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ABSTRACT

An overview of restricted-water maneuvering with heavy emphasis
on the course stability of ships in canals is presented, starting with
the underlying linear equations and proceeding to the theoretical
prediction of the stability derivatives, arriving finally at a careful
comparison of theory with published experimental data. Features include
an illustration of the use of the hypercircle method in providing upper
and lower limits on the solution of the boundary-value problem, a
discussion of the role of negative feedback in course stability, and
an outline of the technique of plotting the limit cycle on phase-planes
to evaluate nonlinear equation constants as a part of a discussion of

simple nonlinear models of maneuvering motion.
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NOMENCLATURE

A aspect ratio

a,b,c,d,e constant coefficients of the characteristic
equation (2.23) for the maneuvering motion in a
canal (see (2.24))

a',b',c',d',e’ constant coefficients of the characteristic
equation (3.21) for the controlled maneuvering
motion in a canal (see (3.22))

a,b,c,d characters to designate the size of a rectangular
cylinder and a rectangular canal (in part 4)

B breadth of a ship
B(s) Laplace transform of drift angle g(t)
C* stability discriminant of the maneuvering motion

in deep water or in shallow water (see (2.27))

Cy three-dimensional correction factor of sway added
mass

CyH correction factor Cy for a finite water depth H

Cyo correction factor Cy for infinitely deep water

C,y three-dimensional correction factor of yaw added
mass moment of inertia

CzzH correction factor C,, for a finite water depth H

Cppo correction factor C,, for infinitely deep water

Dy,D3,Dy,D5,Dg areas enclosed by limit cycles on the various kinds
of phase-plane

D(s) Laplace transform of rudder angle §(t)

Fy Froude number based on the water depth H:U//Hg

F, Froude number based on the ship's length L:U/QLg

g acceleration of gravity
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Nomenclature (continued)

H

H(s)

I

zz

m(m'), n(n')

water depth

Laplace transform of lateral position, n(t), of a
ship in a canal

1-th vector of hogogeneous complementary vector
space m*: I = (pjj, pi§)

yaw mass moment of inertia of a ship about the
vertical axis through the center of gravity

k-th vector of homogeneous associated vector space
a*: Jg = (qf,, qﬁz)

yvaw added mass moment of inertia

stability index of a ship defined by (2.46)
autopilot gain constants (see (3.20))

factor to describe the shallow water effects on the
sway added mass, lateral force, and turning moment
(see (4.92))

factor to describe the shallow water effects on the
sway added mass (i=1), yaw added mass moment of
inertia (i=2), lateral force (i=3), and turning
moment (i=4) (see (4.93))

factor to describe the shallow water.effect on the
rudder force

ship's length between perpendiculars

ship's mass

sway added mass of a ship

sway added mass of a two-dimensional cyclinder
added mass my at a finite water depth H

added mass my in infinitely deep water

element of the added mass tensor

integers to denote the subscript k(f) of Jk(Jz)'
vector
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Nomenclature (continued)

N turning (yaw) moment acting on a ship

N amplitude of a sinusoidal yaw moment

A derivative of yaw moment with respect to sway
acceleration

N, derivative of yaw moment with respect to sway
velocity

N2 derivative of yaw moment with respect to yaw
angular acceleration (E-Jzz)

N, derivative of yaw moment with respect to yaw
angular velocity

Ng derivative of yaw moment with respect to rudder
turning rate

N6 derivative of yaw moment with respect to rudder
angle

N derivative of yaw moment with respect to a ship's

n offset distance in a canal

Né derivative of yaw moment with respect to drift
angular velocity

NB derivative of yaw moment with respect to drift
angle

NBH derivative NB for a finite water depth H

NB” derivative NB for infinitely deep water

NBWH derivative NB in a canal with width W and depth H

N derivative N_ in shallow water H (=N

Ny derivative N, for a finite water depth H

Ny derivative N, for infinitely deep water

P1,P two components of a vector belonging to the

1-P2

complementary vector space m (see (4.12), (4.13))
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Nomenclature (continued)

* %
P1sP2

o |

q;,9,

*
qf’qz

Q|

two components of a vector belonging to the homo-

geneous complementar

(4.16))

y vector space n* (see (4.15),

a fixed-vector of n-space

two components of a vector belonging to the
associated vector space Q (see (4.14))

two components of a vector belonging to the homo-
geneous associated vector space Q*

a fixed-vector of —-space

yaw angular velocity

amplitude of a sinusoidal yaw rate

Laplace transform of yaw velocity r(t)

two components of a common vector of g and ) spaces:

R = (rl,rz)

arbitrary point (or vector) in T—-Space

arbitrary point (or vector) in Q—-space

body surface immersed in the fluid

sectional area of a body at x

ship's draft

stability indices of a ship defined by (2.46)

time

ship's speed (resultant speed)

unit step function (see (2.47))

longitudinal component of ship's speed

lateral component of ship's speed

canal breadth
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Nomenclature ( continued)

X longitudinal axis of a ship

X hydrodynamic force along x-axis

y transverse axis of a ship

Y hydrodynamic force along y-axis or sway force

Y amplitude of a sinusoidal sway force Y

YG derivative of sway force with respect to sway
acceleration (E-my)

Y, derivative of sway force with respect to sway
velocity

Yo derivative of sway force with respect to yaw
angular acceleration

Y, derivative of sway force with respect to vaw
velocity

Y& derivative of sway force with respect to rudder
turning rate

YG derivative of sway force with respect to rudder
angle

Yn derivative of sway force with respect to a ship's
offset distance in a canal

Yé derivative of sway force with respect to drift
angular velocity

YB derivative of sway force with respect to drift angle

YBH derivative YB for a finite water depth H

YBco derivative YB for infinitely deep water

YBWH derivative YB in a canal with width W and depth H

Y derivati i =Y

BooH erivative YB in shallow water H ( YBH)

YrH derivative Yr for a finite water depth H
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Nomenclature (continued)

Yr°° derivative Yr for infinitely deep water
ao,al,az,aa constants included in the transfer function (2.36)
o* constant included in the transfer function (2.42)

(see (2.44))

B drift angle of a ship

B amplitude of a sinusoidal drift angle

Y (E) strength of vortex at &

Y Y. Y Y eY constants included in the transfer function (2.38)
0 "1 273 4 (see (2.40))

8 rudder angle

) a constant rudder angle

€1+€2 phase lags of sinusoidal sway force and yaw moment

Co,cl,cz,cs constants included in the transfer function (2.39)

(see (2.41))

n an axis of a coordinate system fixed in space
(see Fig. 1)

lateral position of the center of gravity of a ship

¢ in a canal

ﬁe amplitude of a sinusoidal lateral position n(t)

no initial offset distance of a ship from the center-
line of a canal

np port bank distance parameter defined by Noxrbin [23]

£ an axis of coordinate system fixed in space
(see Fig. 1) or the stagger of two ships

p density of the fluid

¢ velocity potential function
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Nomenclature (continued)

$. velocity potential due to an elementary motion with
unit velocity: i=1, surge; i=2, sway; i=6, yaw

Y directional angle of a ship or stream function
¥ (s) Laplace transform of directional angle

wo initial deviation of directional angle

w frequency of the motion



Nomenclature (continued)

Definition of dimensionless variables

I N

I;z : zz N; : T
5
(1/2)pL (1/2)pL*v
J;z : Jzz N&' : Né
(1/2)pL° (1/2)pL*u
K' : KL Né : N6
v /2)o1’v?
m’ : m NT" : Nn
3 2.2
(1/2)pL (1/2)pL"U
m}', : mz ; Né' : Né :
(1/2)pL (1/2)pL U
N' N N} : Ng
3.2 3.2
(1/2)pL7U (1/2)pL7U
N-
N"" v - " : r L
(1/2)pL v
N
N"’ : v T),T,T3 1,0 (i=1,2,3)
(1/2)p1%u L
L. o ot
(1/2)oL°

.x—



Nomenclature (continued) Definition of dimensionless variables

v! : v R' : B

(1/2)pL%v?
Y'
'
(1/2)p1’ L
. Y
Yv : A" > w'
(1/2)pLvy

<

Y.
r

-

(1/2)oL" U
Y.' Yé

(1/2)0L3u

Y! : Yé

(1/2)pL20>

Yr'1 : Yn

(1/2)oLU>
Y.-' Yé
(1/2)oL3u
Y' : YB
(1/2)p1.%02
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1. INTRODUCTION

In the last ten years, the size of ships has greatly increased:
for example, the size of the world's largest oil-tanker went from
150,000 DWT nine years ago to 480,000 DWT two years ago. This increase
in displacement has brought serious difficulty in handling ships in
harbors, especially when they are approaching and leaving the pier, or
passing through the narrow waterways. When navigating at slow speed
through a busy area where many kinds of ships run in different directions
at different speeds, a supertanker requires the help of many tugboats.

As the ship displacement increased, the draft increased simulta-
neously from 16.0 m of ships a decade ago to 28.20 m for the 480,000
DWT tanker. The increase of draft amounts to the relative decrease of
the water depth of existing harbors and waterways, so that a vessel's
maneuverability tends to be very much affected by the finite water
depth.

In the early stages of ship hydrodynamic research in restricted
water, more attention was paid to the increase of the ship resistance
than to the effect on the ship maneuverability. It was known from
experience that the ship maneuverability in restricted water was much
different from that in deep water, but there seemed to be a certain
confusion with respect to its description. The maneuverability of a
ship includes two inconsistent characteristics: one is the course-
keeping quality or course stability and the other is the turning

ability. When the course stability of a ship becomes poorer because
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of the restriction of the waterway, the turning ability of the ship
always becomes better, and vice versa. It doesn't make sense to say
that the maneuverability of a ship becomes either better or worse in
restricted water.

Another aspect of ship motion in shallow water is a conspicuous
change of ship's attitude, i.e., bodily sinkage and trim, well known
among experienced ship operators. According to the recent analysis by
Tuck [1],** the magnitudes of the bodily sinkage and trim of a ship are
related to the ship's speed as follows: As the ship's speed varies,
both the bodily sinkage and the trim vary according to the factor
FHZ//E:EEE, where Froude number Fy is defined by U//ﬁgT That is to say,
if the ship's speed is under the critical speed /ﬁg » both the bodily
sinkage and the trim by the stern increase as the ship's speed
approaches the critical speed. The change of the draft and trim of a
ship can have a noticeable effect on the ship's maneuverability. It is,
however, customary that most merchant ships reduce speed in restricted
water, to the extent that rudder effectiveness is not degraded, and
in most cases, bodily sinkage and trim do not become so large that the
maneuverability of a ship is seriously affected.

In this monograph, the author will try to explain the maneuver-
ability of ships in restricted waters, but the discussion will be
confined to the course stability of ships moving at constant speed

instead of to the turning ability at constant speed, since the course

**The number in brackets designates a reference listed at the end
of this monograph.
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stability can be described by linear equations of motion. Hence, in
part 2, the linear maneuvering equations of motion will be introduced
and the necessary and sufficient conditions for stability will be
indicated. Furthermore, an essential difference between the response
to the rudder deflection in either shallow or deep water, and the
response in a canal, will be elucidated.

Based on the experimental data of the stability derivatives, the
course stability in shallow water and in a canal will be discussed in
part 3, and the improvement of the course stability in a canal by the
adoption of automatic steering will be considered. Theoretical
contributions have been made with regard to the restricted water effect
on the stability derivatives. Although the quantitative accuracy of
the theoretical predictions doesn't seem to be very good, the theory
will become more important in the future because it is very time-
consuming and expensive always to rely on experiments for the stability
derivatives in restricted water. Therefore, in part 4, we shall
clarify the discrepancy between the experimental results and the
current theoretical method of predictfon. The author believes this may
be helpful in improving the theoretical approach.

Up to and including part 4, all discussions are based on the
linear maneuvering equations of motion. If, however, the maneuvering
motion deviates considerably from a straight line path at constant
speed, the motion cannot be accur ately predicted by the linear
equations. In particular, when we predict the motion of an unstable

ship, it is important to take account of the nonlinearity of the
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hydrodynamic force acting on the ship. Otherwise, any perturbation
due to a small disturbance cannot remain finite, but diverges to
infinity. Hence, in part 5, we shall consider the nonlinear mathemat-
ical model describing the maneuvering motion. The stress will be laid
exclusively on the simplified nonlinear models because, from the
practical point of view, we can determine the unknowns appearing in
such equations through the use of the time-history of the motion
recorded on board ship or on a model of the vessel. Finally, such
external forces as the wind, waves, and water currents will not be
taken into account; that is, we shall consider the maneuvering motion

of ships only in calm seas.



2. LINEAR MANEUVERING EQUATIONS OF MOTION IN RESTRICTED WATERS AND

COURSE STABILITY

2.1. Linear Manewvering Equations of Motion

In order to describe the maneuvering motion of a ship in
restricted waters, we use two kinds of coordinate systems, 0O-&n and
G-xy, the former fixed in space and the latter fixed with respect to a
moving ship. Figure 1 shows a ship moving in an uniform canal, where
the coordinate axis 0f coincides with the centerline of.the canal.

The transverse section of the canal is assumed to be symmetric with
respect to the centerline of the canal. The direction of the arrows
shown in the figure indicates the positive values of such angles as the
drift angle B, rudder angle &, and directional angle Y. Since we will
(1) restrict our consideration to the Planar motion of a ship on the
En-plane or xy-plane and (2) assume that the rolling motion of a ship
is small, it is sufficient to take into consideration only three
components of the ship's linear and angular velocity: u, v, and r.

The maneuvering motion of a ship traveling in calm seas used to
be described by a set of ordinary differential equations with constant
hydrodynamic coefficients. This method has been followed by many
people since it was introduced by Davidson and Shiff [2], and Motora

[3]. On the other hand, as Brard pointed out [4], even if the free



surface is replaced by a rigid wall, the vortex shed from a moving
ship has a kind of memory effect on the hydrodynamic force acting on
the ship. In other words, the hydrodynamic force is dependent not
only on the instantaneous state of the ship motion but also on the

past history of the motion.

canal wall
NN NN NN N NN NN NN NN

o-én: Fixed In space
G-xy: Fixed to the ship

(e,

NN N NTN N N N N N NN NN NN
I canal wall

Figure 1. Coordinate system for describing the
motion of a ship traveling in a canal.



In seakeeping, the hydrodynamic coefficients of the equations of
motion are always considered as functions of the frequency of motion.
From the mathematical point of view, it is, of course, strange that
the ordinary differential equations have frequency-dependent
coefficients. Several years ago, Cummins [5] gave a clue to solving
this problem. He derived integro-differential equations as the
governing equations of the seakeeping motion by paying attention to
the frequency dependence of the hydrodynamic coefficients. Strictly
speaking, the maneuvering motion also should be described by the
integro-differential equations, or, what amounts to the same thing, the
hydrodynamic coefficients of the maneuvering equations of motion should
be considered as functions of the frequency of motion.

With this point in mind, the author compared two kinds of yaw
response of a directionally stable ship to a stepwise deflection of the
rudder; these were obtained (1) by taking account of the frequency
dependence of the hydrodynamic coefficients, and (2) by neglecting the
frequency dependence [6]. As a result, it was clear that the equations
with the so-called slow-motion derivatives could produce a yaw response
to the rudder deflection that was almost the same as that obtained
from the integro-differential equations. Therefore, from a practical
standpoint, the integro-differential equations which are the exact
maneuvering equation of motion, can, with confidence, be replaced by a
set of ordinary differential equations with constant stability

derivatives, and this is done in the following discussion.



For the reference frame fixed to the moving ship, the ordinary

differential equations of maneuvering motion are:

m (g% -rv) =X

dv _

m (dt +ru) =Y (2.1
dr

Izz dat =N,

where the right-hand terms X, Y, and N are the external forces and
moment acting on a ship, which are assumed to be functions of the
following variables: ship's acceleration, velocity, rudder angle,
position in a canal, and attitude with respect to the centerline of a
canal. The last two variables refer to the effect of the bank on the
hydrodynamic force in a canal and are, of course, unnecessary when the
ship motion takes place in deep water or in otherwise unrestricted
shallow water.

Since the ship's lateral position in a canal, n, and the
directional angle, ¥, serve to fix the position of the vessel in the
canal, it is natural to assume that the hydrodynamic forces and moment
acting on the ship in a canal are also functions of n and § [7]. That
is, in symbolic form,

X=X (u, v, r, 8§, 0, v, 1, é, n, ¥)

Y

Y (u, v, r, 6§, 4, v, T, é: n, ¥) (2.2)

N N (us v, r, 6, ﬁ’ 6’ f’ é, n, ¥)

In the equilibrium condition of motion, the ship travels in a straight



path on the centerline of a canal and at constant speed U. That is to

say, all variables except for u are zero: v=r=8= 4 =¥=f£=§=n=y=0 and u=U.
In what follows, we assume that the perturbations from the

equilibrium state are small. Describing a small perturbation with the

symbol A, we have

u=U+ Au , v = Av s r = Ar , § = AS
a=at V=AY, t=At, & =4d (2.3)
n = An s Y = Ay .

Expanding the hydrodynamic forces and moment X, Y, and N with respect
to the small perturbations of the variables and keeping the linear
terms only, we obtain

dAu

at AS

m = x(v,0,0,0,0,0,0,0,0,0) + XuAu + XVAV + XrAr + X

(

+ X Al + XAV + X AE + X3AS + X_An + XAy (2.4)
u v T 8 N

v

dA
m d—t" + Ur) = ¥(v,0,0,0,0,0,0,0,0,0) + Y,0u + Y AV + Y AT + Y AS
+ Yo AL+ YL AT + Y AF + YyA8 + Y on + Ywmp (2.5)
dAr
I, 4 - N,0,0,0,0,0,0,0,0,0) + NAu + N AV + N _Ar + N AS
+ N At + N AV + N AF + NSAB + NnAn + N‘pAw y (2.6)

where the coefficients Xu, Xv"""’ Yu, Yv"""’ Nu, Nv"""’ N

v
stand for the partial differential coefficients of X, Yyand N with
respect to the subscript variables, which are evaluated at the

equilibrium state (v,0,0,0,0,0,0,0,0,0). For example, the coefficient

Xu is defined as the partial derivative 9X/9u at u=U, v=r=.,.=y=0,



The first term of the right-hand side of equation (2.4) means the
total resistance of a ship traveling at a constant speed U, which is
cancelled by the thrust of the ship's screw; hence, it will be omitted
from now on. The first term Y(U,0,0,...,0) of equation (2.5) stands
for a constant lateral force acting on a ship that travels on the
centerline of a canal at a constant advance speed U. Therefore, if
the ship's hull is symmetric with the vertical plane through the
longitudinal axis Gx, this term must be negligibly small compared with
the other terms.** This situation is also true for the first term of
equation (2.6), i.e., N(U,0,0,...,0). Taking account of the symmetry
of the ship's hull makes some of the stability derivatives of the

above equations zero:

Xv = Xr = XG = Xﬁ = Xf = Xé = Xn = X¢ =0

Yu = Y,:1 =0 2.7
N =N. =0 .

u u

Furthermore, we assume that the hydrodynamic force and moment due to

the ship's attitude in a canal, Y, Ay and N Ay, are negligibly small.

v v

In other words, the bank effect on the hydrodynamic force and moment

acting on a ship can be expressed by only the lateral position of the

**Strictly speaking, this term has a finite value because of the
asymmetry of the flow around the ship's hull, which is especially
notable in a single-screw ship. In that case, we can reach equivalent
linear expansions by assuming an oblique path of travel, i.e., u=U,
v=vg, r=0, 6=8;, G=V=t=8=n=0, Y=y, as an equilibrium state of motion
equivalent to the straight-line path of travel used to derive
equations (2.4) to (2.6).
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ship in the canal. Consequently, the linear equations (2.4) to (2.6)

reduce to remarkably simple expressions:**

du _
(m - Xﬁ) Tt- = Xu u (2.8)
dv _ _ . 2
(m - Yﬁ) S T va + (-mU + Yr)r + Y66 + Yfr + YsG + Ynn 2.9)
dr . o2
(Izz - Nf) 3t - va + Nrr + Naé + Nﬁv + NGG + Nnn . (2.10)

It is important to note that the longitudinal or surge equation is
of closed form with respect to the longitudinal component of the
velocity perturbation, and that the sway and yaw equations do not
include the perturbation of surge velocity u. In other words, the
surge motion doesn't couple with the sway and yaw motions, as far as
the linear equations are concerned. Because of this, when we discuss
the maneuvering motion accompanied by small velocity perturbations, it
is sufficient to deal with equations (2.9) and (2.10). The set of
those two equations is not complete, however, because there are three
variables v, r, and n, and so we need one more relationship in order
to completely define the maneuvering motion of a ship in a canal. For
this purpose, auxiliary relationships will be introduced when we
derive the necessary and sufficient conditions for the course stability
in a canal.

