No. 201
June 1978

HYDRODYNAMIC INTERACTIONS BETWEEN SHIPS
IN SHALLOW WATER

by ’
Tin-Woo Yung

The preparation of this report was
supported by a grant from the National
Science Foundation (Grant ENG76-24588)

1 g Department of Naval Architecture
‘S"';‘ and Marine Engineering
- College of Engineering

. The University of Michigan
d? Ann Arbor, Michigan 48109



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to
Professor T. Francis Ogilvie and Assistant Professor
Robert F. Beck for the concern and support in this study.
Their contributions are most important and their interest
are inspiring throughout the course of this work.

Special thanks are extended to Professor Chia-Shun
Yih and Dr. Nabil Daoud who provided numerous invaluable
suggestions concerning this subject.

Thanks also goes to other members of my dissertation
committee and Dr. Armin W. Troesch. From them, enthusias-
tic help was always available.

I would also like to thank Mrs. Paula Bousley for
the typing of this manuscript.

Finally, I would like to thank my family for their
understanding and encouragement during these years of

my education.

ii



ABSTRACT

A method is developed for predicting the forces and
moments acting on a vessel due to the hydrodynamic inter-
actions between vessels in a passing situation. The
lateral separation between the vessels is assumed large
so that the vessels are in each other's far field. The
speed of the interacting vessels is small so that the
free surface effects are neglected. The water depth is
assumed small so that the ship is close to the bottom.

Two cases are investigated, namely, the case when the
ship touches the bottom (two dimensional problem), and
the case when there is a slight gap beneath the keel
(shallow water problem).

The general problem is solved using the method of
matched asymptotic expansions. In the far field, the body
and vorticity in the unsteady wake region are represented
by a distribution of sources and vortices. As typical of
slender body theories, the source strength can be directly
related to the body geometry. The vorticity must be
determined by the solution of a pair of coupled singular
integral equations. The integral equations are solved
by a successive approximation scheme. The side forces and
yaw moments are calculated using the source and vortex
strengths.

Numerical results are presented. Due to the lack of
experimental data, comparison with experimental results
are made for the two dimensional problem only. Qualitative
agreements between the numerical and experimental results

are indicated.
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I INTRODUCTION

The motion of ships in close proximity and restricted
waters involves serious hydrodynamic interactions. Parti-
cular cases of interest are ships in a re-fueling maneuver,
ships passing each other, a single ship moving parallel to
a canal wall or a channel bank,etc. In all these cases, the
hydrodynamic interactions are dangerous and collisions may
Occur. Such dangers become even more serious in shallow
water problems because the magnitude of the interaction
forces and moments are substantially larger due to additional
restrictions on the flow.

Collatz (1963, cf. Ref. [15]) studied the problem of
the hydrodynamic interactions between bodies in two dimen-
sional flow. In his theory, no Kutta conditions were imposed
on the trailing ends of the moving bodies. This is justi~
fied for blunt bodies such as moving cylinders. However,
for extended bodies like 8:1 ellipses, Collatz's prediction
of the interaction forces are not satisfactory in the cases
of both bodies travelling in tandem and on the moving body
in the case of one body passing a fixed one. Nevertheless,
Collatz's results on the stationary body show good correla-
tion with Oltmann's experiments (1970, cf. Ref. [14]).

As later demonstrated by Tuck, (1974, cf. Ref. [8]) this is
probably due to the lack of an appropriate Kutta condition
on the trailing edges of the moving extended bodies.

Tuck and Newman (1974, cf. Ref. [8]) developed two
theories for predicting the hydrodynamic sway force and yaw
moment acting on each of two ships when they are moving
along parallel paths., For ships in deep water, they
developed a three-dimensional slender body theory in which
the first approximation for the solution in the neighbor-
hood of each ship is computed as if the other ship were
not present. For ships in shallow water, they solve a two
dimensional problem by considering the ships simultaneocusly
with Kutta conditions imposed on the trailing edges of the
moving ships. They also give a formulation to handle the



cross flow beneath the ship's keel and the bottom. They
solved the general three dimensional problem but their theory
for two dimensional motion was limited to steady state

cases in order to avoid the complication of vortex shedding
from the trailing edges of the moving ships.

In this work we shall study the problem of hydrodynamic
interactions between two ships in relative +otions in shal-
low water. Because of the unsteady nature of the problem,
vortex shedding from the trailing edges of the moving ships
must be taken into consideration. However, we will assume
that the velocity of the moving ship is small and that the
interacting bodies are in each other's far field so that
wave effects and the details of the flow around each body
can be neglected.

If we consider both ships simultaneously we will
inevitably arrive at a pair of coupled integral equations
whose kernels are functions of time. This causes tremendous
computation effort. 1Instead, a successive approximation
scheme is developed, which consists of a system of integral
equations with the same time independent kernel.

The two dimensional problem will be studied first in
order to develop the successive approximation scheme and
test for convergence. Next, the shallow water problem is
investigated. 1In the shallow water problem, the ship is
not touching the bottom, so that there is a flow beneath
the keel. The flow beneath the keel is treated in a fashion
similar to that formulated by Tuck and Newman (1974, cf.
Ref. [8]). The far field description is represented by
two dimensional singularities distributed along the center
lines of the ships plus wake region. The far field can be
analyzed using the technique developed in the two dimension-
al problem. The near field problem is a stream flow past
the ship section in a channel. The strength of the singu-
larities will be determined by matching.

In this work, it was found that the unsteady vortex

shed from the moving ship provides an important contribution



to the sway forxce acting on the moving ship. The cross flow
under the keel was found to be of paramount importance in
the shallow water problem. Numerical calculations indicate
that a slight gap alters the flow significantly.

This report is divided into two main sections. The
first section deals with hydrodynamic interactions between
bodies in two dimensional flow. Numerical results for the
case of one body passing a fixed one are presented and
comparisons with experiments made. In the second section,
cross flow beneath the ship% keel is introduced, and numeri-
cal results are presented for the case of one ship passing
a stationary one in shallow water.



II HYDRODYNAMIC INTERACTIONS BETWEEN_ BODIES
IN TWO DIMENSIONAL FLOW

(1) The case of a moving body passing a fixed one.

The problem considered here is that of a body moving
with a constant velocity U passing a stationary body.
The two bodies are assumed to be thin and oriented as shown
in Figure 1. The fluid is considered as incompressible and
inviscid. We shall use a separate coordinate system on
each body. Denote the ith body by a Cartesian coordinate
(xi,yi) such that x;=0, yj=0 represent the mid-body
station and center plane, respectively, with Xj measured
forward and y; to starboard. Body 1 is assumed to be
fixed and body 2 moving with a constant velocity U.

Figure 1. Co-ordinate System

The lateral and longitudinal separations between the
bodies are denoted by n and £(t) , where n is fixed
and independent of time, £(t) is the "stagger" such that
£(0)=0, i.e.,

E(t) = %) - xp = Ut . (2.1)

For simplicity, we assume the bodies are symmetric
about their center-plane, so that



yi = 1 £5(x3) , -L3<x3<84 (2.2)

represents the upper and lower surface of the ith body.
Furthermore, f;(x;) is assumed to be small compared to
2i and n .

The disturbance velocity potential can be written in a
most general form

2 Li
= 53
¢ m I [0 (E,t) anvV (X -E) 2+y; 2
i=1 o 21
-1 Yi
+ vil(g,t)tan Tt 19
+ 2%'{ Yw(E,t)tan_liggg at (2.3)

- 00

Where oj is the source strength and y; is the vortex
strength due to body i, Yw 1s the vortex strength of the
unsteady wake shedding from the trailing edge of the moving
body.

To satisfy the linearized boundary condition on the
fixed body, we write:

lim ;Q—
y,>+0 Y1

il

-27<x1<8; (2.4)

Substituting this into (2.3), we obtain
'

o= HoLlm®) | L rEn g4
2 2n xl-g
_2'1
22 .
1 n X2~
+ 5o J [0 (€1 8) =gymr * Y2 (60 -2yl
-2
2
-2
2 -
1 X3~¢
+§?[ YWl ) GoEyeemr

- 0O

(2.5)



where the bar on the integral sign signifies that the
integral is taken in a Cauchy's principal-value sense.
From (2.5), it follows that

o1(x1,t) = 0 (2.6)
and that
% %
1 2
v1(&,t) xX1-Ut-¢
][ - 98t f Y2 (88 gy Teme @
1 T2
2 -2
_ 2 03(E,t) df 2 (£ 4y XLTUEE 4
=-n (x,-Ut-g) 24n? ~ | YulEs )(xl-Ut—g)z+nz 3
=% - (2.7)

since X,=X, - Ut
Similarly, the linearized boundary condition on the
moving body gives

lim 2% = F U (xy) ~,<Xp<hy (2.8)
Yy 2
y2+i0 2

where the prime denotes differentiation with respect to xj.
Substituting this and (2.6) into (2.3), we obtain

2
. _ o2 (x2,t) 1 Yo (&,t)

w2 (E,t) 1 Xq-£
1 Yw Gy 1 1
t ooy j Xy—8 ¢ + 27 j Yl(g't)18r552+n2 dt
- = (2.9)
It follows that

oz(xz,t) =—2Uf£(x2) (2.10)
and that
L L
2 71
Yg (Ert) x2+Ut_E

2 1




-2
Z'Yw(glt)

- f o dE (2.11)

- 00

by (2.1)

(2.7) and (2.11) are a pair of simultaneous integral
equations for the unknowns Yy v Yoo The singular kernel is
independent of time, while the others are functions of time.
Analytical solutions to such systems are usually impossible
to find. It is well known that such a system can be solved
by the so-called "time stepping” method. Unfortunately,
the time dependent regular kernel makes conventional
numerical techniques difficult to apply. The time dependent
kernel requires the laborious process of inverting a new
coefficient matrix at each time step.

We shall proceed to set up a successive approximation
scheme which eliminates the need for solving simultaneously
integral equations with time dependent kernels.

Let

Y1 (B E) = v (E,t) + vi(E,t) + vI(E,t) + -.-
Yo (E,t)
Yy (Ert)

Y2 B t) + v3(E,t) + y5(E,t) + -

Yo (Ert) + vo(E,8) + v2(E,t) + ... (2.12)

Puttlng these into (2.7), (2.11), denoting yl(g t) by Yi
’
Y2(£ t) by yz,etc. and using (2.10), we arrive at

2 2
(a) 1 'Y1+‘Y1+‘Y1 eee dc + 2 (v Oy Ly 24 ) x1-Ut~E ar
_gl —22
-2
_ "2 £5'(€) 2 Opy Ly 24, . .) *1~0t¢ a
R B T i B A A T S R
-9 -0
2

and



2
(b) ¢ 2(Y§+Y§+Y§+o--) ILl o _ (x2+Ut—E)
X,-E Rl j ittt ) orgemgyEee 98
Th2 (y Oy ey e L)
_ w 'w 'w "7
- —J X,-E at
- OO 2
(2.13)
(2.13a), (2.13b) can now be rearranged to give the following
system
(@ (1 y2 20 £,
gt %
(b) %, y% e Y& 3 . X,+Ut=E
Xy=E ¢ = -I xz-aﬂg —j Y1 (x,+0t-E) 2+n? dg
—22 -0 —21
RN vl %2 Ik
1 - - 0 (¥1-Ut-£) _ o (X1-Ut-£)
J X EF T I Y2 Ty -Ut-g1 ezt 7] Yw Tx -UE-E) Zinst
"21 —2,2 -Co
(d) _
‘2 v} fay} “1 1 (X2+4Ut-£)
f X,-E ’J x-Eo" | (x,+0€-€) 202 9

(2.14)

By using the above iteration scheme, we have arrived at a
system of integral equations, in which each integral equa-
tion contains only one unknown and the kernel is completely
independent of time.



