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ABSTRACT

A slender-body theory for the wave making of a ship in steady
translational motion is developed by assuming that the length of the
waves generated by the ship is of the same order of magnitude as the
beam of the ship. The exact boundary value problem is formulated and
then linearized by assuming that the wave length is short.

This linearized problem is solved to two orders of magnitude by the
method of matched asymptotic expansions. The first order solution turns
out to be a simple variation on the Tuck slender-body theory, while the
second order solution turns out to be a diffraction problem accounting
for the refraction of the waves away from the body.

Qualitatively, this solution shows some of the same characteristics
which Adachi has observed in his experiments on models with long parallel
middle bodies. This solution is in many ways similar to the solution
which Faltinsen obtained for the diffraction of head seas by a slender
ship. Quantitatively, the wave elevations obtained using this theory
agree well with experimental measurements obtained from tests on a

pointed body of revolution.
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INTRODUCTION

For hundreds of years, one of the naval architect's goals has been
to predict the resistance of a ship using purely theoretical means.
William Froude (1868) took the first steps towards this goal when he
published his famous paper suggesting that ship resistance could be
broken into two components, one due to viscosity and one due to gravity.
Through the work of Osborn Reynolds, Froude knew how the viscous
resistance could be scaled, and it only remained for him to state how
the residuary resistance scaled. Froude developed his similarity law
for scaling residuary resistance by studying the wave patterns generated
by models and noting at what speeds the wave patterns were similar. He
also stated the well known fact that a major portion of the residuary
resistance is the wave making resistance.

J. H. Michell (1898) was the first person to come forward with a
theory for predicting the wave resistance of a ship which was the fore-
runner of today's thin-ship theory. Although thin-ship theory has been
rigorously studied and elaborated upon by many workers (for example, see
the many works by Wrigley, Havelock, and Weinblum), it was not until
the early 1960's that a totally new theory was developed. This was the
slender-body theory developed independently and essentially simultaneously
by H. Maruo, E. O. Tuck, and G. Vosser [see, for example, Tuck (1963)].

As quickly as a slender-body theory for wave making was brought to
life, it was dealt a death blow by G. R. G. Lewison (1963). He showed
that the wave resistance given by slender-body theory was approximately
twice that of thin-ship theory and the latter theory already over
estimated the wave resistance compared with experimental results. Thus,
slender-body theory as it applied to wave making became dormant for
the next decade, at the end of which a number of events occurred which
gave new direction to the theory.

First of all, calculations of the wave elevation alongside the ship
were completed using the Tuck Slender-Body Theory. These calculations

[see Ogilvie (1974)] showed that, although the wave amplitude was too



great and the phase was in error, the theory certainly demonstrated the
proper wave-like behavior alongside the ship except for near the bow.

At the same time, T. F. Ogilvie (1973) was developing a modified slender-
body theory for application to the region near the bow of the ship.

This theory gave finite wave amplitudes at the bow and showed that the
waves decayed like the inverse of the distance from the bow. This agreed
with the Tuck theory which said that the wave amplitude grew like one
over the distance from the bow as the bow was approached.

Another sequence of events also occurred around the same time.

H. Adachi (1973) made available a number of his experimental results on
an extremely long, slender model. These results showed that the rate

of decay of the waves generated by a ship was much more rapid than the
rate predicted by conventional theory. (Conventional theories show that
the waves decay like the inverse square root of the distance from the
bow.) These results are shown in Figure 1 for two model lengths. Model
§-201 is 3.5 meters long. Model ES-201 is made by extending Model S-201
with 20 meters of parallel middle body. Adachi produced data for a
single model, ES-201, to show that the wave elevation increased linearly
in the transverse direction as one proceeded away from the model, Figure
2. These results are similar to results obtained by 0. M. Faltinsen
(1971) for a problem with similar geometry.

Faltinsen was solving the diffraction problem for a ship at rest in
head seas. In his solution Faltinsen found that the waves were atten-
uated in the longitudinal direction by the presence of the ship and that
the wave amplitude grew as one moved away from the ship. This led to
the conclusion [since confirmed by Ursell (1973, 1974a, 1974b)], that the
waves generated by the ship were refracted by the presence of the ship.
In fact, Ursell showed that the waves should decay like 1/x3/2 as they
move away from the bow, where x 1is the distance from the bow.

These results have led us to formulate the following problem: let
a ship in a coordinate system as shown in Figure 3 be represented by the
sum of two source distributions. The first source distribution is a
slowly varying one intended primarily to represent flow in an infinite
fluid about the ship and its double model, with the related wave motion
appearing as high order effects. The second source distribution will be
rapidly varying in the longitudinal direction and will represent the
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Figure 2: Rate of Transverse Wave Growth for Model ES-20l at a Froude
Number of 0.25 [Adachi (1973)].
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Figure 3: Ship with Typical Wave Pattern

effects of diffraction on the waves from the first source distribution.
As we observe the flow near the ship due to the rapidly varying source
distribution, we will find that the waves do indeed increase like ly]
as we move transversely away from the ship. Although we can not show the
rate at which the waves decay as we move longitudinally away from the
bow, we do obtain excellent correlation with experimental wave measure-
ments alongside the parallel middle body of a ship model. These results
are primarily due to the fact that we have now obtained a problem which
allows us to have a wave-like free surface boundary condition near the
ship. This is a concept which Ogilvie (1973, 1974) found has allowed
him to obtain solutions to the bow problem. We shall now proceed to set
up our problem precisely and to obtain a solution by employing the ideas

just discussed.



PROBLEM FORMULATION AND METHOD OF SOLUTION

We wish to establish a theory for the wave making of a ship at low
speed, where we define low speed to be a speed such that the fundamental
wave length is comparable with the beam of the ship. To formalize this,
we shall say that we have a slender ship whose beam—-length ratio and
draft-length ratio are of the same order of magnitude as some small
parameter, € . Now we can say that the wave length/ship length is com-

parable with e . To state this more precisely, let

and then

where B is the ship's beam, D the ship's draft, L the ship's length,
A the wave length, U the ship's speed, and g the gravitational
constant,

The fact that we intend to develop a slender body theory implies
some constraints on the geometry of the body. We define our body by the
equation:

z = h(x,y) , 0<sx<L,

where the body offsets are given by the points [x,y,h(x,y)] , and the
function h(x,y) is defined such that the ship is heading in the nega-
tive x~direction, with the origin at the bow, and with the z-axis verti-
cally upwards. Now, defining slenderness, we can say that h(x,y) 1is
small and we shall also demand that derivatives of h(x,y) with respect

to x should also be small. Formalizing this, we can say:

h(x,y) = 0(e) ’
and

oh _
x 0(e)

An important fact to note is that in the limit as >0 , the body



cross—-sectional dimensions shrink to zero, the wave length goes to zero,
and we have an infinite number of wave lengths along the body. This
implies that the speed is now a function of the small parameter, ¢ ,
and the speed goes to zero as ¢€+0 , though not linearly. In fact, from
the relationship associating A/L to ship velocity and € , we can see
that:

U= 0(51/2) .

Now stating the problem which we intend to solve as a boundary value
problem, we shall assume that the fluid is inviscid and incompressible
and that the flow is irrotational. Given these assumptions, the flow
can be described by a potential function. The partial differential
equation governing this problem is the continuity equation,

wx T ¢yy te =0, 1)

in the fluid domain. The body boundary condition is that there shall be
no flow through the body. This can be written as:

99
e 0, on h(x,y) - z=0, (2)

where 93/3n denotes the derivative in the direction of the three-
dimensional outward normal vector to the body. On the free surface, two
boundary conditions apply. The first is the dynamic free-surface

condition,

=2

gz + 2{o2 + 02+ 02} =5 U2 on  z=c@xy), (3)

and the second is the kinematic free-surface condition,

Qxcx + ¢y;y - @z =0, on z = z(x,y) . 4)

Finally, we must have a radiation condition which states that no waves

should be propagating upstream of the ship.

Method of Solution

In order to solve the above boundary value problem, we must simplify
it. To do this, we shall linearize the problem. By writing the
potential function &¢(x,y,z) as follows:

o(x,y,z) = Ux + Up(x,y,2) ,
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and assuming that U¢(£,y,z) is higher order than Ux , we may rewrite
the boundary value problem and its boundary conditions in terms of
¢(x,y,z) . Furthermore, we may expand the wave elevation in a Taylor
series about z = 0 and discard all high order terms to obtain a
linearized free-surface problem.* Rewriting the continuity equation ),

we obtain:

6.+ ¢ +¢ =0 outside the body for z < 0 . (5)

XX yy zz

Rewriting the body boundary condition, equation (2), we find that

h
3 _ _ = on h(x,y) -z =0 . (6)

M A+ n? 42
x Ty

By revising the dynamic free-surface condition, equation (3), and the

kinematic free-surface condition, equation (4), we obtain:

80 + 5 U2(20, + 02 + 62 + 42 on  z=0, )

and

ch + U¢x;x + U¢y;y - U¢z =0 on z=0,

If we now neglect the product terms in both equations, and then differ-
entiate the dynamic free-surface condition with respect to x and sub-
tract the result from the kinematic condition, we obtain the linearized

free-surface condition as follows:

¢xx + K¢z =0 on z=0, (8)

where

k = g/u? ,

The radiation condition for this problem remains unchanged. Although the
problem which we must now solve is linear, it is still an extremely dif-
ficult one to solve exactly. Therefore we shall make use of the method

of matched asymptotic expansions to further facilitate finding a solution

*We should linearize the problem separetely in the near field and far field
of the body, because we might expect different orders of magnitude for the
velocity components in these two regionms. However, it turns out that for
this problem the linearized problems in the near and far fields are
independent of the initial linearization.



to the problem.

In the application of the method of matched asymptotic expansions
to the linearized problem, we shall determine approximate solutions to
the problem which are valid in the far field and near field respectively.
In the far field, we shall assume that y and z are O(l) as ¢ + 0
and that the derivatives of the potential function with respect to x,y,z
are all of the same order of magnitude. Because of the assumption about
the order of magnitude of y and z , we will not see the body in any
detail in the far field. In fact, in the limit as € »> 0 , we will
represent the body as a line of singularities of unknown strength. In
the near field, we will assume that y and z are O(e) and that
derivatives of the potential with respect to y and z are O0(c"l) ,
while derivatives of the slowly varying potential with respect to x
are 0(l) . Because of these assumptions, we will find that, in the
near field, the boundary value problem becomes two dimensional in the
cross section of the ship. This two dimensionality allows us to for-
mulate a problem involving the body geometry, which we can readily solve.
In solving this problem, we will be able to determine the unknown
singularity strengths in the far field.