In cases where it is unnecessary to take account of the bank
effect on the hydrodynamic force, the last term in each of equations

(2.9) and (2.10) can be omitted. That is, equations (2.9) and (2.10)

**For simplicity, the symbol A is dropped.
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without the last terms are a complete set describing the maneuvering
motion in deep water and in shallow water. The stability derivatives
of those equations vary according to the water depth.

Under the assumption of small perturbations, the drift angle B is

often used instead of the sway velocity v; we make the following

approximation:

v=-UsinB =-USB (2.11)
and then

Ve-UB . (2.12)

If we use the drift angle B instead of the sway velocity v, equations

(2.9) and (2.10) become:

. ﬁ - - - ..
(m YB) U it = Y6 B+ (-mU + Yr)r + Y66 + Yfr + YGG + Ynn (2.13)
dr _ . . &
(Izz-Nf) ac - NB B + Nr r + N6 § + NB B8 + NG § + anl . (2.14)

The stability derivative 'Yﬁ or 'Yé is called the sway added mass, and
is often labeled my. The derivative —Nf is called the yaw added mass
moment of inertia and is replaced by Jzz' Denoting the non-dimensional

value by the prime ('), the dimensionless equations of motion are as

follows:
—(m'+m')d—e’:=Y'3'+(—m'+Y')r'+Y'6'+Y U+ Y 8 o4y o
y’ dt B r 8 t 8 n "
(2.15)
1 1 dr'= 110 L Y o oat Y Tt
(Izz+Jzz)dt, NgB'" + N'r' + N'§ + N B+N66+Nnn .
(2.16)
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2.2. Conditions For Course Stability

Now we consider the inherent course stability of a ship traveling
in a canal. As mentioned in section 2.1, we need an auxiliary
relationship connecting the dependent variables v, r, and n in order
to make the linear equations (2.9) and (2.10) a complete set.

The time rate of change of a ship's offset distance from the
centerline of a canal, n(t), is described as follows:

dn
dt

veos ¢y +usiny

U sin (y-B) . (2.17)
Assuming that the angle y-B is small, we obtain one auxiliary
relationship:

L )

dt (2.18)

The dimensionless counterpart of equation (2.18) is

Fra e N (2.19)

We define

dt , (2.20)

or

' (2.21)

The four equations (2.13), (2.14), (2.18), and (2.20) or their
dimensionless counterparts, (2.15), (2.16), (2.19), and (2.21), describe

completely the motion of a ship in a canal. Since all of these
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equations are first-order linear ordinary differential equations with

constant coefficients, the basic solutions have the form of an

exponential function of time, namely, exp(ot) or exp(c't').

The factor

o of the exponential function is determined by solving the following

equation, which is called the characteristic equation of a set of the

linear ordinary differential equations:

or, in a simpler form,

—Am? 1N~y ! l—m! Ty vt At
(m +mY )o YB (-m +Yr ) Yi o]
Nt ~? i} ' t_N !
NB g (Izz+Jzz)o Nr
1 0
0 -1
ac'™ +bo'3 + co'2 + do' + e = 0

(2.22)

(2.23)

where the coefficients a, b, ¢, d, and e are real constants defined as

follows:

a

that

are all negative.

' ' t_yt ' 1Y N (! Ty _N'Y?
(m 'Hny) Nr YB (Izz+Jzz) NB (-m +Yr ) N Yi‘

1 4
g

' ' v _ LRV
(m +my ) Nn Yn Nr

]
b

—(m": ' 7! ' - !
= -(m -Hny ) (Izz-l-Jzz.) Yi‘ N

B

LIRS R | ' ' 1 T Tyt
Nr NB (-m +Yr ) + Yn (Iz-z+Jz‘z) + Nn Yi‘

N ]
n

_Y' )
nNB

_N"Y'
B 'n

LA LR
+ Nn (-m +Yr )

8

)

{2.24)

The necessary and sufficient condition for course stability is

the real parts of the solution o' of the algebraic equation (2.23)

From the Routh-Hurwitz criteria [8], this condition



is always satisfied when the following inequalities are satisfied:

b bed-ad2-b2e
b 2ccrac —ble
a

>0, g'> o, f’ >0, a

>0 . (2.25)

The four conditions of equation (2.25) are the necessary and sufficient
conditions for course stability of a ship traveling in a canal. We can,
however, reduce the number of the conditions by inspecting the
magnitudes of the stability derivatives as well as their signs.

For instance, the coefficients a and b are always negative, because
the virtual mass m'+m; and the virtual mass moment of inertia 1,4,
are always positive and are considerably larger than the absolute values
of the other acceleration derivatives, Yf' and N§ 3 furthermore, the
damping derivatives N; and YB' are always negative and positive
respectively. Therefore, the first inequality of equation (2.25) is
always satisfied. In addition, the coefficient e is also always
negative, because the stability derivatives Y; and Nn' representing
the bank effect are always positive and negative respectively.
Physically, a ship traveling between two banks and parallel to them
receives a suction force toward the nearer bank as the ship's bow is
repelled by the bank. Therefore, the third inequality of equation
(2.25) is also satisfied. Consequently, the second and fourth
conditions, i.e., d<0 and bcd—adz—b2e<0, are the conditions for course
stability of a ship traveling in a canal.

In contrast, the condition for course stability of a ship moving
in deep or shallow water, otherwise unrestricted, is quite simple. 1In

this case, the maneuvering motion can be described completely by the
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two equations (2.15) and (2.16). Therefore, the necessary and

sufficient conditions for the course stability are
b .
2 0 s — > 0 (2.26)

where c* is defined as follows:

= TN N . (=m! ' '

By the same reasoning through which we obtained the conditions of the
course stability in a canal, the first inequality of equation (2.26) is
always satisfied. Therefore, the condition for course stability of a
ship traveling in deep or shallow water is that c* should be negative.

In symbolic terms, the condition for the stability is

N' N'
r B vt
_m'+Yr| Yé >0 for —m +-Yr <0 (2.28)
N NB'
:m'_-l-Yri— - —Y;— <0 for -m'+Yr' >0 (2.29)

2.3. Transfer Functions and the Stationary State of Motion
Corresponding to a Constant Rudder Angle

If we assume that all the initial values of the variables occurring

in equations (2.15), (2.16), (2.19), and (2.21) are zero, Laplace

transforms of those equations are as follows:
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(E1s-§2) B(s) = (Ess+E3)R(s) + (Egs+Ey)D(s) + E£7H(s) (2.30)
(nys-n,) R(s) = (ngs+ny)B(s) + (ngs+n,)D(s) + n,H(s) (2.31)
sH(s) = ¥(s) -B(s) (2.32)
s¥(s) = R(s): , (2.33)

where B(s), R(s), D(s), H(s), and ¥(s) are Laplace transforms of the
variables B'(t'), r'(t'), &§'(t'), n'(t"), and ¥'(t') respectively,
where B(s), for example, is defined as
© - 1
B(s) =LI8"(t")] = /78" (¢")e% at : (2.36)
The stability derivatives of equations (2.15) and (2.16) are replaced

by the coefficients Ei and n; for the sake of simplicity:

g1 = ~@'m 1) n, =140 w

t2 = Yé n = N;

€3 = —m'+Y; n, = Né

gy = Y n, = N > (2.35)
Es = Y, ng = Ng

g = Y | n = N§

.

Eliminating B(s), ¥(s), and H(s) from equations (2.30) through (2.33),

]

4
o]

]

2

€7

we obtain a transfer function which describes the ratio of yaw

response to the rudder deflection:

s(a0s3 +a132 + 0,8+ ag)

R(s) _ 2

D(s) as® + bs3 + cs? +ds + e

s (2.36)
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where the coefficients a, b, ¢, d, and e are exactly the same as those

defined by equation (2.24), and the coefficients @, are defined as

follows:

% = 8gNs + Eyng

&y = &N, = &,ng + & n. F Eyny
a, = ~E,n, +EN, - Egny + Eong
0y = =, Ny + Euny .

In a similar way, we obtain the other transfer functions:

where the

and

" 34y 2 4 v
B(s) o Yoo T Y8 T st v ygs v,

D(s) as* + b3 + g2 +ds + e

v 3 o2 .
H(s) _ COS + CIS + ;28 + §3

D(8)  ag + bs3 + ca? + ds + e s
coefficients Yy and gy are defined by

Yo = Egng + EMy

Y1 T BN F Ay BN, - £,

Yz = Esnu - E‘*nz

Y3 = ~&gn, * Eong
+ &,
S0 = “TsNg ~ EgMy

& = &ng - EaNy = &0y - Egny, + Egny EgMs
2= By - Byl - Egn, + BN, + Eng + By

Ca = _gznu + E_,_,n:s .
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By comparison, the transfer functions describing the maneuvering motion

in deep water and in shallow water are considerably simpler:

2 ; %
R(s) - ags + a;s + “2

D(s) as® + bs + c* (2.42)

2 .
B(s) — Yo8© + Y8 + v;
D(s) as® + bs + c* , (2.43)

where the coefficient az* is defined as a,, with €, and n, being equal
to zero; that is,
* = —
o, En, &N, . (2.44)
In particular, if we assume that both Yé' and Né' are zero, the well-

known transfer function of the yaw velocity versus the rudder angle 1is

derived from equation (2.42):

R(s) = K(T,s + 1)
D(s) (T;s +1) (Tzs + 1) R ' (2.45)
where
Tr =_2 o -(@im') (LL+I)0)-Y;' Ny’ )
12 “cx Y'N'—N'(-m'+Y')
g T B r

) ] | I | 1 TN Ne'fm!? 'Y NTVe?
O (m +my ) N_ Yo' (I,43.0) Ny'(-m'+Y_") NaYs
172 Tc¥ tae 1 ' ' \

YNNG w4y )

B B
- ' ' ' '
. ok YB . Ng +Y§_ NB
T : vt N m ot e (2.46)
c* YB Nr NB (-m +Yr ) }
- ' ' 1 v o !
. Loy L (m-hn}:)NG + Yo' Ng )
- ] 1 '
3 az* YB N(s + Y6 NB .
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It should be noted that the two transfer functions (2.42) and (2.43)
for motion in deep or shallow water are of the same form, while the
transfer functions (2.36) and (2.38) for motion in a canal are not.
This dissimilarity in form produces a great difference between the
stationary states of yaw and sway response to rudder deflection.

In either shallow water or deep water, the stationary state of
the yaw response to a step deflection of the rudder, whose Laplace
transform is written

L 160 vl = %0' , (2.47)

is immediately determined from the final value theorem [9]:
J 2 4 %
lim r'(t') = lim sR(s) = lim s.6° ags® + 238 + ap

t'oo, s*+0 0 s as? + bs + c*

= 60’ 227 = ks ) (2.48)

Similarly, the stationary state of the sway response is

lim 8'(t') = 22— &' : (2.49)

£ oo c
Equation (2.48) says that the stationary state reached under a‘constant
deflection of the rudder is a turning motion with a constant rate
proportional to the rudder deflection. Schematically shown in
Figure 2(a) is the above-mentioned stationary state for both a stable
ship and an unstable ship. Of course, the stationary state of an
unstable ship cannot be physically realized, because any quasi-
equilibrium state is not stable.

For the case of a ship in a canal, the stationary state of the

response to a step deflection of the rudder is not a stationary
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turning, but a stationary drifting, because the stationary turning rate

is zero as shown here:

8y 8(ag8 +a,52 + a8 + a,)

lim r'(t") = 1lim sR(s) = lim s.-0 =0 .

t " s+0 s*0 % as* +bs3 + cs2 +ds + e (2.50)

The stationary values of the other variables are

lim B'(t') = so_ZtL

t (2.51)
§p0 S v

Lim y'(t") = lim s R 2 203 _ Ty g5 prceny (2.52)

t'-)°° S+0 S e e t")m

lim n'(t') = 60%

t ' (2.53)

As the above equations indicate, the stationary state is a steady
drifting or steady oblique movement parallel to the centerline of a
canal but on a different straight line whose deviation from the
centerline is determined by equation (2.53). As the stationary turning
rate in shallow or deep water is proportional to the rudder angle, so
the stationary drift angle and the deviation of ship's path from the
centerline of a canal are proportional to the rudder angle.

For a positive rudder angle, namely, a port rudder, the stationary
values of the drift angle, directional angle, and the deviation from

the centerline are

B'(=) = ' (=) =8 Yu >0 (2.54)
n'(e) = 60561 <o, (2.55)

because the coefficients e and Y, are always negative and the coefficient
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Ty is always positive**, Figure 2(b) shows a ship in a canal drifting
with a positive rudder deflection 60. Whether or not the oblique travel
is realizable depends on whether the state is one of stable equilibrium;

if it is a state of unstable equilibrium, then it can not be physically

realized. ¢staﬁonary
(starboard)

canal wall
LLLLLLLLLL L S22 222272 277

canal centerline

IS T 7777777777
canal wall

(a) In shallow or deep water (b) In a canal

Figure 2. Stationary state of ship's response to a constant
deflection of rudder.

Measured
INPUT SHIP ship’s
(rudder angle) or motion

MODEL (v,r,v,P,...) + Error of
e predicted

motion

MATHEMATICAL | Rredicted
MODEL ship’s
________________ mohoq
CHANGE (v,r,v,r...)
STABILITY
DERIVATIVES

L

Figure 3. Principle of the method to determine the stability
derivatives from the free-sailing model test.

**See the numerical examples of the stability derivatives given in
part 3.
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3. EXPERIMENTAL DETERMINATION OF THE STABILITY DERIVATIVES AND THE
MANEUVERABILITY OF SHIPS IN RESTRICTED WATERS

When we want to discuss the maneuverability of a ship in
restricted waters quantitatively, we have to know the numerical values
of the stability derivatives. At the present stage of development of
theoretical hydrodynamics, it appears to be difficult to predict the
stability derivatives accurately by mathematical calculation.
Therefore, if we need reasonably accurate values of the stability
derivatives, we must rely on experimental measurements. However, as is
well known, the experimental determination is not completely reliable,
the most serious obstacle being the so-called scale effect on the
hydrodynamic force or the stability derivatives.

Since the hydrodynamic force, which is important for investigating
the maneuvering motion of a ship, is closely related to the viscid
character of real fluid, the difference in Reynolds number between the
model and the full-sized ship makes impossible the exact correspondance
of the model-scale experimental results to the full-scale phenomena.
This difference could be especially serious in the investigation of the
restricted water effect, because the boundary layer around a model is
relatively thicker than that of its full-scale counterpart. One can
guess that the sh?llow water effect of the model could be exaggerated
by the thicker boundary layer around the model. Unfortunately, we do

not presently have an appropriate method by which the experimental
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results can be corrected so as to correspond to the real ship; they

must be used without correction.

3.1. Experimental Determination of the Stability Derivatives

Among the existing experimental methods to determine the stability
derivatives, the captive model test is presently the most reliable. 1In
principle, it is also possible to determine the stability derivatives
from the free-sailing model test. Some data have been obtained by
using a real model [10] and other work has been done using a computer
simulation of the maneuvering motion [11]. The principle of such
methods is schematically shown in Figure 3.

Since the input rudder deflection to a ship or a model is knownm,
we can determine the difference between the measured ship's motion and
the predicted ship's motion obtained by assuming numerical values of
the stability derivatives in the mathematical model. Then the
stability derivatives are adjusted so as to minimize the error of the
predicted ship's motion.** A major defect of this method is that the
accuracy of the stability derivatives determined by this method is
seriously affected by the accuracy of the measured ship's motion.
According to an example shown in [11], even slight noise involved in

the measured ship motion diminishes the accuracy of the stability

**The detailed description of the method to minimize the error
will be omitted here. See the original papers [10, 11].
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derivatives determined this way. Therefore, as stated before, the-
captive model test is more suitable for determining the stability
derivatives than 1s the free-sailing model test.

There exist two ways of conducting captive model tests. One way
is to measure the stationary hydrodynamic force due to a stationary
motion and the other is to measure the unsteady hydrodynamic force due
to an unsteady motion. The rotating arm test (R.A.T.) belongs to the
former category and the test by the planar motion mechanism (P.M.M.)
belongs to the latter.

It is .in general very difficult to determine such acceleration
derivatives as YG’ Yf’ NG’ and Nf from the R.A.T. and furthermore, the
R.A.T. requires a special kind of water basin. For these reasons, it
is usually better to use the P.M.M.

The method to determine the stability derivatives using the P.M.M,
will be described briefly.