Equations (2.14a) and (2.14b) give the first approxima-
tions of the scheme. Equations.(2.l4c) and (2.14d) etc. are
the next and higher approximations. Equation (2.1l4a) is
an integral equation for yi » which is the vorticity
generated in the fixed body to counteract the disturbance
caused by the moving body. In the first approximation, the
moving body is represented as a line distribution of sources
causing a disturbance represented by the right hand side
of equation (2.14a). Note that the source strength is
computed as if the fixed body is not present. As we see
in equation (2.14b), y{ will in turn induce a disturbance
on the moving body, causing a distribution of vorticity
Yg along the moving body. Because the problem is unsteady,
there is also vorticity in the wake, represented by y& .

y% and y& will further influence the flow around the fixed
body and so on as represented by the second and higher
approximations.

From the above system it is obvious that we may consi-
der the hydrodynamic problems for each of the two bodies
separately.

(a) The Fixed Body Problem.

From equation (2.13a) of the last section, we obtained
the following system of integral equations for the vortex
strength Y1 of the fixed body:

@ (178 25,00 a
f EI:EdE = 2Un J (Xl‘Ut‘E)2+n2
1 "2
(b) )
£ 1 2 =%
1y 2 ~Ut- 2
1 3£ = - (x31-Ut-g) _ X7 -Ut-E
Xq= &= f Yg(xl-Ut-E)'é"ﬂ] 2 J Y& (xl-Ut—g)2+nzdg
~2 oy} —o

1 2
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(c)

L 2 L -2
1Y _ 2 | (x1-Ut-§g) 2 (x1- Ut-f)
x-20° T 7] Yoz -vtmpyzen 9% “J VW%, —0E-£) 2#722°
-2, -2, —w

L A

(2.15)

For the time being, assume the right hand sides of
equations (2.15) are known. These equations are singular
integral equations of the Cauchy type, and the singular
operator is commonly known as a finite Hilbert Transform.
Solutions to such equations are not unique, so we must
provide more information on the circulation conditions and
conditions at infinity. We impose the following conditions
on each of the yi's

1) There is no net circulation generated on the fixed
body.

2) The disturbance must vanish at infinity

The first condition is justified because if the total
circulation on the fixed body is other than zero at any
instant , Kelvin's theorem regquires that there must be
vorticity in the fluid. Since there is nothing to convect
the vorticity detached from the fixed body, the total
circulation must be zero there at all times.

The solution to the integral equation satisfying these
conditions is unique, and we may use the inversion formulas

(see Appendix A) to write the solution to equation (2.15)

directly as 24 %5
N L LI S B el N
1 1 - 1 1 "2,2
(2.16)
and .
: 2Un 1 fp2 72
YL = T —— YRITET 4.
l(xl’t) 1]'2,/2,;._}(1 f C_xl gl(Clt)dL (2.17)

..2[1
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2 -2

2 i-1 (X1-Ut-g) ar + [ i1 _(%1-ut-g)
T2 (x-0t-E) 247 96 Yw (X =Ut-E) 242

) - i=1,2,3,...

Note that the vortex strength is singular at both ends.

(b) The Moving Body Problem.

From (2.13), we arrived at the following system of
integral equations for the vortex strength of the moving
body.

L

221%5_,1:_) _ b2 Yl(E,t) 1y Xp+Ut-E
fo Rt at - -] B | i (xp+0E=E) Z4nzo
-9 —oo -21

i=0,1,2,... (2.18)

In the above equations, the second term on the right-
hand side can be identified as the cross flow induced on
the moving body due to the presence of the fixed body ; Y;
is the unsteady vorticity shed from the trailing edge of
the moving body.

At this point, the only known part of the integral
equation (2.18) is the second term in the right-hand side.
Naturally, we need more conditions in order to obtain the
solution. The following conditions still remain to be
satisfied.

1) Pressure must be continuous across the wake.

2) The Kutta condition must be satisfied on the

trailing edge, i.e., the velocity must be
finite there.

3) The total circulation in an ideal fluid must

remain constant by Kelvin's Law.

First, consider the condition on the vortex wake.
Denoting (x2,y2) by (x,y), define

i 172
bo(x,0,t) = 5[ vy (E,t)AE

X

~d <=4 (2.19)

2

dg
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From the linearized Bernoulli equation, the pressure
must be continuous across the wake region.
Pyl _ a¢wl_ - dpw™ i, 0
o ot X -
y=0, -m<x<—22 (2.20)

where the + and - signs denote that the quantity in the
bracket is being evaluated on the upper .4 lower side of
the vortex wake.

Upon differentiating with respect to x equation

(2.20) and using (2.19), we obtain

A
) 3 JYVJ:, =0 —-0<X<—1 (2.21)

[5? - Usx 2

This is a one dimensional wave equation, The solution
to this partial differential equation is

Yy (X,t) = £ (x+UL) = y_ (x+Ut)

—“<x<—£2 (2.22)

Physically, this indicates that the vorticity is
swept downstream by the flow -U, and remains constant in
this reference frame.

Dropping superscripts, each equation of (2.18) takes

the form
2 v, (E,t) 2 ot
f —gi:é—_dg = —J Zﬂ;:g-——dg - V(x,t)
_22 - 00
—22<x<22 (2.23)

where V(x,t) is a known function.
A particular solution to (2.23) satisfying the Kutta

condition can be written as (cf. Appendix A.b):

2 : 2
1 AoFx ([ 2y, (s+ut) =R Yot VIE,E) )
Y2 T w7 l“J "H“EZE‘Q’Exzﬁ'dg‘f 1P Eex o0
oo - '_Q,
2

-2, <x<8

5 2 (2.24)



13

Invoking Kelvin's theorem that the total circulation
taken along a close contour which includes both the body
and the wake must be zero leads to the following integral

equation for Yw (cf. Appendix A.b):

~-29 22
£E=% _ 1 L2
f mﬁvw(swuds = ;f 'z‘§+_£ V(g,t)dg

-0 -

2 (2.25)

Upon a change of variables to z=£+Ut , we obtain a

Volterra integral equation:

Ut-¢

2
f /;;%%;%i v, (2)dz = F(t) (2.26)

—-00

where F(t) is a known function depending only on Yi(x,t)

from section Ia.

(2) The case of both bodies moving with constant velocities
that may differ.

When both of the bodies are in relative motion,
unsteady vortex shedding from both trailing edges will
occur. Here, we confine our interest to relative motions
in which the bodies are travelling along parallel paths.

The "stagger" £ (t) , in equation (2.1) must now be
written as

gE(t)y = (Uy - Us)t (2.27)

where U; 1is the velocity of body 1.

The disturbance velocity potential now takes the form

L.

IR [ 1 -1 Yi
¢ = 5= 1 [o; (E,£)an/Tx; ~E) 24y 2 + v, (E,t)tan”  —==]dg
i=174, 178
i
i
-1 Y3
+ J Yyi(Ert)tan XiiE dg]

(2.28)
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where Ywi is the unsteady vortex shedding from the trail-
ing edge of body i.

After satisfying the body boundary conditions on each
body, and applying the same successive approximation scheme
as described in section II.(l), we arrive at the following
system of integral equations.

0

1 Y;?_ = T Ywi 3 Ij‘(g)
]( ;i_:gdg B —f ;‘i_‘_gdg MRS N f (x;-Vt-E) 2402 dg
s - - (2.29)
and
i VK =2, Lk 2.
1 Yi _ 1 YWi J k-1 X{-Vt-E
]( xi-E; g = —J xi—gdg - f Yj (Xi"Vt—E) ey dg
-85 Lo e,
-2
k-1 ®iVE-E ) s
- ij (x5-Vt-E) 2+n2 3 (2.30)

-00

where: i,j =1,2 ; 1#3
k=1,2,3,...
V = Ui - Uj

and nj=-nj is the lateral separation between the bodies.
In the above system of integral equations, the second
term on the right hand side of equation (2.29) (the first
approximation) is the cross flow on body i induced by a
distribution of sources which generate the other body in
the absence of body i. y; is the vortex strength on body

i such that the linearized body boundary conditions are
0

wi
i due to the nonuniform flow encountered. Likewise, each

satisfied. vy is the unsteady vortex shedding from body

equation of (2.30) is an integral equation for the vortex
strength (y?, Yii) required to satisfy the linearized body

k-
boundary condition on body i due to a known disturbance (Yj 1

k-1

YWJ ) from the other moving body.
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It is obvious that if we let U; tend to zero, then
ij vanishes, and the system of equations in section II. (1)
is retrieved. Each of the equations in (2.29) and (2.30)
takes the same form as equation (2.23), and can be treated

in exactly the same manner.

(3) Force and Moment on Each Body.

Once the various sources and vortex strengths are
obtained, the pressure on body i can be calculated and
hence the force and moment acting on the body can be
obtained by integration.

From the Bernoulli equation, the pressure on body i
is given by

- [g_jﬁ + 3 (V)% + c} (2.31)

where C 1is a constant.

Note that in the coordinate system fixed on body i,
i=1,2 the time derivative must be written as (a/at-uia/axg.
If we denote the potentials due to the source and
vortex distributions on body i and the vortex distribution
in the wake of body i by ¢§, ¢¥, ¢Y, respectively, equa-

tion (2.31) can be written

2

P _ _ d (.S, .,V W 1l .3 S, V., W\ 2

5= -21 [ﬁijjwj) + 7 (3x (93+03+6%))
J:

1,3 .8, .V W2
+ 3 GF (45+ei+el)) ]+ c (2.32)

The force acting on body i can thus be obtained by
integrating the pressure on the upper and lower surface
of the slit ~2;<xj<f;, or

2’-
Fi(t) = p f eyt oax (2.33)

-2,
i
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The + and - sign indicates that the contour of
integration is taken along y;=+0. Hence, only those
terms in (2.32) that are not continuous across y;=0,
-2j<x;<%; contribute to the force on body i. These terms

are
5 .V
3etir 3% 91 [ai-‘¢?+¢1'+¢?+¢§+¢§’>]

and
2 6 %(¢Z+¢Y+¢§+¢§+¢¥)J
(2.34)
Here, we consider only the linear terms in the
Bernoulli equation,
In a coordinate system fixed on the body i moving with
velocity Uj in the positive x direction, the pressure

integral appears as

Fs (t) fzi l:a M 3¢‘i’:|i
i =P L - Uy dx;
N _gtl Looxy 3 (2.35)

Dropping subscripts and superscripts, noting that the
horizontal velocity component u(x) on the upperside of
the boundary surface due to a vortex distribution vy (x)
is given by

u(x) = - % v (x) (2.36)
and that
u = %% ’ xX<4L. ; u=0 , x>L ,
we can write .
ox,t) = 3 [ vig,0) ag y=0* | (2.37)
X

Thus, the force from equation (2.35) becomes

2 2
F(t) = p I [} g% y(g,t)dg + U y(x,t{] dx (2.38)

-4 kx



17

Using equation (2.24) and integrals from appendix D, after
some algebraic manipulations, we arrive at the following
(cf. Newman [1]):

-2
F(t) = pU I _gzi-z: Y, (E+Ut) g
- L
- %f /ITSET 2 V(E,t) dg (2.39)
-2
Performing a similar analysis for the moment integral
% +
M(t) = p I [g_f;’ -u %;%] xdx . (2.40)
-4

we arrive at (cf. Newman [1])

-2 L

M(t) = %? f Yw (E40t) arg - U J VIEITEZ V(E,t) 4t
-0 E -2 " -9
2
i} %J £ VITTET & V(g aE (2.41)
-2

In the above analysis, we observe that once the
vorticity in the unsteady wake is determined from the
Volterra integral equation (2.26), the force and moment
acting on the body can be readily found. The first terms
on the right hand sides of equations (2.38) and (2.39) can
be regarded as the effect of the unsteady wake on force and
moment acting on the body.

