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ABSTRACT

The design of mooring systems presently requires numerous trial and error iterations due fo the high
number of design variables involved such as positioning of the moored vessel, number and properties
of mooring lines, length and arrangement of lines, orientation and pretension of lines, location and
pretension of riser. Then, for a given configuration and environment, numerous simulations of the
nonlinear mathematical model are performed which cannot reveal the complete picture of the system
dynamics. This paper summarizes a methodology for assessment and design of mooring systems
developed for the University of Michigan Offshore Industry Consortium in the past sixteen years,
which virtually eliminates trial and error in design and the need for simulations. It is based on
calculation of catastrophes and sequences of bifurcations and definition of the associated
morphogeneses which define regions of qualitatively different dynamics in a design space, thus
making direct selection of values of design variables possible. Sensitivity of catastrophes and
morphogeneses on excitation, modeling, design and operational parameters makes it possible to assess
their effect on design without simulations. Results show dynamic behavior contrary to practical
design guidelines, explain observed nonlinear behavior, and reveal new phenomena related to slowly-

varying wave drift.
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NOMENCLATURE

Average Breaking Strength

Anchored Catenary

Alternate Equilibrium

Abkowitz maneuvering Model

American Petroleum Institute

beam of vessel

Boundary of Dynamic Loss of stability
Buoy-supported catenary

Boundary of Static Loss of stability

center of gravity of vessel (vessel and turret in TMS)
center of gravity of supporting buoy

center of gravity of turret
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distance from center of gravity of the system to center of gravity of turret
Differentiated Compliance Anchoring System
initial strain (synthetic fiber rope)

water depth

significant wave height

length of vessel

length of riser

position of the buoy along the chain with respect to the vessel
length of mooring line |
number of mooring lines

number of buoys

Obokata maneuvering Model

Principal Equilibrium

horizontal pretension (chain)

total pretension (chain)

vessel resistance

Suspended Catenary

Spread Mooring System

Single Point Mooring



(x,5,2)
(X,Y,Z)
(X',Y',Z"
(Xp,Yp,Zp)
(Xms YmsZm)
(xp,¥p)

synthetic fiber rope

Short Wing maneuvering Model
time

mooring line tension

significant wave period
Takashina maneuvering Model
Turret Mooring System

Two Point Mooring

current speed

inertial reference frame fixed to mooring terminal 1
body-fixed reference frame with origin located at CG
body-fixed reference frame with origin located at CGr
body-fixed reference frame with origin located at CGp
mooring line coordinates on the mooring terminal -
mooring line fairlead

location of top of the riser forward of CG

current angle with respect to (x,y)

initial riser offset

angle of external excitation with respect to (x,y)
vessel drift (yaw) angle

absolute yaw angle of turret

i-th eigenvalue

incident angle of relative flow

wave drift angle with respect to (x,y)

wind angle with respect to (x,y)

moment friction coefficient between turret and vessel

absolute angle of aperture between X -axis and mooring line

equilibrium of (e)



1. INTRODUCTION

In the past twenty years, significant research effort has been devoted to the development of station-
keeping systems for Floating, Production, Storage and Offloading (FPSO) facilities. "Mooring,
dynamic positioning or hybrid systems are being designed and developed for depths up to 3,000 m.
Mooring systems configurations include Single Point Mooring (SPM), Two Point Mooring (TPM),
Spread Mooring System (SMS), Differentiated Compliance Anchoring System (DICAS), and Turret
Mooring System (TMS). Environmental conditions such as direction and intensity of excitation, water
depth, and duration of drilling or production operations, are dominant factors in selecting the mooring
concept. Selection of configuration particulars for a given mooring concept largely depends on
experience and extensive trial and error due to the high number of design parameters involved, as well
as limitations in the state of art in modeling of excitation on the floating vessel, the mooring lines and
the riser(s). Assessment of a selected configuration is achieved by systematic nonlinear time
simulations which can reveal only a partial picture of the mooring system dynamics. Trial and error in
design along with simulations for analysis are time consuming and cannot be conclusive [26].

The methodology presented in this paper considers the slow and intermediate frequency scales of the
dynamics of a mooring system as the basis for modeling since they are the scales affecting positioning.
For brevity, these two frequency scales corresponding to maneuvering and slow-drift will be referred
to as slow motion in the horizontal plane. This is the dynamics that can be restrained by mooring
and/or dynamic positioning. In addition, the slow underlying dynamics is required for calculation of
fast (wave frequency) dynamics needed in prediction of extreme loads and motions. The methodology
developed at the University of Michigan (UM) since 1983 assesses mooring system dynamics by
calculating global properties as opposed to instantaneous response predicted by simulations. Such
properties include system equilibria, sequences of bifurcations, catastrophe sets, singularities of
bifurcations, and morphogeneses. The information contained in these global properties is adequate to
infer the qualitative behavior of the system dynamics without simulations [26, 40, 59]. Presentation of
such information in design spaces makes it possible to select values of design variables directly
without trial and error. At the same time, it becomes possible to assess new designs and mooring
concepts, to assess the range of validity of practical design guidelines, to compare mathematical
models, and as in the case of slow-varying drift, reveal that resonance to mooring is only one of

several possible associated phenomena [9].

The material in this paper is structured as follows: In the next chapter, background information with
literature review is presented. In Chapter 3, the problem of design of mooring systems is described.



In Chapter 4, the mathematical model is summarized including two different schools of maneuvering
models; quasistatic mooring line models, including synthetic fiber, steel cable, and chain with
touchdown, drag and supporting buoys; marine riser - in three dimensional large quasistatic
deformation; steady external excitation due to current, wind and mean wave drift forces; and
intermediate scale hydrodynamic forces including memory effect and slowly-varying wave drift. In
Chapter 5, the richness of nonlinear mooring dynamics is revealed using only a limited number of
simulations selected properly based on the UM design methodology for mooring systems. Concepts
of global stability analysis and bifurcation sequences of nonlinear mooring dynamics are introduced in
Chapter 6 to explain the process of developing analytical physics-based expressions for the bifurcation
sequences and linking them to specific morphogeneses. This leads to the outline of the UM
methodology in Chapter 7. Of interest to the practitioner as well as the researcher are the results
presented in Chapters 8, 9 and 10 where the effects of modeling issues, environmental excitation, and
design parameters that can be adjusted during deployment and operation are assessed using catastrophe
sets in the design space. Probably, most notable among these are the assessment of the Abkowitz,
Takashina, Obokata and Short-Wing maneuvering models; and the phenomena of interaction between
slowly-varying drift forces and system frequencies. Closing remarks discuss conclusions and future
direction of the UM methodology for assessment and design of mooring systems.



2. BACKGROUND

The problems of towing, mooring, and anchoring are related in the sense that forces are applied by
lines to a vessel in slow motion with respect to water. Dynamic positioning via automatic control of an
array of thrusters [19] or combination of the above complete the spectrum of methods commonly used
for station-keeping. The common thread among all these problems is that a floating vessel is moving
slowly in surge, sway, and yaw and such motion can be restrained to achieve a desired positioning of
the vessel. The wave frequency motions - referred to as fast motions - are not controllable. Fast
vessel response is most important in the other three degrees of freedom - heave, roll, pitch - where
restoring forces exist. Intermediate frequency motions, which are due to interactions between fast and
slow motions (memory effect), and slowly-varying drift are controllable and should be included in
modeling of mooring system dynamics.

Research in explaining a series of phenomena and field observations have instigated and fueled this
effort at the University of Michigan. These phenomena which have been explained by the
methodology presented in this paper are described below.

(1) In the decades of the 1950's, 1960's, and 1970's extensive research was conducted to explain
the following contradiction: In 1950, Strandhagen et al. [64] modeled towing using
maneuvering equations and an inextensible towline and performed basic stability analysis. He
concluded that shorter towline improves stability. In 1955, Benford observed that towing of
Canadian barges becomes more stable by increasing the towline length [4]. In 1971, Brix [13]
arrived at the same conclusion using model tests. This contradiction was explained by Bernitsas
and Kekridis in 1985 [8].

(ii)) In the decades of the 1970's and 1980's jack knifing and fishtailing motions of moored tankers
were observed [63]. The former is a slow periodic surge motion. Fishtailing is a slow periodic
motion in coupled yaw and sway. These phenomena were attributed to the time dependence of
environmental excitation [63]. In 1988 it was proven by Bernitsas and Papoulias [10, 59] that
these periodic slow motions are due to Hopf bifurcations, that is, dynamic loss of stability.

(iii) In the decades of the 1980's and 1990's, several mooring patterns have been developed and
recommended by API [3]. These are effective patterns but the dominant tool for analysis of
mooring systems remains extensive nonlinear time simulations. The design approach is still
dominated by trial and error. The method summarized in this paper provides an alternative



(iv)

)

(vi)

(vii)

approach to design of mooring systems by calculating global (time independent) system
properties.

Still in the decades of the 1980's and 1990's several design guidelines (rules of thumb) have
been proposed and practiced to reduce the trial and error cycle in design. It has been shown that
in general the bifurcation sequences in catastrophe sets do not have simple geometries, thus,
making it practically impossible to develop simple design guidelines [6, 7, 27-29, 33]. Even
basic guidelines such as that reversal of propeller or increased mooring line pretension have been
proven by the UM methodology not to be always correct [5, 38]. Actually, such actions may
instigate chaos in the system dynamics [11].

In the decade of the 1980's, it has been shown that slowly-varying drift forces may resonate with
the natural frequencies of mooring systems [23]. It was shown recently by Bernitsas and Kim
[9] that the interaction between slowly-varying drift forces and mooring system dynamics is
much richer in nonlinear phenomena. Specifically, wave drift may cause resonance, may render
a stable Principal Equilibrium (PE) unstable resulting in trajectories attracted by Alternate
Equilibrium (AE), may render an unstable PE stable, or may eliminate a limit cycle and the
associated periodic motion.

In 1996, the UM methodology made it possible to distinguish between slow periodic motions
instigated by Hopf bifurcations and quasiperiodic motions caused by inappropriate distribution of
mooring lines [5, 26]. The latter was labeled "poor design" limit cycle and indicates the
phenomenon of a moored vessel trying to converge to either its stable limit cycle or a stable AE
while being pulled away by a line in high tension.

In the 1960's, 1970's and 1980's, several maneuvering models have been developed.
Abkowitz's [1, 2] and Takashina's [65] models are among the physics-based models which are
accurate but require extensive model tests to find the values of several hydrodynamic
coefficients. Those are hereto forth referred to as the first school of maneuvering models. In the
1980's and in the 1990's a second school of modeling was developed with such models as the
Obokata [54, 55] and the Short-Wing [46, 61]. Their contribution is the reduction of the
required number of model tests by heuristically combining formulas for various sources of hull
hydrodynamic forces. A number of maneuvering models widely used in practice are based on
the Abkowitz model or are the product of a combination of the two schools [25, 49]. A recent
comparison of the two schools of modeling based on the UM methodology reveals their

advantages and drawbacks [49].



The problems involving towing and mooring have been studied widely theoretically, numerically and
experimentally. Following the work by Strandhagen et al. [64] several studies in these fields have
been published by Abkowitz [1], Benford [4], Bernitsas et al. [8, 10-12, 15, 16, 59], Brix [13], Eda
[22], Chakrabarti [14], the authors of this paper [5-7, 9, 27-38, 43, 44] and others [23, 24, 46, 52,
61]. In recent years, mooring system design has attracted considerable attention particularly in deep
waters. Presently, mooring systems are designed for specific purposes based mostly on experience
and conservative calculations. Current practice [3] indicates that the existing rationale in the mooring
system design process relies heavily on extensive nonlinear simulations and trial and error. This is due
to the lack of fundamental understanding of the dynamics that mooring systems exhibit.

Several studies show that mooring system dynamics strongly depend on certain design parameters,
such as the number of mooring lines; the fairlead position, material, orientation, pretension of lines,
etc. [5-7, 11, 12, 15, 16, 24, 27-30, 33, 37, 38, 39, 43, 44, 46, 49, 53, 59, 61, 62]. Single Point
Mooring (SPM) has been studied by Sharma et al. [62], Bernitsas and Papoulias [10, 11] , Faltinsen
[23], Fernandes and Aratanha [24], Papoulias and Bernitsas [59], de Kat and Wichers [20],
Nishimoto et al. [53]. The above references study the SPM problem in the case of a single floating
mooring terminal. Turret Mooring Systems (TMS) have been studied by Garza-Rios and Bernitsas
[30-33], Bemitsas and Garza-Rios [7], Nishimoto et al. [53], Leite et al. [46], Dercksen and Wichers
[21], Laures and de Boom [45], Simos et al. [61], Mack et al. [47]. Occasionally, the Turret Mooring
System (TMS) is referred to as SPM because the floating vessel is moored to the turret even though the
latter is stationed via an array of spread mooring lines. It should be noticed that in [7, 30-33] the TMS
was modeled properly taking into consideration the diameter of the turret and establishing the
limitations of approximating the TMS by a SPM. Spread Mooring Systems (SMS) have been studied
by Bernitsas and Garza-Rios [5, 6], Bernitsas and Kim [9], Chung and Bernitsas [15, 16],
Chakrabarti [14], Davison et al. [19], Gottlieb and Kim [39], Garza-Rios and Bernitsas [27-29], Kim
and Bernitsas [43, 44], van Oortmerssen et al. [68]. A variation of SMS, suitable for the Campos
Basin offshore Brazil is the Differentiated Compliance Anchoring System (DICAS), a type of SMS in
which different mooring line pretensions, and therefore stiffnesses, are used at the bow and at the stern
of the ship allowing the vessel to partially weathervane under different environmental conditions. The
lines moored forward of the center of gravity of the vessel have higher pretensions than the lines
moored aft. This somewhat restricts the bow of the vessel from moving, while allowing the stern of
the vessel to move relatively freely. Risers can then be installed near the bow of the vessel, where the
horizontal motion is limited. DICAS have been studied by Garza-Rios et al. [37, 38].



In deep water, mooring chains become excessively heavy, and need to be supported by buoys.
Their effect on spread mooring systems was studied by Garza-Rios and Bernitsas [34, 35]. The
problem of coupled mooring and riser analysis was studied by Ormberg et al. [57] and Kim and
Bernitsas [44]; and the memory effect was analyzed by Chung and Bernitsas [16], and Kim and
Bernitsas [43].