(1) Pure Sway Motion

The longitudinal centerline of a model traveling with
constant speed is kept parallel to the mean advancing direction
of the model (that is, the direction of motion of the towing

carriage), while the center of gravity of the model travels on a

sinusoidal path. Hence, the yaw angular velocity and acceleration

of the model are always zero. This motion can be realized by

giving a sinusoidal oscillation denoted by equation (3.1) to a

model traveling with speed U:
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N~ = n. cos (wt + _T . 3.1
6 = Mg cos (ut + _I) (3.1)

Then the sway velocity of the model is

—Ng¥ sin (ut + /) . (3.2)

Therefore, the drift angle B of the model also varies in a
sinusoidal way, if the sway velocity is small compared with the

speed of advance U:

]y MW
8 = tan 1(—1‘]’-)': -—-g sin (wt + 7/5)
M w
= B cos wt where B = & . (3.3)

U

On the other hand, in order to force the model to move in pure

sway, we need to apply to the model the force and moment as given:

Y(t) = { (m+my)U§b + Yn ﬁb} sin wt - Y_ B cos wt (3.4)

B

N(t) (Né'B'w + Nn ﬁG) sin wt - NB B cos wt . (3.5)

This force and moment can be described in another way:
Y(t) = Y cos (wt - €) (3.6)
N(t) = N cos (wt - €2) , (3.7)
where Y and N are the amplitudes of the force and moment
respectively, and e€; and e, are the phase lags behind the sinusoidal
drift angle. Equating equations (3.4) and (3.5) to equations

(3.6) and (3.7) respectively, we obtain

Y cos g; = —YB B (3.8)
Y sin g, = (m+my) UBw + Yn e (3.9)
N cos e = -NB B (3.10)
N sin e; = Né Bu + Nn ﬁé . (3.11)
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Therefore, we can determine thestability derivatives if we know
the amplitudes Y and ﬁ; and the phase lags €; and €2, because E;
ﬁé, w,and U are known.
(ii) Pure Yawing Motion

The longitudinal centerline of a model is always tangential
to a sinusoidal path of the C.G. of the model. Hence, the
model's drift angle B and its time-derivative 8 are always zero.
This motion can be realized by making the model's transverse
position g and yaw angular velocity r satisfy the relationships

n, = ﬁé cos (wt + m) (3.12)

G
r =T cos wt , (3.13)

where T should be equal to ﬁé w2/U.

The force and moment that should be applied to the model to

achieve pure yaw motion are

Y(t)

Yé rw sin wt - [(-mU + Yr) T - Yn nG] cos wt (3.14)
N(t) = -(I,,+J,,) Tw sin wt - (Nr r - Nn nG) cos wt . (3.15)
Supposing that the force and moment are represented by equations

(3.6) and (3.7)**, the desired stability derivatives can be

determined as follows:

Y cos €] = (mU - Yr) r + Yn e (3.16)
Y sin g; = pad w (3.17)
N cos €3 = -N_r+ Nn e (3.18)
N sin e¢p = -(Izz+Jzz) raw . (3.19)

**The phase angles e; and €2 should be defined as the lag behind
the sinusoidal yaw angular velocity.
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It must be noted that the eight formulas (3.8) to (3.11) and (3.16)
to (3.19) are not sufficient to determine the stability derivatives
definitely, since ten unknowns are involved in those formulas, but
there are some methods available for completing the determination. The
experimental values of the stability derivatives, quoted from reference
[15] in the next section, were determined thus: the derivatives Yn and
Nn denoting the bank effect were obtained from the straight-line towing
of a model on different offset lines parallel to the centerline of a
canal. Then the remaining eight derivatives were determined through the
above eight equations (3.8) to (3.11) and (3.16) to (3.19). The
derivatives describing the rudder effgctiveness, Y6 and NG’ were
obtained from the straight-line towing of a model along the centerline

of a canal, with the rudder angle being varied.

3.2. Available Data on the Stability Derivatives in Restricted Waters

When we judge the course stability of a ship in shallow water or
in deep water, it is sufficient to know the four damping derivatives
YB’ NB’ Yr,and Nr' Alternatively, we can judge whether or not a ship
possesses course stability from the results of spiral and reversed
spiral tests. On the other hand, if we wish to judge the course
stability of a ship in a canal, we have to know other stability
derivatives, namely, the acceleration and bank effect derivatives

besides the four damping derivatives. At present, existing data on the
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stability derivatives in restricted waters are limited. Below is a list
of the data.

(1) Available Data for the Shallow Water Effect on the Stability

Derivatives.

Author Kind of experiment (stability derivative)

Brard [12]  Oblique tow (YB’ NB)

Motora and Oblique tow (YB’ NB)’ straight tow (YG’ Né)
Couch [13]

P.M.M. test (Yr’ Nr)

Nussbaum [14] Oblique tow (YB’ NB)

Fujino [15] P.M.M. (all linear derivatives)
van Berlekom P.M.M. (all linear derivatives)
and Goddard#**
[16]
(ii) Available Data for the Bank Effect on the Stability
Derivatives
Author Kind of experiment (stability derivative)
Brard [12] Oblique tow (YB’ NB)

Schoenherr [17] Straight tow (Yn’ Nn)

Moody [18] Oblique tow (YB, NB)’ straight tow (Yn’ Nn)
Nussbaum [14] Oblique tow (YB’ NB)’ straight tow (Yn, Nn)
Fujino [15] P.M.M. (all linear derivatives)
Eda [19] Oblique tow (YB, NB)

Straight tow (YG’ NG’ Yn, Nn)
Norrbin [20] Straight tow (Yn, Nn)

**The shallow water effects on the stability derivatives are
described by additional terms which are functions of the bottom
clearance.
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As stated previously, all of the linear stability derivatives are
necessary for judging the course stability in a canal, but publications
other than reference [15] do not give the numerical values for the
acceleration derivatives.

In the following sections, we shall discuss the course stability of
a ship in restricted waters and then try to remove the instability in
canals by adopting some kinds of simple autopilots. In order to help
the reader understand the following discussion clearly, the experimental
data of the stability derivatives already published in reference [15]
will be again printed in this text.

The principal dimensions of the models used in the experiment are
tabulated in Table 1. The experiments were executed in shallow water
and in canals whose transverse sections were trapezoidal with both
banks taking an angle of 45°., The experimental results of the
stability derivatives are shown in Tables 2 and 3. From these tables,
it is obvious that the main stability derivatives, namely, the added
mass my, the added mass moment of inertia Jzz’ and the damping
coefficients YB’ NB’ Y., and N, are strongly dependent on the depth
and width of the waterway; most importantly, decrease of the water
depth brings a remarkable increase in the magnitude of the.main

stability derivatives.
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Table 1. Principal dimensions of the models used at P.M.M. tests [15].

L.C.B. from midship
Rudder area, mm2
Propeller diameter, mm
Pitch, mm

Expanded area ratio
Boss ratio

Rake angle

Blade thickness ratio
Number of blades
Direction of rotation

Scale

39.4mm behind
104.2
108.1

0.565

0.189

7°46"

0.0451

4

right
1/64.37

Mariner type ship |o0il-tanker
Length between perpendiculars, mm 2500.0 2000.0
|Breadth, mm 359.8 327.6
Draft fore, mm 106.5 110.3
aft, mm 125.5 110.3
mean, mm 116.0 110.3
Displacement, Kg 61.44 58.44
Block coefficient, Cb 0.589 0.805
Radius of gyration, k L =0.254 k=0.282

50.8mm front
3390.9
53.8
39.8
0.619
0.182
7°01'
0.0572
5
right
1/145.0
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Table 3.

(a) Linear stability derivatives of a Mariner type ship in canals:
F _=0.0905 (7 knots, full-scale ship) (all

vAlues must be multiplied by 1073)

stability derivative

H/T 1.3 1.5 1.9
Ww/B 5.56 4.17 2.78 5.56 | 4.17 2.78 | 5.56 4.17 2.78
m'+mj 26.3 30.9 i 35.7 23.8 25.0 25.8 19.8 20.2 21.2
Yd 57.0 73.7 96.7 30.1 35.6 41.6 20.3 21.8 23,2
Né. -0.469( -0.555| -0.699 0.134|-0.012 0.015} 0.041 |-0.023 0.124
Ns' 12.5 14.2 - 18.4 8.50 9.86 12.08 5.88 6.67 7.23
bt +Yr' 2.17 4.37 7.78 -1.42 {-0.362 2.21 |-3.60 -3.54 -2.57
Yf' -2.17 -2.62 -3.41 -1.34 (-1.17 ~1.47 (-0.676 | -0.722| ~0.826
Nr' -4.93 -5.47 -7.27 -3.62 [-3,75 -4.43 [-2.74 -2.90 -3.07
Iz;+Jz; 1.25 1.41 1.82 1.24 1.28 1.42 1.11 1.16 1.21
YG' 4.45 4.63 4.78 3.68 3.92 4.37 3.60 3.67 3.59
6' -1.94 ~-1.93 -2.36 -1.78 |-1.89 -2.06 |-1.52 -1.66 -1.76
Yn' 6.99 | 13.4 33.5 4.23 | 9.20 [27.4 2.35 5.35 | 13.31
Nn' -1.14 -3.24 |-12.5 -0.689|-1.77 -5.01 |-0.305 |-0.846| -2.43
Table 3. (b) Linear stability derivatives of an oil-tanker in canals:

Fp =

0.0675 (7 knots, full-scale ship) (all stability derivative
values must be multiplied by 1073)

H/T 1.2 1.5 1.9
W/B 6.11 4.58 3.05 6.11 4.58 3.05 6.11 4.58 3.05
m“Hmy' 61.1 6l1.9 i 69.3 41.0 [41.6 42.6 34.1 35.5 35.7
Yg 78.4 94.7 142.6 42.2 46.6 49.6 29.2 29.6 29.5
Né’ -1.24 | -0.924 | -2.07 0.435| 0.059 0.571{ 0.172 0.061 0.123
NB' 29.8 33.8 48.4 17.3 18.7 20.4 11.8 12,6 12.9
Fm' 4y 1.94 7.66 17.83 -5.68 |-4.68 1.08 1-8.82 -7.48 -6.42
Yy -2.69 | -3.16 ~5.84 -0.767|-0.948 (-1.53 |-1.08 -0.930 | -1.07
N, -6.93 -7.11 |-10.12 -4.35 |-4.65 -5.78 |-4.04 -4.12 -4.71
i ;+Jz£ 3.16 3.43 4.93 2,32 | 2.35 2.92 2.10 2.16 | 2.33
Y'! 7.58 l6.6 52.6 2.97 9.78 38.6 2.42 6.14 16.0
Nn' -1.32 -2.83 |-10.4 -0.467 |-1.43 -4.12 (-0.440 |~-1.02 -2.86
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3.3. Course Stability of Shipse in Restricted Waters

Using the experimental values shown in Tables 2 and 3, we shall
examine the course stability of ships in shallow water and then in canals.
(1) Course Stability in Shallow Water
The course stability éf a ship traveling in shallow water can
be judged by the sign of the difference between two ratios,
N; /(-m'+Y; ) and Né /Yé , as stated in section 2.2. Those two
ratios, obtained from the numerical values of Tables 2 and 3, are
shown in Figures 4 and 5. These figures show that the ratio
N; /(—m'+Y; ) increases monotonically with decrease in water depth,
tending toward infinity at a critical water depth. In water
shallower than this critical depth, the ratio N; /(-m'+Y; ) charnges
its sign from positive to negative, and the absolute value of.this
ratio decreases as the water depth decreases (see Figure 4(a)).**
The ratio Ng /Yg behaves differently: As the water depth
decreases from infinity, the ratio Né /Yé increases until the
water depth becomes less than a certain depth, where the ratio
begins to decrease. In other words, the ratio Né /Yé' has a
convex form, if it is plotted against the water depth as shown in
Figures 4 and 5. This convex character of the N' /Y ' curve

B B
affects the course stability significantly.

**The same description can be found on page 233 of Brard's
paper [12].
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Although the oil-tanker is stable on its course in infinitely
deep water, it becomes unstable in a certain range of water depth,
which is, in terms of the ratio H/T, from about 1.5 to about 2.6.
When the water depth becomes even shallower than this, the course
stability is not only recovered but becomes more stable than in
deep water.

In the case of a Mariner-type ship, the convex character of
the NB'/YB' curve still exists, but it doesn't bring instability,
because the course stability in deep water is so strong that the
NB'/YB' value cannot exceed the Nr'/(-m'+Y; ) value even at the
water depth where the NB'/YB' value has its own maximum value.
However, the stability indices T,' and T, , which are calculated
from equation (2.46) but not shown here, tell us that in almost
fhe same range of water depth as the instability range in the case
of the oil-tanker, the Mariner-type ship also becomes temporarily
less stable as the water depth decreases (see reference [15].

The Mariner-type ship is very stable on its course in
extremely shallow water. This means that the final turning rate
of a ship obtained by keeping the rudder angle at a fixed angle is
significantly smaller in extremely shallow water than in deep
water, but the response of a ship to the deflection of the rudder

is faster in extremely shallow water than in deep water.**

**It has been said that the ship becomes more sluggish in very
shallow water. But, in the author's opinion, this description is not
correct.
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In order to investigate the ship's speed effect on the
instability range of the water depth found in the case of the
oil-tanker, additional experiments were performed in the speed
range of 3 kts to 11 kts, full scale [21]. As a result, it was
confirmed that the instability range of the water depth was almost
constant despite speed variationm.

(i1) Course Stability in Canals

As stated in Section 2.2, the course stability of a ship
traveling in a canal can be decided by the signs of the coefficient
d and the expression bcd-ad?-b2e; both d and becd-ad2-b2e should
be negative for stability. After manipulation of the stability
derivatives shown in Table 3, it was established that the second
inequality, bcd-ad2-b%e<0, was not satisfied in every case, that
is, in every combination of water depth and canal width;
furthermore, the first inequality d<0 was not satisfied in some
cases [15]. Consequently, both the Mariner-type ship and the
oil-tanker proved to be unstable on their courses in canals.

With respect to the instability of ships in canals, one
explanation proposed is that because of the hydrodynamic nature,

that is, Yn>0, Nn<0 and N _>0**, no ship can possess fixed-controls

v
positional stability on the centerline of a canal and, therefore,
any ship operating on the canal centerline is in a position of

unstable equilibrium. But this description is not precise because,

**In this monograph, the hydrodynamic force due to directional
angle |y 1s not taken into consideration.
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even if the signs of the derivatives Yn and Nn were reversed, it
is still possible that the inequality d<0 might not be satisfied,
as has been seen. The ship is still unstable on the centerline
of a canal in cases where the coefficient d is positive.

It is consequently incorrect to say that the instability of
ships in canals is due to the aforesaid sign-nature of the
stability derivatives Yn and Nn. Speaking more accurately, the
instability in canals is really due to the increased complexity
of the conditions to be satisfied for course stability. As
explained in section 2.2., the characteristic equation in a canal
that the eigenvalue must satisfy is the fourth-order algebraic
equation (2.23), while that in deep water is of second-order.
From the physical point of view, this complication is a
consequence of the dependence of the hydrodynamic force on the

ship's position, which doesn't occur in unrestricted water.

3.4. Improvement of Course Stability by Means of Autopilots

Although ships are unstable in canals, most of them can travel
through a canal without risk, because the helmsman can correct the
deviation of his ship from the desired course by adequately steering
the control surface. As is known well, the instability of the

open-loop characteristic of a system can be removed or reduced by
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adding an appropriate feed-back loop to the system. This is one of the
main reasons why automatic control with a negative feed-back loop is
widely used; an example is the autopilot of a ship. The system
consisting of the ship's dynamics plus a negative feed-back loop can be
stable even if the open-loop ship's dynamics are unstable. The simplest
physical realization of a negative feed-back loop is the manual steering
executed by a helmsman on the bridge.

In this section, we shall try to correct the instability of a ship
traveling on the centerline of a canal by adopting some kinds of simple
autopilots. In the following discussion, we consider five controlled
variables: directional angle or yaw angle y', yaw angular velocity r',
yaw angular acceleration r', offset distance from the centerline n 'y
and the rate of change of offset distance ﬁd . Furthermore, we shall
restrict our consideration to proportional control, in which the gain
constants are denoted by the coefficients ki for the five controlled
variables.

The rudder angle of the autopilot is expressed as follows:

LI ' ' -t ' St
) klw + k2r + k3r + kunG + ksnG . (3.20)

Substituting this into equations (2.15) and (2.16), in which the terms
including the rudder rate é' are omitted, we obtain the characteristic
equation equivalent to equation (2.23) for the open loop:

a'o* +b'c3 + c'o2 +d'o+e' =0 s (3.21)
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where
- \
a a + k3a3
| .
b' = b + k2b2 + k3b3 + k5b5
T
c' =c+ke + k,c, + k3c3 + quc'+ + ksc5 >(3.22)

d' = d + kd) +k,d, + k,d, + ked,

. |
e e + kle1 + kueu .
The coefficients a,b,c,d, and e of equation (3.22) are exactly the same

as those defined by equation (2.24), and the subscripted coefficients

ags bz, sece5 € are defined as follows:
33 = by =y =-fm, - Eng = -y )
b, = c, = Eyny + Egny = -,
b3 =c, = d1 = d5 =e, = Eznu--gun3 = -a, >~(3.23)
cg =d, = -gn, + &;ny - Eyng —E,ng = -T,
€3 = dz = e = Eny - £y = —ag = -y, . /

The necessary and sufficient conditions for the stability of a ship plus

the autopilot defined by the equation (3.20) are as follows:

' ' ' torgy _ oara12_ 102,
—:—lr>o,—g.->o,—§.->o, becd a?,d b L0. (3.20)

Therefore, if it is possible to choose the gain constants ki to satisfy
the four conditions simultaneously, we can remove the instability of a
ship traveling in a canal.