The final step before starting the actual solution of the problem
is to state our problem in terms of a perturbation series. In both the
near and far fields, we shall assume that the potential function,

¢(x,y,2) , can be expanded in the following form:
0
¢ (x,y,2) = ¢>( )(x,y,Z;E) + ¢>(1)(x,y,2;e) + e

For the far-field problem, we shall assume that each ¢(n)(x,y,z;e)
can be represented by a convolution integral of a source distribution
and a Green's function over the length of the body. Let the source dis-
tributions for the first and second potentials be o(x) and 2(x)ein
respectively, where both o(x) and I(x) are slowly varying functions

of x , that is to say:

30 _ 8L _
vl 0(o) and = o) .

The second source distribution is chosen to be rapidly oscillating so
that it can represent the diffraction effects which we know occur.

Likewise, we shall assume that in the near field the second near-field
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potential is of the form ¢(2)(x,y,z;e) = Re[einw(z)(x,y,z;e)] » where
again w(z)(x,y,z;e) is a slowly varying function of x . Here we
justify making ¢(2)(x,y,z;e) a wave-like potential because we know
that if we want ¢(2)(x,y,z) to represent the diffraction of waves, it
must be rapidly varying in the x direction. We shall now set up and

solve the first order problem.*

*In the work which follows, we shall drop the superscripts without
ambiguity.



FIRST ORDER PROBLEM

Far-Field Problem

In the far field we will represent the ship by a line of sources
distributed on the free surface. First we need to determine what the
governing equations should be for the far-field problem with a source
distribution. Based on the continuity equation and the assumption that
all derivatives are the same order of magnitude in the far field, the
partial differential equation governing the far field becomes the Poisson
equation. We have no body boundary condition to satisfy. This leaves
only the free surface and the radiation conditions to be determined.
Because we expect waves of length A = 0(e) in the far field, the deriv-
ative of the potential in the far field must be very large due to the
rapid changes in the potential necessitated by wave-like behavior. 1In
fact derivatives with respect to x,y,z must be O(e'l) in the far
field. By employing this information, we determine that the orders of
magnitude of the terms in the linearized free-surface condition, equation
(8), remain unchanged. We can now write the corresponding boundary value

problem as follows:

(¢xx + ¢yy + ¢zz) = 0(x)8(y)s(z-c) , z<0

and

¢+t kd_ =0 on z=0,

where c 1is the vertical location of the source distribution (c < 0)

and 6(y) and 68(z - ¢) are Dirac delta functions. The solution to this
problem must satisfy a radiation condition so that waves do not propagate
upstream of the disturbance. Tuck (1963) has solved this problem and he

gives the following results:

oRr(k,23z) = ~ —92(K) { k2422 + k2 AZ2+JL (z+c) —&2+22 Iz-cl}
k247 -

2/k2+42

where ¢**(k,%2;z) 1is the double Fourier transform of ¢(x,y,z) with

respect to x and y . We can now let our line of sources approach the

11
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free surface by letting c¢»>0 . If we do this, ¢**(k,2;2z) simplifies to:
,422 2
o*(k)e +2¢ z

p**(k,2;z) = -~
vkZH2Z ~ K2/«

9)

Applying the Fourier inversion theorem to ¢**(k,%;z) ,» we find that the

potential can be written as follows:*

r " 18y vk2+42 7
_ 1 ikx . d2 e"Ve
o(x,y,2) = -~ -= | dk e” 0*(k) . (10)
4m - _ k2492 - k2/k

This is the Fourier transform form for the first order potential in the
far field.

If we are later going to match this solution to a near-field
solution, it will be necessary to obtain an inner expansion of the outer
expansion (IE-~OE) . The IE-OE is an asymptotic form of the far field
solution obtained by letting y and 2z become small [0(e)] . The
IE-OE of equation (10) is as follows:

L
¢ (x,y,2) ~ % o(x)log r - -Z—l;f dg o' (£)log 2|x~E|sgn(x~£) (11a)
0(c log ¢€) 0 0(o)
eKZ
- -4—j dg o' () {H [k(x-£)] + [2 + sgn(x-£) 1Y (x|x-g|))
0 0(ce) (11b)

where r = /;E;;E is the radial distance from the source distribution.
F*o and Y, are the Struve function and the Bessel function of the
second kind, respectively. The derivation of the IE-OE 1is given in
Appendix A. The first two terms of the IE-OE » line (11la), are the same
terms which we would obtain when finding the IE-OE for a line distri-~
bution of sources in an infinite fluid. This is not surprising consid-
ering that the usual first order approximation to the low speed problem
is simply the problem in which the free-surface condition is ¢z =0 .
The third term, line (11lb), is the term which contains the wave-like

*This integral has two Cauchy singularities for |k| >k + The proper
contour around the singularities is determined from the radiation
condition (see Appendix B).
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behavior, and it is higher order than the terms in line (11a).

Near-Field Problem

We shall now determine the first order near-field boundary value
problem, and establish its behavior far from the body. It is at this
stage that we shall use our slenderness assumptions to the utmost.

It is trivial to show that the zeroth order potential must be the
same as the potential for the incident stream in the far-field problem,
that is:

U¢(0)(x,y,z;e) = Ux .

Therefore, we shall proceed with the first order near-field problem.

The linearized boundary value problem was glven in equations (5), (6),
and (8) as follows:

¢xx + ¢yy + ¢zz = 0 outside the body for z < 0 (12)

0(¢) 0(¢e™2)  0(¢e—2)

3 "
- on h(x,y) - z2=0 (13)
on YL+hZ+n2 ’
and
) + k¢ =0 on z=0. (14)

XX z

0(¢)  0(¢e™2)
In our previous discussion of slenderness, we assumed that:

oh dh
h, a5 0(e) and 3y = 0(1) ,

while in our discussion concerning the near field, we assumed that:

g%-, g%—, %% = 0(¢e”1) .
Applying these assumptions to the body boundary condition [equation (13)],
we obtain:
0
on VE:EE
0(¢e™)  0o(e)
If we apply our assumptions concerning the orders of magnitude of the
various derivatives of ¢ to equations (12) and (14), we obtain the

orders of magnitude given beneath the terms of the above equations. Given
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these orders of magnitude, we can discard the high-order terms and sim-
plify the near-field problem as follows:

¢yy +¢,,=0 z<0 (16)

4, =0 on z=20 (17)
h

8 x on h(x,y) -z =0, (18)

L Y1 + h}%

where 3/3N denotes the derivative in the direction of the two-dimensional
outward normal vector to the body in the cross plane. The body boundary
condition also allows us to determine the order of magnitude of ¢ .
From 0(¢e~!) = 0(e) we have:

¢ = 0(e?) .

This problem is a two-dimensional "rigid wall" problem, corresponding to
the Neumann problem for a body and its mirror image, a problem which has
been studied many times [e.g., Ward (1955)]. Ward has demonstrated that
the solution far away from the body acts like:

¢ ~-% A'(x)log r + b(x) ,

where A(x) 1is the sectional area of the submerged part of the ship and
b(x) 1is an arbitrary function of x . This is the outer expansion of

the inner expansion (OE-IE) .

Matching

We are now in a position to match our inner expansion of the outer
expansion with the outer expansion of the inner expansion. The process
of matching involves equating terms of similar form from the IE-OE with
those from the OE-IE, i.e., matching f(x)log r in the IE-OE with
g(x)log r in the OE-IE . One way to facilitate the matching is to set
up a table of the OE-IE alongside the IE-OE with the terms becoming
higher order as you proceed down the table. Taﬁle 1 is such a table for
the first order problem.

If we compare the two sides of this table, we see that the first line
of the OE-IE 1is identical to that of the IE-OE, and therefore, they
match trivially. 1In the second line, we see that the first terms will

match if we set o(x) = A'(x) = 0(e2) . We can also match the second
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TABLE 1
Matching of First-Order Solution
Outer Expansion Inner Expansion
of the Inner Expansion of the Outer Expansion
Ux Ux
0(el/2) 0(el/2) (1
L
+-%-A'(x)log r + Ub(x) +-%o(x)log r --%% J dg o'(E)log(le—El)sgn(x-E)
0(e5/210g ¢) 0(oel/210g ¢) 0 0(cel/2) 2)
L
_ U kz J dg o' (€) {Hq [k (x-£)]
4
0 + [2 + sgn(x-g)]Yo(le-gl)}
0(ae3/2) (3)

terms of the second line if we set
L
b(x) = - 2—1" f dg o'(€)log(2|x~¢|)sgn(x-£) = 0(e?) .
0

We have now matched all of the terms of the OE-IE to terms of the
IE-0OE . However, we have not matched the third line of the IE-OE with
any other terms. This means that we have determined too many terms in
the IE-OE and thus will not be able to utilize it until we have com-
pleted the next order of approximation.

This matching completes the solution of the first order problem.
However, before we continue on with the second order problem, we should
note the physical significance of the high order term which we neglected
in the IE-OE . As stated earlier, this term contains all of the waves
generated by the body. These waves were obtained from the far field and
therefore, violate the body boundary condition. Thus we would expect
that any higher order near-field solution must contain terms to match
these wave-like terms. It is this fact which leads us to assume that
our second order near-field solution will be rapidly varying in the
x-direction and the corresponding far-field problem will have a rapidly
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varying source distribution. Using these ideas, let us now proceed with

the second order solution.



SECOND ORDER PROBLEM

Far Field

As in the first order problem, we shall again write our far-field
potential as the convolution integral of a line source distribution and
a Green's function. This time, however, we shall take our source dis-
iKx):(x)] s, where I(x) 1is a slowly

varying function of x . As before, our governing equations are

tribution to be of the form Rel[e

(6. + 06+ ¢ ) = Re[L(x)el®™

XX vy zz ]G(Y)G(z+c) for z <0

and

¢xx + K¢z =0 on z=0,

along with a radiation condition which allows waves only downstream of
the disturbance. Again we find the double Fourier transform of our

solution (with ¢ = 0) to be:

k2422 2

I*(k-x) e
k222 - k2/k

in]

o**(k,2;2) = -

where I*(k-k) 1is the Fourier transform of Re[I(x)e with respect

to x . (Z*(k-k) 1s not strictly the Fourier transform of Re[z(x)eikx]
This matter is treated rigorously in Appendix B.) The corresponding

potential may be written as follows:

" y ity VE2+22 z
$(x,7,2) = - =2 | dk eI Fpr(r—¢) | L2 __ e (19)
o b AZre2 - 12/

-00

If we now let y and z become O(e) and obtain an asymptotic expan-—
sion of ¢(x,y,z) , we will find that our IE-QE 1is:

17
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X
ikx - in/4 dg_I(&)
¢(x,¥,2) ~ Re {—KeKze J
0 Y2tk (x-£)

0(25"1/2)

2
0(2) 0(z)

+ KIerKZZ(x)ein _L eKzZ(x)ein} .