3. PROBLEM DESCRIPTION

The station-keeping problem studied in this paper has four major elements which are described in

this chapter: environment, station-keeping system, system dynamics, and design.
3.1 Environment

Water depth, current direction and velocity profile, wind velocity and direction, and wave directional
spectrum are required for modeling the environment and calculating the environmental excitation on the
floating production system including the moored vessel, the mooring lines and supporting buoys, and
the riser(s). These factors along with availability of equipment largely determine the choice of the

mooring system.
3.2 Station-Keeping System

For small and intermediate water depths, mooring is typically used for station-keeping of a floating
vessel. For deeper waters, dynamic positioning has been used [19]. Presently, hybrid systems are
considered for drilling at water depths approaching 3,000 meters. Depending on the water depth, the
intensity of the environmental excitation, and the variation of direction of excitation, a different station-
keeping system and configuration may be selected such as SPM, TPM, SMS, DICAS, or TMS. The
number of mooring lines may vary from one to twelve or even higher. Lines may be of synthetic
fiber, chains, steel cables, or a combination thereof. Anchoring at the sea bed is used and buoys may
be attached to chains to support their weight. Other major components of the system are the marine
risers whose flexibility of joints and strength determine the radius of offset of the moored vessel

around the well head.
3.3 System Dynamics

In response to external excitation the various components of a mooring system respond dynamically
in a wide range of frequencies. Four scales of frequencies can be identified in the system dynamics:

(i) Horizontal plane slow motions characterized by floating vessel maneuvering in response to time
independent excitation from current, wind and mean wave drift. Surge, sway and yaw constitute
the horizontal plane motions and have the common thread of zero hydrostatic restoring force.



(ii) Intermediate frequency motions due to slowly-varying wave drift forces and due to the wave
frequency dependency of the radiation forces on horizontal plane dynamics. This is the memory
effect which is non-autonomous [16, 43]. It is treated in the UM methodology using the method
of extended dynamics [67] which renders the Cummins convolution integral [18] as a sequence of
12 autonomous first order differential equations (see equations (83) - (94)).

(iif) Wave frequency motions which cannot be controlled by a station-keeping system. Those are fast
first order motions partially transmitted to the mooring lines and riser connected to the moored
vessel. Fast frequency excitation is exerted on the lines and risers directly as well. The fast
motions affect all six degrees of freedom of the vessel but may be more pronounced in heave, roll,
and pitch due to the presence of hydrostatic restoring forces in these degrees of freedom.

(iv) Fluid-structure interaction frequencies due to flow induced vibrations of mooring lines and risers.

Mooring system dynamics is strongly nonlinear. Thus, solution of the complete problem can be
achieved only by simulation. Extensive nonlinear simulations, however, provide only a very limited
picture of the system dynamics. Fundamental understanding of the system physics is needed in order
to provide the designer with tools that can reduce the need for trial and error and lengthy simulations.
For that purpose, the approach used is to decouple the fast frequency scale and the fluid-structure
interaction scale and study them separately from the coupled slow and intermediate frequency scales.
The latter scales constitute the underlying dynamics which can be controlled by station-keeping. In
addition, the two fast scales require input from the slow/intermediate dynamics.

3.4 Design

The design procedure that we have developed at the University of Michigan is based on the
slow/intermediate motion, horizontal plane dynamics of mooring systems. These are the only
controllable motions. The dynamics is still strongly nonlinear and the complete solution can be
achieved only by simulation. Thus, the designer would be forced still to rely on his/her experience to
reduce trial and error and lengthy simulations. An effective design methodology should be able to
provide time independent features of the system dynamics which describe globally the mooring system
performance and can be used for assessment. The global design information produced in our approach

includes:

(i) all system equilibria (attainable and non-attainable),

(ii) the system eigenvalues at each equilibrium,

(iii) the stable and unstable submanifolds at each equilibrium,

(iv) the bifurcation sequences of codimension one in any parametric design space,



(v) catastrophe sets (design graphs) in any parametric design space,
(vi) the associated morphogeneses for each bifurcation in any catastrophe set.

For autonomous systems, the above information suffices to assess a mooring system and to virtually
eliminate trial and error and lengthy simulations. At the same time, it provides the complete picture of
the slow and intermediate frequency dynamics because the design graphs define all regions of
qualitatively different dynamics. The number of design graphs required to reveal the complete picture
of the system dynamics is still very high due to the high number of design parameters, such as the
number and orientation of the mooring lines, the material and pretension of each line, the coordinates
of the two ends of each mooring line, and the location and tension of the riser(s).

In 1995-1996, we developed closed form analytical expressions of bifurcation sequences based on
the system physics [6, 27-29]. Even though the expressions of both static and dynamic loss of
stability are several pages long, it is straightforward to program them in a PC. Sensitivity information
of the system dynamics on each design variable can be derived from those physics based expressions.
Thus, these expressions make it possible to reduce to a minimum the design graphs (catastrophe sets)

required for design.

Two environmental excitation components are in a nonautonomous form. The memory effect which
is in the form of the Cummins convolution integral [18] and slowly-varying drift forces. The former
can be made autonomous by the method of extended dynamics [16, 43, 67]. The slowly-varying drift
forces are handled as an additional load on an otherwise autonomous system [9]. This makes it
possible to reveal a more complete picture of the interaction between frequencies of the mooring

system and wave-drift.



4. MATHEMATICAL FORMULATION

The nonlinear slow and intermediate frequency dynamics of the horizontal plane motions of a
moored vessel is formulated mathematically. The model includes the vessel equations of motion with
hydrodynamic memory and kinematics, maneuvering model, mooring line model, environmental
excitation, and riser model. In this work, two mooring models are treated. The first models all Spread
Mooring Systems (SMS), including the DICAS variation, SPM and TPM systems {5, 6, 9, 11, 15,
16, 37, 38, 43, 44]. The second models Turret Mooring System (TMS) which possesses an
additional degree of freedom [7, 30, 31]. Additional degrees of freedom are needed to model buoy
dynamics if buoys are used to support heavy chain lines. Each component of modeling is presented
separately in the following sections of this chapter.

4.1 Equations of Motion and Kinematics of SPM, TPM, SMS, DICAS

Figure 1 depicts the general geometry of a SMS and two different coordinate systems: (i) A body
fixed reference frame (X,Y,Z) with its origin located at the center of gravity (CG) of the moored

vessel. In this frame, (X, Y) is the horizontal plane and (X, Z) is the center plane of symmetry. (ii)
An inertial frame (x,y,z) fixed to the earth and with its origin located at Mooring Terminal 1. Further,

n is the number of mooring lines, (xg), yg)) are the body fixed coordinates of the i-th mooring line
fairlead; and (xf,';), y,(,’;)) are the mooring coordinates of the i-th mooring line with respect to (x, y).

U is the current speed; u, v and r are the relative velocity components of the system in surge, sway
and yaw, respectively; & is the rudder angle; and y is the yaw (or drift) angle. The direction of
external excitation ¢ with respect to (x,y,z) due to current, wind and waves is depicted in Figure 1.

The equations of motion of the system in the horizontal plane - surge, sway and yaw - are given by:

n - . I3 . .
(m+my i —mrv=Xp + z{[T,(;) ~ F{]cos g + F,S,‘)sinﬁ(‘)}+ Xy + Xp+ X+ Xyw » )

i=l

n » . I3 . .
(M + My )0+ Mg + mru = Yy + 2{[T§;) ~ F]sin B - FP cos [3(‘)} + Y+ Yt Y+ Yy s @)
i=1
n I3 » 3 - - -
Mgy -+ (I + Igg)i = Ny + ng){[r,(;) ~ F{D]sin B - F{P cos ﬁ(’)}

i=1

n . . » - . »
> yP[1 - FP]eos B + Fsin BOY+ Nyg+ Ne+ Ny + Ny 3)

i=1
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where m is the mass of the vessel; I, is the moment of inertia of the system about the Z-axis; m,,
Mmyy, Myg, Mg, and Igg are added mass and moment terms; # and v are the relative accelerations of
the system in surge and sway with respect to water;  is the relative angular acceleration in yaw. X,
Yy and Ny are the hydrodynamic forces and moment acting on the vessel; X, Y, and N,, are the
velocity dependent hydrodynamic forces and moment due to the memory effect; X5, Yz and Ny are
the forces and moment exerted by the riser on the vessel; Xy, ¥y and Ny are the forces and moment
due to steady wind; Xyy, Yy and Ny, correspond to second order mean wave drift loads. In
addition, for each mooring line, Ty is the horizontal tension component of the line; Fp and Fy are the

mooring line drag components in the directions perpendicular and normal to the mooring line motion,
respectively [36]; B is the horizontal angle between the X -axis and its corresponding mooring line.

DIRECTION (¢) OF CURRENT (o), WIND (6,,), AND WAVES (6,)
(e, 6, and 6, are independent)

270°

i+1 +1
5 55)

0° » 4——180°
¢ A
y =D,y

(x (n—1) (”*’1))

m’m

n
Sy

@ @
> V)

1
o 5)

X

Fig. 1 Geometry of Spread Mooring System
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The kinematics of the system are given by

x=ucosy ~vsiny +Ucoso , 4)
y=usiny +vcosy +Usina , (5)
v=r, (6)

where « is the current angle with direction of excitation as shown in Figure 1.
4.2 Equations of Motion and Kinematics of TMS

The geometry of a TMS is shown in Figure 2. As with SMS, the two principal reference frames are
the inertial reference frame with its origin located on the sea bed at mooring terminal 1 (x,y,z); and the
body fixed reference frame (X,Y,Z) with its origin located at the center of gravity of the system CG,
i.e. of the vessel and turret combined. A third reference frame, (X”,Y’,Z”) has its origin at the center
of gravity of the turret (CGy ), with its Z’-axis parallel to the Z-axis on the body. The turret rotation
is measured from this system and is denoted by yr, the absolute yaw angle of the turret. D is the
distance between CG and CGr; and ¥, is the angle at which the mooring line is attached to the turret
with respect to the X’-axis (fixed to the turret). The rest of the symbols appearing in Figure 2 are

defined as in Figure 1 for a general SMS.

The equations of motion of a TMS consist of three equations in the horizontal plane for the vessel
and the corresponding equations for the turret. Since the surge and sway equations of the turret are
related to the corresponding vessel equations [31], TMS possess four physical independent degrees of

freedom.

The dynamics of the system can be recast in terms of four equations of motion, corresponding to the
three equations of motion for the system (i.e. vessel and turret combined) in surge, sway and yaw, and
one equation involving the rotation of the turret. The equations of motion of the system with respect to
the (X,Y,Z) reference frame, are given by:

n . - » . .
(m +my )it = mrv= Xy + z{[:rf(;) — F{|cos B9 + FP sin /3(’)} + Xy + Xp + Xy + Xy %)

i=1

n - (3 I3 . .
(m+ myy )+ g+ mru = Y + Y[ 150~ P Jsin B = FD cos BO L+ Yy + Yo+ Yy + iy . ®)

i=1
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n I3 " » - .
My + (I, + Igg)F = Ny + DCGZ{[T,(,’) — F{sin O - F{ cos [3(‘)} + N+ Ny
i=1

+ Np+ Ny + Nyy ©)

X

(x(n) (n) )

m’ym

Fig. 2 Geometry of Turret Mooring System

Equations of motion in surge and sway remain as in SMS dynamics. In equation (9), Ny is the

moment exerted on the vessel by the turret. The rotational equation of the turret about the Z’-axis is

Iy = %zn“ O[T - Ffsin(p® - yP)} - -’;li FO{RD cos(p® —yP)+ vy . (10)
i=1

i=1

where [ is the moment of inertia of the turret about the Z’-axis; 7 is the relative angular acceleration
of the turret with respect to water; Dy is the turret diameter. The terms inside the summation in
equation (10) for the i-th mooring line are defined as follows: f,, is the fraction of the turret diameter
at which the mooring line is attached; Fp and Fy are the drag forces on the i-th mooring line in the

directions parallel and perpendicular to the mooring line motion, respectively [36]; B’ is the horizontal
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angle between the X’-axis and the mooring line measured counterclockwise. In addition, Ny is the

moment exerted on the turret by the vessel.

The exerted moments Ny and Ny, are small compared to the other terms in equations (9) and (10),

and are often neglected. Modeling these terms is difficult, as there are almost no existing experimental
data. These are of equal magnitude, and represent the friction force exerted between the turret and the
vessel. These moments are thus a function of their relative rotational velocities. A proposed model for
these would be:

Ny=—Nr=1(rp~-r), (11)

where rp is the turret rotational velocity and 7 is a coefficient which depends on the friction between

turret and vessel, the mooring line damping, geometry, and external system excitation.

The kinematics of TMS are given by

Xx=ucosy —vsiny +Ucosc , (12)
y=usiny +vcosy +Usina , (13)
y=r, (14)
Yr=rr . (15)

4.3 Maneuvering Models

Numerous hydrodynamic models have been developed to predict the velocity dependenf hull
hydrodynamic forces and moment Xy, Yy and Ny in equations (1) - (3) and (7) - (9). Two main
schools of modeling can be identified. The first one represented by the Abkowitz [1, 2] and Takashina
[65] models are used in our work. The second is represented by the Obokata [54, 55] and the Short-
Wing [46, 61] models. Next, these four models are described and compared briefly [49].

Each of the four hydrodynamic models compared in this paper has its own advantages and
limitations. The first step in assessing a particular model is to understand how it approximates the
physics of hydrodynamic force modeling. The reader is referred to original papers for a full rendition
of each hydrodynamic model. Following, a brief description of each model is provided presenting

some of its capabilities and limitations:
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(i)

The Abkowitz Model (A-M) assumes that the maneuvering characteristics of ships can be
described properly by multi-variable Taylor expansions about the steady state condition of
constant forward speed. The expressions for the hull hydrodynamic forces and moment are

Xy=X,+X,u+X,vr+X 5v5+Xr5r5+vavru+X véu + X, 5,r0u
1 1
+2(quu + X, V2 + X1 + Xy u)+2(X,mr u+ X556° +X55u52u)+—é-quuu3, (16)
Yy =Y, +Yu+Yyv+Yr+Y,vu+Y,ru+ Y56+ Y5,0u+Y, svré

ouu

;(Y u + Y, rvr + Yrvvrv2 + Yvuuvuz) ;( v66"52 + Y55r52 + Yruuruz)

1 1
+—é-(Y5W5v2 + Y5y 82 + Yy, 0 ) + g(Yvwv-” + X, + Y5507 ) a7
Ny =N, + Ny u+Ny+Nr+Nyvu+ Nyru+ Ngb+ Ng,6u+ N, 5vrd

1
+3 (Nouuu + Nw,vr +N, vrvz + Nvuuvuz) +%(Nv55v52 + N,55r52 + N,uuruz)

1 1
+5(N5W5v2 + Ny 82 + N, 04 ) + g(N,,Wv3 + Nyt + Npgs6” ) (18)

where subscripts "o " and " §" represent propeller and rudder angle effects.

Tests of deviation from the steady state condition provide the slow motion derivatives. In model
tests, the hydrodynamic forces and moment are measured while in sea trials system identification
techniques are used to calculate slow motion derivatives. Usually, terms to third-order are
retained. In addition, A-M assumes that coupling between velocity and acceleration terms is
negligible; thus, only first order accelerations are considered [1]. This model provides a very
good estimation of the hydrodynamic forces and moment on a vessel in small deviations from a
steady forward slow motion. In mooring applications, A-M is not so accurate for large incident
angles of relative flow 8 = & — . These may be caused by large amplitude yaw or large 6. A-
M for mooring systems can be improved by model tests and/or sea trials performed for larger drift

angles.

