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ABSTRACT

This study concerns the effects of water depth and ship speed on the
maneuverability of ships. Free-running experiments were conducted to determine
the coefficients and the nonlinear term in Nomoto's expression for the turning
rate of a maneuvering ship. The nonlinear term which represents the steady
turning characteristic of the ship is determined by the spiral and reversed
spiral tests, while the time constants in Nomoto's expression are obtained

from the zigzag maneuvers.

The experiments were conducted on an 8 ft model of the supertanker Tokyo
Maru at five different water depths of 1.2, 1.5, 2, 3 and 8.7 times the
draft. For each water depth, results were obtained at three different speeds

of the model.

The results indicate that the course stability of the ship is strongly
dependent on the water depth. In particular, the stability decreases as the
water depth decreases and it reaches a minimum at a ratio of water depth to
draft between 1.5 and 2, then it starts to improve as the water becomes
shallower. These findings are in agreement with earlier results obtained

by Fujino (1968) using the Captive Model Test technique for the same ship.

The present results also show that the effect of speed on the maneuver-

ability in shallow water is more pronounced at the low speed limit.
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Nomenclature

A aspect ratio defined by 2T/L

H water depth

I, yaw mass moment of inertia of a ship

Jpz yvyaw added mass moment of inertia of a ship

K stability index

L ship's length between perpendiculars

m mass of a ship

my, sway added mass of a ship

N yaw moment

r (=$) yaw angular velocity (turning to starboard is positive)
T draft of a ship or stability index

Tl' T2' T3 stability indices

8] advance speed of a ship

Y sway force

B drift angle

§ ' rudder angle (rudder deflection to starboard is positive)
Y heading angle or yaw angle

We shall use the notation: YB = %%-, Y, = g%~, Y = %% , etc.
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1. Introduction

It is known that the maneuverability of even a specified ship is not
unique but varies according to its loading condition, i.e. ship's draft, trim,
etc. Provided that the hull form of a ship is given, it is possible to guess
roughly the maneuverability of the éhip in a theoretical way even if the
method is not completely theoretical but is partly based on the experience.
However, when we want to know more definitely and more quantitatively the
maneuverability of a specified ship, at present, we cannot help relying on

experimental methods.

To investigate the maneuverability of ships experimentally, there exist
two ways, one of which is the captive model test and the other is the free-
running model test. In the former test, the hydrodynamic force acting on a
captive model is measured and then the hydrodynamic derivatives of the maneuvering
equations of motion are determined. 1In the free~running model test, the ship
response to the deflection of control surfaces, that is to say, the deflection
of rudder in most cases is measured, and the unknown parameters involved in
the mathematical model which describes the ship response are determined by
making use of the measured response of the ship. By means of the so-called
parameter identification, it is possible in principle to determine any number
of unknown hydrodynamic derivatives involved in the maneuvering equations of
motion by analyzing the maneuvering motion measured during the free-running
model tests. However, as far as we can judge from the few known experiences
in application of the parameter identificationl’z, the method is so affected
by the noise involved in the measured ship response that it seems to be very
difficult to determine the hydrodynamic derivatives of the equations of

motion with confidence to the same extent as in the captive model tests.

Hence, in order to determine the unknown bParameters of the equations
describing the maneuvering motion by the free-running model tests, it is
desirable that the mathematical model itself which describes the maneuvering
motion is simple, in other words the number of the unknown parameters which

should be determined is reduced as much as possible.

Nomoto proposed to describe the yaw response of a ship to rudder deflec-

tion by means of the first-order differential equation



TY + § = K6 . (1-1)

He also proposed to determine the stability indices T and K by analyzing
the time history of yaw response to rudder deflection which is measured during

a Kempf's zigzag maneuver 3.

This simplified equation of maneuvering motion has the advantage of a
clear description in which the degree of quickness of response and the degree
of turning ability are determined by the indices T and K respectively.
Actually, equation (1-1) can be used successfully to represent the maneuvering

motion of ships which are relatively stable on the course.

However, for many ships with large fullness, most of which are unstable
on the course, the description of yaw response by means of a first-order
differential equation is unsuitable for such an unstable ship. Instead of
equation (1-1), second-order differential equations with non-linear term

representing the non-linear stationary turning characteristics are proposed

by Norrbin"® and Nomoto®:
Tszlb +(T1+T2)w + H(Y) = K& + KT,6 (1-2)
B .o . -3 - . _
Tsz'nIJ +(T1+T2)xp + P + oY K§ + KT8 . (1-3)
To determine experimentally the parameters T1 ' T2 and T3 involved in
the above equations, Bech proposed a technique of phase-plane analysis of

Kempf's zigzag maneuver®. However, Bech's original method seems to be

unreliable because the noise which is unavoidably involved in the measured
yaw response, especially signal of yaw rate, make it very difficult to
determine the parameters Tl ' T2 and T3 with confidence. 1In order to
remove the defect of Bech's method, Nomoto and others’ and Fujino8 have
developed modified methods to determine the unknown parameters of equations
(1-2) and (1-3) which makes use of phase-plane trajectories as Bech's proposed

but reduces the dependence of the computations on noise.

Starting from the non-linear sway and yaw equations which are derived by
Taylor's expansion of the hydrodynamic force and moment, Clarke was able to
introduce another non-linear mathematical model similar to equations (1-2)

and (1-3), and he verified its validity.9

In this paper, the authors will use the non-linear mathematical model

of equation (1-2) to describe the yaw response of a ship in shallow water, and



will try to determine the unknown parameters involved in the mathematical
model by analyzing the results of free-running model tests. Then, the effects
of the finite water depth and the advance speed on the maneuvering characteris-

tics will be discussed.