The details involved in obtaining the IE-OE are given in Appendix B.

Near Field Problem

In the near field, we shall now formulate a new boundary value prob-
lem and obtain its solution. As in the previous near-field problem, we
shall assume that derivatives with respect to y and z are 0(e~!l) .
However, we shall also assume that ¢(x,y,z) = einw(x,y,z) where
Vv(x,y,2) 1s a slowly varying function of x . The linearized boundary
value problem now needs to be rewritten in terms of y(x,y,z) . First
we must determine the proper body boundary condition to be satisfied by
the rapidly varying potential. We can restate the body boundary con-
dition, equation (6), as follows:

h
3 _ _ X on h(x,y) -z =0,

M A ¥ nZ+n?
x T ly

If we observe the right-hand side of this equation, we see that it is a
slowly varying function of x . No matter what method we use to further
linearize the right-hand side, it will still be slowly varying. From
this we may conclude that the potential which satisfies this body boundary
condition must be slowly varying. Therefore, our rapidly varying po-
tential must satisfy a zero normal velocity condition.

Using this we may rewrite the boundary value problem in terms of

v(x,y,2z) as follows:

-«2y + kY, + Y+ tpyy + y,, =0 in the fluid domain,
O(ye™2) O(e™l) 0(y) O@e=2) O(ye~2)
-<2y + ey + oyt Ky, =0 on z=0,

0(ye™2) o(pe™l)  o@p) O(ye~2)
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and

. 1 _ _
(1nwhx +yh + wyhy - ¢z) . =0 on h(x,y) -z =0,

Y1 + hZ + h2
Yy X

0(y) 0o(ye) O(e™l) o(pe~1)

Employing our previous assumptions concerning the orders of magnitudes of
derivatives with respect to X,¥,2 1in the near field, we find that the
terms of the boundary value problem for ¥(x,y,2) have the orders of
magnitude shown beneath them. Discarding the higher order terms, we

obtain the following two-dimensional problem for y(x,y,z)

v+ Y -2y =0 in the fluid domain ,
yy zz
wz -xy =0 on z=0,
and
%% =0 on h(x,y) -z=0.

This problem appears to have the trivial solution Y(y,2z) =0
because of the fact that there is a zero normal derivative condition on
the body. However, Ursell (1968b) gives a multipole expansion for the
solution of the following problem:

- K2y =
wyy + wzz Ky = 0 in the fluid domain ,

with

n
o

Vo= kY on z=0

z

which is valid for all r greater than some rg . Furthermore, Ursell
(1968a) also shows that this solution is nonuniform at infinity. This
nonuniformity causes no difficulty in the near field. In fact, it allows
us to determine a nontrivial solution to the problem by supplying the
terms which match the far-field solution.

The multipole expansion given by Ursell (1968b) is as follows:

v(y,2) = ASo(y,2) + Al®exz %An(le)on(le) (y,2) .

The function So(y,z) is the Helmholtz source, which is defined as:

du cosh du cosh u_ eKZ cosh y + iky sinh p

=1
8y (v,2) = 4 cosh p - 1 ’

(20)
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where \} and 'f are the integrals below and above the double pole at

U = 0 respectfully. The function O;e)(y,z) is an even wave-free

potential, which is given as follows:
(e) - - -
Om (y,2) szrz(nr)cos(Zm 2)6 + 2K2m?1(Kr)cos(2m 1)e + KZm(Kr)cos 2mé

where Km(Kr) is the modified Bessel function of the second kind.
The asymptotic expansion given by Ursell (1968a) is:

A(e)eKz

Y(y,z) ~ - Asnnly|eKz + as KI->o ,

O(Ase‘l) 0(A))

The orders of magnitude given beneath the terms are the orders of mag-
nitude for the OE-IE which are based on the fact that As and A(e)
must be the same order of magnitude in the near field. This now com-
pletes the determination of the OE-IE for the second order problem and

we are ready to match our second order solutions.

Matching
In order to facilitate the matching process, we shall again con-

struct a table containing the OE-IE and the IE-OE . As was done
previously, we have placed similar terms on the same line, except where
the orders of magnitude indicate that this is not valid. Lines (1), 2),
and (3) are carried over from solving the first order problem, while
lines (4) through (7) are from the second order problem which we have
just solved.

When we compare the terms of the OE-IE to those of the IE-OE , we
find that the first terms which match are the terms containing «|y]|
[line (5)]. This allows us to determine the value of As(x) as follows:

ikx

Re[A_(x)e™™] = - ;lr- Re[Z(x)e *] = 0(z) .

If we now observe the next two lines [lines (6) and (7)], we see that
these terms might match. However, based on the order of magnitude
relation between As(x) and I(x) , these terms cannot match. This is
fortunate because we would not expect to be able to fix the relationship
between As(x) and A(e)(x) and still be able to satisfy the body
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TABLE 2

Matching of Second-Order Solution

Outer Expansion
of the Inner Expansion

Inner Expansion
of the Outer Expansion

Ux
0(61/2)

U ., U

;-A (x)log r + Ub(x) ;o(x)log r -5

0(65/2 log ¢) 0(e5/2) 0(081/210g €)
L

- %-eKz J dg o' (£

0

-UKeKzRe

-U1n<ly|e'<"5As(x)e:.LKX

O(Ase‘l/z)

+UeKzA(e)(x)ein
O(Asel/z)

Ux
0(el/2) ¢h)
L
J dg o' (§)log(2|x-£|)sgn(x-£)
0 0(cel/2) (2)
Y{H [k (x-8)]

+ [2 + sgn(x-£) 1Yo (x|x-E])} (3)
0(063/2)

X
Jlkx—1n/4 J dE 2(E)
0 V271k (x-E)
0(z) (4)
+UKlyleKzRe{£(x)ein}
0(zel/2) (5)
- % e“%Re {1 (x) 1%}
0(zel/2) (6)
7

boundary condition, 3y/3N = 0 , for arbitrary body shapes.

We have now completed the matching, except that the high order term

of the first order IE-OE

second order I1IE-OE

have not determined the second order source strength,

[1ine (4)] have not been matched.

[line (3)] and the low order term of the

Also we still
I(x) . At this
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point we may now conclude that the sum of these two terms must be zero,

which leads us to the following integral equation for I(x) :

X
ikx-in/4 J de £(&) '
k Red e ——==2d o b (%), (21)
0 Y21k (X-E) fs
where
L
be (x) = - %—f dt o' () {H [k x-0)] + [2 + sgn(x-£) 1Y (c|x-£])} .  (22)
0

This now completes the matching of our results and also completes the
solution of the second order problem. We will now discuss the behavior

of our solution to the wave making problem.

Summary of Results

In this section, we shall study the behavior of the second order
source strength near the bow and develop equations for the velocity
components and wave elevation in the near field. If we write the second
order source strength as I(x) = Zr(x) + iZi(x) and write only the real

part of the integral equation, equation (21), we obtain:

X

x
dg I,(8) dg zi (&)
k cos(kx - n/4) J ——————— - k sin(kx - w/4) I —=5b, (x) .
0 V27K (x-E) o Y21k (x-E) fs

The functions Zr(x) and Zi(x) are indeterminate because we have only
one equation with two unknowns. Therefore we need to determine an
integral equation in only one unknown. In Appendix B we have done this

by developing the IE-OE in terms of Re[Z(x)ein]

. If we return to
this form of the IE-OE , equation (B27), we can rewrite our integral

equation as:

X
ikg _ _
2 J dg Re[I(£)e ~]Jcos[k(x-£) - w/4] _ by GO - (23)
0 V21K (x-£)
This is a single integral equation in one unknown, Re[Z(x)ein] . We

will call this unknown R(x) and shall investigate its behavior as
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kx + 0 , which is the limit as we approach the bow.
In studying the limiting behavior of the source strength as we
approach the bow, we will let & be some small distance O0(e?) from the

bow. We can rewrite the integral equation in terms of & as follows:

)
2¢ J dg R(E)COS[K(S_E) = "/4] = bfs(a) .
0 '2"'((6-&)

We may now expand the cos[k(é-£) - w/4] and rewrite the integral

equation yet again as:

) . 6
2¢ cos (k§-1/4) J dé R(E)cos(kE) + 2k sin(ké-m/4) j dt R(£)sin(kf) = bfs(ﬁ) .
0 V2mi (6-€) o 72mk(8-¢)

Because we have chosen 6 = 0(e2) , we know that K6,k = 0(e) . There-
fore we may neglect k8 with respect to n/4 and set cos kE =1 and
sin k€ = 0 over the interval of integration. This allows us to simplify

our integral equation as follows:

é
2¢ cos(-m/4) J _dg R(E) be (8)
0 Y27k (6-E) s

This is the classic Abel integral equation [Tricomi (1957)] which we
can solve analytically. Writing the solution to this integral equation,

we obtain:

6 U
_ bgg(0) L1 J dg bgg(E)

for 8§ = 0(c2) .
%39 Ve Vé~g '

0

From this we observe that R(x) has a square root singularity at the bow
unless bfs(O) = 0, and that R(x) 1is not bounded near the bow unless
bfs(O) is finite.

We shall now develop the equations for the various velocity com-
ponents and the wave elevation in the near field. 1In light of our change
in the form of the integral equation for the second order source strength

the matching for As(x) will also change. Making the change from I(x)
to R(x) , we obtain:

Re[As(x)ein] = -R(X)/T .
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In the same vein we shall redefine our multipole solution of the two-

dimensional Helmholtz problem to be a series with As = 1 sgo that the

entire solution of the problem can be multiplied by -R(x)/r .
Incorporating these changes into our formulas, we can write our

total potential in the near field as:

¢(x,y,2) = Ux + Up . (x,¥,2) = UR(X)¥(y,2)/m , (24)
0(el/2) 0(e5/2) 0(e")

where ¢rw(x,y,z) is the solution to the "rigid" wall given by equations
(16), (17), and (18). We can now differentiate this equation with
respect to x,y,z and obtain the velocity components in these directionms.