In the case of the fixed body, we have U=0 , there-

fore, the force and moment is simply given by

L
F(t) = -% J Ve2-g2 f% v(g,t) dg (2.42)
-2

and
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L
M(t) = £ f E/TTTET S V(E,b) dE (2.43)
-4

Particularly, since V(f,t) is the cross-flow induced
on the fixed-body surface by the singularity distributed
over the moving body and its wake, we write

_ ] s, .V, ,W

V(E,t) = 2 —a'i’- [¢2+¢2+¢2] (2.44)

We shall see later a better way to evaluate the con-
tributions from ¢§ and ¢g to the linearized force on the
fixed body is the application of the "Chertock formulas."
Meanwhile, let us consider ¢¥ , i1.e., the effect of the
unsteady wake trailing behind the moving body on the fixed
one. In the coordinate system on the fixed body,

_212

_ 1 x-Ut-¢
- E f Y, (E+0t) 2ol as (2.45)
y=0 -co

+ a r
9y

If we denote the force in (2.42) due to ¢§ by F,(t),
and substitute (2.45) into (2.42), we find, after change of
order of integration, that

Fy(t) = -% f {% [y (E+Ut) =g (E+Ut)]AE (2.46)
where
!
Ut-
g (x+Ut) = f VAZ-E2 (xf;t_g§2+nf ag ] (2.47)
-2
1

Noting that

=
3t

of
9g

Upon integration by parts, and using the fact that vy

f£(E+Ut) = U (E+Ut) (2.48)

and g vanish at «, (2.46) yields:

Fu(t) = =p 2 v, (~L,+Ut) g (~L,+Ut) (2.49)
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(4) Numerical results and discussions on two dimensional

theory
(a) Numerical results

For the sake of simplicity in computations and experi-
ments to be performed in the future, we have used an ideal-
ized "parabolic" representation for the body shape. The
two bodies are taken to be identical and assume the follow-

ing body contour

o0 = {200 ] <2
0 |x[>2 (2.50)

half-beam
£ = half-length

where

The length to beam ratio is taken to be 2/b=8.

Here, numerical results are obtained for the case of a
body passing a fixed one with constant velocity in a para-
llel path.

It was found that the successive approximation scheme
converged quite fast. For the case of lateral separation
n=.625% (%4 is the half-length of the bodies), the second
approximation (Yi » 1i=1,2) for the vorticies are within 5%
of the first approximation (Y; , 1=1,2). Although we expect
that the contributions from higher approximations are
larger when the lateral separation of the bodies becomes
closer.

The force acting on the fixed body due to the influ-
ence of the vortex wake trailing behind the moving body
(cf£. equation (2.49)) reaches its maximum when the moving
body begins to leave, i.e. the "stagger" becomes negative,
however, this is negligible compared to the force resulting
from the vortex distribution along the moving body. There-
fore, the force acting on the fixed body, which results
dominantly from the first approximation of the vorticities
on the moving body,is symmetric about zero "stagger",

while the moment is an odd function of the "stagger".
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Figures 4, 5 show the forces and moments acting on the
fixed body (cf. equation (2.42) and (2.43)) obtained from
the first approximation (Yi) for various lateral separa-
tions. There is a slight repulsion when the other body
is approaching, this is followed by a strong attraction
force which reaches its maximum when the moving body is
side by side. The force becomes repulsive again when the
stern of the moving body passes the bow of the fixed one.
As far as the moment is concerned, the stern of the fixed
body tends to move away as the other body is approaching.
When the bow of the moving body reaches the mid-section of
the fixed body, a stronger moment tends to turn the stern
of the fixed body towards the moving one. This phenomenon
is reversed after the mid sections of both bodies meet.
Both the force and moment acting on the fixed body vanish
rapidly as the lateral separation between the bodies
increases.

The force and moment acting on the moving body differs
drastically in nature from that of the fixed body. The
vortex wake trailing behind the moving body provides a -
crucial effect on the force and moment acting on the moving
body. As shown in figure 6, without the implementation of
the Kutta condition at the trailing edge, there will be no
vortex wake and the force acting on the moving body (cf.
equation (2.39)) would be symmetrical about zero stagger.
However, once a Kutta condition is satisfied at the trailing
edge, the vortex shed will continue to influence the force
and moment at subsequent time. In this case, as shown in
figure 6, the wake effect becomes substantial after the
mid-sections of the bodies meet. This is reasonable since
the cross flow induced on the moving body reaches the
maximum when the bodies are side-by-side. In general, the
vortex wake increases the attraction forces acting on the
moving body during the period of interaction.

In figures 7 and 8, the total forces and moments

acting on the moving body predicted by the calculations are
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plotted against the stagger for various lateral separations.
The force is slightly attractive, then becomes repulsive as
the bow approaches the stern of the fixed body. As the bow
passes,a stronger attraction force occurs and the force
maintains attraction over the rest of the interaction
period. A slight moment tends to turn the bow towards the
stern of the fixed body as the bodies approach one another.
As the fixed body is passed, a larger negative moment
develops. Finally, the moment again obtains a small posi-
tive value as the two bodies separate. As with the fixed
body, both forces and moments acting on the moving body
diminish quickly as the lateral separation between the

bodies is increased.
(b) Comparison with results of Collatz and Oltmann.

Collatz (1963, cf. Ref. [15]) studied the problem of
hydrodynamic interactions between bodies in two-dimensional
flow. The interacting bodies in his work were elliptical
(8:1 ellipses). 1In the Collatz theory, sources were dis-
tributed on the surface of each body. The source strengths
were obtained by solving simultaneous equations which result
from satisfying the boundary conditions on each body at the
same time. In addition, no Kutta conditions, and hence no
complication of a vortex wake, were imposed on the moving
bodies. The forces and moments acting on the bodies were
obtained by integrating the complete Bernoulli equation
(including the non-linear terms) along the body surfaces.

Experiments have been performed by Oltmann [16] to
check against Collatz's analytical work . In Oltmann's
experiments, a long elliptical cylinder was towed parallel
to its major axis passed an identical fixed one. Two sets
of measurements were taken. The set named "shallow
submergence" was taken on a strip near the free surface,
another set named "deep submergence" was taken on a strip
further down in the fluid. The speed of the moving
elliptical cylinder also varied. One set of trails were

performed at low speeds (Froude number based on length
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Fnv.14~.2) while the other trails were ran at high speeds
(Froude number based on length Fnn.5). In Oltmann's
experiments, measurements were also taken for the steady
case of two cylinders moving.with the same speed.

In the case of one elliptical body passing another
fixed one, if the speed is low (Fnn.14), Collatz's theoreti-
cal predictions for the force and moment (which are even
and odd functions of the stagger) acting on the fixed body
agreed with Oltmann's experiments extremely well. However,
Collatz's prediction of the force and moment acting on the
moving body deviated from Oltmann's experiments, particular-
ly after the two bodies were side by side. This is probab-
ly due to the lack of a vortex wake trailing behind the
moving body. Unfortunately for high speeds (Fnn.5), the
analytical work doesnot agree with the experiments. One
reason pointed out by Oltmann was that the wave and vibra-
tion of the towing carriage affected the experiments.

In order to compare the present theory with the above
work , we calculate the force acting on the fixed elliptical
body. For a lateral separation of n=.625%, the force
acting on the fixed body (which is modelled as a flat plate
of zero thickness in the present theory) obtained from the
first approximation of the scheme is about only 60% every-
where of Collatz's (hence Oltmann's) result. However, this
comparison is not wvalid.

Firstly, for a blunt body like the ellipse, the slender
body approximation 0=-2Uf'(x) for the source distribution
along the center line of the moving body is not valid.

The source strength given by the slender body approximation

for an ellipse is

o(x) =-2U % —X —  for |x]|<2 (2.51)
V/22-x2

On the other hand, the exact representation for the source
strength corresponding to an ellipse moving parallel to its
major axis in an otherwise undisturbed fluid is (cf. Milne-
Thomson [3]):
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o(x) =—2U0 —2 X for |x|<c = /RZ-B?
(2-b) Ve2-x2

(2.52)

A rough estimate between equations (2.51) and (2.52)
for the case of &/b=8 amounts to a differerce of about
14%. 1i.e., Our result will improve by 14% merely by using
the exact representation for the source _crength.

Secondly, throughout our previous analysis, the thick-
ness (other than assumed to be thin) of the fixed body
plays no role in the force. The result would be the same
if we replace it by a flat plate. To calculate the forces
acting on a fixed body, the application of the "Chertock
Formulas" provides a great convenience. For this matter,
let ¢I represent the flow disturbance (the incident flow)
caused by the singularity (source, vortex, etc.) in the
absence of the fixed body. The linearized sway force

acting on the body can be written as (cf. Ogilvie [2]):

_ Y 96T _ 3 [3¢1
F(£) = ﬁ?ﬁ St " Y [-st—]ﬁdl
B

1 (2.53)

where Bj 1is the body contour of the fixed body and 3/9n
denotes the directional derivative normal to the body sur-
face.