Incidentally, one of the authors studied the shallow-water effects on
the hydrodynamic derivatives using the captive model tests and he discussed
the maneuverability of ships in shallow waterl?. as stated in the beginning,
the maneuvering characteristics of even a certain ship varies remarkably
according to its loading condition. However, it is tedious to determine the
hydrodynamic derivatives by the captive model test for all of the presumable
cases of loading conditions eveh in one case of water depth; it is also much
more tedious to conduct the captive model test for the various cases of other

test parameters, for instance, ship's trim, ship speed, etc.

From a practical point of view, it seems to be useful to describe the
maneuvering motion with such simplified mathematical models as equations (1-2)
and (1-3) even at the cost of accuracy of description, because the unknown
Parameters of equations (1-2) and (1-3) can be determined by conducting free-
running model tests which are easily applicable for full-scale ships. 1In
order that the marine traffic control may function effectively, the traffic
controller had better know properly the maneuvering characteristics of an
individual ship which will be under his control and the ship navigator on
board should know properly the maneuvering characteristics of his own ship.
Since the captive model tests cannot comply with such a need, the authors

believe that the free-running model tests will become more important.

For these reasons, the authors decided to determine the unknown para-
meters of the simplified mathematical model (1-2) and then discuss the effects

of finite water depth and model speed on the maneuverability in shallow water.

The prototype of the model which was used in the free-running model
tests, is a 2:00,000 DWT oil-tanker. The same ship was also the prototype of a
model which one of the authors had used to conduct captive model tests in
restricted waters to investigate the effects of restricted waters on the
hydrodynamic derivatives. The reason for selecting this particular ship as
the prototype in the free-running model tests is that it is necessary to

investigate whether or not the extent of the maneuverability of a ship deter-

-



mined by an experimental method, for instance, the free-running model tests
is consistent with that determined by another experimental method, for instance,

the captive model tests. e?
In the free-running model tests, the following experiments were conducted:

1) spiral test
2) reversed spiral test
3) modified zigzag maneuver in which the rudder is switched

according to the yaw angular velocity.

Namely, the stationary turning characteristics is determined from 1) the
spiral test and 2) the reversed spiral test, and then from 3) the modified

zigzag maneuver the time constants T, , T and T are determined.

1 2 3

2. Free-Running Model Tests i
2.1. Model used in the free-running model tests

As stated in the previous chapter, the prototype of the model used in
the free-running model tests is a 200,000 DWT oil-tanker; the model is made
of plastics reinforced with glass-fiber. The principal particulars and the .
body plan of the model are shown in Table 1 and Figure 1 respectively. The
screw propeller of the model does not exactly correspond to that of the
prototype. The geometrical form of a single screw-blade is precisely similar
to the prototype, but the number of blades is not the same. Namely, the model
propeller has only four blades, although the prototype does have five blades.
Hence, the blade area of the model propeller is four fifth of that of the
prototype.

The free-running model tests were conducted in the Seakeeping and Maneuver-
ing Tank (100 ft x 60 ft) of the University of Michigan. Since the surface
of the bottom floor of the tank was not flat enough for the shallow-water
experiments, a new concrete layer was laid on the original floor to improve
smoothness of the bottom surface. Consequently, the surface roughness of the

bottom was diminished to within *2 millimeters.

The test conditions under which the free-running model tests were conducted

are as follows;



water depth/model’'s draft : 1.2, 1.5, 2.0, 3.0, 8.7
model speed : 5, 9, 13 knots in full-scale

In what follows, the above-stated three speeds are called "low", "medium" and

"high" speeds respectively.

2.2 Measuring instruments

The items which were measured at the free-running model tests and the

measuring instruments are as follows;

a) yaw angular velocity (&) ... by rate gyroscope
b) rudder angle () ........... by potentiometer
c) model speed (U) ....cccve... by optical tracking apparatus

The model is completely free from the shore, and hence a D.C.. motor was
installed in it to rotate the screw propeller which was driven by batteries
stored inside the model. The number of revolutions of the D.C. motor and the
rudder angle were radio-controlled from the shore. A telemetry system, which
consists of a transmitter installed inside the model and a receiver set on
shore, was used to transmit such measured signals as yaw rate, rudder angle,

etc.

The desired model speed stated in the previous section means the advance
speed of the model while moving on a straight course, that is to say, approach
speed. Hence, once the number of revolutions of the propeller necessary for
the model to travel at a desired speed on a straight course was determined,
it was fixed during spiral tests, reversed spiral tests and modified zigzag

maneuvers at a specified water-depth/model's draft ratio.

Hence, when the model has large sway and yaw motions, for example, in
case of the spiral test with a large rudder angle, not only the longitudinal
cormponent of the model speed but also the resultant speed of the model were

remarkably less than the desired speed.

The calibration of the model speed versus the number of propeller
revolutions was conducted by measuring the time interval necessary for the
model t.o travel a prescribed distance under the various constant revolutions
of the propeller. In these runs of speed calibration the model was forced to

travel as straight as possible by controlling the rudder angle. The pre-



setting of the number of propeller revolutions and the control of the rudder
angle were carried out by adjusting the dials on the control console on the
shore, which is shown in Photograph 1. As seen in this photograph, this
console has some dials by which the number of propeller revolutions, the
rudder angle and the direction of propeller revolutions can be selected, and
has some analogue meters to display rudder angle, yaw rate and directional

angle of the model.

When the model is under voyage, it is tracked by three optical tracking
apparatuses (see Photograph 2) which are fixed on the inside wall of the
tank. These tracking units are connected directly to a digital computer,
which calculates the position of the model and two components of the model

speed as well.