We find that these velocity components are as follows:

¢ (x,y,2) = U + U (x,5,2) - BR'(x)y(y,2z)/m , (25)
X
oD esr 0%

Qy(x,}'sz) = U¢Wy(x,y’2) o UR(x)wy(y,z) ’ (26)

0(53/2) 0(e3)
and

¢, (x,y,2) = U¢rwz(x,y,2) - R(x)y, (y,2) . 27)

0(63/2) 0(63)

If we return to equation (7), we find that we may write the non-
dimensional wave elevation as follows:

—& -1+ ¢ - R'y/712 + [¢ - Ry_/n]12 + [¢ - Ry_/7]1%} + 1.
1.9 v rw y w z

= U X y 2

2

Squaring the terms in the above equation and keeping the low order terms,

we obtain:

- { S '
';.—Uz = - {2¢rwx(x’Yso) - 2R (X)‘P(Y,O)/ﬂ + ¢]2"wy(x’y’0)} . (28)
0(e2) 0(e5/2) 0(e2)

This completes our discussion of the solution of the second order problem

and summarizes our results.



NUMERICAL ANALYSIS

In order to make use of the above equations describing the flow near
the ship, it is necessary to resort to numerical calculations. While
most of the computations are straightforward, there are two areas which
pose some difficulty. One is the determination of the second order
source strength and the other is the solution of the two-dimensional
Helmholtz equation. We shall discuss these problems in the following

sections.

Determining the Second Order Source Strength

In the previous subsection, we determined that the integral equationm,

equation (23), is as follows:

X
. j de_R(E)cos[k(x-£) - m/4] _ b (X)
0 V21K (%-8) °

where bfs(x) is given by equation (22). Despite the logarithmic
singularity in YO(K|x-£|) , the evaluation of bfs(x) is a straight-
forward problem in numerical integration. Therefore, we shall concen-
trate on the solution of the integral equation.

Let the interval from O to 1 be broken up into N subintervals.
(These intervals do not need to be uniform, and in fact, smaller inter-
vals are desirable near the bow.) Then we can rewrite our integral

equation as:

n [t dg R(E)cos[k (xq=€) - /4]

T ZK = bf (x )

i=1 V2rk(x_-£) s n
X1 n

for n=1,2,°++,N . We may now apply a special form of the Mean Value
Theorem for integrals, Rudin (1964), to the integrals over the sub-
intervals. Doing this we obtain the following equation:

25
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X,

1
I 2 R(xY) d¢ cos[k (xn-¢) - n/4] _
i=1 i =b. (x)
X7 /2nK(xn-£)

where X1 s XI s Xg - We may now make a change of variables,

u = K(xn-g) » and apply a trigonometric identity,
cos(u - n/4) = cos u cos m/4 + sin u sin n/4 . This yields:

K(x ~X:_1) k(X _-x, .)
p R(x ) [l—l du cos u nji'l du sin u | _ P£s(*n) .
= - /2—'”; ( _ ) 2Tu /i

K(xn xi) k(x —x, v 29)

These integrals are Fresnel integrals [see Abramowitz and Stegun (1964) ],

a fact which allows us to write our integral equation as follows:

igl R (G, [e(x =%, )] - Colk(x %) + S,lk(x_x, ;)]
_ bgg(xp)
- SZ[K(xn—xi)]} = -——;%—- . (30)

The Fresnel integrals C [K(x X, l)] and CZ[K(xn-xi)] come from

integrating the first integral in equation (29); the Fresnel integrals

S [K(X X, _ 1)] and SZ[K(xn—xi)] come from the second integral in

equation (29).
Equation (30) is an exact equation, although we do not know the
points xI where the function R(x) is evaluated. Therefore, we shall

now make our only assumption in solving for R(x) . We shall assume

that:

If we set

*
R, = R(xi) ,
and

Cpg = Colxlx=x; )1 = C [k(x ~x)] + 8 [k(x -x; ,)] - §,[k(x -x )1,

we can rewrite the integral in the following abbreviated form:

n be (%)
£ R,C =151 for n=1,+,N.
i=1 1 'ni /2
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By first separating the term R.nCnn from the summation and then carrying
the rest of the sum to the right-hand side, and finally by dividing both
sides by Cnn » we obtain the following equation:

bee (x,) n-1
R = {8l Tt o /C _,m=1,%+,N.
n ¥ {=1 1ini nn

We may use this equation to determine R(x:) in a recursive manner, and
if we have chosen the Xy close enough to each other, we may interpolate
for values of R(x) at additional points. Likewise, we may determine
the derivative of R(x) at arbitrary points by means of numerical dif-
ferentiation.

Three curves of R(x) for various wave numbers are given in Figure
4. The body to which these curves correspond is a body of revolution
with pointed ends. (The details of the body geometry are given in the
section COMPARISON WITH EXPERIMENTS.) These curves have been calculated
using 114 points over the length of the ship. A spacing of 0.005
was used for 0.0 < x < 0.15 , and a spacing of 0.01 was used for
0.15 < x < 0.99 . Corresponding calculations with only 33 points over
the length of the ship resulted in the same degree of accuracy for
x < 0.75 at which point the results started to wander. This completes
the discussion of the numerical solution of the integral equation for the

second order source strength.

Solving the Two-Dimensional Helwmholtz Equation

As we found previously, the second order near-field boundary value

problem is as follows:

gy + ¥y, ” K2y = 0 in the fluid domain,
v, - xp =0 on z=20,

and
%% =0 on h(x,y) ~z=20.

For the above boundary value problem, Ursell (1968b) provides the follow
following multipole solution:

V(y,2) = AS (y,2) + al®exz ? Aée)oée)(y,Z) .

The matching at infinity provides the value of AS[As(x)eiKx = - R(x)/n] .



28

*spoadg
TEeUOTSUSWT(Q—~UoN 93aYyJ, 3® L109Y] Apog-I9puaTs I9p10 Puodads woxy yiBuaxlg aoano§ Jurfxep ATprdey

:y 2an3tg

(x4

T¥ Y3iSuaals 90INog I19pi) PUOIIG == === — — = =

/1%

0Z = 1> Y3a8usi3lg 92IN0S IIPIQ PUOIVS — ——— e —

T = T¥ Yisuailg 90IN0g IIpA) PuUODIIS

-




29

(e)

With AS thus determined, it is only necessary to determine A and

s such that the zero normal velocity condition is met on the body.

A;e)
(e)

There are two methods which can be used to determine the A and

Aée) + One could choose a number of points at which to satisfy the body
boundary condition, and then determine an equal number of the unknown
coefficients so as to satisfy the body boundary condition exactly at
these points. Alternatively, one could choose to satisfy the body
boundary conditions using fewer coefficients than points, and employ a
least-squares technique to minimize the error. The success of either of
these techniques relies on the coefficients [Aie)(x)] decreasing
rapidly enough for increasing m so that the solution can be repre-
sented reasonably with a small number of terms.

The method we have chosen is the former because of its relative
ease of computation and greater efficiency. The only danger in se-
lecting this approach would be if the potential is not well behaved
around the body, in which case the least-squares technique might give
better results. As a check of this, a comparison was made with the
solution of the same problem as calculated by Faltinsen using the least-
squares technique, and it was found that the results agreed to within

two to three per cent. Also, as a check of the rate of convergence of
the series ? A;e)oée)(r,e) » the solution was calculated using both

seven and ten terms and the solution changed by less than one per cent.
We shall now discuss the technique used to evaluate the potential

due to a Helmholtz source and its corresponding normal velocity.

The Potential Due to a Helmholtz Source

For the following problem,

2 2 = 0
Vsz K<y 0 y <
and

Ky —-%% =0 on y=0

Ursell (1968b) gives the Green's function as:

8, (kx,ky3kE,kn) = K [kV(x-£)% + (y-n)*]

+ 1 + dp(cosh p+l) ik(x-£)sinh p + k(y-n)cosh u
= e ,
4 cosh p-1
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@®

where

b s

and ’f‘ denote integration below and above the double pole
—0

at u = 0 respectively. (Note: We have used y-positive upwards, as

opposed to Ursell's y-positive downwards.) Faltinsen (1971) integrates

SO(KX,Ky;O,O) by means of contour integration, and obtains the fol-

lowing form for S0

So(xr,e) = - mkr sin 0 e ¥ €08 6

-kr sin 6/1+u?

+ J du u?cos(ukr cos 8)e
5 (1+u2)3/2

> (30)

it - YV 2
. J du u sin(ukr cos 8)e kr 8in 6v1+u
5 (L+u2)3/2

where r = /x%4+y2 and 6 = tan~l(x/y) . However, it is possible to
further simplify equation (30) by means of the following identity:

" -kr sin 6v1+u?
J du cos(ukr cos 6)e
0

Ko(Kr)

(1+u2)1/2

-kr sin 68v1+u?

i J du (1+u?)cos (ukr cos 6)e (31)
0

(1+u2)3/2

If we now both add and subtract Ko(Kr) , equation (31), from the first
integral of equation (30), we obtain:

So(Kr,e) = KO(KI) - 7kr sin 6 e <F €08 o

7 -kr sin 8vY1+u?
- J du cos(ukr cos 6)e
0

(1+u2)3/2

. (32)

® - ,/ 2
_ J du u sin(ukr cos 9)e kr sin 6/1+u
2y3/2
b (+u?)

As a further check of our results, we can let 6 = 0 in equation
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(32), which yields :

J du cos(ukr) _ j du u sin(ukr)

Sy (xr,0) = KO(Kr) - (l+u2)3/2 (1+112)3/2

Using equation (9.6.25) from Abramowitz and Stegun (1964), we see that
the first integral is equal to KrKl(Kr) . Faltinsen (1971) has shown
that the second integral is equal to KrKO(Kr) . So for 6 =0, we

have:
SO(Kr,O) = (1 - Kr)KO(Kr) - KrKl(Kr) .

We can now obtain a simplified form for the radial velocity in a
similar manner. Differentiating equation (32) with respect to «kr , we

obtain the radial velocity as:

95¢ -Kr cos B

Py (1 - kr cos 9)

(kr,8) = -~ Kl(Kr) -nmsin 6 e

% -kr sin 8/1+u?
+ I du_cos(ukr cos B)e (/I;:E sin 6 - ucos 6)
0 (l+u2)3/2
< -kr sin 8vY14u?
+ J du u sin(ukr cos 8)e ( ﬁ+u2 sin 6 + cos 0) .
(l+u2)3/2
0 (32)

If we now multiply KO(Kr) , equation (31), by cos 6 , and add and sub-
tract it from the first integral of equation (33), we obtain:

39S
oKr

-Kr cos ©

(kr,0) = ~ Kl(Kr) - KO(Kr)cos 6 - 7s5in 6 e (1 - kr cos 8)

(¥14u2 sin 6 + cos 6)

+

e - /142
J du cos(ukr cos 8)e kr sin 6v/14u
! (1+u2)3/2

—kr sin 98v/1+u2

(¥1+u? sin 6 + cos 9) .