The Takashina Model (T-M) approximates the hydrodynamic forces and moment using a Fourier
series with respect to 8 [65, 66]. Kinematic conditions are used to relate the vessel translational
velocities to 6, thus expressing the hydrodynamic forces and moment in terms of the vessel
velocity vector relative to current as follows:

XH X u+(er+m22)vr N (19)
Yy = Yyv+ Y v® + Yyt + By — mll)ur+ aur | Pl Yl el (20)

Nyg=N v+Nuvuv+vav +Nuwvuv + N,r
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(iii)

(iv)

+ Nyr | rl+ Nyuv rl+ Ny, v%r (21)

This approach makes the velocity components of the vessel dependent variables. Computation of
the series coefficients relies on model tests. These consist of fixed 8 (captive) and free running
tests. The captive tests consist of static drift and yaw rotating tests, thus adding the capability of
describing the forces and moments on the vessel for larger 6 [65]. Due to the nature of the
experiments, however, T-M does not take into account the coupled added mass components in
sway and yaw, thus resulting in a small loss in the inertial forces and moment components. It
should be pointed out that T-M uses only the linear term of the resistance X, u in equation (19).

Throughout this work, this term has been replaced by a third-order resistance curve [38].

The Obokata Model (O-M) is based on the local cross flow principle [54] which is valid for large
6. O-M incorporates the inertia terms, static damping, and yaw damping of the hydrodynamic
forces and moment. The static damping is modeled after the traditional velocity squared drag
forces and moment acting on the vessel, with measured current force and moment coefficients for
different 8. The yaw damping incorporates the viscous damping forces due to the yaw velocity
of the vessel. Both damping components are calculated by a strip theory approach using the
sectional speed and @ [55]. The approximation involved in the O-M approach is similar to that in
the Morison equation. Specifically, the theoretically based inertia term and the semi empirical
velocity squared drag term are added. The hydrodynamic coefficients which are measured
experimentally in general do not account properly for all nonlinearities related to damping and

viscosity.

The Short-Wing (SW-M) utilizes a similar approach as O-M, but instead of integrating the static
and yaw damping components locally in each strip, SW-M separates them at the global ship level.
The static component makes use of a heuristic formulation that blends the ship hydrodynamics in a
cross flow and the ship hydrodynamics for small drift angles (short-wing theory), thus resulting
in a relatively simple model that describes the generalized current forces acting on a vessel as a
function of 0, vessel dimensions, and other vessel properties [46]. In addition, SW-M
incorporates a linear correction for the presence of the rudder based on the work by Clarke et al.
[17]. Model tests are performed with the ship fixed at a given @ to obtain the coefficients of
forces and moment needed. Additional model tests consist of towing a model which is restricted
to one degree of freedom (rotation), which serve to validate the static component of forces and
moment. A heuristically determined transition function makes sure that the model fits the correct
behavior in a continuous range of 6, and thus has the advantage of being able to preserve the
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dependence of forces and moment on vessel dimensions. The yaw damping component consists
of forces and moment due to the rotation of the ship, and is modeled starting from the cross flow
principle [54, 61]. The two components are superposed. The original purpose of this model was
to predict accurately static bifurcation phenomena [46] which it achieves satisfactorily. The
physical limitations of SW-M are: First, the hydrodynamic forces and moment are measured for
fixed 0, as is the case with O-M. Second, all damping components are computed using methods
with different physics bases which are superposed expecting that experimentally measured
coefficients account for coupling nonlinearities.

All four models depend on curve fitting of the measured forces. Both A-M and T-M rely on
extensive tests to ensure that the curve fitting coefficients accurately represent the hull hydrodynamics.
Both methods present experimental challenges, and are limited by model test precision. Specifically,
higher order hydrodynamic derivatives may have a strong influence on the prediction of the system

dynamics. Yet, different measurements may result even in sign discrepancies [42].

In SW-M and O-M, testing consists of a limited number of experiments that measure force
coefficients with respect to 8. SW-M requires only a small number of measurements to construct the
required expressions heuristically. O-M requires a larger range of measurements, and is limited in the
sense that it employs only a number of force measurements for the whole range of incident angles,
requiring interpolation to obtain a complete range of force coefficients. The fact that the force and
moment coefficients are easily measured experimentally in O-M and SW-M, makes both models simple
to validate [46, 54]. Both models, however, need corrections to account for the rotational forces and
moment on the system since the coefficients are measured with the ship fixed.

Matsuura et al. [49] make further comparisons of the four models based on their ability to predict
global system particulars such as equilibria and bifurcation sequences. In general, both schools predict
well the static loss of stability. The first school predicts better the dynamic loss of stability.

Most of the maneuvering models used to predict Xy, Yy, Ny follow one of the two schools of

thought defined above. Several of those are summarized by Fossen [25].

4.4 Mooring Line Models
For the purpose of studying the slow motion dynamics of mooring systems, mooring lines are

modeled quasi-statically. Mooring lines used in mooring operations are chains, cables, synthetic ropes
or combinations thereof. The mathematical models are presented next.
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4.4a Synthetic Fiber Ropes

Synthetic Fiber Ropes (SFR) are light and considerably extensible. Synthetic ropes function
primarily out of the water, although sometimes are used in deep water mooring as components in
hybrid lines. Their restoring force comes from their extensibility modeled as [50]

q
T=pr(£££w] , 22)
w

where T is the tension in the rope, Sp, is the average breaking strength of the line, £, is the length of
the unstrained rope, ¢ is the length of the strained rope, and p and g are experimentally determined

constants.
4.4b Steel Cables

Cables are heavier than synthetic fibers, are less extensible, and their deformation is three-
dimensional [58]. Steel cables are modeled by a nonlinear cable model that takes into consideration
partial submergence, three-dimensional deformation, effective tension, extensibility, and nonlinear
drag [58]. The basic cable model is governed by the basic equations:

-r%kHTEs %: +(1+Eg)fz, + f7,) =0 , (23)
%[HTES %: + U+ Eg)fy, + 17 )=0. 24)
%\1+TES %} +(1+Eg)(f, + fr,)=0., (25)
x(0) = 3(0) = z(0) =0, (26)
HTES%-FMx:1+TES%-FMy=T%%—FMZ=o, at S=4, , @7)

where (x, y, z) are the coordinates of a material point in the deformed configuration, S is the

unstrained arc length, which is related to the real arc length s by the elongation rate relation

s=(1+Eg)dS . (28)
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In addition, (fr , fr,,» fr,) is the body force vector; (fp , fp fp,) is the traction force vector;
(Fy,» Fy,» Fy,)is the end force vector at § = £,,. In the case of a submerged cable, the tension T

in equations (23) - (25) must be replaced by the effective tension T, where
T,=T+ p,gA,(H, —2) , (29)

p,, is the density of water, g is the gravitational acceleration, Ay is the strained cable cross sectional
area, H,, is the free surface z-coordinate, and T is the actual tension in the cable

o EA

Es(1+Eg)(2+Eg) . (30)

E is the Young modulus of elasticity and A, is the unstrained cable cross sectional area. Equation

(30) is valid for Poisson ratio v =0. In order to accurately integrate the hydrostatic pressure force on
the surface of the submerged cable, the actual weight in the body force is replaced by the effective
weight. For v #0,

T=(+ ES)AOEE,C(2+ES)-2prg(Hw - z):l : 31)

4.4c Chains

Chains are heavier than cables, have high hydrodynamic resistance, are usually fully submerged,
only slightly extensible, and have two dimensional deformation in the vertical plane. Chains modeled
by the catenary equations [36, 58]. In towing and mooring operations, two types of chains are
commonly used, anchored and suspended catenaries.

The first type is Anchored Catenary (AC) used in intermediate depth mooring operations and

includes nonlinear drag and touchdown. The horizontal and vertical components of the mooring line
tension Ty and Ty at the attachment point on the vessel can be found by solving the following

/ h| h+ 2 (32)
) (33)
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|
where /¢ is the horizontal projection of the suspended part of the catenary, P is the weight of the I

catenary per unit length, and 4 is the water depth. The total tension in the chain, T is given by

T=\T2 +T,2% =Ty cosh(?ij . (34)

H

Thus, the tension in a given chain depends on the projection of the suspended part of the catenary and
the water depth.

The second type of chain is called Suspended Catenary (SC) and is used in towing and occasionally
in shallow mooring operations. The horizontal tension component T of a SC is obtained by solving
the following implicit equation in Ty [58]

/ 2_ 32
sinh( Pe j— Pl Nb—h :l . (35)

2Ty ) 2Ty ¢

In equation (35), ¢ is also defined as the horizontal projection of the suspended part of the catenary.
SC's are, by definition suspended, and thus £ is also the horizontal distance between end points of the
catenary. The vertical tension component at each end of a SC is different if the endpoints are not at the
same vertical level. This component may be calculated by decomposing the SC into two segments and
using equation (33), provided that the horizontal projection of each segment is substituted instead of £.

4.4d Chains Supported by Buoys

In deep waters, the chain weight becomes a significant load on the moored vessel and the chain
itself. In order to overcome this problem, buoys can be placed along a chain to support partially the
weight of the chain. In this case, the chain model is made of a combination of one anchored and one
or more suspended catenaries. Buoys make use of chains in deeper waters feasible by reducing the

load on the vessel.

Figure 3 shows the geometry of a catenary mooring line, which consists of two line segments
defined by a buoy [34]. Segment S1 is an anchored catenary moored to the sea bed with its upper end
connected to the buoy. Segment S2 is a suspended catenary with its lower end connected to the buoy
and its upper end connected to the moored vessel. Segment S2 is further divided into two parts:
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Segment S2A, which extends from the point where SC is connected to the buoy to the lowest point of
S2, and segment S2B which runs from the lowest point of S2 to the point of attachment of SC on the
moored vessel. In Figure 3, (x,z) is the inertial reference frame of the catenary, located at the point
where the mooring line is anchored to the sea bed; (x,,,z,,) are the coordinates of the anchoring point
(x,,=0, z,=0); U is the current velocity in the — x direction; £] is the length of the horizontal
projection of AC; ¢; is the length of the horizontal projection of the suspended part of AC; d is the
horizontal length of AC in the ground; ¢, is the length of the horizontal projection of SC; £, is the
length of the horizontal projection of segment S2A; £, p is the length of the horizontal projection of

segment S2B. These are related as follows:

L=¢ +d, (36)
ly=Lys+42p . (37

h
g ; .
; s
Segm'ent S2 . Segment S1 |
h T > X
§<—f23-——>§4—fm-——>§<——fl > d >
> 4 e {

Fig. 3 Geometry of buoy-supported chain

In addition, A is the water depth; A, is the vertical distance from the lower point of the buoy to the
sea bed; h,, is the vertical distance from the lower point of SC to the lower point of the buoy; h,p is
the vertical distance from the lower point of SC to the point of attachment to the moored vessel. The
total water depth is constant, and is related to the various vertical distances of Figure 2.1 as follows

[34]:

h=h~hy+hp %)
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where

T; P?
by =-Hllcoshi —L -1,
1= I:cos [Tm) ] (39)
Tyo| Ply) ] )
=-2%| cosh| —=2 (-1,
ha P| (Tyz (40)
- -
hZB=h cosh(ﬂ)ﬁ)—l ) (41)
P i Ty, )

In equations (39) - (41), Ty; and Ty, are the horizontal tension components of AC and SC,

respectively.

The external forces acting on the catenary in Figure 3 are: Fpp is the current drag force acting on the
buoy; the integrated drag force Fp on catenary segment S1 concentrated at its upper end; the
integrated drag components F,,p and F,pp on segments S2A and S2B, concentrated at the upper end
of the respective segment; and the external horizontal force F, imposed by the moored vessel at the top

of the catenary.

Figure 4 shows the general horizontal plane geometry of a buoy-supported SMS. The system
consists of n mooring lines and ng buoys. In Figure 3.1, n=ng, and i=j, where i is the line
number and j is the buoy number. In addition to the inertial and vessel-fixed reference frames, there
are ng buoy-fixed right handed reference frames (Xp,Y3,Zg) with Xp pointing horizontally in the
direction of its corresponding mooring terminal (x,,,y,,,2,,) and Zg pointing upwards.

The system shown in Figure 4 can be modeled by 3+3ng equations of motion and 3+3np
kinematic relations. These correspond to the three horizontal plane vessel equations of motion and
kinematics, and three equations of motion for each buoy in surge, sway, and heave as well as their
corresponding kinematic relations. An additional equation of motion is required for the TMS as
discussed previously. To facilitate discussion, one buoy is included per mooring line. A detailed
derivation of the mathematical model for lines with multiple buoys is provided in [34].

In mooring systems where supporting buoys are present, the equations of motion remain as in (1) -
(3) for SMS or (7) - (9) for TMS. For the system shown in Figure 4, these equations are:
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n - - [3
(m+myy i —mrv= Xy + Y {T§) cos O - FDox b+ Xyg+ Xg+ X+ Xy (42)
i=1
n . . -
(m + m22)f1+ m26i‘+ mru = YH + Z{TI(;Z) Sinﬂ(l) - F‘z(lB)Dy} + YM + YR + YW + YWV ’ (43)
i=1
n » » 3 » n » . - .
mep¥ + (L, + Ieg) = N+ 3 2P{ 18 sin O — EDp L = 3 yPI 188 cos pO ~ Fy )
i=1 i=1
+ Njys+ Np+ Ny + Nyy (44)
(x> Y0 G Yo )
X,y &%,y x

Fig. 4 Geometry of SMS with buoy-supported chains
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where Fppy and Fgpy are the drag forces on segment 2B of SC in the X and Y directions,

respectively.

The equations of motion for each of the supporting buoys in surge, sway and heave for the system
shown in Figure 4 are given by:

(P + ADYP = T+ T cosBP — Fi— FSD— FSx “)

(D + A = 1 cosBP — FSDy — FD - Fy 49
D e i iy [ PEOY o [ PES)

(mg) + A§§))wg)= Fé‘) - ;(,'1) smh[—ﬁ) - T,(;Z) smh(% , 47
Tyt Ty,

fori=1, ..., ng.

