2
troller requires high accuracy and low noise in the measurements of r' and
B8'. It is encouraging to note that the measurement of the lateral offset

n' is relatively unimportant in this context.

associated associated measurement
parameter P! r' B! n'
p= f22 0.679 126.075 17.638 0.080
P,= f23 9.838 1959.550 274.758 1.247
p3= f25 4.627 921.259 131.861 0.600
P,= f32 0.118 24.397 6119.733 29.948
= . 006 1.21 .119 1.486
Pg f33 0.0 3 303.1
= . 0.032 63.715 0.311
p6 f35 0.001 3 3
Table 19. Typical "Normalized" Optimal Parameter Estimator Gain Matrix

-100~




5.6 Computational Requirements

As noted in the introduction to this section, the MVE ship parameter
estimator would require less than 100 dynamic storage locations in the
implementation. The estimator would also require very little CPU time.

The subroutine used in our work was not specifically designed to minimize
operations but was timed to require an average of only 12 milliseconds per
parameter estimation cycle on the University of Michigan Amdahl 470/V7
computer. This very small load on an onboard computer would make the MVE
parameter estimator an attractive candidate for the parameter estimator
component of an adaptive ship path control system. 1In such arrangement, the
MVE algorithm could be readily implemented in a time-sharing mode on a main
and general-purpcose computer onboard a ship. It could also be programmed

in a dedicated minicomputer. This arrangement might be advantageous when

an independent and/or portable real-time parameter estimator is desired.
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6. Conclusions

The research summarized in this report has concerned the development and
evaluation of techniques which could be utilized in adaptive path control
systems for surface ships in restricted waters. 1In this section, we will
review some of the principal conclusions and observations based on this

work.

¢ The example vessel used in this work was the Tokyo Maru, a 290m tanker,
for which sufficient hydrodynamic data was available from the work of Fujino.
The characteristics of this ship undergo significant changes depending upon
its operating condition and environment. This type of ship is either course
stable or unstable depending upon water depth. Further, the longest time
constant of this ship is very long compared with the time scale of importance
in path control in restricted waters. The example vessel, therefore, reflects
many of the most challenging requirements for an adaptive ship path control

system.

® The basic concept of a two~loop adaptive path control system as shown in
Fig. 1 appears feasible. The inner or control locop performs the state
estimation and control generation continuously as a high priority task. The
outer or gain update loop can estimate the system parameters and calculate
updated controller and state estimator gains at a slower rate or batchwise.

In general, the two loops must function independently.

¢ A very effective control loop can be designed using random-walk, or more
correctly Brownian motion, models for the unknown yawing moment and lateral
force disturbances which act upon the ship. These controllers are effective
with short-term, zero mean disturbances and with more slowly varying, non-
zero mean disturbances. These controllers have the integral control property
necessary to accommodate bias disturbances without a constant offset from the
desired track. Severe disturbance transients such as the entrance to the
SNAME H-10 Panel ABC harbor (Fig. 5) would, however, require some type of
supplemental, anticipatory controller. The random walk disturbance model
control loops can be designed as statistical steady-state Kalman-Bucy filters
and optimal state feedback controllers using Potter's algorithm provided a
small numerical parameter is included in the design equations to eliminate

otherwise zero eigenvalues. Their performance is not severely degraded
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by changing ship coefficients. When designed using incorrect ship parameters,
the transient performance of the control loop is degraded but its mean steady-

state condition is unchanged.

e The Brownian motion process is a useful concept which can be used as a
model for disturbances or processes which are constant (bias) or contain
unknown, slowly varying components. The properties of the Brownian motion
process can be used to provide a practical design approach for establishing
the diffusion coefficient of these models. Instead of estimating both a
correlation time and a variance to establish the power spectral density for
a first-order shaping filter model, the single modeling parameter, thé
diffusion coefficient, can be estimated by eq. (65), (66) or (119) using

the expected rate of change or diffusion of the process being modeled.