+ J du u sin(ukr cos 8)e
0 (34)

(l+u2)3/2

We can again obtain an analytic integration for 6 = 0 . If we set

8 = 0 in equation (34), we find that:
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- -]

3s <
3—0 (kr,0) = - K, (xr) = K (k1) + J du cos(ukr) j du u sin(ukr)
“ (1+u2)3/2 (1+u2)3/2

Evaluating these integrals in the same manner as for So(Kr,O) s We
obtain:

35,
e (kr,0) = (kr - 1)[K0(Kr) + Kl(Kr)] .

The integral for So(Kr,e) » equation (32), and the integral for
aso(Kr,e)/aKr » equation (34), can both be evaluated by means of nu-
merical integration. Figures 5 and 6 show the variation of So(Kr,e)
and 3So(Kr,6)/8Kr as functions of «r for several values of 6 . The
asymptotic curves shown on these figures are the functions

. -Kr cos 0 -Kr cos 8
-7Kr sin 6 e and -7 sin 6 e

(1 - kr cos 9) ,
respectively. These asymptotic limits are valid for «kr sin 6 » = ,

These calculations complete the section on numerical analysis.



2.0

1.0

33

0.0

-3.0}~

Figure 5:

8 =n/2

Contours of S,(xr,8) Vs.

Asymptote for-———————//

kr for Various Values of 6 .



34

0.0 0.2 0.4 0.6 0.8 1.0
0.0 1 T | 1 T

Q9 =
Asymptote for :

-2.0 6 = n/2

8 = 0.357/2

N—8 = 0.757/2

-8.0 =

(kr,08)/dkr >
1 B

_10.0 =

35,

-12.0 =

_1400 -

-16-0 o

-18.0 }=

-20.0

Figure 6: Contours of BSO(Kr,B)/aKr Vs. kr for Various Values of 6 .



COMPARISON WITH EXPERIMENTS

In order to obtain a measure of the validity of our results, it was
decided that a comparison should be made with experimental data. As we

saw earlier, the second order source strength behaves like:

X v
b 0 d¢ b
R(x) = £5(0) + 1 I £ bes(E) for x = 0(e2) ,
YTKX ey 0 Vx-§

and as we stated earlier, our solution depends critically on the value
of bfs(O) . If bfs(O) is infinite, then the source strength is
infinite, at least near the bow. Experience with bfs(x) shows that for
an arbitrary body, bfs(x) has a term which behaves like U(O)YO(KX) R
which comes from the discontinuity of o(x) at x = 0 ; this term tends
to infinity logarithmically as x + 0 . However, if we demand that the
body be pointed, o(x) has no discontinuity at x = 0 , and the corre-
sponding be(O) is finite. With this information as a guide, it was
decided to compare our results with experiments on a body of revolution,
After a brief investigation, it was determined that there was no
existing data for bodies of revolution with pointed ends and a parallel
middle body. Therefore, a decision was made to conduct our own experi-
ments to obtain the necessary data. For a model we chose a parabola of
degree 2n to represent the radius of the body as a function of longi-

tudinal position. This function is as follows:
r(x) = ro(l—xzn) for -1 <x<1,

This representation has the advantage of allowing us to introduce an
apparent parallel middle body (by choosing n large enough) and still
maintain a continuous function throughout. We found that n =5 would
give about 60% of the body as parallel middle body. We chose 1, = 0.10
to give us a beam-length ratio of one tenth (B/L = 0.10).

The radius distribution given above was then scaled to give a model
15 feet in length with a beam of 1.5 feet. This model was built of

35
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fiberglass stretched over a plywood frame. The model, which was fixed
to the carriage so that it could not sink or trim, was towed in the
towing tank and wave measurements were taken 2 inches from the side of
the model using a resistance wire wave probe. These wave records were
recorded on a strip-chart recorder, digitized manually, and then non-
dimensionalized by g/% u? .

These non-dimensionalized points are plotted in Figures 7, 8, and
9 along with the wave elevations predicted by our second order slender-
body theory and the Tuck Slender-Body Theory. The second order wave
elevations are obtained by evaluating equation (28), while the Tuck

calculations are obtained by evaluating the following equation:

7B 32 = - (20, 55,00 + 2. () + 92 (x,7,0)] ,
2 x ¢

where bés(x) is the derivative of bfs(x) given by equation (22).

The curves of wave elevation from the second order theory have
been truncated in the stern region because they start to oscillate
+ rapidly with increasing amplitude. This oscillation, which is caused
by R(x) becoming irregular, probably has two causes. First, the
values of R(x) will tend to drift as we move toward the stern due to
an accumulation of errors in the calculation of previous values. Second,
as we approach the stern, bfs(x) starts to grow due to the waves
generated by the stern section. These waves may be out of phase with
the waves from the bow, which in turn results in R(x) having to change
phase. This is further complicated by the fact that the formula for
R(x) contains a memory term which includes information on the earlier
phase. The combination of these two effects could well cause the
irregularities found in the second order wave elevation.

If we disregard the stern region and compare our three sets of
curves, we see that the phase of the waves from the second order theory
lag behind the waves from the Tuck theory by about =n/2 . At the same
time, we see that the second order phase agrees very well with the
experimental one over the middle region of our curves. The amplitude of
the second order waves over the midbody is much less than that due to
the Tuck theory and agrees fairly well with the experimental curves.

Both the second order theory and the Tuck theory grossly overestimate
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wave amplitude in the bow region. This is not unexpected of the second

order theory since it has a square root singularity at the bow. These

findings point out the necessity of developing more fully the theory for

flow about the bow of a ship. This completes our discussion of the

computational and experimental results.



APPENDIX A: INNER EXPANSION OF THE OUTER EXPANSION FOR A SLOWLY VARYING
- SOURCE DISTRIBUTION
In this appendix we shall show how the inner expansion of the outer
expansion equation (lla & b) for the potential due to the slowly varying
source distribution, equation (10), is obtained. In the body of the

paper, we gave this potential as:

¢ T isy Aze2 2
0(x,y,2) = = 77 f aic ™ok (k) f — : (A1)
T 2 k2422 - K2/«
We shall do most of our work with the Green's function*—-really its
Fourier transform——which we can write as:
e¢E2+22 z
k2422 - k2/k
If we invert G**(k,z;z) with respect to y , we have
2 iy ¢E2+22 z
G*(k;y,2) = - —21; J dh e e , (A2)
K242 - K2/«

and if we note that the integrand of G*(k;y,z) 1is even with respect to
iy

£ , we can rewrite the e as cos(ly) . By doing this and by making
a change of variables,
2 = |k|sinh u
d2 = |k|cosh u du ,

we can rewrite equation (A2) as:

*By Green's function, we mean the fundamental solution to a partial dif-
ferential equation. This solution may satisfy some of the boundary con~
ditions of the problem. In our particular case, the Green's function
satisfies both the linearized free-surface boundary condition and the
radiation condition.

41
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-]

* (1. - _1 dy cosh [k|z cosh u
GT(k;y,z) - J cosh n = TK[/x cos(|k|y sinh p)e a

where this integral must be interpreted as a contour integral, and the
proper path chosen depending on whether k 1is positive or negative.

For small values of Iklr » Ursell (1962) gives the following asymptotic
expansion of this integral:

. 1 (-mi sgn k-a)ctnh a
G (k;y,z) T = ;’ (n-B)ctn 8

°° cosh ma
o | Io(lk|r) + 2} (-l)mIm(IkIr)cos mé { }
. 1 cos mf

- -11; Ko (|k|r) (A3)

2 L sinh ma ctnh o
+ = l (- — I (|k|r)cos Ve s
1 sin mB ctn B
v=m

where the upper or lower expressions are valid as follows:

Ikl cosh a > 1
x cos B <1

Using the identity below [Ursell (1973)],

cos mB

® cosh ma —
Io(|k|r) + 2} (—l)mlm(|k|r)cos mé } = &% cos(yvk2-k2) ,
1

where cos(yvk?-k?) becomes cosh(y/k2-x2) for |k|>k , we can
rewrite equation (A3) as:
(-im sgn k-a)ctnh a

G*(k;y,z) = - % e<? cos (yvk2-k2)
(m-B)ctn B

- L %o (Jk|n) (a%)

2 o 5 sinh mo ctnh o
+ = } (- 5 Iv(|k|r)cos v .
1 v=m sin mB ctn B
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We shall now place this expression for G*(k;y,z) back in equation
(Al). However, first let us discuss the expected behavior of o*(k) .
According to our assumptions, o*(k) 1is a slowly and smoothly varying
function of x . Correspondingly, we can use the theory of Fourier
transforms [e.g., Lighthill (1964)] to show that if o(x) is suffi-
cently smooth, o*(k) must decay like an inverse power of k for large
k . Using this information, we can conclude that o*(k) is peaked near
k equals zero and that it falls off rapidly away from the origin.
Furthermore, we shall take advantage of the fact that we are interested
in evaluating the potential in the near field, which implies that
r = 0(g) .

Returning to the evaluation of the potential, we can now write:

¢ (x,y,2) = J dg O(E)G(X—E,Y,Z)

= - f dk eikxc*(k)G*(k;y,z)

*1e.
dic M [-gkox ()] [ S K3Ta2)

]
)
8§ ~—— 8

Now substituting the value of G*(k;y,z) , equation (A4), into this

equation, we find

< (-im sgn k-a)ctnh a
¢(x,y,2) = -1—2 J dk eikx[—iko*(k)]

2m o (m-B)ctn 8
(A5a)

. echos(yVKE—kz)

ik
- 3%7 J dk eikxo*(k)K0(|k|r) (A5b)
+ 3 ] D® f dk e [-iko* ()] |2 1_(|k|r)cos v
1 o v v=m

(A5c)

{sinh mo ctnh o 1
sin mB ctn B ik
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Setting ¢;(x,y,2z) equal to line (A5a), ¢,(x,y,2) equal to line (A5b),
and ¢3(x,y,2z) equal to line (A5c), we can work with one term at a time.

Evaluating ¢;(x,y,2z) first, we can write

(-im sgn k-o)ctnh o echos(y 42:23)
(m-B)ctn B 1k

2n

61(%,7,2) = 2= J dk e X [1ko* ()]

%f dg 0'(£)f(x-g’}'9z)

where
-]

&% [ 4k eikx (-im sgn k-a)ctnh o
f(x,y,z) = 2 “ik

cos(yvk2-k2) .

us

-0

(r-B)ctn B

By expanding f(x,y,z) into three integrals,

(-im sgn k-o)ctnh o cos(yvk2-k?2)

K2z < ikx
dk
f(x,y,2) = ez,n, f _ik
K

+

(m-B)ctn B cos(yvk2-k?)