Five kinds of autopilot will be examined separately, in order to
clarify the characteristics of each autopilot and to consider the

possibility of removing the instability by its use. The following
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examination will be referred exclusively to the Mariner-type ship,
because the rudder derivatives of the oil-tanker in canals are lacking.
(i) Directional Control
An autopilot using directional control means that the ship's
rudder is automatically deflected to extinguish the deviation of
ship's directional angle or heading angle from the desired course,
which is the centerline of a canal in the following discussion.
In this case, the gain constants ki except for k; are zero.
Accordingly,

(3.25)

' - ' - LI 1 = ' -
a a, b b, ¢ c + klcl’ d d + kldl’ e e + kle1

Then the stability conditions, i.e., the inequalities (3.24),
diminish to three inequalities, since the first condition of

(3.24) is always

]
d d + kldl <0

L -
e’ =e+ke <0 (3.26)

b'c'd'—a'd'2-b'ze'=(bcldl-adl2)k12+(bcd1+bc1d- 2add -bZe, )k

1
+bed - ad?- b2e < 0 . J
Using the stability derivatives, tabulated in Table 3, we solved
these three inequalities, and the results are shown in Table 4.
From this table, one can conclude that it is always possible to
remove the instability of a ship traveling in a canal by adopting
directional control with a reasonable gain constant.
It must, however, be noted that the value of the gain constant

k1 for removal of the instability is bounded not only from below
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Table 4. The permissible range of gain constant k; necessary to remove the
inherent instability of a Mariner type ship in canals: F,=0.0905
H/T=1.30
condition to be _
satisfied W/B=5.56 W/B=4.17 W/B=2.78
a'<o 0.031 < k; -0.161 < k3 -0.869 < k;
e'<0 k1<18.0 k1<39.4 k1<93.4

b'c'd'-a'd'gb'ze'<0

k1<-19.2, 0 532<k;

k1<-27.2, 0.893<k;

k1<-34.0, 1.94<k;

permissible range

b'c'd'-a'd' 2b" Ze' <0

k1<-5.41, 0.667<k]

of k; 0.532<k1<18.0 0.893 <kj1< 39.4 1.94 <k; <93.4
H/T=1.50
condition to be
satisfied W/B=5.56 W/B=4.17 W/B=2.78
4'<o ~0.008< k; ~0.085< k; -0.138< k3
e'<0 k1<11.4 k1<14.7 k1<15.6

ky<-7.34, 1.12<k;

k1<-12.2, 2.32<k;

permissible range

b'c'd’-a'd" 2b'2e"<0

k1<-3.32, 0.610<k;

of k; 0.667<k; <11.4 1.12<ky<14.7 2.32<k)<15.6
H/T=1.90
condition to be i
satisfied W/B=5.56 W/B=4,17 W/B=2.78
da'<o 0.024<k, 0.024<k; -0.089 <k
e'<0 k1<8.09 k1<9.40 k1<10.4

k1<-3.81, 1.21<k;

k1<-5.09, 2.08<k;

permissible range
of k)

0.610<k;<8.09

1.21 <kj< 9.40

2.08 <k; < 10.4
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but also from above. This situation is somewhat different from
that which we encounter when removing the instability in the open
sea, because, apart from an upper limit which may technically
exist, an upper limit on the gain constant k1 of the directional
control used to stabilize an unstable ship in open water does not
mathmatically exist. The characteristic equation for the open-
water case is of second-order, as the denominator of equation
(2.42) or (2.43) indicates. When directional control is adopted
to remove the instability in the open sea, the characteristic
equation which the eigenvalue should satisfy changes into a third
order equation:

ao® + bo? + (c* + kje)o + k,d, = 0 . (3.27)

Consequently, the necessary and sufficient conditions for course

stability are

E 5 0 c* + k,e > 0 kldl > 0 (bcl-adl)k1+bc* > 0
a0 * a ’ a? "(3.28)

Taking account of the fact that both ¢, and d1 are negative while
bcl—ad1 is positive, it is easily understood that any inequality
of (3.28) gives the lower limit of the gain constant kl; thus k1

should satisfy

c* =be* | ~bc*
k) > max (0, - Ty’ bej-ad, ) = bc,-ad; ’ (3.29)

or, in other words, the upper bound of the gain constant k1 to
remove the instability of a ship in deep water is infinite. It

can be seen from Table 4 that the range of the gain constant k1
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necessary to remove the instability in canals is wider in a
narrower canal rather than in a broader canal, but the lower bound
of the gain is greater in a narrower canal than in a broader canal.
Similar, but slightly different results have been obtained by
Eda, with respect to the desired value of the gain constant k1
necessary to remove the instability [19]. From the eigenvalue
analysis of the characteristic equation, he too has indicated that
the gain of the directional control has not only a lower limit but
also an upper limit (See Figure 6). According to his analysis,
however, the permissible range of the gain k1 get narrower as the
canal width decreases. It must be kept in mind that the
characteristic equation derived in reference [19] is higher by one
order than equation (3.21), because Eda took into account a non-
zero time constant of the rudder response to the ordered helm
angle, while the time constant was assumed to be zero when we
derived equation (3.21).
(1ii) Yaw Rate Control and Yaw Acceleration Control

Equating the gain constants k, except for k2 and k3 to zero,

i
and repeating the same procedure as that used to obtain the
permissible range of the gain kl’ we can determine the k2 and k3
values necessary to remove the instability of a ship traveling in
a canal by adopting the yaw rate control and yaw acceleration

control respectively. As a result of such an analysis, it was

concluded that it was impossible to remove the instability in

=47~



0.4

4
5 D
< 02 <
> 2
pd p
Ll )
O \ /

\
L o \\ 5 10 13’— - 20
- \ YAW GAIN CONSTAN]'_/:/,’
S \ \ — ”,/’
= ! -
= |
is ' \\ li-l]
P-0.21- \ \\. . _ 2
5 \ % w/B=6.11 =
}_ e W/B=4.58
% ! ; w/B=3.05
a-04 \ //
- \\\ //
h /
o \\ //
.’
-0.6
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of a tanker traveling on the centerlinﬁ of canals through the
use of directional control; F,=0.054, "/T=1.20 [19].
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canals except through the use of yaw acceleration control in a
few cases [22].
(ii1) Offset Distance Control

"Offset distance control" means that the rudder is
automatically steered to cancel the deviation of a ship's position
from the centerline of a canal. After examination of the
effectiQeness of the offset distance control, it was obvious that
this kind of autopilot could not remove the instability in a canal
[22]. 1In fact, the feed-back of offset distance tend; to degrade
the stability of a ship. For example, Eda's eigenvalue analysis
indicates that the real part of the "critical" eigenvalue is still
positive despite adoption of offset distance control, and, further-
more, it indicates that a high value of the gain ku results in a
larger positive real part of the critical eigenvalue, that is,
higher instability compared with the inherent instability. At
first sight, this conclusion seems contrary to intuition. It has,
neverthéless, been verified by computer prediction of the ship's
trajectory in a canal [23].. In Figure 7 are shown the ship's
trajectories computed for an initial offset: the solid line is
obtained by including the feed-back of the ship's lateral deviation
and the dotted line is obtained by eliminating the feed-back of the
ship's position. This illustration indicates that the feed-back
of the ship's lateral deviation from the desired path decreases the

effectiveness of the autopilot.
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(iv) oOffset Rate Control

In this case, the necessary and sufficient conditions for
stability are as follows:
b + ksb5 <0
d+kgd, <0 (3.30)

3 - 4d2 - h2aY 1.2
bscsdsk5 + (bcsd5 + bscd5 + bscsd ad5 bse) k5

- - - 2_12
+ (bcd5 + bcsd + bscd 2add5 2bb5e)ks + bed - ad<-b4e<0.

The permissible range of the gain constant Ksnecessary to remove
the inherent instability in canals is shown in Table 5. Equation
(2.18) or (2.19) tells us that the feed-back of the offset rate,
ﬁG' is partially equivalent to the feed-back of the directional
angle, but not completely because the negative feed-back of the
offset rate simultaneously brings the positive feed-back of the
drift angle B', which increases the inherent instability.
Therefore, as shown in Table 5, it is not always possible to
remove the inherent instability by means of the offset rate

control.

Summarizing the above discussion, it can be said that the inherent

instability of a ship traveling in a canal can be removed easily by

adopting a simple autopilot, namely, the directional control. The gain

constant k1 necessary to remove the instability is bounded not only from

the lower side but also from the upper side; therefore, an excessively

large value of the gain k1 doesn't improve the inherent instability.

Now we shall examine the directional control in more detail. 1In
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order to clarify its characteristics, let us consider a ship's motion
subsequent to some initial values given to the variables describing the
motion. Assume initial values of directional angle and lateral position,
denoted by wo and n, respectively. We are interested in the final state
of the ship's motion brought about by the prescribed deviations.

If we assume that the initial values of n'(t') and v'(t') are U
and y, respectively, but that those of the other variables B'(t) and
r'(t') are zero, then the Laplace transforms of equations (2.19) and
(2.21), namely equations (2.32) and (2.33), should be replaced by

equations (3.31) and (3.32) respectively:

sH(s) - Ny ¥(s) - B(s) (3.31)

sY(s) - Yo R(s) . (3.32)
Furthermore, the relationship of the rudder angle versus the deviation
of directional angle, which describes the characteristic of the
directional control, is expressed as follows:

D(s) = k,¥(s) . (3.33)

From equations (2.30), (2.31), (3.31), (3.32) and (3.3?), we obtain
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Volas® + bs? + s - £, +tEan,) + ngl(Eyn, + E.n) s - e

¥(s) = (3.34)

as* + (b - klao)s3 + (c - k1a1)82 + (d - klaz)s +e - klaa

3 2 , -
bolkyvys®™ + kjy 8% + (Eon) + Egn, + Kiv,)s + Esny - E,n,]

B(s) =
4 - 3 - 2
ast + (b klao)s + (c klal )s¢ + (4 - klaz)s +e -~ k103
2 - - -
as* + (b - klao)s3 + (c - klal)s2 + (d - kluz)s + e - k1a3 .

However, if we assume that both derivatives Yé' and Né’ are zero, then

Gys Yoo and Y, become zero. From the final-value theorem, it is obvious

that
o = M) =0 (3.36)
ifﬂb B' (') = ;i‘g sB(s) = 0 . (3.37)

These final values of y'(t') and B'(t') are in stable equilibrium; in
other words, they are realizable if we choose k, from the permissible
range stated earlier. In addition, the final value of the ship's
lateral deviation n'(t') also becomes zero:

lim n'(t') = 1im sH(s)

t'oe s»>0 (3.38)
lim (¥(s) - B(s) + no') =0 .

s+0

**The author has found that this equation as written in reference
[22] is incorrect. The coefficient of n082 in the numerator should be
- eln? ] 1
£5n7 + £7n1 = le% + Yn (Izz + Jzz), while in [22], it is written

-£5n7 + £7n1. Consequently, Figure 55 in [22] should also be corrected.
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This conclusion is attractive because direétional control can
eliminate not only the deviation of the directional angle but also the
lateral deviation of a ship traveling in a canal. This fact is also
shown in Figure 7. That is, the autopilot without feed-back of the
lateral deviation, i.e., 6=10y + 135&, can eliminate the initial offset

of a ship.

3.5. Turning Ability of Ships in Shallow Water

As stated in the introduction, the course stability and the
turning ability of a ship are two characteristics which are
contradictory to one another. The description of the course stability
with respect to the water-depth dependence also holds true for the
turning ability, if the conclusions are reversed. That is, whenever
the course stability becomes better, the turning ability becomes worse,
and vice versa. For example, we can say that the turning ability in
extremely shallow water is worse than in deep water. Accordingly, we
shall mention some experimental results with respect to the shallow
water effect on the turning ability of a ship, and infer the shallow
water effect on the course stability from them.

As to full—sqale experiments, there exist only a few spiral
maneuvers [13], because it is very difficult to find a part of the sea

of sufficiently uniform depth. In Figure 8 are shown the results of
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the spiral test of a Great Lakes ore-carrier. This figure says that the
turning ability in shallow water is worse than that in deep water.**
Other experimental results obtained with free-sailing models also
indicate the same effect: The turning ability gets steadily worse as
the water depth decreases [24]. In the same reference, the ship's speed
effect on the turning ability in shallow water was examined in detail
and is quoted here in Figure 9. From this figure, it is obvious that
the speed effect is weak: The dimensionless turning rate, which is
defined as the ratio of turning radius to ship's length, decreases
slightly as the ship's speed increases.

On the other hand, there exists another experimental result which
says that the turning ability does not always get monotonically worse
with decreasing water depth [25]. As a result of spiral tests executed
with some self-propelled models of large-sized oil-~tankers, it was
established that the stationary turning rate was larger at a certain
range of water depth than in deep water. Roughly speaking, the water
depth that brought about better turﬁing ability is close to the water
depth that reduced the course stability as described in a previous

section.

**It must be noted that the ship's draft is not exactly same in
both cases. In deep water, the ship's fore and aft drafts were 23 feet
and 23 feet 6 inches respectively, while they were 21 feet and 23 feet
respectively in shallow water. In particular, the larger trim by stern
in shallow water may exaggerate poor turning ability.
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4. COMPARISON BETWEEN THE EXPERIMENTAL AND THEORETICAL VALUES OF THE
STABILITY DERIVATIVES

In the previous chapter, the maneuverability of ships in restricted
waters, particularly the course stability of ships in shallow water and
in canals, was discussed only in terms of the experimental stability
derivative values. However, extensive labor and time are needed to
obtain all the stability derivatives from experiments, because the
variable parameters in the experiments in restricted water are much more
numerous than those in deep water. Besides the variable paramenters in
deep water, we have to consider the variation of the water depth, canal
width, lateral position of a ship in a canal,and so on. Therefore, it
is desirable to estimate adequately the stability derivatives on the
basis of the theoretical background rather than experimental work. In
this chapter, some published theoretical works will be quoted and

compared with the experimental results.

4.1. Sway Added Mass and Yaw Added Mass Moment of Inertia

The sway added mass (or the yaw added mass moment of inertia) is
defined as the in-phase component of the hydrodynamic force (or moment)
acting on a moving ship, with respect to the linear (or angular)
acceleration of the ship. If the ship's speed and the frequency of
motion are sufficiently small, the free surface can be replaced by a

rigid wall. In this case, the sway hydrodynamic force Y and the yaw

-59-



moment N acting on a moving body that has three velocity components

(u, v, r) are described in terms of the added mass tensor as follows:

Y = -ﬁmlz - szz - fmzs - rum11 - rvm12 - r2m16 4.1)
N = -um, - ;mzs - tmgg = (u?-v2) My = UV (myy, - myd-rum, +rvm o,
4.2)
where
mij = - pJJ¢§ gﬁ%.ds (n: unit normal inwards the fluid) (4.3)
SB

and ¢i (i=1,2,6) stands for the velocity potential due to each of the
elementary motions, and the subscript i = 1,2, and 6 means surge, sway,
and yaw motion respectively [26]. Assuming that the body (ship) has a

symmetrical center plane (xz plane), the equations (4.1) and (4.2)

reduce to
Y = -vm,, - rm26 - rum11 (4.4)
N = -vm, . - rm66 - uv(m22 - mll) - rum26 . (4.5)

Furthermore, if the ship is sufficiently slender, the longitudinal
added mass or the surge added mass m,, 1s very small compared with other
kinds of added mass.

Comparing each term of equations (4.4) and (4.5) with the

equivalent term of equations (2.9) and (2.10), we obtain

m22 = - Y; = my
Mg = = Yp = - NJ (4.6)
Wgg = - Nz =2 J,, ,
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and the instability yaw moment (or Munk moment) -uv(mzz—mll) and the
term ~rum, . correspond to the terms va and Nrr in equation (2.10). 1t
should be noted that since the hydrodynamic force and moment in
equations (4.4) and (4.5) have been obtained by neglecting the lifting-
surface effect and the existance of the vortex sheet shed from the
trailing edge of the body (ship), the hydrodynamic coefficients of
equations (4.4) and (4.5) do not exactly correspond to the equivalent
stability derivatives of equations (2.9) and (2.10). In particular,
the damping force due to sway velocity, i.e., Yv vV in the equation (2.9),
can not be deduced from potential theory. Furthermore, the second
relationship of equation (4.6), i.e., Y} = NG’ is not always satisfied
by the experimental results [27].

Assuming that the ship is sufficiently slender, we can calculate

m,,s mzs, m66 from the strip theory synthesis as follows:
- Y 1
_ *
- Yr = - N& = J my(x) X dx , 4.7)
- N- L x?
r

where m;(x) is the sway added mass of a two-dimensional cylinder
possessing the same transverse sectional form as that of the ship at
section x. Consequently, using the slender-body assumption, it is
essential for the theoretical estimation of the sway added mass and the
yaw added mass moment of inertia of a three-dimensional body to obtain

the sway added mass of two-dimensional bodies.
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The sway added mass m,, defined

m = - 0. 22 45 4.3"
22 P 2 5o .
SB
is the kinetic energy of the fluid due to the motion caused by the
transverse translation of the body. Using a form of Gauss's theorem,
we get
- 2
m,, =P JJJ (grad ¢2) dv s (4.8)
\

where the volume integral is taken throughout the whole fluid region

surrounding the body.

4.1.1. Sway Added Mass of Two-Dimensional Bodies in Canals

In this section, the sway added mass of a two-dimensional body
moving transversely in a canal will be obtained by calculating'the
kinetic energy of the fluid layer with unit thickness that is completely
enclosed by the body surface, the canal walls, and the free surface
(see Figure 10). The following numerical calculation will be restricted
to the simple case where both the body and the canal have rectangular
cross-sections. The method can be extended to include other geometrical
forms of the body and the canal.

Assuming an ideal incompressible fluid, the fluid motion can be

described by a velocity potential function which satisfies the Laplace
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equation in the fluid domain:

2 2
g;g. + %;g- =0 in the fluid domain S , (4.9)

and furthermore satisfies the given boundary conditions:

%%- = g(s) on a boundary r : (4.10)
¢ = f£f(s) on the remaining boundary T, » (4.11)

where g(s) and f(s) are the known functions of distance s measured along
the boundary and from a prescribed point on the boundary.

One of the orthodox solutions is to express the velocity potential
function in terms of singularities distributed on the contour of the
body, and then to integrate ¢3¢/dn along the whole body-contour in
order to get the added mass.

On the other hand, it is possible to evaluate the kinetic energy
of the fluid without determining the velocity potential function
itself. According to this method, which is called the hypercircle
method, we can determine the upper and lower bounds of the added mass
{28, 29]. This is the great advantage of the method, since most of the
numerical methods give only an approximate value and cannot provide
information regarding the accuracy of the obtained value, that is,
how close the given approximate value is to the exact value.

Determining the velocity potential function ¢ that satisfies the
boundary conditions (4.10) and (4.11) is exactly equivalent to

obtaining a common vector of the two vector spaces that are defined as
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follows [30]:%*

(D

(1D

Complementary vector space w(p,, pz): This is a vector
space in which any vector has two components P, and P, defined

by the equations

ap, + 3p2 '

By 3z =0 in the fluid domain (4.12)
3y 3z _ \

Py 30 t Poyn g(s) on the boundary r, . (4.13)

Associated vector space Q(ql, qz): This is a vector space in
which any vector has two components 9 and q, defined as the
first partial derivatives of any function ¢ that satisfies

the boundary condition ¢ = £(s) on F2 5 that is,

S U TN 2 = 75 (4.14)
where ¢ = f(s) on the boundary T2 .

From the definition of these two spaces, it is evident that the

common vector R = (r;, r,) of these two spaces, if obtained, is the

exact solution of the boundary value problem at hand. This exact

solution is, however, not easy to obtain, and so we shall be content

with an approximate solution as follows: First, we introduce two

homogeneous vector spaces of 7 and Q spaces, by replacing the

nonhomogeneous boundary conditions on Tl and T2 with the homogeneous

conditions.

**The reader who want to study the hypercircle method in more
detail should refer to this book.
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(III) Homogeneous complementary vector space m(p *, p *):
This is a subspace of the space m, in which any vector

has two components defined as follows:

ap¥ p%

- + — = 0 1in the fluid domain S (4.15)
ay oz
x . —az % AZ_ =

P s + PY o0 0 on the boundary rl . (4.16)

Hereafter, we shall denote a vector of this space as Ii’
a vector with a variable subscript i, i.e., Ii = pif, piz).
(IV) Homogeneous associated vector space Q*(ql*, qZ*):
Two components ql* and q2* of any vector in this space,

which will be denoted as Jk with the subscript k being

varied, are defined as

Jo* do*
=k q, - 2K
oy s 3z s (4.17)

where ¢§ is zero on the boundary rz.
Then we shall define a p-vector of the m—-space as the linear

combination of p-vector and Ii-vectors:

P = 3 + ai N Ii . (4.18)
i=1

Similarly, a q-vector of the Q-space is defined as the linear

combination of q-vector and Jk-vectors:

o =

b, J , (4.19)

1=qa+ 'y

ki
where P and @ are arbitrary vectors of wy-and {i~space respectively, and

the real coefficients a; and bk are unknown at this stage.

—-65-



We now introduce the scalar product (U, V) of two arbitrary vectors

U and V:
U= (ul, u2) V = (vl, v2)
then
u,v) = JJ (ulv1 + u2v2)dS , (4.20)
S

where the surface integral is taken over the whole fluid domain S.
This kind of scalar product is called the Dirichlet scalar product. The
reason it was chosen from among other possible definitions of the scalar
product will be discussed shortly.