The various kinds of measured signals which are transmitted from the
model to the receiver on the shore (see Photograph 3) are also fed to the
above-mentioned digital computer and stored in the core memory. At the same
time, the computer can feed back some processed signals to the control console.
By means of this on~line process the directional angle of the model which is
obtained by numerical integration of the measured yaw rate can be displayed

on the analogue meter of the control console.

All of the measured signals stored in the core memory are transferred
to the magnetic disk for the purpose of data preservation. To obtain the
phase plane trajectory of the modified zigzag maneuvers, we can take out any
pair of two variables, for instance, (@,@) from the magnetic disk and draw

the phase plane trajectory on the curve plotter.

The yaw angular acceleration @ and the rate of rudder change & are
computed by numerical differentiation of the yaw angqular velocity i and ‘the
rudder angle 6 respectively. This numerical differentiation was executed
by making use of a numerical differential filter with the cut-off frequency

being 1 Hz after Nomoto and others’.

2.3 Analysis of the recorded signals

Since the test technique and the method of analysis of Dieudonné spiral

tests11

are well known, they will not be discussed in this paper. In what
follows, we briefly discuss the reversed spiral tests and the modified zigzag

maneuvers.



2.3.1 Reversed spiral tests

If a ship is stable on the course, the relationship between the stationary
turning rate versus the rudder angle can be obtained throughout the whole
range of the rudder angles by conducting Dieudonné spiral tests. On the other
hand, if a ship is unstable on the course, the graph of the rudder angle
versus the stationary turning rate has a hysteresis loop at the origin of
the graph. Hence, it is impossible to determine the detailed relationship
between the rudder angle and the turning rate inside the hysteresis loop by
Dieudonné spiral tests. To remove this peculiar defect of the spiral tests,
Bech introduced the reversed spiral tests!2. 1In this method, the rudder angle
which gives a specified turning rate is measured and the rudder angle is
usually varied periodically so that the yaw rate may vary around a prescribed
value. In our experiments, this method, that is to say, the method of
periodical changing of the rudder angle was used. A typical example of the
record of yaw rate and rudder angle is shown in Figure 2. The mean values of
both rudder angle and yaw rate which are needed to draw the rudder angle versus
yaw rate relationship, were obtained graphically from the time histories of
the two variables & and § which were played back on the curve plotter from
the magnetic disk. 1In determining the mean values, we made use of that part
of the time histories in which the variation of rudder angle and yaw rate is
in a stationarily oscillatory state. In our experiments, after the first
three or four oscillations of rudder angle, oscillatory variation of rudder
angle and yaw rate reached an almost stationary state. The graphs of the
rudder angle versus yaw rate, which will be discussed in the next chapter, are
drawn for mean values of the rudder angle & and the yaw rate & taken in
three or five cyclic variations succeeding such unstationary oscillations as
mentioned above. The planimeter was used for the purpose of graphical

determination of the mean values.

2.3.2 Determination of the time constants Tl’ T, and T3

Since the method to determine the time constants Tl ' Ty and T3 from the
modified zigzag maneuvers is explained in detail in reference!3 , only a brief

description is given here.



First, we assume that the stationary turning characteristics H(¢)=K6
is known before the analysis of the modified zigzag maneuver will be started,
for instance, as a result of the spiral tests and/or the reversed spiral
tests. Then, let both sides of equation (1-2) be multiplied by the variable

@ and let them be integrated with respect to time over an arbitrary interval

(tO'tl); )
t t t t t
™Ty [ ... T+Ty (L. 1 (L .. 1. 1,.
—J Pyae + j yydt+ = H(y) ydt= | Sypdt+T 8 Ydt
K K K 3
t t t t t
0 0 0 0 0 (2-1)
Alternatively,
bt b (t t t §(t
T, .1)' - v .1). ] v ( 12 ¥(ty) (.1)
= P ap + wdw+if H(Y) d¢=f 6d¢+fr3j P ds (2-2)
¥ (tg) V(ty) vity) ¥(t,) §(ty)

If the above two instants tO and tl correspond to a single point on the

limit cycle of the trajectory drawn on a phase plane, namely

VlEg) = (e, bleg) = V(e), Yk = bt , Sity) = () (2-3)

equation (2-2) reduces to

1172 b + = OH(J)AY = dsay + T $dés (2-4)
T vab + 2 oH v+ Ty
where the integrals ¢¢d¢ ’ éﬂ(ﬁ)dw/K ’ ﬁddw and ¢¢d6 répresent the area
enclosed by the limit cycle drawn on & versus $ R H(i)/K versus ¢, 6

versus ¥ and & versus § phase planes respectively.

.3

Since the state of 1limit cycle was not attained in most of our modified
zigzag maneuvers, equation (2-2) was used for determination of the unknown

time constants.

Next, let both sides of equation (1-2) be multiplied by the variable &

and let them be integrated with respect to time over the interval (to,tl);



oop VD) on V(ED b (tg) ¥ (tq) d(tg)
' J Vav+ = | H) ap= | sap+Ty| Sav (2-5)
bty ¥ty bty ¥ty

If two instants, to and tl’ satisfy the conditions (2-3), equation (2-5)

reduces to

T1+T2§i13di» =§6dﬁ:+T §8d¢ (2-6)
X 3

where the integrals ﬁ@d@ ' é&d@ and ¢éd¢ represent the area enclosed by

the limit cycle drawn on ¥ versus @, Yy versus § and & versus § phase

planes respectively. Here, the following relations should be noted;
%wdiﬁ=-§iﬁd¢, §u’)d6=—§6d‘¢ (2-7)

Since the phase plane trajectory did not draw a limit cycle except in a few
cases, as stated already, equation (2-5) was used to determine the time

constants.