K
eKz dk eikx
-ik

K

1K (-im sgn k-a)ctnh o cos(yvk2-k2) ,

and by combining terms and reducing the interval of integration to
0sBsg», we find that f(x,y,z) reduces to:

-]

£(x,y,2z) = —e<° J QE;S%E_EE ctnh o cosh(yVEZ-Kz) (A6a)

Koo
<2z dk sin kx 4

- = J T o ctnh a cosh(yvk2-x2) (A6b)
K
K

+ <% j QE—E%E—EE ctn B cos(yvk2-k2) (A6c)
0
kz ¢

- e“ j LS sin L= B ctn B cos(yvk2-k2) . (A6d)
0
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If we now make the following change of variables, k = kxcosh a ,
dk = ksinh o do in lines (A6a) and (A6b), and k = kcos B ,
dk = —xsin B dg in lines (A6c) and (A6d), we find that f£(x,y,z)

be written as follows:

f(x,y,2) = -e*? J do cos(xx cosh a)cosh(ky sinha)
0

KZ
E;— do sin(kx cosh a)acosh(ky sinh o)

O-—8

w/2
J dB sin(kx cos B)cos(xy sin B)
0

+ eKz
w/2
3
+ — I dR sin(kx cos B)Bcos(ky sin B) .
0
These integrals, although greatly simplified compared to those with
which we started, are still difficult to evaluate. However, if we

y equal to zero, we find that the resulting integrals have been
evaluated by Tuck (1963), and in fact,

f(x,0,z) = eKz-%{f40(Kx) + (2 + sgn x)¥o(x|x|)} .

Substituting £(x,0,z) back into ¢;(x,y,2) , we obtain

e

KZ <
01(x,¥,2)~ = —7~ I de o' (eXHo [k (x-£)1 + [2 + sgn(x=£) 1Yo (k|x-E])}.

Returning to line (A5b) for ¢,(x,y,z) , we have

02 (X,¥,2) = - 2—1“f dk eM¥¥ox (0)Kq ([k|1) -

=00

can

set

(A7)

This is the classical potential for a line distribution of sources in an

infinite fluid. Following the analysis of Ward (1955), we can write the

inner expansion of ¢,(x,y,z) as:
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1 " " 2pn

where

b(x) = J de o' (£)log(2|x-£|)sgn(x-£) .

Finally, we need to obtain an inner expansion of ¢3(x,y,z) , line
(A5¢),

[ -}

$3(X,¥,2) =-35 G J dk eikx[—ikc*(k)] g%lv(lklr)cos vé]
™1 2 v=m
sinh mo ctnh a} 1
sin mB ctn B e
2 = | m 1
b = z (-1) I dg 0'(E)gm(x"g’y’z) ’
where

1
gm(x,y,z) = '2_,"

g +—— 38

dk eikx 3 sinh mo ctnh o
_ —Iv(]k]r) cos Vo . (A9)
-ik v
v=m _sin mg ctn B

Breaking equation (A9) up into three integrals, we have:

-K [

1 dk e[
gm(x,y,z) = o J + f -TERIV(]kIr)cos ve:l sinh ma ctnh a (AlQa)
v=m
. o) K
ikx
1 dk e ]
+ 5= J TI;—vIv(IkIr)cos ve]\):.msin m8 ctn B . (A10b)
-K

It is now possible to make the same change of variables, k = k cosh a
in line (Al0a) and k = « cos B in line (A1l0b), as we did for
¢;(x,¥,2) . This results in
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R ikx cosh af 9.
gm(x,y,z) = + o J do e [;VIV(Kr cosh a)cos vé]v=msinh mo
0

kS ikx cos B 3.
- 5 J dg e [;vlv(Kr cos B)cos vé] sin mf .

We can now evaluate these two integrals by the method of stationary
phase [Erdelyi (1956)]. To do this, we must find the stationary points
of the exponential term in each integral. The stationary points, which
are the zeros of the derivatives of the arguments of these terms, are
the points o« =0 and B = 0 . At these points each of the integrands
is identically zero, and from this we can assume that to leading order
¢3(x,y,2) = 0 .

Combining ¢, (x,y,2) [equation (A7)], ¢2(x,y,2) [equation (A8)],
and ¢3(x,y,z) , we can now write the inner expansion of the outer

expansion as:

™

¢(x,y,2) v % o(x)log r - 5= J dg o' (£)log(2|x—£|)sgn(x-¢E)

KZ <
- eT J dg o' (e) {Holk(x-£)] + [2 + sgn(x-£)1¥q(x|x-E])} .

-0

This is the inner expansion of the outer expansion given in equation (10).



APPENDIX B: INNER EXPANSION OF THE OUTER EXPANSION FOR A RAPIDLY VARYING
SOURCE DISTRIBUTION
In this appendix we shall obtain the inner expansion of the outer
expansion for the potential due to a rapidly oscillating source distri-
bution. This potential is given as:

¢p(x,y,2) = J dg Re[E(E)eikglG(x-E,y,Z)- (B1)

Alternatively, we may write ¢(x,y,z) in the transform space, equation
(19), as:

dk e” T IT*(k~k)G*(k;y,z)

1 ikx
s = 2 |

However, we must be careful of the fact that we can include only the real
part of Zl(x)ei'cx . We shall work in the transform space, which will
allow us to take advantage of the fact that the peak of the source dis-
tribution's Fourier transform is at k = + k . This will result in our
finding a different inner expansion of the outer expansion of the
potential from that obtained for a slowly varying source distribution.
Let us start this analysis by finding the Fourier transform of
Re[Z(x)e¥¥]
R(x) , which we will define as follows:

. If we call our rapidly oscillating source distribution

R(x) = Re[Z(x)ein]

then we can write its Fourier transform as:

R*(k) = J dx e~ikae[Z(x)ein] s

which upon expansion yields:
00

R*(k) = f dx e_ikx[ZR(x)cos KX - ZI(x)sin kx] .

Q0
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If we now expand the sine and cosine as complex exponentials, we obtain:

-ix (k-x) -ix(kt+x) -ix (k-k)

+ ZR(x)e + iZI(x)e

R* (k) = %j ax[, (x)e

—iZI(x)e-ix(k+K)] .

We can now evaluate the Fourier transform of R(x) as:
1
* = =[T% (k- % *(k-k) - iI*
R*(k) 2[ZR(k K) + ZR(k+K) + iZI(k K) iZI(k+K)] .
Combining terms, we have as our final result:
RE(k) = Z[Z*(k-k) + TR(EFO)]

where I#*(k) 1is the complex conjugate of I*(k) .
Rewriting ¢(x,y,2) , we obtain:

¢(x,y,2) = f%’j dk[Z* (k-k) + Z*(k+t<)]G*(k;y,2)eikx .

=00

Writing ¢(x,y,2z) as ¢(x,y,2) = ¢1(x,y,2) + ¢,(x,y,2) , we have

61(,7,2) = 7= J dic T# (k=) C* (k;y, z)e (B2)

and

Tln' j dk T* (khe) G* (k3y, z) e KX (83)

¢2(x,y,2)

We shall now determine the outer expansion, valid for y,z = 0(1l) .

Outer Expansion

We must now investigate the behavior of G*(k;y,z) , given as:

2 s J2+e2
G*(k;y,z) = --%; f digfiflyle e (B4)
2492 — K2/¢

from equation (19). First we note that this integral appears to be real.

However, it has two singularities on the real axis for |k| > « . These
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contribute a residue term to the integral which may give a complex con-
tribution. In order to investigate whether G(x,y,z) is real or com-
plex, let us write this integral as a residue plus a principal value
integral:

p 12|y|e¢E2+22 z

C*(kjy,z) = ~ o + L8 - 17 Res(sg) .

o ] hmE o

Neglecting the residues for the moment, we note that the principal value

integral is even in 2 and therefore, we may rewrite it as:

b k2482 2
G*(k;y,z) = - 1142 cos 2]yle -~ 5 Res(%g) .

Ty kP2 - k2 )

We now see that the integral is pure real. Therefore, if we change the
sign of k from plus to minus, it exhibits the property
G*(-k;y,z) = G*(k;y,z) , which is the property necessary for G*(k;y,z)
to be the transform of a real quantity.

We shall now investigate the residues of G#*(k;y,z) . To do this,
we must determine singularities of the integrand, which are the zeroes

of the denominator. The zeroes are given by the values of % for which
A222 - k2/c = 0 .
This implies that
k2422 = k2/x

which in turn implies that
22 = k2(k?/k2 - 1) .

The.poles of G*(k;y,z) are at the points &y = + |k|/£§7;7_:_1 . For
|[k| > « , these poles lie on the real axis; for |k| = k , the two poles
converge to the origin resulting in a double pole; and for lkl <K,
the poles lie on the imaginary axis.

It is now necessary to determine which of the poles on the real
axis to include in the residue. First, by observing the exponential
[ei}Z'Iyl in equation (B4)] in the numerator of G*(k;y,z) , we see that
the contour should be closed in the upper half space. To obtain the

direction in which the contour is perturbed, and therefore, the
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direction to go around the poles on the real axis, we shall use the

fictitious viscosity. Rewriting the free surface condition as:

3
U+ w2 ¢+ go, = 0 on z=0,

and, rewriting the solution, we obtain a new form for G*(k;y,z) as

follows:
bt ‘4;2 2
ds ei£|y|e +L4< 2z

1lim 1
G*(k;y,z) = -— .
il J 2422 - -]gi(Uk - ip)

u>0 T 2%

-0
For |k| > k , we are interested in determining in which direction the
poles are perturbed for u > 0 . Again determining the locations of the
poles of the integrand, we have that

H 1 4
k2+20=?(Uk—iu) ,

from which we can conclude that
~2
Re = S0k - 4" - k2 .
g
Expanding this equation and determining the order of magnitude with
respect to u(p small) , we obtain:

“2 _ ku 2
2,0 = :2' k 4ip

Udk3 2u202k2  4p2U2%k2 | 443Uk 4
gz ugz - ugz * 11gz +§7
0(1) 0(1) o(p) 0(u?) 0(u?) owd) o™

By neglecting the terms which are O(u?) and higher order, we find that:

~2 . k* 2 U3k3
2,0 Py ke - 4iyp —gz— s
and
- k2 UK
209 T & |k|J—E2'-1-4iu—gz—.