Y in the above equation is the potential as if the
fixed body is moving with unit speed in the y direction,

which satisfies the following

Vi =0 outside Bj

(xZ+y2)Yp < @ at infinity

W _

an - My on By (2.54)

where ny is the y component of the inward unit vector on
Bl‘
It can be easily shown that if the incident flow is

that of a source o0 at a position x=Ut , y=-n moving
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with velocity U , the force (2.53) is given by:

- LN -
F(t) = pUo 35— (Ut,-n) (2.55)

and that of a vortex y by

F(t) = pUy g“’; (U, -n) (2.56)

The sway force on the fixed body due to the singularities
distributed on the moving body can then be written as
%2
F(t) = pU J [02<g)g‘l'_x (E+Ut,-n) + v, (&,t) gp_y (€+Ut.-nﬂd£
) (2.57)

The unknown Y in this equation depends only on the shape
of the fixed body. Once the body contour is given, the
force can be readily determined. For the present case, to
evaluate the sway force on an ellipse due to some unsteady
disturbances, the {§ problem corresponds to the potential
for the ellipse moving parallel to its minor axis with unit
velocity. The solution to such problem can be written as
(cf. Milne-Thomson [3])

%1})_=Re I:ilfb[, Zb —1]} (2.58)
X vz2-+bh2

where the quantity inside the bracket is the complex poten-

tial, 2 and b are major and minor axes of the ellipse
respectively. If we let b+0 , the ¢ problem for the
flat plate is obtained, as

b =Re | i [—————z - 1] (2.59)
X VzZ- 2
Referring to equation (2.57), a comparison between equations
(2.58) and (2.59) gives a good estimate of the "Thickness
effect" of the fixed body. For an ellipse of &/b=8, the

force will be roughly 14% higher than that of a flat plate
of the same length.
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Finally, the non-linear terms in the Bernoulli equation
must be accounted for. The force on the fixed body due to
the non-linear terms in the pressure equation (2.34) can

be written as

% +
Fy(t) = -p Jf [59; 4y (¢§+¢§+d~w\_‘ dx
_2'1 -
) "1 *2 02 (8) (x-Ut-&) - (v2(x,t) +yw2 (E+0t) ) n
= -5 J Yl(x,t)dx J (R-Ut=E) 27n2 dg
4 %2 (2.60)

The above contribution from the first approximation
Yi will further improve the present results by 8110% for
various staggers. Therefore, if all these effects are
taken into account properly, Collatz's result on the fixed
body can be reproduced by the present theory.

With all this in mind, figures 9, 10, 11 and 12 give
a comparison between Oltmann's experiments on the forces
and moments acting on the elliptical bodies (2/b=8) and
our calculations on the parabolic bodies (%£/b=8) for the
low speed cases (Fnv.14-.2). The behavior of the force and
moment acting on the fixed body agree between the theory
and experiment as shown in figures 11 and 12. As far as
the force acting on the moving body is concerned, the
experiment seems to agree with our prediction on the way
that the vortex wake will influence the force. This is con-
trasted to Collatz's prediction of a symmetric force, as in-
dicated in figure 6, where the Kutta condition is not imposed
on the moving body. However, an attraction force consider-
ably larger than what we predicted is observed in the experi-
ments when the stern of the moving body leaves the bow of
the fixed one. One reason for this may be that the
shed vortex is likely to move, while our linear theory
predicts once the vortex is shed it remains on the x axis.
This may also explain the same phenomenon observed in the

moment acting on the moving body, as shown in figure 10.
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In hydrodynamic interaction problems, the magni-
tude of the sway force and yaw moment acting on the inter-
acting bodies are directly proportional to the amount of
cross flow generated by the moving bodies. For a blunt
body (like the ellipse) such a disturbance is bigger than a
body of fine shape (like the parabolic body). However, as
indicated by the qualitative agreement between our calcula-
tions and the experiments, the general behavior of the inter-
acting forces and moments are quite independent of the body
shape.

For a fine body with pointed ends defined by two
circular arcs, it is possible to obtain an exact represen-
tation for the source strength along the center line of
the body when it is moving in an otherwise undisturbed
fluid (cf. Milne-Thomson [3]). The difference in magnitude
of the interaction forces corresponding to the exact and
slender body representation for the source strength is
substantially smaller than compared to the case for ellipses.
This is similar to problems with end effects seen in other

slender body problems.



ITI. HYDRODYNAMIC INTERACTIONS BETWEEN BODIES
IN SHALLOW WATER

In order that the two dimensional analysis in the last
chapter be applicable to hydrodynamic interactions in
shallow water, the ship must be wall sided, and the clear-
ance between the ship's bottom and the bottom of the water
must be effectively zero. 1In addition, the free surface
effect must be negligible. This implies that the velocity of
the moving ship is small. Under these assumptions, the
far field description is truely two dimensional, and the
analysis in the last chapter applies.

In most ship problems, the clearance is not effectively
zero, but is some small value. The small gap allows a cross
flow which substantially alters the forces acting on the
ship and must be properly accounted for. In this chapter,
we shall investigate the problem in which the ship is not
touching the bottom. To account for the cross flow under
keel, we shall use the method developed by Tuck and Newman
(cf£. Ref. [8]). 1In the outer region, due to the assumption
of shallow water and the fact that the details of the flow
around the ship can not be seen, the problem reduces to a
two dimensional problem in the horizontal plane (x~y plane).
The ships can be represented by distributions of singulari-
ties along the ship's center line, and the wake consist of
a line of vorticity. The strengths of the singularities
along the ships can only be determined by matching to
the inner region. In the inner region, the usual inner
expansion of the Laplace equation reduces the problem to
a stream flow past the ship section in a channel in the
y-z plane.

The conventional order relations involving the orders

0, o will be adopted. Namely, for a small parameter ¢

f(e)

f(e) = 0(9’(&)) as €0 if lim g—(e—)

>0

< oo

32
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and

f(e)

g(e) =0

f(e) = o{g(g)) as €+0 if lim

e+0

In this case, since the water is shallow, and the ship

is slender, we can assume that the draft of the ship T

-

and the depth of the water h are small compared to the
length of the ship L. i.e.

h/L , T/L = 0(¢) (3.1)

where ¢ 1s a small parameter.
In a co-ordinate system fixed on body 1i(i=1,2) ,
the linearized free surface boundary condition can be

written as

3 _ . 9 |% 3¢ _
[§E Ui axi] ¢ + gazi =0 (3.2)

on z;=0

From slender bbdy theory, both the "outer" and "inner"
regions defined on this co-ordinate system require the mag-
nitude of the co-ordinate be x;=0(1) with respect to the
ship-length. Hence, the first term in the free surface
equation (3.2) is of order Uj?¢ . Now, consider the order
of magnitude of the second term in equation (3.2). Drop-
ping the subscript i, and expanding ¢, the total perturba-
tion potential in a Taylor series about the bottom, and
using the bottom boundary condition

3¢ _ =
g = 0 on 2z=-h (3.3)

and the Laplace equation

32 82 82
57 = [axz * ay2] =Vt . (3.4)

We obtain

¢ = ¢(x,y,-h)-%(z+h)2V§_D¢+... (3.5)
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and

3 _ _poy2 2 _
=2 = -h V3_ ¢ + 0(h?) on z=0 (3.6)

Thus, the second term in the free surface equation is

of order gh¢ .
Therefore, if we assume the conventional Froude number

to be

1
U; 5
I - o(e?) (3.7)
VgLj

the free surface can be replaced by a rigid wall in both

the "outer"” and "inner" regions.

(1) The far field problem

If the velocities of the moving ships are sufficiently
small, the free surface can be replaced by a rigid wall as
shown previously. In this case, the far field solution
reduces to a two dimensional problem in the x-y plane.

The solution is identical to the problem we discussed in
the previous chapter. However, since there is a "leakage"
at the bottom of each ship, the body boundary conditions
described in the two dimensional theory no longer hold.
Instead, we have to investigate the cross flow at various
cross~sections along the ship hull in order to determine
the unknown source and vortex strengths for the "porous"
ship.

Performing a similar successive approximation scheme
as outlined in Chapter II, the first approximation of the
cross flow induced on body i due to body Jj 1is a line
of sources representing body j moving with velocity Uy
in an otherwise undisturbed fluid (as if body i is absent).
This will produce a vortex distribution on body i which
will in turn cause a disturbance on body j, and so on.

Hence, in a co-ordinate system fixed on body i, the
first approximation of the successive approximation scheme
for the far field perturbation potential can be written

as follows
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L3
%; I [oi(E)ln/(xi;§)2+yi2
-2

<
I

v: L v
+ yi(g,t)tan-l}{iig 1dg + J Yiw(grt)tan-ixiig dg

-

9’.
J
[ Toyier anvigmEyTIE a
22,4 (3.8)

+

The last term on the right hand side is the first
approximation of the disturbance due to the other moving
ship. Second and higher approximations can be written in
a similar fashion.

By the virtue of section II(1lb), the continuity of the
linearized pressure on the vortex wake trailing body i

requires

Ywi(x?t) = f(x4+U;t)= Ywi(xi+Uit) (3.9)

However, the unknowns oj , Y; , etc can now only be
determined by matching this equation to the one that
governs the "inner" region in a neighborhood near body i.

A picture of this far field approximation is shown in

Figure 2.
Yy
n
U.
.——_}._..
X
Yi(xi,t)

Figure 11. Outer Flow Region (First Approximation)
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(2) The near field problem.

Confine our attention to body i . If the ship's

hull surface is defined by

Y; = *F(xi,23) . (3.10)
The hull surface being a stream surface implies that
D
oe (YiFF) =0 ’ or
il DI SR . ,.y399 OF 3¢ _ 9¢ oF _
* [Bt Ulaxi]F(xl’zl)'Bxi 30Xy * dyj + 3zj 025 0
on yi=iF(xi,zi) . (3.11)

However, in this region, since the order of magnitude
of the co-ordinates are characterized by y/L=z/L=o(x/L) .
The usual inner expansion of Laplace's equation restricts
the flow to the cross-flow plane (i.e. the y-z plane) at
each section of constant x, except for a longitudinal
velocity component which depends on x only. (cf. Newman [9])

Therefore, the disturbance potentials are typical
boundary value problems of the Neumann type, which satisfy

the following:

2 2
(a) [33 ¥ 3]¢=o

(b) %% = 0 on z=-h,0
(c) %% = f(x,z) on y=tF(x,2)
39 _ [91(x) on yr+e

where for convenience the subscript i has been dropped.

Equation (3.12c) follows from the body boundary condition
(3.11) in which N 1is the two dimensional unit normal to
the ship surface given by y=%F(x,z) , and the function
f(x,2z) varies according to the order of magnitude of ¢.

A picture for this type of problem is shown in Figure

3.
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As pointed out by Tuck (Tuck & Newman [8]) the flow in
the region immediate next to the body is quite complicated.
However, what concerns us most is the quasi-two dimensional
flow in the so called "intermediate" region whose lateral
distance from the body is large compared to the beam but
still small compared to the ship length. 1In such region,
the potential can be written in the following form (cf.
Tuck [8] and Beck [6])

¢ = vy (x,t) (y2C(x)) *v, (x,t)y+k(x,t) (3.13)

The first term on the right hand side of the above
equation represents a streaming flow of unknown magnitude
vl(x,t) past the ship cross-section. The second term
results from the push-aside flow due to the ship's forward
motion, and k(x,t) is just an arbitrary integration
constant. The term C(x) » which depends only on the shape
of the ship cross-section for a given clearance and water
depth, is the so-called "blockage" coefficient (cf. Tuck and
Taylor [5]). It is the jump in the potential for the two
dimensional Neuomann problem of a stream flow past the same
body in a channel. C(x)=0 denotes the absence of the body,
while C(x)=» corresponds to complete blockage where the ship
"blocks" the channel. As noted by Beck [6], the magnitude
of C(x) plays an important role in the matching process.
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It is obvious from conservation of mass that (cf.
Beck {[6]):

= | 9¢ —— e
C
or

_y 4
vy (x,t) = 5 §;X) (3.14)

where ¢ 1is the contour of the body cross section and

s(x) 1is the body sectional area.

(3) The Matching Process

Since we have defined the near field of body i to be
the region in the neighborhood around the ship, the
unsteady vortex wake extending from the stern to infinity
must be considered as part of the outer region.