Apparently, equations (2-2) and (2-5) are two algebraic equations in
the three unknowns T1T2/K, (T1+T2)/K and T3 since the various integrals
included in those equations can be determined by fixing the time interval
(to,tl). Consequently we must provide more equations in order to solve for

the unknowns TlTZ/K’ (T1+T2)/K and T These equations can be obtained by

changing the time interval (to,tl) 03 by conducting modified zigzag maneuvers
with different combinations of the rudder angle and the switching yaw angular
velocity. 1In our experiments, modified zigzag maneuvers were conducted for
different combinations of the rudder angle and the switching yaw angular
velocity. Besides, the time interval (to,tl) as well was varied for a single
modified zigzag maneuver in order to provide as many equations (2-2) and (2-5)
as possible, which were solved by the least square method. Since K index
which represents the turning ability of a ship can be determined from the
slope of a straight line which approximates the stationary turning characteris-

tics at small rudder angles, the time constants T. and T. can be determined

1 2

from T1T2/K and (T1+T2)/K.



Detailed explanation on how to obtain the phase plane trajectories seems
unnecessary except for the H(&)/K versus Y trajectory. Namely, in order
to draw the phase plane trajectories except for the H(@)/K versus { tra-
jectory, it is enough to take out two signals simultaneously, for instance,

@ and m from the disk memory and plot a point (&,@) on a graph with i
and ﬁ being the coordinate axes to obtain the @ versus ﬁ phase plane

trajectory.

In what follows, the process of drawing the H(@)/K versus VY trajectory

will be briefly described.

First, we draw the stationary turning characteristics, that is to say,
6=H(@)/K on the Y versus @ phase plane as shown in Figure 3. Then, the

H(&)/K versus | trajectory is obtained in the following way:

i) PFirst, let us draw a straiqght line through a certain point, for
instance A on the { versus @ trajectory parallel to the
abscissa or Y=-axis and let it intersect both &-axis and 6=H($)/K

curve at two points which are denoted by B and C respectively.

ii) Next, let us draw another straight line through the point A so that
it crosses the Y-axis at a right angle and let D denote this cross-
point. Then, we define a point E on this perpendicular so that the

distance ED may be equal to the distance BC.

iii) By connecting the points E obtained successively in this manner, we

get the desired 1V versus H(@)/K trajectory.

In Figure 4, the various phase plane trajectories which are necessary
for the above-stated phase plane analysis are shown as an example. The points
marked by 1 to 9 in each of those figures correspond to each other and the
numbering order of these points, namely, from 1 to 9 coincides exactly with
the order of time elapse on the trajectory. 1In this example, (tl,t4),
(ta,t3), (ty,t7), (ta,tg), (tgq,tg) and (tg,tg) are the time intervals over
which the various integrals occuring in equations (2-2) and (2-5) were

computed.

=10~



3. Discussions on the Experimental Results

The stationary turning characteristics of the model which were obtained
from the spiral tests and the reversed spiral tests are shown in Figures 5 to
19, in which the ordinate stand for the stationary turning rate ¢t=w and
the abscissa represents the rudder angle. 1In each figure, the black circles
and the white circles are the $t=w versus ¢ points obtained from the
spiral tests and the reversed spiral tests repsectively, and it appears that
both kinds of tests can be represented by a single smooth curve. 1In particular,
it should be noted that the stationary turning rates $t=w which are obtained
by the spiral tests and the reversed spiral tests for a certain rudder angle
coincide with each other as shown in Figures 8 (see the points for §:-9°),
12(6:5°), 14(6:-9°) and 19(8:10° and §:-13°). These facts indicate that the

results of both the spiral tests and reversed spiral tests are reasonable.

In each of Figures 5 to 19, a solid line is drawn as the mean line
connecting smoothly both the black circles and the white ones. From the
inclination of a straight line tangent to the mean line at the origin,
Nomoto's K index is obtained and is shown in Figure 20 as a function of the
water-depth/draft ratio. The figure shows that the manner in which the K
index varies with the water depth is almost similar in the three cases of the
model speed. Namely, as the water depth decreases, the K value increases
and it attains the maximum in a region of the water depth where the water-
depth/draft ratio ranging from 1.5 to 2.0. However, when the water depth
decreases furthermore, the K index begins to decrease very fast. Consequently,
the K index at the water-depth/draft ratio, H/T, equal to 1.2 is less than
that at H/T ratio equal to 8.7.

Translated in terms of the course stability, what we stated above can be
explained as follows: The course stability of the model is positive in the
waterway with the H/T ratio being equal to 8.7, and it decreases with decrease
of the water depth. After the course stability becomes worst at a certain
water depth, where the water-depth/draft ratio being between 1.5 and 2.0, it
recovers remarkably as the water depth becomes shallower. 1In the waterway
with H/T equal to 1.2, the course stability is considerably better than in
deep water. Hence, it is obvious that the water depth has remarkable influence

on the course keeping quality of a ship.

-11-



The above-mentioned qualitative conclusion is consistent with what one
of the authors found earlier concerning the shallow-water effects on the
course stability of a ship which was based on the experimental results of the

hydrodynamic derivatives obtained by the planar motion mechanism! 0.

In the captive model tests, it was concluded that the course stability of
the same ship became negative when the water-depth/draft ratio was between
1.6 to 2.6. However, the free running model tests do not indicate that the
ship becomes unstable in any region of the water depth, but they indicate that
the course stability becomes worst in almost the same region of the water

depth as the "unstable" region revealed by the captive model tests.