For each buoy in the system, mp is the buoy mass; A;;, Ay and Az; are the buoy added mass
components in surge, sway and heave; ug, vg, and wp are the buoy relative accelerations in surge,
sway, and heave; Fy is the net buoyancy force of the buoy, i.e. the difference between its buoyancy
and its weight; Fppy and Fppy are the drag forces on the buoy in surge and sway; F,; and Fj; are the
drag forces on AC in the directions parallel and perpendicular to the mooring line motion; F, 4py and
F, 4py are the drag forces on segment S2A of SC in the X and Yy directions, respectively; and Bp is
the horizontal angle between the two segments of the catenary, measured counterclockwise from Xp.
The 3 np associated kinematic relations of the buoy system are:

O]

iD= uf) cosy$) - v siny )+ U Z%—cosoz , (48)
o o . 0

yg’) = ug) sinyg')+ vg) cosyl(g’) + Uz—fl—sina ) (49)

WD =wd | 0

fori=1, ..., ng;

where up, vp and wy are the relative velocities of the buoy in surge, sway and heave; yp is the
horizontal angle between the x-axis and S1, measured counterclockwise from the buoy; and zp is the
vertical ordinate of the center of gravity of the buoy. Kinematics (21) - (23) assume a linear current

profile.
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4.5 Riser Model

A three-dimensional, nonlinear, static, large deformation, riser finite element model STARI-3D
(STAtic RlIser - 3D) [12] is used to calculate quasistatically the riser dynamics in the analysis of
mooring systems. The mathematical formulation and solution method for the riser are described
briefly here. The assumptions involved in STARI-3D are the following:

(i) The riser material is homogeneous, isotropic, and linear elastic following Hooke's law.

(ii) Plane sections remain plane after deformation, i.e. warping deformation is neglected.

(iii) Plane sections normal to the centroid line remain normal after deformation, i.e. shear deformation
is neglected.

(iv) The riser is initially undeformed and straight in the unloaded condition.

Considering the equilibrium of forces and moments for the static riser problem, we obtain the
governing equation for bending

—(EF"Y +[(P, - EIK®)F'Y + [HGF' xF")Y + (F'xm) +§ =0 , (51)
and for torsion

H+i-m=0, (52)
where EI is the bending rigidity of the riser; H is the torsional moment; 7 is the position vector from

the origin located at the lower ball joint to a point on the centerline of the deformed riser; k is the
curvature in the osculating plane (k =|F”]); 7 is the unit local tangential vector; and g and 72 are the

applied force and moment vectors per unit length, respectively. The effective tension F,, which

considers the effects of internal and external pressure, is given by

2 2
7D, 7D
Fo=Fyt+ puwg—, By =2) = png=—,~(Hn =2) , (53)

where p,, is the density of the water; p,, is the density of the mud; g is the gravitational acceleration;
H,, is the ordinate of the free surface of the water; H,, is the ordinate of the free surface of the mud;
D, is the external riser diameter; D; is the internal riser diameter; and z is the vertical coordinate
measured from the lower ball joint. Further, P, is the actual tension inside the riser material given by
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P,=EAs,, (54)

where EA is the stretching rigidity and &, is the strain of the riser centerline in the tangential direction.
In equations (51) and (52), the external load per unit length g(s;) consists of the fluid drag force for
the static model. An incremental finite element method with an iterative scheme is employed to solve
the governing equations for the riser. In this method, the weak form of equation (51) is derived by
applying a Galerkin decomposition method. A predictor-corrector scheme is used to update the
stiffness matrices, the boundary terms, the extensibility condition, and the deformation dependent
loads. This scheme is repeated until convergence is achieved for each load increment. The iteration
process is repeated until the entire load is applied. Upon obtaining the deformed riser configuration at
equilibrium, the horizontal tension at the top of the riser is considered as an additional reaction force in
the equations of motion of the mooring system.

4.6 External Excitation

External excitation is due to time independent current, wind, mean second-order wave drift forces;
and slowly varying drift and memory effect. Each of these five loads is modeled in the sections

below.
4.6a Current

Current load is implicitly included in the expressions of equations (1) - (3), (7) - (9) and (42) - (44)
by using the relative velocity of the vessel with respect to water. Therefore, current loads are modeled
accurately to third order in the Abkowitz model and to fifth-order in the Takashina model. This

approach is more accurate than the usual method based on projected area and drag coefficients used in
the Obokata and Short-Wing models (see Section 4.3).

4.6b Wind

Steady wind forces and moment exerted on the ship can be expressed as [48]:

1

Xy == PaUw?Cow(a)Ar (55)
1

Yy = Eanwzcyw(ar)AL ’ (56)
1

Ny = Eanwzczw(ar)ML > (57)
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where p, is air density; U,, is wind velocity at a standard height of 10 m above water; a, is the

relative angle of attack between the wind direction and the ship heading; Ay and A; are the transverse
and longitudinal projected areas of the vessel, respectively; L is the length of the vessel; C,,, Cy,,,

and C,,, are wind longitudinal and lateral force and moment coefficients, expressed in Fourier Series

as follows:
Cow(a,)=Xo+ i Xncos(na,) , (58)
n=1
Cywia,) = iﬂn sin(na,.) , (59)
n=1
Copl(a,) = i{n sin(na,) . (60)
n=]

Coefficients ¥,, Xn» ¥,, and {, in Equations (58) - (60) depend on the type of vessel,
superstructure location, loading conditions, and the relative angle of the wind direction a,. These

coefficients can be obtained from experimental and full-scale measurement data.
4.6¢c Second Order Mean Drift and Slowly-Varying Drift

The common approach to formulation of nonlinear wave-body interaction problems in ship and
offshore hydrodynamics is based on potential flow theory using the wave amplitude to length ratio as
perturbation parameter. The solution to the second-order problem results in three types of wave
excitation forces: mean, difference-frequency (slowly-varying), and sum-frequency (springing) forces.
Mean and slowly-varying drift forces are of importance in mooring problems. Newman's
approximation [51] for slowly-varying drift forces has been used extensively for many applications in
ship hydrodynamics. The important practical consequence of this approach is that slowly-varying drift
forces depend merely on evaluation of second-order mean drift forces, and this can reduce the
computational time significantly. The formula for slowly-varying drift forces is

N N

F;-SVE (XWV’YWV’NWV)T = z ZAJAkTJlk COS[(COk —(Oj)t'i' (8k —8]')] , (61)
Jj=lk=l1

where the coefficients T;k =O.5(D§- + D,’;) and i=1, 2, 6 indicate surge, sway and yaw directions,

respectively, and A, @, and £ are the wave amplitude, circular frequency, and random phase angle of
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component number j (or k) in the total number of wave components N. The random phase angles &
are uniformly distributed between 0 and 27 and remain constant in time. The wave amplitude A; (or

Ay) can be computed from the wave spectrum S(@) as

Aj= 28w , (62)

where A® =w; — @;_,. The two-parameter Bretschneider wave energy spectrum formula is used to

express S(w). The two parameters are the significant wave height H;,; and the significant wave
period 7;,53. The time mean value over the diagonal terms (k = j) in equation (61) gives the mean
drift forces while the mean of the off-diagonal terms (k # j) vanishes.

Mean drift forces can be written as

—_ N ,
RV = (XWVsYWV’NWV)T = ZA]ZD} . (63)
~

The transfer functions D’ for mean wave drift force are approximated as

X 1
D'= Cvg" =~ PweLCxp cos>(6, -v) , (64)
a
Yov 1 .
D*= 2’2" =~ PweLCrp sin’(6, -y) , (65)
a
6_ Nwy _1 2 .
D= é’_z = Epng CZD Sin 2(60 - W) s (66)
a

where §, is the wave amplitude, p,, is the density of water, 6, is the absolute angle of wave
direction, and g is gravitational acceleration. Coefficients Cyp, Cyp, Czp can be obtained from the
complete linear (first-order) solution of the seakeeping problem. Further details about the methods of
predicting mean drift forces can be found, for example, in the study of Ogilvie [56]. In this paper, it is
assumed that these can be given simply in terms of the ship particulars [41].

4.6d Hydrodynamic Memory Effect
In transient motions of a vessel, the time history of the surrounding fluid motion affects the
hydrodynamic forces acting on the vessel. This is referred to as the hydrodynamic memory effect. In

the time domain, the hydrodynamic radiation forces including the memory effect are given by the
convolution integral involving the impulse response function [18]
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1
E@) ==Y aj()V;t)- Y, [Kzt-1)V(mdt, i,j=1,2,6, 67)
j j

where g;;(c°) is the added-mass coefficient at infinite frequency of vessel motion i due to acceleration
in j, and V; is the instantaneous vessel velocity at time ¢ in the j-th mode. The impulse response
function K;;() can be represented in terms of the frequency-dependent added-mass coefficient a;; or

damping coefficient b;; as

K1) = %ja)[a,-j(oo) — a;j(w)]sinawe do= %fbu cosatdw , (68)
0 0

where @ is the frequency of vessel motion. From the above equation, it can be noted that the
convolution integrals should be evaluated at every time step during time simulation. These evaluations
are computationally expensive and not efficient in simulations. An alternative approach to avoid this
problem is the use of the method of extended dynamics [67] which replaces the convolution integrals

by a set of first-order linear ordinary differential equations. Furthermore, this approach converts the
non autonomous expression for F;(¢) given by equation (67) to autonomous.

Following the method of extended dynamics, the convolution integral is approximated by time-
varying state variables S,-0 and is defined by a finite set of recursive first-order linear ordinary

differential equations as follows:

SPk@y =S R e - Y AbSY (- Y BEV(9 . k=01, .., m, (69)
j j

where

smlin =0, (70)
and

t
==Y [Kjt-nV;(®dr . (71)
J —ee
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A,-IJ‘- and Bilj‘- are coefficients of state-space parameter matrices that should be estimated optimally to

model the frequency-dependent added mass and damping coefficients by polynomial filter of degree
m. The polynomial filter selected has the following rational form

i (ia))k [B,’J‘
k=0

(i)™ 1]+ i(iw)k[A,-’J‘-
k=0

= iola;;(@)] - iwla;; ()] + [b (@0)] — [b(==)] , (72)

where i =+/—1 and [IU] is the identity matrix. Equation (72) leads to a linear system of equations for
the unknowns A,-IJ‘- and B!J‘ The cubic polynomial filter (m =3) is used to determine A,-Ij- and B,-’J‘-

because this provides a sufficient accuracy of fit. Since we consider only three motion degrees of
freedom (surge, sway, yaw) in the horizontal plane and we use a cubic polynomial filter with four
coefficients (k =0, 1, 2, 3), equation (69) results in twelve extended equations. The final expression
of hydrodynamic forces and moment due to the memory effect to be substituted in the equations of

motion becomes

Xpps Yo Na) T = B = Y [a(0) — a )V (6)+ S, i,7=1,2,6, (73)
J

because the added-mass terms at zero frequency are already considered in the expressions of Xy, Yy,
and Ny in equations (16) - (18) and (19) - (21).

4.7 Dimension of the System Dynamics

The physical dimension of the system ( N,) is determined by its number of degrees of freedom. A

general spread mooring system, for example, has three physical degrees of freedom - surge, sway and
yaw - and thus, for a general SMS N;=3. A TMS has four degrees of freedom - surge, sway, yaw

and turret rotation - and thus, Ny =4. A SMS with ng number of buoys has three degrees of freedom

for the vessel and three degrees of freedom for each of the buoys in surge, sway and heave. In this
case, Ny =3+3ng. Similarly, a buoy supported TMS would have N;=4+3np physical degrees of

freedom. Obviously, the number of physical degrees of freedom is related to the number of
mathematical degrees of freedom in the state space defined in Section 6.1.
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5. RICHNESS OF MOORING DYNAMICS

The dynamical behavior of specific mooring systems can be illustrated by nonlinear time simulations.
In this chapter, a few simulations are performed to demonstrate numerically the richness of nonlinear
dynamic behavior that mooring systems (TPM, SMS, TMS) may exhibit. In the numerical applications
in this paper, the current velocity U is set equal to 2 knots, unless specified otherwise. Two vessels of
widely different stability characteristics are used:

(i) A barge with stabilizing skegs, which is marginally unstable in forward motion.
(ii) A tanker without propeller, which is unstable in forward motion.

The mooring systems considered in the numerical applications in this paper have symmetric
configurations with up to four mooring lines.

5.1 Notation for SMS and TMS

To facilitate the notation regarding mooring system configuration, let Fm A s represent a (m + s)-line
mooring system with m lines attached forward of the CG and s lines aft. For example, F1A2 denotes
a three line mooring system with one line attached forward of the CG and two lines attached aft. This
notation is especially useful for symmetric mooring system configurations, and is widely used in this
work. Exceptions are SPM and TPM systems, where s =0 and m =1, 2 respectively. In TMS, all lines
are moored around the turret, and thus it is impractical to use the notation above. The rest of the notation
appearing in the Figures is explained in the Nomenclature at the end of the paper.

5.2 Solution by Simulation
SMS and TMS may exhibit the following qualitatively different dynamical behavior:

(i)  Stable node behavior as shown in Figure 5 around an Alternate Equilibrium (AE).

(i) Unstable node behavior.

(iii)  Stable focus behavior as shown in Figure 5 around the Principal Equilibrium (PE).

(iv) Unstable focus behavior as shown in Figure 5 around PE.

(v)  Stable limit cycle as shown in Figure 6 around PE and in Figure 7 around AE.

(vi) "Poor design" limit cycle as shown in Figure 8. We define this cycle as one caused by improper
distribution of mooring lines where the moored vessel diverges from PE trying to converge to
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either a stable limit cycle or to AE. In this case, the mooring lines alternatingly become both taut
and slack, working against each other, thus preventing the vessel from achieving its natural stable
limit cycle.

(vii) Chaotic caused by a strange attractor such as the one at PE in Figure 9.

(viii) Resonance in surge due to slowly-varying drift forces as shown in Figure 10 around PE.

In Figures 5-10, all relevant information and parameter values are presented to ensure that the reader
can reproduce these results. Data include the type of mooring line; mooring line length, orientation,
fairlead coordinates and pretension (or initial strain) in the mooring lines; mean and slowly-varying drift
forces; the mooring line configuration, mooring line model and material (AC - anchored catenary; SFR -
synthetic fiber rope; BSC - buoy supported catenary), maneuvering model, external excitation, etc. In
the simulations, the yaw angle (y) is plotted, except for Figure 8, where the mooring line tensions

nondimensionalized by vessel resistance are plotted; and Figure 10, which shows displacement in surge.