By factoring &3 out of the equation for &3 , we obtain:

P k2 41iuU3k

%0 |k|JEI._ 1 Jl a ___ié?____. .
2 -1)
g Cz

Upon expanding the second square root term in a Taylor series, we have:

PO ZiuUak

29 2011 - —Zz | -
2( - 1)
g K2
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According to the sign of k , we can conclude that for k > k we take

AV
~%0 +29

the following contour: I O (:)
i ' >

Figure Bla: Contour of Principal Value Integral for k > k .

and for k < -k we take: C) (:)
L)\ .
) I v >
-2 +2

Figure Blb: Contour of Principal Value Integral for k < -k .

We now need to determine the residues of G*(k;y,z), equation (B4),
at the points * %9 . For k > k we must find Res(-%;) and for
k < -k we must determine Res(+%g) . The residue at +L9 can be

written as follows:
‘4;2 2
1lim (2_20)e12|y|e ez

2+ (Vk2+22 - k2/k)

Res(+%g) =

Making a change of variables, € =2 - %5 , & = Lo + € , and
22 = zg + €2 + 220e , and rewriting Res(+%g) , the residue becomes:

lim eeizOIer 2+2% 2

Res(+%g) =
e*0  (Mk? + 2% + €2 + 209e - k2/k)

If we apply L'H6pital's rule and set e equal to zero, we find that:

180y | /k?+22 /ik2+ag

Res(+2g) = e %y .

Upon substituting the value for £ , we have our final result:

eilkllylVEZ/KZ - 1 + k2z/«
A2 -2

Treating the case k > k in a similar manner, we obtain Res(-2g) as

13

Res(+%p) = for (k < —x) . (BS)

follows:

e—ilkllyl/ﬁz/xz - 1+ k?z/«
AZ - 2

[k]

Res(-%p) = - for (k > k) . (B6)
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We may now write G*(k;y,z) , equation (B4), as:

g oitlyl k2422 2
1 e e
2"_@ vk2+2Z - K2/«

i|k||y|¢£2/K2 -1+ k%z/¢
£ Vo L] (k < =x)
i 2_.2
- _;.4 2 K (87)

e-ilkllylVEZ/Kz -1+ RZZ/K Jkl
L 2vk2~¢2

The crucial question now is, do the residue terms of equation (B7) obey

G*(k;y,z) = -

(k > k) .

the complex conjugate rule with respect to changes from positive to
negative k ? We can show that this is the case by writing the imagi-
nary part of the complex exponential in terms of sines and cosines;

doing this, we obtain:

-i(-cos A+ i sin A) = sin A + 1 cos A for k>0
and
-i(cos A+ i sin A) = sin A - i cos A for k < 0,

where A = IkllyIVEE;;E/K . The above proves that the residue term
satisfies the conditions for G(x,y,z) to be real.

~ We now want to transform this Green's function, equation (B7), into
a form of the Green's function similar to that one given by Ursell
(1968a) for rapidly oscillating disturbances. To do this, we shall

write G*(k;y,z) as a contour integral:

G*(k;y,z) = — 1 Res(%g) (B8a)

< ei/zZ-kz z -1/22-k
» (B8b)
K

+ ;L—J ds e'—'q'Iyl

+
Zﬂlkl -~V22—k2 + ikZ/K 22-k - ikZ/

where the contour chosen is shown in figure B2. (The contour of figure
B2a is used for k < -« , B2b for |k| <k , and B2c for k > k .) The
integral term in equation (B8) comes from integrating in and out along the
branch cut CDE in the above contours (Figures B2a, b, and c).

To evaluate G*(k;y,z) we shall need the residue on the imaginary

axis for |k| <x . For |k| <k we shall need the residue at:



_g,o —20

Figure B2a: Contour of Integration for k > x .

- +ifg

O B

Figure B2b: Contour of Integration for |k| < k .

>~
7

B
=2 =29

Figure B2c: Contour of Integration for k < -k .
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20 = + i|k|V/1 - k2/k2 .
Writing the residue as we did previously, we obtain:

(51 )eiz|yl + k2422 2
Res(2g) = + lim f. .
2+ (k2422 - k2/)

By making a change of variables, £ - %3 =¢€¢, & =29+ ¢,

22 = zg + €2 + 2¢%y , and by applying L'H6pital's rule, we obtain:
ie-|k||y|¢& - k?/k?2 + k2/k2 2

| k]
Res(Ly) = - . B9
(29) Ve (89)
Letting I(k;y,z) equal line (B8b),
< —R'|Y| eiVﬂ,z—kz z —ivﬁ,z—k
I(k;y,z) = J de e
k| V22-k2 + 1k2/K /a2-k2 - 1k2/x

we will examine the integral around the branch cut, line (B8b), and

determine how it behaves. By making a change of variables,

= |k|lcosh y and d2 = |k|sinh u du , we can rewrite I(k;y,z) as:

-]

iz|k|sinh u -iz|k|sinh u

. _ -|k]|y|cosh u e

T(ksy,2) = J du sinh u e sinh y + iIkI/K sinh u - i|k|/x
0

Upon combining the two terms, we find that:
I(k;y,2z) =2 j du e‘lk|IY|cosh u
0

., Jsinh p[sinh u cos(z]klsinh p) + [k|/« sin(z|k|sinh u)]
sinh u? + k%/¢? :

The portion of the integrand in brackets is zero for u =0, and goes
to a maximum of + 1 for u > 0 . Therefore,

I(k;y,z) 1is bounded by
Ko(|k||x]) , as shown below:

o

2y, ] < [ an Tl Iloos v oy ey
0
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For |k||y| = (as is the case in the far field), this integral is
exponentially small, even for z = Q . From this we can conclude that

for large |k||y|, G*(k;y,2z) 1is given as follows:
G*(k;y,z) ~ -1 Res[2g(k)] .

Using this, we can now write ¢(x,y,z) , equation (B1l0), as:

0 (x,y,2) ~ - %"T dk[Z* (k-k) + T (k) JRes[2g (k) Je 1K | (B10)
and correspondingly from equations (B2) and (B3),

$1(x,7,2) = - {;T dk I*(k-k)Res[2q (k) JeXF* (B11)
and -:

02 (x,y,2) = - Zi?J dk T*(kHc)Res[Lq (k) JeX¥ . (812)

Working with just ¢;(x,y,z) and substituting the appropriate

residue terms in equations (B5), (B6), and (B9) into equation (Bll), we
have: ikx

< - |.XL,4;2_ 2 2
i J dk e” I*(k-k)e 1k K K + kz/«
K

k

¢1(X’Y9z) = +H A:é__KZ

K Akl /757 2
I dk eikxz*(k-x)e K k®=k® + k/« Ikl
K

1
4n

‘/K 2_k2
-« 777 4 42y

1 I dk e ¥pw(oyet T K

-+ —
AZ o2

47
Our Green's function has now been transformed into a form which is con-
venient for determining the outer expansion of the inner expansion. We

shall next complete the task of determining a consistent outer expansion.
From our knowledge of Fourier transforms, we can see that I*(k—-k)

has a peak at k =k , and G*(k;y,z) has peaks (square root singu- .

larities) at k = t k . Therefore, we would expect that the major
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contributions to ¢;(x3y,z) would come from near the singularities of
G*(k;y,z) . Because of the peak in I*(k-x) at k = ¢ , we would expect
the contribution from near k = k to be lower order than the contri-
bution from near k = -x . Splitting the interval of integration of
equation (B13) in half, and expanding the integrand about the singu-

larity in the interval of integration, we obtain:

2 ikx —imm + k%z/«
_i [ dk emFrrk-k)e™ k
¢1(x,y,z) - Z.'? /@___2 (3148)
-K
= ikx - -I—LI-LI—Vk k2-k? + kzz/K
_ 1 J dk e” TI*(k-k)e K k| (B14b)
4 . Yie2—k2
0 ikx - MY—L/.:Z_-F + k2z/k
_iJ’ dk e T I*(k-k)e K || (Bl4ce)
4 |/K2-k§
-K
-K - klZI 4;2_ 2 2
L f die Mok o)t T T Y el Blé4d
4 - Yic2-Kk2 ¢ )

-0

If we let m=k-k , k =mhc , dk = dm , and k? = m?2 + 2mc + k2 in
lines (Bl4a and Bl4b), and if we let m = k+k , k = m« , dk = dm , and
k? = m?2 - 2mk + k2 in lines (Bl4c and Bl4d), we find that equation (B1l4)

becomes:

© _ M mZ _Z_IE
o1(x,y,2) = e T j dn eI 54 (m) (mhe) e 1 () m(at2e) + kz(z + 55)
S Vm (mrt2c)
0 ly] m?  2m
_ ein + kz f dm eimxz*(m)]m-l-nle_ " Im-l-x]v’—m(m-l-ZK) + Kz(—;z- + —K—-)
bn —r V-m(mt+2x)
. K ]_2_1 m?  2m
) omikx + kz J dm eimxz*(m_zn) P Im—n]/-m(m-ZK) +KZ(T<'2' - -—'-<—)
i 0 Y-m(m-2k)
0 . ]_x_| ——— m? 2m
+ joixx * k2 I dm e ™ 5* (m-2«) (m--K)e.i K (m-c) /m(m-2x) + Kz(:z' - —E')
47

v (m~2k)

=00
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We will next expand the integrands of the above integrals, but first

we must divide the interval of integration further. We shall truncate the
intervals of integration at <+ e-l-“|S and evaluate the two portions of the
intervals separately. (We let § be some small positive number, so that
e_1+6 is higher order than e-l .) Doing this, we obtain an extension

of equation (B15).