One of the probable reasons why the free running model tests differ from
the captive model tests in estimating the course stability of this particular
ship is the difference of the slip stream behind the propeller due to the
difference in the number of the propeller blades. Because the rudder which
is placed in the slip stream of the propeller acts as a stabilizing fin. An-
nther probable reason for the discrepancy is due to the different trailing
wakes shed behind the model in the two experiments. 1In shallow waters, the
vorticity shed from the trailing edge of the hull becomes important due to
the blockage of the bottom and the tendency of the fluid to flow around the
hull. Therefore, the difference in the nature of the vortex sheets shed
behind the model in the two experiments will contribute significantly to
the resulting hydrodynamic forces and moments acting on the model and con-
sequently on the response of the models. Further developments of this

problem are underway at the present time.

In Figure 21, the time constant T, which was determined by the phase
plane analysis of the modified zigzag maneuvers is shown as a function of

the water depth.*

x Although the physical meanings of the time constants T; and T, involved in
equation (1-2), for instance, are identical, the following convention is used to
distinguish between these two time constants in this paper: if T} and Ty are

both real and positive, the larger is denoted by T} and if one of them is posi-
tive and the other is negative, the negative value is denoted by T;. Following
this convention, the extent of the course stability of a ship can be represented

by the time constant Tj.

-12-



Obviously, the qualitative dependence of T; value on the water depth
agrees well with that of K index. Namely, T; value increases with decrease
of the water depth, and it attains the maximum at a certain water depth,
where the water-depth to draft ratio is between 1.5 and 2. When the water
depth becomes shallower, T value tends to decrease so fast that Ty value
at the water-depth/draft ratio equal to 1.2 is considerably less than that at
the water-depth/draft ratio equal to 8.7.

In terms of the quickness of yaw response of a ship, the above descrip-
tion can be expressed as follows: First, the quickness of yaw response
becomes worse as the water depth decreases. At a certain water depth, the
quickness of yaw response becomes worst, and then it recovers so fast that it
is remarkably better at H/T equal to 1.2 than in deep water. Hence, it is
obvious that the dependences of the maneuvering characteristics of a ship on
the water depth as shown in Figures 20 and 21 respectively are completely

consistent with each other.

Here, it should be mentioned that more than one point for H/T ratio in
Figure 21 are what were obtained by different modified zigzag maneuvers or
by different choice of the time interval over which the integrals involved in

equations (2-2) and (2~5) should be computed.

In order to investigate whether the effects of shallow water on the
maneuverability depends also on the advance speed of a ship, the K index and
the time constant T} , which are shown in Figure 20 and 21 respectively, are
plotted again in an alternative way as shown in Figure 22, in which the
ordinate and the abscissa stand for the inverses of T; and K respectively.
The numbers written beside each group consisting of a few points, indicate
the water-depth/draft ratios corresponding to that group. In Figure 22, it
is interesting to note that except for the points corresponding to the case
of H/T=1.2 and "low" speed, the l/Tl versus 1/K relationship can be roughly
represented by a straight line through the origin. This approximation can be
explained as follows: It is well known that the course stability and the
turning ability of a ship are two properties which act contrary to each other.
Namely, if the T; value decreases and hence the ship becomes more stable
on the course, K value increases and the turning ability of the ship becomes

worse; and vice versa. Moreover, under the assumption that the maneuvering

-13~



motion is so small that the linear approximation may be valid for the descrip-
tion of the maneuvering motion, the ratio of T; value to K index can be

approximated as follows:

Ty TpTy )Ny - Yp(IppH+T,p) - Ng (-mO+Y,) - Np¥;
K K ~YgNs + YN,

(mimy )N, — Yg (I,,+3,,)

_YBNG + YSNB

R

(3-1)

because |T1|>>|T2| is true in most cases.

Hence, the change of Ty/K ratio due to the change of the water depth
can be predicted by the shallow-water effects on the hydrodynamic derivatives.
As verified by the theory and by the experiments, except for the rudder deri-
vatives Ys and Ns the hydrodynamic derivatives tends to increase mono-
tonously as the water depth decreases. Roughly speaking, the shallow-water
effects on the various hydrodynamic derivatives do not differ so much. For
instance, according to Newman's theorylu, the shallow-water effects on sway
added mass, yaw added mass moment of inertia, lateral force and yaw moment of
a rectangular flat plate are identical at the limit when the aspect ratio of
the plate, A, which is defined by 2T/L , goes to zero. Namely,

- [T}z -1

lim TiRH) lim A% By © - i £

a0 Ti(Br™) A0 8 log(cos gg}

T
8 log[cos Eﬁ}

n {H] (3~2)

where the subscript i indicates

F. = (my, Jz Y, N)

i z’

B; = (L, 3/8, 4, 2)

On the other hand, the rudder effectiveness in shallow water is affected
by various factors, for example, the wake behind a ship, the strength of the

slip stream of the propeller which should overcome the resistance increase in

-14-



shallow water, the so-called wall effects on the rudder which acts as a
lifting surface, etc. Hence, the precise prediction of the shallow-water
effects on the rudder derivatives Yg and Ng seems very difficult. Accord-
ing to Hess's analysisls, who computed approximately the shallow-water effects
on the rudder effectiveness by considering the rudder as a trailing-edge

flap, the shallow-water effects on the derivatives Ys and Ny are not so
simple to consider as in the case of the other hydrodynamic derivatives. For
instance, the graph for the ratio of ¥s at a finite water depth to that in
deep water has a dip near H/T=2.5 in the case of the example shown by Hess.
Also for H/T<1.25, there exists a strong influence of shallow-water on the
rudder derivatives YS and NG . Namely, the derivative YG increases

remarkably as the water depth decreases, but on the other hand, the derivative

NG decreases.