In Figure 5, a F1A2 tanker SMS converges to AE in a head current without waves, while PE is
unstable. When mean drift forces are added to the excitation, PE becomes stable in Figure 5. In this
case, mean wave drift forces have a favorable effect on the stability of PE. The system becomes
unstable again and the yaw angle fluctuates about AE when slowly-varying drift forces are added to the
excitation from head seas [9]. Figure 6 shows limit cycle behavior about PE for a F1A1 barge SMS. In
this Figure, slowly-varying drift forces stabilize oscillatory motions instigated by mean drift forces [9].
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Fig. 5 Effect of slow-drift loads on F1A2 Tanker SMS: £,,/L =0.15, x,/L =052, y,/B=0.5, =5, E; =0.04, SFR, A-M
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Figure 7 shows a time simulation of a four line TMS in which the trajectories diverge from PE and
converge to a stable limit cycle around AE [30]. The F2A1 tanker SMS of Figure 8 shows a "poor
design" limit cycle, as indicated by alternating slack forward mooring lines [26].
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Fig. 7 Stable limit cycle about AE, 4 line TMS: £,,/h=3.5 , Dg/L =0.355, h =2000 m, T, =3071.59 kN; AC, T-M
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Finally, Figure 10 shows resonance motion on top of the periodic motion of Figure 6 due to loss of

stability about PE of the F1A1 barge SMS in surge. Slowly-varying drift forces produce the resonant

beating behavior observed in Figure 10. Such behavior is indicative of narrow band excitation near a

natural frequency [9].
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Fig. 10 Effect of slow-drift loads on F1A1 Barge SMS:
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The nonlinear time simulations in Figures 5 - 10 demonstrate some of the richness of the nonlinear

dynamics of mooring systems. They also show that the dynamical behavior of mooring systems varies

vessel properties, external excitation, etc. Such differences in

¢ ]

widely with mooring line arrangement

behavior are inherent stability properties exhibited by the mooring system, and are explained Chapter 6.
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6. STABILITY AND BIFURCATIONS OF EQUILIBRIA OF NONLINEAR SYSTEMS

Equilibria of nonlinear dynamical systems and the behavior of such systems near equilibrium provide
local information on dynamical flows (trajectories) [40, 60, 69]. Such information is useful in
surmising the global behavior of a system in the time domain or in a phase space. Consequently,
knowing all equilibria and their nature provides global information which renders time simulations
unnecessary in general. Further, bifurcations of equilibria and their corresponding morphogeneses make
it possible to identify areas of qualitatively acceptable dynamics. That eliminates the need for trial and
error in design of mooring systems.

6.1 State Space Representation

The mathematical models presented in Chapter 4 can be recast into a set of N first-order nonlinear
coupled differential equations, where N, is the dimension of the state space. This can be achieved in

several equivalent ways [5]. For general mooring, where the number of mooring lines may be
unspecified, it is convenient to represent the state space variables in terms of the position and velocity

vectors of the moored vessel. The SMS and TMS model presented in the previous chapters can be
modeled by N, nonlinear coupled first order ordinary differential equations in the form:

i=fx), fecCl, [f:RVs 5RNs (74)

where ®"ss is the N, -dimensional Euclidean space and C! is the class of continuously differentiable

functions. In addition,
Ngs=Ngoy + Nxkr+ Nyg » (75)

where Ngpy, is the number of equations of motion (3 for SMS; 4 for TMS; additional 3np for
supporting buoys); Ngg is the number of associated kinematic relations (3 for SMS; 4 for TMS; 3 per
buoy); and N, is the number of extended dynamics equations due to the memory effect.

Due to the potentially high number of equations of motion and kinematics in the system, the following

example is provided which corresponds to the state space representation of a SMS with memory effect
and without supporting buoys. In such case, Ny, =3+3+12=18, and the following state variables are

selected:
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0 1 2 3
x=[xX(=u, X=V, X3=7, X4=X, Xs=Y, =Y, x7=8, x%3=9], X9=35, x0=9,

_ _ _ _ _ ol 2 34T
Xy =59, xp=5), X3=57, X4=53, x5=S¢, X6=S54, x7=5¢, xg=521" . (76)

The subscripts and super subscripts in the extended state variables x; - x;g represent modes of

horizontal motions (surge, sway and yaw) and the order of extended variables, respectively. In Cauchy
standard form, the nonlinear system in the state space defined by (76) is written as:

i{[Tf(P - Ff(,i)]cos ﬁ(i) + Flf,i) sin ﬁ(i)}

Xy +mxyx3 + Xp + F +x7
5C1= H 243 R *surge 7+,=1 . , (77)
m+my —ay m+myy =4y
. U +I—ag Uzz *Is6 = 66) | X [0 _ 5D] i) 4
x2=(zz ;; 66){YH_mx1x3+YR+Esway+xll}+ “ ;; > {Z[TS)_FIgl)]Slnﬁ(l)
i=1

* n . i _ *
_ Uzt I;; ~ 966) {ZF,S,‘) cosﬂ(')} - %—E;Q{NH +Ng+Nygy +x15}
i=1

* n - - . > n
_("726]‘;026) {ng)[Tz?)— F}gﬂ]sinﬂ(z)} (mzs 6) {Z F(’)cosﬂ(’)}

i=1

4 (mas Maz6){ (t)[T(t) F(')]cosﬁ(’)} (26 — a26){iy(‘)F(’)smﬁ(i)} , (78)
=]

. (mgy—agy) (mg; — agy) 0 _ pD]ein g0
x3__———]M—{YH—mxlx3+YR+F:gway+x11}— M E;[TH FP ]Slnﬁ

* n *
Mgy — Q, i i m+my, —ay)
+ M2 — 9e2) 62M 62){§:F1$,’)cosﬂ('>}+( ;; 2°{Ny + Ng + Ny + 315}
~

(m+ Mmooy — (122) (1) () _ (z) - pnl) (m+ My — a’;z) < @) gD @)
T, - Fy/ cos
+ Y 2 1 [ ]sm B Y; > x p N B

i=1

_ (m+my —ay) {i y(pi)[Tg) r F,Q')]cos B(i)} _(mtmy —ay) {i YOFD sin ﬁ(i)} . (79)
i=1

M P M
X4 =X COSXg — XpSinxg + Ucosa , (80)
X5 = x;sinxg + x5 cosxg + Usina (81)
Xg = X3 , (82)
iy = xg = Afyxy = Bz (83)
i = X9 — Af1%7 — Biix (84)
%o = 210 = A1y — Blyx (85)
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i =—Alx; — Bhx, | (86)

iy = x5 — Apxy; — Adexis — Boyxy — Bigxs (87)
Sy = X13 — A1 — AgsXys — Baaxy — Bigxs (88)
i3 = X4 — A1 — AdsXis — Banxy — Bgxs (89)
diq =—Aghx)) — Agsxys — Brxs — Boxs (90)
iys = x16 — Adyx1) — Adsx1s — Baaxy — Bisxs 1)
iye = X7 — Adyx1y — Adsx1s — Béaxy — Bgexs (92)
X7 = x18 — AgaX11 — AdsX1s — BeaXa — Big*s (93)
iug =—Aghx1) — Agex1s — By xy — Bgexs (94)
where

M = (I, + Igs — ags) (m+myy — agy) — (mgy — agy) (myy — age), and aj; = a;5(0) — azi(e<). It should be
noted that the number of extended equations depends on the degree of the polynomial filter to
approximate the frequency dependent added mass and damping coefficients; e.g. twelve for cubic filter,
nine for quadratic filter, six for linear filter. In deriving the cross-coupling coefficients Alkz, Afl, A1k6,
Aé‘l, Blkz, Bé‘l, B1k6, and Bé‘l (k =0, 1, 2, 3) are assumed to be zero due to port/starboard symmetry of

the vessel. In equations (77) - (79), Ty, Xz, Yz, Ny and B depend explicitly on the position vector
x4 - xg; Fp and Fy, are functions of x; - x¢; and the external excitation terms (wind and second order

mean drift) Xy, Yw, Nw, Xwv, Ywy, and Nyy are explicit functions of xg.

Since the vector field f in evolution equation (74) does not depend explicitly on time, the system is

autonomous. Inclusion of slowly-varying wave drift forces would render the system nonautonomous.
6.2 Equilibria of Mooring Systems
Equilibria of the nonlinear SMS and TMS models are stationary flows of the vector field (74), and can

be computed as intersections of null clines [60]. Accordingly, all equilibria (singular flows or stationary
solutions) can be found by setting the time derivative of the state variable vector equal to zero, i.e.

FeRY isanequilibiumof X(=f(x) &  f(®=0, (95)
where the overbar on the state variable vector x represents the equilibrium state. The solution to the

nonlinear component equations in (95) produces the system equilibria. TMS may possess one or three
equilibria, depending on the location of the mooring lines. The number of equilibria that exist in SMS
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strongly depends on the number and tension of the mooring lines, the system configuration, and the
environmental conditions. For mooring systems with buoy supported chains, the number of possible
equilibria may be even higher due to the high number of degrees of freedom in the system. This is an
important design issue since a small variation in line arrangement may allow a mooring system to reach a
different equilibrium. SMS with relatively small pretension in the mooring lines, for example, may
inherently have several equilibria, since the vessel is not overly restrained from moving. In such cases,
one or several mooring lines may become slack, and thus an initial mooring line configuration may be
transformed into a different one after equilibrium is achieved. Highly pretensioned systems, on the other
hand, are configured to restrain the vessel from moving, thus limiting the number of equilibria that can
be attained. As mentioned previously, the Principal Equilibrium of the system is denoted by PE. Other
equilibria that may exist are denoted as Alternate Equilibria (AE).

6.3 Asymptotic Stability of Equilibria

To determine the stability of a nonlinear system near an equilibrium point, we linearize the vector field
with respect to that point. The local behavior of the nonlinear system in the vicinity of the equilibrium
point can be predicted by studying the following linear state equation [40, 69]

E=[AIE, EeR", [AleRNPs (96)

where &(f) = x(t) — X is the deviation from equilibrium, and [A] is the Jacobian matrix of f evaluated
at that equilibrium condition. If all eigenvalues of [A], A4;, have nonzero real parts (usually called
hyperbolic or nondegenerate), the trajectories of the nonlinear system in a small neighborhood of an

equilibrium point are close to the trajectories of its linearization at that point. Equilibrium position X is
asymptotically stable if Re[ A4;]<0 for all A;. Then, all sufficiently small perturbations vanish as time

increases, and nearby trajectories approach X. If there exists at least one eigenvalue such that
Re[A;]>0, then ¥ is unstable, and all trajectories initiated near such an equilibrium will deviate
exponentially from it in forward time [69]. Depending on the nature of the positive real parts of the
eigenvalues, an equilibrium position may be an unstable node, an unstable focus, a stable limit cycle, or
chaotic in nature, as described later. Eigenvalue analysis at each equilibrium position yields the
characteristic global behavior of the system.

Local stability analysis must be performed near each and every equilibrium position of a particular

system configuration to determine its global behavior.
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6.4 Bifurcations of Equilibria and Associated Morphogeneses

As pointed out in the previous section, the stability properties of the system equilibria persist under
small perturbations of the vector field. Large variations in parameters, however, may result in a
significant change of the system behavior, which is called a bifurcation. A bifurcation is a qualitative
change in a limit set of the system as a parameter is infinitesimally perturbed. Appearance/disappearance
of a limit set or change in the stability type of a limit set is a bifurcation. A bifurcation also occurs when
an unstable limit set remains unstable but undergoes a change in the unstable manifold dimension.
Saddle-node, pitchfork, and Hopf bifurcations are the typical types of bifurcation found in the nonlinear
dynamics of mooring systems [59].

The dynamic behavior of a mooring system changes significantly with variation of system parameters,
such as the number, length, material and orientation of the mooring lines; fairlead position; location of
turret; location of risers; etc. Systematic variation of all system parameters is prohibitively time
consuming and graphical representation of bifurcations and catastrophe sets in a multidimensional design
space is too complex. Thus, in this paper, we limit numerical applications to symmetric mooring
systems. Systematic variation of design variables allows us to determine pitchfork, saddle node (turning
point), simple stationary, and Hopf bifurcations; as well as fold and cusp singularities of bifurcations.
These results reveal the morphogeneses of dynamical phenomena and show the richness of SMS
dynamics. It may be possible, however, to identify other bifurcations like hysteresis points or isola
centers; and other singularities in the stability charts like swallowtail and butterfly [60] due to
codimension higher than one. In this section, bifurcation sequences are studied to find qualitative
changes in the dynamic behavior of mooring systems by varying design parameters for specific mooring
configurations. The study of the bifurcation phenomena is absolutely necessary for the complete
understanding of the system dynamics and ultimately for determining the appropriate ranges of design
parameters for safe operations. In order to perform bifurcation analysis, evolution equations (74) are

written as
i=fee,p), xeRVs,  peRMr, (97)

where g is the design parameter vector and Np is the number of parameters in the system. In
bifurcation analysis, parameters vary slowly (quasi-statically); that is (dgt/dt) is small. When a
bifurcation occurs due to a parameter change, the Jacobian at equilibrium becomes singular and the
system degenerates. In bifurcation analysis, not only is this degeneracy identified, but the system
metamorphosis and the associated morphogeneses are described as well. The behavior of the solutions
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to the dynamical system described by equation (97) in the Np-dimensional space is illustrated

graphically by stability or design charts.

Mooring systems exhibit both static as well as dynamic loss of stability. The former occurs when
there is a change in the structure of the set of zeroes of equation (97) as parameters change. Pitchfork,
saddle node, and simple stationary bifurcations are of static nature [40]. In mooring system dynamics,
this is due to the action of external excitation which maintains a constant magnitude and heading.
Dynamic loss of stability occurs when there is a change in the structure of the limit sets of solutions of
the vector field as parameters are varied. A Hopf bifurcation is of dynamic nature. In mooring systems,
oscillations may occur due to Hopf bifurcations. Dynamic loss of stability in mooring systems is
analogous to beam buckling under a compressive follower force which gives rise to the phenomenon of
fluttering. The mooring line restoring forces and moment, and the hydrodynamic pressure applied to the
hull as the vessel is moving, are follower forces. The set of all bifurcation boundaries is called a
catastrophe set. When those sets are produced, theoretical conclusions can be drawn regarding the
system dynamics, permitting direct selection of values of parameters. Those lines constitute the
boundaries between regions of qualitatively different dynamics. Elementary catastrophes, which
correspond to the bifurcations presented above, play an important role in the analysis of nonlinear
dynamics. Depending on the mooring line configuration, a mooring system may exhibit a fold
singularity (projection of the boundary of a simply connected domain onto a plane), or a cusp singularity
(occurring at the intersection of stationary and Hopf bifurcation stability boundaries or two Hopf
bifurcations). A detailed mathematical presentation of these concepts is provided in [59]. A catastrophe
set is thus the set of all loci of bifurcations in a parametric design space. These loci are the boundaries
between regions of qualitatively different dynamics and reveal the morphogeneses occurring as
boundaries are crossed. Therefore, the catastrophe set can provide qualitative conclusions regarding the
system dynamics in the initial design stage of mooring systems, thus enabling the designer to select

appropriate parameters for design.

The catastrophe sets presented in Chapters 8 - 10 pertain to PE, unless otherwise specified (bifurcation
sequences around other equilibria are out of the scope of this paper), and possess five regions of
qualitatively different dynamics. These regions, numbered I to V and denoted as R-I to R-V, are defined
below. For mnemonic purposes, the number of a region minus one is equal to the dimension of the

unstable manifold.