Thus, upon expanding equation (3.8) in a Taylor
series about y=0, [x|<% , using equation (2.37) and (2.19),
and then taking the limit as y+*0, the inner expansion of
the far field solution becomes

1 !
¢ v 5= J o (§)&n|x-g|dg =

-4.
1

o(x)y

N

L 2y
3 J v(e,t)ag + 2L f Y(E.t) g

x=£

1+

b 4 -zi

+ X J D oyg(Erue) o
m x-£

9.
J
+ J Gj(E)Qn/(Xj-€)2+n2 ag

-

_Qlj

%5
4t + 0(y?) (3.15)

Oj(g)/(xj—£)2+n2
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since ¢,(x,0,t)=0 for [x[<% .
Matching (3.15) and (3.13) with (3.14) gives the

following matching conditions:

-Uj dsj
(a) o’i(x) - Tl _S_dlx(—x)
24 ;Lj
(b) k(x,t) = % J ci(g)znlx-—gldg + J ojzn/(xj-g)2+nz dg
2. -2,
i J
Qi -Zi
_ 1 y(E,t) 1 (§+U0t)
(c) V1 (x,t) = 57 } —x_:-g——dg + 5 J IML}T" dg
—2'1 -0
Y
dg
* ”J 758 T-erT
-
J
2.
1 1
(d) vl(x,t) C(x) = 5 J y(g,t)dg (3.16)
X

The same analysis carried out on the other body j
will lead to the similar result, particularly we find that

5. =23 dsi(x)

3 7 3% (3.17)

Combining equations (3.16d) and (3.16c), we obtain the
following singular integral equation for the unknown vortex

distribution ¥y:

L. L.
1 1
Y(E,t) L
f _§:g—_d€ + () J y(§,t) dg
-li X

i
- - J Yy (E+0t) Eg”t) dE - V(x,t)

(3.18)

where VI(x,t) is a known function. Note that when C(x)=~,
or complete blockage, we retrieve the equation (2.23) for
two dimensional flows. The nature of the solution to this

integral equation will be discussed in Appendix A.
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However, it is well known that the solution to this
kind of integral equation is not unique. In fact, there

are three unknowns in this equation, namely, y , Y and

’
an arbitrary function of time k(t) which results ¥rom
the non-uniqueness of the inverse finite Hilbert Transform.
Therefore, this equation must be solved simultaneously with
two other equations describing the relations between y and
Yy As mentioned in Chapter II, the other conditions we
still need to satisfy are Kelvin's theories of constant
circulation and the Kutta condition on the trailing edge.
Kelvin's theorem merely states that

—Ri L3

f Y, (EtUt)dE + J y(&,t)dg = 0

- -2 for all t, (3.19)

But, this time, since we can not obtain a closed form
for vy as we did in the two dimensional theory, we can not
state the Kutta condition as we did previously, For this
case the Kutta condition must be stated explicitly (c.f.

Appendix B) as:

yw(-2i+Ut) = Y(—li,t) (3.20)

i.e., the vortex distribution must be continuous at the
trailing edge. The solution satisfying equations (3.18),
(3.19), and (3.20) is then unique, and can be determined
numerically.

In the case of ship i being fixed, the trailing vortex
behind the stern vanishes as we mentioned in II(la). The
vortex distribution along the body will then satisfy the
following equation from (3.18):

TCRS 1
Y ’ m _
f ==t % * 5m J Y(£,£)dE = V(x,t) (3.21)
_gi %

The appropriate statement of Kelvin's theorem may now

be stated as

[P
J lY(E,t)dE =0 for all t (3.22)

24
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This will determine the arbitrary function k(t) ,
thereby making the solution to equations (3.21), and (3.22)

unique.

(4) Force and Moment

Once the vortex strength on the "porous" ship is
determined, the forces and moments acting on the ship may
be obtained by integrating the pressure along the hull.

Neglecting the non-linear terms in the Bernoulli
equation, the sway force on body i (i=1,2) can be found
by integrating the pressure along the slit |x]|<2j, y=*0 .
i.e.

L.

1
- 00 _ .
-9.

1

5 *
—_— dx. (3.23
Since the only jump in the velocity potential is the
vortex distribution Yjr along the body, recall that
\'4 1 21 ad 1
¢i=7J Yi 48 5 5= 3 vy (3.24)
i

X

on yi=+0 ’ xi<3Li

Dropping the subscript i, the sway force can be writ-

ten in terms of y in the following manner:

L
F(t) = phEI J YdE + J ac I g—z dx] (3.25)

-2 -2 £

Noting that the first term in the right hand side is

the total circulation on the ship, which is equal in magni-
tude to the total circulation generated by the unsteady
vortex wake, and that upon partial integration of the
second term, the sway force may now be written as:

-2 L

F(t) = -pUhf Y,dE + phop f (2+8) ydg (3.26)

- 00 _2’
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Performing a similar analysis on the yaw moment inte-

gral
)
_ ¢ 3 +
M(t) = phJ[x(sE - Ug;)] dx (3.27)
-2
We obtain:
) rg
M(t) = pUhj Evdg + %55%-J (£2-22)vaE (3.28)
-2 -2

In case ship i is fixed, the sway force and yaw moment

are given by the following:

Fee) = ongdy | (ee)var (3.29)
)
and
2
= fh 2 -
m(e) = S f (£2-22)vdEg (3.30)
)

{5) Numerical results and discussions on shallow water

theory

For the same reasons stated in the last chapter, our

interacting ships are taken to be two idealized identical
"parabolic" ships whose water planes are defined by the
area enclosed between two parabolic arcs as described by
equation (2.58). The parabolic ships are wall sided, and
the bottom is flat. The length to beam ratio of each ship
is taken to be 2/b=8. Also, the water depth h, to half
ship length ratio is taken to be h/%2=1/8.

Numerical results for the case of one ship passing a
fixed one with constant velocity in a parallel path will
be presented in this section. The case when both ships are
moving can be done in a simmilar manner without great
difficulty.

The difficult part in computing the forces and moments

acting on each ship is to obtain the appropriate vortex dis-
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tribution along each ship. The vorticity is found by using
a numerical technigque in conjunction with the so called
"time stepping" method. In the time stepping method, the
integral equations (3.18) and (3.21) are solved at each
time step using a numerical scheme described in Appendix

C. Basically, the ship is divided into a number of seg-
ments over which the vorticity assumes a prescribed varia-
tion. At each time step, the vorticity along each ship is
obtained from satisfying the integral equation at a number
of control points so that a system of simultaneous equa-
tions result. The vorticity in the wake is found by
satisfying the Kutta condition (which requires the vorti-
city to be continuous from the ship body into the wake)

at the trailing edge of the moving ship. The vorticity
also assumes a prescribed variation between each time step
and stays constant once shed. The details of the numerical
scheme are described in Appendix C. Once the vortex dis-
tribution is known, the forces and moments can be found by
numerical integration and differentiation according to the
formulas given in the previous section.

Figures 13 and 14 show the forces and moments acting
on the fixed ship for various gap sizes between the ship's
bottom and the bottom of the water. It is not surprising
that the force and moment obtained from the first approxi-
mation of our successive approximation scheme are even and
odd functions of the stagger respectively, since the
ships (hence the blockage coefficient C(x)) are symmetrical
about the mid-section. This symmetrical behavior of the
force and moment is also found by Newman for the hydro-
dynamic interaction between ships in deep water. (cf. Ref
[8]). 1In general, if we allow a small clearance beneath
the bottom of the ship, the behavior of the force and
moment acting on the fixed ship remain unchanged compared
to the case of complete blockage (C(x)=») corresponding to
two dimensional flow. However, the magnitude of the inter-

action forces and moments change substantially once a small
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gap is left open beneath the bottom of the ship. The
interaction tends to decrease as the gap size increases.

The effect of the flow beneath the bottom of the body
on the moving ship is quite different from that of the fixed
ship. In Figures 15 and 16, the forces and moments acting
on the moving ship are plotted against the stagger for
various gap sizes. Two interesting phenomena are observed.

Firstly, the magnitude of the interaction force and
moment acting on the ship vanishes quite rapidly once a gap
appears between the ship's bottom and the bottom of the
water. This phenomenon is also indicated by Newman (cf.
Ref. [8]). 1In fact, for interactions in deep water, Newman's
theory predicts no force on a passing vessel due to its
interaction with a stationary vessel.

Secondly, the effect of the vortex wake trailing
behind the moving ship on the interaction forces and
moments diminishes as cross flow is allowed beneath the
bottom of the ship. This is indicated by the symmetrical
tendency of the curves. As the stern leaves the mid-section
of the fixed ship, the theory predicts a repulsion force as
contrasted to that of attraction in the two dimensional
flow case.

In general, the magnitude of the interaction forces
and moments acting on the fixed ship are much bigger than
that of the passing ship. This also is true for the two
dimensional flow. Unfortunately, for the time being, there
is no experimental measurements available for comparison

in the case of hydrodynamic interactions in shallow water.
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IV SUMMARY AND CONCLUSIONS

The important conclusions that we arrive at in this
study probably are:
(1) The importance of the flow beneath the ship

in shallow water problems.

(2) The importance of the unsteady vortex wake
trailing behind the moving body in two
dimensional flow.

(3) The importance of the body shape (end effects)
in hydrodynamic interaction problems
where slender body approximations are
employed.

First, as indicated by the numerical results and the
discussions in Appendix A, the temptation to use the two
dimensional solution as the first approximation for shallow
water problem is erroneous. Once there is a small gap
beneath the ship's bottom and the bottom of the water,
the flow changes significantly. This is best demonstrated
by the force acting on the moving body. As indicated by
the calculations, the disturbance caused by the forward
motion of the moving ship on the fixed ship will "leak"
through the "porous" ship entirely and almost nothing is
reflected back once a slight gap is left open. This
confirms Newman's (Tuck and Newman [8]) prediction in deep
water theory that the force acting on the passing vessel
due to its interaction with a stationary vessel is of
higher order. It is physically evident that the cross flow
induced on a slender body will likely travel beneath the
bottom (the distance is of order ¢) rather than all the way
around the bow and stern (where the distance is of order 1).
Similar conclusions have been drawn by Tuck and Taylor [5]
and Beck [6].

The'sensitivity to the flow under the keel makes both
theoretical predictions and experiments for a particular

slight gap undependable. Nevertheless, what concerns us

47
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most is the trend in the forces and moments as the gap
vanishes. Indeed, the introduction of the so-called
"blockage coefficient" in shallow water problems does
provide a "bridge" between the theory of high aspect ratio
(e.g. two dimensional flow in this study) and low aspect
ratio (e.g. interactions in shallow water) in the mechanics
of fluids.

Secondly, as indicated in figure 6, and Oltmann's
experiments, the vortex wake play an important role on the
force acting on the moving body in two dimensional flow.
Such effects become prominent when the bodies are abeam,
(where or when) the unsteady cross flow induced on the
moving body reaches a maximum. Although the present theory
under predicts the magnitude of such effects (as compared
to the experiments), it suggests a qualitative behavior of
this important effect. In other maneuvering problems in
shallow water, whenever such unsteadiness 1is encountered,
the complication of the unsteady vortex shedding should be
taken into account properly.