Roughly speaking, however, the rudder derivatives can be considered almost

constant for H/T21.3 .

Therefore, rough estimation indicates that the right hand side of equa-
tion (3-1) does not change so much with the water depth. 1In reality, the
values of (T1+T2)/K determined by solving the set of linear algebraic equations
(2-2) and (2-5) were almost constant not only in both cases of "high" and

"medium" speeds but also in "low" speed except for the case of H/T=1.2 .

For the sake of comparison, the inverses of Tl and K which are compu-
ted by using the hydrodynamic derivatives measured in the captive model tests
are plotted in Figure 22. We note that although the captive model tests were
conducted at 12 knots in full-scale, the results of the captive model tests
qualitatively agree well with those of the free running model tests at 13 knots

in full-scale.

Figure 23 is an alternative representation of Figure 22. Both axes stand

for the inverses of non-dimensional T' and K' indices:

1
1 _1
Ty TU
1 _10
K' XL (3-3)

If the hydrodynamic forces acting on the hull and the rudder are propor-

tional to the square of ship speed, 1/Ti value should be described as an
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unique function of 1/K' irrespective of the ship speed. Actually, the data
for "high" speed and "medium" speed can be approximately described by a single

curve, but the data for "low" speed deviate from the curve.

Finally, let us reconsider the method to determine T1T2/K ' (T1+T2)/K
and T3 , which were determined in this paper by solving the set of equations
(2-2) and (2-5). As a matter of fact, the set of more than two equations
(2-2) and (2-5), which were prepared not only by conducting modified zigzag
maneuvers for different pairs of the rudder angle and the switching yaw
angular velocity but also by using the various time intervals, (to,tl), for
a single modified zigzag maneuver, were solved by the least square method in
order to determine the unknowns with high confidence. However, when the
choice of the combination of the rudder angle and the switching yaw angular
velocity or the choice of the time intervals was inadequate, the matrix of
the coefficients of the set of equations (2-2) and (2-5) tend to become nearly
singular and it was difficult to solve the equations with confidence. 1In
reality, the solution for T1T2/K was less accurate than the other unknowns
in most cases, and in few cases we obtained unreasonable solutions mainly for

T1T2/K.

It appears that we must use some different methods to avoid this
difficulty. Of course, conducting the modified zigzag maneuvers with consider-
ably different combinations of the rudder angle and the switching yaw angular

velocity is one of the probable solutions, but it seems tedious.

An alternative way is to add another equation with the unknowns Tsz/K,
(Tl+T2)/K and T3 to the set of algebraic equations to be solved. For
example, let both sides of equation (1-2) be multiplied by the variable

and let them be integrated over the interval (to,tl):

t t t t t

T1Tp 1. T1+T2 1. 1 1, 1 1,
< Y pat + —— ¥ Ydt + X H(Y) pdt = 8 ydt + T3 § ydt
t, ty t, t, t,

(3-4)

Then, it is possible to determine three unknowns by solving the set of linear
algebraic equations (2-2), (2-5) and (3-4). The integrals fﬁ(@)wdt/K and
fwddt should be obtained by a straightforward integration with respect to
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the time, and moreover it should be noted that before the modified zigzag
maneuver is started, the ship's heading angle should be carefully kept as
straight as possible by deflecting the rudder. Needless to say, the variable
¥ appearing in equation (3-4) stands for the heading angle by which a ship

deviates from the approach heading angle.

In the present analysis of the modified zigzag maneuvers, this method
was not tried because care to keep the model on a straight course during the

approach was not taken in the experiments.

4. Conclusions

With the model of an oil-tanker, of which the hydrodynamic derivatives
in shallow water were measured several years ago, the free running model
tests, namely, the spiral tests, the reversed spiral tests and the modified
zigzag maneuvers were conducted in order to investigate the influence of both
ship speed and shallow water on ship maneuverability. The main conclusions

obtained by this investigation are as follows:

i) The course stability of a ship is remarkably dependent on the water
depth. Namely, our model which is stable on the course in deep
water has the minimum course stability for 1.5SH/TS2.0. However,
in shallower water, for example, at the water depth where the
water-depth/draft ratio being equal to 1.2, the model is remarkably
stable than in deep water.

ii) The shallow-water effects on ship maneuverability obtained by the
present free running model tests qualitatively agree well with those
deduced from the captive model tests. Hence, although the maneuvering
characteristics determined by the free running model tests differ
quantitatively from those obtained by the captive model tests, we can
conclude that the free running model tests yield predictions of the
shallow-water effects which are consistent with that based on the
captive model tests.

iii) The present results also show that the maneuverability in shallow
water at "low" speed is different from that at "medium" and "high"
speed.

iv) As a problem to be solved in the future, the method to determine

the time constants from the phase plane analysis of the modified

-17-



zigzag maneuvers should be improved.
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Table 1. Principal particulars of the model

Length between perpendiculars (L)

Moulded breadth (B)
Moulded draft (even keel) (T)
Displacement

Block coefficient

Longitudinal center of buoyancy
Radius of gyration

Rudder area

Diameter of propeller

Pitch ratio

Boss ratio

Direction of rotation

Rake angle

Number of blades

Scale

2.4383 m (8 ft)

0.3994 m

0.1345 m
105.83 kg

0.8054

0.0621 m fore from midship

0.269 L
5040.1 mm2

65.59 mm
0.7397
0.1821
right
7°01"
4*
1/118.9

* The propeller of the prototype ship has five blades.