Here it is important to note that the two subspaces 7 and Q are
orthogonal to one another in terms of the Dirichlet scalar product. The
scalar product of arbitrary vectors lying in the linear subspaces 7 and

2, that is, the scalar product of arbitrary vectors I, and J, of the

i k
homogeneous m* and Q* spaces respectively, is
8¢k* a¢k*
= * q % * q. % = * '
(Ty53y) II (Pt + Pfh%5)4s JJ P oy trd 098 (4a2la)
S S

Assuming that both p{ﬁ ¢k* and p{% ¢k* are continuously differentiable
at all points of the fluid domain S, we can transform the surface
integral into the line integral along the whole boundary of the fluid

domain plus another kind of surface integral as follows:

Ip .k Ap.k
i1 s} 2 3z
= - —2) ¢ % - x ¥ * 22 yo kds =
(T53p) JJ('ay ) HE 98 J(pil on T Pi% on M%7 ds = 0
§ I+,

(4.21b)
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where n is the unit inner normal to the boundary. According to the
definition of the homogeneous spaces m* and Q*, it is obvious that both
integrals appearing in the scalar product (U, V) vanish identically. 1In
other words, every vector lying in m-space is always orthogonal to every
vector lying in Q-space in terms of a zero scalar product. Consequently,

the two linear subspaces T and Q are orthogonal to one another.**

**From the definitions of the m- and {i-spaces, it will be demon-
strated that if any two points or vectors P, = (p 1* Py ) and P_ =
(p 10 P 2) are given in m-space, the straigﬁt line joining these two
po?nts les entirely in w-space. This means that T-space is a linear
subspace.

Any point on the straight line joining two points P, and P_ is
described by aPA + BPB = (apAl + Bpgz, Otp@ﬁ + Bp 2), whefe real

numbers o and B are arbitrary except” for e restriction o + B = 1.
Then
9(apy, ¥ Bpgy) L 2(ory, *opgy) a(apAl . a",4\2) . B(apm z asz) -0
oy 9z oy 9z oy dz
3y +

3z _ dy 92 oy
(@pyy + BPpy) 3o * (@Py, + BPp,) 5 = 30y, o2 + By, 52) + B(pg, 33 +

3z
Pp, 7)) = (@ + B) g(s) = g(s) .
Therefore, the vector aP, + BP_ is a vector of w-space. Furthermore, if

Q, = (qu, q,,) and Q = (qu, qu) are two arbitrary points (vectors)
in Q-space, or

= O00A = =
q 1 1?.. , q!2 %ﬁé where %, f(s) on PZ
= 9¢B = 99B =
q 1 7?. , q ) = where ¢£ f(s) on P2 s
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Based on the fact that two orthogonal linear subspaces cannot
intersect in more than one point [30], we can obtain important
inequalities. Let R" and RQ be arbitrary points or arbitrary vectors in
m- and Q-space respectively. Then,

(R, - RQ)Z = (R_- R)2 + (R - RQ)Z R (4.22)

since the scalar product (RW-R, R—Rn) is zero because of the

orthogonality of the m and Q spaces. Therefore we obtain the following

inequalities:
- 2 - r)2
®, - R)2 2 (R - R) (4.23)
(RTr - RQ) ; (RQ - R) . (4.24)

What these inequalities say is [30]

(a) For RQ arbitrary in Q-space and R,'T fixed in m-space, the
squared distance (R"—RQ)2 is minimized by RQ=R.

(b) For R“ arbitrary in w-space and RQ fixed in Q-space, (Rﬂ-RQ)2
is minimized by RW=R.
(c) For Rn and RQ arbitrary in m- and {i-space respectively,

- 2 =R =
(Rﬂ RQ) is minimized by R1r RQ R.

**(continued) then any point on the straight line joining QA and QB’
i.e., aQA + BQB = (an1 + Bqu,anz + Bqu) satisfies

=g 9 3¢p . 8(ady + Bop) -
aq,, + Bqg, a%yA +B—3—§‘; Aay B~ where ap, + B, =

(o + B)E(s) = £(s) on r,

¢ 3¢p _ 9(ad, + B¢.)
a_gg +B-—a%' A B

+
%2 Bqu iz where a¢A + B¢B = f(s) on T,

Therefore, the vector aQ, + BQ, also is a vector of fi-space.
Consequently, both spaces, m and 2, are linear subspaces.
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From these minimum principles, it is clear that if we want to get close
to the exact solution of our problem, we have to minimize the squared
distance (Rﬂ-RQ)Z. The p- and q-vectors that were defined by equations
(4.18) and (4.19) are obviously the vectors in m- and O space
respectively, in which the variable parameters a; and bk are not yet
fixed. From the minimum principles stated abo&e, it is obvious that
minimizing the squared distance (p-q)2 affords us a useful approximate
solution of the current problem.

From the equations (4.18) and (4.19), we have

N M N M
(p~-q)2 = (P-q)2 + (fa,I, - zkak)2 + 2(5-7,Ia,T, - Ib,J,)
N i=1 k=1 M i=1 k=1
= (-7 +2,I)%+ (57 - b, J )2 - -2 . (4.25)
o 11 1K k

Since the last term of the right-hand side is fixed, it is sufficient to
minimize the first and the second terms in order to minimize (p-q)2.
Taking the partial derivatives of the first and the second terms
with respect to the unknown parameters a; and bk respectively, and
equating them to zero, the conditions necessary to minimize these terms

are described as

N
=T +;2,8,T; » 1) = 0 (3 =1,2,3, ...., N) (4.26)
- - M
(-p+q +k§11>ka, J)=0 (2 =1,2,3, ...., M (4.27)

It can be seen from equations (4.26) and (4.27) that we can
determine the variable parameters a, and bk independently of one

another. From now on, p~ and q-vectors are assumed to have the
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parameters a, and bk determined by minimizing (p-q)2. Then,
(R-P) %= (R-p + p-P)2
= ®-p)2 + (p-p)2 + 2(R-p, p-P) . (4.28)

On the other hand,

(o]
]

(R-q, I;) = (R-p + p-q, I,) = (R-p, I,) + (p-q, I,)

(R-p, Ii) ’ (4.29)
since the scalar product (p-q, Ii) vanishes because of equation (4.26),
and so the last term of equation (4.28) vanishes. Hence,

(®R-p)2 = (R-p)% + (p-P)? . (4.30)
From the inequality (4.23), (R-p)2 S (p-q)2. Finally, we obtain

(7-p) 2

A

A

®R-P)2 2 F-p)2 + (p-9)2 (4.31)

similarly,

A

(D2 & ®RP2 = (D2 + (p-0)% . (4.32)

Furthermore, if we can select the zero-vector to be the p-vector,
the inequality (4.31) may become simpler. In this case, the right-hand
side of (4.31) reduces to

P2+ (¢-p)2 = (p + q - p)?2 - 2(p,q-p)

(p+q-p)?

+ q? (4.33)
by the same reasoning used to obtain equation (4.29). Consequently,
we obtain a simple relationship between the squared vectors RZ, pz, and
2,

q

p2 S R? £ q2 . (4.34)
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On the other hand, if we can select the zero-vector to be the q-vector,
the inequality (4.32) reduces to
q® s R?2 g p2 . (4.35)

Notice that the squared exact solution R? of the current problem is
exactly the same as the right-hand side of equation (4.8) if the demsity
of fluid p is assumed to be unity. Consequently, equations (4.34) and
(4.35) can be used to determine the upper and lower bounds of the added
mass of a two-dimensional body.

From now on, as stated at the beginning of this section, we shall
restrict our consideration to the case where the cross-sectional shape
of the body, as well as that of the canal, is rectangular.

Returning to Figure 10, we shall consider a case where a
rectangular two-dimensional cylinder translates with unit velocity in
the y-direction at the center of a rectangular canal. In Figure 10 is
shown the right half of the whole region to be considered. The
rectangle AGCO is the right half of the rectangular body, and the
rectangle BEDO is the right half of the rectangular canal. The boundary

Fl stands for the free surface, to be treated as a rigid wall.

The problem of determining the velocity potential ¢ in this case

can be formulated thus:

2 2
g—y% + 25 - 0 in the fluid domain § (4.36)
3 _ {:0 on the boundaries Pl, F3, Fs, F6(4.37)
on 1 on the boundary r, (4.38)
¢ = 0 on the boundary Ty . (4.39)
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Figure 10.

Figure 11.

Division of fluid domain bounded by a
rectangular body into a net of rectangular
meshes (only the right-half of the whole
domain is showm).

Division of the whole domain S into two subdomains
S. and S, by drawing a curve T'3 across which some
kinds of discontinuities of ¢* or Ij-vector are
permissible.
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Corresponding to this formulation, we can define the linear

subspaces 7 and Q immediately:

(I) m-space : p = (p;, py)

9p, Ip,
3y + T 0 in the domain S (4.40)
(4.41)
Oy, 3z _ {0 on the boundaries I r, Ty T
p1 n P2 on 1
on the boundary F2 (4.42)

(II) Q-space : q,= (ql, qz)

=3 - 2

where ¢ is arbitrary except for the restriciton that ¢ must satisfy
$=0 on the boundary Pu.

The homogeneous spaces m* and Q* are defined by substituting the
homogeneous boundary conditions for the nonhomogeneous boundary
conditions:

(III) n*-space : Ii = (pfﬁ, p{%) i=1,2, ....

% *
9P, 1 N 9P,
3y oz

= 0 in the domain S (4.44)

. 9 9z . (4.45)
pif 3%- + pig 3@ = 0 on the boundaries PI,PZ,FS,PS,PG.

[ ] . = * * =
(Iv) space : Jk (qkl’ qkz) k=12, ....

39, * 96, *
% = — % * = K
%W T3y , %3 T35z ’ (4.46)

where ¢§ 1s arbitrary except for the restriction that it must be zero

on the boundary Fu.
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From the above definition, it is evident that we can choose the
zero vector, i.e., 0 = (0, 0) as an arbitrary §-vector of Q-space.
Therefore, the added mass of the two-dimensional rectangular body can
be evaluated by equation (4.35), and the squared q-vector gives a lower
bound of the added mass while the squared p-vector gives an upper bound.
Remember that, as stated earlier, it is possible to calculate the lower
and upper bounds independently of one another. First, let us consider
the upper bound p2.

(i) Evaluation of the Upper Bound of the Added Mass

In order to obtain the upper bound, it is necessary to
determine the Ii-vectofs of the homogeneous w*-space, but
before we do that, we shall consider the possibility of
violating the continuous differentiability condition of the
functions p* and ¢*, which were used to verify the orthogonal
character of the linear subspaces 7 and Q [30]. If we could
loosen the continuity restriction throughout the whole region,
it would be easier to determine the Ii—ﬁector concretely.

The orthogonal character of the two linear subspaces w and Q
is all that we have needed to apply the method so far.

Let us divide the whole fluid domain S into two
subdomains S1 and S, by cutting S with a curve T3, and let us
assume that in each subdomain, the necessary continuity of

the functions p* and ¢* is satisfied, while on the boundary

Fs there exists discontinuity. (see Figure 11) The scalar
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product of I.- and J -vectors is described as follows:

Bpif apiz % QZ. *
Ty I = - ”( 3y 3z I (s} an * Pi3 an)¢kds
5,45, T 4T,
- 3y
J(pﬁ‘ S Py 3D ofds (4.47)
T3

The first and second integrals of the right-hand side vanish
because of equations (4.44), (4.45), and (4.46), and the
third integral should be a sum of two integrals taken over
both sides of the boundary F3. Therefore, the orthogonality
of m and Q subspaces is assured if the last integral vanishes.
As a result, the following discontinuities are permissible:
(a) 1If ¢k* is continuous in the whole domain, there may
exist a discontinuity in the normal derivative
8¢§/an across any curve drawn in the domain S, and
(b) 1If pif %%-+ p12 %%, i.e., the normal component of
Ii—vector, is continuous across any curve drawn in

the domain S, there may exist a discontinuity in the

tangential component of Ii-vector.

Now we shall determine the Ii-vectors concretely. To
begin with,we divide the whole fluid domain S§ into a lot of
rectangular meshes as shown in Figure 10, and then consider

any four meshes that possess a grid-point in common as a basic
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unit (see Figure 12). Then we define the Ii-vector

(=(pif, pig)) as follows: the subscript i stands for the
i-th grid-point and the Ii—vector vanishes outside the i-th
basic unit consisting of the four rectangles possessing the
i-th grid-point in common. In other words, the Ii—vector is
nonzerc only inside the i-th basic unit.

In order to solve a system of algebraic equations, for
instance, equations (4.26), we need to know the values of the
scalar products (P, Ij) and (Ii’ Ij) beforehand. Therefore,
it is better to define the Ii—vector in so simple a form that
we can calculate the above scalar products with ease. For

this purpose we adopt the following linear representation

of the Ii-vector:

* =
iy, v + a, z + %0 (4.48)

Pi3 = By Y F By, 24 By , (4.49)
where a's and B's are constants but are not yet known.
Taking account of the permissible discontinuity (b), these
constants are determined uniquely to within an arbitrary
multiplicative constant [28]. Equation (4.50) to (4.53) are
obtained by normalizing equations (4.48) and (4.49) by

dividing them by (y,. - y, ) (see Figure 12).
i1 io
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Tigure 12. Basic unit consisting of four rectangular meshes
possessing a grid-point in common.
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Figure 13. Canonical configurations of two basic units that
produce non-zero scalar products.
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(a)

(b)

(c)

(d)

= Y-V - ~(@z-12z,)
Mesh(:> pi¥ = i1 P;3 1) (4.50)

Y10 7 Y41 0 Yi0 T Y12
-y -y,.) z -z
i2 i
Mesh pi¥ == p,* = — (4.51)
<:> 11 Y12 = Yig 12 Vi =7 Y9
(4.52)
Mesh(3) p,* = (20 = 2300 - ¥4y bk = (2gp = 7)) - 2g)
1 (yyy = ¥4,)(2g0 - 24,), 12 (730 = ¥4y (2= 24,)
(4.53)
(2, - 2,0y - v,.) -(z,-2,.)(z - 2,.)
Mesh(:> byt = i0 il i2 . 10~ %11 12

- - P45 T = - s
(730 = ¥42) 2y = 245). 12 (3 Vi) (25, = 24,)
where Yio’ Yil’ Yiz’ Zio, zil’ Z12 are the coordinates of the
four corners and the grid-point of the i-th basic unit.
When we define an arbitrary fixed vector § of m-space,
the same discontinuity as that of the Ii—vector is permissible.

So the P-vector is defined as follows (see Figure 10):

b-

(a) Domain AGFB : P, = E:i » P, = E%; (4.54)
L= _ _ c(b-y = _ c(z-d)

(b) Domain GHEF : P, = Tg:zyzz:a)’ Py ?EZESTE:ET (4.55)

(c) Domain CDHG : P, = Efa s 5& =0 , (4.56)

where a, b, c, and d are the ordinates or abscissas of the
points A, B, C, and D, and stand for the half-beam of the
body, the half-width of the canal, the draft of the body, and

the depth of the canal respectively.
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From the definition of the Ii-vectors, it is easily
understood that most of the scalar products (Ii’ Ij) (i, 3 =1,
2, «.., N) in other words, most of the coefficients of the
unknown parameters ay in equation (4.26) vanish., For example,
for the basic unit with the subscript 1 = 10 in Figure 10, the
scalar products are zero except for (12, Ilo), (13, I,0)5
Ty 11005 Tgs L1gds (Tygs Ipg)s (Tygs 11D, (T, I,
(110’ 119) and (I;q, 120). The non-zero values of the other
scalar products can be calculated by either of the following
formulas (see Figure 13):

(2) In the case where meshes(:)and(:)of the i-th basic unit
overlap meshes(:>and<:)of the j=th basic unit:
(Ii’Ij) = (4.57)

(zil'zio)(zi1'ziz)
6(210—212)(y12"y10

) [}yiz_yio)z'z(zil'zio)(zio-zizi] i

(b) 1In the case where mesh(:>of the i=th basic unit overlaps
mesh(:)of the j-th basic unit:
zZ, . ~Z
i0 "11 2 2
= —— - + - . .
(c) In the case where meshes(:)and(:>of the i-th basic unit
overlap meshes<:>and(:)of the j-th basic unit:

(24,725 0) (74,794,)
117%10? Y17V, s i ]
6035730 0y, Y5,) [}zio 23207 20947940 Gy, Yi°i] .
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(d) In the case where mesh<:)of the i-th basic unit overlaps

meshc:)of the j-th basic unit:

2,2
10 i1
).—..

v 1t . - 2 -
(I;,1 6(y, 474, [(yio vi)° + (g z12)2] (4.60)

i

{e) The scalar product of the i-th basic unit:

(I,,1,) = (4.61)

(z; -z5 Y(zy -z, Iy ~¥y,) :
1 d9” *7i1 "i2” 4o 41 _ . | . )
3(z;,723,) (93,7Y4,) 95,7Y4) [(yi:.o V1) O397Y49) + (24772, 0 (2 zi_z):]

Then, the scalar product (P, Ii) is obtained as follows: If
the i-th basic unit is included entirely inside the domain
AGFB or the domain GHEF or the domain CDHG, the scalar product
(r, Ii) vanishes as proved immediately after some manipulation
of integration. ¥For instance, the scalar products (T, 11),
P, Ils)’ and (p, 117) in Figure 10 are zero. The non-zero
value of the scalar product (p, Ii).occurs in the case where
the grid-point is located just on the boundary line GF or GH.
In the case of Figure 10, for example, the scalar product

®, Ii) has non—-zero value for i = 8, 9, 10, . . . , 14, 16,
25, and 34.

(a) In the case where the grid-point 1s located on the

boundary GF:
d(24,72,0) g,793 ) g0 * 74y + 74,-3b) .62)
6{(b-a)(c-d) * e

®,1) =
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(ii)

(b) In the case where the grid-point of the i-th basic

unit is located on the boundary GH:
(4.63)
-c(zil—zio)(zil-ziz)(zio + zil + ziz_3d)

®,1;) = 6 (b-a) (c=d)

From the formulas (4.57) to (4.63), we can obtain
immediately the coefficients of the unknown parameters
a, included in the set of simultaneous linear algebraic
equations (4.26), if only the geometrical size of the
rectangular body as well as that of the rectangular
canal is given. Once the simultaneous equations (4.26)
are solved, the upper bound of the added mass p2'can be

obtained immediately.