Finally, in this study, it was found that the shape of
the interacting bodies also plays an important role. For a
blunt body (like an extended ellipse), the following
assumptions usually employed in slender body theory are
poor. (1) The source strength is 0(x)=2Uf'(x) along the
center line of the body. (2) The body boundary condition
is satisfied on the center line of the body.

In hydrodynamic interaction problems, the forces and
moments acting on the bodies are directly proportional to
the magnitude of the bodies. A body with full ends will
produce a bigger disturbance than a fine body moving with
the same speed. For blunt bodies, the linear theory
generally under predicts the magnitude of the interaction
forces due to the above assumptions. However, the linear
theory does provide good qualitative prediction on the

behavior of the interaction forces and moments.
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In this work, we have also developed a successive
approximation method to solve a system of coupled simulta-
neous integral equations whose kernels are functions of
time. This scheme is particularly useful when the solu-
tion to the system can notbe found in an analytic form.

In applying the scheme, the system of coupled integral
equations breakes down into a system of uncoupled integral
equations. The kernel of each integral equation is the
same, and does not depend on time. Thus, in defining a
numerical scheme to solve the integral equations, the
coefficient matrix need be calculated and inverted only
once throughout the whole time history. This saves tremen-

dous amounts of computer time.
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APPENDIX A

Solutions to the governing integral equations

a) Solution to airfoil equation for the fixed body in

two dimensional flow.

Consider:
2

f YE,t) 57 = f(x,t) (A.1)
x—
-2
where f(x,t) 1is an integrable function.
A general solution takes the form: (cf. Tricomi, Ref.

[12] pp 178)

L
/R2—F2
Y(x,t) = —= ]( 82 fg,mae + XL Al
m2/82-x2 7/ E-x YL2-x2
No net circulation on the body -2<x<% implies

b

I y(E,t)dE = 0 for all t . (A.3)
-

Upon integrating (A.l) from -% to &, we obtain

c(t) =0 for all t (A.4)

b) Solution to airfoil equation for the moving body in

two dimensional flow.

Consider:
-2
y(£,t) - _ Yy (£E+Ut) _
)[ _XTE_ dg = I —W}T' dg Vi(x,t) (A.5)
-2 -00

A general solution to this equation may also be

written as follows (cf. Ref. [12], pp 180)

Yoty = -5 2 ]( i & —W—————“""Ut’ dz

c (x)
/22-x2 (A.6)

+ V(g,t)} +
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In order that the Kutta condition be satisfied at

x=-%, we must have
c(t)=0 for all t.

Noting that it is permissible to change order of inte-
gration under the Cauchy's Principal Value integral (cf.

Ref. [13]) and that (cf. Appendix D):

/ - _T (S
{ £+E (- X)(E )  x-z {r+L (A.7)

for -2<x<4q, =-w<g-2 -
Equation (A.6) can be rewritten in the following form:

-2
Y (x,t) = %; %;% [“ [ l“éEZUt) 2+£ dg
2
_ A-E VI(E,t),4
)[ I+ Eox EJ (A.8)
-2

Finally, the total circulation along the body is given
by integrating equation (A.8) from -& to &. Using the appro-
priate integral in Appendix D and after some algebraic mani-
pulation, we obtain the following:

2 72
T(t) = J Y(x,t)dx = - J Y, (3+Ut)dc
-4 -00
-9 L
+ J §+£ v, (£+Ut) AT - %J /%:E:v(g t)dg (A.9)

- OO -

Since Kelvin's theorem requires
2 -2
J y(x,t)dx = - J Y, (5+Ut) dzg
-9 —00
We obtain the following integral equation for the wake

vorticity.
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-2 L

(ad . -1 2-E -
J [F7 Y (&tUt)de - = J R¥E v(g,t)dg = 0 (A.10)

-0 -2

c) The nature of the solution to the singular integ-
ral equation with Cauchy's integral as its

dominant part.

In solving the shallow water problem, we arrive at the
following systems of integral equations. For the vortex

distribution over the moving ship, we have

2 -4
a) [][ et J Y(E:tildﬁ = -f Yulit08) ag + vix,t)
-2 X -
-2 L
b) J Y, (EtUt)dg = - J y(&,t)dE
- -2
c) v(-&,t) = Yw(—£+Ut) (A.11)

For the vortex distribution over the fixed ship, we

have
3 2
a) B Y}fét) + c(’;) J Y(E,t]dg = V(x,t)
-8 X
3
b) J y(E,t)dg = 0 (A.12)
~2

Here, we wish to demonstrate that the solutions to the
above systems are unique, and possess square root singulari-
ty at the proper ends of the ship. This can be done by
reducing the above systems into regular Fredholm equations
as outlined in Muskhelishvili (cf. Ref. [11]), Chapter
14.

Consider the system (A.1ll). Transposing the second
term on the left hand side of equation (A.lla) to the
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right hand side and performing a similar algebraic mani-

pulation to those outlined in Appendix A.b, the system can
be rewritten in the following form,
-2

U -2
v = & /B [0 ] e e

=

-0

2 ) 2

SEE V(L) AF  ac _

f 2+E £E-x dg T f 1FE (E—X)C(E)j Y(grt)d?,]
g€

(A.13)

Note that the first term inside the bracket is of
order 0(1//%+xX) and the rest are bounded as x+>-% (cf.
Appendix B). If vy(x,t) is integrable over -£<x<& ,
then it must possess a square root singularity at =x=4%
and bounded at x=-%£. Upon transposing the term involving
Y back to the left hand side, equation (A.13) is known as a
Fredholm integral equation of the second kind although its
kernel is not bounded. However, if we state the unknown ¥y
in a suitable manner, this equation can be reduced to a
regular one. Let
Yy(x,t)

Vi-x

Yy (x,t) = (A.14)

Dropping prime, equation (A.13) can be rewritten as:

2 %
Vi+x R-E dat J y(z,t)
v(x,8) f WE 0 | g OF
-2 £

-9 2
_ /iFx Yw(E+Ut) /foc=2 /A-E V(E,t)
T g2 [}J x-£ T+ dg + f L+E E-x d%]

- 00

(A.15)
Furthermore, replacing the variable ¢ by n where
fC d
d
-y VAT va-g (A.16)

Denoting vy(x,t) simply by vy(y,t) , and changing the

order of integration in the left hand side of (A.1lt) we have
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2/5T -2-nv/22+n74

/Ty - at
Y(y,t) + J/r(n,t)[ = J TFE (E=y)C(E) }dn
0

/

R 2

/i+ I Yw(g+Ut) /E-2 L-E V(E,t)

= S5t ["f y-t ¥ EFL dg+][1/ BE -y dg} (A-17)
< OO "/Q:

Hence, the kernel is integrable, and all the funda-

mental Fredholm theorems are applicable to the above equa-
tion. 1In particular, setting the right hand side to zero
is physically equivalent to the absence of the other ship,
thereby, the homogeneous equation has only the trivial
solution. Thus the solution to the Fredholm equation is
unique.

On the other hand, a similar analysis performed on the
system (A.1l2) leads to the following:

L
' w2y/R2-x? &-x '

/ITTEZ 1
+ f F=x C(D) J y(z,t)dg
-2 £ (A.18)

Now, Y has square root singularities at both x=% and
=-f£. Writing

v (x,t) = XXt
Y92-x2
s
n=f S - RO« |
Ly YR2g2 Ve2-r2 (A.19)

By the same token, equation (A.19) may be written as

the following

T 2
1 /IZ-E2 4k _
'Y(Y,t) + J Y(n,t) [TT j o g_y c) :| dn =
0

£sin (n"i—)
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L

1 VR2-E2

L j A8 vewag (3.20)
-2

Again, the argument for equation (A.18) applies here.

Before attempting to define a numerical scheme to
solve (A.11) and (A.12), it is worthwhile to investigate
how the blockage coefficient C(x) influences the
vortex distribution along the ship. For a sufficiently
large blockage, i.e., a sufficiently small clearance
between the ship's bottom and the bottom of the water, we
expect that the flow will not deviate too much from that of
the two-dimensional problem.

For illustrative purposes, let us consider the hydro-
dynamics of the fixed body. 1In fact, if C(x) in suffi-
ciently large, equation (A.12) can be solved by successive

approximation as follows:

where

(b) ][1 Y1) g6 = et

x—-£
-1
1 1
Yi(E.t) _ __T
(c) J —%;3?—— ag = ETET'J Yi-l(g't)dg
~1 X

i=2,3,... (A.21)

The length scale has been non-dimensionalized with
respect to %. Y, can be viewed as the two dimensional
solution, the rest of Y4 can be regarded as perturbations
due to the flow under the ship's bottom. A necessary
piece of information is for what value of C(x) will the
scheme converge?

In the view of equation (A.18), Y3 takes the following

form for a fixed t.
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vy, = £i(x) (A.22)
* Y1-x2
Expanding £, fi+1 in Chebyshev polynomials of the
first kind, we write
N
(@) £;,,(8) = % anTn

N
) bnTn
1

(b) £, (£)
(A.23)

Substituting (A.22), (A.23) into equation (A.2lc), and
applying the proper integrals in Appendix D, we arrive at
the following

N N
zanUn—l(x) = _X
1 1

bn l:_sin (cos™? (x))

n C(x) (A.24)

where U, is the Chebyshev polynomial of the second kind.
Multiplying each side of equation (A.24) by Up (x) Y1-x2 and
integrating from -1 to 1, we obtain

_ ¥ bm 1 sin m(cos—ix)Un_l(x)/l--x2
an = -] =

I
2
ma ™ 1 C(x)

dx
(A.25)

For a parabolic body, if the asymptotic approximation for
C(x) (cf. equation (C.17)) in Appendix C is used, C(x)
can be written in the form

C(x) = d(l-ex?) (A.26)

where d and e are constants which depend on the body
shape, water depth, and the gap size between bottom and
hull bottom. Finally, equation (A.25) can be written in
the following form

N w lmiﬂl m IEZEI .
ap = L3 bm [:J cos (2 2 '0)sin® Lo _ J cos(2'"2 'g)sind
n anw m l-e cos?9 l-e cos?86

(A.27)

Te
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where (m+n)/2, (m-n)/2 must be an integer. A recurrent
relation for the integrals inside the bracket is given in
Appendix D. Thus, we can readily compare the magnitudes of
an and bp . It is found that if the water depth is
one-eighth of the length of the parabolic body, in order
lan|<|bn] . the gap size must be close to one-fortieth of
the draft. 1In other words, the flow changes drastically
once a small "leakage" is allowed beneath the bottom of
the ship.



APPENDIX B

The appropriate Kutta condition for

the moving ship in shallow water.

In the case of two dimensional flow, the Kutta condi-
tion can be stated in such a way that the velocity must be
bounded at the trailing edge of the moving body.

However, in the case of the interaction in shallow
water, we must state the Kutta condition explicitely in
order to define a numerical scheme to solve equation (3.22).
In other words, the value of the vorticity at the trailing
edge must be related to that of the vortex wake immediately
behind the trailing edge. In this appendix, we wish to
show that the vorticity is continuous from the body through
the trailing edge into the vortex wake.