of the model is four fifth of that of the prototype.
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Photo 3. The dark box in the front of the
photo is the receiver unit. Also, we

can see another tracking apparatus fixed
on the far wall of the tank.
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Figure 3. Process of drawing the 1 versus H(ﬁ)/x phase plane trajectory

-26~



Axojzoslexy suetd aseyd 9 snsa’a h (e
(poads ,umTpaw, ‘.-8=L/H) seTxo308(®I3 suetd eseyd JO SPUTY SUOTIEA DY3 JO SsoTdwexy “p sanbtg

(2'23s/'93Q)
(4) NOILVYITIOOV MVA

(*23s/'930)
/4

() 3LVE MY

-27-




Laoj3osfexy suerd sseyd ¢ snsasa h (g
(poeds ,umtpeu, ‘/-8=L/H) saTiojzoaleay suerd sseyd jo SpuTy snotiea 8yl Jo soarduexy °p oanbrg

('930Q)
(9) 3TONV ¥3adny
S 3
0
6
v
('930)
(#) 379NV ONIAVIH
8 fr 0; h-

L L

~-28-~




Kxojoelexy suerd @seyd ¢ susaxsa f (D
(poeds , umtpsw, ‘.°g8=L/H) soT1x0o3dafeal sueld sseyd 3o sSpuTry snotiea syl 3jo soTduexy °p oanbrta

(9) 39NV ¥3adny

vy & |('930)
0¢

A.umm\.cmmv
(4) 3LV8 MVA

O
|
-29-




KAxojzoslexy sueld aseyd Q0 snsiea

. (p
(peads ,umtpaw, ‘.-g=L/H) soTI03oalex3 sueld sseyd jo spury snotaea’sys Jo mwawamxm -y ®1nbTa

(*23s/'93Q)
/4

10¢-

(#) 3LVY MVA M

(*23S/'930Q)
(9) 9NV ¥3AANY 40 3LV

-30-



YAW RATE (¥)
(pEG./sEC.)

2 | S5

Y vs@'tnﬁecuxy

YAW ANGLE (¥)

RUDDER ANGLE

2 (8)
N

10
(pe6.)

Figure 4. Examples of the various kinds of phase plane trajectories (H/T=8.7,
"medium" speed) .
e) V¥ versus H(Jy)/K phase plane trajectory

-31-



paads

wMOT, PuU®e [°8=L/H 3JO

85O UT SOTISTIDIORIBYD HuTuany AIeuoriels

G aanbtdg

®
p m..ﬂl
H0'1-
18'0-
('930) JFTI9NV ¥3aany
0¢ 0¢ 0T Oql 0T- 0¢c-
I T T T T ]
si1s3l o
VY 1d4S G3ISYIAIY WO¥3 O 15'0
S1S3L VYIdS WO¥d @
o
10T
o — [ )
. S'T

('93s/°930) JIVY MYA

-32=~



paads 40T,

PU® Q°€=1L/H JO ®sed UT SOT3STI93ORARYD DBuTuany Axeuorzess

‘g aanbrg
°
("930) TIONY ¥300NY
0¢ 114 1] § 0¢-

| ) 1 i or

T
s1s3l o .
IVYIdS Q3IS¥IAIY Wo¥d O () -1 50

1531 VY¥1dS WoNd @ &
0'T
4 S'T

(7938/930) JIWY WVA

.



@QQQW wMOT,, pue OoNH—H.\..N

JO 95eD UT SOT3STI9YORIRYD buTuany Axeuoriels

°L 2anbtg

("930) J79NY ¥3aany
0 0c
f

1]4

SiS3L
J<¢~mmnmmmm>mmzomuo

S1S31L VHIdS WOY¥d @

('935/'930) 3IWY MVA

34~



poads

(*930) JI9NY ¥30AnY
0¢ 0z 0T

wMOT,, Pue §G*I=L/H JO 9S®d UT SOT3ISTI9IDeIRYD Hutuiny Axeuorizeas

‘g 2aNOT 3

0g-

S1s3l
TvYIdS (3SU3A3Y WOHd o

S1S3L IVYIdS WOHd @

(*935/°930) JIVY MYA

6'0

0'1

EN

-35~



poads ,MOT, pPu®e Z°'I=L/H JO ©Sed UT SOTISTAI3ORIBYD HBuruiny Axeuoriels

*6 a2anbtga

(°93Q) JI9NY Y¥3qany
1} 0¢ 1] 0 0g-
1 I ¥ I I 1
s1s3l 4
IVH1dS Q3SYIAIY Woud © o/ | <0
S1S31 IVHIdS WO¥d o °
40T
-9'T

(79357°930) 3IWY MVA

-3Fm



peads ,umTpsw, pue ,°g=I/H JO @SBD UT

(*93d) F9NV Y3any
0¢ 0¢

¥ I

0T

$1S3L

SOT3STI9}ORIRYD HBuTuany Axeuorizels

*0T @anwTy

IVYIdS Q3SYIATY WoHd ©

4T
S1S3L IVHI4S WO¥d @

(*935/°930) 31V MVA

37~



poads ,umtpsu, pue 0°€=1/H JO 9SeD UT SOTISTAIIORIRYD butuany Aaxeuorjzels

*1T @anbrg

IMI
-z
41~
('930) JT9NV ¥30am o
19 0¢ 1] 0 0T- 0¢c- 0¢-
i I ] 4 L |} i
>
(o]
sis3at
IVYI4S GISYIA3Y Wodd © 1T
S1S3L VY1dS WOdd ® °
m KA
-¢