Evaluation of the Lower Bound of the Added Mass

When we determined the concrete form of the Ii—
vector, we used the permissible discontinuity (b).
Hence, the function ¢§ =0 on P“ should be continuous
in the whole domain. Except for this necessary

continuity, the function ¢ﬁ is arbitrary. Here, we

define ¢ﬁ as follows:

(2n + D)7y mrz
25 cos =g

¢i = 2b sin n,m = 0,1,2, ... (4.64)

where the subscript k is defined by

k=20t D 2@ L, (4.65)
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so that the k-value increases one by one if the integers
n and m are varied as shown in Table 6. Consequently,

the Jk-vector of Q*-space is defined as follows:

. (2n + )7y mnz

af, (2n + 1)7 cos T c€os =3 (4.66)
_ _ 2bmm (2n + D7y ;o MWZ

qliéz = d sin 2b Sin d . (4.67)

In order to determine the parameters bk by solving a set
of simultaneous linear equations (4.27), we have to know
the values of the scalar products (Jk, JL) and (P, Jz)
for k, £ =1, 2, . . . , M. By changing the subscript k
and the integers n, m to the subscript £ and the

integers n', m' respectively, the J -vector is defined

L

as follows:

(2n' + D7y o m'nz

g%, = (2n' + 1)7 cos T 0s — (4.68)
_ ' ' '
qzz = zgm L sin (Zn 2: 1)'"}' sin —m g'z' ~ (4 . 69)

where the subscript % is defined by & =
n'(n'+1)/2 4n'm' + of(m'+3)/2 +1, After executing the
integration, we obtain the analytical formulas of the

scalar product (Jk, Jz) as follows:
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Table 6. Variation of the subscripts i and j of Ii- and Ij—vectors by the

systematic changing of integers n (n') and m (m')

nlof1l2]3]sls
m

1l2 14 }7 311 |16

10 {14
15

Table 7. Upper and lower bounds of the sway added mass of rectangular
cylinders translating in the center of rectangular canals with

various sectional-forms [28]

upperzbound lower gound by finite element

a b c d p q method

2,0 2,1 ~2,0 —2.1} 109,1 106.7

2.0 2,2 —2,0 —2.2 55,80 5455 54,96 (87%)
2.0 2.4 ~2.0 —2.4 29,16 28,81 -

2,0 2.6 —2.0 =2.6 20,34 19,68

2.0 3,0 —2,0 —3.0 13.37 13,01 12,90 (60)
2.0 3,6 —2.0 —3.6 9,588 9,211

2.0 5.0 —2.0 —5.0 6.876 6.258

2.0 7.0 —2,0 —=7.0 5,890 5,177

2,0 10,0 —2,0 —10,0 5.610 4,607 *Total number

of nodal points.

2,0 2,1 —2,0 -3,0 40,38 38,32
2,0 2,2 -2,0 -3,0 25,48 24,30
2,0 2,4 ~2,0 -3,0 17,76 16,99
2,0 2,6 —2,0 -3,0 15,22 14,70
2.0 3,0 —2,0 —3,0 13,37 13,01
2,0 3.6 —-2,0 —3,0 12,64 12,24
2,0 5.0 —2,0 —3,0 12,42 11,89 11,92 (74)
2,0 7.0 —2,0 —3,0 12,45 11,74
2.0 10,0 —2,0 —3,0 12,55 11,58 11,91 (95)
2,0 2,2 —2,0 —2,1 96,18 93,85
2,0 2,2 —2,0 —2,2 55.80 54,55
2,0 2,2 —2,0 —2.4 36,12 35.38
2,0 2,2 —2,0 —2,6 29,95 28,93
2,0 2,2 —2,0 —3,0 25,49 24 31
2,0 2,2 —-2,0 —3,6 23,48 21,64
2,0 2,2 —-2,0 —5,0 22,76 20,76
2,0 2,2 ~2,0 —7.0 23,39 19,59
2,0 2,2 —-2,0 —10,0 25,14 19,52
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(a) n# n', m#nm (4.70)

1 (n-n')ma + 1 (n+n'+1l)ma

- )
(Jk’JE) = (2n+l) (2n'+1)bd 2(n—n')Sin B 2(n+n'+1)Si“ y

B ! '
X 1 sin (m-m')we + 1 sin {ortm )Trc]

2 (m-m") d 2 (mtm'") d
1.3 B . 1
+ tm;x b n—:;' oin B ;x )ra _ n+n2!.+1 sin (n+nb+1)1ra]
L
[ 1 . (@mDme 1 (') e
X oot 510 Ty oy sin 3
) n#n', m=mn'=0 (4.71)

1 (n-n'")ra 1 (nin'+1l)ra

- * .
(Jk’Jl) = (2n+1) (2n'+1)D I:Z(n-n') sinm 5 + 2 (ot '+1) sin N

cT d 2mme
X |:‘2— + Z—m- sin d ]

24,3 ' v
m*b 1 (n-n")ma _ 1 (ntn'+1)wa
+ d \:n-n' sin b ntn'+l sin b :]
er _ L 4 2mmc
*174a 2m M T4
(¢c) n#n', m=m'=0 4.72)
_ . 1 (n-n'wa 1 (ntn'+)w
(Jk’Jl) = (2n+1) (2n'+1l)ben [Z(n-n')Si“ T + 2 atn '+ ) sin 5
(d) n=n'", m#m' (4.73)
_ 2 an 1 (2n+l)ma
(Jk’Jz) = (2n+1)4bd [ 2 + TGt sin e
1 (m-m')7we 1 {mim')7e
x [Z(m-m') sin =3 * 3@y S g
mm'b3 ar _ _ 1 (2n+l)ma
* T3 l:b 2ntl 81" T :l

m-m d

—m ! |2 y
x|: 1. sin (m a )me - m-];m' gin (wrtm “c:|
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(e) n=n',m=m"#0 (4.74)

_ (2n+1)2%n2%bd 2 am 1 (2n+1)7a
(Jk’Jf,) = - + (2n+1)4bd T + Z(2ntl) sin 5
CT- 1 2mme _ m272p3
X l:z—d +H sin ] ]
21,3
m‘b am 1 (2ntl)ma || em 1 2mmc
A [‘b‘ T 2o SIn Ty _Jl:d 2m S0 T4
(f) n=n'", m=mn'"=0 (4.75)
(20+1) 2n2bd 2 am 1 (2n+l)ma
(Jk’JR.) = - + (2n+1)“wbe TS + 7 (20%1) sin 5
Furthermore, the scalar product (p, JZ) is calculated
from the following formulas:

(a) m" #0 (4.76)
- _ bd? . mhre | (2n'1)7a 4b (20'1)na
®:39) = By (e ymr> ™ a [z(b )i T GRS 5

2,2 '
2bcd (2ot1)ma_. e 4b“d (2n+l)qma_, m'mc
+ dh(c—d)Si“ T —sin ) (ZnHi)ﬂhz(b-a)(c—dj‘osf 75 —sin 3
(b) m' =0 (4.77)
(2n'+1)7ma

6"]2) = 2bc sin T

From equations (4.70) to (4.77), all the scalar products
necessary to solve a set of simultaneous algebraic
equations (4.27) can be calculated, if the geometrical
configuration of the body in the canal is given. Once
the parameters ki are determined, the lower bound q2 of

the added mass can be calculated immediately.
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(1ii) Some Numerical Examples of the Sway Added Mass of
Rectangular Cylinders

In Table 7 are shown some numerical values of the
upper an& lower bounds of the sway added mass of a
rectangular cylinder, for which the beam/draft ratio is
equal to 2, translating in the center of various forms of
rectangular canals. The upper bounds shown in this table
were obtained by dividing the whole fluid domain in a
simple way by dividing the section between the water
surface and the bottom of the body into m; equal pieces,
the section between the center of the body and the side
of the body into m, equal pieces, and the section between
the side of the body and the wall of the canal into n,
equal pieces.** The total number of grid-points was
about 190.%%*

On the other hand, the lower bounds were obtained as
follows: By changing the integers n(n') and m(m') in a
systematic way as shown in Table 6, the variable parameter
k(2) was increased one by one. At the same time, the

lower bound q? was calculated for each value of the

variable parameter k. When the difference between the

**In Figure 10, M;=2, M,=4, N;=2,and N,=8.

*%*Where the fluid domain is narrow, we can considerably reduce the
total number of grid-points. For instance, when a=2.0, b=2.2, c=-2.0
and d=-2.2, the upper bound obtained by using only 18 grid-points was
55.96, while it is 55.80 in Table 7. '
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k-th lower bound and the (k+1)-th lower bound got small
enough, the process of increasing the parameter k was
interrupted, and the (k+l)-th lower bound was adopted as
the expected lower bound. For the calculation whose
results are shown in Table 7, the final value of the
parameter k was at most 80 to 100.

From this table, it is obvious that the accuracy of
the upper bounds is not very good, especially in cases
where the fluid domain is large. The accuracy of the
lower bounds also gets worse when the fluid domain is
extremely large, although it is not too bad compared with
the accuracy of the upper bounds.

In the same table are shown a few examples of the
sway added mass obtained by the finite element method,
which are very close to the lower bounds obtained by the
hypercircle method. This can be inferred from the
tendency of the finite element method to give an
approximate value lower than the exact value, though this
statement is not always true [31].

Furthermore, it is seen from the second and the
third groups of numerical results shown in Table 7 that
if the canal width and the water depth are about five
times as large as the beam of the moving body and its

draft respectively, the effect of the restricted water on
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the sway added mass gets so small as to be negligible
from the practical point of view. With respect to the
added mass of two-dimensional cylinders vibrating on the
free surface, a similar conclusion has been derived by
Matsuura and Kawakami, who examined the propriety of
replacing an infinite fluid with a finite fluid domain
bounded by artificial boundaries when calculating the
added mass of a vibrating cylinder by the finite element
method [32].

For the foregoing reasons, we can consider the lower
bound q%=4.607 listed in the last line of the first group
in Table 7 as an approximate value of the sway added mass
of the rectangular cylinder in infinite water.

Lewis [33] and Wendel [34] calculated the wvertical
added mass of a rectangular cylinder oscillating with
infinite frequency in the perpendicular direction .on the
free surface of an infinite fluid. This kind of added
‘mass can be considered as the sway added mass of the
cylinder translating horizontally on the free surface of
an infinite fluid, 1f the roles of the side wall and the
bottom of the rectangular cylinder are interchanged.

According to Lewis and Wendel, the sway added mass
coefficient of a rectangular cylinder with the beam/draft

ratio being equal to 2 is 1.186, under the assumption
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that the density of the cylinder is the same as that of
the surrounding fluid, while the lower bound q2 equal to
4.607 gives 1.152 as the sway added mass coefficient.
Therefore, we can consider the lower bound obtained by
the aforesaid method as a good approximate value of the
added mass. Henceforth, we shall obtain only the lower
bounds, and then use them to discuss the restricted
water effect on the added mass.

Figure 14 shows the sway added mass coefficient of a
rectangular cylinder that translates horizontally at the
center of the various rectangular canals. The dotted

lines drawn in the same figure represent Newman's formula

e =1+[

2 o
otm )., 3 T cosech %(no + % + nW)-6 I cosee}% n;w]
(b ) g n=— nel

(wtm )
X [1 -(—m-l_l*m%.} , (4.78)
y'H

where the subscripts H and «» stand for a finite water
depth H and infinite water depth respectively, and Ny and
W stand for the distance between the center of the canal
and the center of the moving body, and the canal width
respectively [35].

When we estimate the wall effect on the added mass

from Newman's formula, we have to know the virtual mass
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30l by the hypercircle method
--—-—--by Newman’s formula(4.78)
My
m L 4
NS d/=1.05
o da l‘,r——-Y
_— 2
C_; : : } L
y
————————————————————————— 1.10 d aAC :1.0‘
1.20
1.50
2.50
i 1 1
20 ba 30

Figure 14. Sway added mass coefficient of a rectangular cylinder
(beam/draft = 2.0) translating horizontally at the center of
rectangular canals (m = mass of the cylinder whose density is
assumed to be same as that of the surrounding fluid) [29]).

2s5Ff o
15
n
Q
T20¢t
n
(s} _f—
I i S
5 1 dz=1.10 =
- 10 2o 5
& hypercircie method |+
154 ———~Newman’s formua 'g
(4.78) £
n 3
< £
Re)
5
: 3
&
o
8 '
- bt 1 1 l 2 1 1 | 1 1 "/B
0 0.2 04 0.6 08

Figure 15. Finite-width effects on the sway added mass of a rectangular
cylinder (beam/draft = 2) translating at various off-center positions
of a canal.

(m: mass of the cylinder whose density is assumed to be same as that
of the surrounding fluid, and
n: off-center distance from the center of a canal) [29].

-90-



in the relevant water depth H.** The dotted lines of
Figure 14 were obtained by making use of the numerical
values of the sway added mass in shallow waéer,

calculated by Flagg and Newman [36]. Following Gurevich's
analysis [37], involving the conformal mapping of the
fluid domain bounded by a rectangular cylinder and the
channel bottom onto a semi-infinite half-plane, they
derived an approximate formula yielding the sway added
mass coefficients in extremely shallow water. For a
sufficiently small € as defined by the equation

e =1 —% , (4.79)

the sway added mass of a rectangular cylinder, whose

breadth is B, is given as follows [36]:

m
1B _2 2_B B, 22 3
Zsiz = <m loghe+ 7t eog t 3 + 0(e®) . (4.80)

In addition, their paper [36] contains a detailed
numerical table of the sway added mass coefficient.
Returning to Figure 14, we shall compare the results

obtained by the hypercircle method with those obtained by

*%*0n the other hand, Newman obtained another formula from which
the added mass in a camal can be directly calculated. However, as he
stated in [35], the formula underestimates the restricted water effect
on the added mass. Therefore, he recommends the use of formula (4.78)
in order to estimate the finite-width effect or the wall effect on the
added mass.

-91~



formula (4.78). The hypercircle method gives a larger
estimate of the wall effect or the finite-width effect on
the sway added mass, compared with formula (4.78). 1In
particular, the difference between the wall effect
obtained by both methods is serious in relatively deeper
water. For example, when the water-depth/draft ratio and
the canal-width/body-beam ratio are 1,50 and 1.05
respectively, the sway added mass coefficient obtained by
the hypercircle method is 9.43, while that calculated
from (4.78) 1s only 3.66. On the other hand, in a
relatively wider canal, the hypercircle method gives a
smaller value than does formula (4.78).

At any rate, it can be concluded from this figure
that the finite-width effect on the added mass is quite
small except for the case where the side of the moving
cylinder is extremely close to the bank of a canal.
Therefore, it can be anticipated that the wall effect on
the added mass of a rectangular cylinder translating at
an off-center position of a canal is also small except
for the case of an extreme deviation of the body from
the center of a canal,

Incidentally, the previous formulation of the
hypercircle method is not applicable for the off-center

translation of the body. 1In this case, we need to take
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the whole fluid domain into consideration. Instead of
equations (4.36) to (4.39), the following equations must
be satisfied by the velocity potential function (see

Figure 15):

2 2
%;%- +~%;% +0 in the whole fluid domain § (4.81)
.
3¢ 0 on the boundaries Tl, T3, Ps, Tes P7, rg (4.82)
on
=9 1° on the boundary T, (4.83)
-1 on the boundary T, (4.84)

N\

This is the so-called Neumann boundary-value problem. In
this case it is convenient to convert this problem into
an equivalent Dirichlet problem, in 6rder to apply the
hypercircle method to the problem. Such a conversion can
be easily executed if the stream function y(y,z) is used
to describe the problem instead of the velocity potential
function Y¥(y,z). The equivalent Dirichlet problem is

described as follows:

2 2
g—yﬁ + g—} = 0  in the whole fluid domain §  (4.85)

0 - on the boundaries Ty, PS, FG, Ty, Ty (4.86)
=< z on the boundaries T, and r, (4.87)
c on the boundary r, (4.88)

Since the kinetic energy of the fluid can still be
expressed by equation (4.8), in which the velocity

potential ¢ should be replaced by the stream function v,
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the inequalities (4.31), (4.32), (4.34), and (4.35)
provide the upper and the lower bounds of the added mass.

The detailed procedure for solving this problem will
be omitted. (See reference [29]). Here, only one
illustration indicating the finite-width effect on the
sway added mass of a rectangular cylinder which translates
at various off-center positions in a canal is shown in
Figure 15. Numerical calculations were executed for two
cases of the canal width. The canal-width/body-beam
ratios were 1.5 and 2.5. In the latter case, the
transverse deviation of the cylinder from the center of
the canal doesn't affect the sway added mass much, as
long as the deviation is not too large.

From Figure 15 as well as Figure 14, it is concluded
that the finite-width effect on the sway added mass is
relatively more important in deeper water than in
shallower water.

According to the two-dimensional theory, the finite-
width effect on the sway added mass proves to be
negligibly small if the canal width 1s more than about
five times as large as the beam of the moving body. This
conclusion is sustained by the experimental results shown
in Table 3. However, the experimental results obtained

in narrow canals, whose sectional forms don't exactly
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coincide with that used in the theoretical calculation,
reveal a more notable finite-width effect on the sway
added mass, compared with the theoretical prediction. In
addition, the experimental finite-width effect on the yaw
added mass moment of inertia is conspicuous. For example,
in a canal where the width is 3 times as wide as the
model's breadth and the depth is 1.20 times as deep as
the model's draft, the yaw added mass moment of inertia
of the oil-tanker model was about 2.4 times as large as
that in otherwise unrestricted shallow water of the same
depth.

In order to explain this marked increase of the yaw
added mass moment of inertia due to restriction of the
water surface, it is necessary either (1) to try to

calculate the three-dimensional yaw added mass moment of

inertia in a canal or (2) to try to calculate the two-
dimensional yaw added mass moment of inertia of a
vertical cylinder placed at the center of two parallel
walls, whose sectional form in the horizontal plane
parallel to the water surface is the same as the water-
plane form of a ship. The latter two-dimensional
approximation may afford a reasonable value of the yaw
added mass moment of inertia in cases where there is no

clearance beneath the ship.
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4.1.2. Suway Added Mase and Yaw Added Mass Moment of Inertia in Shallow

Water

Again, it is possible to make use of the hypercircle method or the
finite element method when calculating the sway added mass of two-
dimensional bodies in shallow water. The finite element meghod is
especially useful for calculating the added mass of an arbitrary two-
dimensional cylinder translating in a waterway of arbitrary shape, and
in addition, it can easily be extended to the three-~dimensional case 1if
enough computer capacity is available.

Another method was derived by Hess and Smith to represent the flow
field around an arbitrary three-dimensional body in terms of a
singularity distribution on the body surface [38]. By extending their
method, Kan tried to calculate the sway added mass of a ship moving in
restricted waters [39], but it is quite tedious to obtain the three-
dimensional added mass of many ships in restricted waters by means of
either the finite element method or the surface distribution of
singularities. Therefore, as stated at the beginning of part 4, we
shall adopt the strip theory synthesis (4.7) to obtain the sway added
mass and the yaw added mass moment of inertia. For this synthesis, the
two-dimensional sway added mass must be known.