As indicated in Appendix A, the vorticity along the
moving ship can be written in the following equivalent form
(c.f. equation (A.13))

-2 2

. L o TE  yy (£+UL) A€ v(,t)
Y8 = e [“J ~E-% ‘wﬁ—dg +]£ TFE Eox o0
- -2
L 2
L-& dg 1
/i S ew IY‘C’t’dC]

“2 :

(B.1)

Consider the first term inside the bracket. By adding

and subtracting yyw(~2+Ut) , we may write
-2
I /1_ —w(awt) =/ﬁyw(—2+Ut)j dé
‘e (E-x) V/-2-E
-2
+J Yy (E+UL) V2-E-V2R vy (-2+Ut) aE
(E-x) V-2-¢

- 00

(B.2)

Note that the second term on the right hand side of

the above equation is bounded as x+-%, and the integral
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-9 o
J ag -2 J dg _ _-m

T e = i e 5.3)

by setting

A similar manipulation operated on the rest of the

terms inside the bracket of equation (B.1l) leads to the

following:
) o
B=E VI(E,t) 4r - /3T v(-12,t) __cg_r__ * [O(l) }
fz L+E £-x ig (E-x) /2+E 28 o
and
. 2
- 4 1
]t Q’+€ E—X C(E..) I Y(C't)dc
-2 E
i '
e | e (202
!, Lo (E-x)/2+E
(B.4)
Since
2 Y
(e pmesm
Ly (B0 VAR 2L - /i
as  xr-f (B.5)

Then, taking the limit as x>-%, equation (B.l) can be

written as:

2
y(x,t) = == /33X [‘ V28 yw(-z+Ut)+0(1):]

! T T w2 R-x
lim X—-2 VxX+4 (B.6)

Thus, the following expression for the Kutta condition
is obtained

Y(-2,t) = Yw(-2+Ut) (B.7)



APPENDIX C

Numerical procedures

In this appendix, we will set up the numerical scheme
to solve the Volterra integral equation (2.26) for the two
dimensional flow and the singular integral equation (3.18)
which results from allowing flow beneath the bottom of the
ship. The sway force and yaw moment acting on each of the
bodies can be evaluated numerically once the appropriate
vortex strength along the body and the unsteady wake is

known.

(a) Numerical solution to the Volterra integral

equation

If we non-dimensionalize the length scale with respect
to the half-ship length £, equation (2.26) can be written
in the form:

-1

1

J /ET Y (E¥TIAE = F(1596) (C.1)

where 7t1=Ut/% is the non-dimensional "stagger" and &=n/2%

the lateral separation between the bodies. F(t1,§) is a known
function related to the cross flow along the body when the

other body is (t,8) apart. Let the unknown wake YW(E+T)=
f(z) , then upon change of integration variable, the

following Volterra integral equation is obtained:

T
g=T-2 =
J /=~ £(2)dr = F(T+1)

el ]

where T=1-1 (C.2)

The basic method of solution of this integral equation
will be to divide the unsteady wake into a number of "time
steps" with the control points located at both ends of each
time step.
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For this numerical scheme, the integral equation can

be rewritten as

i fTi
) J £(z)K(Tj:z)dg = F(Tj+1) (C.3)
i=2
Tia
where
.y = /8TTj-2

In defining a numerical scheme, to solve (C.3), we
must assume a "starting” step T; at which f is wvanish-
ing small. 1Indeed, when the ships are more than three ship-
lengths apart, the cross flow F(t) calculated is practi-

cally zero. Thus we set:
f(Tl) = 0 at Tl=—11. (C.4)

In the computer program.
Assume the wake vorticity distribution f(t) varies
linearly during each time step, the "shape" function for

f(T) in each time step may be written as

1

= (T:-T

£(T) )
i “i-1

[(T3-T) £ 1+ (T -T; 1) £;]

for

T <T<T, , 1=1,2,3,... (C.5)

i-1

This is illustrated in Figure Cl.

£, £, £5 £, f5 fy-2 fn-1 f
T. T N MO
1 Ty T3 s Ts Ty-2 Tn-1 T

Figure Cl1 Shape Function for

the Volterra Integral Equation
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The integral equation (C.3) can now be replaced by

the following system.

j-1
A . . e = . +
fJAJ + izl flKlj F(TJ 1)
j=1,2,3,... (C.6)
where
£, =0
T, = -11
T,
_ 1 J
Aj = o7, N J K(c,Tj) (z-T l)dc
B
J-1
1 Ti
= K(g;T. ~T,
Ti1
1 Tiv1
+ J K(g;T.) (T, ,-¢)dg
Ti+1 Ti . ] i+l
i

Furthermore, Aj and Kij
using the appropriate relations in Appendix D. Thus the

can be integrated analytically

wake vorticity can be completely determined at each time
step and there is no matrix inversion involved in obtaining
the unknown f;'s of the system (C.6).

In particular, for the case of a moving body past a
fixed one, the known function F(T) corresponding to the
first approximation Y& for the wake of the moving body
(cf. (2.25)) takes the form

F(1) = & J e V(E,TdE
-1 (C.7)
where
1 .
= Us E+1-Xx dx 1-x2 G'(2z)
v(g,T) = - J (EF1-%) 27352 o f P dYJ (y-T-2) 2+62 dz
-1 B -1
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and G(z)=b/%(1-z2) is the non-dimensional body contour of
the identical parabolic bodies.

Interchanging the orders of integration and using
the relations of Appendix D to carry out two of the
integrations analytically, F(tr) can be reduced to a

double integral of the following form:

1
F(1) = J o (%, T) gy JB(x,A,T)d)\ (C.8)

1-%2
_l/l X 21

This can be integrated numerically using Simpson's
quadrature on the dummy variable A and Chebyshev quadra-
ture on the remaining integral.

To determine the forces and moments acting on the body,
the terms involving the cross flow V(x,t) along the body
in equations (2.39) and (2.41) are treated in a similar
manner. In actual calculation, an eight-point Simpson's
quadrature and an eight-point Chebyshev quadrature give
three significant figures (compared to a forty-point
Simpson's and a forty-point Chebyshev's quadrature). On
the other hand, the terms involving the wake vorticity
YW(X+T) in equations (2.39) and (2.41) are more compli-
cated. However, this can be done in a similar way as we
treated the kernel in equation (C.1l) before, and will not
be discussed here again.

The computer program for finding the wake vorticity
from the Volterra integral equation (C.2) has been
checked in two ways. First, we set the unknown f(x) of
equation (C.2) to be a linear function which is zero when
T<-11] and increases linearly for T>-11. The function,
obtained by integrating the left hand side of (C.2), is
used as the input function for the computer program. The
difference between the computed result and the assumed -
linear function is within 0.01% everywhere for a time step
of length .2 . Secondly, for the case of a body passing a
fixed one, the following lengths for various time steps are

used:
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length of each time step:

A for |T+1|<3.
2A  for 3<|T+1]<6.
4A for |T+1]|>6 .

The solution is found to be unsensitive to the length
of each time step, the difference between the solutions

corresponding to A=.2 and A=.05 is less than 1%.

(b) Numerical solutions to the Singular Integral

equations with Cauchy's integral as the

dominant part.

Here, we will set up a numerical scheme to solve the
integral equation (3.18) subjected to conditions given by
equation (3.19) and (3.20).

The unknown vorticity in equation (3.18) consists of
two parts that are different in nature. Namely, those
along the ship and those in the wake, which can be treated
separately. The time history of the interaction is divided
into finite number of time steps. At a given time, the
ship is divided into a finite number of segments with a
control point chosen properly at each segment. This yields
a system of N wunknown vorticities satisfied at N-1 control
points with an extra condition supplied by the Kutta
condition (3.20) and the circulation relation (3.19). 1If
we non-dimensionalize the length scale with respect to the
half-ship length &, such a system can be written during
the Mth time step as:

N g, M T.
f°3 1
(a) 22 | @R (xsEraE=-] J Yo (E+T) Ky (x; E) AE+V (%,T)
j= i=2
£5-1 Tio1
M Ui N Ej
(b) ] Y, (E+T)dE=-) J Y(£)dE .
i=2 j=2

T £5-1 (C.9)
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and
v, (~1+1) = y(-1)
where
Ut . . .
="+ 1s the non-dimensional stagger.
AT=(Ti—Ti_l) , is the distance travelled by the ship
over the ith step.
_ 1 _m_ _ . . i ..
K, (x;8) = £t T00 H(x-£) ; H is the heaviside
step function
1

In defining a numerical scheme for the above system,
two points we must remember. First, we must pick a
"starting time" at which the vortex distributions are
negligible. Second, the singular nature of the vortex
distribution at the leading edge must be considered.

We will assume the vortex wake equals zero at Tl and
varies linearly over each "time step" AT. Remember that
the vortex wake remains constant once it is shed. At a
given time, we will also assume that the vortex distribution
varies linearly over each segment except at the leading
edge. At the leading edge, a square root singularity is
anticipated. (cf. Appendix A) Therefore, a built-in square
root singularity is constructed in that segment. vy (x) can
now be written as follows:

For the segment belonging to the leading edge:

/(xN-xN_l)(xN—x)

xN<X<xN—l
For all the remaining segments:
() y(o) = LTIt exi=) T
i ®i-1
X. .<X<x%,
i-1 i

(C.10)
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It has been shown that (cf. Ref. [9]) for the two
dimensional airfoil equation, the numerical result does
not depend much on the location of the control point as
long as the above shape functions are employed. For
convenience, we place the control points at the middle of
each segment. The scheme is illustrated in Figure C2.

k=2 Control points
(k=N)

Figure C2 Shape Functions for the system C.9.

Substituting equations (C.5) and (C.10) into the
system (C.9), we obtain the following linear algebraic
system of N equations and N unknowns of Y; for the Mth
time step.

N M
(@) ] YiByy = I Y ,;C. +V k=2,3,...H
=1 * i=

1

B = Ko (2:xk) [x+1+ (Ty~-Ty-1) ] 4
1,k Ty — Tyl X -
-1-(Ty,~-T, _,) i=1.

M "M-1

2
+ J Ky (x:xKk) (x2-x) dx
X=X
< 2 71
-1
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IR (xs , (Fi+l
B, 4 = f 1exixk) (x=%x§-1) 4., K1 (xixp) (Xi+1-x)
L N *iT¥i-1 J ¥i+1 7%y
i-1 X3
X1 . i=2,3,4...N-2
By, k=J K1 (x5 xKk) (x=xN-1) dx + jN Ky (x5 xx) (xn—x%) dx
g *N-1""N-2 (kK1) (R %)
N-2 *N-1
i=N-1
N
B .=| Ki(xixg) (x-xN-1) dx i=N
N xRy Xy (Xg=x)
N-1
-1-(T,~T.)
M "1
= Ky (xixg) (x-xn-1) 5.
"L Ty T o)
“1= Ty =T )
1 Ko (xixk) (I+Ty=Tie1+X) 4.
- | gLl
i+l i
~1- (T ~T,)
= IM-TM-1 . X2-X3
Dy 2 T =5
= Xi+l—-Xj-] = -
D, . i=2,3,...N-1
N
XN=-1—XN- XN—X
= + _ANTR
DN—l 2 J XN~ Xy-1 dx
X

dx
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N
Dy = J XN-XN-1 dx
VX _~x ) (X,—X)
X1 N EN-17 '*N

p = Lj41-Ti-1
E 7

and
Vk=V(xk,T) (C.11)

Note that in the terms B and Dy, we have used the

1,k
Kutta condition

— (C.12)

to obtain the first part. All the integrals in (C.1l1)
except the term Vk can be integrated analytically using
the appropriate formulas in appendix D. The term Vk is the
resultant cross flow due to the various singularities
distributed over the other ship.