Region I (R-I): PE is stable. All trajectories starting near PE equilibrium converge toward it in forward
time. Since there are no other equilibria that may attract or repel the trajectories, the system eventually
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converges to PE irrespectively of the initial conditions of the system, resulting in a stable principal
equilibrium.

Region II (R-II): PE is unstable with a one-dimensional unstable manifold. Static loss of stability of PE
occurs when crossing from R-I to R-II, with the development of a pitchfork bifurcation and the
appearance of two statically stable equilibria. Trajectories diverge from PE and are attracted to one of
such alternate equilibria (AE), if present or attainable, depending on the initial conditions. Such
equilibria, while statically stable, may be dynamically stable or unstable, resulting in trajectories
converging to either equilibrium or to a limit cycle around it, respectively.

Region III (R-II): PE is unstable with a two-dimensional unstable manifold. Dynamic loss of stability,
also called Hopf bifurcation - occurs when crossing from R-I to R-III, with the development of a limit
cycle around PE. In this region, the system oscillates around PE, unless other equilibria that may attract
the trajectories exist. The frequency and amplitude of oscillations vary with system parameters and can
be found by numerical simulations or approximated using the Center Manifold Theorem [40].

Region IV (R-IV): PE is unstable with a three-dimensional unstable manifold. In this region, PE is
statically and dynamically unstable; i.e. the system has undergone both static and dynamic loss of
stability by crossing both bifurcation boundaries. This region is characterized by the merging of
unstable R-II and R-III, and the unstable manifold has the minimum dimension for the onset of chaos
[60]. Simulations show, however, that occasionally the system initiates in chaos but trajectories are
quickly attracted by AE. That AE is a result of either the static bifurcation occurring when crossing from
R-III to R-IV or from other equilibria present in the system.

Region V (R-V): PE is unstable with a four-dimensional unstable manifold. Ann application with
region R-V corresponds to dynamic loss of stability of the two forward buoys which support chains in
deep water SMS dynamics (see Figure 30). In this case, the system is chaotic about PE. Another case
was shown in [59] where the tanker motions in a SPM system becomes chaotic.

6.5 Physics-Based Expressions for Bifurcation Boundaries, and Morphogeneses
A breakthrough in the development of the UM methodology was achieved in 1995-1996 when
physics-based analytical expressions were derived for the bifurcation boundaries of equilibria [6, 27-

29]. Up to that time, presentations of design graphs (catastrophe sets) were limited to three dimensions -
two dimensions and a parameter. Following the derivation of those physics-based expressions, it has
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become possible to eliminate trial and error with respect to any design variable in addition to virtually
eliminating the need for simulations.

The design methodology of mooring systems developed at the University of Michigan is based on the
stability coefficients presented in this section. This methodology consists on deriving analytical
expressions for the bifurcation boundaries and the associated morphogeneses of mooring systems, and
applying them to design based on their slow motion dynamics. These expressions have been derived in
[27] for symmetric SMS, in [28, 29] for general SMS, and in [33] for TMS.

6.5.a Analytical Expressions of Stability Criteria and Bifurcation Sequences

Due to the complexity of such expressions, only a brief example of a SMS moored via synthetic ropes,
without riser, memory effect, supporting buoys, mooring line drag, and excitation due to wind and
waves is shown to illustrate the derivation of analytical expressions for the stability criteria of the system
and its bifurcation sequences. In brief, the equations of motion, kinematics of the system and all
expressions relating mooring lines, external excitation, etc. are perturbed about an equilibrium position
and only linear terms retained. After perturbation of the system, the equations of motion (surge, sway,

yaw) in this example can be recast as:

(m+ my;)cosWAX + (a—Xisian/—%cosW]Ax+ EjAx + (m+ my)sin YAy
7

o a
- [82(: sinﬂf“+a{{THcosu7jAy + Ejydy + (m“\‘z - a—;(-r’i]Ay'/ + Epy Ay =0, (98)
e (Mg My ). -
— (m+my,)sinYAX + —aTsmy/ —Ecosy/ AX + Ey  Ax + (m + my, ) cOsS YAy
- (ao_’ﬁsinﬂf + %Zv’icos WJA)’» + Ep Ay + mys Ay + (mzzﬁ + a—;’:—’-)mf/ + Eyy Ay =0, 99)
U

— mgp SInYWAX + (agvH siny/ — a%,]icos l/_/in? + E3,Ax + mg, cosyAy
7

- (‘91;*1 sinw%’vicosu‘fjAy' + E3ydy + (I + meg) AY/ — (m6217+ 3’;' )Aw + Ezy 4y =0 . (100)
U

Expressions for the "E" terms in equations (98) - (100) involve coupling terms between stiffness
(mooring line tension) and damping (velocity dependent first order derivatives of the hydrodynamic
forces and moment) terms. These are derived in [29]. In general, equations (98) - (100) are coupled.
The surge equation of motion (98) decouples from sway and yaw equations (99) and (100) for
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symmetric systems, i.e., SMS which preserve geometric symmetry under symmetric excitation after an
equilibrium position has been achieved [27, 28]. By introducing the differential operator D=d/dt,
these equations can be written in the form:

(a11D? + a;oD + ay3) Ax + (a3;D? + ayD + ay3) Ay + (a3;D? + a3, D + a3 ) Ay =0 , (101)
(b;D? + b1yD + by3) Ax + (by D + byyD + bys ) Ay + (b3 D? + byyD + by3) Ay =0, (102)
(c11D? + 12D + ¢13) Ax + (D% + €9oD + C93) Ay + (c3;D% + c39D + ¢33) Ay =0 . (103)

For mooring lines with no drag, term a3, would be zero. The characteristic equation for Ax, Ay, or

Ay derived from equations (101) - (103) is:
Ac®+Bo’ + Co* + Do® + Ec? + Fol +G =0, (104)

where coefficients A-G are the Routh-Hurwitz coefficients and were derived in [29]. These are related

to the system eigenvalues (0;= 4;, i =1, 2, ..., 6) as follows:
B/A=—(01+0y+03+04+05+0g) , (105)
C/IA = (0109 + 0103 + 0104 + 0105 + 010¢ + 07,03 +0704 + 0205 +070¢ + 0304 + 0305

+030¢g + 0405 + 0406 +050¢) , (106)

DIA = —(010203 + 010,04 + 010205 + 01070¢ 1010304 + 610305 + 01030¢ + 010405
+01040¢ + 01050¢ + 020304 + 020305 +07030¢ + 020405 + 0040 + 0,050¢
+030405 +03040¢ + 030506 + 040506) , (107)
E/A = (01020304 + 01020305 + 010,030¢ +010,0405 + 010,040¢ + 01020504
+01030405 + 01030406 + 0103050 +0104050¢ + 02030405 + 0203040¢

+0,03050¢ + 070 4050¢ + 0304050¢) , (108)
FIA = —(0109030405 + 010203040¢ +010903050¢6 + 010204050¢

+0710304050¢ + 020304050¢) , (109)
G/A = 010,0304050¢ . (110)

As noted in the previous section, the stability of an equilibrium position in the system depends on the
values of the real part of the eigenvalues. If all the eigenvalues have negative real parts, the system is
stable around that equilibrium position. For the SMS example, the necessary and sufficient conditions
for stability are the following six [29]:

B
Cor=250, 111
R1= (111)



BC-AD
Crp=—2250, (112)
D B(AF—BE
Coy= 2+ BALZBE) (113)

A A(BC-AD)

E (BG-CF)BC- AD)— AF(AF -
Cpun B+ (BG=CP)BC—AD)— AFUF—BE) ;. C aw

A~ AID(BC-AD)+ B(AF - BE)]
c..F.G (BC - AD)(D* - BF)
R A" A|(BC- AD)(CF - DE- BG)+(AF - BE)* |
[ BD(AF — BE)+ B> ] |
+E (AF E)+B G . >0 , (115)
A | (BC - AD)(CF — DE— BG) +(AF - BE)* |
G
Crs=—>0. (116)

The number of positive real parts in the eigenvalues corresponds to the number of sign changes in the
above stability criteria [28]. The first stability criterion (111) is always satisfied [29], indicating that the
maximum number eigenvalues with positive real parts for the sample mooring system can be at most
five. Thus, the maximum dimension of the unstable manifold cannot be higher than five in this case.

6.5.b Analytical Expressions of Bifurcation Boundaries

Numerically, the types of bifurcation present in a system are determined by studying its eigenvalues
and their change as parameters are varied. In this section, it is shown that for general mooring systems
the boundaries that correspond to loss of stability in the system may be obtained in closed form analytical
expressions without the need of numerically obtaining the eigenvalues and performing bifurcation
search. The analytical expressions (111) - (116) shown in the previous subsection can serve to identify
boundaries where loss of stability occur. Such bifurcation boundaries denote regions where the system

exhibit singular dynamics in the parametric space.

(i) Static loss of stability: Static loss of stability arises when a real eigenvalue crosses from the negative
to the positive real axis as a single parameter is varied [40]. We have shown in [28] that the Boundary

for Static Loss (BSL) is
G
BSL= CR6= CRS=Z=O . (117)

The term G/A is the product of the six eigenvalues of the system, as shown in equation (110). As one

real eigenvalue crosses the real axis from negative to positive or vice versa as a parameter is varied,
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equation (117) becomes active, thus establishing the boundary where static loss of stability occurs. The
bifurcation boundary generated by making BSL active (i.e. setting Cpg equal to zero), provides the

necessary and sufficient conditions for static loss of stability.

(i) Dynamic loss of stability: Dynamic loss of stability corresponds to Hopf bifurcation, where a pair
of complex eigenvalues crosses from the negative to the positive real axis with nonzero speed [40]. We
have shown in [28] that the Boundary of Dynamic Loss (BDL) of stability in the system can be
determined by multiplying the remaining stability criteria, and setting this new expression equal to zero
[28].

Crc= CriCraCr3CraCRs - (118)
This resulting expression can be recast as:

BDL= Cpe=0, (119)
where Cp( is given in terms of the system eigenvalues in our example as:

Cre = —1(0] + 02)(0] + 03)(0] + 04)(0] + O5) (O] + O )03 + G3)(C3 + 04)(0y +05)
(09 +0¢)(03+04)(03+05)(03+0¢) (04 +05)(04 +0g)(05+0¢)] . (120)

The equivalent analytical expression of (46) in terms of the Routh-Hurwitz coefficients is given by [29]

_ (BC- AD)(DEF +2BFG—-D?G-CF?) F(BE - AF)? + BG(ADF + B*G - BDE)

. (121
A A>

Crc

Expression (120) consists of the product of fifteen terms, each containing the sum of two roots, or
eigenvalues, of the sixth order system. When the system loses its stability dynamically, the real part of a
complex conjugate pair of eigenvalues becomes zero. Expression (120) vanishes when one or more

complex pairs of eigenvalues cross the real axis from negative to positive, thus establishing a boundary
when dynamic loss of stability occurs. Such a boundary is therefore obtained by setting Cg( to zero.

The boundary determined by equation (119) is necessary for determining the dynamic loss of stability
of the system with respect to any equilibrium position. Setting Cpq to zero, however, does not

necessarily imply that the system has undergone dynamic loss of stability. A pair of real eigenvalues
with the same magnitude and opposite signs, or two or more real zero eigenvalues, for example, will
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also satisfy (119). Thus, the bifurcation boundary generated by setting Cpc equal to zero yields a

necessary and sufficient condition for dynamic loss of stability of the TMS, provided that the exceptions
noted above do not occur. If, however, these are to occur, the stability criteria (111) - (116) and
relations (105) - (110) can be used to establish whether or not the system has lost its stability
dynamically.

Cases where two or more real eigenvalues go to zero would yield both BSL and BDL active. Such
cases in which two or more static losses of stability occur have not been observed in mooring dynamics.
In such a case, we can include expressions (105)-(110) to determine the number of eigenvalues with
zero real part. If two real eigenvalues are zero, for example, F/A will be zero; if three real eigenvalues
are zero, then F/A and E/A will be zero as well; if four real eigenvalues are zero, then F/A, E/A and
D/A will be zero, and so on. In addition, with no formal proof, we state the following cases in which
Crc may be zero without the occurrence of dynamic loss of stability: (i) Two real eigenvalues have the
same magnitude and opposite sign. In this case, Cgg will be zero as well. (ii) If four real eigenvalues
satisfy this condition, then Cgs and Cgs will be zero. (iii) If all six real eigenvalues satisfy this
condition, then Cg;, Cgs and Cgs will be zero (auxiliary relations B/A, D/A and F/A are zero as
well). The boundaries that define regions of different dynamics experienced by the mooring system as

parameters are varied can be obtained analytically by setting expressions (117) and (121) to zero (i.e.
making Cgg and Cpe active).

The stability criteria and the analytical expressions for the bifurcation boundaries and associated
morphogeneses occurring in mooring systems are very powerful tools that can be used in the design of
mooring systems without the need of trial and error and endless nonlinear simulations. These
expressions serve to evaluate the stability of the system, construct bifurcation boundaries, study the
change in dynamical behavior of the system as parameters are varied, and understand their effects in the
process of design. The complexity of the analytical expressions for the morphogeneses and bifurcation
boundaries, show that it is unlikely that rules of thumb for design of mooring systems can be derived.
Instead, these expressions should be used in design without extensive computational time. Furthermore,
proper use of these tools helps the designer to improve understanding of the slow motion dynamics of

SMS and TMS and their dependence on design parameters. The order of the characteristic polynomial
(104) equals the dimension of the state space Ng;. The example shown in this section corresponds to a

SMS with N, =6, and thus the analytical expressions correspond to a sixth order polynomial
expansion. In TMS, where N =8, the level of complexity of such expressions increases considerably
[33]. Memory effect and buoy supported catenaries in the system further increase the dimension of the

state space, thus resulting in more complicated expressions.

47



7. OUTLINE OF THE MOORING DESIGN METHODOLOGY

The mathematical formulation presented in Chapter 4, the process of producing catastrophe sets for

design developed in Chapter 6, along with the simulations in Chapter 5 provide a complete picture of the

UM methodology to mooring system design. It is used in Chapters 8 - 10 to assess the effects of a wide

range of modeling issues, as well as environmental and design parameters on mooring system design.

Before proceeding to that assessment, the steps of the methodology are listed below.

®

(i)

(i)

(iv)

)

(vi)

Specify the environmental conditions including water depth, wind, wave, and current particulars.

Select the mooring system particulars that will remain unchanged during this design cycle. For
example, select the moored vessel, an API recommended [2] or other mooring line pattern, and the

mooring line material.

Select parameters that the designer is willing to change to achieve a satisfactory design. Such
design parameters may be the mooring line orientation, length, and pretension; number, size and
distribution of supporting buoys; coordinates of anchoring and vessel attachment point for each
line; vessel orientation; size and particulars of stabilizing fins; location of turret and riser top

tension; vessel offset with respect to well head.