Kan and Hanaoka clarified the shallow water effect on the two-
dimensional sway added mass of the flat plate and the circular cylinder
[40]. 1In their analysis, the sway added mass of a vertical flat plate

with uniform draft T, translating in the direction normal to the
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surface of the plate, in other words, in a direction parallel to the
free surface, in shallow water of uniform depth H, was obtained as
follows: The two-dimensional fluid motion around the plate can be
denoted with the velocity potential function that describes the fluid
motion around a cascade array of infinite images of the plate with
respect to the bottom of the waterway as well as the free surface.
Assuming that the flat plate moves in the starboard direction with
unit velocity, and taking account of the identity ¢2r=-¢22’ the sway

added mass of the plate of width 2T is

L
8¢, Ly (T 2(T
my =-p JJ¢2 vy dS = - p J ZJ (¢2r-¢22)dxdz = - ZpI J ¢2rdxdz .
Sg "Ly, T o (4.89)

where the subscripts r and £ stand for the velocity potential function

on the starboard surface and on the port surface of the plate respec-
tively. According to reference [41]), which gives the velocity

potential function for the cascade array,

2H =1 cos (mz/oy)

bay = = Ty cosh ' (490
cos (1rT/2H
Consequently,
4ouL [T .
= SRHL I cosh L €08(n2/5p) 4, _ 4oHLT Jcosh-1 cos(“TC/ZH)dC . (4.91)
p _— T
- cos (1T/9y) 1 cos(nT/py )

In the deep water case, under the two-dimensional approximation,
the sway added mass of a flat plate with length and width L and 2T
respectively, translating in the transverse direction in infinite

fluid, is pnT2L. Let us describe the shallow water effect on the sway
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added mass of the flat plate in terms of the coefficient kF defined as

the ratio of the sway added mass in restricted water to that in deep

water:
1
Ky = 25 J cosh™+ 08T o) 4 . (4.92)
1 cos(nT/, )

Newman derived a similar formula which affords the shallow water
effect on the sway added mass, the yaw added mass moment of inertia,
the lateral force, and the yaw moment of a rectangular flat plate [42].
He took account of the three-dimensionality of the flat plate, while
equation (4.92) was obtained on the basis of the two-dimensional
.approximation of a three~dimensional flat plate.

According to Newman's matrix notation, the shallow water effects
are described as follows:

AN [AT a4 2@ J-l
8 1og(cos%%)

k, (A) =
(4.93a)
where A stands for the aspect ratio of a rectangular plate defined by
2T/L and the characters with the subscript i stand for

Fy

{my, Jzz, Y, N}

B {1, 3/8, 4, 2} . (4.93b)

i
The second term in the right-hand brackets of equation (4.93a)

represents the shallow water effect at the limit of zero aspect-ratio,
which gives a numerical value almost equal to the kF-value defined by

equation (4.92). The first term represents the three-dimensional

component of the shallow water effect.
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Since a smaller Bi amounts to a bigger three-dimensional effect, it
is understood from formula (4.93) that the yaw added mass moment of
inertia is most affected by the three-dimensionality of the flow around
the plate, while the lateral force is least affected.

In Figure 16 are shown the shallow water effects on the sway added
mass of a flat plate, a semi-immersed circular cylinder, and a
rectangular cylinder with a beam/draft ratio equal to 2. In the same
figure, some experimental data are plotted for the purpose of
comparison. Roughly speaking, the shallow water effect on the sway
added mass of a three-dimensional ship can be estimated by that of
either the semi-immersed circular cylinder or the rectangular cylinder.
In extremely shallow water, however, any two-dimensional calculation
tends to overestimate the added mass, since the added mass obtained by
the two-dimensional theory goes to infinity sooner or later as the water
depth decreases, while the added mass of a three-dimensional ship
remains finite. The fluid surrounding a real ship moves around both
ends of the ship in horizontal planes parallel to the water surface
rather than in transverse vertical planes, when the ship translates in
the transverse direction in extremely shallow water. Therefore, if we
calculate the sway added mass and the yaw added mass moment of inertia
according to the strip theory synthesis (4.7), the values obtained thus
will be too large compared with the true values, and it is necessary to

correct for this discrepancy.
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We shall introduce the three-dimensional correction factors of the
sway added mass and the yaw added mass moment of inertia, which will be

denoted by Cy and C,, defined as follows:

three-dimensional sway added mass

C =

y f m¥ (x) dx (4.94)
L

C three-dimensional yvaw added mass moment of inertia

zz J mk x) x2d&x (4.95)

L
As an example, the correction factors Cy and sz are shown in Figure 17
for the Mariner-type ship and the oil~tanker, whose three-dimensional
added mass and added mass moment of inertia are already known from
P.M.M. tests. The two-dimensional sway added mass m§(x) in this
illustration was calculated by the finite element method. The three-
dimensional value of the sway added mass and the yaw added mass moment
of inertia were obtained by the finite element method as well.

The circles and the triangles of Figure 17 represent the three-
dimensional correction factors which are obtained by using the
experimental values of the sway added mass and the yaw added mass
moment of inertia as the three-dimensional values in equations (4.94)
and (4.95), while the solid lines and the dotted lines in the same
figure were obtained by using the sway added mass and the yaw added
mass moment of inertia obtained by the three- dimensional finite

element method.
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According to this figure, it is clear that the effect of the
three-dimensionality of the ship's shape is more pronounced on the yaw
added mass moment of inertia than on the sway added mass, and increases
monotonically as the water depth decreases. This conclusion coincides
with Newman's formula (4.93) as well as with our intuition that the
yaw added mass moment of inertia is much affected by the three-
dimensionality of the ship's shape, because the end parts of a ship
make more contribution to the yaw added mass moment of inertia than to
the sway added mass.

As stated above, the formula (4.93) provides the three-dimensional
correction factors Cy and sz. If we use the subscripts H and « to

denote a finite water depth H and infinite water depth respectively, we

obtain
Cop  FAD RO k@) .96
Cy°° F, (0,H) F,(A,=) k, (0) ? :
and similarly, we obtain
EZZH = 11:2:3; . (4.97)
zzZ® 2

In Figure 18 are drawn the formulas (4.96) and (4.97) together with the

/szw. obtained from

numerical values of the ratios, C _/C_ and C
yH “ye zzH

the three-dimensional correction factors shown in Figure 17.
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Figure 17. Three-dimensional correction factors, C_ and C,,» of the
sway added mass and the yaw added mass moment of inertia.
[43]. (Remarks in this figure designate how the three-
dimensional added mass and added mass moment of inertia -

were obtained).
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Figure 18. C},H/Cym and C,,;4/C,,0 versus water depth.
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4.2. Damping Derivatives

Four linear derivatives, namely, YB’ NB’ Yr’ and Nr’ are the linear
coefficients of the damping férce and the damping moment, and they are
important aids in judging the course stability of a ship, not only in
deep water but also in shallow water.

Inoue and Murayama applied K4rmin-Bollay's low aspect-ratio wing
theory to evaluate the shallow water effect on the linear damping
derivatives of a rectangular flat plate [44]. In their analysis, the
free surface is considered a rigid wall, so that the rectangular plate
with draft T is exchanged for a rectangular plate fully immersed in the
fluid and equal to 2T in span-length. Further, the effect of the bottom
of the waterway is represented by taking infinite images of the plate
with span 2T with respect to the bottom. This substitution is the same
as that used to analyze the shallow water effect on the sway added mass
of the flat plate.

Following Bollay's assumption [45], they assumed that the strength
of the bound vortex y(x) is constant across the span 2T, and that the
downwash is constant along the span and equal to the value at the center
of the span. Furthermore, it was assumed that the angle at which each
bound vortex leaves the edge of the span, i.e., the edge of the plate,

is equal to half of the geometrical attack angle of the plate.
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With these assumptions, they derived an integral equation from

Biot-Savart's law, which determined the vortex strength Y(x):

U sin B +

N

T 47 X
-1

1l
rx = A J 3%1 K(x, £)dE (4.98)

where U, L, and A are the advance speed, the length, and the aspect
ratio of the rectangular plate respectively. It must be noted that the
longitudinal coordinate x(or £) is a dimensionless coordinate
introduced by dividing the longitudinal distance by the half-length of
the plate. The detailed description of the kernel function K(x,£) is
omitted, as well as the method for solving the integral equation (4.98).

Once the vortex strength y(£) is determined, the lateral or sway
force Y and the turning or yaw moment about the mid-section are

calculated as follows:

1
Y = pTL J U cos B yv(E)dg (4.99)
-1
1
N = pTL2 J U cos B y(E)EdE (4.100)
-1

According to this method, the shallow water effect on the linear

derivatives YB’ N , and Nr of rectangular flat plates was

g* Tr
investigated for various aspect ratios. Some numerical results are
shown in Figure 19, where the ordinate stands for the ratio of the

derivative at a finite water depth H to that in infinite fluid. For

the sake of comparison, the experimental data are also plotted.
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The shallow water effects predicted by the low aspect-ratio wing
theory mentioned above agree relatively well with the experimental
results except for the derivative NB' The theory notably underestimates
the shallow water effect on the derivative NB.

As has been pointed out by some persons (see, for example, [46]),
the hydrodynamic moment acting on a slender non-lifting body that
translates in a direction inclined to the longitudinal axis can be
evaluated quantitatively by the hydrodynamic instability moment which
is related to the discrepancy between the transverse added mass and the
longitudinal added mass of the body.**

This fact indicates that the great portion of the hydrodynamic
turning moment acting on a ship translating obliquely is due to the
instability moment or Munk moment rather than to the vortex
contribution. Actually, the experimental curve of the N../N. ratio

BH' " Beo
shown in Figure 19 is closer to the experimental curve of the m.yH/my°°
ratio shown in Figure 16 than to the theoretical values of the
NBH/NBoo ratio obtained by the low aspect-ratio wing theory. Inoue and
Murayama's theory doesn't,however, include the moment corresponding to

the hydrodynamic instability moment. This is the main reason why the

low aspect-ratio wing theory cannot predict the shallow water effect on

**Based on this fact, Inoue derived a formula by which the
hydrodynamic turning moment acting on a ship translating obliquely in
infinite fluid can be approximately predicted [47].
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the derivative NB.**

Kan and Hanaoka showed that the shallow water effects on the
lateral or sway force and the turning or yaw moment acting on a flat
plate traveling obliquely in a straight line or turning at a small
yaw-rate can be expressed by the coefficient kF defined by equation
(4.92) [40]. Of course, it is impossible to explain the relatively
large shallow water effect on the derivative NB.

The shallow water experiments referred to in part 3 revealed that
an oil-tanker was unstable on course in a certain range of éhallow
water, and that this instability was mainly due to the convex character
of the NB/YB curve versus the water depth.

This convex character cannot be explained by any existing theory:
Kan and Hanaoka's theory, Inoue and Murayama's theory, or Newmans's
theory.*** According to Kan and Hanaoka's theory, the NB/YB ratio is
always constant and independent of water depth. This inconsistent
conclusion is deduced by Newman's theory as well, in cases where the
aspect ratio is assumed to be zero. Furthermore, both Inoue and
Murayama's theory and Newman's theory for a finite aspect ratio say

that the NBH/NBw ratio diminishes monotonically as the water depth

decreases.

**Newman also gave the same explanation with respect to the
discrepancy between his theoretical prediction of the turning moment
acting on a ship translating obliquely in shallow water and the experi-
mental value of the moment [42].

***However, one must remember that Newman pointed out the
importance of taking account of the hydrodynamic instability moment or
Munk moment.
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As stated before, the derivative NB consists of two parts: one
due to the bound vortex on the ship's hull and the other due to the
hydrodynamic instability moment. In general, the latter part is
significantly greater than the former. Therefore, it is not surprising
that the low aspect-ratio wing theory fails to explain properly the

convex character of the ratio NB/Y The experimental results indicate

8"
that the quantitative nature of the increase of the derivative NB due
to the finiteness of the water depth is very close to that of the sway
added mass.

In relatively shallow water, the shallow water effect om the sway
added mass is greater than that on the lateral or sway force,while in
extremely shallow water, the latter is bigger than the former.
Consequently, if the hydrodynamic instability moment were taken into
consideration, the convex character of the NB/YB ratio could be
explained.

Inoue and Kijima extended Inoue and Murayama's method in order to
estimate the finite-width effects on the stability derivatives YB and

N In addition to the images of a rectangular flat plate with respect

g
to the bottom of a canal, the images with respect to the side walls of

the canal were taken into consideration. In their paper [48], the

finite-width effect is expressed in terms of the ratios YBWH/YBWH and

NBWH/NBwH which stand for the ratios of the derivatives YB and NB
obtained at a finite water depth H and at a finite canal width W to

those obtained in shallow water with depth H but without lateral
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restriction of the water surface. Some of their results are shown in
Figure 20, where the experimental results obtained by Eda [19] are
plotted for the purpose of comparison.** Obviously, from this figure,

the theoretical and experimental values do not agree well.

4.3. Asymmetrical Hydrodynamic Force and Bank Suction

Newman derived a formula from which the asymmetrical hydrodynamic
force can be calculated for an arbitrary three-dimensional slender body,
improving his two-dimensional theory [49]. Starting with the fact that
in an unbounded fluid, the velocity potential function to describe the
fluid motion around a body of revolution traveling in a straight line
can be represented by an axial source-distribution as follows:

u 2 ds (£) - (/2
o(x, v, 2) = 4= ‘ ar - [-0)2 + y%42?] @, (4.101)
L
3

where S(£) stands for the sectional area of the body at x=¢; he obtained
the following expression of the asymmetrical hydrodynamic force by
taking account of two kinds of images of the body: those with respect
to the side walls and those with respect to the bottom of the

waterway [35]:

**Eda did not do any experiments in shallow water. Hence, the
circular points denoting Eda's experiments are obtained by considering
the derivatives in a canal with W/L equal to 9.88 as equal to those in
an infinitely wide canal.
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L
S'(x) dx J 2 g'(e) K(x-£) dE . (4.102)

The kernel function K(x-£) in the above formula is given for some simple
configurations of the moving body and the canal. For instance, the

kernel function for a rectangular canal with width and depth W and H is

2n + nW
[(x=£)2 + (2n+nW)2 + 4m2H2]3/2 ’

K(x-E) = = %

m=—oo n=—m

n:odd

(4.103)

where n stands for the distance from the center of the moving body to
the centerline of the canal.

He showed some numerical examples of asymmetrical hydrodynamic
force and bank suction for a spheroid. As a result, it is clear that
the symmetrical hydrodynamic force increases monotonically as the body
is increasingly far away from the centerline of a canal., When a body
moves parallel to a single wall, the bank suction actiné on the body
is inversely proportional to the distance from the wall (see Figure 21).

On the other hand, Norrbin tried to calculate the asymmetrical
hydrodynamic force by means of a purely numerical calculation of three-
dimensional fluid motion around a ship traveling in the vicinity of a
single wall [20]. Following Hess and Smith [38], he represented the
. moving body with a surface distribution of sources so that the normal

velocity at some discrete points on the body surface might vanish.
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Then the bank suction was obtained by integrating the hydrodynamic
pressure due to the perturbation velocity over the hull surface.

In Figure 22 is shown only one example of the calculated bank
suction, which agrees very well with the experimental data. This
illustration is obtained for a single vertical wall located at the port
side of a tanker-type ship. With H/L = 0,203 and nP/B=1.0, the
calculated value of the dimensionless bank suction force Y' is -0.003158,
while the experimental value is -0.002933. It should be pointed out,
however, that the pressure distribution is discontinuous at the stern;
that is, the Kutta condition is not satisfied.**

Tuck and Newman dealt with the hydrodynamic interaction problem
between two ships in very shallow water [50]. They extended the
classical thin wing theory to solve the problem, since the flow around
the body in very shallow water seems to be two-dimensional in a
horizontal plane parallel to the bottom of the waterway. In their
analysis, the flow field around the ships is represented by a source
distribution to express the thickness effect of the bodies and by a
vortex distribution to express the interaction of the bodies with the
induced lateral flow. Furthermore, in order to obtain a unique
solution of the integral equation denoting the vortex strength, the
Kutta condition is imposed at the sterns of both ships. This is an

important difference in their analysis compared with Norrbin's analysis.

**See Figure 15 in the original paper [20].
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They compared their numerical results with those obtained by
Collatz, who did not take account of the circulation around the hulls,
or, what amounts to the same thing, did not impose the Kutta condition
at the sterns. As a result of the comparison, it was shown that imposing
the Kutta condition improved the theoretical estimate of the
hydrodynamic interaction force, but did not improve the prediction of
the interactive turning moment very much (see Figure 23). 1In
particular, in case of zero-stagger which is equivalent to the sit-
uation where a single ship moves in proximity to a vertical wall and
parallel to it, neither the Tuck/Newman theory nor the Collatz theory
gives a turning moment. This conclusion disagrees with the actual
situation that any ship experiences a bow-out turning moment from the
bank.

Recently, Beck tried to calculate the asymmetrical hydrodynamic
force acting on a slender ship traveling with a constant velocity
parallel to the centerline of a rectangular canal by adopting the
method of matched asymptotic expansions [51]. The basic assumption in
his analysis is that the canal depth is of the same order as the ship's
draft and the ship is far enough from the both canal walls. Under this
assumption, the flow field is represented by source and vortex
distributions along the ship's length, the strengths determined by
matching the outer solution with the inner solution and imposing the
Kutta condition at the stern. The lateral force and the turning moment

acting on the ship are obtained by integrating the hydrodynamic pressure
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over the whole surface of the ship's hull. Numerical calculations show
that his method can give good qualitative predictions of both lateral
force and turning moment, but that it needs improvement in order to
give good quantitative predictions.

Besides the restricted water effects on the stability derivatives
which have already been discussed, we have to consider the restricted
water effect on the rudder effectiveness, because the rudder is the sole
control device in most ships. The effectiveness of a rudder placed at
the stern is affected by not only the characteristic of the rudder
itself but also by other factors: wake behind the ship, slip stream
behind the screw, ship's motion, interaction between the rudder and the
hull at the stern, and so on. It is difficult to evaluate properly the
restricted water effect on the rudder effectiveness unless the
restricted water effect on each of these factors is first uﬁderstood.

The flow around a ship's hull in shallow water is more two-
dimensional or confined to the horizontal planes than that in deep water.
The curvature of the flow becomes greater so that the flow around the
stern in shallow water tends to separate. Accordingly, there occurs the
"dead-water" region at the stern, diminishing the effectiveness of the
rudder,

On the other hand, a conspicuous increase in the total resistance
due to the restriction of the waterway reduces the ship's speed, so that
the slip stream behind the screw gets stronger. The increase of the

screw's slip brings an increase of the effectiveness of a rudder behind
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the screw, which, roughly speaking, compensates for or exceeds the
decrease due to the wake. This reasoning is verified by some model
experiments [15, 19], except that the effect of the slip stream behind
the screw is exaggerated in the model experiment, compared with that of
the full-size ship.

The shallow water effect on a detached rudder, meaning that only
the rudder is placed in the water, is estimated by Kan and Hanaoka [40],
who applied Kidrmdn and Burgers' method to estimate the side-wall effect
on the 1lift of a wing measured in the wind tunnel [52], for the purpose
of estimating the bottom effect on the rudder effectiveness. 1In
Figure 16 is plotted the ratio of the rudder force at a finite water
depth H to that in infinite water, obtained on the assumption that the
aspect ratio of the rudder is equal to H and is denoted by kG' This
illustration shows that the shallow water effect on the rudder force
is remarkably small, compared with the shallow water effect on the
other stability derivatives.

On the other hand, using a model with twin screws and a single
rudder, Bottomley measured the initial turning moment of the rudder
acting on a ship [53]. According to Bottomley's results, the restricted
water effect on the rudder effectiveness proved to be quite changeable,
depending on the rudder configuration behind the ship's stern: The
unbalanced rudder, which means a large gap between the leading edge of
the rudder and the stern-post, generates a larger initial turning

moment than the balanced rudder does, in which the leading edge is

-118~



located just behind the stern-post. The initial turning moment of the
unbalanced rudder in a canal was about twice as large as that in deep
water, while the initial turning moment of the balanced rudder in a
canal was about 1.5 times as large as that in deep water. Comparing
these results with other experimental results [15, 19], the restricted
water effect on the rudder effectiveness obtained by Bottomley seems to
be too large.