(1938/°930) JIW4 MVA

~38~



poads ,umipew, pue 9°z=I/d JO oSed uT SOT3STI93ORIBYD

(*930) I79NY ¥3aamy
1}1 0¢ 01

| I

butuany

Axeuorijess

*ZT @anbrg

0¢-

S1s3l

IVYI4S Q3IS¥IA3Y WOH4 O o,

S1S3L IVYIdS WOYd @

('935/°930) LWy MYA

-39~



poads ,umTpow, pue G'TI=L/H JO 9sed Ul SoTiIsTIajzoexeyo burtuany Axeuoriels

€T owsmﬁm

(*930) FIONY Y3aamy

0¢ 02

1]
r T

0¢-
s1s3L
IVYI4S AISUIAIY WOY4 ©

S1S3L TVAIdS WO¥d @

(*o3s7'930) I W MYA ] &

-40-



poads ,umTpsw, pue z°{=1/H JO Ise

O Ut sJT3sTI930RILYD butuiny Axeuorze3s

*¥T Lanbrg

JMI

1~
(930) JTONY ¥3qany
1}4 0c 0T 0 0¢-
] ] T °
PA
S1Ss3li
Iv¥IdS Q3ISYIA3Y WO¥d O

S1S3L TVHIdS WOYd e

(*93s/°930) 3IWY =<}g

-41-



paads ,ybrty, pue L°8=L/H JO 9Sed UT SOT3STI9}oexeyo buruini Axeuorjzels °gI aianbrg

d
('930) JI9NY ¥3IAANY
0¢ 0¢ 1) 0 0¢-
r 7 : T L
Sis3al
IYYIdS A3SYIAIY WOY¥d o T
S1S3L IVYId4S WOYd @
A
¢

('935/°930) 3IVY HYA

-

—42-



poads ,ybTy, pue Q0°g=IL/4 FO ISED UT SOT3STAS3ORIRYD buTuany AIrUOT3IR3S

(*930) 9NV §30aNY
0¢ 0z 1]
i ¥

‘91 @anfra

S1s3L
IV¥IdS AISYIATY WOoud ©

S1S31 IVYIdS WoYd @

e  (7938/'930) JIWY MVA

-43-



peads ,ybty, pu®e 0°Z=IL/H JO 9SO UT SOTISTIASIOBILYD HUTUIN] AXIRUOTIRIS

(*930) FI9NV Y3Q0Ny
1}

r

0c

0T

*LT 9Inbrg

0g-

Sis3lL
VYIdS GISHUIAIY WOYd O

S1S31 TVYIdS WOHd @

('93s/°930) 31WY MYA

—d

-44~



psads ,ybTy, pue G°T=L/H JO 9SEd UT SOTISTISORIRYS BuTuany KAxeuotrye3s

*gT ®anbrtg
(]
4 ¢-
- Nl
- Hl
('930) JIONY 0y
0 0z ot 0 ot- 0z- 0¢-
f T I _ _ _
o
o
s1s3lL
IV¥I4S Q3SY¥IAIY WOY¥d O J
S1S3L IVYIdS WONd @

-45-



peads ,yb1y, pue z'T=I/H JO 9SED UT SOTFISTILJOERIRYD Hurtuiny Axeuorieizs °6T oanbrd

4¢-
an
41I-
('930) 19NV ¥3000Y
0g 0¢ 1]4 0}
r j 1 J
g
s1s3L 1
TYy1dS G3SY¥IAIY Woyd O Yo
S1S31 TVY1dS WOYd @
. 1,
1¢
('938/°930) JLWY MVA

46



0's 0'h 0'¢
T -

poads Tepow Jusrs3ITP 03 drysuorierax orjzex 3yeip/yzdop-Isiem Snsiaa X9pUT M °*0Z 2anbrg
1/H

0'T

d33ds H9IH ———N——

a33dS WNIQEN e o

didds M0 —O0—

==
il
(Ve

-——"+

('235)
VAt

[V, by



4K

QO++

!

0'h

poeads Tepow jusaezyTp Ioy drysuorjersi orjex 3307p/adop-te3en shsxea xopur Ty *Tz ommbra
I/H 0's

0'¢

02
r

33ds HOIH ——T——
33dS WNIQIW ——mdf——

@33dS M071 ——O

S0°0

—0T°0

/
=i

1 S1°0

q-—""‘

('33s/1)
T

~48-



drysuotjerax }/1 snsIva L5/T

('93) WT 0T

*Zz @anbra

vs'e
S
| : ;

68°1

S1S31 T3dOW 3A1LdYD

: \\ | | - mo.o
Y

/ ] 4 0T'0
4F /

y rf
N.T.WM\ v

\ 7
my
g
N.ﬁua\m y

—151°0
Y .
N..ﬁnn.\m ” /!
?
o

: (*33s/1)
R €°T=1/H : jVA1

=49~



mﬂsmGOﬂumﬂ.ou /T susasa HB\H *€z 92anbrg
AT 0'Z 0T D
. 1 1] — . T o
.:.0.4
o oty
S1S3L 1300W JAILdVI Wo¥d
. 3444
: S'0
G33dS HOIH oo + +
d334S WNI1G3W oo™
a33ds MO Aad
0'T
To] o]
S'T

T

=50~



affirmative action employer. Under applicable federal and

state laws, including Title IX of the Education Amendments
of 1972, the University does not discriminate on the basis of sex, race,
'or other prohibited matters in employment, in educational programs
and activities, or in admissions. Inquiries or complaints may be ad-
dressed to the University’s Director of Affirmative Action and Title 1X
;:gé_npliance: Dr. Gwendolyn C. Baker, 5072 Administration Building,

0235. “

g The University of Michigan is:an equal opportunity/