e An adaptive ship path controller needs effective on-line estimation

of only two of the ten coefficients of the state equations which change with
ship conditions and environment. Adapting for changes in only £33 and fyg
allows the recovery of the most important part of the transient response -
performance which is lost by not using exact ship characteristics. Coeffi-
cient £33 is the coefficient of B' and fy5 is the coefficient of §', respec-
tively, in the é—equation. This fact should be recognized in the evaluation
of the effectiveness of parameter estimators intended for use in an adaptive

ship path controller.

e The degree of difficulty of the adaptive control problem depends on the
signal~to-noise ratio. For a surface ship, this ratio is very small when
viewed on the time scale of importance in restricted waters. As a result,

the adaptive path control of surface ships becomes a very difficult problem.

e An open-loop dither signal is required for successful ship parameter
estimation. During the estimation period, the control command has to be
independent of disturbances and the ship motion has to be maintained at a
sufficient amplitude. Aadaptive path control can be achieved by performing
the parameter estimation phase and the path control phase alternately. This
creates a major tradeoff in design since the improved path following perfor-
mance achieved by having improved estimates of the ship coefficients must
offset the loss in path following performance needed to allow the estimation

of the characteristics. A "robust" ship path controller design which is
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insensitive to errors in the ship equations of motion would likely prove

superior.

e The degree of estimation accuracy depends strongly on the relative
levels of information and noise (process and measurement). The amount of
information can be increased significantly by lengthening the dither signal
period and the length of time it operates. This, however, is restricted
due to the path control consideration. It was found that the square wave
rudder command dither signal of 0.5 rad. amplitude and 0.5 ship length
period operating for over 2 ship lengths gave reasonable results with the
linear ship model studied here. Design tfadeoff studies would be needed
to establish the best tradecff. 1In general, we used low levels of measurement
noise but demanded more parameter estimate accuracy than really needed by

the control loop.

e In very shallow water, the Tokyo Maru becomes so stable that the dither
signal used here has a relatively small effect on the ship. As a result,
there is less ship motion and a lower signal-to-noise ratio. Parameter

estimation is, therefore, much more difficult in this situation.

¢ The parameters £,,, f23, and f,g in the f—equation are closely associated
with the shorter time constant of the ship which is about 0.4 ship length.
The parameters f33, f33, and f35 in the é—equation are more closely associated
with the longest time constant of the ship which is about 10 ship lengths.
As a result, a short (0.5 ship length) dither period can be effective in
exciting the ship in the shorter time constant mode allowing reasonable
estimation of parameters f55, £23, and f;5. The short dither period is much
less effective in exciting the longer time constant mode making estimation
of parameters £33, f33, and f35 less effective. Longer dither periods which
would be needed to more effectively excite the longer time constant mode would
be incompatible with a path control objective. Fortunately, the control loop
only really needs accurate estimates of f;3 and f25 to achieve an effective

level of adaptation.

¢ The choice of parameters and the availability of measurements are of
critical importance to the Weighted Least-Squares (WLS) parameter estimator.
Given a data window length acceptable in a path control application, the WLS

cost function is extremely sensitive to the measurement noise and the system
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model. We found that all states must be measured and that all six of the
coefficients fij in the open-loop dynamics matrix and control distribution
matrix in eq. (71) must be included in the parameter vector. Since the cost
function is much more sensitive to external disturbances than ship coefficient
changes, the unknown external disturbances must also be included in the para-
meter vector. The WLS algorithm could not effectively handle linear combina-
tions of parameters or products of parameters so it was necessary to assign
the coefficients Yig in the disturbance distribution matrix assumed, constant

values.