Set up the mathematical model as presented in Chapter 4. It is recommended that a maneuvering
model from the first school of thought is adopted, such as the Abkowitz or Takashina models.

Select a state space representation, preferably the one used in Section 6.1. This will make it
possible to identify the eigenmode components corresponding to each eigenvalue.

Calculate numerically the system equilibria and their eigenvalues. This information fully
characterizes the asymptotic system behavior in the vicinity of each equilibrium with the exception
of strange attractors. In the latter case, further analysis is required such as calculating the
Lyapunov characteristic exponents and the associated fractal dimension [15, 59]; or at least
perform time simulations. Next, global tendencies of trajectories in the time domain or in any

phase space can be surmised.
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(vil) Produce design graphs (catastrophe sets) by calculating bifurcation sequences and their
singularities. These would be accompanied by identification of morphogeneses such as pitchfork
(static) and Hopf (dynamic) bifurcations, and fold and cusp singularities.

(viii) Select a satisfactory design by direct reading of the design graph.

(ix) If a satisfactory design is not available, more design graphs need to be produced. For mooring
systems with high number of design parameters, the physics-based analytical expressions of
bifurcation sequences presented in Section 6.5 should be used to perform sensitivity analysis with
respect to design variables. Since in most cases mooring systems have many design parameters,
these expressions provide the needed breakthrough for design. |

(x) Search for a better design if so desired. This step cannot be defined properly since criteria for
assessment and optimization of mooring systems have not been developed. The issue of course is
that current practice aims at avoiding first excursion failure of mooring lines which is a time
domain constraint, not a design criterion. What can be done at this point is to compare by
simulation designs that fall within the regions of acceptable dynamic behavior identified in the

developed design graphs.

Upon completion of this design procedure based on slow and intermediate frequency dynamics, the
underlying motions become available in the time domain. These results make it possible to proceed with
the next step in design. That is, computation of fast motions for the moored vessel and risers as well as
their effect on extreme and fatigue loads on the mooring lines.

In the next two chapters, the developed methodology is used to assess the effects of environmental and
design factors on the slow and intermediate frequency scale dynamics and the design of mooring

systems.
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8. ASSESSMENT OF MODELING

In Chapters 8 - 10, catastrophe sets are developed for specific mooring systems to investigate the
effects of modeling issues, environmental factors, and operational parameters on the design of mooring
systems. To facilitate graphical representation, only the bifurcation sequences around PE are discussed
to show the dependence of SMS dynamics on such parameters. The current angle ¢ is set equal to 180°
(head seas) and the current speed U is set to 2 knots unless specified otherwise. Nonlinear simulations
are important in determining the quantitative nature of the system dynamics, and they provide important
information regarding amplitudes of motion, tension in the mooring lines, deformation of riser, etc. Due
to space limitations, however, only qualitative comparisons are made without simulations. The only
simulations are shown in Chapter 5, and in Sections 8.1 and 8.2, which were deemed necessary.

The values of the various parameters for each numerical application are included in the caption of each
Figure. In Section 9.5, slowly-varying drift force effects are studied by selected simulations since they

are nonautonomous forces.

8.1 Comparison of Hydrodynamic Maneuvering Models

Figure 11 shows a series of catastrophe sets for a 4-line TMS as a function of turret position D¢ /L
and current direction & (no other external excitation) for the various hydrodynamic maneuvering models
discussed in Chapter 4 (A-M, T-M, O-M and SW-M) [49]. As can be inferred from Figure 11, the
predicted dynamics vary between models of the same school, and vary considerably between models of

the two schools.

In the catastrophe sets of Figure 11, the models of the first school (A-M and T-M) exhibit only regions
R-1, R-II and R-III in the parametric design space. The second school, O-M and SW-M, exhibits only
unstable regions R-II, R-III and R-IV about PE. Based on the catastrophe sets in Figure 2, the

following observations can be made:

(i) Even though the selected vessel characteristics are as similar as possible for each model, it was not
possible to obtain all hydrodynamic coefficients for all models for exactly the same vessel. Thus,
the results in Figure 11 were expected to be different, even for the models of the same modeling
school. The bifurcation boundary resulting from static loss of stability (straight line in all cases)
should be approximately the same for all models. This is indeed the case for T-M, O-M and SW-
M. The difference for A-M is due to incomplete data of the slow motion nonlinear derivatives [2].
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Fig. 11 Effect of turret location and current direction, 4-line TMS: All hydrodynamic models; ¢,,/L =6.0,
h =700 m, U =3.5 kts, T,=1327.8 kN, AC

(ii) The catastrophe sets of TMS around PE in Figure 11, show that the two groups of modeling
predict dynamic loss of stability differently. This is expected since the physics behind each of the
schools is different. According to Figure 11, neither O-M nor SW-M renders a stable PE in the
design space, and therefore the system either results in a limit cycle around PE (R-III), or its
trajectories are attracted by an alternate equilibrium AE (R-II, R-IV).

The difference in nature of the catastrophe sets with variations of the current angle o is a
consequence of changes in the incident angle of the water with respect to the catenaries.

These variations change the drag in the mooring lines. As the drag in the mooring lines increases,
A-M and T-M models become dynamically stable. Nonlinear time simulations show this to be the
case, and show that even if the dynamic behavior of all systems is oscillatory in nature, major
differences exist between the two groups in amplitudes of oscillations [49].

Figures 12 and 13 show simulations of the four maneuvering models separated by schools for the
same mooring line arrangement which lies in R-III [49]. As expected from Figure 11, all models
show convergence to a limit cycle around PE. The first group shows relatively large amplitude
oscillations (Figure 12) with respect to the second group (Figure 13).

The large amplitude oscillations for A-M and T-M in Figure 12 show that the TMS goes
asymptotically to a stable limit cycle, but the system is unsafe for operations. Additional dynamic
analyses are required to verify the viability of the system; selecting different parameters to
stabilize the TMS is possible by just looking at the design graphs in Figure 11. In Figure 13, the
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qualitative behavior of O-M and SW-M is oscillatory about PE, and thus PE is unstable even

though the motions of the vessel are relatively small.
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8.2 Modeling TMS as SPM

Presently, several TMS have been designed and deployed in relatively deep waters under harsh
environmental conditions. Due to the complexity of these types of systems, TMS are often modeled
mathematically as Single Point Mooring (SPM) systems with a number of lines or as a single line [21,
24, 46, 53]. Limited experimental and field data for TMS in shallow and intermediate water depths
[46], show that SPM models have proven useful, especially in determining the turret locations for
which the system is statically stable. The TMS model, however, differs from the classical Single Point
Mooring (SPM) model in three ways: (i) The friction moment exerted between the turret and the
vessel. (ii) The mooring line damping moment resulting from the turret rotation. (iii) The point of
attachment of the mooring lines on the turret [32]. Some of the qualitative differences in the dynamical
behavior between TMS and SPM are identified in the catastrophe sets of Figure 14 [32].

Figure 14 shows a series of catastrophe sets about PE in the (Dgg /L, ¢) plane for both SPM and
TMS (Dc¢ in TMS is equivalent to x, in SPM). External excitation consists of current, wind and
second order mean drift, which are collinear acting in direction ¢. For TMS the non-dimensionalized
moment friction factor 7 is set equal to 0.001 (very high) and 0.000001 (low). To establish an
appropriate basis of comparison between SPM and TMS, both systems have the same vessel
hydrodynamics, mooring line model, center of gravity, added and structural mass, added and

structural second moment of inertia. Qualitatively, the dynamics of the TMS and SPM systems are
similar in the ( Dog /L, ¢) plane as shown in Figure 14. The static stability of both systems depends

mostly on the value of Dy, and to a lesser extent on the environmental excitation. The location of the
turret (mooring lines in the SPM case) largely determines whether or not PE will bifurcate to create two
additional equilibria irrespective of the direction of the external excitation. Both SPM and TMS tend

to achieve their principal weathervaning equilibrium as the turret (or location of the mooring lines) is
moved forward, i.e. with increasing D values, as shown by stable region R-L

The static bifurcations that occur in both SPM and TMS in Figure 14 are very similar. This
characteristic of TMS is captured well by SPM model. The position of the turret has important design
ramifications, since higher hydrodynamic forces act on the vessel when achieving a non-
weathervaning configuration. The dynamic stability for both systems in Figure 14 is affected by the
direction of external excitation. Both SPM and TMS dynamics may fall in R-IIT achieving a stable
limit cycle around PE for large values of Dgg. This occurs for excitation angles at which the total
projected area of the catenaries to the inflow is smaller, resulting in less damping due to the mooring

lines.
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The third parameter, which corresponds to the magnitude of the moment exerted between the turret
and the vessel, is shown to alter significantly the region where dynamic loss of stability occurs. For
nonzero friction coefficient 7, TMS dynamic stability increases with increasing values of 7. As the
friction coefficient decreases, the region of limit cycles (R-1II) exhibited by TMS approaches that of
SPM system. It is significant to point out that the static bifurcation boundaries (i.e. the boundary
between R-I and R-II) for TMS and SPM systems do not coincide as shown in Figure 14. As the
turret diameter decreases (and therefore its mass decreases), the TMS catastrophe set approaches that
of the SPM system, and their bifurcation boundaries between regions R-I and R-II, and R-I and R-III,

converge in the limit of zero turret mass.

Other discrepancies between SPM and TMS models can be discerned with nonlinear time
simulations. The major quantitative differences between TMS and SPM result from the mooring line
damping moment which is a consequence of the turret rotation. This is shown by simulations in
Figure 15 where the frequency of oscillation of the TMS is lower than that of SPM [32].
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9 ASSESSMENT OF ENVIRONMENTAL FACTORS

The environment determines the type of mooring that is appropriate for operations. All
environmental factors have their characteristics and affect the mooring system differently. In this
chapter, qualitative changes in the dynamics of mooring systems due to environmental changes are
assessed using design graphs.

9.1 Memory Effect

The effect of memory is shown in the catastrophe sets in Figure 16 for a F2A1 tanker SMS in the
(xp / L, Q) plane [43]. This Figure shows that the memory effect causes the bifurcation boundaries to
move to the left. As a result, the memory effect may stabilize the system both statically and
dynamically, and all trajectories that result in a limit cycle around PE may converge to a stable PE.
Figure 16 also shows the effect of pretension in the system. Unstable R-III, where periodic solutions
exist, disappears as the pretension in the mooring lines is increased. Statically unstable R-II also
shrinks with increasing pretension.
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9.2 Current

The effect of current speed on a F1A2 tanker SMS is shown in Figure 17 for various current speeds
in the parametric space (x, /L, {,,/L). The four regions are marked with respect to the case where

U =2 knots. As shown in the Figure, current speed significantly affects the behavior near PE. For
U =1 knot, PE is statically unstable in most of the practical range except for very small values of £,,.

As the current speed increases, the cusp singularity moves to the left and to lower values of ¢,,, and
unstable R-IV enters the range of practical values of x, and ¢,,. The case for which U =3 knots

corresponds to the catastrophe set of the tanker SPM. As the current speed increases, the vessel is
pushed back and the two aft lines become slack and the system turns into a SPM system.

The effect of current direction on TMS is shown in Figure 11. The bifurcation boundary
corresponding to static loss of stability (BSL) is not affected by a change in current direction. The
dynamic loss of stability of the system (BDL), however, is affected due to the change in the inflow

angle of the mooring lines to the direction of current, as previously explained. The direction of the

current alone does not affect single point - single line mooring dynamics, as the system weathervanes.
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The effect of current direction on SMS, however, may have a considerable effect on SMS dynamics,

as shown in Figures 18, 20 and 26 [37, 38], which correspond to a F6A3 DICAS in water depth of 300
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m. In those figures, the current direction tends to destabilize a DICAS at or near beam seas, as noted by
R-III. In this region, the system oscillates around PE with no other equilibria that may attract the

trajectories.

9.3 Wind

The effect of wind in mooring systems also depends on the system configuration. To illustrate some
of the effects of wind, Figure 18 shows a catastrophe set of a F6A3 DICAS for various directions of
wind excitation [37]. As shown in Figure 18, DICAS is stable under a large range of excitation.
Wind destabilizes DICAS in the range of following to beam seas, and stabilizes the system in or near
head seas. This is partly due to the fact that this orientation of the wind forces provides additional
forces to the already pretensioned forward mooring lines, thus limiting the motions of the system.
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The direction and speed of wind also affect the stability of TMS as shown in the catastrophe sets of
Figure 14, where the external excitation consists of collinear current, wind and mean drift. Compared

to Figures 11 and 21 [30], for which only current is included as external excitation, static loss of
stability of TMS occurs for larger values of D when wind excitation is added. Note that Figure 14

58



also includes the effect of mean drift on the system. The point of static bifurcation at equilibrium,
Dé’é, of the symmetric system y = ¢ —180° is given by:

Ny + Ny + Ny + N,
DE-HT MT _WT WV (122)
Yy+ Y+ Yy + Yy
This ratio corresponds to the center of pressure of the system. The other terms that affect BSL are
thus the memory effect, wind, and second order mean drift.

9.4 Mean Wave Drift

Some mean wave drift effects can be illustrated in the catastrophe sets in Figures 18 and 19. In
Figure 18, the effect of wave direction is shown. The F6A3 DICAS falls into oscillatory region R-II1,
undergoing a limit cycle behavior, for waves in the range of following to beam seas; PE is stable for
wave direction at or near head seas. This effect is similar to that of wind.

Figure 19 shows a series of catastrophe sets for a F1A2 tanker SMS configuration without wave
drift and for various values of the significant wave height, H;,3; [9]. As H|,; increases, the set of
bifurcation boundaries move to the left. As a result, stable R-I and unstable R-IV move to the left in
Figure 19, shrinking unstable R-II. A point in R-II under no mean drift forces, for example, may
become a stable PE (R-I) or an oscillatory PE (R-III) depending on the value of H;,;. In Figure 5, a
statically unstable PE under no mean drift forces becomes stable. Mean wave drift has a similar effect

as the current speed in Figure 17.

As mentioned in Section 9.3, mean wave drift also affects the static stability of TMS. This is shown
by comparing the catastrophe sets in Figures 11 and 25 [7]. As noted in Figure 25, mean drift forces
shift BSL to the right with respect to its position in Figure 11.