At any rate, as stated a few paragraphs ago, the rudder
effectiveness is strongly dependent on many factors not related to the
characteristics of the naked rudder. In order to clarify the
restricted water effect on the rudder effectiveness, the restricted

water effects on those factors must be investigated.
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5. SIMPLIFIED NONLINEAR MATHEMATICAL MODELS TO DESCRIBE MANEUVERING

MOTION

In order to discuss the course stability of a ship in restricted
waters,we derived the linear maneuvering equations of motion in part 2
on the assumption that the perturbations from a straight motion with a
constant speed are small. This assumption brought a great advantage:
it is sufficient to consider the sway and yaw motions because the
longitudinal motion or the surge motion doesn't couple with the sway and
yaw motions.

The usefulness of the linear equations is, however, limited to the
course-keeping maneuver; in other cases, the linear predictions are
inaccurate. 1In particular, in the case of an unstable ship, the linear
prediction is unworkable because the response of an unstable ship to
any small disturbance diverges to infinity unless the motion is
controlled by adequately deflecting a control surface. Therefore,
nonlinear maneuvering equations of motion are essential for predicting
any kind of maneuvering response for an unstable ship. Furthermore,
even in cases of stable ships, the accuracy of the linear prediction
accompanied by a significant perturbation is very poor. One of the
important defects of the linear prediction, i.e., equations (2.8) to
(2.10), is that the decrease of the longitudinal velocity due to the
sway and yaw motions cannot be predicted by the linear maneuvering

equations of motion. Hence, in this chapter, we shall discuss some
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nonlinear mathematical models, without confining our consideration to
the maneuvering motion in restricted waters. The purpose of the
following investigation, however, is not to examine the nonlinear
response but to discuss the feasibility of some different nonlinear
mathematical models.

One of the methods used to construct nonlinear models is to expand
the hydrodynamic force and moment functions, i.e., X(u, v, r, §, ﬁ, G,
f, é, n, ¥, Y(u, v, +ve, ¥) and N (u, v, ..., ¥) of the equation (2.2)
with the variables u, v, ...., n,and Y. When we derived the linear
equations of motion (2.8) to (2.10), we retained only the linear terms.
But now we shall retain some nonlinear terms as well.

One way to introduce the nonlinear terms is to use Taylor's
expansion in terms of the variables. For instance, when we expand the
hydrodynamic sway force in terms of the variable v only,‘the expansion
is described as follows:

= 2 3 ees e . . %%
Y Y0 + Yv v + va v+ Y v + (5.1)

On the other hand, considering the hydrodynamic point of view that
the main nonlinear characteristic of the hydrodynamic force is
dependent on the squared velocity, another type of nonlinear term is
used frequently:

vy=v +v v+y w2dxl ... =Y +Y v+ Y, vlv]+ ... .
0 v v v 0 v v|v| (5.2)

**0f course, the final expansion of the right-hand side functions of
equation (2.1), namely X, Y, and N, includes not only nonlinear terms of
a single variable but also such coupled nonlinear terms as v2r, vr2 and
so on.
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Among the nonlinear models belonging to the first category, i.e.,
Taylor's expansion, there exist some different models which are proposed
by Eda and Crane [54], Strdm-Tejsen and Chislett [55], Ogawa [56],

Eda [19], and so on, while Inoue [57], Norrbin [23] etc., use models of
the second category, i.e., the nonlinear models of the type (5.2). The
usefulness of those nonlinear models has been investigated in enough
detail and has been recognized.

Consequently, in cases where we want an accurate prediction of the
maneuvering motion, which is required by the simulators used to train
ship's operators, nonlinear mathematical models with a lot of nonlinear
terms should be built up so as to give predictions as accurately as
possible. However, one of the main drawbacks of those models is that
they have too many unknown coefficients to be determined. Incidentally,
the system—identification technique mentioned in part 3 in principle is
available for determining the unknown derivatives included in the
nonlinear mathematical model, but is not very reliable at present.
Accordingly, we can only reiy on the captive model tests in order to
determine such unknowns, if we want accurate derivatives.

We often need to grasp quickly the maneuverability of a ship already
on a voyage. A ship has a variable maneuverability according to its
loading condition, i.e., the draft, the trim, etc., but it seems
impractical to examine beforehand the maneuverability of every ship, to
obtain in advance the stability derivatives of every ship in all possible

cases of its loading condition by means of the captive model test.
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Unfortunately, the amount of information on the maneuvering motion that
we can obtain from a real ship is not great. The instantaneous values
of ship's speed, rudder angle, directional angle, and yaw angular
velocity are all that we can get unless special instruments are
installed in the ship.

Therefore, if we want to assess the maneuverability of a ship from
the limited amount and the limited kinds of information on the
maneuvering motion, we must use a simplified mathematical model, instead
of a detailed one. If an adequate, simplified model were used properly,
the prediction obtained would be useful enough. From this point of
view, we shall introduce some simplified nonlinear models and describe
the practical methods to determine the unknown coefficients included in

those models.

Model 1: The so-called first-order maneuvering equation of motion
which was proposed by Nomoto [58] has been used to describe the
relationship of the rudder angle versus turning rate.

dr

T it + r = K§ (5.3)

The unknown coefficients, namely T and K,are determined by analyzing
Kempf's zigzag maneuver. The index T represents the extent of the
course stability of a ship or the quickness of ship's response, and
the index K represents the extent of the turning ability.

The origin of this model is equation (2.45); on the assumption
that the maneuvering motion depends on the response-characteristic in

the low frequency range, the first-order equation (5.3) was derived
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from the second-order equation (2.45), in which the index T was defined
as T,+T,-T,.

Subsequent investigation has unfortunately revealed that this
first-order model will not always satisfactorily describe even a small-
perturbation motion such as Kempf's zigzag maneuver; that, indeed, the
indices T and K of this model are dependent on the kind of zigzag
maneuver: a different zigzag maneuver produces a different set of T
and K values. This is a fatal defect, but, as if this weren't enough,
the model (5.3) proved unable to describe adequately the yaw motion of
either a less stable or an unstable ship, partly because it is a first-
order equation and partly because it lacks the nonlinearity essential
for prediction of the motion of an unstable ship.

Therefore, instead of the first-order linear model, some second-
order models with nonlinear terms are proposed, but the validity of
these new models is still being examined. For example, these nonlinear

models are proposed as substitutes for the model (5.3) [59,60]:

13

T, T, ¥ + (T,+T,)% + § + of3 = K8 + KT8 (5.4)
T,T, ¥ + (T1+T2)§13 + H®Y) = K§ + KT,$ (5.5)

Comparing these models with the second-order equation (2.45), it is
clear that these new models are constructed by replacing the linear
stationary turning characteristic & = K§ with the nonlinear statiomary
turning characteristics K6=$ + a¢3 or Ké=H({). Then, we shall consider

how the unknown coefficients and function Tl’ T T3, o, K, and H(&)

2’

can be determined from the free-sailing trials of a ship.
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One of the practical methods is the phase-plane analysis of the
zigzag maneuver, which was proposed by Bech and Smitt [61]. The
outline of the phase-plane analysis proposed by them is as follows: To
begin with, the stationary turning characteristic 6=($+ui3)/K or
6=H(®)/K is assumed to be known from the spiral or the reversed spiral
tests. Then the trajectory of the zigzag maneuver is plotted on the

¥ versus |y phase-plane (see Figure 24).% From this trajectory, we

know the value of $ at a certain instant t=ti as follows:

¥ o(ty) = [“’ g-:{b)-]t=ti (5.6)

On the other hand, we already know the values of i(ti), w(ti),
d(ti), and S(ti) from the time-histories of the rudder angle and the
yaw rate. Therefore, we can consider equation (5.4) or (5.5) as an
algebraic equation with respect to the unknowns Tl’ T,, and Ts. If we
have enough equations like (5.4) or (5.5) to determine the unknowns,
three equations at least, we can determine Tl’ Tz, and T3.

The most important defect of this method is inaccuracy of the
derivative ) . It is impossible to obtain an accurate value of the
time-derivative ¢ from equation (5.6), because the yaw acceleration
{ obtained through the numerical differentiation of the yaw rate ¥ is
badly blemished by even small-amplitude noise involved in the measured

values of the yaw rate &.

**The instrument used to pick up the ship's yaw rate is the rate
gyroscope, but the instrument used to record the yaw acceleration
directly is not so well-known, so the yaw acceleration is usually
obtained from numerical differentiation of the yaw rate.
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(b) Phase-plane trajectory on ¢l~¢ plane

Figure 24. Outline of the principle of phase-plane analysis.
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If we make use of the trajectory drawn on the phase-plane, it is
expected that we can determine the unknowns Tl’ T2, and T3 more accu-
rately. From this point of view, some attempts have been made. One
idea is to use the limit cycle of the trajectory drawn on the phase-
plane. In the case of a stable ship, the trajectory of the zigzag
maneuver always converges to a limit cycle; even for an unstable ship,
it is possible to make the trajectory converge to a limit cycle if we
conduct adequate modified zigzag maneuvers [62]. As for methods to
determine the unknowns Tl’ TZ’ and T3 using the limit cycle, two have
been tried so far. One of them is to use the areas enclosed by the

limit cycles drawn on the various phase-planes [63, 64].
Let both sides of equation (5.5) be multiplied by a variable y,

and then let them be integrated with respect to time over the interval

(to, tl)’ where the two instants t0 and t1 correspond to a single point

on the limit cycle and the difference, namely tl—to,is equal to the
time interval necessary to go completely around the limit cycle. 1In
other words, the following relationships hold good for the two instants
to and ti5 V(td=v(t ), ¥(ey)=i(t,), V(e )=i(e)), etc.

As a consequence of integration, we obtain

T,T, T +T,

- §¢d$ +— § Yy + } H—é@— dy = ﬁcdw + Ts}d)dd (5.7)

The first integral of the left-hand side is

f ¥dj = - D, ; (5.8)

where D, is the area enclosed by the limit cycle drawn on the -9
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phase-plane. Similarly, the integrals §6dw and }ﬁda are defined as the

areas D3 and Dl+ of the limit cycles on the Y-8 and ¢—6 phase-plane

respectively:
§6dw = D3 (5.9)
}J)dG = -D, . (5.10)

while the integral }@d& vanishes. Finally, let us consider the
integral }(H(@)/K)dw; we assume that the stationary turning
characteristic of a ship, 6=H(¢)/K, is known, and in order to
calculate the integral, we have to know the trajectory of the limit
cycle on the H(y)/K-versus-y phase-plane. For this purpose, we plot
the stationary turning characteristic 6=H(¢)/K on the Y-y phase-plane.
Then the desired trajectory ¥-H({)/K is obtained as follows (see
Figure 25):

(a) First, let us draw a straight line through a certain point
on the Y-y limit cycle, for instance, point A, and parallel
to the abscissa or y-axis, and let it intersect the y-axis
and $=H(j)/K curve, which are denoted by B and C
respectively.

(b) Next, let us draw another straight line through point A so
that it crosses the y axis at a right angle, and let D
denote this cross-point. Then, let us define point E on
this perpendicular so that the distance Eﬁ-may be equal to

——

BC. By drawing a curve through the points E obtained
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successively in this manner, we get the desired
trajectory y~H({)/K.
In Figure 25(a), the y-H({)/K trajectory obtained thus is shown
with a dotted line. Let D5 denote the area of the limit cycle on the

y-H({) /K phase-plane; that is to say,

}Md“ - D : (5.11)
K 5
For an unstable ship also, the same procedure to get the w-H(i)/K
trajectory is entirely applicable. It should be noted that the
movement on the limit cycle is in the counter-clockwise direction for
part of the limit cycle (Figure 25(b)) or on the whole limit cycle
(Figure 25(c)), while in the case of a stable ship, the travel on the
limit cycle is in the clockwise direction.

The area enclosed by a closed curve on which a point travels
counter-clockwise has to be reckoned as a negative value. For instance,
in case of Figure 25(b), the entire limit cycle consists of three parts

whose areas are denoted by D5, D5 and D5 . In this case, equation

(5.11) must be replaced by equation (5.12).

}l{éﬂdxp =D, + D + D ) (5.12)
Summarizing, we obtain the following from equation (5.7):

T,T
-"12D_+ =D+
1 D, + T,D, =D, +D_

D + Dl — Dll - Dlll . .
3 5 5 5 (5.13)
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¥~ § LIMIT CYCLE

(a) Stable ship

¥~¥ Tt cvcLe d~H(y/k

(b) Unstable ship ( Case1)

Ny~ YLIMIT CYCLE

\6 ~HW)/ K

(c) Unstable ship (Case 2)

Figure 25, Schematic method to obtain Yv~H() /K trajectory.
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Then, let us multiply both sides of equation (5.5) by the variable

and integrate over the time interval (to, tl):

T1T2 T_+T

< §$d$ + IK 2 fﬁd& +§ Eéil ajp §5d¢ + T3§8d¢ (5.14)

Because

0 \

Pdy
bay

]
=

—}&dﬁ )
—§¢d6

§dp = D

sdy

0
o
£
~

(5.15)

6
}H(¢) = 0 J

X ’
where D; denotes the area enclosed by the 1limit cycle on the é—@ phase-
plane, we obtain

T1+T

2

From equations (5.13) and (5.16), we can determine the unknowns

T1T2/K’ (T1+T2)/K and T3, if we have equations enough to solve for the
three unknowns. For this purpose, we have to execute at least two
different zigzag or modified zigzag maneuvers. On the other hand, if
we replace the integrals along the entire limit cycle with the
integrals over an arbitrary time interval (to, tl), which means that
the conditions y(t )=y(t,), §(t )=y(t,), p(e)=j(t)), etec., are not
always satisfied along arbitrary trajectories on the phase-planes, we
need not execute different zigzag maneuvers in order to determine three

unknowns [64].
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There is another method used to determine the unknown indices
T,, T,, and'T, from the limit cycle drawn on the phase-plane [65]. The
outline of this method is as follows: To begin with, the mathematical
model described by equation (5.5) is constructed on the analog-
simulator, where the unknown coefficients are set on the variable
potentiometers. Then, the zigzag maneuvers that had been executed on
a real-scale ship or on a model are repeated on the analog simulator.
The variable potentiometers are adjusted so that the limit cycle drawn
on the simulator best fits the limit cycle produced by the experiments.
The final values of the potentiometers are the desired values of the

unknown indices Tl’ Tz, and T3.

Model 2: The reasoning through which the nonlinear term was introduced
into equations (5.4) and (5.5) wasn't really mathematically rigorous.

To remedy this, Clarke tried to derive a more reasonable nonlinear
mathematical model analogous to equation (5.4) or (5.5). He assumed
that the hydrodynamic force and moment acting on a ship were described
as follows:

YV'=Y '+ Y'"vH+ YV Y YSE O +Y)S +Y v24 7" vir'+y ! r'2
0 v v r r 8 v vr rr

+Y" v3I4+Y!' v'2¢' Y '"v'r'2 47 ' r'3 4y ', '3 (5.17)
AA'A vvr vrr rrr 888
N'=N'" + N' v+ N v' + N '+ N} £' + N 8" + N_' v'2 4N ! v'r'4N ' r'2
0 v v T r ) v vr rr
13 ] 1 12..1 ] 112 v 13 ' 13
+ N v' + var viér' + err vir's + Nrrr r'd + N666 ) . (5.18)

If one could eliminate the variable v from the latter two equations of

(2.1), whose right-hand sides are replaced by equations (5.17) and
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(5.18), the desired nonlinear yaw equation would appear immediately.
But it is impossible to eliminate the variable v through formal
manipulation only because of the presence of nonlinear terms.

In order to remove this difficulty, Clarke assumed that there
existed a definite relationship between the instantaneous values of two
dependent variables v and r. That the variables v(t) and r(t) are
strongly connected to one another would be illustrated if we should
plot a lot of pairs of the variables on the v-r phase-plane; most of
the points would concentrate in a certain narrow region.

The relationship which Clarke assumed is as follows:

vi =g+t + g2+ g.x'3 , (5.19)
where the coefficients 21 are constants.

Eliminating the variable v on this assumption, we obtain the
following nonlinear yaw equation:

AgE" + (A 7+ Ar'+Ar'2) B! + (AHAT' + Ar'?) 1

+ (A +Ag8'2) &' + (Ag+a, 612) &' + A= 0 (5.20)

where the coefficients Ai-are constants and can be expressed in terms
of the hydrodynamic coefficients. Comparing this equation with
equations (5.4) and (5.5), it is seen that the simplified models (5.4)
and (5.5) are special cases of equation (5.20). Since there are
twelve unknown coefficients Ai (i=0, 1, ..., 11) in the model (5.20),
it seems to be necessary to reduce the number of unknown coefficients
by introducing other reasonable assumptions, because it is difficult to

determine so many unknowns from the results of either real-scale
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maneuvering trials or free-sailing model tests.

Model 3: The above examples give the nonlinear yaw equations of motion
only, but when the nonlinearity becomes important it will be necessary
to take the change of longitudinal velocity of a ship due to its motion
into consideration. If we want to predict the speed change accurately,
we have to take account of all factors governing it. Here, out of
several simplified models that take account of the speed variation
macroscopically or in a simple way, we shall introduce a mathematical
model proposed by van Leeuwen [67]. He pointed out that it was
important to use dimensionless variables v' and r' that were defined
by dividing the variables v.and r by the instantaneous advance speed
U. In order to describe the nonlinear stationary turning characteristic,
he adopted the following equation which is analogous to that used in
equation (5.4):

ag'+ ' + dyr'2 + dlyr'3 = g's', (5.21)
where ao', a2', and a3' are constants, but are different from those
defined by equation (2.37). Then, a term T' r' is added to the left-
hand side in order to take account of the transient motion. Therefore,
the yaw equation is

T'r' + ¢' + aa +alr'? + o 'r'3 = k'S

2 3 . (5.22)

The unknown coefficients aa, a;, aé, and K' of the equation (5.22)
can be determined from spiral or reversed spiral tests, and the time

constant T' can be determined by analyzing the transient response in the

spiral tests.
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As for the sway equation, a simple relationship analogous to
equation (5.19) is proposed:
v+ o't +o'r'3 = 0 (5.23)

The unknown constants au' and as' can be determined if we know the
drifting velocity of the ship or model in the spiral tests. Assuming
that the speed drop due to turning motion is proportional to the

squared yaw rate, r'?

, van Leeuwen described the surge motion as
follows:

T'"4' +u' = K'r'2 . (5.24)
u u

where u' stands for the perturbation of the surge velocity. The time-
constant Tu' and the coefficient Ku' are determined by analyzing the
time-history of the surge velocity recorded in the spiral tests.

Equations (5.22), (5.23), and (5.24) are the nonlinear models
proposed by van Leeuwen, who verified the usefulness of his models in
reference [67].

Here, it must be pointed out again that the validity of the
above-stated simple mathematical models is very limited compared with
the detailed mathematical models. Further, these models are applicable
for describing the maneuvering motion in shallow water, but are not
applicable in canals. In the latter case, some modifications or

refinements will be necessary.
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