e With a 2.5 ship length data window, the WLS parameter estimator can
effectively estimate the coefficients fij when the ship characteristics aﬂd
external disturbances are essentially constant during the data window loading
period. A major design tradeoff exists in the choice of the data window
length. With a longer data window and therefore a longer period of open-loop
dither signal operation, the information content of the data base is increased
allowing better parameter estimate accuracy but the ship is given a greater
offset from the desired path. The improved control loop performance achieved
with more accurate parameter estimates must offset the loss in path following
performance caused by the dither signal. With our experience to date, we
must conclude that the performance of the control loop designs studied in
Chapter 3 are good enough with incorrect ship parameters that we would not
expect an adaptive capability using a WLS parameter estimator to prove

worthwhile.

e The WLS parameter estimator could not effectively estimate the coeffi-
cients fj4 when either the ship characteristics or the external disturbances
changed significantly during the data window loading period. 1In path control
situations in restricted waters, both would be expected to change during at
2.5 ship length data window. The WLS parameter estimator studied here could,
however, be of value in other applications where constant ship characteristics

and disturbances could be reasonably expected.

¢ The Doesn't Use Derivatives (DUD) algorithm used here to minimize the
WLS cost function proved to be an effective and efficient search algorithm.
In retrospect, however, it requires an excessive amount of dynamic data

storage. Thus, it is more suited for an off-line application than for an
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on~line application as part of an adaptive system. It did prove effective
for the purposes of this study. Alternative search algorithms with more
reasonable storage requirements are available for on-line applications. The
stopping conditions of any algorithm would have to be tuned to be compatible

with the noise content of the data window.

e The Minimum Variance (MVE) parameter estimator can effectively estimate
the time-varying coefficients f;3 and f;5 needed by an adaptive path controller
when the ship is not subjected to bias disturbances. The algorithm is re-
cursive and highly efficient both in dynamic data storage and computation
time. The MVE algorithm requires ship motion to obtain'information about
the ship's characteristics so the tradeoff associated with the use of an
open-loop dither signal exists with this method as it would with any alter-
native. The method does show promise and is worthy of further consideration

for possible use in an adaptive ship path controller.

¢ The principal weakness of the MVE parameter estimator as studied here is
its inability to accommodate bias disturbances. We initialiy tried to incor-
porate consideration of these disturbances by modeling the disturbances as
Brownian motion processes in lieu of white noise in the derivation of the
disturbance power matrix P'QwP'T. This appreoach produces a disturbance
power matrix which grows continuously with time and this causes the parameter
estimator gain matrix to asymptotically approach zero. An alternative, which
could not be included in the scope of this study, would be to follow an
approach parallel to that used with the WLS parameter estimator. The unknown
yawing moment and lateral force disturbances could be included as additional
parameters; i.e. the parameter vector could be chosen as eq. (74) in lieu of
eg. (78) and the entire MVE algorithm could be rederived. We now feel this

should be successful and intend to study this possibility in future work.

e The three major design choices in the development of the MVE algorithm
are the estimation frequency 2, the assumed disturbance power spectral
densities qﬁ and qé, and the parameter model diffusion coefficient matrix &.
The derivation requires that the parameters not be estimated more frequently
than every two sample times; i.e. 2>2. Our work showed little value in
estimating the ship parameters more often than 2=10 or about 2.4 seconds. An

even longer estimation period would probably be acceptable. The choice of
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the disturbance power spectral densities directly affects the speed of
response of the MVE algorithm. If they are assumed too high, the MVE
parameter estimator is much too slow to respond to be of value in a path
control application. The parameter model diffusion coefficient matrix ¢
can be selected using the properties of the Brownian motion process as
reflected in eq. (119). This choice also affects the response rate of the
MVE parameter estimator. If the ¢ii are too small, the estimator cannot
follow more rapidly changing parameters. If the ¢;; are too large, the

estimator will be overly sensitive to noise and disturbances.

® The consideration of the optimal MVE estimator gain matrices shows that
in order to effectively estimate the coefficients f;3 and f35 needed by an
adaptive path controller the measurements r and B are the most important.
The lateral offset from the path, which would be the most difficult to
measure accurately, is of much less importance. The development of an
adaptive ship controller should, therefore, emphasize accuracy and noise

reduction in the measurements of yaw rate and lateral velocity.
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