- 1 o) o) + @ 4
- geif® t kz ¢ g eimxz*(m) (e Tk (mhe) Vm(urt26) + kzCz + <)
¢1(x9y’z) = 4
dus Yo (mt+2k) (Bl6a)
€
146 m? | 2m
. Lyl <o,
: K + Kz J dn e1™ 1k (m) (mhe) e~ T @H)YR(20) + kzCz + =3) (B16b)
47 5 Ym (ar+2¢)
0 154l o n’ ;2o
i ein + kz dm eimxz*(m)lnrl-ncle- ” |m+l<| -m(mt+2xc) + K‘Z(EZ’ + =) (B16¢)
4
146 V-m(mt+2k)
146 e 1o n 4 2o
] _ - <m.
- glex * 2 J dm eimeI*(m)Jm'*'Kle K e [ omGark26) + KZ(;Z- M (B16d)
4 J Y-m (mr+2k)

-l-z-l-lm-KIV—m(m—ZK) + KZ(E:' - -22)
= “—X (Bl6e)
V-m(m-2k)

-ikx + kz
e
4o

K
j dm eimxz*(m—ZK) lm—k | e

-1+6
€

2
Z*(m-2k) Im—xle-J%l |mc | /-m(m-2¢) + KZ(%Z - _2%)
Y-m(m-2¢) (B16£)

X ~-1+6
e—l'ngx + kz € dm eimx
4

0

0 ly] s m2 2m
jo~ikx + k2 dm eimxz*(m-ZK) (m—K)e-i K (m-x) Vm(m-2¢) + Kz(?z - -K_)

b s /om (a-2x) (B16g)

, —ikx + kz —-€ +6 imx
ie dm e
47 J

Y ™ n?  2m
I*(m-2k) (m—K)e‘i‘J%J'(m-K) m(m-2«c) + Kz(?z- - _K_)

Y-m(m—2x) (B16h)

-00

It is easy to show that the integrals of lines (Bl6a), (B16d), (Blée),
and (B16h) are all exponentially small for v,z = 0(1) , so we shall

discard them, and our outer expansion becomes:
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¢, (x,y,2) =
-1+6 1yl m?2 | 2m
ieiKX + kz € J dm eimxz*(m) (m-l-K)e-i " (m+c) Vm (mr+2k) + KZ(‘E‘Z- + T)
b4 o Vm (m+2k) (B17a)
0 ..Il.l_ m? |, 2m
_ eincx + kz dm eimxz*(m) lmtc|e” Tk |m+|<|v’-m(nri-2|<) + KZ(EZ' + T) (B17b)
47 e
_em 146 m{mt2e)
, ~1+8 e 1 Vmta2e m? _ Zm
_ o-ikx + kz € f dm eimxﬂ*(m-ZK)Im-Kle- " |m—t<| -m(m-2«) + KZ(?Z' - K)
= ) Va(a2e) (B17¢)
. 0 152 PR v e m2 _ 2m
. 1o ikx + kz dm eimxz*(m_zK) (m—K)e_i " (m—k) /m(m-2x) + Kz(p' - K)
4 s Va(m=2x) (B17d)
—E-

This completes our outer expansion and all we need to do now is to find

the appropriate inner expansion of the outer expansion.

Inner Expansion of the Quter Expansion

To find the inner expansion of the outer expansion, we shall let
¥,z = 0(e) and we shall expand the exponential terms in y and =z .

Doing this for the integral in line (B17a), we obtain:

e—i ‘J'E‘I'(IIH'K) vm(m+2k) + Kz(%zz- + _ZK;n)

2
~1- i]y]—v’r: m(mrt2c) - i|y|/m(mt2c) + «z %2-+ KZ .2_:1 s

E:36/2 /2 28

o)  0¢e3? 0e®H 0?8 o0¢ed)

where the given orders of magnitude correspond to the maximum value of
m . By discarding all but the two lowest order terms and by dividing
by vm(mt+2x) , we obtain:

e—i-l-%l-(m-h()/m(m-i-ZK) + Kz(%é + —ZKE)

1
v (mr+2x) Y (mr+2) vl

to two terms. Repeating the same procedure with the integral in line
(B17b), we obtain:
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2
o lYK—leKl/-m(mzK) + Kz(%z' + -ZKE) ] 1
Y-m (o 2k ) v-m(m+2k)

In the two integrals in lines (Bl7c) and (B17d), the same procedure is

- Iyl .

followed. However, because the contribution due to these integrals is
higher order, we need only keep the leading order term from each integral.
Upon substituting these expansions into equation (B17) and expanding the

square roots in a series, we find that to the leading order:

4

. =146
ke KX Kz imx. . 1
¢1(x,y,2) ~ T J dm e "I*(m) - ily]

0 2xm
0
ikx + kz
- EL——Z————- J dm eimxz*(m) 1 __ ,y|
" /2
—e~1+6
(B18)
~1+48
-ikx + kz € .
*
S B J dn o 10X Z*(m-2k)
m 0 Y2km
ilce_in K2 g imx I*(m-2«)
—e-1+6 V-2m

We would like to use the theory of Fourier transforms to evaluate

these integrals, and to do this, we must replace the limits of integration,
-1+6
Tt e

gration, we must determine that the errors which we make by extending the

» by + « . However, before we can extend the interval of inte-

limits of integration are higher order than the terms we keep in the
expansion of ¢;(x,y,z) . To do this, we need only to check the lowest
order terms, the two integrals involving ZI*(m) of the form:

-1+6
€

I= dm ei™* ZX(m) (B19)

o

We can write equation (B19) as:
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©0

- J dm "™ rr(m) _ jM) , (520)
o o

e—1+8
We now must show that the second integral is of sufficiently high order
to be neglected. If we assume that I(x) has a square root singularity
at x =0 and that I(x) 1is identically zero for x < O s by using the
theory of generalized functions [Lighthill (1964)], we can say that:

z*(k) = m. .
Vlk]
for large k . Substituting this into the error term in equation (B20),

we can bound the error as follows:

dm eimxz* m J dm _ 2c E2—26
= T T b4
_l4+s 72xkm v2k n Y2k
3 e—1+6

where ¢ is a constant, c = 0(Z) . Based on this, we can say that:
< imx
*
I = j dm e I*(m) + o(2:85/2) ,
0 vY2km

and thereby, extend the range of integration in equation (B18). However,
we must note that this analysis is invalid if we find that the error in
I is of the same order as the high order terms in equation (B18).
Rewriting equation (B18) to include the extended range of integrationm,.
we obtain:

0

NP et ¥ ¥z ) f dm ™ rr(m) f dn_e™™54 (m) (B21a)
4 0 Y2km Y=2km
Klylein + kz t imx
+ I f dm e™ L*(m) (B21b)
- , 0
+ ke lex + «kz _ f dn e ™ g% (m-2) -i J dm eimxz*(mPZK)
4n 5 Y2km o -2km

(B21c)
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By combining the integrals of line (B2la) and the integrals of line
(B21lc), and by applying the convolution theorem, we can rewrite ¢;(x,y,2)

as:

¢1(x’y,z) = -

TP

X
olrx - in/4eKz f d¢ Z(&)
0 Y2mk (x-%)

X
2ikE
- golex + in/4 xz f dg z(g)e* (B22)
0 Y21 (x-£)

+ fngL eineKzZ(x) .

Repeating the same procedures with ¢,(x,y,2z) as we did with
$1(x,y,2) , we can write ¢,(x,y,2) , equation (B12), in the transform

space as: - 0 1
6, (X,7,2) = ein + k2 1 f dm ™™ 2* (mr2k) j dm eimx L% (m+2¢)
2 \X,¥, = T -
b 0 Y2km o V~2km ]
Ke-Kx + KZI l < {mx
+ e b4 j dm e L% (m)
o . 0
+ Ke-in t k2 _ j dm '™ I*¥(m) _ [ dm eimx L% (m)
4w 0 Y2km V=2km

Applying the convolution theorem to the above equation for ¢,(x,y,2)

b

we can write it as: %

=5 ~2iké
¢2(x3y’z) = - ‘g' ein - jL‘"‘/l’eKz J d¢ E(F,)e
Y271k (x-£)

(=]

X

_ %_e-in + in/4enz J dg E?E3 (B23)
0 V21k (x-£)

+ KIZZI e-leeKZ z_(;) .

We can now combine ¢;(x,y,2z) , equation (B22), and 62 (x,y¥,2) ,
equation (B23), to find ¢(x,y,z) as:
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¢(x,Y,Z) = ¢1(x,y,z) + ¢2(X,y,z)
X
- _ K Gikx - in/4 k2 f _dg £(8) (B24a)
2 5 V2mk (x~£)
x —
_ K ikx + in/b k2 j de I(8) (B24b)
2 0 V27K (x~E)
_ 2 21kg
-k kx4 in/4eKz I dg I(&)e (B24c)
2 0 V21K (x~£)
¥ -2ikE
_ K Glkx - in/b k2 J dg Z(E)e (B24d)
2 0 VZﬂK(x-g)
+ E%gl eiKXeKZ I (x) (B24e)
N K|22| e-ineKz T0x) (B24f£)

If we note that lines (B24b), (B24d) and (B24f) are the complex conjugates
of lines (B24a), (B24c), and (B24e) respectively, we see that equation
(B24) can be written as twice the real part of lines (B24a), (B24c) and

(B24e). Thus, we can rewrite ¢(x,y,z) as follows:

X
¢(x,y,2) = Re - eNZelrx - in/4 J 4t 16) (B25a)
0 Y21k (x~§)
x 2ikg
_ KeKze—in + in/4 J de Z(&)e (B25b)
0 Y27k (x~£)
+xly| e“%e™™* 1(x) . (B25¢)

If we apply the methods of asymptotic expansions, the integral of line
(B25b) can be simplified. However, first we shall rewrite lines (B25a)
and (B25b) and show how ¢(x,y,z) can be expressed in terms of R(x) .

By multiplying line (B25a) by elKE ik and by moving the olkx = in/4
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inside the integral terms, we obtain:

ikg eiK(x—E) - in/4

X
¢(stsZ) = Re {-— KeKz J dg Z(E)e
0

Y21k (x—g)
X
ik ~ik(x~E) + in/4
- ke j dg Z(8)e e 526
0 V21K (x~&)
+kly| e p)el*® )
We may now combine the two integrals in equation (B26) to obtain:
1 ik €
0(x,y,2) = -2¢ e<? J dg Re[Z(&)e” "lcos[k(x-&) - n/4]
0 Y27k (x— £)
(B27)

+ K|y|eKzRe[2(x)ein]

H]
. ikx
where by definition R(x) = Re[I(x)e ]
Returning to equation (B25), we shall obtain an asymptotic expression
of the integral in line (B25b). By employing the method for the asymptotic

expansion of Fourier integrals given by Erdélyi (1956), we can show that:

X
2ikg

J dg I(&)e J%;: Z(x)eZiKX - in/4 + oGl

0 vx-t p

upon substituting this into line (B25b), we find that:

X
. . 2i i
e Fe KX + in/4 J dé I(E)e e = <% ESE%;L:Ei-+ 0(zk~1/2)
V21K (x~E) o

0

We may now substitute this value into equation (B25) as shown below:

x
ikx ~ 4 dg Z(&) 1l kz ikx K2 ikx
$(x,¥,2) ~ Re -xeZet ¥ in/ f —=——2 e "I(X)e +-4y|e I(x)e
0 V21K (x~§) 2
0(ze~1/2) 0(z) 0(Z)

This completes the inner expansion of the outer expansion for a rapidly

oscillating source distribution.
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