For the case of a ship passing a fixed one, the vortex
distribution along the fixed body is given by equation
(3.21) subjected to the circulation relation (3.22).
However, here, we must allow square root singularities at
both ends. (cf. Appendix A). In addition to the shape
functions (C.10), the segment belonging to the trailing
edge must be replaced by:

(X,=%X) Y+ (x=X,)Y
Y(x) = 2 1 1’2 -1<x<x
V(xy=%;) (x-x,) (C.13)

The integral equation (3.21) and (3.22) can be rewrit-
ten as

N

(a) izlyiBik =V, k=2,3,...N

N

(b) izlYiDi =0

where B,y and Di are given in (C.1ll) except the following
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X2
B, | = J' K] (Xixg) (%2-%) 4.
’ x /(xz—xl)(x-xl)
1
X2 X3
B _ Ky (xixk) (x=x7) Ky (xixk) (X3-%) 4.
2,k Tx=x) (7=%) X3=X,
X 2 71 1 X
1l 2
X
2
D, = J (x2-x) dx
X /(xz-x)(x—xl)
1
and
X,-X %2
D, = —5= + J el
2 71 (C.14)
X1

In the above system, the term Vk for the first approxi-
mation in our successive scheme takes the form:

1
v =U_nJ s'(g) de
k h (xk-ﬁ—T)2+62
-1 (C.15)

where s'(£) is the change in sectional area of the passing
ship.

As far as the first approximation of the cross flow
induced on the moving ship is concerned, the term Vk of
(C.11) is given by

1 xk+T-£
Vg = ‘J Ve (&) gy ever 96
-1 (C.16)

where Ye is the vortex distribution over the fixed body
which satisfies (C.14) and (C.15).

In solving the systems (C.11l) and (C.14), the blockage
coefficient C(x) along the length of each ship must be
given. In general, finding the exact value of C(x), which
involves solving the two-dimensional problem of a unit flow

passing the given ship section, requires a tremendous amount
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of work. Fortunately, the following asymptotic approxima-
tion for C(x) at any section is found by Taylor (cf. Ref.
{10])

B(x) 2h B(x) 2h
C(X) v 26 + ? - ""'2—"' - T in 4e (C.17)
B(x) = full beam of section
T{x) = draft of section
h = water depth

(h-T(x))/h = normalized gap size between bottom
and hull bottom

€

In the computer program, a NxN coefficient matrix A is
formed for the unknowns YN of the system (C.1ll). The
elements in the last row of the matrix are given by D; in
equation (C.1l1lb), while the rest are given by By in(C.11aq.
The LU-decomposition of the matrix A is first obtained by
using Gaussian elimination with partial pivoting. The
solution to the system of linear equations is then obtained
by back-substitution in the LU-decomposition of A. We
note that only the elements in the first column of A
depend on the size of the time step AT, if AT is kept
constant, the process of LU-decomposition of the matrix A
need only be carried out once.

The same procedure is followed in solving the system
(C.14), except that the coefficient matrix is completely
independent of time.

The computer program has been checked in many ways.
The results of the limiting case of C(x) tends to
infinity match with that of the two dimensional flow (cf.
equations (C.6)). Both the number of segments along the
ship and the number of time steps in the course have been
varied to check convergence of the numerical integration
methods. Although the results are quite sensitive to the
value of the blockage coefficient C(x) , yet for a given

C(x), the numerical scheme is stable.



APPENDIX D

Table of integrals and series

Here we list some of the most frequently used integrals

and series in this text.

1
1 [ dE i _.a\-1/2 _ [ O x| <1
™ f g—x (1% {(xz—l) 172 el (D.1)
-1
' x|
1 [ g i .2\ 1/2 _ [ -x x| <1
= { Fo e = { ey /2 ke (D.2)
-1
1
J( __C:i-g = i_ Q,n/— —V1+x |xl<]_ (D.3)
21 /1+E(E-X) Y1+x V2 +/1+x
1
f f¥§ (1-£2)1/2 < %? + /I=y7- x sin"ly +
y
Y1-x2 2n | x-y|
1+/(1=%x2) (1-y2) -xy
x| , |yl<i, =x#y (D.4)
1
x ]( e T e (e T2 w0 (D.5)
-1
1
J Tn (£) _ sin(n (cos_lx)) 6
TI=gy177 48 = n (0-6)

where T,, U are the Chebyshev polynomials of the first and

second kind respectively

1
L J (ag+b) dg a(s-d-1)+2cb
™ = sgn (c) 122
" _1(£2+2cg+d)/T:§? [258% (s+2c2-d-1)] 1/ <
where s = [(a+1)2-4c2]1/?
and c2<d 0.7
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For small c

1
1 [ at+b df_ o (b-2%) /1a(a+1) 1Y
T ) g?+ace+a JITEZ 1+d

-1

J [Y¥2=x 4. _ 4 g

Y—X

[ ¥y+2-x = [ytx-1 1
fx 7-X dx [ > ]G + (y+2)H

where 1
G = ~[(y-x) (y-x+2)12
H = &n(y-x+1+G)

_ 8
- 2(2—B)an + Ban_ =

Ba 1 1 ° [Zn+l) (2n-1)

where
T

_ sinfcos2nb
b J 1--Bcosze‘de

0

(D.8)

(D.9)



APPENDIX E

Hydrodynamic interactions for two dimensional

unsteady motions in unbounded region

Consider a disturbance (body), traveling in the presence
of a stationary object S in ideal fluid. The pressure in
the fluid is given by the Bernoulli equation:

_P(x,y,t) _ 30 (V9)® /

5 =sxt (E.1)
where &(x,y,t) is the velocity potential.

The form acting on the body S may be written as:

% _ __|> |9% (Vo) 2
F = pJn {Bt + 5 ]dl (E.2)

where n 1is the inward normal on S.
The force consists of two parts which can be treated
in different ways. Denote the part that is given by the time

derivative of ¢ by F, and the other by Fg as follows:

Fp = -DJK a—i as (E.3)
S

and ?s = -pJK (if)z df (E.4)
S

Furthermore, denote the singularities interior to S

by &7 and exterior by ¢, , such that
d=0. + 9 (E.5)
(E.4) can be re-written in the following form:

. . dw) ?
Fgx - J.FSy = 1% j [HE] dz (E.6)

where w=wgotwy 1s the complex potential, and Fgy , Fsy

are the x and y component of the force ﬁs .

75
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If the singularities are multipoles, the force can

] 2
5]} e

J -

be further simplifed to

. _ ip .
FSX - lFsy = 7 {Z 21i Res
by the virtue of the residue theorem, where Cj are the

locations of the singularities inside S. A further simpli-

fication leads to the following:

fox T ey T ¥ L mED T | £ -8)
j

where aj is the strength of the singularity at Cj , and
n+tl 1is the order of the pole at 1. .

J
A similar analysis on the moment acting on S leads

‘I (E.9)
z=0
y

to

[0 4 n
Mo = Rej|+21p I J gdz—n" [Z d__W_Q_]
J

S (n-1) dz

As far as the force gt is concerned, the application
of Chertock Formulas provides great convenience. Define an

auxiliary function ¢ as follows:

Vip = 0 outside S

(x2+y?) s < at infinity

%% = ny on S (E.10)
Where ny is the k~th component of n . Now, the k-th

component of ﬁt can be written as follows (cf. Ogilvie [2])
- - 9 [3%] _ 3¥ 3%
Feg = )?§@3n (Bt] an 3t | o (E.11)
J g 5

where S¢4 is a circle of infinitesimal radius ¢ enclosing

>

the singularity at rj outside S. To calculate the moment,

we only need to put

3Y _ — on
n - XMy T Yhx
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in (E.10). Notice that when the moving body is sufficiently

far away from the fixed one, ¢, can be approximated by an

incident flow (which represents the moving body in the absence

of the fixed one). However, when the bodies are in each

other's proximity, ¢, , QI must be determined simultaneously.
As an illustrative example, consider the force acting

on a fixed cylinder due to another cylinder passing in a

straight path as shown in Figure El

|

Figure El. Cl

Q
1 ]

Axis System for Two Cylinder

The complex potential can be represented by a system
of dipoles and images within the two cylinders in the

following way

w | ei(2a—1r) - U
W= 3z Al oz 2 (E.12)
j=1 17 =0 23

where the subscript 1 denotes the fixed cylinder Cl and

2 denotes the moving cylinder C is the strength of

U
2 720
the dipole representing C, in the absence of Cl . “1j
H23-1 17 M5 H13
in Co. Clj are interior to C, while Lpy are exterior.

is the image of in C is the image of
The unknownsin (E.12) are given by the following

relations (cf. Ref. [3])

o = Arg (czo)

2

l2i51-125541 = a
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— * — = 2
120075141 122072541 = D

- 2

a?
13 T M23-1 IBRE
H23 = “13'|(Z -z .2 (£-13)
20 ~13
where ij = complex position of the kjth image
Cky = Ekj(t) + i My k=1,2

It is obvious that the series in(E.12) converge provide

that

-

z >a+b . (E.14)

From (E.8), we have

F - iF = 2mp ; u ; ) (E.15)
8§x S 3 .
Y j=1 13 k=0 C157%2x!
Solution to (E.10) for the body Cl with E% = ng takes
the following form.
2
a“x
¢==—§71§; (E.16)
While for WV n we have
an y '
2
a

Furthermore, if @O in (E.1ll) is a series of dipoles,

(E.11) can be written as

- 9 (7, '
Ftk - ZWQ § at (“j 6) w (Cj) (E.lS)
where the dipole strength ﬁj is written in vector form to
take care of the direction of the axis.

Finally, putting

oo U
o, = % 2, (E.19)
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we have, from (E.16)

2_.2
FE

d
= lu.. A (E.20)

—_ 2
th = 2m7pa .

J

o8

and from (E.17)

oo £,

9 2)
F = 4Trpa2n Z A+ U . 2 2 2
ty j___oat 23 (Ezj +n2)

(E.21)
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FORCES ACTING ON FIXED CYLINDER
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The forces acting on the fix cylinder have been computed
using equations (E.15), (E.20) and (E.21). The results from
these computations are shown in Figure E2. Both the hori-
zontal and vertical forces are considered positive if they
are attractive (i.e. directed towards the moving cylinder).
Only the results for positive values of x are shown since
they are the same for negative x. From the figure we can
see clearly that the magnitude of the interaction forces
increases significantly as the separation distance (n) de-
creases. The F, component of the interaction force is the
largest, which implies that the 38¢/3t term dominates in
Bernoulli's equation. However, as the separation distance
decreases the Fg component becomes more and more important.
In linear theory the Fg component is usually neglected
since it depends on the square of the velocity. The results
of Figure E2 seem to indicate that this approximation be-

comes less accurate as the separation distance decreases.
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