9.5 Slowly-Varying Drift

When the spectrum of slowly-varying drift forces is added as an external excitation, the system
becomes nonautonomous. There is no general stability theory to analyze a nonautonomous system
subjected to spectral excitation. Only nonlinear time simulations can provide useful information on the
dynamics that mooring systems exhibit due to slowly-varying drift. The following observations can
be made regarding the possible effects of slowly-varying drift on mooring systems dynamics [9]:
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(1) Slowly-varying drift forces may stabilize oscillatory motions instigated by mean drift forces, as
shown in the simulation of a F1A1 barge SMS in Figure 6, where a significant reduction in the
oscillations is observed. Actually, slowly varying drift forces of higher Hj,5 totally eliminate the

oscillations of the system in Figure 6.
(ii)) Slowly-varying drift may also produce resonant beating behavior as in Figure 10 for the surge

motion, resonating with a natural frequency of the system.
(iii) Finally, slowly-varying drift may render a stable PE unstable and take the system to non-resonant

oscillations around AE, as shown for the F1A2 tanker SMS in Figure 5.
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9.6 Water Depth
The loads exerted on the mooring lines and the risers as well as the lack of understanding of the
dynamics of mooring systems in deep water make water depth an important design factor. Depending
on the system configuration, the depth of water may have stabilizing or destabilizing effects, as shown

by the catastrophe sets in Figures 20, 21 and 30.

The catastrophe sets in Figure 20 pertain to the F6A3 DICAS discussed previously. Stable region R-
1 tends to increase with increasing water depth, while unstable R-III disappears. This is due to higher
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resistance (drag) on the system as a result of an increase in the suspended portion of length of each of
the chains. The opposite effect is shown in Figure 21 [30], which corresponds to catastrophe sets of a
4-line TMS. Oscillatory R-III increases with increasing water depth, and thus a specific TMS
configuration may be stable for water depth # <800 m but unstable for #>850 m. Due to the nature
of the turret, the drag in the mooring lines does not provide the necessary restoring moment for

stability to occur.
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The catastrophe sets in Figure 30 for a buoy-supported F2A2 DICAS [35] show different effects of
water depth depending on the system configuration. Two different geometries of the DICAS, denoted
as G1 and G2, are used to illustrate this concept. The only difference between G1 and G2 lies in the
orientation of the forward mooring lines. In G1, the angle of aperture between the two forward

mooring lines is 20°, while in geometry G2 is 90°.
For a symmetric mooring system, we define €2 as the horizontal angle between the X-axis and the

mooring line, and thus €2 =10° for G1, and 2 =45 for G2 (the angle of aperture between lines equals
2£). Figure 30 shows that, in the case of G1, stable R-I increases with water depth. On the other
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hand, R-I decreases with water depth for G2. The bifurcations involved in each of these geometries are
different in nature, and will be discussed further in Section 10.8.
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10. ASSESSMENT OF OPERATION PARAMETERS

In the design procedure of mooring systems, several operation parameters (design variables) are
selected by the designer. These are, among others, the number, material, length, orientation and
pretension of the mooring lines; fairlead position; location of turret; location of riser; etc.

To illustrate the complex behavior of mooring systems, some of the effects of those parameters are
graphically shown in the catastrophe sets in Figures 11-31. These sets can be compared to establish a
rationale for determining trends in behavior for different mooring systems with different mooring line

configurations.
10.1 Mooring Line Material

The material of the mooring lines significantly affects the dynamical behavior of the system. To
illustrate this, consider the catastrophe set in Figure 22 for a barge SPM in the (x,/L, ¢, /L)

parametric design space [11]. In Figure 22, the dynamics of the SPM is compared for three types of
mooring lines: synthetic fiber rope, suspended catenary without drag, and 3-D cable FEM model with

drag. The SPM system may fall in either stable R-I or oscillatory R-III, depending on the particular
values of x,, and £,,. It is shown that the material of the mooring line significantly affects the SPM

stability boundaries.
Based on the results of Figure 22, we can draw the following conclusions:

(i) For small values of £,,/L, the mooring line restoring force is provided by its extension. For this

reason, the three line models considered give near identical results.

(ii) For intermediate values of £,,/L, the line restoring force is mainly governed by its weight.

Hydrodynamic drag forces are still not important to induce any visible difference between the SC
and the 3-D cable.

(iii) For large values of £,,/L, hydrodynamic drag forces on the cable become very significant, thus

resulting in considerable differences between the SC and the 3-D cable stability boundaries.
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The results of Figure 22 indicate that for the SPM system considered, the heavier the mooring line
results in a larger unstable region, as denoted by a larger region R-III. Spread mooring systems that
provide restoring moments on the mooring lines may show the opposite behavior.
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10.2 Mooring Line Pattern

Due to the wide selection of arrangements that mooring systems may have, one of the most important
parameters to consider in the design process is that of mooring line pattern. As seen in Section 9.6 and
depicted in Figure 30, a mooring system (F2A2 DICAS) may exhibit entirely different qualitative
dynamics by changing the angle of aperture in the forward mooring lines.

The effect of mooring line pattern can also be illustrated with the catastrophe sets in Figures 23 and

24 [5]. In each figure, two different configurations of 3-line tankers SMS in the (x /L, £,/L)
p

parametric design space are shown. Figure 23 corresponds to a F1A2 tanker SMS and it shows that -
with increasing £ in the aft lines, - the bifurcation boundaries move to the right, expanding unstable
R-IV. The exact opposite effect is observed in Figure 24 where instead of F1A2, a F2A1 arrangement
is considered. In both cases, the cusp singularity moves toward higher values of £,, with increasing
Q.
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10.3 Mooring Line Pretension

Mooring line pretension is one of the most important parameters in the design of mooring systems,
because it has significant effects on catastrophe sets and it is easy to control during operations. It is
generally considered that an increase in pretension will render an unstable system stable. This
assertion is based on the fact that highly pretensioned systems further restrict the motions of the
system. From the dynamics point of view, however, this is not always the case as shown next.

Figures 14 and 25 show the effect of pretension in TMS. In Figure 14, since the catastrophe sets
include the water depth as a parameter, the pretension Py corresponds to the horizontal component of
the pretension in each mooring line. The total pretension of each line, Tp, is a function of the water
depth. In Figure 25, the total pretension is used instead. Both Figures show that pretensioning the
TMS does not have an effect on BSL but can considerably reduce BDL, and thus shrink unstable R-ITT
and R-IV to the point of disappearance. For the parameters shown in Figures 14 and 25, increasing

pretension improves the TMS dynamics.
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The catastrophe sets if Figure 26 correspond to a F6A3 DICAS, and show the effect of pretension in
the system. In this Figure, three cases of total pretension, denoted as Tp;, Tp, and Tp3 are used. For

this particular system, each mooring line has a different pretension [38], and thus it is not necessary to
specify all values of pretension involved. Suffice to say that Tp; corresponds to the case of lower
pretension and Tp; to the case of higher pretension. In addition, the values for (y,/B) g,y are not

included in the caption, since they depend on x,, which is a parameter in the Figure. The effects of

increasing pretension in Figure 26 are two-fold: to increase stable R-1, and to shift BDL toward the
center of the Figure for high values of x,,. This second effect may throw a stable system into periodic

oscillations.

In addition to the effects of pretension observed in Figures 14, 25 and 26, consider the catastrophe
sets for tanker SPM and F1A1 SMS in the (x, /L, ¢,,/L) plane in Figure 27 [5]. The pretension in

this figure is defined in terms of the initial strain, E;, of the forward synthetic rope. Thus higher
values of E; imply higher pretension. As shown in the figure, increasing pretension tends to expand

R-I and to move BSL and BDL toward the right of the Figure until disappearing. For reasonable
pretension values, however, R-I does not fall within the range of practical values of Xp and /¢,,.

Figure 27 also shows that a system for which PE originally lies in R-III, may fall in region R-IV with

increasing the pretension.
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10.4 Mooring Line Length

The length of a mooring line is generally dictated by the depth of the water, the desired touchdown

length, and the pretension. The designer, however, may choose amongst a range of mooring line
lengths £,,. Small variations in this parameter may have profound effects on the system dynamics as

shown in this section.

The catastrophe sets in Figures 17, 19, 23 and 24 and 27 for different tanker SMS configurations

using relatively low pretensions and synthetic fiber ropes, show that PE is stable only for small values
of £,,. Increasing the length of the mooring lines expand both BSL and BDL in these cases.

The catastrophe sets in Figure 22 corresponding to the barge SPM for different mooring line models,
show the effect of ¢,, on BDL. The length of the mooring line does not affect BSL [11]. As shown

in the Figure, an originally oscillatory behavior of PE may become stable by increasing £,,,.
Yet another effect of £, in the dynamics of the system is shown in the catastrophe sets of Figure 29

for a F2A1 tanker SMS moored with catenaries. Region R-II falls under small values of £,,, and R-III
under large values. Operation under intermediate values of £, renders a stable PE.
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10.5 Fairlead Position

Some of the possible effects of mooring line fairlead position are shown in the catastrophe sets in

Figures 16, 17, 19, 22, 23, 24, 26, 27 and 28. It is not possible to generalize the effect of fairlead
position on specific mooring systems. In general, however, an increase in x,, tends to either stabilize

PE or cause the system to fall into a limit cycle.

Garza-Rios and Bernitsas [27] provide the following guidelines to stabilize a statically unstable

system:

(i) For lines moored forward of CG, increase the values of Xp. If possible, decrease the value of

Yp (i.e. move the mooring lines as close as possible to the centerline).

(ii) For lines moored aft the CG, decrease the values of x b If possible, increase the value of Yp-

Such guidelines are useful when the system is statically unstable, i.e. PE has bifurcated to yield
additional AE.
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10.6 Location of Turret

The effect of turret location is shown in the catastrophe sets in Figures 11, 14, 21, and 25. The
position of the turret determines whether the system possesses one or three equilibria, which is

determined by the location of BSL in those figures. The location of the turret has a strong influence on
the position of BSL. For small values of D, the TMS converges to AE and such equilibrium is

either stable or oscillatory, depending on the system configuration and the external excitation. For
large values of D, the system possesses only one equilibrium, which may be stable or fall in a limit

cycle.
10.7 Location of Riser

To study the effect of riser location on system dynamics, the catastrophe sets for a F2A1 tanker SMS
inthe (x, /L, x,./L) plane, for two different half aperture angles £2 in the forward mooring lines (5°

and 20°), and two different riser offsets A=-0.03L, (bottom of riser downstream) and
A=+0.03 L, (bottom of riser upstream), are shown in Figure 28 [44]. Only regions R-I and R-II

exist in this parametric design range, and show that, in general, the riser must be placed as forward as
necessary to achieve stable PE. This value of x, can be decreased with increasing x,. For £2=5°,

placing the bottom end of the riser in the upstream (positive 4) is favorable to the stability of the

system. However, for the larger half aperture angle Q2 =20°, it is observed that the downstream
placement of the riser (negative A) has the opposite effect for xp / L2 0.445. The system is unstable

about PE irrespective of the placement of the riser when the location of the riser at the top is near CG.

To further illustrate the effects of riser position on the dynamics of PE, consider the catastrophe sets
in Figure 29 [44] in the (T, £,, /L) design space, where Tp is the pretension in the mooring lines. In

this Figure, x, is superposed as the third parameter. As the riser location gets closer to the bow of the
vessel, the oscillatory region R-III disappears, and the set of stationary boundaries denoted by R-1I,
move to the left, and eventually disappear. As a result, the F2A1 tanker SMS is stabilized around PE.

10.8 Location and Size of Supporting Buoys

As discussed in Section 9.6, extreme changes in the dynamical behavior of the system may occur for
a system of two different configurations, as shown in Figure 30. DICAS geometry G1 may exhibit
either a stable PE or a static bifurcation of PE, while geometry G2 may fall into chaotic behavior. The
difference in the behavior of such systems can be attributed to a large extent to the presence of the

supporting buoys in the system [35].
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Figure 30 also shows the effects of buoy diameter (Dg) and buoy position along the chain with
respect to the vessel (£) on the system dynamics. For both geometries, the system tends to achieve a
stable PE with increasing both Dy and 5. Practical values for these parameters fall toward the center
and the upper right of Figure 30. Therefore, if G1 is selected, PE will be stable only for values of Dy
and ¢y that fall to the right of BSL.

10.9 Sensitivity Analysis

The catastrophe sets shown in the previous sections provide the designer with important visual
information regarding the effects of parameters on specific SMS configurations. These sets also show
that the behavior of the system may be affected widely by small changes in the parameters and vice

versa.

Systematic variation of four or more values of the system parameters may be difficult to visualize
graphically, even if the sets pertain to a single equilibrium position. The relatively small or large
changes in the behavior of mooring systems can be explained analytically by determining the
sensitivity of the stability criteria and bifurcation boundaries shown in Chapter 6 on the design
variables, and thus, the effect of each design variable (or group of variables) on the dynamics of the
system. This method consists of taking partial derivatives of the analytical expressions for the
bifurcation boundaries with respect to any parameter or group of parameters to determine the
sensibility of bifurcations to each parameter. An application of this concept is shown by Garza-Rios
Eychenne [26].

Sensitivity analysis can also be accomplished by taking known quantities of a specific parameter and

studying its effects, as shown below.

In Figure 11, a major difference between the two maneuvering schools of thought was established,
as pointed out in Section 8.1. The difference observed in the Hopf bifurcation in the catastrophe sets
in Figure 11, is mostly due to the first order rotational terms in the hydrodynamic lateral force and
moment, which are inexistent in O-M and SW-M. Sensitivity analysis consists in setting the linear
rotational slow motion derivatives in A-M (¥, and N,) and T-M (N,) to zero and reconstructing the
catastrophe sets of Figure 11. Figure 31 [49] shows the changes in the catastrophe sets corresponding
to A-M and T-M of Figure 11. The discrepancy in the Hopf bifurcation in Figure 11 is virtually
eliminated in Figure 31, thus showing the importance of the values of ¥, and N, in the maneuvering

models.
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CLOSING REMARKS

The methodology developed at the University of Michigan since 1983 has contributed to our
understanding of mooring system dynamics and design in two major ways: First, directly, by
providing a way of assessing and designing mooring systems; and second, indirectly, by explaining
several physical nonlinear phenomena observed during mooring operations. The first and direct
contribution consists of providing the designer with a tool for assessing a given mooring
configuration, a new design concept, or simply improve the design by changing the
value of a parameter. The alternative of trial and error and lengthy nonlinear simulations require
extensive experience, can reveal only a small picture of the behavior of a mooring system, and is too
time consuming to evaluate new concepts with parameter variation. The second and indirect
contribution of this methodology, is summarized in Chapter 2 where several phenomena observed in
mooring operations or controversial issues have been explained in the past sixteen years. This
methodology does not solve the entire design problem. The fast motions problem must be studied by
simulation as a perturbation of the underlying solution to the slow and intermediate frequency scales
problem. The problems of first excursion and fatigue failures can be studied using results from both

problems.

There are several exciting topics in research and development to pursue based on the UM

methodology.
(1) Study a hybrid station-keeping system with both mooring lines and dynamic positioning.

(ii) Couple fast motions to the other two scales presently handled independently in computer

software.

(iii) Develop an assessment criterion for mooring systems which is independent of time so that a
procedure for optimizing or just improving a design can be established.

(iv) Study theoretically the interaction between slowly-varying drift forces and Hopf bifurcations to
explain the phenomena of interaction demonstrated by appropriate selection of simulations in
Section 9.5.
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